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Abstract

This work addresses two problems: 1) the dispersion induced by a cloud
of vortices near a straight coast-line when the bottom is flat and the coastal
boundary is a vertical plane or when the bottom is a planar slope; 2) the
dynamics of vortices moving over a planar sloping bottom.

Vortices near a vertical boundary are studied by the well-known method of
images. For a plane sloping bottom we describe and develop a model,
first introduced by Peregrine (1996) that uses a sector of a vortex ring to
model a vortex in a wedge of fluid, where the wedge is formed by the water
surface and by the planar sloping bottom. Numerical simulations using
these free-slip analytical models are used to investigate the dispersion of
vorticity and of a passive tracer induced by clouds of vortices. The results of
the two models are compared. The dispersion of vortices and particles is
mainly affected by the formation of vortex dipoles. The shoreline sets a
preferential direction for the dispersion process and the dispersion normal
to the shoreline is generally smaller, or bounded when the vortices forming
the dipole have different absolute circulation. The dispersion of particles is

generally smaller than the dispersion of vortices.

In the second part of this work the analytical model of Peregrine (1996) for
vortices moving over a planar slope at an angle o with the horizontal is
tested against a set of laboratory experiments. Experiments were made by
studying the dynamics of a vortex dipole moving towards a planar sloping
beach. We measured the minimum distance from the shoreline reached
by the vortices and their along-shore speed. The parameter ranges
examined were 3°<q:<45°, and 1-10°sR.<6:-10° (where R, is the Reynold’s
number of the vortices). We find a good agreement between the
predictions and the observations when R, >~ 1500.
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Chapter 1

Introduction and review

1.1 Introduction

Vortical structures in the ocean are ubiquitous and, for example, range
from 10° m of Gulf-Stream rings and Meddies (e.g. Thorpe, 1998), passing
through ~10" m for whirlpools in tidal currents (Lugt, 1983) or river outlets
(fig. 1), to ~10”° m of the smallest turbulent eddies’. In this dissertation we
concentrate on vortices that are not affected by the rotation of the planet
Earth and on these that are affected by neighbouring topography. Vortices

in the near-shore region satisfy our requirements.

The implications of the interaction of vortices with nearby solid boundaries

are not fully understood nor is the associated dispersion of vorticity and of

'The scale at which the turbulent eddies are destroyed by viscosity is called Kolmogorov
length scale and is defined as Li=(v’/e)'"™ (e.g. Tennekes and Lumley, 1973, p. 20). v is
the kinematic viscosity (v~10° m® s”for water, see e.g Batchelor, 1967, p. 175) and ¢ is
rate of dissipation of turbulent kinetic energy per unit mass (see e.g. Gill, 1982, p. 76 for
a definition). & can be calculated from the diffusivity, K, and from N, the buoyancy
frequency, with (e.g. Toole et ai, 1994):

K, = 0.25¢eN™

The diffusivity is variable, and some oceanic values are: Kp=10‘5 m’ s over smooth
abyssal plains or in the open ocean pycnocline (Polzin et al, 1997, Ledwell et al, 1993)
and Kr,=10'2 m’ s™ in the Romanche fracture zone {(equatorial Atlantic, Polzin et al, 1996).
The average value of K,=10* m? s was given by Munk (1966) from a budget estimate.
Typical values of N are: N=10" s in the deep ocean and N=10?s" ( Thorpe, 1998) in
the thermocline. Using the averaged value K,=10% m’ s” estimated by Munk (1996) for
the main thermocline and the corresponding value for N we find £¢=5 10® m? s, which
gives Lk=5 10° m.



Fig. 1.1: Single vortices and vortex dipoles of different sizes at the outlet of the river Choluteca
(Nicaragua) after the flooding caused by the Mitch hurricane. The load of sediments makes the
vortices visible (Courtesy of U.S. Geological Survey, EROS Data Center).



passive tracers and sediments. The important role played by the
boundaries was postulated for near shore environments (Peregrine,
1996), where vortical structures are sometimes observed (Smith and
Largier, 1995, and Dr. J. Smith, 1998, personal communication) as well as
for the deep ocean (Thorpe, 1998) where the hypothesis of boundary
mixing is still the object of interesting studies (e.g. Polzin et al, 1996).

In this dissertation we concentrate mainly on: a) the dynamical effects
induced by a planar sloping bottom, simulating a beach, over which a
vortex is moving; b) the dispersion induced by a system of vortices moving
over a plane bottom, either horizontal or sloping.

1.2 Objectives

* Improve the analytical tools needed for this research (chapter 2).

e Conduct very simple investigations, with numerical experiments, to
study the fate of vorticity and of a passive tracer in a coastal sea having
a flat bottom and being bounded by an infinitely long, straight, step-like
coastline. The objective in this particular situation (see chapter 3) is to
achieve insight on the dispersion of vorticity and of a passive tracer.

e The problem mentioned above is also investigated for a sea in which
the seabed is a planar slope. The objective is to compare the results
with the flat-bottom case (chapter 3).

o The last objective is to test the validity of an analytical model for vortices
over a planar slope. This is done by making physical experiments

- (chapters 4 and 5) and comparing results with predictions.

This work, although designed for oceanographic applications, contributes

to the progress of the branch of fluid mechanics dealing with vortex
dynamics.



1.3 Vortices in the surf-zone

The most direct application of this work, and that which stimulated much of
our investigation, is the intermediate scale of motions found in and
adjacent to the surf zone on a straight beach.

1.3.1 Inverse cascade and instabilities

Surf-zone dynamics has been the subject of an impressive number of
works, given perhaps its application to problem of immediate social utility,
and significant progresses have been made in the last years (for reviews
see e.g. Svendsen and Putrevu, 1996, Arcilla and Lemos, 1990; Battjes
1988). The surf-zone in characterised by a very large input of energy
coming essentially from breaking waves: the quasi-regular -motion of
shoaling waves is converted in a highly disorganised, or turbulent, velocity
field (Battjes, 1988). The effect of incident breaking waves is believed to
set-up a circulation system made-up mainly by along-shore currents, edge
waves and low-frequency waves (Peregrine, 1996).

How are vortices in the surf-zone formed? Peregrine (1996) noted that,
since the horizontal length scales of near-shore flows are much bigger
than the vertical scales, the flow a few hundred metres off the shoreline
can be considered almost two-dimensional and results from theory of two-
dimensional turbulence may be applied (if the sea bottom is not too
steep). 2-D inverse energy cascade may then be invoked in order to
explain the formation of large (~50 m, Dr. J. Smith, 1998, pers. comm.) and
coherent vortical structures. Such an inverse cascade has been widely
described by laboratory experiments. For example Boubnov et al (1994)
reported an inverse energy cascade in a horizontally forced strongly linearly
stratified fluid and the subsequent set-up of a large scale flow with length

scale of the order of the experimental tank. Fincham et al (1996) used a



rake of flat plates to generate turbulent motion in a linearly stratified fluid. A
layered pattern of flat vortices developed. The flat vortical structures forming
at different levels were responsible for intense vertical shearing motions
that promoted Kelvin-Helmoltz-like instability, ultimately responsible for the
layered structure observed after the decay of turbulence. The authors

indicate the onset of KHI as the main cause of dissipation of kinetic
energy.

A second mechanism responsible for generation of coherent vortical
structures in the surf zone was suggested by Bowen and Holman (1989)
and by the analysis of field data of Oltman-Shay et al. (1989), who pointed
out the existence of oscillatory motion with long-shore wave length of the
order of 100 m and period of 100 s. These waves may be regarded as
instabilities of the strongly sheared long-shore currents and therefore are
called shear waves. A fairly recent review on the subject can be found in
Svendsen and Putrevu (1994). The linear perturbation analysis of Bowen
and Holman (1989) has demonstrated the vortical character of this wave
motion; the numerical solution of the non-linear shallow water equations
show that the long time evolution of instabilities is characterised by the
presence of coherent vortical structures that often pair together (fig. 1.2)
and move away under mutual influence (Dodd et al, 1992; Ozkan-Haller et
al, 1996; Allen et al. 1996; Slinn et al, 1998).

1.3.2 Rip currents

Rip currents are frequent on oceanic beaches and may be seen by
occasional observers: an example is given by the picture taken by Inman
(Inman et al, 1971) at Rosarita Beach, Mexico, reproduced here in fig. 1.3.
A rip current is essentially a strong, v > 0.5 m/s (Tang et al, 1989 a), narrow
jet-like flow directed offshore (e.g. Battjes, 1988, Arcilla and Lemos, 1990;
Komar and Oltman-Shay, 1991; Svendsen and Putrevu, 1996 Dette et al,

1995). Rip currents are usually visible because of their load of debris and
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Fig. 1.2: Contour plots of the vorticity field (solid negative, dashed positive) showing instabilities of the
along shore flow V(x)=Cyx?exp[-(x/a)"]. C, and o are chosen so that V(90)=1 m s-'. p is the bottom
friction coefficient. LY is the along shore scale of the domain, which corresponds to a multiple of the
most unstable linear mode of the basic flow V. Time is expressed in hours (rhs upper corner). As the
bottom friction increases, dipolar structures form and migrate offshore (from Allen et al, 1996).



Fig. 1.3: Aerial photograph of surf-zone with evenly spaced rip-currents. The
spacing between rip-currents determines the long-shore dimension of the near-
shore circulation cell (from Inman et al, 1971).



sediments and because they alter the refraction pattern of incident waves.
Rip currents are known to originate at the convergence point of

neighbouring near-shore circulation cells (Komar and Oltman-Shay, 1991).

It is not easy to provide a comprehensive set of measurements of rip
currents on a natural beach because of the non-stationarity of the
nearshore circulation system (Tang and Dalrymple, 1989a): the
techniques so far adopted included the use of photographically recorded
visual observations (using the suspended load of sediments or
fluorescent dye as tracers), large arrays of current meters (e.g. Tang and
Dalrymple, 1989b,), or, more recently, sector-scanning Doppler sonar
(Smith and Largier, 1995). Research on this subject has so far mainly
focused on the generation mechanisms. The existing models are
classified in three main groups: wave-boundary interaction models, wave-
wave interaction model, instability models (Tang and Dalrymple, 1989a).
Despite the large number of studies, few authors have focused their
attention on the structure of the head of the rip currents, that often seems to
be formed by a vortex dipole (Smith and Largier, 1995). If this would be the
case, one would expect that the two vortices, under their mutual interaction
would have the tendency to propagate off-shore under their mutual
influence (see section 1.4.b) but the dynamics of vortex dipoles
propagating over a sloping bottom is a poorly studied subject, but one to
which this dissertation will contribute.

The cases described above all involve the motion and interaction of
vortices over sloping topography. We shall simulate such motions with
point vortices and vortex rings (in way to be described later), testing the
validity of the calculations by laboratory experiments. We pave the way to

the analysis by giving a brief introduction to vortices (section 1.4) and to
their interaction (see section 1.5).



1.4 Point vortices and vortex rings

1.4.1 Point vortices

a. Background

A general description of the powerful concept of a line vortex can be found
in many books of introductory fluid dynamics (see e.g. Lamb, 1932, Milne-
Thomson, 1949, Batchelor, 1967) or specialised monographs (Saffman,
1992). If the line is straight the vortex is also called a ‘point vortex’ because
the velocity field generated by the vortex is two-dimensional and, in any of
the planes normal to the vortex line, is only a function of the strength and of
the position of the vortex (see section 2.2 for more details). This very
helpful idealisation has stimulated much studies with applications ranging
from geophysical fluid dynamics (e.g.: Wang, 1992, Bidlot and Stern, 1994)
to the physics of superfluid helium Il (Donnelly, 1993, for a review).

The velocity field of a point vortex represents a weak solution of the two
dimensional Euler equation because, by definition, it implies the existence
of a discontinuity at the point where the vorticity is concentrated (Saffman
and Baker, 1979; Aref, 1983)2. The Euler equation for a two-dimensional
and incompressible fluid, whether the fluid is viscous or not, can be
reduced, via the introduction of a stream function, to a Hamiltonian set of
canonical equations and the stream function is the Hamiltonian (e.g. Aref
et al, 1989). Two dimensionality and incompressibility are the only
conditions required. The equations of motion for a system of point vortices

in a two-dimensional domain also define a Hamiltonian system, in which

’A point vortex is defined as a vortex of infinitesimal cross-section, s, where infinite
vorticity, @, is concentrated. The order of the infinitesimal cross-section and of the
infinite vorticity must be the same, so that the circulation of the vortex, defined as [wds,
is finite (e.g. Batchelor, 1967, pp 93-95).



the number of degrees of freedom equals the number of vortices (Aref,
1983). The Hamiltonian also has the meaning of the interaction kinetic
energy of the vortices (e.g. Batchelor, 1967, p. 531).

Several authors have investigated the dynamics of large groups of point
vortices and, of these, two examples are reported. Murty and Sankara Rao
(1970) discussed the motion of a system of ~40 point vortices, initially
coincident with the vertices of a regular polygon, and inside a circular
domain with rigid boundaries. After a non-dimensional time® t>>1 the
vortices became uniformly distributed and their average separation was
almost constant with time. Kuwahara and Takami (1973) used a system of
discrete point vortices to model: a) the motion of a vortex tube with elliptical
cross-section; b) the roll-up of a vortex sheet of finite length. To reduce
what they called the ‘randomisation of vortices’, probably caused by the
discontinuities associated with the point vortices, they used an artificial

viscosity to decrease the circulation of the vortices with time.

The integrability (i.e. the possibility of calculating an analytic solution) of the
motion of a system of point vortices in an unbounded domain is an
important subject to which reference is required here. A discussion can be
found in Aref (1983) and in Aref et al (1989). It is easy to show that the
equation of motion of one or two point vortices in an unbounded domain
can be integrated (e.g. Batchelor, 1967). Novikov (1975) showed that the
problem of three identical point vortices in an unbounded fluid can also be
integrated. This system exhibits the tendency, a feature of two-dimensional
turbulence, for energy transfer towards small wave numbers, i.e. towards
large spatial scales. In general the motion of three vortices in an

unbounded fluid is integrable (Aref, 1983). The motion of four point vortices

*Time was made non dimensional with the ratio T/L, where T is the strength of the
vortices and L is a length scale of the problem.
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in an unbounded domain is in general non-integrable* (Novikov and
Sedov, 1978; Aref and Pomphrey, 1982, Aref, 1983). If solid boundaries are
present, analytical solutions may not exist even if the number of vortices is
smaller than 4 (Aref, 1983). In such cases a symmetry of the system may
determine its integrability (e.g. section 2.2.2.b). Aref et al (1989) point out
that in some special situations, namely the motion of one point vortex in a
domain enclosed by solid boundaries, which is an integrable problem, the
Eulerian velocity field at any point in the domain is periodic while the
displacement of a particle of fluid may show a chaotic behaviour. The
problem of three equal point vortices in an unbounded fluid is also regular
but the motion of an advected particle (e.g. a fourth vortex with zero
circulation) is chaotic (Aref, 1983). As noted by Aref (1983) a system with 3
vortices (i.e. of order 3) is the lowest order configuration capable of exciting
different scales of motion (where by scale of motion is intended the
characteristic distance between the vortices).

An analytical and numerical study (Meleshko and Gurzhi, 1994) discussed
the stirring properties of two and three point vortices in an unbounded
domain and showed the existence of non stirred portion of the fluid
imbedded in the otherwise well mixed regions. Boffetta et al (1996)
considered the advection of a passive tracer in a circular domain by two
point vortices. They found that the motion of the advected particles was
always regular near the vortices. Like Meleshko and Gurzhi (1994), they
also found ‘islands’ (fig.1.4) i.e. regions where the fluid is not stirred. The

size of the islands was similar to the minimum separation of the vortices.

b. Presence of boundaries: the method of images
The velocity field generated by a system of point vortices in a bounded two-
dimensional domain can be calculated by using the method of images.

The method, also widely used in electro-magnetism, consists of extending

“But there are some exceptions, see e.g. section 2.2.2.b.
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Fig. 1.4: Figure showing the stirring action of two equal point vortices, A and B, free to
move in a frictionless circular domain. The dots represent the trajectory of one particle
whose motion is induced by the vortices. The dots cover the area almost uniformly apart
from two nearly-circular regions (islands) around the vortices. The motion there is regular,
which means that the particle cannot cross the closed streamlines, which must be
stationary (from Boffetta et al, 1996).
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the physical domain beyond the boundaries and adding, outside of the
physical domain, a distribution of vorticity that would satisfy the boundary
conditions® if the boundaries were still present (e.g. Saffmann, 1992;
Feynmann et al, 1963 and section 3.2.c for an example). If the geometry of
the boundary is simple, such as a line or a circle, the system of images
can easily be found by geometric consideration (e.g. Milne-Thomson,
1949). For more complicated borders, conformal mapping can be used
and the problem can be reduced to well known cases (Karweit, 1975;
Sheffield, 1977; Longuet-Higgins, 1981). Some applications of the method

of images, particularly relevant for this dissertation, are discussed in
sections 2.2.2 and 2.3.3.

c. Point vortices and turbulence

As stated by Pullin and Saffman (1998), the problem of predicting a
turbulent velocity field can be reduced entirely to a problem - of vortex
dynamics since the movement of the fluid is determined by the distribution
of vorticity. Pullin and Saffman (1998) definition of turbulence is focused on
the randomness and unpredictability of the three dimensional velocity field
for which solutions of the Navier-Stokes equations are not available. This
statement can be applied to a two-dimensional flow (although such a view
can be misleading since turbulence is generally three dimensional; Aref,
1983). On the other hand the restriction to two dimensions and the
hypothesis of incompressibility allow the use of a stream function and of a
particularly simple form for the vorticity equation and is of particular value
when one component of the motion is suppressed, for example by
boundaries (fig. 1.5) or stratification (fig. 1.6). If the fluid is also non-viscous
the two dimensional Navier-Stokes equations reduce to the Euler
equation, for which the kinetic energy of the system and the vorticity along

the paths of fluid particles are conserved (e.g. Monin and Ozmidov, 1985;

*For example, the free slip boundary condition require that the component of the
velocity normal to the boundary must vanish at each point of the boundary.
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Batchelor, 1967). It follows that the enstrophy (one-half of the vorticity

squared) must also be conserved along particle paths (Monin and
Ozmidov, 1985).

Although two-dimensional turbulence is still far from being fully tractable
and, following Frisch (1995), it might be regarded just as a “toy model ...
easier to analyse and certainly easier to simulate and to visualise than
three-dimensional turbulence”, it is helpful in understanding some
features of some geophysical flows. The evolution of a 2-D velocity field of
an inviscid, homogeneous and incompressible fluid can be investigated by
approximating the continuous distribution of vorticity with point vortices
(see e.g. Milinazzo and Saffman, 1977, who study the decay of a circular
vortex with this method or Siggia and Aref, 1981, who simulate a k™
inverse energy cascade with a system of point vortices). It is not clear
whether the solutions obtained with those methods converge to the -
solution of the continuous Euler equations (Saffman and Baker, 1979) but
there are some indications (Robert and Sommeria, 1991; Frisch, 1995)
that a “quasi-inviscid” equilibrium theory, that prescribes the conservation
of “macroscopic” vorticity and the decay of “macroscopic” enstrophy for a
non-dissipative system of point vortices, might justify such an approach
(the term “macroscopic” refers to the value of the quantity calculated at
each point of the domain from the probability density function of all the
possible realisations, or “microscopic” states, which are compatible with
the energy constraint).

1.4.2 Vortex rings

A circular line vortex is called a vortex ring. There is an abundant literature
on this subject, including theoretical, experimental and numerical work.
Axisymmetric vortex rings have been studied extensively in the last century

because of Kelvin’s idea of vortex ring atoms, and more recently because
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of a number of engineering and physical applications (for a review see
Shariff and Leonard, 1992). For the purposes here we do not need to
review this broad part of the fluid dynamics literature extensively and it will
suffice to quote some of the classical results available in many fluid
dynamics textbooks (e.g. Lamb, 1932; Batchelor, 1967), monographs
(Saffmann, 1992) and some research papers.

A good account of the problems connected with the dynamics of a line
vortex of general shape, infinitesimal cross section and non-zero
circulation can be found in Batchelor (1967). If the vortex line is circular it
progresses along its axis of symmetry with an infinite self-induced velocity
and without deformation. The velocity field generated by a circular vortex
ring is axisymmetric too and is described by a Stokes stream function (e.g.
Lamb, 1932, art. 161). The speed of thin-cored rings has been investigated
by several researchers over more than a century and a summary is given
in chapter 10.2 of Saffman’s monograph (Saffman, 1992, pp. 195-201).
Fraenkel (1972) used the cross section parameter ¢ (i.e. a non-
dimensional measure of the radius of the core, see section 2.3.1, formula
2.28) to derive an expansion scheme for thin cored rings with arbitrary
distribution of vorticity. In particular, the case of a uniform distribution of
vorticity inside the core was studied to provide a set of formulae that are
thought to be valid for quite a substantial range of the parameter ¢. The
validity of these parametric expressions was subsequently investigated
numerically and confirmed by Norbury (1973) who compared them with
some asymptotic results, such as the Hil's spherical vortex, which

represents the member of the family with the largest value of ¢ (=2'%).

Vortex rings have been created and studied in laboratory as shown by the
beautiful images contained in Van Dyke's book (Van Dyke, 1982).
Maxworthy (1974, 1977) gives a good description of experimental
techniques for producing turbulent vortex rings and measuring their

characteristics. A number of research works have used laboratory
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experiments to address the development of turbulent motions as a result
of unsteadiness of the vortex core. A review on this topic (Shariff and
Leonard, 1992), suggests that the general tendency is for turbulent
motions to be suppressed in the core of the vortices.

1.5 Vortex/boundary and vortex/vortex interactions

Our interest is in the effect of a vertical wall (in an ideally two-dimensional -
situation) and of a sloping bottom on the motion of one vortex or a group of
vortices. Therefore we describe what is known of vortex/boundary and

vortex/vortex interactions, but restricting the search to the topics that are of
immediate concern and relevance.

a. Vortex/boundary interactions .

A review on vortex interaction with walls can be found in Doligaski et al
(1994). For our purposes this work covers the topic of two-dimensional
vortex interactions. The motion of a two dimensional vortex in the presence
of a vertical boundary can be described with the method of images (see
also section 1.4.1.b). A point vortex of strength T" and at a distance b from a
rectilinear boundary will move parallel to it at speed I'/4nb (Saffman, 1992,
p.119). The behaviour of 2-D vortices interacting with a straight boundary
was investigated experimentally by Barker and Crow (1977). In their
experiments a vortex dipole was generated in a non-rotating tank. The path
of the dipole was directed at a right angle towards a wall. The trajectories
of the vortices were found to differ from the theoretical predictions of the
potentiai theory. The vortices were found to remain at a larger distance
from the vertical boundary and to move away from it driven by secondary
vortices (but this explanation is not given by the authors of the paper). The
loss of circulation of the dipole was found to be about 20 %.
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If a two-dimensional viscous vortex interacts with a straight boundary a
secondary counter-rotating vortex develops in the boundary layer near the
wall because of an adverse pressure gradient maintained by the main
vortex. The final stage of this process is an eruption of the boundary layer
in the form of a tiny filament that culminates with the formation of another
vortex far from the boundary. The strength of the secondary vortex is
comparable with the circulation of the main one and the two vortices
interact in an almost inviscid manner. This problem was investigated by
Peridier et al (1991 a) in the limit of infinite Reynolds number (fig. 1.5). For
finite Reynolds numbers, the time for the onset of the breakdown is less

than for the previous case and decreases with the Reynolds number
(Peridier et al, 1991 b).

The collision of a two-dimensional dipole with a vertical wall in a linearly
stratified salt solution was studied by van Heijst and Flor (1989 a, b). As
the dipole approached the boundary the vortices moved apart and along
the wall. Secondary vortices generated at the boundary interacted with the
two main vortices to form two unbalanced dipoles that followed a curved
trajectory in the direction of the original path of incidence. The two
secondary vortices then paired together and moved away from the wall
while the original dipolar structure was reassembled and headed again
towards the wall for a new collision (fig. 1.6). Jimenez and Orlandi, 1993,
studied numerically the evolution of a vortex layer near a free-slip wall: they
observed the break-up of the layer in coherent vortices propagating along
the wall. The case in which a vortex dipole interacts with a free surface,
which bears some similarity with a head-on collision with a vertical wall,
was investigated, among the others, by Barker and Crow (1977) with
physical experiments, with numerical techniques by Telste (1989) and by
Yu and Tryggvason (1990) for inviscid fluid and by Ohring and Lugt (1991)
in the viscous case, and analitically by Tyvand (1991). The problem of a

dipole rising obliquely in a non viscous fluid has been studied by Lugt and
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Fig. 1.5: Instantaneous streamlines pattern erupting from a highly sheared
boundary layer induced by a two dimensional vortex near an infinite planar
wall (coincident with the x-axis). This mechanism is probably responsible for
the generation of secondary vortices as the main flow interact with the
boundary (from Peridier et al, 1991 a).
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Fig. 1.6: Sequence of plan-view photographs showing the evolution of a dipole colliding against a solid wall
(at the bottom of each picture). The vortices were two dimensional and were obtained by injecting dyed fluid in
a linearly stratified fluid from location A. The density of the injected water was matching the density of the fluid
at the level of injection. The formation and the driving effect of the secondary vortices can clearly be seen
(from Van Heijst and Flor, 1989).
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Ohring (1992). A brief review on this topic can also be found in Thorpe
(1995).

A particular solution of the problem of a vortex interacting with a step-like
topography in a otherwise unbounded fluid has been obtained by Wang
(1992) and Bidlot and Stern (1994) for the point vortex limit. The authors

show that this problem can be solved with the method of images (fig. 1.7).

Three-dimensional interactions of line vortices with solid boundaries
represents a less well understood part of vortex dynamics. Apparently, the
situation of a line vortex intersecting an infinite boundary at angles different
from 90° has been investigated on very few occasions. We will address
this problem again in section 2.3.3. Affes et al (1993) studied the
interactions of a thin cored line vortex with a cylindrical body. From the
numerical solution of the equations of motion they found that the vortex is

subject to a three dimensional distortion and calculated the vortex self-
induced velocity.

b. Vortex/vortex interactions

The mutual interaction of quasi two-dimensional vortical structures is
discussed in Voropayev (1989) and van Heijst and Flor (1989 a, b). In the
case of dipole/dipole collisions the main conclusion is that vortices interact
in a way that preserves the total momentum and the total vorticity of the
system. Dipoles can exchange their partners, appear to be very robust
structures and the exchange of mass between vortices seems to be
negligible (fig. 1.8). Voropayev et al (1992) also give an estimate of the
radius of the dipole as a function of time, ambient stratification and

characteristic parameters of the source of momentum.

Couder and Basdevant (1986) used thin liquid films (a solution made up

mainly of water, soap and glycerol) to generate a von Karman vortex street.
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Fig. 1.7: a) A point vortex of strength T is located on one side of an
escarpment (y=0) modelled by two regions of constant depth. b) The flow field
for the escarpment problem is equivalent to a constant depth problem in which
an image vortex (light arrow) is introduced to account for the step-like
topography. The correction due to the presence of the escarpment ...can be
viewed as a point vortex of strength T[E/(2+E)]sgn(y) located at (§,-nsgn(n)).
Four locations of the latter are possible depending on the relative position of
both forcing and the point of interest as shown above (From Bidlot et al, 1994).
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Fig. 1.8: Head-on collision of nearly two-dimensional and almost equal vortex dipoles. Note that an
exchange of partners is taking place (from Van Heijst and Flor, 1989).
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Their set of photographs (one of these is reproduced here in fig. 1.9) nicely

illustrates the formation of dipoles that move away from the wake.
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Fig. 1.9: Vortex dipoles formed in a turbulent wake. The flow is two-dimensional (thin
film of soap Glycerol and water). From Couder and Basdevant, 1986.
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Chapter 2
Theory

2.1 Introduction

The aim of this chapter is to review, describe and improve the analytical
tools we need for our investigation, with numerical models and laboratory
experiments, on the dynamics of vortices and dispersion of vorticity and
passive tracers in a shore environment.

Firstly, we study the effect of a straight shoreline on the motion and the
dispersion of a group of vortices and marked particles in a two-
dimensional situation, i.e. with a flat free-slip bottom. The related
numerical experiments, which are presented in chapter 3, will use
modified point vortices and, therefore, some details of the dynamics of a
cloud of point vortices and the resulting advection of passive particles are
given in section 2.2.1. The already known implications resulting from the

presence of an infinite straight boundary are reported in section 2.2.2.

The second situation, in which the vortices are moving over a planar slope,
requires an extension to three dimensions. The motion of vortices and
marked particles is studied in chapter 3 with a model that uses circular
vortex rings. Vortex rings are therefore introduced in section 2.3.1 and the
numericall model is described in section 2.3.3.

The spin-down problem for an isolated vortex on a flat bottom is reviewed
in section 2.4.
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This chapter forms the basis for the discussion of our physical
experiments (chapters 4 and 5) that aim at describing the dynamics of
vortices interacting with a planar sloping bottom.

2.2 The point vortex model

2.2.1 Background

A line vortex is usually defined as a curve, in the three-dimensional space,
on which a singular distribution of infinite vorticity is concentrated: the flux
of the vorticity (called strength), calculated for any surface that intersects
the line vortex only once, is finite. The velocity field induced by the vortex at
any point in the space not coincident with the line can be calculated with
the Biot-Savart law (e.g. Lamb, 1932, Batchelor, 1967).

When the line is straight the situation is remarkably simple: if we refer to a
Cartesian frame of reference, (xy,z), and we suppose that the vortex is

parallel to the z-axis, the resulting velocity field is two dimensional and
equal in all the planes z=const. (figure 2.1).

Since the velocity field is two-dimensional it is common practice to call
straight-line vortices ‘point vortices’ (see e.g. Saffman, 1992). Figure 2.1
shows that the streamlines associated with point vortices are circular with
the common centre coincident with the position of the vortex. The speed of
the fluid is proportional to 1/, where | is the distance from the vortex. It
follows that a three-dimensional system of parallel line vortices is
equivalent to a two-dimensional system of point vortices because the total
velocity field has no components along the direction of orientation of the
lines and the vortices will therefore remain parallel to each other

throughout the evolution of the system.
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The velocity field at the point (xy) induced by a group of n vortices with

centre co-ordinates at (x,y), i=1,...,n, can be described with the stream
function

y/(x,y)=—%il‘ilog[(x—xi)z+(y—yi)2], (2.1)

i=1

where T is the strength of the i vortex (see e.g. Batchelor, 1967, p. 530);
the presence of the logarithm in equation 2.1 requires that the conditions
x2X; and y=y; (i=1,..n) are satisfied. The total velocity field is the
superposition of the velocities induced by each vortex. The velocity at the
position (x,y) is obtained by differentiating 2.1 (Batchelor, 1967, p. 530),

v and v=—§—vi (2.2)

% ox

u=

e.g., explicitly, from 2.1,

____1_ c (y_Yi)
u= 27:;1} 7o (2.3 a)
_ I x=x)
V_Zn‘;ri 7 (2.3 b)
where
=)+ -y 2.4

Here |, is the distance between the i vortex and the point (x,y). The velocity
of the ™ vortex induced by all the others can still be expressed with

formulae 2.3 a and b by substituting (x,y) with (%y;), the summation being
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now restricted to the couple of indices that satisfy the condition j#i,

meaning that the " vortex does not influence itself.

It is useful to define the following quantity, which has the same formalism
of the centre of mass, using the vortex strength (Batchelor, 1967, p. 530):

XYT = Y Tix, YYr=Yry. @5 ab)
i i i=1 i=1

X andY, as defined by 2.5 a and b, have the meaning of co-ordinates of the
centre of vorticity.

Another quantity, D, with the meaning of the dispersion of vorticity about its
fixed centre, is defined by:

DY ri= ir{(xi -Xf +(y,~YJ| (2.6)

i=1 i=t

When defined, i.e when 3T; # 0, X, Y and D are constant throughout the
evolution of the system (Batchelor, 1967, p. 530). Another invariant of the
motion, with the meaning of the interaction kinetic energy of a system of
point vortices, is given by (Batchelor, 1967, p. 531):

1 ]
W=——3 Y Irjogl. (2.7)

n
i=1 j(=i)=1

W is the part of kinetic energy that depends on the relative position of the
vortices and not the total kinetic energy of the systema. While calculating

the numerical solutions of the motion of a system of point vortices the

*The kinetic energy of an isolated point vortex is infinite since the velocity varies as I,
and so is the total kinetic energy of a group of vortices.
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constancy of X, Y, D and W can be used to estimate the accuracy of the
numerical scheme (i.e. the errors introduced by the machine round-off and

by approximating the derivatives by means of finite differences).

These conservation laws have a more profound implication: the case of a
group of equal point vortices interacting in an unbounded infinite plane is a
bounded system in the sense that, at any time, the characteristic

dimension of the cloud of vortices is of the same order as its initial value
(Batchelor, 1967; Viecelli, 1993).

The stream function of n point vortices has n singularities and this leads to
numerical difficulties when two or more vortices approach within an
infinitesimal distance, for then their velocities tend to infinity as the
distance from the centres tends to zero. This can be readily seen from the
formulae 2.3 a and b. A modified stream function can be used to bypass

this problem. Consider the stream function where the spatial dependence
is confined to the general term F(r):

n

__ 1
yxy) == 3 TF(

i=1

) (2.8)

Using the notation proposed by Milinazzo et al (1977) we can write:

F oo ) il

)= 1P (2.9)
— l <r.
22 . ’

—— |

The function 2.9 describes a Rankine’s vortex, i.e a disc of fluid of radius I
rotating as a solid body with constant angular velocity Q; as before |; is the
distance from the centre of the vortex. We see from formula 2.9 that when

l>r;, the dependence of the velocity from r; is the same as for a point vortex
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with the same strength. Vorticity, strength and velocity of a Rankine’s vortex

as a function of | are shown in fig. 2.2. Note that the vorticity is constant and
is twice the rotation rate.

V/0.508

w/2C2

T/womd**2

1 | 1 1 1 i

r r r

Fig. 2.2: Non-dimensional vorticity (w), velocity (V) and strength (I') for a Rankine’s
vortex plotted versus the non-dimensional distance from the vortex centre.

Like the point vortex, a Rankine’s vortex can only be regarded as an highly
idealised model since, for real fluids, the velocity must go to zero within a
finite distance from the vortex centre and the functional form as I'' cannot
apply to real vortices. Different functional forms for the stream function

were used by other investigators. For example Kuwahara et al (1973)
defined:

(2.10)
Here v plays the role of an artificial viscosity with the role of damping the
velocity within a short distance from the core.

The introduction of cores with finite radius leads to considerations on the

fate of vortices approaching close to one another. With the model

proposed above any deformation of the core of the vortex is excluded.
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2.2.2 Vortices in a semi-infinite plane

a. Point vortex interacting with a straight boundary

In chapter 1 we briefly mentioned that the problem (e.g. Batchelor, 1967) of
a point vortex near a straight boundary, or “wall”, (figure 2.3.a) can be
solved with the method of the mathematical images. To satisfy the
kinematic boundary condition an image vortex of equal strength and
opposite sign must be introduced at the symmetric position of the vortex
with respect to the wall, which can be removed. The equivalent system is
therefore a vortex dipole (i.e. a pair of vortices of opposite sign, see fig.
2.3.b) that moves in the direction parallel to the wall with speed

v, =——, (2.11)

where T is the vortex strength and s/2 is the distance of the vortex from the

wall.

‘Ly Ay
+I r
e a
s/? si2
®
\_'F
a) b)

Fig 2.3: A point vortex interacting with a straight
boundary (a) is equivalent to a vortex dipole (b) with
the wall removed. The axis of the dipole is coincident
the boundary.
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The stream function of the dipole is shown in figure 2.4 (in a frame of
reference coincident with the centre of the dipole and moving with it).

—-20

Fig. 2.4: Stream function of a vortex dipole. The positive
vortex is now on the lhs. A rigid boundary can be
introduced at the y-axis without modifying the flow. The oval
bounded by the zero streamline is called recirculation cell.
The frame of reference is moving with the dipole.

The oval bounded by the zero stream-line is usually called recirculation cell
because the fluid contained inside is rotating around the two vortices and
moving with them without escaping from this region. This is an important
mechanism of transport, as we shall see in chapter 3.

b. Vortex dipole interacting with a straight boundary

An analytic solution of the equation of the path followed by a vortex dipole,
when the line passing through the two vortices is paraliel to the wall (fig.
2.5.a) can be found in Lamb (1932). If the mathematical images are
introduced the system is equivalent to a vortex quadrupole (see previous
section and fig. 2.5.b). In many text books the equation of the path is
obtained by direct solution of the equation of motion (Lamb, 1932).
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Fig. 2.5. Vortex dipole interacting with a straight
boundary (a) and equivalent system (b).

An alternative way to calculate the equation of the path is to use the
conservation of the interaction kinetic energy (relation 2.7) of the equivalent
system. If the dipole is initially at an infinite distance from the boundary and

the separation of the vortices is s, the initial total interaction kinetic energy
is given by:

W, = ;1[—1“2 logs . (2.12)
At a finite distance from the wall, relation 2.7 becomes:

W, =%I‘2I092x + %F2|092y - %F2|092\/m. (2.13)
Because W, is constant, equating 2.12 and 2.13 we obtain:

4X%y2 = 82 (2 +y?). (2.14)

A situation in which one of the axis of the dipole is tilted with respect to the
boundary is shown in figure 2.6.
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Fig. 2.6. a) Vortex dipole non-parallel to the boundary.
s is the distance between the vortices. The dipole is at
an infinite distance from the boundary. b) The two
vortices are within a finite distance from each other and
from the boundary. ¢) The two vortices have moved
infinitely apart.

During the motion, the axis of the dipole is always tilted at the same angle
6 from the boundary: because of the symmetry, the y components of the
velocity of the vortices are equal and therefore the vortices maintain the
original separation of s-cos6 in the y direction. When the vortices have
moved apart from each other by an infinite distance in the x direction they
move along the boundary (in opposite directions) only under the influence
of their own mathematical images. To calculate the distance, ¢/2, of the
positive vortex from the wall we can equate, as before, the interaction

kinetic energy for the situation a) and c) in fig. 2.6, i.e.:
1.

W, =—T?logs, (2.15)
T

for the situation sketched in a) and
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1 1
W, :_2.;1“2 logc + ZEFz Iog(c+23c036 ) : (2.16)

for the situation in c).
Equating the two terms we obtain:
2logs =logc +log(c + 2scosb), (2.17)

which gives the two solutions

C,, =—SC0SOsV1+cos®d. (2.18)

The one with the + sign has physical meaning.

c. Group of point vortices interacting with a straight boundary

The case of a single point vortex interacting with a straight boundary can be
extended for an arbitrary number of vortices, since the velocity field is given
by the summation of the velocity induced by each single vortex plus its
mathematical image. From heuristic geometric consideration it turns out
that the evolution of a system of n vortices plus the corresponding
mathematical images (i.e. with the wall removed) preserves its symmetry.
Therefore, as expected, none of the real vortices can cross the border and

nor can the images, and no new discontinuities are introduced in the real
fluid.

We now go back to formulae 2.5 a, b and 2.6. Because of the presence of

the images the sum of the strengths is zero and X,Y and D are not defined.
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2.3 The vortex ring model

2.3.1 Background

If the line vortex is axisymmetric, many interesting results are available.
Batchelor (1967) offers a good account of the main features for curved line

vortices and Saffman (1992) gives an extensive description of the
mathematics involved.

An isolated straight-line vortex (i.e. a vortex with infinitesimal cross-section
and infinite vorticity) in an infinite fluid with no boundaries, has zero velocity
at any point. If the vortex line is not uniformly curved it is subject to a non-
uniform translation and the line changes shape. It has been shown (e.g.
Saffman, 1992) that writing down the Biot-Savart law’ using a parametric
representation of the line vortex with the Frenet-Serret formulae, and taking

the limits 1) for an infinitesimal portion of the line and 2) for a point infinitely

close to the line, the velocity at that point, written up to order o(—g—l] (where

I"is the strength of vortex, | = /x* +y? is now the shortest distance of the
point from the line vortex L and C is the radius of curvature) is infinite and
points in the direction of the binormal b (figure 2.7). This behaviour is

governed by one of the binormal terms (Batchelor, 1967),

"The Biot-Savart law, also widely used in magnetism, in this context is a vectorial

relationship to calculate the velocity V induced by a generic line vortex of strength T":

T 8X (i-ﬁ(g))

V(X) = 41 tS(‘ ] ﬁ(c)r ¢

where the integral is calculated along the closed curved R({).
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r
———Ilogl. .
47C 9 (2.19)

All the other terms are either bounded or cancel the singularities
reciprocally.

Fig. 2.7. Curved line vortex (L) and definition
of the frame of reference. The line vortex is
(locally) contained in the z-y plane. The self-
induced motion at the origin O (induced by the
vortex curvature) is in the binormal (i.e. X)
direction.

Expression 2.19 therefore suggests that the effect of the variations of the
(local) curvature is to deform the line vortex since it moves with infinite
speed but the translation is not uniform along the vortex line. On the
contrary an axisymmetric vortex ring, with constant curvature, will move

along the binormal direction —i.e. along its axis of symmetry- with infinite
speed and no deformation.

An axisymmetric vortex ring, sometimes called a “smoke ring”, is shown in
figure 2.8. The velocity field of a smoke ring is axisymmetric too and can be
expressed in terms of a Stoke’'s stream function. Hence, if we adopt
cylindrical co-ordinates (x,5,0), with o=0 coincident with the axis of

symmetry and (u,v,w) being the respective velocity components (with the
condition of no swirl w=0), the formulae

38



Ol

Oll
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Fig. 2.8. A circular vortex ring is axisymmetric and the induced velocity field is axisymmetric too. In

other words the velocity field is the same in all the planes passing from the axis of symmetry O’0” (of
which A and B are an example).
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1 dy
=——— and v=-—2"1, 20 a,
"5 90 o oX (2:2020)

relate the stream-function to the velocity field (Batchelor, 1967).

The stream function can be expressed by (Lamb, 1932):

Wszg%@ﬂJM@—q@} (2.21)
where

L=J@~&f+@—%f (2.22)
and

g:J@—&f+@+%Y (2.23)

are respectively the minimum and the maximum distance of the point

P(x,0) from the ring centre C(x,,6,). A is given by

a=l2=h (2.24)

d=2R=2¢, is thé diameter of the vortex ring and r, is the radius (at the
moment infinitesimal) of the cross section of the line vortex. K(A) and E(})
are the complete elliptic integral of the first and second kind. Note that A
tends to 1 as |, tends to zero for when K and E are not defined. The stream

function in any of the planes passing from the axis of symmetry (see fig.
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2.8) is shown in figure 2.9. Figure 2.10 illustrates the geometry of the
system.

o e
>,
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- / \ e : .
r : N xehicty tha dpttun 110
10 5 0 5 10

Fig. 2.9: Streamlines for a circular ring vortex in a plane of
symmetry and with no background flow. The reference system

is not moving with the vortex. The interval between the
contour lines is constant.

The complete elliptic integrals can be evaluated with the following
series:

K(/l)=g%%,%;1%]=%{1+(%) 12+[;%j b LA } (2.29)

_ 11..2__75_122_22/1_4
E(l)—EF(——Z-,E,‘I,/’\.]—z{I (Zj/l [2.4j 3+ ...... } (2.26)

Here F(a,b;c;xz) is the hypergeometric function (Korn & Korn, 1961):
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n n

[T(a+i-1) (b+j-1)

F(a,b,c,x2)=1+i e . (2.27)
n=1 H

The stream function 2.21 describes the velocity field of a line vortex of
infinitesimal cross section, i.e. the calculation of the velocity field at points
not coincident with the vortex ring does not require consideration of cored
rings, as already seen for the point vortex case but because of its infinite
self-induced velocity, the curved line vortex model has a limited applicability
to real problems. A real smoke ring moves with finite speed. Experimental
observations of vortex rings suggest that, if an infinite Reynolds number
regime could be achieved, the motion would be steady (Saffman, 1992).
When dealing with real vortices, the theoretical difficulty is to find a
distribution of vorticity inside the core for which the self-induced velocity is
uniform along the vortex. This is necessary to allow the vortex to propagate
steadily and without deformation (Batchelor, 1967). This problem has been
treated for smoke rings of small cross section, for which the stream line
bounding the core that contains the vorticity is approximately circular and

the vorticity is uniformly distributed inside the core (see e.g. Saffman,
1992).

We consider a circular vortex ring with a thin core of finite size r and no

swirl (w=0, fig. 2.10). Following Fraenkel (1972), the condition of small
cross section can be expressed by the smallness of the parameter ¢
defined as:

£=~4A/md? . (2.28)

A is the area of the cross section and d is the distance between the

centroids, very close to the diameter of the ring for vortices with small cross
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Fig. 2.10. Vortex ring in cylindrical co-ordinates (a) with the induced velocities. No swirl means w=0. Two

dimensional section of a vortex ring of infinitesimal cross-section nr 2 (b) in a plane passing through the
axis of symmetry x.
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section (fig. 2.10). Formula 2.28 is the ratio between the area of the cross
section of the line vortex and the area subtended by the circular ring. In the
hypothesis of e«1, the self induced velocity of the ring corresponds to the
one of the stagnation points inside the core, which exists if it is assumed
that the stream function is constant on 9A, the boundary of A (Saffman,
1992). If the condition e«1 is satisfied, the core of the vortex is an ellipse

with axis ratio given by:

5|3 8 17
—log—-—1%, 2.29
1+ ¢ {8 ogg 32} ( )

and the core can be approximated with a circumference (Saffman, 1992).

The self induced velocity of the vortex, v, is parallel to the axis 6=0 and is
given by (e.g. Lamb, 1932; Fraenkel, 1972):

2 4
r | e 1 (rV 3, 8 15] [(r) &R
- log— — —+| — | | =Zjog 22+ 2 — | log— 2.30
Ye 47:R{og : 4+(RM 897 +32}+0[(RJ 9% J} (2.30)

The presence of a finite core eliminates the logarithmic discontinuity at the
vortex centre contained in the relation 2.19, the tendency at the discontinuity

being now expressed as log(r"); v, increases as r decreases and

eventually tends to « when r tends to zero.

To complete the description we now need to give an explicit expression for
the velocity field induced by a single smoke ring: this can be calculated
with the stream function 2.21 and formulae 2.20 a, b:

o= ol & ) 2522,
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=g (S et 222 2

= — (2.32)

: 2.33
A AR (233)
and A, =+1-2. (2.34)
Finally,
al al
A _ 2o (2.35)
_ .
X (1 +1,)
al al
2 2,52-2, ot
_ (2.36)
Jo (1 +1,)

The calculations involved in the determination of the velocity field for a
generic system of smoke rings can be quite a cumbersome exercise
because it involves the use of the Biot-Savart law and the velocity field is
obtained by integrating along all the line vortices; furthermore, in general,
the circular symmetry is lost after the initial instant since the vortices are
subject to deformation. A system of n coaxial vortex rings each with
different radii and strengths is a much simpler case to study: for such a

System the velocity of each vortex can be calculated by summing its self
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induced velocity with the velocity induced by all the others, using
expressions 2.31 ab. The total velocity field is in this special case
axisymmetric and remains so during the evolution of the array of vortices:
this implies that the system of vortices will preserve too its symmetry. The
velocity field at a generic point in the space non coincident with any of the
line vortices is the sum of the effect of the n smoke rings, and again is
calculated with formulae 2.31a and b.

Similar to the point vortex model, the velocity field inside the vortex core
presents a discontinuity: from relations 2.24 and 2.34, if 1,=0 then A=1 and
M=0; for A=1 the complete elliptic integrals are not defined and from 2.34

we have the additional condition that A, can only be positive and different

from zero.

The derivatives of |, and |, are given by:

o _(x—-xo) ol _(0—00)

At o (2.37 ab)
and

ol _(x—xo) o _(a+00)

L2 = (2.38 a,b)

The conditions >0 and |,>0 must be always true.

2.3.2 The case of two counter-rotating equal vortex rings

Consider the situation in which two equal, thin-cored and co-axial vortex
rings of opposite sign and radius R; move under their reciprocal influence;

this case is the three-dimensional equivalent of a point vortex dipole
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interacting with a rectilinear boundary (or a vortex quadrupole see fig. 2.5
and fig. 2.9). The behaviour of the vortices is similar in the two cases (2D
and 3D) with the couple moving away from the wall when the vortex on the
left hand side is positive and vice versa when negative.

Suppose that the |hs vortex is negative and the initial distance between the
centres of the two rings is s: we want to calculate the final radii of the rings

(Rp) when they have moved infinitely apart and translate at constant speed
given by formula 2.30.

As already done for the point-vortices, we can use an energy argument.
The energy balance can be written as:

E+E'%=E, (2.39)

where E; is the initial kinetic energy of the two vortices as if the other were
not present, E12i is the initial interaction kinetic energy for the couple and E;
is total final kinetic energy of the system. The subscripts “” and “f’ refers to
the initial and final situations respectively. This equation simply states that
the system is conservative or, in other words, that the final kinetic energy,
computed when the two vortices are sufficiently far from each other to

ignore their mutual interaction, must equal the initial kinetic energy, when
the two vortices interact.

The kinetic energy of a sector a. of an isolated vortex ring is given by (see
e.g. Saffman, 1992)

'R 8R 7 o
ES(F,R,T) = T{|OQT—Z+}(§;]’ (240)

and therefore E; and E; are simply given by:
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Ei = 2E4(T\Rim), (2.41)
E¢ =2E4(TRy, 1y). (2.42)

The initial and final radius of the core are related, using the conservation of
volume, by:

[ = r{%—)z. (2.43)

The interaction kinetic energy for the vortex pair, E'%, given the symmetry of
the problem and considering again only a sector o of the rings, can be

calculated using the formula (e.g. Batchelor, 1967):
E*=oafo,y 04 =afoy,04, (2.44)

where w.(, is the vorticity of the positive (negative) vortex, Y.+ is the stream
function of the negative (positive) vortex. The integral is calculated over the

region containing the positive (negative) vorticity, i.e. over the core of the
positive (negative) vortex.

Assuming that at the initial instant the vortices are at sufficient distance to
neglect variations of y. over the area of integration, which is a good
approximation if s»r, the interaction kinetic energy takes the form:

2

£ = -7 (s+s” + 4R K(1)-E(1)] (2.45)

T
where K and E are the complete elliptic integrals of the first and second

kind respectively, s is the distance between the two vortices, for example

Measured on the common axis of symmetry, and A has the form:
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-\/s2 +4R? —g

= . 2.46
5% +4R? +s (2.46)

The interaction kinetic energy tends to zero as 2 tends to zero, which is

equivalent to the condition for s becoming infinite. Therefore vortices that

are very far apart have zero interaction kinetic energy.

The energy balance, ignoring terms of order higher than one, can then be
written as:

R, [Iog(%?i) - ﬂ - (si +fs2+4R )[K(;L) ~E(1)]= Rf[log[—s——R—f] - ﬂ (2.47)

This equation relates the final radii of the rings to their initial radii and has
no dependence from T (this statement is true if we assume that the

circulation of the vortices is conserved and therefore only geometrical
factors define the energy of the system).

We now show that the path followed by the centroids of the core of the
vortices is independent of the strength. If we assume that the centre of the
core has initial co-ordinates (xo,00) at the instant t=t, (see fig. 2.10), its

position in time is given by:

X,(t) = jvxdf, | (2.48)

to

O'O(t) = jvadr (2.49)

to
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The x-component of the velocity of the core has two contributions: the first
is the self-induced velocity of the vortex, v, (formula 2.30) and the second

is the velocity induced by the other ring, vy, (formula 2.31 a) and the two
components can be written as

m=£&@®, (2.50)

M:%@@m, (2.51)

so that the total velocity of the core in the x direction is the sum of 2.50 and
251, i.e.:

W:%G@m@, (2.52)

with G=G,+G,. Similarly, the other component of the velocity is given, via
relation 2.31 b, by:

r
va=§F@R) (2.53)

The path followed by the vortices can be calculated by solving numerically
the differential equation

ix_
do

Y o , (2.54)
VO'

Therefore the trajectory of the vortices is independent of T.
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2.3.3 Curved line vortices in a bounded three-dimensional
domain

We have already observed (section 2.3.1) that the self induced velocity of a
singular curved line vortex is infinite and is directed along the binormal
direction; if the curvature is not constant, the vortex in general will also
change its shape with infinite speed (Batchelor, 1967, p. 511). If cored
vortex filaments are considered, there is the possibility to circumvent the
difficulties connected with the calculation of the self induced velocity of a
vortex of generic shape. The first technique is called the local induction
approximation and among several limitations, it requires that the condition
log 1/r » 1 is satisfied, which may be hard to meet for real vortices; this
approximation predicts that the self induced velocity is proportional to the
inverse of the radius of curvature times the logarithm of the radius of the
core, r (Saffman, 1992, p. 209). The second technique is the cut-off method
for which the singularity in the Biot-Savart law is removed ad-hoc by using
a cut-off parameter (Saffman, 1992, p. 212). In both cases there are no
general results and few numerical experiments have been carried out. For
example Dhanak et al (1981) have calculated the evolution of an elliptical
vortex ring and have found that the deformations are periodic only for
values of the axis ratio between 1 and 0.2 and the evidence suggest that in

the other cases the vortex is subject to a break-down.

A cored line vortex that is able to propagate with a finite self-induced speed
without deformations and satisfies the kinematic boundary conditions for a

sloping boundary is the circular smoke-ring (see section 2.3.1).

From a mathematical point of view, the vortex-ring model can be used to
simulate a vortex on a planar sloping beach (Thorpe and Centurioni, 2000,
and Peregrine, 1996). Suppose that a vortex is moving on a wedge-like
domain whose boundaries are a planar sloping sea-bed (forming an

angle o#90° with the horizontal) and the surface of the water (fig. 2.11 a). If
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a straight line vortex is introduced in this domain it will intersect at least
one of the two boundaries at an angle different from 90° therefore requiring
the introduction of image vorticity to satisfy the boundary conditions. One
immediate consequence is that the vortex cannot remain straight. A vortex
line that is able to meet both boundaries at right angles is a sector of
circumference, i.e. a sector of a vortex ring. This vortex has also a constant
curvature and therefore will preserve its shape. The image vorticity is in this
case the part of the ring outside the wedge and it is needed to keep the
vorticity field solenoidal (fig. 2.11 b). By definition this model satisfies the
condition that the vortex line meet the boundaries at right angles, which is

the only one required if the non-slip condition is relaxed.

A system of axisymmetric and co-axial vortex rings can therefore be thought
of as a group of vortices moving over a sloping bottom (figure 2.12). The
presence of the common axis of symmetry allows a simple approach to the
problem: the velocity field can be computed only in an axial plane without

requiring the application of the Biot-Savart law in three-dimensional space.

2.4 Spin-down of an isolated vortex on a flat bottom

Consider a vortex at t=t with initial radius ro, depth h, constant vorticity o,
and therefore circulation F0=co1tr02. The Froude number, defined as
F,=r2/(ghr02), is small, thus implying that the depression at the centre of the
vortex is negligible (e.g. Thorpe and Centurioni, 2000). If the fluid is inviscid
everywhere the vortex rotates with constant angular velocity Q=wn/2. On
the contrary, if a viscous boundary layer, with kinematic viscosity v, is
added, the vortex spins down. The interior of the fluid is still inviscid, i.e.
there is no dissipation of energy or, alternatively, the total strength T} is
conserved. The viscous boundary layer provides a mechanism to
redistribute the angular momentum of the vortex (see e.g. H.P. Greenspan,
1969 pp. 30-38). We want to calculate o(t) and r(t) for t>t, in the absence of
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forcing. This problem has been treated by a variety of authors and it is

known that the spin-down time scale is (e.g. Greenspan and Howard,
1963):

h? )2
T:(vﬂoj . (2.55)

If we neglect the effect of the air friction at the surface, the volume of
rotational flow (vortex) changes because of a radial inflow confined in the

bottom boundary layer with thickness (e.g. Greenspan and Howard, 1963):

5. = (—] . (2.56)
@

Note that ©w/2=Q, is the characteristic time of the system since it is inversely
proportional to the rotation period of the vortex. Formula 2.56 tells us that a
boundary layer of thickness & will grow in a few revolutions of the vortex.
This mechanism is responsible for a decrease of vorticity and, since there
is a radial inflow in the bottom boundary layer that must satisfy the
conservation of volume, for an increase in the radius of the vortex. If we
refer to a Cartesian co-ordinate system with the x axis tangent to vortex and
with origin at a distance p from the centre, with the y axis directed towards
the centre of the vortex and the z axis pointing upwards, the velocities in the
bottom boundary layer are (e.g. Pedlosky, 1987, p189):

u= V(p)L1 — e’ cos —52—] and (2.57 a)
E

V=V eg_esini, 2.57b

o) sn @5
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where V(p) is the velocity induced by the vortex at a distance p from its

centre, i.e., with the condition of spatially constant vorticity:

' wp

V(p)=§—7-t-p———--—~2—:ﬂp (2.58)

The maximum volume flux per unit length in the y direction is obtained at
p=r and is;

Ty= Tv(r,C Jog = l/(r2)65’ (2.59)

where ( is the vertical co-ordinate (see appendix 2A). The total volume flux

inside the vortex bottom boundary layer is therefore:
Tu=T"m 2rr=nrV/(r)dg (2.60)

For the conservation of volume, Ty must therefore be equal to the volume of

fluid moving upwards that is entering the interior vortex from the bottom
boundary layer, e.g.:

Tu=wnr, (2.61)

where w is the velocity of the water entering the interior of the vortex.
Assuming a constant vertical gradient for w and with the condition of w=0 at
the surface, we also have:

—w , (2.62)

In order to calculate w(t) and r(t), we solve the system:
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Q_:wﬂ

ot z (2.63)
I _ Ty

ot 2rhr

with the initial conditions:

®(0)=wy, (2.63 a)
and
r(0)=rg. (2.63 b)

The first equation of the system 2.63 is the vorticity equation. The second

equation is obtained from the conservation of volume (see appendix 2A for
more details). Note that since a‘)z(0,0,a)z) is spatially constant, the non-

linear viscous terms are zero and there is no dissipation of energy.
Substituting 2.56, 2.58, 2.61, and 2.62 into 2.63, we obtain:

e (2.64)

The solutions are:

_ t
r(t) = r0(1+ 4T), (2.65)
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a(t) = o, 1t : (2.66)
1+ —
AT

where T is the spin-down time scale 2.55. If the water depth increases the
growth of the radius is slower.

2.5 Summary

We have reviewed some aspects of the dynamics of a system of point
vortices and of an array of co-axial vortex rings.

In section 2.2.2 we have worked out the analytical solutions of the final -
distance from the boundary for two point vortices moving towards a straight
boundary at an angle different from 90°. In section 2.3.2 we have calculated
the radius of two cored equal axisymmetric and inviscid vortex rings of
opposite sign that move infinitely apart. Again the principle of the

conservation of the kinetic energy was used to find the analytical solution of
the problem.

Section 2.3.3 presents the idea on which much of this dissertation hinges,
i.e. the possibility of using sectors of vortex rings to model a vortex on a

wedge-like domain (Peregrine, 1996, Thorpe and Centurioni, 2000).
The problem of the spin-down of a vortex on a flat bottom is reviewed in

section 2.4, where the analytical solutions for the time evolution of the
- radius and for the vorticity are calculated.
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Chapter 3

Numerical experiments

3.1 Introduction

Two numerical models are used to study the effect of a straight vertical wall
and of a planar and uniformly sloping bottom on the dispersion of particles
of fluid and vortices in a velocity field that is entirely sustained by the latter.
A schematic representation of the situation that we are modelling is

illustrated in figure 3.1. We shall neglect all viscous effects.

A
a) b) Z| Surface y
Wall
X ———————————
Bottom
r» r: T r»
® Y C)
T
2 :f\ :P I Z| Surface
4 5
Bottom

o
Boundary=shoreline

Fig. 3.1: a) A straight boundary divides the plane in two parts and
simulates a shoreline. The motion of the system is studied for b) a sea
with flat bottom and bounded by a vertical wall and c) a sea with a planar
sloping bottom and no vertical wall. In ¢) the intersection between the
bottom and the surface is the shoreline.

If the bottom is flat, a model that uses Rankine’s vortices and their images
(see section 2.2.2 ¢) is used. The boundary conditions are satisfied at the
wall. If the bottom is a uniformly sloping plane, the interpretation in term of

vortex rings is formally correct, and, as discussed in section 2.3.3, the
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boundary conditions for the wedge-like equivalent system are
automatically satisfied. It follows that the angle that the planar slope forms
with the horizontal does not affect the dynamics of the vortices. We call the
first model two-dimensional (2-D) and the second three-dimensional (3-
D). The shoreline is always coincident with the x-axis.

One environment to which this model might relate, is the portion of sea
near the shoreline and for vortices for which the effect associated with the
rotation of the Earth is negligible. It is obvious that this situation is highly
idealised: for example we do not consider the effects associated with the
presence of incident and breaking waves, of along-shore currents and of
near-shore circulation cells. We also ignore completely bottom friction and

irregular topography. Spin-down caused by a viscous bottom boundary
layer is also neglected.

The aims of the numerical experiments are:

-to compare the dispersion of the vortices with the dispersion which they
produce in a passive tracer;

-to give a qualitative description and comparison of the effect of a vertical
wall, in the 2-D case, and of a shore-line and of a sloping bottom, in the 3-
D case, on the dispersion of vortices and particles; more precisely we want
to understand whether the dispersion is in general isotropic or if it has a
preferential direction;

-to compare the dispersing properties of the 2-D model with the ones of

the 3-D model when the initial conditions are equal.

The dispersal properties of a system of point vortices in the presence of an

infinite and straight boundary has apparently been overlooked by previous
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workers (Provenzale, 1998, personal communication), this fact being
perhaps a sufficient reason to undertake this study.

We are aware of the very high degree of schematisation of our model and
for this reason we will not attempt to give any quantitative estimates of the
eddy dispersion coefficients for vortices and particles; it also turns out that
to parameterise those coefficients in terms of the characteristics
dimensions of the system is not straightforward and only in very special
situations some conclusions can be made from theory. Nevertheless we
think that the models should give some indications of the behaviour of
vortices and tracer near an infinite and straight boundary and form the
basis of a zero order understanding of the problem, which will help in

identifying some features important in understanding dispersion in the
ocean.

We first describe in details the implementation of the 2-D numerical
model, the theory for which has been already presented and discussed in
section 2.2.2 c. We then present the results of two experiments made
under very special condition and with the vortices at a distance from the
boundary much larger than their average spacing. The purpose is to give
some basics elements for the understanding of the problem of
vortex/border interactions and associated dispersion in successive
experiments. Those preliminary experiments also provide a good tool to
evaluate the performance of the programs by comparing the results with
analytical solutions. The reader who wishes to avoid the programs and
preliminary tests might turn directly to sections 3.5 and 3.6 where we
address the problem of vortices near the shoreline. There we first study a
situation in which some vortices and some marked particles are initially
sharing the same portion of fluid. Secondly, we look at the situation in
which a passive tracer occupies, at the beginning of the experiments, a
portion of fluid much bigger than the one occupied by the vortices.

Conclusions and summary are presented in sections 3.7 and 3.8
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respectively. The definitions of the dispersion of vortices and particles
(formulae 3.7 and 3.8) and the related eddy dispersion coefficients, on

which the discussion of this chapter hinges, are given in appendix 3A.1.

3.2 Implementation of the 2-D numerical model

3.2.1 Program “point”

To calculate the displacement and the dispersion of a system of Rankine’s
vortices and of marked particles, we wrote a FORTRAN program (called
“point”). The main features of the model are discussed below.

a. Velocity field

The velocity field is given by the vortices, i.e. there is no background flow.
The 2-D model is based on the stream function for a system of Rankine’s
vortices (chapter 2, relations 2.8 and 2.9). These formulae show that the
motion of the fluid inside the core of radius r, of the i vortex is the
superposition of a rigid body rotation and the motion induced by the other

vortices. The formulae used in the program are therefore:

-3 zl“(y Y) , | =1
m“
i ( ) & (y y) 1)
Y-V .
- Mo JU VJI < I,
2”«%1 3 12 ry
1T o~ (X=x)
— > I =, Y
ZnZ‘ COF Y
V= ; ( ) 1 x-x) (3.1b)
X—X C i .
— LEA, — Vj:l <
2n 5 ? -2271' N :
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where the notation is the same of section 2.2.1. If the velocity field is
calculated at the position of the jth vortex, i.e. when r=0, formulae 3.1 a and
b are still used and there is no need to remove the contribution from the "
vortex that in this case is zero: with these formulae all the discontinuities

are eliminated from the computational domain.

b. Integration of the velocity field

The calculation of the position of vortices and particles with time is in our

case equivalent to the solution of 2(n+m) equations of the kind:

gd% = f(xiyvXv1(t)rYV1(t)’""Xvn(t)’yvn(t)’n""’ n’n""’rﬂ)’

7(to) = Yo

(3.2)

where x and y are the Cartesian co-ordinates of a vortex or a particle, x,; .
and y,; are the co-ordinates of the centre of the vortices, t is the time, T are
the strengths, r; are the radii of the core, n is the number of vortices and m
is the number of particles. The function f is the velocity given by the

formulae 3.1 a, b. Note that the velocity field is evolving with time because
is a function of the position of the vortices.

- The position of the vortices and of the particles is computed with the
Heun’s method (e.g. Chapra and Canale, 1988), a brief description of
which follows. Consider for example the x co-ordinate of one particle: we
want to integrate the function x=x(t), indicated by v in equation 3.2, which
represents the evolution of the position of the particle with time induced by
the vortices. Suppose now that the particle is at the position ( ,y) at the
time t: we know the time derivative of x(t) at the time t;, say f(x,yi,xvi,Vvi.-),
from the relations 3.1 a and we can estimate the position x., called
predictor, at t.4=t+At, At being a fixed time step, from the simple Euler
formula, i.e.
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Xiw1= X+ f(X,, ..., 1) At (3.3)

The same procedure applies to calculate the predictor of the ordinate, y.4.
Xw1 and ¥.q are the new co-ordinates of the particle at which a new
predicted velocity, f(Xi1, Vi1,...), can be calculated, always from formulae 3.1
a, when all the vortices have moved to their new predicted position. This
principle is illustrated in figure 3.2.

(o Yi+1 ,Q(tin1))
Xi+1

Xi

v

t; tieq t

Fig. 3.2: lllustration of the Heun's method. The
derivative of the unknown function x(t) is calculated
at the instant t; from which the predicted value x(t.1) is
also computed. The derivative of x(t) is then re-
calculated for the predicted values x(t«), y(t.1,), etc.
The dependence from the position, radius and
strength of the vortices, that is also a function of
time, is indicated by the function g.

The value of the “true” position can now be calculated, using the average of
the two velocities, ie.

Xir1= Xi+0.5[f(x;, 1)+ f(Xis1, tir1)] AL. (3.4)

The Heun’s method substantially allows a better estimate of the slope of
the unknown function x(t).
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2086

204

202

Fig 3.3: Stream-function, in a fixed frame of reference, generated by 20 Rankine’s
vortices, each of non-dimensional strength of 40, that are almost aligned on the
diagonal indicated in the picture, at the non-dimensional time t=0. The contour lines
were calculated with formulae 2.8 and 2.9 and have a spacing of 6.65 units. An
infinite rectilinear boundary is coincident with the x-axis at y=0 (not shown). The co-
ordinates are expressed in non dimensional units.

Fig 3.4: Evolution of the situation depicted in figure 3.3 at t=0.6. The contour lines have
now a spacing of 5 units.
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The need to use a more time-consuming algorithm to integrate accurately
the velocity field is illustrated in figures 3.3 and 3.4, in which the non
dimensional stream function generated by a group of 20 equal Rankine’s
vortices is shown first at t=0 and at the subsequent time t=0.6 (time is non
dimensional). The presence of kinks and ripples in the rapidly time-

evolving streamline pattern suggests that the simple Euler method may be
inaccurate.

c. Boundary conditions

We used: i) the free-slip condition for the tangential velocity; ii) the condition
of zero normal velocity at the rigid wall (with the wall at rest). These are
satisfied with the method of the images (see section 2.2.2), i.e. if for each
real vortex, we introduce another vortex of equal strength and opposite sign
at the mirror position with respect to the wall (fig. 3.5).

Vortex +T
\‘(‘ '\
- . Vv,
Y., " Vy
N vy
VIOl , 74
"__1‘ " Vi A Vi
Wall ._af '
Image

Fig. 3.5: The system formed by a point vortex and a
straight boundary is equivalent to a pair of vortices of
equal and opposite strength. The component of the
total velocity normal to the wall (v)) is zero, while the
tangential component (v;) is twice the velocity induced
by each vortex at that point.
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The program works on the equivalent system, with the wall removed and
the images added in the extended domain, and calculates the path

followed by each of the n real vortices, the latter being concisely
represented with

{E, fi, (Xi,Yi)}, i=1...n, (35)

induced by the remaining n-1 real vortices and by the images, represented
by

{-T; 1, (%,-y)}, i=1...n. (3.6)

Since the velocity field is symmetric with respect to the x-axis, there is no
need to calculate the position of the images. Note that for the system of
vortices plus images the quantities 2.5 a, b and 2.6, defining respectively
the centre of strength and its dispersion are not defined. On the contrary
the interaction kinetic energy of the vortices (relation 2.7) can still be
calculated and, since it is also the Hamiltonian of the system, it must be
constant. This quantity turns out to be very important in the choice of the
time step, as discussed in section 3.2.2 c.

d. Other features

Formulae 3.1 a and b allow the vortices to pass undisturbed through each
other. This does not create any computational problem since all the
discontinuities of the velocity field are removed, but it is very unrealistic. In
our model we impose that if two or more vortices are at a distance, d, less
than a fréction, f, of the maximum radius between the two, r,.,, a collision
event is flagged and the two vortices are cancelled. A new vortex is created
at the average position of the former two, with strength and radius given by
averages between the ones of the two cancelled vortices. The parameter

that controls the merging, f, is fixed during the execution of the program.
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This procedure may appear very artificial but prevents us from including the

very non-physical feature of two vortices that overlaps without merging.

A similar condition is used for those vortices that were pushed close to the
boundary. This situation is treated like the collision of a vortex with its
image and the algorithm used to model this situation is equal to the one
just described for the vortex/vortex collision. It was therefore natural to
define a stripe of width §=(0.5fr) in which the vortex of radius r is absorbed.

The width of the stripe varies with the radius of the colliding vortex. This
situation is sketched in figure 3.6.

The input/output of the program is discussed in appendix 3A.1

Colliding vortex

05 fr
.

Image

Fig 3.6: Collision of a vortex with its image. The
stripe of width 0.5fr in which the vortex is
absorbed, is also shown.

3.2.2 Test of the program and tuning

We now discuss some test cases in order to evaluate the errors
introduced by the integration algorithm. Therefore we simulated some
situations for which analytical solutions are available. We also show how

the time step was chosen. All the values given below are non-dimensional.

a. Single vortex near the boundary
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This is the simple situation already discussed in section 2.2.2 a (see also
figure 2.3). The velocity of the vortex parallel to the wall is given by formula
2.11. The calculation of the abscissa of the position of a vortex with
strength I'=2 at a distance d=1/(4r) from the wall after a time interval of 10
is compared with the theoretical value x,,=20. The relative error, calculated
as 1,L=|xteQ - Xmod |/ Xeo, Where Xmeq is the abscissa calculated with “point”,
was 1-10™* .The time step was At=0.001.

b. Two vortices near the boundary

We now go back to the two cases described in section 2.2.2 b. In the first,
when the line passing through the centre of the vortices is parallel to the
wall (fig. 2.5), we suppose that the vortices are initially at a distance d from
each other and at an infinite distance from the boundary. We used the
program “point” to calculate the distance of the two vortices from the wall
when they have moved sufficiently apart that it can be assumed they move
only under the effect of their images. We have taken two vortices of
absolute strengths I'=100 at an initial distance of d=50 from each other
and of 1000 from the wall. The theory predicts a final distance of the
vortices from the wall of d/2. If we rewrite equation 2.14 as:

-1
4 1
y2=(d—2—-x7] : (3.9)
we have:
od

The value of d/2 calculated with our program, with a time step At=0.01, was
25.0000.
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If the axis of the dipole is tilted of an angle 6 to the wall, relation 2.18 can be
used instead to calculate the value of c/2. With reference to figure 2.6, we
choose 8=45° xo=-x4=25, y=1000 and I'=+100. With a time step At=0.01 we
obtained, for the positive vortex y,_=18.1897 and for the negative vortex
y..=68.1380 (y. indicates that the values has been taken when the mutual
influence of the real vortices is negligible if compared with the effect of the
images i.e. when the abscissa of the vortices remain constant). The
relative error on the ordinate of the positive vortex was p=6-10" and u=2-10"

® for the negative one.

c. Estimate of the error using the Hamiltonian

In section 3.2.1 ¢, we pointed out that the second order moment of the
strengths (formula 2.6) is not defined if the sum of the strengths is zero.
On the other hand the interaction kinetic energy, W (formula 2.7), can still
be calculated and, since this is the Hamiltonian, it must be constant during
the motion of the vortices. It is convenient to use W to choose the time step
so that the variations of W are kept within fixed limits. Once a suitable time
step has been set for a particular run, if the initial conditions of other
experiments are similar enough, the same time step may be used. As an
example, we show one experiment in which twenty vortices, each with

equal strength I'=40, are placed in a square box of size 9 x 9 (fig. 3.7).

909

900

VOY%CGS

’

:r wall

! 45 45 X

v

Fig 3.7: Initial position of vortices. For each experiment all the vortices are placed
randomly inside a square box of size 9 x 9 (non- dimensional units). The offset of the
Square box relative to the wall is 900.
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All the vortices have the same radius, r=0.2, and the merging parameter
(see section 3.2 d) is f=0.5. We performed ten runs in which we varied
randomly the initial position of the vortices inside the square box. The initial
co-ordinates were calculated with a random number generator that used a
uniform distribution (see appendix 3A.1). For At=5.10" the absolute
variation, p, of the interaction kinetic energy relative to its initial value after
1.2-10° iterations (corresponding to t,,,=60), are reported in table 3.1. No

merging events happened.

Run: 01 02 03 |04 05 06 07 |08 09 10

u,10° |1 1 0.02 {0.03 | 0.01 | 0.03 |0.05]0.03 |0.02|0.02

Tab 3.1. Variations of the Hamiltonian of a system of point vortices relative to its initial
value after a non-dimensional time of 60.

The use of Rankine’s vortices makes the use of formula 2.7 not completely
correct since the vorticity is not concentrated in one point. The parameter p
can be interpreted as a measure of how well our model reproduces the
behaviour of a system of point vortices. The choice of a small radius r for
the core of the vortices should be regarded more as an artifice to avoid
high speeds near their centres than a physical feature.

This experiment reveals other interesting properties that will be further
discussed in section 3.4.1. We assumed that since algorithm is able to
integrate the trajectory of the vortices properly, it is also reliable, to the
same extent, for the integration of the paths followed by the marked
particles. For this reason no further checks were made. More applications
of the 2-D model are described in section 3.4.
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3.3 Implementation of the 3-D numerical model

The program “smoke” was designed to calculate the motion of a system of
axisymmetric and co-axial vortex rings and the motion and the dispersion
of a group of marked particles. It is based on formulae 2.30 and 2.31, and

this represents our model for vortices moving over a planar sloping bottom
(see section 2.3.3).

3.3.1 Program “smoke”

a. Velocity field

Like in the 2-D model, there is no background flow and the velocity field
induced by a single vortex is described by formulae 2.31 a and b. Formulae
2.31 fail if 11=0 (see also fig. 2.10 b), for then A=1 and the elliptic integrals -
are not defined. The use of cored vortices is still necessary to avoid
discontinuities. Similarly, if I;=l,, i.e. when the point at which we want to
calculate the velocity lies on the axis =0 in fig. 2.10 b, the velocity cannot
be calculated with the stream function 2.21; in this case A=0 and formulae
2.32 and 2.33 are not defined. To calculate the velocity induced at a point
(x,0) by n vortex rings, the cores of which have centre co-ordinates (xg;, *Gy,)

(see fig. 2.10 b), we use the following set of relations:

U=uy+us+us, (3.11 a)
VEV H Y, (3.11 b)
with:
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u1=§—5%lg_—', Vil>e L2l
2
o I R, .
fu, =y =1 ! . Vil =1, (3.12 a)
i 2T 2 272 ’ ’ '
[ R™+(x=x,) } 2
Uy = D Ve, Vil <r.
i=1
and
V1"2"1é;/x/i’ Vicl>n b=k
i=1 o
lv, =0, Vilsn b=l (3.12 b)
vV, = 0. Vi l1.} S

The stream function ; is given by 2.21. The expression for u, comes from
the integration of the Biot-Savart law for this special situation® and Vi is
given by formula 2.30. We also imposed that the velocity of a particle of
fluid inside the core of a vortex is the same as the self-induced velocity for
that vortex [in other words the effect of the vortex on the particle is that of a

pure translation with a speed equal to the speed of the vortex]. However the
effect of the remaining vortices is added.

In section 2.2.1 we observed that a straight line vortex has no influence on
itself. On the contrary, in section 2.3.1, we showed that a curved line vortex
has a self—indhced velocity. This feature is contained in formula 3.12 a via
the term u,, that also plays its role when l1; =0. In this particular case the

self induced velocity of the i vortex is added to all the other terms [there is

*The expression for u; is formally equivalent to the magnetic field generated by a circular
loop of electric current on its axis of symmetry (e.g. Halliday & Resnick, 1981, ch. 34)
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an analogy between this situation and a point vortex moving under the
influence of its mirror image].

Cored rings require more care compared with the 2-D case because,
while with Rankine’s vortices a finite core is a device to eliminate the
discontinuities, a finite core determines the self-induced velocity of the ring.
Therefore the choice of the radius cannot merely be based on

considerations of numerical efficiency.

b. Integration of the velocity field

We have used the same algorithm described for the 2-D case (see section
3.2.1b).

c. Boundary conditions
This model does not require extra boundary conditions given the:

equivalence between an array of vortex rings and an array of vortices in a
wedge-like domain (see section 2.3.3).

d. Other features

We suppose that the core of the vortex has a finite cross section that
satisfies the condition € « 1 (see section 2.3.1, formula 2.28). The vortex
core is not a circumference but an ellipse (see formula 2.29), but in the
limit of small cross section the circular approximation can be made (see

fig. 3.8). In our model it is therefore assumed that the cross section of the
ring is circular.

As with the Rankine’s vortex model, we need to solve the problem of
vortices approaching too closely. The case of a vortex that starts to overlap
with another one is represented by the condition d<ri+r,, where d is the
distance between the centres of the two vortices and rq+r, is the sum of

their radii. We also assume that the vortices can collide and merge (see
section 3.2.1 d).
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Fig 3.8: Streamlines for a circular ring vortex in a frame of reference moving with
the vortex. The interval between the lines is constant. The streamlines close to
the vortex centre are approximately circular.

An inviscid vortex moving across isobaths in a wedge-like region of fluid is
subject to compression and stretching with consequent variation of its
radius. In our model a vortex ring that changes its radius R accounts for the
change cross-section of a vortex in a wedge (fig. 3.9). The conservation of

volume for a torus of radius R and cross-section area of wtr? is:

21 Rir2=21° R; 112, (3.13)
from which:

Ri
k=T |—% 3.14
f i Rf ( )

where the subscripts i and f refer to the initial and final situation. When a
vortex approaches the axis of symmetry, as the depth h (and the radius R)
decreases, the area of the cross section increases and eventually
becomes infinite for vanishingly small depths. This situation violates the

condition for a thin cored ring, on which the theory discussed in chapter 2
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is based. However we considered vortices with 0<e<2'? i.e. the family
ranging (Norbury, 1973) from thin-cored rings (e«1) to the Hill's spherical
vortex (e=2"%). When the condition e>2'"? was verified, the vortex was

cancelled (this condition is the equivalent “absorption event at the wall” in
the 2-D model, see section 3.2.1 d).

e. Input and output

The structure of the input and the output is identical to the one discussed
for the Rankine’s vortices (see appendix 3A.1)

3.3.2 Test of the program and tuning

In this section we evaluate the performance of the program “smoke” by
comparing some cases for which analytical solutions are available with

our numerical calculations. All the values given in the following sections

are non-dimensional.

a. Single vortex ring

An isolated vortex ring, i.e. a vortex ring in absence of other vortices,
background flow and boundaries, has a self-induced velocity given by
formula 2.30. With the program “smoke” we calculated the position of a
vortex ring with characteristics: I'=2, r=0.1, R=R,. R, is chosen so that the

self-induced velocity of the ring is 0.5; this value is obtained by solving
numerically the equation for Ry:

’ 2
V1) &R, 1 (0AY] 3, 8R, 15
7 =FR,) ==l 0 — | || -=log—2+— |;.
(R) Ro{og 01 4 (Ro][ 8 901 32}}

For Ry=1.426219 we found F(Rg)-n= -6"'". With a time step At=0.001, at t=10

we compared the distance travelled by the vortex with the theoretical value

Xieo=5. The relative error, as defined in section 3.2.2 a, is u=1-10'4.
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b. Ring pair

This situation, analogous to the 2-D case of section 3.2.2 b, was
discussed in section 2.3.2, where an analytical expression for the radius of
two counter-rotating rings of equal absolute strength moving an infinite
distance apart, R_,, Was given as a function of their initial separation, of
the radius of the ring R and of radius of the core r (formula 2.47). The
situation studied with the program “smoke” consisted of two rings with:
=120, R1=Ry=37.7, ry=r,=1 and initial separation s=7.7. The time step was
At=0.01. The relative error of the radius R_, u= I (R..teo- Romod)! R teo |, when
the two vortices are at a distance from each other such that R_

calculated by the program “smoke” remains constant, was u=2.2-10'4.
c. Estimate of the error using the kinetic energy

In section 2.3.2 we used the conservation of the interaction kinetic energy
to describe some details of the motion of two counter-rotating and coaxial
vortex rings with cross-section area small compared with the area of the
ring. Since the rings are co-axial the axial symmetry is preserved and the
formula for the kinetic energy is particularly simple. The same

considerations made there apply to a system of n thin cored coaxial vortex
rings. The total kinetic energy is:

E=YE+2¥ YV E, (3.15)

where E; is the kinetic energy of an isolated ring, formula 2.40, and E; is

the interaction kinetic energy between the vortex i and the vortex j.
Assuming that the stream function of the vortex j is constant inside the core

of the vortex i, the interaction kinetic energy of the vortex rings is (using
formula 2.44):
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By = %r“l('tii +oy [K(%) - E()] (3.16)
with

l, = \/(xi ~x) +(o,-0)), (3.17 a)
=% %) + (oo, (3.17 b)

where A; is defined by 2.24. Likewise in the 2-D case ( see section 2.2.1),
E is also the Hamiltonian (e.g. Saffman, 1992) and must remain constant.
In our experiments the time step was chosen in order to keep the variation‘
of E within pre-fixed limits. The complete elliptic integrals of formula 3.16

where computed with two FORTRAN double-precision library routines
constructed on the Carlson’s algorithm based on his formulation of the
problem in terms of standard integral of the first and second kind (e.g.
Press et al, 1992). This algorithm is much more robust, fast and reliable
than the formulation of K(A) and E(\) with the hypergeometric function

(section 2.3.1, formula 2.27). In table 3.2 we show the variations of E

relative to its initial value in a series of 10 experiments similar to the ones
described in section 3.2.2 ¢ (see also fig. 3.7).
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Run: |01 02 03 04 |05 06 07 08 |09 10

N 4 1 2 1 2 3 3 3 2 3

u, 107 |1 04 |06 |04 |1 1 09 |07 |06 [1

Tab 3.2. Variations of the Hamiltonian (i, see section 3.2.2 ¢) of a system of 20 vortex
rings relative to its initial value after a non-dimensional time of 20. & is the number of
vortices that have been cancelled either after a collision with another vortex or because
the condition for the Hil’'s spherical vortex, {>2"*see section 3.3.1 d, has been violated.
Other initial conditions: strength T'=80 for all vortices; initial radius of the cross section
e=1 for all vortices; size of the square box (see fig.3.7): 15 x 15; distance of the centre
of the square box from the shoreline: 10.5; time step: At=5-10"* number of iterations
4.10* (corresponding to a non dimensional time t=20). The initial position of the vortices
was calculated with a generator of random numbers (see appendix 3A.1).

3.4 Preliminary experiments

We present some experiments for which conclusions on the dispersion of
vortices and particles can be made with the help the theory of point vortices
and of vortex rings. We shall consider two archetypal situations: 1) the
vortices have equal positive strength (i.e. the system has a net positive
vorticity); 2) the vortices have equal strength but may have opposite sign
such that the net vorticity is, or nearly is, zero. In both cases the vortices are
far enough from the boundary that the action of the images is negligible if

compared with the mutual effect of the real vortices. We intend to:

* study some basic mechanisms responsible for the dispersion of

vortices and patrticles and their relative importance;

e gain further confidence in the performances of the two computer
programs.
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The definitions of the dispersions for vortices and particles and the related
eddy dispersion coefficients are given in appendix 3A.1.

3.4.1 Dispersion of vorticity and particles far from the wall -
I. The case of equal vortices

a. Experiment set-up

We now discuss in more details the experiment described in section 3.2.2
c (see fig. 3.7). Before we analysed only the conservation of the
Hamiltonian but nothing was said on the dispersion of vortices and
particles of fluid. An additional set of 10 runs was made with the 3-D model
using the same initial conditions of the 2-D experiment, (with the only
difference of t,,=20). The initial radius of the vortex rings was r=0.2 (like
the 2-D case). We also computed the displacement of 100 marked
particles of fluid, initially filling the square area shown in figure 3.7 and
located at the nodes of a regularly spaced grid.

b. Results from the 2-D model

The results were very similar for each of the 10 experiments, and one
example is shown in figures 3.10 to 3.12. The total dispersions of vortices
and particles and their x and y components are shown in figures 3.10 and

3.11. Figure 3.12. is the plot of the eddy dispersion coefficient for the
vortices.

c. Results from the 3-D model
The same quantities described in the previous section were calculated

with the 3-D model and the results were all very similar. A typical example
is shown in figures 3.13 to 3.15.
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Fig 3.10: 2-D model. Dispersion of vortices. See appendix 3A.1 for a definition of the
dispersion. a) Plot of Dzv,o (o) and Dzv,t (x) versus time. b) Plot of DXZV,O (0) and DXZV,t (x)

versus time. c) Plot of Dsz,o (0) and Dsz,t (x) versus time.
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Fig 3.11: 2-D model. Dispersion of particles. See appendix 3A.1 for a definition of the
dispersion.a) Plot of Dzm,o (0) and Dzm,t (x) versus time. b) Plot of DX2m,o (o) and DXQm,t

(x) versus time. c) Plot of DYzm,o (0) and DYZm,t (x) versus time.
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Fig 3.13: 3-D model. Dispersion of vortices. See appendix 3A.1 for a definition of the
dispersion. a) Plot of Dzv,o (o) and Dzv,t (x) versus time. b) Plot of DXQV,O (0) and DXZV,t (x)
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d. Discussion : dispersion of the vortices

Dzv,t (dispersion of the vortices from the instantaneous centre of
circulation) calculated only with the real vortices is proportional to D?
(formula 2.6). This is a consequence of the fact that all the vortices have
the same circulation. Therefore, if the hypothesis on the smaliness of the
effect of the images compared with the effect of the neighbouring real
vortices is correct, we should expect Dzv,t to be approximately constant
(Batchelor, 1967). In addition this should be true for point vortices as well

as for vortex rings since the Hamiltonian formalism is equivalent. Figures
3.10 and 3.13 show that this is true.

For each run DX?,; and DY, are almost equal and because we used the
same generator of uniformly distributed random number to initiate both co-
ordinates of the vortices. An observer close to the centre of vorticity of the -
cloud of vortices and moving with it will consider the vortices isolated (i.e.
unaffected by the boundary) and will conclude that their dispersion is
constant and only a function of the initial position of the vortices. To a
second observer far from the vortices, for example near the wall, the group
of vortices will appear like a single (equivalent) vortex with strength Ty
equal to the sum of the strengths of the individual vortices (see fig. 3.16).
The equivalent vortex will move along the wall with speed given by formula
2.11 with T=I'i,; and d=Y.,, the ordinate of the centre of mass; in other
words, the speed of the equivalent vortex is approximately coincident with
the speed of the centre of mass. Assuming that the component of the
velocity of the centre of mass in the direction normal to the wall is zero, the
eddy diSpersion coefficient calculated with respect to the initial centre of

mass, kyq, is given by (see appendix 3A, section 3A.2 for the derivation of
formula 3.18):

Kuo = 2V, Xon(t) = Xan(to) ]| = 2V2(t 1), (3.18)
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Fig 3.16: Stream-function, in a fixed frame of reference, generated
by 20 Rankine’s vortices, each of non-dimensional strength of 40.
This picture is the plot of the same stream-function showed in
figure 3.3 but now on a larger domain. The contour lines are now
spaced by 20. For a distant observer the group of vortices behaves
like a single vortex, the strength of which is the sum of the
strengths of the single vortices.
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where X n(t) is the abscissa of the instantaneous centre of mass at the
instantt, Xcn(to) is the abscissa of the centre of mass at the beginning of

the experiment and V, is the velocity of the centre of mass in the x-direction.

The slope, s, of ko, fig. 3.12, calculated with the least square fit, is
s=9.9-10'3; if we assume Y.,,=910 and I'=800, using formula 2.11 we
obtain 2VX2=9.8‘1O'3, that compares well with the value of s. We conclude
that in the fixed frame of reference the dispersion of vortices is not isotropic

and has a preferential direction for its evolution parallel to the wall, while it

is constant and equal to Dsz,t in the normal direction.

The same considerations apply if the 3-D model is used. In this case the
cluster of vortices can be imagined to be like a single vortex ring with a
turbulent core and formula 3.18 can still be used, but now V, must be -
calculated with formula 2.30 that yields the self induced velocity of the
equivalent ring: with R=945, I'=800 and r= D, (=4.2, we obtained V, =0.488
that compares well with the value s=0.479, where s is the slope of the
curve in figure 3.15. The higher speed of the equivalent vortex in the three
dimensional case is responsible for the faster growth of D2V,t in figure 3.14
a and b compared with the 2-D case.

The first conclusion is that, in a situation in which the vortices are far from
the boundary, uniformly distributed and all equal, the choice of the way in
which the dispersion is calculated is very important. If the dispersion is
calculated relative to the instantaneous centre of mass of the vortices its
value is constant and equal in the directions parallel and normal to the
wall. If the dispersion is calculated with reference to the initial centre of
mass, the steady translation of the system of vortices along the boundary
will give the impression that the dispersion of the vortices along the wall is

much greater then in the normal direction.
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When the vortices are not all equal D?; is not constant but nevertheless it
appears to be bounded. The amplitude of its oscillation depends on the
differences of circulation amongst the vortices. We made three more
experiments with the same initial conditions described above, but now
varying the strength of the vortices by adding or subtracting a random
fraction of their reference circulation (I'e~=40). The maximum possibie
variation of strength was 100%. The results are shown in fig. 3.17 and 3.18
for variations of up to £ 20%, £60% and +100%.

e. Discussion: dispersion of the tracer

The tracer behaves quite differently and only partially similar conclusions
can be made. Figure 3.11 a shows the evolution of D*,o and D?,; with
time: the first shows a faster growth if compared to the second. Figures
3.11 b and ¢ show that DXZm,O still grows faster than DXZm,t while the y
components of the two dispersions are almost equal: therefore the-
particles are isotropically dispersed in the plane if the Dzm,t is taken as a
measure of dispersion, but the x direction, parallel to the wall, appears to
be a preferential direction if Dzm,o is used. This is again a consequence of
the translation of the centre of mass of the vortices along the wall, as
already discussed for the vortices. Fig. 3.14 a, b and ¢ show that the same
conclusions can be reached for the 3-D model but now the growth rate of
dispersion is much faster and appears to reach its maximum after a non
dimensional time of about 10. We conclude that a system of coaxial vortex

rings is, at least in this situation, a more efficient stirrer.

The dispersion of particles seems to have a maximum. This can be
explainéd by considering that the system of real vortices and images, as
seen from a distant position, can be considered like a single vortex dipole

or a single vortex ring. After a sufficient long time, the particles will be
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Fig 3.17: 2-D model. Dispersion of vortices. See appendix 3A.1 for a definition of the
dispersion. a) Plot of D2v,o (o) and Dzv,t (x) versus time with AT a/T =£20% b) Plot of Dz\,,o

(0) and Dzv,t (x) versus time with AT/’ =t60% c) Plot of Dzv,o (0) and Dzv_t (x) versus
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stirred until when they fill half of the recirculation cell® [but only in the real
part of the computational domain since the tracer cannot cross the
boundary]. We can also expect that particles that are initially uniformly
distributed in the recirculation cell will hardly be dispersed. On the contrary
the streamlines near the centre of vorticity are not steady and there the
dispersion is large. The new rate of change of dispersion of particles
depends critically on their initial distribution. Fig. 3.19 illustrates three
experiments in which the size of the box containing the tracer at the initial
instant (concentric with the box containing the vortices) was varied. Figure
3.19 b) refers to an initial situation in which the vortices were lying almost
exactly along the diagonal of the box: in this case the rate of change of the
dispersion is high if compared with the other two cases and Dzm,t reaches
its maximum value at t=40. Those and other experiments suggest that the
rate of change of the dispersion of particles in this set of experiments
depends also on the number of vortices, on their circulation and on the-
relative position of the vortices and the particles, as well as on their
distribution. Interestingly, figure 3.18 shows that Dzm,t and kgt do not

depend, for these experiments, on inequalities of circulation between the
vortices.

3.4.2 Dispersion of vorticity and particles far from the wall -
Il. The case of vortices with equal absolute strength and
opposite sign.

a. Experiment set-up
This experiment is similar to the one described in section 3.4.1 but now

each vortex may have a strength of I'=40 or of I'=-40. Therefore the total

*The recirculation cell is bounded by an almost stationary streamline, in the frame of
reference moving with the centre of mass of the cloud of vortices. The tracer cannot
cross this border (see also section 2.2.2 a).
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Fig 3.19: 2-D model. Dispersion of particles. See appendix 3A.1 for a definition of the
dispersion. Experiment with 100 particles. a) Plot of Dzm,o (o) and Dzm‘t (x) versus time with
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295



strength is, or is nearly, zero. As before, at the beginning of the
experiments, the vortices were inside a square box (with size 9 x 9, see fig.
3.7). We also tracked the motion of 255 particles of passive tracer. The
tracer was initially uniformly distributed in a square box of 18 x 18,
concentric with the box containing the vortices at t=0. We run the 2-D and
the 3-D models with the same initial conditions. Only the radius of the
vortices was different for numerical stability reasons (r=0.2 for the 2-D
model and r=1.0 for the 3-D model).

Since the vortices had opposite sign and equal absolute strength this
configuration was heavily dominated by pairing events (i.e. by the formation
of dipoles moving away from the initial centre of mass of the system). We
discuss the motion of vortex dipoles in section d, after a brief summary of

the dispersion estimates from the two models.

b. 2-D model. Results

The estimates of Dz\,,o and Dzv,t for similar initial conditions were very
different [see fig. 3.20 a), b) énd c) for plots of dispersion from the initial
centre of mass and fig. 3.21 a), b), c) for plots of dispersion from the
instantaneous centre of mass). The two dispersions of the tracer, Dzm,o and
Dzm‘t, are shown in fig. 3.22 a) and b). Finally the rate of change of the
dispersions, proportional to the eddy dispersion coefficients, are shown in
fig. 3.23 a) and b). In table 3.3 shows the parameter p (see section 3.2.2

section c). No merging events (see section 3.2.1 d) happened during the
experiments.

Run: |01 02 03 04 |05 06 07 08 |09 10

n,10°133 (04 |15 |07 |70 |26 |72 |31 |53 |10

Table 3.3. 2-D model. Variations of the Hamiltonian relative to the initial value (p) after a
non-dimensional time of 20. The time step (in all the experiments) was At=5.10,
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c. 3-D model. Results
The same parameters presented in the previous section were computed
with the 3-D model (see fig. 3.20 to 3.23). The relative variations of u are

given in table 3.4. No merging events (see section 3.3.1 d) happened
during the experiments.

Run: |01 02 03 04 |05 06 07 08 09 10

H, 18 |0.07 |02 |05 |09 |04 (03 |08 |05 jO.1

Table 3.4. 3-D model. Variations of the Hamiltonian relative to the initial value (u) after a
non-dimensional time of 20. The time step (in all the experiments) was: At=5.10".

d. Discussion

The main difference between a 2-D system of vortices with nearly zero net
total strength and one with net positive (or negative) strength (see section
3.4.1) is that the dispersion of vortices in the first case is in general a non
predictable function of time: Dz\,,o and Dzv,t increase with the time squared
but values among experiments with similar initial conditions can be very
different. From figures 3.20 a and 3.21 a it appears that the envelopes of
the two dispersions are quite similar, implying that the position of the
centre of vorticity varies slowly if compared with the position of the single
vortices. The same observations are valid if the 3-D model is examined,
(see fig. 3.20 d and 3.21 d). In both cases there are no preferential
directions for the dispersion of vortices.

Since the net strength is close to zero the dispersion of vortices is
dominated by the motion of pair of vortices of opposite sign (dipoles). See
fig. 3.25 for the 2-D model at t=20, and fig 3.26 for the 3-D model at t=20.
Figure 3.24 shows the position of the vortices and of the marked particles
at the beginning of the two experiments. The dipoles were made of
different vortices in the two runs but the same number of pairs formed. The
dipoles of the 3-D model also travelled a bigger distance from the initial

centre of mass and this explains the higher values of the dispersion of the

97



8000 ;

T 8000
T 6000 — T 6000 _
c (=4
=] 2
7] 0
(=) c
£ £
£ 4000 — S 4000 —
c =
Qo Q
& iz,
2 o
B 2000 — o 2000 —
= — - 1
0 10 20 30 0 10 20 30
time (non dimensional) time (non dimensional)
a) d)
8000 T T 8000 T T
T 6000 - T 6000 |- =
=4 c
2 S
1%} {7}
c <
£ £
S 4000 — £ 4000 =
5 =
Q o
&5 &
B N
a 2000 =1 a 2000
0 10 20 30 0 10 20 30
time (non dimensional) time (non dimensional)
b) e)
8000 T T 8000 T T
? 6000 — =1 g 6000
2 2
@ %
=4 c
£ £
5 4000 — £ 4000
c c
Q o
£ =
N 3
5 2000 = 5 2000
0 10 20 30 0 10 20 30
time (non dimensional) time (non dimensional)

C) f)
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Fig 3.23: Eddy dispersion coefficients. a) Plot of Kyt versus time: 2-D model. b) Plot of Km

versus time: 2-D model. c) Plot of Ky t versus time: 3-D model. d) Plot of km t versus time: 3-
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Fig 3.24: 20 Rankine's vortices (2-D model) are initially placed in a box of size 9 x 9 and 256
marked particles are contained in a concentric box of 18 x 18. The vortices have equal
absolute strength, |T'|=40, and may have opposite sign. The total circulation is zero. Vortices
indicated with o are positive, and with e are negative. The smaller dots indicate the position of
the tracer. A rigid infinite straight boundary is located at y=0.
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Fig 3.25:Evolution of the initial situation showed in fig. 3.24 (2-D model).
Four dipoles (3&6, 4&15, 5&18 and 20&7) formed. The positive vortices are
now indicated with red circles, the negative with blue circles. The size of the
vortices is not to scale in order to make them more visible. The tracer
position is indicated by the green dots. The distance (from the initial centre
of mass) travelled by the dipoles was the biggest contribution to the
dispersion of the vortices. The marked particles did not disperse as much as
the vortices. The remaining vortices formed a dipole-like structure (blue
dashed circle) that captured and transported most of the particles away from
their initial centre of mass. This snapshot was taken at t=20 (non
dimensional).
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Fig 3.26: Evolution of the initial situation sketched in figure 3.24 (3-D
model). The positive vortices are now indicated with red circles, the
negative with blue circles. The tracer position is indicated by the green dots.
The same number of dipoles of the corresponding 2-D simulation (fig. 3.25)
formed but different vortices paired (20&10, 5&17, 4&15 and 11&6). As in
the 2-D case the dispersion of vortices is dominated by the distance
travelled by dipoles and dipolar structure (blue dashed circle) from the initial
centre of mass of the vortices. This snapshot was taken at t=20 (non

dimensional).
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vortices compared to the 2-D case. Figure 3.27 refers to a 2-D experiment
(at t=10) in which only two dipoles formed. Figure 3.28 shows the same
situation calculated with the 3-D model. In both cases the position of the
vortices is very similar and the same vortices have paired; with the 3-D

model the pairs have travelled a slightly bigger distance.

Referring to fig. 3.27, a very simple calculation shows that the dispersion of
the vortices is mostly dominated by the distance travelled by the two
dipoles. The initial co-ordinates of the centre of mass of vortices were (Xcn,
Ycn)=(0,904.5). From figure 3.27 we measured the distance of the two
dipoles from the initial centre of mass, i.e. r,3=40 and ry;17=90. The

contribution of those four vortices to the total dispersion (Dzv,o = 1184 at
t=10) was:

D2 pairs= (2120)*( PP 5+ ?1217)=970.

The position of the two dipoles accounted for ~82% of the total dispersion.
Similar considerations on the speed of the two dipoles gave an estimate of
the eddy dispersion coefficient in good agreement with the numerical

value. The same considerations apply to the results of the 3-D model.

The dispersion of particles in the 2-D and in the 3-D cases was much
smaller than the dispersion of vortices since only a small fraction of total
number of particles was captured and carried away by the recirculation cell
(see fig. 3.23 where the eddy dispersion coefficient, for vortices and
particles are compared). A comparison between fig. 3.23 b and fig. 3.23 d
shows that the rate of change with time of the dispersion of the tracer was
faster for the 3-D model. One reason can be (see e.g. fig. 3.25, 2-D model)
that most of the particles moved with the big cluster of vortices or were
dispersed by them and left behind along the path followed by the cluster,
while with the 3-D model (see fig. 3.26) the cluster of vortices moved a
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Fig 3.27: Evolution at t=10 (non dimensional) of an initial situation similar to the one
illustrated in fig. 3.24 but now the net circulation is I'=80. Only two dipoles (12&17 and
2&13) have formed. The rest of the vortices and particles are still close to the source
area. The distance travelled by the two dipoles is the biggest contribution to the total
dispersion of vortices (see section 3.4.2 d). 2-D model. The positive vortices are
indicated with red circles, the negative with blue circles. The size of the vortices is not to
scale in order to make them more visible. The tracer position is indicated by the green

dots.
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shorter distance and much of the particles stayed close to their initial

position. The dispersion of particles was almost isotropic for both models.

3.43 Summary of the results from the preliminary
experiments

The discussions of sections 3.4.1 and 3.4.2 suggest the existence of at
least two characteristic regimes of dispersion. The first is associated with
vortices of the same sign and strength that stir the tracer. In this case the
dispersion of particles is bounded and the rate of change with time of the
dispersion must be a function of initial conditions such as number and
strength of the vortices, relative position of vortices and particles etc. The
dispersion of vortices, if calculated with reference to the instantaneous
centre of mass, is constant (fig. 3.29), as expected from the theory. The 3-D
model is a more efficient stirrer of particles than the 2-D model. These
remarks are valid also when all the vortices have same sign and different
strength. For then the dispersion of vortices is not constant but is probably
bounded. The second regime is associated to vortices with equal absolute
strength and opposite sign. The motion of dipoles (figure 3.30) dominates
the dispersion of vortices. The 3-D model is less efficient in dispersing the
tracer and, since this is associated with the transport of fluid inside the
recirculation cell of the dipoles, we can suppose that vortex rings, which
have a smaller recirculation cell, have bigger stirring efficiency. Two
vortices of opposite sign and different absolute strengths move along arcs
of circles, the radius of the circle being a function of the difference of their
strength (e.g. curved path in figure 3.30). In such cases, if the motion of
dipoles is the predominant mechanism of dispersion for vortices, we may
expect that the rate of change of dispersion will be reduced by bigger
differences of the absolute strength of vortices forming the dipole. On the

contrary it will be greater if the vortices have the same absolute strength.
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Fig 3.29: The dispersion of a system of positive (or negative) point vortices is bounded and
of the same order of their initial dispersion (that is a function of the number of vortices and
their relative position). The dispersion remains constant if the vortices are all equal. The
area in which they are contained has a constant typical length scale I,. The dispersion of a
passive tracer is bounded too. The predominant mechanism of dispersion for particles is
stirring by the vortices.
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Fig 3.30: The dispersion of a system point vortices with I', =0 is not bounded. The pairing of
vortices of opposite sign is the dominant mechanism of dispersion for vortices. The
associated transport of fluid is the corresponding mechanism of dispersion for particles.
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3.5 Dispersion of vortices and mass near the wall-

Case 1. Vortices and particles sharing the same
surface

We now describe three sets of experiments that were designed to
simulate the effect of a shoreline on the dispersion of vortices and tracer™.
The vortices and the tracer are now close enough to the wall for the effect
of the images to be of the same order as the mutual interaction of the real
vortices. We shall compare the dispersion (of vortices and particles) in the
direction normal to the shoreline with the dispersion in the direction
parallel to the shoreline. We shall also compare the dispersion properties
of the 2-D and 3-D models. We start by investigating a situation in which, at
the beginning of the experiment, the vortices and the marked particles
share the same surface. The distance and the area of this surface from the
shore were changed between experiments. Different sets of experiments
also have a different initial number of vortices. The experiments were

designed to allow a statistical analysis of the resuits.

3.5.1 Experimental set-up

A typical initial situation, with 15 vortices and 676 marked particles is

shown in figure 3.31. We created three different sets of initial conditions

“We are aware of the possibility to implement spatially periodic schemes using point
vortex dynamics but it seems that a similar approach is not easily applied if vortex rings
are used, or, more precisely, the required algorithm would increase the aiready long time
for the execution of the program beyond acceptable limits. Since we want to compare
the results from the two models, we do not use a periodic scheme in the x direction for
the 2-D model even if it would probably be more appropriate. We would claim that, if we
assume that the vortices are initially located near the centre of a near-shore circulation
cell, so that the effect of neighbouring vortices could be neglected, our simulations
would describe at least the initial trends in dispersion.
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Fig. 3.31: Typical initial situation for the numerical experiments described in section 3.5. 15
vortices (red with positive circulation, blue with negative circulation) were randomly placed in
a circular sector. A straight rigid boundary was coincident with the axis y=0. The distance is
expressed in non-dimensional units.
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characterised by a different initial number of vortices. Each set was made
of 30 runs. For each run the initial position of the vortices was varied
randomly inside a pre-fixed area (called source area) common to all the

runs within a set as well as strength and radius of the vortices.

The source area was a sector of a circular annulus (fig. 3.31). The external
and the internal radius of the sector were varied according to the number of
vortices. The radii of the sectors were chosen so that, at the initial instant,
the vortices were closely packed (table 3.5 and fig. 3.31).

Set N. vortices Inner radius Outer radius
1 5 2.0570 4.1140
2 10 3.3513 6.7025
3 15 4.3494 8.6987

Tab. 3.5: Characteristic initial conditions values for the three sets. The radii are
expressed in non-dimensional units, which is why these ‘odd’ numbers appear.

The tracer was initially located inside the sector and along radial lines (see

fig. 3.31). The angular amplitude of the sector was constant for all the runs
(140° for the tracer and 120° for the vortices).

For each set of experiments we created an ensemble of 30 initial
conditions by varying the position of the vortices and their strength. The
initial co-ordinates of the vortices were calculated with a generator of
random numbers (see section 3A.1, appendix 3A). An auxiliary algorithm
was designed to avoid significant vortex overlapping at the initial instant.
The circulation of the vortices was varied with uniform probability by + 10 %
from the non-dimensional reference value of 2.5. The probability of having
a positive or a negative vortex was 0.5. The initial radius of the vortices was

1.0 and the merging control parameter (see section 3.2.1 d) was =0.5 for
all the experiments.
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The evolution of the position of vortices and tracer with time was
calculated, for each different initial condition, with the 2-D model and the 3-
D model. Both programs performed 1-10* time steps of fixed amplitude
At=0.01 (corresponding to a non-dimensional time at the end of the run of
tnax=100). The time step was chosen as a compromise between the
pragmatic requirement of speed of the execution and accuracy of the
results. Averaged values of u for each set of initial conditions, are given in
table 3.6. In this case p represents the maximum variation of the
Hamiltonian, relative to some initial values, between two collisions (see

also section 3.2.2 c). The initial values were taken at the beginning of the
run and updated after each collision.

Set i, 2-D model i, 3-D model
1 0.05 0.1

2 0.01 0.07

3 0.01 0.05

Table. 3.6: Characteristics values of u for the three sets of experiments.

For set 1, when the 3-D model was used, the accuracy of the results was
not very good. With At=1-10° we had an increase of a factor 10° of the
execution time without a remarkable increase in the accuracy of the
results. One possible reason could be that if vortex rings are close to the
Hill's spherical vortex limit, our model, designed to deal with thin-cored

rings, performs quite poorly.

3.5.2 Analysis tools and results

a. Animation of the output
A graphical routine was created to animate the changes in position of the
vortices and of the marked particles. Up to 100 records with the position of

vortices and of the tracer were stored in a output file. A graphical interface
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was used to create a corresponding number of images with the position of
the vortices and of the tracer. All the images were collated into an animated
file. This tool was useful to get intuitive insights into the behaviour of the
system (see e.g. figure 3.32). Two different characteristic types of motion

for vortices were isolated with this tool (see fig. 3.33 to 3.35 and section
3.5.3 for further discussion).

b. Dispersion of vortices and particles

The results of our experiments are summarised by figures 3.36 to 3.41,
appendix 3A.3, showing time series of the dispersion of vortices and
particles from the initial and from the instantaneous centre of vorticity, with

the 2-D model and the 3-D model. These are discussed in section 3.5.3.

c. Statistical analysis: comparison between dispersions from the same
model

We used a one tail significance test (see e.g. Spiegel M.R,, 1975), based
on the Gaussian distribution, to verify the following set of hypothesis
formulated on the appearance of the plots of the dispersions:

Ho: D), > Dl (3.19 a)
Ho: DX/, > DX/, (3.19 b)
Ho: DY,, > DY/, (3.19 ¢)
Ho: DX/, >DY{, (3.19 d)
Ho: DX/, > DY/, (3.19 )

Wé calculated the standardised variable:

z-Di=D; (3.20)

5,-5;
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Fig. 3.32: Five Rankine's vortices (red positive, blue negative) may represent an uneven distribution of
vorticity. The cluster is moving as a dipole. Since the net cisrculation is negative the group of vortices is
moving along a curved path, marked by the tail of particles. The shape of the tracer (green dots)
ejected from the recirculation cell of the dipole suggest the existence of filaments but the fluid there is
irrotational. The distance is expressed in non-dimensional units. The radius of the core of the vortices

is r=1 and the absolute reference circulation is |T'|=2.5. The circulation of the vortices can differ up to
10% from the reference value.
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Fig. 3.33: a) Initial situation for 10 Rankine's vortices sharing the same source
area as the marked particles. This experiment belongs to set 2. Red vortices
are positive, blue negative.

30

20

10

llllllll\|Illllllll’|‘||I|lill!l\|l

40 20 o T2 a0

Fig. 3.33: b) Evolution of the system at t=100 (non dimensional). The surviving
vortices are moving parallel to the boundary. Note that the surface occupied by
the marked particles, at least in the x direction, is larger than the area
occupied by the vortices. Some particles escape from the recirculating region
and are left behind. Situation |.
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Fig. 3.34: a) Initial situation for 10 Rankine's vortices sharing the same source
area as the marked particles. This experiment belongs to set 2. Red vortices
are positive, blue negative.
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Fig. 3.34: b) Evolution of the system at =100 (non dimensional). Three
dipoles have formed and moved away from the boundary. The rest of the
vortices are still near the source area and are stirring the particles. The cluster
near the wall is formed by negative vortices (1,5,9) and therefore the centre of
vorticity moves left. Situation L.
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Fig. 3.35: a) Initial situation for 15 Rankine's vortices sharing the same source
area as the marked particles. This experiment belongs to set 3. Red vortices
are positive, blue negative.
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Fig. 3.35: b) Evolution of the system at t=100 (non dimensional). A large
number of dipoles formed, either between real vortices or between a real
vortex and its image. Particles are dispersed in both directions. They are also

left behind by the dipoles (this reduces the stirring efficiency of the system).
Situation II.
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where the standard deviation of the distribution of the difference from the
means was estimated from our ensemble with:

o2 o?
051,5;=\/%+ ot (3.21)

where n is the number of elements of the ensemble (i.e. n=30) and D, and

D, are the appropriate dispersions of the hypothesis 3.19 a to e.
Hypothesis 3.19 a says that the dispersion of vortices is bigger than the
dispersion of marked particles; 3.19 b states that the dispersion of vortices
in the direction parallel to the shoreline is bigger than the dispersion of
marked particles in the same direction; hypothesis 3.19 c¢ is the
correspondent of 3.19 b but for the direction normal to the shoreline; 3.19 d
is the hypothesis that the dispersion of vortices parallel to the shoreline is
bigger than their dispersion in the normal direction and finally 3.19 e
corresponds to number 3.19 d but for marked particles. The prime symbol
denotes that from the dispersions, calculated with formulae 3.7 a, b and c,
we have subtracted the initial value. The over-bar symbol denotes the
average over the ensemble.

d. Statistical analysis: comparison between the 2-D and the 3-D models

Time series of scatter plots, in which the square root of the total dispersion
of vortices (D, ) and tracer (Dn), their x component and their y component,
calculated with the 2-D model, was plotted versus the dispersions
calculated with the 3-D model, were used to formulate a second
significance test. The plots are shown in figures from 3.42 to 3.47,
appendix 3A.4.4. A two tails significance test, analogous to the one just
described, was therefore performed to test the hypothesis of differences in
the estimate of dispersion from the two models. A two tail test was
necessary since we were testing the hypothesis of differences in the two
estimates and not if one estimate was bigger or smaller than the other

one. The results of the test are summarised in appendix 3A.4.
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3.5.3 Discussion

a. Dispersion of vortices and particles parallel and normal to the shore

The analysis of the plots with the time series of dispersions (fig. 3.36 to
3.41, appendix 3A.3) suggests that the dispersion, whether of vortices or of
particles, calculated with reference to the initial or to the instantaneous
centre of vorticity do not differ greatly between experiments. The
conclusions from the statistical analysis confirm this observation. From
now we will refer only to the dispersion calculated with reference to the
instantaneous centre of vorticity, e.g. Dy, D tc. Most of the plots suggest
that the dispersion of vortices and tracer parallel to the shoreline accounts
for almost all the total dispersion. This is particularly clear if the 3-D model
is considered; only figures 3.38 d, e and f and figures 3.38 j, k and |,
referring to the 2-D model with 10 initial vortices, show that the average
dispersion of vortices and particles along x may be only slightly bigger than
the corresponding y component. A more definite answer can be obtained

from the significance test and the five hypothesis 3.19 are discussed next.

The first three hypothesis, as already noted, state that the dispersion of
vortices (total, x and y components) is bigger than the dispersions of
marked particles. If the 2-D model is used and the total dispersion is
considered, this hypothesis is generally accepted with a good level of
confidence after a non-dimensional time of t=0.6 t,. (table 3A4.1). The
same results are obtained for set 1 and 3 if the x component is
considered. Set 2 appears to take more time to reach the same status, the
hypothesis being accepted only at t=t,.. In the direction normal to the
shore the dispersion of vortices and particle are similar only for set 1 and,

again, the dispersion of vortices is generally larger than the dispersion of
tracer for the other two sets.
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The results are rather different if the 3-D model is used. The total
dispersion of vortices appears to be larger than the total dispersion of
particles only for set 3, i.e. for the highest number of vortices and when they
are at a biggest distance form the shoreline. The results are unchanged if
the x component is considered, as can be seen from fig. 3.37 and 3.39
(d,ef and jk,I), showing the predominance of the dispersion along the
shoreline for both vortices and particles. As a consequence, if hypothesis
3.19 ais valid, it is very likely that hypothesis 3.19 b is valid too. The third
hypothesis is strongly rejected for set 1, for which the opposite is true, i.e.
that the dispersion of particles is bigger than the dispersion of vortices.
The two dispersions are of the same order for set 2 and vortices disperse
more than particles for set 3.

To summarise, the similarity between the dispersion of vortices and
particles is a consequence of the initial nearly zero value of the total
circulation, T',=0, for which the centre of mass of vortices will stay close to
its initial position (see section 3.4.2). These simulations have some
similarities with the experiments discussed in section 3.4.2 for which the
dispersion of vortices was generally bigger than the dispersion of particles

due to the dominant effect of pairing vortices. This is true especially if the 2-
D model is used.

We now address the question of whether there is a preferential direction
for dispersion. The answer depends on the influence of the image vorticity
compared with the mutual influence of the real vortices. Consider the 2-D
model the system formed by the real vortices plus the images has two
remarkable features: 1) it always has zero total circulation and 2) y=0 is by
definition the permanent axis of symmetry. This implies that each real
vortex has a natural dipolar structure (the other partner of the dipole being
its image). As a consequence, if this effect dominates the contribution from
the other neighbouring vortices in the real plane, the along-shore direction

becomes the preferred direction of motion. This mode appears to be
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favoured if the average distance of the vortices from the wall is small
compared with the average spacing between real vortices and if the
number of the vortices is not very big, so that the pairing between real
vortices is not likely to happen. There is a close analogy if the 3-D model is
considered since each element of an array of coaxial vortex ring has a
persistent component of the velocity directed along the axis of symmetry.
Therefore similar considerations apply. We can conclude that, whatever
the preferred direction is, pairing is going to be the dominant mechanism
for dispersion of vortices and the transport in the recirculation cell

combined with stirring is the mechanism of dispersion for particles.

In the 2-D case the pairing of real vortices with their images is responsible
for dispersing the vortices' more than the tracer along the shoreline. The
dipoles can move along-shore in both directions (depending on the sign of
the vortices) and carry with them the tracer. The particles of fluid that are
ejected from the recirculation cell are left behind in wake and this reduces
their along-shore dispersion (see e.g. fig. 3.33). We call this situation of
type I. The corresponding 3-D simulations suggest that this behaviour is
still characteristic of set 3 but it is absent from set 1 and 2, i.e. when the
vortices are initially closer to the boundary, for which there is no difference
between the along-shore dispersion of vortices and particles. Therefore

most of the particles move together with the vortices and the two
dispersions are similar."

""This result may be a consequence of the design of the program since: 1) the biggest
contribution to the velocity of the particles that are inside the vortex core is the self-
induced velocity of the vortex ring (i.e. the particles inside the core move together with
it); 2) the core increases its area as the vortex moves towards shallow water (see section
3.3.1 d, formula 3.14) and more particles can be trapped inside it. Since the number of
absorption events of vortices at the boundary, typically 2 events for set 1 and 4-5
events for set 2, is high compared with the corresponding 2-D runs, the stirring
properties of the system are reduced. As a consequence, the particles are not ejected
from the core of the vortex by the stirring activity of the system but move with it
therefore giving two similar estimates of the dispersion.
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The dispersion of vortices and tracer in the direction normal to the
shoreline are similar for set 1, with the 2-D model, and for sets 1 and 2,
with the 3-D model. If fewer vortices are available the formation of real
dipoles, able to migrate off-shore, is not frequent (see e.g. fig. 3.36 f, 3.37 f
and 3.39 f, all showing a very small growth of the dispersion of vortices in
the y direction). This scenario changes if set 3 is examined (with the 2-D
model and the 3-D model). The larger initial number of vortices combined
with their larger distance from the boundary favour the formation of real
dipoles and we observe an increase in the dispersion of vortices in the
direction normal to the shoreline. The dipoles also transport tracer off
shore therefore enhancing its dispersion. We label this situation as type I
(fig. 3.34 and 3.35). The dispersion of vortices and particles in this case
can be, if not dominant, at least an important contribution to the total
dispersion. On the other hand, differences in the absolute strength of the
vortices will induce the dipoles to follow curved trajectories therefore

making the pairing mechanism less efficient in promoting dispersion.

We now analyse the two last hypotheses, i.e. that the along-shore (x)
direction is a preferential direction for dispersion of both vortices and
particles. With the 2-D model both hypotheses (for vortices and particles)
are accepted when set 1 and 3 are considered, while set 2 shows the
same behaviour only toward the end of the runs. The same hypotheses
are accepted without much to discuss if the 3-D model is used since the

dispersion along x accounts for most of the total dispersion.

‘As a final remark, we should observe that we made only a comparison
between dispersions and not commented on their absolute value. The
straight boundary sets a preferential direction for the dispersion of vortices
and particles but this does not imply that the dispersion in the direction
normal to the shoreline is negligible.
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b. Comparison between 2-D and 3-D models

Figures 3.42, 3.43, 3.44 and 3.45 suggest that for sets 1 and 2, the
dispersion of vortices and particles should, on average, be bigger in the 3-
D case than in the 2-D case. This appears to be true only for the x-
component of the dispersion (i.e. for the total dispersion since this is
dominated by the dispersion along the shoreline). In the direction across
the shoreline the dispersion of vortices and tracer is larger if the 2-D model
is used. The most likely explanation is that since fewer Rankine’s vortices
than vortex rings are subject to collisions (vortex rings moving towards
shallow water increase their radius and are more prone to fulfil the
conditions for collision and absorption, see section 3.3.1 d) more dipoles,
responsible for the dispersion normal to the shoreline, can form in the 2-D
case. If the number of vortices and their initial distance from the boundary
is increased, i.e. if set 3 is considered, the estimates of dispersions for

vortices and tracer are larger in the 3-D case.

The two-tail significance test (tables A3.3.1 to A3.3.3) show that the
difference in the results is always significant, with the only exception of the
total dispersion of vortices when set 2 is considered. For set 1 and 2 we
therefore conclude that the total dispersions of vortices and particles (and
their components along (x) and across (y) the shoreline) alwayé differ. The
total dispersion and its x component are larger if the 3-D model is used.
The opposite is true for the y component of the total dispersion. For set 3
the dispersions of vortices and particles calculated with the 3-D model are

always larger than the corresponding 2-D estimates.

3.5.4 Conclusions

We designed this experiment to study the effect of a straight and infinitely
long shoreline on the dispersion of vortices and tracer initially sharing the
same portion of fluid. The total initial circulation of the system was nearly

zero. We investigated three different situations, starting with five vortices
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close to the shoreline and increasing the number of vortices and their
distance from the boundary. The results from the 2-D model and the 3-D
model were compared. We observed that the dispersion of vortices is
mainly dominated by the formation of vortex dipoles between real vortices
or by their propagation along the shore. This can be explained by
observing that: 1) the formation of dipoles between real vortices is favoured
by the choice of a nearly null initial circulation; 2) the propagation of the
vortices along the shoreline can also be interpreted as the formation of
vortex dipoles formed by a real vortex and its mathematical image (since,
again, the equivalent system, formed by the real vortices and the images,
has exactly zero total strength and y=0 as an axis of symmetry). Mechanism
2) is more likely to be dominant if: a) the vortices are close to the boundary;
b) the number of vortices is not large; 3) the differences of strength
between vortices are significant and the real dipoles move along curved
paths. The overall conclusion is that the shoreline is the preferential
direction for the dispersion of vortices.

The velocity field generated by the group of vortices determines the
dispersion of the passive tracer (i.e. of particles of fluid). The transport
properties of the recirculation cell of a dipole and the stirring properties of a
group of vortices are the combined mechanism through which the
dispersion of tracer takes place. A (real) dipole moving off-shore and a
vortex that moves parallel to the shore carry a volume of fluid and the
remaining vortices act as stirrers. As a result the particles escape from the
recirculating region (e.g. this is very apparent in the trail of particles left by
the vortex cluster in fig 3.32) and the transport efficiency of the dipoles is
‘reduced. The particles, like the vortices, are dispersed more in the
direction paraliel to the shoreline than in the normal direction. The
dispersion in the normal direction in this case should be bounded. This
scenario also supports the hypothesis that the dispersion of vortices is

usually bigger that the dispersion of particles (we have found that this is
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true for the highest number of vortices) but this seems to depend on the
number of vortices and their distance from the boundary.

From the comparison of the dispersing properties of the two models we

conclude that the 3-D model is more efficient in dispersing vortices and
particles.

3.6 Dispersion of vortices and mass near the wall-

Case 1. Vortices and particles starting in different
areas

In this section we present the last set of experiments designed to study a
situation in which the vortices and the particles occupy at the beginning of
the run different portions of fluid. This initial configuration substantially
leads to conclusions that are very similar to the ones obtained in section
3.5. The main differences in the initial conditions are: a) the particles are
initially simulating the release of a line source of dye of finite length; b) the

area initially occupied by the tracer is much bigger than the area occupied
by the vortices.

3.6.1 Experiment set-up

A typical initial situation is shown in figure 3.48. In this experiments we
discuss only one set of initial conditions. The initial position of the tracer is
the same for all the experiments. The initial position of the vortices is
varied randomly inside a rectangular area (which measures 24 x 10 and
has an offset of 10 from the shoreline, see fig. 3.48). The box is initially
filled with 20 vortices (with a reference strength of I'=80 to which we add or
subtract randomly 30% of this reference value). The probability to have a
positive vortex is 0.5 (i.e. the total initial circulation is nearly zero). The initial

reference value for the radius is r=1and the random variations are
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Fig. 3.48: typical initial situation with 20 vortices and 1800 marked particles
that simulate a passive tracer.
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contained within +20%. The tracer is contained inside a box of 60 x 60;
1800 particle are located at the node of a grid evenly spaced in the x
direction. The mesh size increases linearly in the y direction. The number
of iterations performed is 4-10* and the time-step is At=5-10"* (equivalent to
a non-dimensional execution time t,.=20). The parameter f (see section

3.2.1) is 0.3. For the 3-D model the condition of collision with the boundary
was stricter: gna=2" 2.

The average value of u (see section 3.2.2) was 1.4-10 for the 2-D model
and 0.1 for the 3-D model.

3.6.2 Results

The analysis of the experiments was performed along the lines already
described in section 3.5.2. Plots of the dispersion of vortices and tracer are
shown, for both models, in figures from 3.49 to 3.52, appendix 3A.5. The
same standardised variables for the statistical analysis were calculated
(see sections 3.5.2 ¢ and 3.5.2 d).

3.6.3 Discussion

a. Dispersion of vortices and particles parallel and normal to the shore
Since the total circulation of the system is nearly zero we consider the
dispersion of vortices and particles from the instantaneous centre of
vorticity (see sections 3.4.2 and 3.5.3 a).

The time series of the dispersion of vortices and particles (2-D model, fig.
3.49) suggest that the along-shore (x) component dominates the total
dispersion. The y-component of the dispersion of vortices appears
bounded (the maximum is reached at about t=0.4ty,,). The y-component of

the dispersion of particles decreases and reaches its minimum value at
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t=0.6ta). The results from the 3-D model (see fig. 3.50) suggest very
similar conclusions (with the difference that, compared with the 2-D case,
the total dispersion of vortices and particles is in general larger but the
dispersion of vortices and particles in the normal direction is substantially
smaller). The peaks in figure 3.50 f are due to dipoles that followed a

curved path, moving first offshore and then back again toward the
shoreline.

The significance test revealed that the hypotheses 3.19 are always
accepted (with the 2-D and the 3-D models). We conclude that the vortices
always disperse more than the tracer and the dispersion in the direction
parallel to the shoreline is dominant for both vortices and particles. The
dispersion of tracer decreases as the patch of particles is stretched along
the boundary and compressed in the normal direction. The dispersion of
vortices has an upper limit. This is a consequence of the differences in
circulation between the vortices forming the dipoles, which therefore

progress along curved paths and inevitably move back towards the
boundary.

b. Comparison between 2-D and 3-D models

Scatter plots of the dispersion of vortices, figure 3.51, show that while the x-
component of the dispersion (and the total value) are bigger if vortex rings
are used, the y-component appears to be bigger if the 2-D model is used.
The same observations are valid if the dispersion of particles is
considered (figure 3.52) but now the dispersions in the normal direction
seem to be very similar. The dispersion of tracer along y does not seem to
‘be an important feature in this experiment.

For sake of completeness, we calculated the standardised variables to
see whether the differences between the dispersions calculated with the
two models are statistically significant. We do not show their values

because the differences are always statistically significant for all the cases
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but for the dispersion of tracer in the normal direction, for which the results
from the two models do not differ.

3.6.4 Final remarks

We designed this experiment to study the dispersion of vortices and tracer
when the vortices are initially contained in an area much smaller than the
area that contains the tracer. We have increased the variability of the
strength of the vortices (compared to section 3.5). |

With these initial conditions the dispersion of vortices and particles in the
x-direction always dominates the total dispersion. The dispersion of the
vortices in the y direction is always bounded. This is a consequence of
differences of the absolute circulation between the partners of vortex
dipoles. On the contrary, the dispersion along the shoreline increases with
time. The dispersion of the tracer in the direction normal to the shoreline is
generally decreasing because the dispersion of vortices in the same
direction is bounded and the area occupied by the tracer is much larger.
Since many dipoles form during the evolution of the system, the dispersion
of vortices is larger than the dispersion of particles. The 3-D model is more
efficient in dispersing vortices and particles in all cases but for the
dispersion of tracer in the y-direction.

3.7 Conclusions

‘The fesults from the numerical simulations have provided evidence of
several interesting aspects of the mechanisms of dispersion of a system

of vortices and passive particles.

We have discussed the importance of the choice of the measure of

dispersion. If the dispersion for vortices is defined as the second order
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moment of their position from the initial centre of mass and this migrates
along the boundary (because of the effect of the image vorticity) the

differences with the dispersion from the instantaneous centre of mass can
be very large.

The dispersion of vortices and particles is dominated by the formation of
dipoles between real vortices and between a real vortex and its image. The
second kind of dipole moves along the axis of symmetry of the system (i.e.
the shoreline). For this reason the dispersion in the direction parallel to the
shoreline is normally dominant, whether tracer or particles are analysed.
This is true until the velocity induced by the images on the real vortices is

larger, or of the same order, of the velocity induced by the neighbouring
vortices.

In our simulations we neglected the effect of viscosity and this may be a
serious limit in our analysis. When a vortex is close to a boundary, the
effect of viscosity (see e.g. Doligaski, 1994), is to generate of a counter-
rotating secondary vortex at the boundary and to cause rebounding. The
implications of this mechanism should be assessed if the dispersion
parallel to the shore has to be quantified. Our laboratory experiments, to be
discussed in the next chapters, show that rebounding is present also
when a sloping bed is considered.

The dispersion of vortices in the direction normal to the shoreline is very
large only if the differences in the absolute strength of the vortices are
small: in this case dipoles can propagate in any direction and on almost
‘straight paths. The bigger the differences the more curved the paths are,

and, consequently, the dispersion of vortices will reach soon its
maximum'2.

“Curved paths can also be induced by horizontal shear of the along-shore current
(Garten et al, 1998).
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The dispersion of the tracer is generally smaller than the dispersion of the
vortices and its magnitude depends on the initial position of the particles
with respect to the position of the vortices. The tracer transported by the
dipoles inside the recirculation cell is also stirred by the remaining

vortices. If the area is very rich in eddies the net dispersion may be
reduced.

The 3-D model is in general more efficient in dispersing vortices and

particles but this may not be true for dispersion in the direction normal to
the shoreline.

There is need for a better understanding of the dynamics of vortices over a
planar and sloping bed. In the rest of this dissertation we will describe a
series of physical experiments aimed at disclosing to what extent the ring

vortex model is suitable to study the dynamics of a vortex over a sloping
bottom.

3.8 Summary

The main results are:

e The dispersion of vortices, for a system that has almost zero total
circulation, is driven by the formation of dipoles either between real
vortices and between a real vortex and its image. The dispersion of
particles is dominated by transport inside the recirculation cell and
stirring by the other vortices.

e The dispersion of vortices and particles is generally bigger in the
direction parallel to the shore than in the normal direction; this is true
when the effect of the shore, i.e. of the images, is of the same order, or

bigger, than the effect of the other vortices.
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e A dipole in which the two partners have different absolute strength
follows a curved path. Therefore the dispersion of vortices and particles
in the direction normal to the shoreline is bounded if vortices of
opposite sign have large differences of absolute circulation (section
3.6.3 a).

o the 3-D model is generally more efficient than the 2-D model in
dispersing vortices and particles; this may not be true for the dispersion
of particles in the direction normal to the shoreline.
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Chapter 4

Physical experiments

4.1 Introduction

4.1.1 Background and motivations

In chapter 2 we discussed how a sector of a vortex ring can be used to
model a vortex in a wedge-like domain and we observed that this construct
is mathematically exact. We also observed that this model could be seen
as an extension to three dimensions of the two-dimensional model that
uses parallel straight-line vortices, or, equivalently, point vortices. If point
vortices are taken, the model is valid as it stands only if applied to
unbounded fluids or if the vortices are in between two parallel planes (see
e.g. Saffman, 1992, chapter 7), with the further assumption that the vortex
lines must also be perpendicular to the latter. In other words, if the angle
between any of the vortices and the planes is not 90°, image vorticity must
be introduced in order to satisfy the boundary conditions. It follows that
point vortices can no longer be used because two-dimensionality is lost.
For this reason a model able to describe the dynamics of vortices in a
shore environment, in which the sea floor is often gently sloping, requires
an extension to three dimensions. To solve this problem we assumed that,
if the seabed is not too steep and the depth is small compared with the
‘radius of the vortex, a real vortex over a sloping bottom may be

approximated with a sector of a vortex ring.
Following this idea, in chapter 3 we used the inviscid vortex ring model in a

non-rotating system to investigate the combined effect of a shoreline and

of a sloping bottom on the dispersion of vortices and particles of fluid in the
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absence of other dynamical features, such as currents, horizontal shear
and waves. A comparison was made with the 2-D model of a semi-infinite
coastal ocean bounded by a vertical wall. We found that along-shore
dispersion produced by vortices in a wedge exceeded that promoted by
identical initial configurations of vortices near a vertical wall. The absence
of background rotation is a good hypothesis. Recent observations made
during the Sandy Duck ‘97 Experiment suggest that the characteristic
radius R of coherent vortices near the surf zone is of the order of tens of
metres with strength T of order 10 m? s (Dr. Jerome Smith, 1998,
personal communication). The Rossby number for these vortices,
calculated as Qff, where Q is the angular velocity of the core, assuming
rigid rotation, and fis the Coriolis parameter, (see e.g. Gill, 1982, p. 498)
becomes R,=2T'/(nfR?). Substituting, for mid latitudes, we find R,~10 thus,

the Earth’s rotation can be neglected.

The principal question that we now want to answer is: how good is our
analytical model with vortex rings in predicting the dynamics of vortices
over a gently sloping bed that, together with the fluid surface, bounds a
wedge-like region of fluid (see section 2.3.3 and figure 2.13)? Therefore
the behaviour of vortices moving over a planar sloping bottom is
investigated with physical experiments and the results are compared, in a
separate chapter, with the predictions of the analytical model. The idea is
to generate a vortex dipole that, since it progresses along a straight path
under the effect of its self-induced motion, can move from a region of
constant depth towards a part of the tank where the depth is decreasing
(see. fig. 4.1). We are aware that the situation reproduced by the
experiments may not occur frequently in nature or may not be a
characteristic feature of the near-shore dynamics, but the apparatus is
simple to build and the experiments represent a good way to validate (or
otherwise) our theoretical model and to learn more of the processes which
are not represented by the theory.
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Fig. 4.1: Working principle of the vortex generator and
schematic plan view from above of the experimental set-
up. The dipole is generated over a flat bottom by pushing
water out of a channel that is narrowing at one end. The
dipole moves, by mutual interaction of the vortices, over a
planar slope towards progressively shallow water. The
horizontal black line indicates where the slope begins
whilst the red arrow indicates the direction of motion of the
dipole. The red vortex is positive (i.e. contains positive
vorticity) and the blue is negative (for a side view see fig.
4.5).

In the past almost two dimensional vortex dipoles have been used to
investigate the case of collision with solid boundaries, or walls, when the
latter are parallel to the vortex lines (e.g. Barker and Crow, 1977). In our
experiments the boundary is not parallel to the vortex lines but is inclined at

an angle, therefore simulating a planar sloping beach (see figure 2.13).

4.1.2 Objectives

The main objectives of the experiments are:

- to describe the development of the flow as the vortices interact with a

slope;
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- to measure the path followed by vortex dipoles moving towards the shore,

for different angles of the slope and for two different water depths beyond
the wedge region (see fig. 4.6.a);

- to measure the velocity of the vortices, whilst moving over the sloping bed
and parallel to the shore.

4.1.3 Structure of the chapter

The experimental apparatus is presented in section 4.2, where we also
describe the flow visualisation techniques used. Section 4.3 contains an
overview of experimental observations. In section 4.4 we discuss the
techniques used to process the raw data from the experiments (images of
the vortices when dye was employed and position of particles when
particle image velocimetry was used). The measurement of other
parameters and their analysis is the subject of section 4.5. Two
experiments with the planar slope replaced with a vertical wall are the
subject of section 4.6. Discussion and conclusions are in sections 4.7 and
4.8 respectively.

4.2 The apparatus

4.2.1 The vortex generator

Ideally, we only need to observe the motion of one vortex over a planar
sloping bottom but the generation in the laboratory of isolated and

coherent vortices in a homogeneous and non-rotating fluid is not a simple
task."™

®In contrast, the case in which the Earth’s rotation is simulated with the aid, for
example, of a rotating table, is easier since the fluid can be forced to develop vortices
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Barker and Crow (1977) designed a device to generate quasi two-
dimensional vortex dipoles without using background rotation [this
technique is the two-dimensional analogous of the puffing method used to
produce a circular vortex ring (e.g. Maxworthy, 1974)]. The apparatus
consisted of two thin plates spanning the depth of the fluid, to form a
channel open at the two ends, and a third plate, normal to the first two, for
pushing the fluid. The fluid pushed from the channel formed two
symmetrical vortex sheets that immediately rolled-up to form a vortex
dipole. With the pushing plate still moving, a trigger released a spring-
loaded mechanism that quickly retracted the plate, so that the flow in the
channel was free to evolve without being blocked by the plate itself. At this
point, a fully developed dipole detached from the mouth of the generator
and moved away along a straight path (see fig. 4.2). As reported by Barker
and Crow (1977), as well as observed in our experiments, to obtain a long
lasting dipole it is essential that the pushing plate is removed. The out-
washed fluid is needed to fill the recirculation cell of the dipole. If the plate
is not withdrawn but left to obstruct the channel the two vortices quickly
draw together, amalgamate and disappear. We will see in the next
sections that the structures obtained with this device are robust and can

progress without losing coherence for distances that are long compared
with the initial radius of the vortices.

by virtue of the Taylor-Proudman theorem. For this theorem-to hold, the flow must be
geostrophic and incompressible (i.e. Rossby number and Ekman number much smaller
than 1 and zero divergence). If those condition are satisfied the vertical velocity shear is
zero (see e.g. Tritton, 1988, chapter 16, pp 219-226). As a consequence an impulsive
perturbation at the surface such as air jets, drops of fluid and submerged jets of water,
will evolve so that the resulting vortical structure will span the depth of the tank, thus
forming Taylor columns (see e.g. Carnevale et al, 1991, Fedorov et al, 1989,
Whitehead, 1989, and Hopfinger and van Heijst, 1993, for a review).
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Fig. 4.2.a

Fig. 4.2.b

Fig.4.2.c

Fig 4.2: This sequence of photographs (from Barker and Crow, 1977) illustrates the technique that we used
in our experiments to create vortex dipoles. For a description of this technique see section 4.2.1. Water
Coloured with fluorescine was used to visualise the vortices. Fig 4.2.a shows the early stage of roll-up of
the dipole that subsequently develops in the mushroom-like pattern shown in fig. 4.2.b. Small scale
instabilities, i.e. small compared to the size of the dipole, prior to the transition to a turbulent core, can
also be seen. The edges of the converging mouth of the vortex generator (with ~7 cm opening) are
Visible. The fully developed dipole, now detached from the generator, is shown in fig. 4.2.c. Since the two
Vortices have the same strength the dipole progresses along a straight path (see section 4.3.2).
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We designed a vortex generator borrowing many characteristics from the
device used by Barker and Crow (1977). Our apparatus, sketched in figure
4.3, consisted of a channel made of 1 mm thick stainless steel. With
reference to figure 4.3, the length of the channel was AA” = 120 mm and
the width at the back AB = 60 mm. The two lateral walls were bent in order
to obtain a width at the mouth of 37 mm (A'B’). The channel was 60 mm
deep. A plate obstructing the channel (CC’ in fig. 4.3) was used to transfer
momentum to the fluid and to push it through the mouth, A’'B’. The width of
the opening at the mouth allowed the generation of dipoles with an initial
separation of the centres of the vortices of about 7 cm. The maximum
working depth of the apparatus was 4.5 cm.

A sliding lid covered the top of the channel (fig. 4.4 b). The role of the lid
was to support a frame to which the pushing plate was attached through a
spring. The forward motion of the plate was obtained at the expense of a
weight falling under the action of gravity. The back of the lid was connected
(at B, fig. 4.4.b) to a rod attached, through a system of pulleys and levers, to
a weight sliding over a sloping plane (not shown). The plane was
lubricated with silicon grease to obtain a smooth movement. With the
spring extended, a metallic pin (C in fig 4.4.b) was used to keep the plate
in its lowered position, as shown in fig. 4.4.a. The pin was attached to the
border of the tank with a string. When the maximum stroke of the lid
(typically 2-3 cm) was reached, the pin was extracted from the hole (A in fig.
4.4 a) and the pushing plate was pulled upwards and out of the water by

the spring. The upward motion of the plate was very fast and was guided
by two lateral slots (see fig. 4.4.a).

The back edge of the vortex generator was at 160 mm from the border of
the tank. The device had its plane of symmetry perpendicular to the longest
side of the tank and was placed in the middle, so that side—wall effects,

roughly estimated with the method of the images, were symmetric and
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Fig.4.3: Schematic of the channel of the vortex generator. Plan view from above.
The moving plate is attached to the lid (not shown, see below).

b)

hole for
pushing rod

Fig. 4.4: a) Front view of the vortex generator. The spring mechanism, now loaded,
is visible. The spring is attached to a frame mounted on the sliding lid. Two lateral
slots guide the vertical motion of the plate. A metallic pin, passing through holes in
the pushing plate and in the frame (A in figure) is used to keep the plate in its low
position. b) Side view. The pin that keeps the pushing plate down is now visible. A
string (not shown) is attached to the pin (at C) and to the border of the tank (not
shown); when the maximum stroke is reached the pin is extracted from the hole and
the pushing plate is free to move upwards. On the left is the small hole at which the
rod that pushes the lid is attached.
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small compared with the velocity field of the dipole'. A side view of the
experimental set-up is sketched in figure 4.5.

Metallic frame i
\ [\V; 11 o] cim—4
- To yideo camera

A A

]
B 45

D c.ccjc-
Tank—p

B'D'&——>D" Vortex génerator

Fig. 4.5: Sketch of the experimental tank in a vertical section
normal to the longest side. AA’=970 mm, BB'=250 mm, C'C"'=120 .
mm, C’C”=160 mm. The width of the slope, DD, was varied
together with DD to obtain different inclinations. The vortex
generator was in the middle of the longest side. A metallic frame
was holding a mirror forming an angle of 45° with the horizontal.

The video camera was pointing at the mirror to record a plan view
from above.

With reference to fig. 4.5, the height DD” was varied to create different
slope angles, ranging from ~3.5° to ~45°. The slope angle, o, was
calculated from the relationship o=arcsin(DD™*/DD’). The distance of the

mouth of the vortex generator from the beginning of the slope was 110 mm
(CC’in fig. 4.5).

“The offshore velocity induced by the side borders where estimated with the method of
the images (formula 2.11). Typical values are: T~10> cm’ s and s~0.5 10° cm (see

tabies 4.5 and 4.8), giving a velocity of~0.15 cm s”. The typical along-shore speed is ~1
cms™.
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4.2.2 The tank

The experiments were made in a rectangular Perspex tank of 970 mm x
1470 mm and 250 mm deep. The water had a free surface. A planar
sloping beach was simulated with two glass panels. The smaller panel
(200 mm x 900 mm) was used for shallow water levels and for large

angles. For deeper water and small angles we used a panel with sizes
458 mm x 1430 mm.

We should mention that the thickness of the Perspex material and the fact
that the tank in which we conducted the experiments was not perfectly
horizontal (we measured a difference of ~2 mm in water depth across the
longest side at the position of the shoreline, see fig. 4.6 for a definition of
the shoreline), made the measurement of the water depth a little
ambiguous. For this reason we decided to estimate the water depth using
the angle of the slope and the length R; (see section 4.5.1 and fig. 4.21 for
the definition of R;) which was calculated as the average of the distances
measured from the digitised images of the plan view from above of the
tank at three different positions. This procedure yielded an accuracy on the
water depth at the flat bottom of ~0.1 cm and on R; of ~0.2 cm (see tables
4.1, 4.2 and 4.3 and tables 4.5 and 4.6).

4.2.3 Recording system, flow visualisation techniques and
data acquisition

a. Recording system

We recorded the experiments with a 50 Hz shutter video camera. We used
either a Cohu Cosmicar TV zoom lens, 8-48 mm 1.2 or a Rainbow TV
zoom lens H6X8-l, 843 mm f1.0. The images were recorded with a
S-VHS Panasonic VCR (model AG-7350). We regulated the iris
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diaphragm of the lens by viewing the images on a TV monitor until the
exposure looked correct. The recording frequency allowed a time
resolution of the images of 0.04 s, adequate to measure the position of the
centre of the vortices and to sample the velocity field. We used a digital
timer to stamp the images with the time elapsed since the beginning of the
experiment. A plan view of the experiments from above was obtained by
suspending over the tank a mirror forming an angle of 45° with the

horizontal, as shown in figure 4.5.

b. Flow visualisation and data acquisition. Method 1: dye

To visualise the vortices we injected a strong solution of yellow fluorescine
into the channel of the vortex generator immediately before the run. The
working fluid was fresh water. A black background was used to enhance
the contrast of the coloured vortices. Two 500 W halogen lamps were
attached to the metallic frame used to hold the mirror (see fig. 4.5). The
lamps were suspended at about 50 cm from the water surface and were
switched on only for the duration of the experiments to avoid non—uniform
heating of the water which may promote convective motions. To reduce the
number of air bubbles created by the gas dissolved in the pressurised tap

water, we filled the tank with tepid fluid and we left it to cool overnight.

The data acquisition consisted of filming the surface of the fluid, as shown
schematically in figure 4.5. Examples are shown in figures 4.6.a and 4.6.b.
A grid with a mesh size of 1 cm, used to map a Cartesian frame of
reference, was placed under the transparent bottom of the tank and filmed
before the experiment (fig. 4.7).

c. Flow visualisation and data acquisition. Method 2: particles

The PIV (Particle Image Velocimetry) technique (e.g. Dalziel, 1993 and
Adrian, 1991, for a review) was used to: a) visualise the features of the
flow; b) to measure the position of the vortices; c) to measure the velocity

field. The analysis consisted of the calculation of the velocity of some
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Fig. 4.6: a) a vortex dipole 1.45 s after its formation (plan view). Slope:
0=(12.4+0.2)°, s.w.l. =(3.8+0.1) cm. On the upper left corner is the time elapsed
since the beginning of filming, which does not necessarily correspond with the
beginning of the experiment. These images have been converted to negative
and therefore the background (originally black) appears almost white. The non-
uniform colour intensity of the patch of dye is due to non uniform lighting
conditions and/or non uniform concentration of dye. The dipole was generated
at t=6.45 s, which therefore is the time offset. In the analysis of all the
experiments, the dashed line, passing trough the centre of the vortices, was
assumed to be parallel to the axis of the wedge (shoreline), or, in other words,
we neglected differences of the ordinates of the centres. b) Later evolution of
the dipole shown above. The vortices are now moving apart from each other
and almost parallel to the shoreline.
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Fig 4.7: Vortex generator and grid of reference (plan view by video). The grid was
filmed before each experiment and used to define a cartesian frame of reference in

which we measured the position of the vortices. The mesh size is 1 cm in both
directions.
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particles of fluid, essentially a Lagrangian approach, and on the
subsequent interpolation of the velocity data on a grid, over which the
velocity field was computed. Solid particles were used as tracer. The

underlying assumption is that a particle of water and a particle of tracer
move in the same way.

Before each experiment, we seeded the surface of the fluid with white
granules of the astyrene/acrylate interpolymer Pliolite AC 80 (manufactured
by Goodyear). We previously sieved and sorted the particles by diameter.
Depending on the distance of the camera from the surface of the water, we
used particles with diameter in the ranges 500 pum-710 um and 710 pm-
1000 um. The best results were obtained when the granules were wet and
there were no air bubbles trapped on their rough surface. Therefore, the
night before the experiment, we soaked the particles in salted water with
the addition of few drops of photographic wetting agent. For the
experiments we used only the particles that remained at the surface. The
working fluid for this set of experiments was a mixture of water, sait, and
blue food dye. The reason for adding salt was that, since the Pliolite
granules are only slightly denser than fresh water, its greater density
ensured that the particles did not sink. Furthermore, with the addition of
blue dye, we obtained a dark fluid, ideal to achieve a high contrast with the
white granules. The density of the water, measured with an optical
refractometer before adding the colour, was about 1.04 g cm™. A small
quantity of photographic wetting agent was finally added to the working
fluid to reduce the surface tension and therefore to reduce the tendency of
the particles to stick together and to form large lumps. As in the dye
experiment, three 500 W halogen lamps were suspended at about 50 cm
from the water surface and switched on only for the duration of the

experiments, typically 2-3 minutes, in order to avoid heating of the working
fluid.
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The same data acquisition procedure already described for the
experiments with fluorescine was employed here. For this set of
experiments more care was put in avoiding reflections of light from the
surface of the water, as it would induce errors during the velocimetry
analysis. We always included in the images at least two white spots to be
used later as anchor points for the images (as required by the software
DIGIMAGE that performs the velocimetry analysis, Dalziel 1993). This is
necessary in order to position the images in the same location relative to
each other and to reduce the error. The lens of the camera was also kept
slightly out of focus so that the images of the particles were bigger and the
tracking process was more efficient. Since, for a fixed focal length, the
spatial resolution of the velocity field is mainly a function of the number of
particles recognised during the tracking phase, it was essential to record
good quality pictures, i.e. with correct exposure time and with high contrast
between the colour of the background and of the particles.

In fig. 4.8 we show an example of a streak photograph obtained with the
PIV software DIGIMAGE (Dalziel 1993). The streak-lines clearly show the
vortex dipole and the position of the centre of rotation relative to an

observer fixed with respect to the tank. The streak lines, made by white

particles, are now black because the picture was converted to negative.

4.3 The experiments

4.3.1 Plan of the experiments

Tables 4.1, 4.2 and 4.3 show the range of slope angles and depths used
for the experiments with dye and with particles.
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Fig 4.8: Streak picture of a vortex dipole immediately after its formation. The
rectangle indicates the position of the vortex generator. The separation between the
centres of the vortices is about 7 cm. The dipole is still moving over the flat bottom in
a water depth of (4.1£0.1)cm. This picture is the result of a sophisticated image
processing algorithm (Dalziel 1993) which has altered, but not distorted, some original
features. For example only the particles that satisfy some threshold criteria are used
to produce this picture. Also, the size of the particles shown in the picture does not
correspond to the their real size.
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[ExP W 1 2 3 4 5 6 7
o (°) 3.5/3.420.1 5.5/5.630.1 5.5/5.6+0.1 7.0/7.0£0.1 7.0/7.0£0.1 8.5/8.310.1 8.5/8.340.1
IW.L. (cm) 2.7/2.7x0.1 2.5/2.7£04 45/4.3x0.1 2527801  }4.5/4.410.1 2.5/2.7201 4.5/3.720.1

Tab. 4.1: Values of the slope angle and of the water level for each experiment as
planned before the experiments and as measured (bold). Fluorescine was used as
tracer (see section 4.2.3 b). For water level (W.L.) is intended the depth of the water off
the slope, i.e. at the flat bottom region.

[ExP N B 9 10 1 2 13 14

o () 100099201 | 100009501 | 1201124201 | 120124501 |180/17.5204 |20.0/204502 |45.0/45.620.7
[WE om) [p527201 |4541:01 (2527201 |4508:01 [4544:01 4539201 [4544201
Tab. 4.1: Continued.

EXP. N° 15a 150

@ () 90.0/90£1 | 90.0/90%1

W.L. (cm) | 4053601 | 4.0/39:01

Tab. 4.2: As table 4.1 but with Pliolite AC80 used as tracer (see section 4.2.3.c).

EXP. N° 16 17a 17b 18 19 2 2 2
o (°) 3.5/34+01 |5.5/5.680.1 |5.5/6.6£0.1 |55/56x0.1 |7.0/6.810.2 [7.0/7110.2 |8.5/8.3+0.2 |8.5/8.080.2
lW.L. (cm) [27/27801 |2525:01 (2.52.7101 }|45/4.5+01 }2527+01 |4543£01 |252.7801 |4.5/4.3:0.1

Tab. 4.3: As table 4.1 but with Pliolite AC80 used as tracer (see section 4.2.3.c).

FEXP. N° V&) 24 . 2% 2
o (°) 10.0/0.940.2 [10.0/9.8£0.2 |12.012410.2 [12.012440.2 |18.0/184£04
IW.L. (cm) [2.5/27+01 4.5/4.320.1 2527401 4.5/4440.1 4.5/4.5+0.1

Tab. 4.3: continued.

The greatest water depth (4.5 cm) was the maximum working depth of the

apparatus. Experiments 15a, 15b, and 15c (with the vertical wall) were

- made to check the behaviour of the vortices against the potential theory

and other published experiments and are discussed in section 4.7.
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4.3.2 Summary of observations

Time series of pictures from three experiments made using fluorescine
are shown in plate 1 [slope angle 0=3.4°, water depth 2.3 cm], plate 2
[slope angle a=7°, water depth 2.7 cm] and plate 3 [slope angle a=7°,
water depth 4.4 cm].

An examination of the plates indicates that the motion of the dipole can be
divided in four main phases. 1) After the generation of the dipole, at t=t,,
and while on the flat bottom, the vortices move almost parallel to each
other along an approximately straight path. Their separation increases
slowly with time. 2) When the vortices meet the slope, at t=t;, they still
progress forward along the straight path but their separation increases
more rapidly until they reach a minimum distance (R;) from the shdre (t=ty).
3) The vortices then move parallel to the shoreline and apart from each
other until 4), at t=t3, they start to move towards deeper water [this process
is called rebounding (e.g. van Heijst and Flor, 1989 b, Orlandi, 1990)]. The
rebounding consists in the pairing of secondary vortices, generated by
viscous interaction of the main flow with the boundary, with the primary to
form an unbalanced dipole. The division of the trajectory of the vortices in
four phases can be seen more clearly in plots like the one shown in fig. 4.9
and corresponding to experiment 2 in tab. 4.1. The rebounding induced by
the action of secondary vortices (not visible in plates 1 to 3 since there is
no dye to mark them) can be seen, for example, in plate 2 by comparing
the two images at t= 28 s and t=46 s.

Because of the diffusion of the tracer, the details of the centre of the
vortices are lost in the very first seconds, therefore making the identification
of their position at later times difficult. Streak photographs were also used

to obtain a view of the flow at the fluid surface, as shown in plates from 4 to
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=0 s 4 Generator t=10 s
Flat bottom
~.. Slope edge
10 cm Sloping bottom
—
Shoreling
t=2's t=16 s
t=4 s
t=6 s
t=8 s t=64 s

Plate 1: Evolution of a vortex dipole, for experiment 1 in table 4.1, progressing over a flat horizontal bottom
(from t=0 s to t4~5 s) and subsequently over a planar slope. The images are a plan view of the experimental
tank from above. The position of the slope is indicated in the first frame. The water was coloured with
fluorescine and a black background was used to enhance the contrast. The images shown in this plate are
the result of a series of operation that are mainly: a) the use of an interlace filter; b) the subtraction of the
background (as recorded before the run) from each image; c) conversion of the images to negative. Those
operations are necessary to improve the quality of the images and to optimise the visibility of the tracer. The
vortices reached the minimum distance from the shore line at t,~44 s. Rebounding started at t;~95 s (not
shown. The water depth at the flat bottom was (2.3+0.1) cm for this experiment (1 in table 4.1) and the angle
formed by the planar slope with the horizontal was o=(3.4+0.1)°. The strength of the incident dipole, as
measured from its propagation speed over the flat bottom, was I'= (944£36) cm?s™".
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4— Generator t=8 s
Flat bottom

ing bottom
Sloping : Slope edge

1|O’C—|m Shoreline

t=10 s

t=4 s t=16 s

Plate 2: As plate 1 but now for experiment 4 in tab. 4.1 with a water depth at the flat bottom of (2.7+0.1) cm
and a slope angle of o=(7.0£0.1)°. The strength of the incident dipole, as measured from its propagation
speed over the flat bottom, was I'= (79234) cm?s™. The dipole moved onto the slope at t;~6 s and reached
the minimum distance from the shoreline at t,~14 s . Rebounding started at t;~ 34 s.
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4— Generator

Flat bottom

sloping bottom

10 cm
i

T

Slope edge

Shoreline

t=10s

t=4 s

Plate 3:As plate 1 but now for experiment 5 in tab. 4.1 with a water depth at the flat bottom of (4.4+0.1) cm and a
slope angle of a=(7.0£0.1)°. The strength of the incident dipole, as measured from its propagation speed over the
flat bottom, was I'= (129:41) cm®s™"'. The dipole moved onto the slope at t;~3 s and reached the minimum
distance from the shoreline at t,~17 s . Rebounding started at t;~ 40 s.
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8. Particle trajectories over short time scales can give some information on
the structure of the flow (see caption of plates for exposure time used and
other experimental parameters). Particles trajectories must not be
confused with streamlines. For example, in the pictures shown here, the
instantaneous centres of rotation of the vortices as would be seen by two
observers moving with them are close to the stagnation points showed by
streak photographs but are not coincident with them, their distance from
the former depending on the vorticity distribution/velocity field and on the
speed of the vortices with respect to the camera. At the moment, for a

qualitative analysis, we neglect this difference and a further discussion is
postponed until section 4.4.3.

Plates 1 to 7 show some experiments made over a large range of slope
angles (3.4° to 18.4 °). Plates 2 and 3 show the effect of increasing
circulation. Plates 4 to 7 show the effect of successively increasing angles.
Plate 8 refers to an experiment in which the sloping bottom was
substituted with a vertical wall. All the dipoles had an initial separation of
about 7-8 cm before moving into the sloping region. From plates 1-7 we
see that the minimum distance from the shoreline reached by the vortices
(Rfin phase lll, fig 4.9) varies considerably between different experiments.
[On the contrary the point vortex theory predicts that dipoles with equal
initial separation, progressing over a flat bottom and moving towards a

vertical wall at a right angle, reach the same final distance from the
shoreline].

The development of secondary vortices or region of secondary vorticity can
be seen in most of the plates from 4 to 7, but especially in plate 6 for t=16
s). Fully developed and more energetic secondary vortices were found in
the experiment with the vertical wall (plate 8 for t> 23 s).

The stem—like patches of dye that join the dipoles to the vortex generator

(plates 1,2 and 3) show the existence of wave-like motions, propagating in
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the same direction of the dipole, with a wave-length of the order of the size

of the dipole (e.g. plate 1 at t=22 s and t=64 s). Similar patterns are shown
by plates 4, 5, 6, and 8.

The vortices are generally turbulent. The series of pictures in plates 1, 2
and 3 show for example that the outer border of the dipole undergoes
different phases, starting with a smooth laminar motion during the roll-up
of the vortices (e.g. plate 1 at t=2 s), which becomes irregular (plate 1 at t=4
s) and eventually smooth again when the fluid slows down (plate 1 at t>40
s). Plate 1 also shows, for t>40 s, the development of ripples at the outer
edge of the dipoles. This pattern is suggestive of the development of
instabilities, probably shear instabilities of the Ekman flow, directed
inwards along radial lines as required by the spin-down theory, in the
bottom boundary layer (Greenspan and Howard, 1963 and section 2.4).
The inner core of the vortices may be also turbulent (small eddies appear
at the surface and near the centre of rotation in plate 4, for t=6 s until t=14
s, and plate 8, for t=8 and t=11 s). For example in plate 4, after the dipole
crosses the border between the flat bottom region and the sloping bottom
region the streamlines, so far circular and with only one centre of rotation
(see pictures for t=4 s and t=6 s), change shape and each vortex appears
to have two distinct centres of rotation. Far from the centres of rotation the
streamlines are elliptical. The eccentricity e of the ellipses, roughly
estimated from the pictures, varies from e~0.5 at t=6 to e~0.66 at t=10. At

t=16 s the streamlines in proximity of the centre of the vortices are again
almost circular.

- Upward vertical motions inside the core of the vortices are required by
mass conservation to balance the boundary layer radial flow towards the
centre of the vortices (see section 2.4). To observe them we put an
elongated streak of food dye at the bottom of the tank and approximately
along the path followed by one of the two vortices forming the dipole. A time

series of pictures taken while the dipole was progressing over the flat
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Plate 4:Time series of streak photographs (PIV technique). The pictures show a plan view of the tank from above.
The streaks are obtained from a procedure which is similar to taking long-exposure pictures. The exposure time
for frames from 0 s to 16 s is ~ 0.8 s, ~1.6s from 16 s to 24 s and ~3.2 s from 26 s to 30 s. The pictures do not
show all the particles used to seed the fluid but only those that were satisfying the criteria imposed by the PIV
analysis.

The water depth at the flat bottom was (2.7+0.1) cm for this experiment (16 in table 4.3) and the angle formed by
the planar slope with the horizontal was o=(3.4£0.1)°. The strength of the dipole, as measured over the flat
bottom, was I'= (127+18) cm?s™", then decreased to I'= (90+13) cm2s™! when the vortices travelled almost parallel
to the shoreline. Weak secondary vortices, or region of secondary vorticity, (arrows) developed as the main flow
interacted with the apex of the wedge.
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Plate 5:Time series of streak photographs (PIV technique). The pictures show a plan view of the tank from above.
The streaks are obtained from a procedure which is similar to taking long-exposure pictures. The exposure time
for frames from 0 s to 14 s is ~ 1s, ~2s from 16 s to 30 s and ~3s from 36 s to 48 s. The pictures do not show all
the particles used to seed the fluid but only those that were satisfying the criteria imposed by the PIV analysis.

The water depth at the flat bottom was (2.7+£0.1) cm for this experiment (17b in table 4.3) and the angle formed by
the planar slope with the horizontal was a=(5.6+0.1)°. The strength of the dipole, as measured over the flat
bottom, was I'= (108+16) cm?s™", then decreased to I'= (91+13) cm?s™'when the vortices travelled almost parallel
to the shoreline. Weak secondary vortices, or region of secondary vorticity, (arrows) developed as the main flow
interacted with the apex of the wedge.
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Plate 6: Time series of streak photographs (PIV technique. The pictures show a plan view of the tank from above.
The streaks are obtained from a procedure which is simil)ar to taking long-exposure pictures. The exposure time
for frames from 0 s to 6 s is ~ 1s and ~2s from 8 s to 20 s. The pictures do not show all the particles used to seed
the fluid but only those that were satisfying the criteria imposed by the PIV analysis.

The water depth at the flat bottom was (4.6£0.1) cm for this experiment (24 in table 4.3) and the angle formed by
the planar slope with the horizontal was o=(9.8+0.2)°. The strength of the dipole, as measured over the flat
bottom, was I'= (201+9) cm?s™", then decreased to I'= (186+13) cm?s™'when the vortices travelled almost parallel
to the shoreline. Weak secondary vortices, or region of secondary vorticity, (arrows) developed as the main flow
interacted with the apex of the wedge.
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Plate 7:Time series of streak photographs (PIV technique). The pictures show a plan view of the tank from above.
The streaks are obtained from a procedure which is similar to taking long-exposure pictures. The exposure time
for frames from 0 s to 14 s is ~ 0.8s. The pictures do not show all the particles used to seed the fluid but only
those that were satisfying the criteria imposed by the PIV analysis.

The water depth at the flat bottom was (4.5+0.1) cm for this experiment (27 in table 4.3) and the angle formed by
the planar slope with the horizontal was o=(18.4+0.4)°. The strength of the dipole, as measured over the flat
bottom, was I'= (93+11) cm?s™", then decreased to I'= (89+10) cm?s~"when the vortices travelled almost parallel
to the shoreline. Weak secondary vortices, or region of secondary vorticity, (arrows) developed as the main flow
interacted with the apex of the wedge.
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Plate 8: Time series of streak photographs (PIV technique). The pictures show a plan view of the tank from
above. The exposure time for frames from0sto 8 sis~0.8s,~ 1.6 s from 8 s to 20 s and ~ 3.2 s from 23 to 38
s. The pictures do not show all the particles used to seed the fluid but only those that were satisfying the criteria
imposed by the PIV analysis.

The water depth at the flat bottom was (3.9£0.1) cm for this experiment (15 b in table 4.2) and the boundary is
now a vertical wall (i.e. =(90+1)°). The strength of the dipole, as measured at the beginning of the experiment,
was I'= (100+11) cm3s™?, then decreases to I'= (73£8) cm?s 'when the vortices travel almost parallel to the
shoreline. Weak secondary vortices, or region of secondary vorticity, (arrows) develop as the main flow interact
with the apex of the wedge.
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bottom is shown in plate 9. The vertical velocity, estimated from the
pictures is ~1.5 cm s™.

In the attempt to further investigate the vertical structure of the vortices, i.e
the region of rotational flow at the forefront of the dipole visible in plate 9,
we ran one more experiment with particles to obtain a side view of the flow
on the sloping bottom region (fluid had density p=1.1 glcm® and seeded
with neutrally buoyant particles but heavier particles were also placed on
the slope along the path of the dipole). A sheet of light was paséing
through the vortex generator to allow a side view along its axis (see plate
10, fig. @). The angle of the slope with the horizontal was 0=(8.5+0.1)° and
the water level at the flat bottom was (4.310.1) cm. Particle streaks
(exposure time ~0.5 s) are shown in plate 10. A horizontal vortex, which
develops immediately after the formation of the dipole at the flat bottom,
can now clearly be seen at the forefront of the dipole. We did not quantify
the strength of this vortex but its speed should be equal to the progressing
speed of the dipole. The existence of a narrow jet-like flow, with vertical
shear (plate 10, fig. b), in front of the recirculation cell of the dipole may be

responsible for the generation of horizontal vorticity leading to the formation
of the coherent structure seen in plate 10.

4.4 Data processing

The images recorded from the experiments were used to: a) measure the
displacement of the centre of the vortices; b) obtain snapshots of the
velocity and of the vorticity fields at the surface of the fluid (only when PIV
was used). Both tasks were performed with the aid of the software
DIGIMAGE (Dalziel, 1993).

The co-ordinate system used to make our measurements was created 1)

by filming a grid with mesh size of 1 cm x 1 cm and placed underneath the
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Water surface
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Plate 9: Vertical motions inside the vortex core. Side view of the experimental tank (flat bottom).
An elongated streak of food dye, placed at the flat bottom of the tank along the path of one of the
two vortices, shows that upward motions are present and that, as the vortex progresses towards
the slope, its radius grows . The up pointing arrows mark roughly the position of the vortex
advancing right to left. At the forefront of the vortex there is a region of rotational motion (arrows,
see also plate 10).
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transparent bottom of the tank (section 4.2.3.b, fig. 4.7), and 2) by importing

the images of the grid in the computer in order to map the frame of
reference (Dalziel, 1993).

4.4.1 PIV: velocity and vorticity field

Here we describe some of the operations carried out to perform the
particle tracking and the calculation of the vorticity field. A more complete
account on the processing technique can be found in the documentation of

the program, to which the interested reader must refer (Dalziel, 1993).

After performing some routine operations such as putting audio-tone
pulses on the tape, choosing the reference points to position the images
correctly in the frame of reference and setting the threshold levels of colour
intensity of the images to maximise the number of recognised particles,
we run the particle tracking routine and the position of the particles was
measured. Subsequently the velocity for each particle was calculated. The
velocity data were then interpolated to obtain the velocity and the vorticity
fields over a regular grid. The accuracy of the velocity and of the vorticity
fields was estimated in 5% and 10% respectively (Linden et al. 1995). The
spatial resolution (typical values were ~1.3-1.4 cm on both directions of the
grid) was mainly a function of number of recognised particles and of the
focal length. The mesh size was chosen so that the number of nodes was
roughly equal, or eventually smaller, than the number of recognised
particle paths. Fig. 4.10 and 4.11 are two examples of the velocity and of

the vorticity fields of two dipoles calculated from the trajectories of the
particle.

165



‘egl'y by
ul umoys s Juawiadxe SIy} Ul SeoIHoA ay) Aq pamojjoy yred 8yl (e €Ly ‘Biy pue 6'p ‘Bl * 7€' Uoioas osje 8s8s) Bulpunogal pajjed uouswouayd
e ‘2Joysyo S9OILOA urew 8y} Buiaup Joj s|gisuodsal ale SeOILOA Aiepuodas ay) ‘Alepunog 8y} yum mojy Aewud 8yj Jo UOROEISIUI SNODSIA
ayy Aq peonpul $801LOA AIBPU0DSS BJ€ (-S PUE +G) SUOIBaI [BIILIOA OM} JBYI0 8Y L “-A PUE +A UlIM pajedipul 9Je S82IIOA Ulew OM] 8y "SUOioaIIp
aysoddo ui pue suipioys ay) o} |9jjesed jsowle BUIAOW SIOM S8OILOA BY} USUM USX4E] SEM joysdeus ay] ('¢'H uonoes 8es) anbiuyos)
Ald € ynum paindwod aiem spialy AIdILoA ayy pue AyoojeA ayl “(€'y "qel ul q L1 uawiadxa) wo( | 0Fp'Z) S| Wonoq ey auj je yidop Jsjem ey}
pue .(1'0F9°G) s eueld [eyuozuoy ay) yum edojs seueid ayj Jo ajBue sy 10}e18usb XaUOA 8y} Jo uonisod ay) syiew X0q anjq Sy "SIXe X sy} yiim
JUSPIOUIOD S| BUI[JOYS 8y "UOHEWIO} S} Jajje S $Z WOoHoq Buidojs Jeueld e Jano Buirow ajodip XaHOA € Jo sp|ay Ayo1oA pue AjoojeA 0Ly Bid

166



‘q gL'y Bu pue e gy "6y Buuedwoos Aq usss aq ued se ‘BuipunogaJ Jebuosis e Ul S}nsal jey) pue ‘SadILIoA Aiepuodss ay)
a1e 0S pue (L' ainbly Ul UMOYS SBUO By} uey} JoBuoss aie SSOILOA OM} 8YL "q €LY “Bly U umoys sI Juswuadxa SIY} Ul S8OILIOA B} Ag pamo]|o)
yred sy ‘uoiBai wonoq el ay) yum adojs seueld ay) Jo J8pioq dyj e 1sn[ S1 SEDILOA Y} JO 21}uB2 BU) I0jaIay} pue QL' By ul umoys uonenys
ay} yum pasedwoo sadesis mou si ajbue sy ‘Aiepunog auyj yum moy Arewud ay) Jo uopoeIslul SNOISIA 8y} AQ peonpul SSOILIOA Aiepuooas
ale (-S pue +8) suoibal [edIOA OM] JBYI0 BY} PUe -\ PUE +/A UM PaJedipul 8l SIOILOA Ulew om} ayy ‘01" "By ul sy “suonoalip sysoddo ul pue
aulaIoys ayj o} [ojjesed jsowje Buinow 1M SBJILOA 8y} UBYM USXE)} SEM joysdeus siy| (gy'¢ uonoas 9as) anbiuyosd} Ald B Yum paindwod
alam spjay AuomHon oy} pue AjojeA 8yl (€ "gel ul GZ Juswuadxa) wo(]'0F/'2) S! Wonoq ley ay} je yidop Jajem sy) pue J(Z0Fr'2L)
s aue|d [ejuozuoy a8y} yum adojs Jeueld ayj jo ojbue syl ‘jojesouab xapoA sy} Jo uonisod ay) syJew xoq anjq YL "SIXe X dYy} UM Jusplouiod
S| 8uIj2I0ys 8y ‘uolewso} s)i Jaye s yg'g Wonoq Buidojs Jeued e Jono Buinow sjodip XoHOA B JO Sp|sy Ayooa pue Ajoojep 1Ly Bid

—

<4— YOLVHINIO X3LHOA j-Swo g

167



4.4.2 Dipole’s path: experiments with fluorescine

This was the least informative technique because it allowed us to
measure only the position of the centre of the vortices and everything else
was calculated using theoretical relationships. This technique was also
intrinsically less accurate due to the difficulty of identifying by eye the centre
of the vortices, leaving much of the decision to the discretion of the
observer. A brief description of the steps involved follows.

The images of the dipole were retrieved from the videotape and imported
into the computer. The time interval between the images, from the time
when the dipole detached from the mouth of the generator to the instant
when the centre of the vortices moved into the sloping bottom region, was
0.4 s. Aninterval of 0.8 s was used afterwards. The sampling frequencies
were chosen to keep the errors, calculated with the standard formulae of
propagation, into acceptable limits. The position of the centre of the
vortices was measured on the computer screen with a cursor that returned
the co—ordinates of its position. The errors of the position, both in the
directions parallel and normal to the shoreline, were taken as the
minimum readable variations of the position of the cursor (~0.1-0.3 cm
depending on the focal length used and/or the distance of the lens from
the mirror). The raw images of the vortices were often difficult to interpret:
their quality was therefore improved by applying an interlace filter and by
subtracting the background (as recorded just before the experiment in the
same light conditions and with no tracer, see also caption of plate 1). Fig.

49 is an example of the path of a dipole calculated in the way just
described.

The visualisation technique with fluorescine was soon abandoned for two
main reasons: First, the centre of the vortices could be easily localised

whilst the vortices were rolling-up and shortly after, but their identification
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became uncertain when the dye was diluted (see e.g. figure 4.6 b). The
quality of the images was improved by filtering but this made the analysis
extremely long and not practical. Second, and most important, only the
position of the vortices could be measured but not the velocity field.

4.4.3 Dipole’s path: experiments with particles (PIV)

Using the PIV data, we generated streak photographs as follows. We took
the digitised snapshot of the seeded surface of the fluid at a particular
instant, and averaged it with the 2, 3 or 5 images (depending on the flow
speed) immediately before and with the same number of images
immediately after. The images were spaced by 0.04 s, therefore making
the corresponding exposure time 0.2 s, 0.28 s and 0.44 s. One example is
shown in fig. 4.8. Once the streak photographs were created, the position
of the centre of the vortices was measured in the same way éxplained in
section 4.4.1. As before, the time interval between the streak-pictures was
0.4 s for the dipole on the flat bottom and 0.8 s afterwards. With this
technique the localisation of the centres of the vortices was less
ambiguous. The accuracy of the co-ordinates of the centres was estimated
as ~0.1-~0.4 cm. However, streak photographs introduce a bias in the
determination of the centre of rotation (i.e. the centre of the vortex) because
the vortex also moves as a whole. The centre of rotation seen by an
observer fixed with respect to the tank (we call it the apparent centre of
rotation) is different from the one seen by another observer moving with the
vortex (the true centre of rotation). The first observer will see the
superposition of the rotational motion around the centre and the
translational motion of the vortex. It follows that the distance between the
two centres is a function of the translational speed of the vortex and of the
velocity distribution inside the vortex core. Saffman (1979) studied a similar
situation. He calculated the trajectories and the changes in shape of the
apparent centre of rotation and of the true centre of rotation for a symmetric

and two-dimensional vortex pair of elliptical shape and uniform vorticity
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approaching a vertical wall (fig. 4.12). The true centre of rotation, or

centroid, of the two-dimensional vortex, say (%o, was defined as®
(Saffman, 1979):

ﬁywdxdy
Xo = °—°——1:——- (4.1.a)
ﬁxwdxdy ‘
Yo =——°—°—F————, (4.1.b)

where m(x,y) is the vorticity and T" is the strength of the vortex, i.e.,

=

© e §

[ adxay. 4.2)

We used the measurements of the vorticity field (see section 4.4.1) to
estimate, using finite sums, the integrals 4.1.a, 4.1.b and 4.2. Two
examples of trajectories calculated with formulae 4.1 and 4.2 are shown in
fig. 4.13 a and fig. 4.13 b, where the average of the paths of the positive
(main) vortex and of the negative (main) vortex is plotted. The same

method was used to track the motion of the secondary vortices™.

We now give a detailed description of the procedure used to calculate the
position of the vortices. To estimate the integrals 4.1.a, 4.1.b and 4.2 we

integrated the vorticity given by the PIV analysis. One possibility consisted

®Note the similarity between formulae 4.1 and 2.5. The analogy becomes very strong if
the core of the vortex is thought as made of a cloud of point vortices, for which the two
expressions becomes coincident (see also section 3.4.1).

®In doing so we assumed that the path followed by the two pairs of vortices was
symmetric with respect to the axis of symmetry of the dipole (e.g. the axis x=0 in fig 4.13
a and b). This assumption was based on the exam of plots like the one shown in fig. 4.9
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Fig 4.12: Path followed by the centre of rotation (solid line), as defined by 4.1.a and 4.1.b,
and by the apparent centre of rotation (dashed line) of the positive vortex forming a dipole. A
solid boundary is placed at y=0 and the negative vortex is not shown. x=0 is the axis of
symmetry of the dipole. The black dot indicates the position of the apparent centre of
rotation. (From Saffman, 1979).

171



y (cm)

y (cm)

40

30

20

10

30

20

10

Flat bottom region

20.72s

t=24.36 5

v

Path of the primary vortex

Sloping bottom region

Shoreline

Path of the sécondary vortex

Illl|||lllllllllllllllllll

10

20 30 40 50

X (cm)

Fig. 4.13 a: Path followed by the primary and secondary vortices (exp. 17 b in tab.
4.3). The path of the primary vortex shown here is the average of the path of the
positive and of the path of negative vortex. Likewise for the secondary vortex. We
assumed that the flow is symmetric with respect to x=0 (see fig. 4.10). The time t,

corresponds to the sketch shown in fig. 4.10. The path of the secondary vortices is
shown only for t>t,.
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Fig. 4.13 b: As for fig. 4.13 a but for exp. 25 in tab 4.3. The time t, corresponds to the
sketch shown in fig. 4.11.
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in defining a priori the regions of the fluid that contains the vortices and
then estimate the integrals over this area. Another possibility was to
estimate the integrals by considering only the vorticity values that were
above (for positive vorticity) or below (for negative vorticity) a certain
threshold and then repeat the procedure for a number of thresholds. We
used the second method since in this way there is no need to define the
boundary of the vortices. The integrals were estimated for the following set
of thresholds: +12.0 s, +11.9s™, ..., $+0.1s™, 20.05 s™, 0.0 s™. By splitting
the fluid domain in two (for example along the axis x=0 in fig. 4.14 a and b)
we were able, for each threshold value, to isolate the vorticity (and the
areas) forming the two main vortices and the two secondary vortices. This
was possible because the flow had an axis of symmetry throughout the
duration of the experiments. Fig. 4.14 shows the distribution of positive
(negative) vorticity above (below) 0.1 s™ (-0.1 s™). The integrals calculated
with the lowest thresholds were probably contaminated with noise or
smaller scale turbulent motions outside the vortex core. The 123 paths
calculated between the positive and negative main vortices were then
averaged into one single path and subsequently passed through a median
filter to remove the spikes. The errors of the x and y co-ordinates of the path
were taken as their standard deviation. The same procedure was used to

track the movement of the secondary vortices.

A comparison of the track of the vortices (for experiment 27 in tab. 4.3)
obtained using the integral method with the one obtained using the streak
photographs method is shown in fig. 4.15. Some of the differences
between the two paths can be explained qualitatively with the analysis of
Saffman (1979, and fig. 4.12).
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Fig. 4.14: The upper panel shows the velocity and the vorticity field for experiment 16 in tab. 4.3 at t=32.08 s.

Below we show the distribution of vorticity, positive and negative, above 0.1 s71(<>:V*,4:S™) and below -0.1

s (O V-, + :S7) as selected with a dedicated software. This operation enabled us to identify the areas over

which the integrals 4.1.a

4.1.b and 4.2 were estimated. The integrals were estimated for a number of

thresholds (for vorticity) ranging from 0 s to £12 s and for the whole duration of the experiments.
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Fig. 4.15: Comparison of the path (exp. 27 in tab. 4.3) calculated with the integral
method with the path calculated with the streak photograph method (see section
4.4.3). This plot can be compared with fig. 4.12 that illustrates a similar situation.
Likewise fig. 4.12, the red path can be thought to describe the position of the

instantaneous centre of rotation, and the black path the position of apparent
centre of rotation.
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4.4.4 Speed of the vortices

Time series of the velocity of the vortices were calculated from the averaged
path. Some examples are shown in fig 4.16, fig. 4.17 and fig. 4.18. The time
series were filtered with a median filter in order to remove the spikes. The

errors were calculated using the standard formulae of propagation.
4.4.5 Strength of the vortices: experiments with fluorescine

We used the relationship between the propagation velocity of a dipole (with
two equal vortices of opposite strength) over a flat bottom and its strength,

to calculate the latter. The formula was given in chapter 2 and is also
reported below:

vl 2.11)

where T is the strength of the dipole and s is the distance between the two
vortices. We therefore measured the position of the centre of the vortices
every 0.4 s, from the instant at which the dipole was fully developed (i.e.
from the instant {; when the separation d between the centres was
approximately constant) until the instant t; (when the centres crossed the
border between the flat-bottomed and the sloping-bottomed regions, see
also section 4.3.1). In our calculations we assumed that the line between
the centres of the vortices was always parallel to the shoreline or, in other
words, that the ordinates of the two centres were equal (see e.g. figure
4.6.a). The strength of the dipole was taken as the average of the values
calculated every 0.4 s and the error was either the standard deviation or the

maximum error of the calculated strengths, depending on whichever was
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Fig. 4.16: a) Path followed by the vortices (exp. 3 in tab. 4.1). o=
(5.6£0.1)°, water level at the flat bottom=(4.3£0.1) cm. The red dots
indicate the portion of data used to compute the alongshore velocity. b)
Time series of the average velocities in the directions parallel (v /) and
normal (v ) to the shoreline . Note that in between the green lines
(corresponding to the red dots in fig. a), <V¢>~0' At t~50 s, rebounding
becomes important and sy = is positive.
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Fig. 4.17: a) Path followed by the main and by the secondary vortex (exp. 16 in
tab. 4.3). The path followed by the secondary vortex is shown only for t>,. b)
Velocity of the main vortex. The velocity was calculated from a subsample of the
position time series in order to keep the error bars small. A weak rebounding
can be seen when t>t3, when the y component of the velocity (dotted line)
increases from near 0 values (for t2<t<t3) to a positive value. t,=3.64 s, ,=19.16

s, 1,=34.16 5.
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Fig. 4.18: As fig. 4.17 but now for exp. 27 in tab. 4.3. The large variation of velocity

at the beginning of the time series is due to an uncorrect tracking of the vortex (see
fig. a). t,=4.00 s, 1,=8.50 s, ,=11.50 s.
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the greater. The calculated initial strengths are shown in table 4.4. With
this method we could not follow the time evolution of the strength.

4.4.6 Strength of the vortices: experiments with particles

The procedure used to estimate the vortex strength from the distribution of
vorticity at the surface was discussed in section 4.4.3. The total content of
vorticity at the surface of the fluid, i.e. the integrals 4.2 estimated with a
vorticity threshold of 0 and separated in 4 components (2 for the main
vortices and two for the secondary vortices) were used to normalise the
integrals 4.2 calculated with the other thresholds of vorticity. For the main
vortices we took only the time series of the normalised strength for the
percentiles 90%, 95% and 99%. For each percentile the average time
series of absolute strength was calculated from the time series of the
positive and of the negative main vortices. We indicate these with T oo(t),
Imes(t) and ' oo(t). These parameters therefore represent the vortex made
of a surface that contains 90%, 95% and 99% of the total vorticity. The error
was calculated with the standard formulae of the propagation of the errors.
The averaging procedure between the positive and the negative vortices
was made possible because of the symmetry of the flow with respect to
the axis of the dipole. Some examples of time series are shown in fig.
4.19. Time series of the strength of the secondary vortices were calculated

in the same way and are indicated with I's go(t) T's g5(t) and I's go(t).

With this method there is no need to define the area core of the vortices
(see also section 4.4.7). The initial strength of the dipole was calculated as
the average value in an interval centred around t,, i.e. the instant when the
vortices cross the border with the planar slope, where the strength was
greatest and almost constant (tab. 4.10).
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Exp. w.l. (cm) o (°)

2.3+0.1 3.4+0.1 6.840.3 94436
2.7+0.1 5.610.1 6.840.3 101432
4.310.1 5.6+0.1 7.1£0.3 105133
2.7+0.1 7.010.1 6.7+0.3 79+34
4.410.1 7.0£0.1 7.4+0.3 129+41
2.7+0.1 8.3+0.1 7.0£0.3 89+33
3.7+0.1 8.3+0.1 7.1£0.2 106+28
2.7+0.1 9.9+0.1 7.1:0.3 96429
4.1+0.1 9.9+0.1 7.2%0.3 134139
2.7+0.1 12.410.2 | 6.61£0.3 80131

3.8+0.1 12.4+0.2 | 6.80.3 10428
4.410.1 17.5¢0.4 | 7.3+0.3 114134
3.910.1 20.4+0.2 | 7.3%0.3 11740
14 4.4+0.1 45.6+0.7 7.8+0.3 104137
Tab. 4.4: Experiments with fluorescine: w.l is the water
depth at the flat bottom; o is the slope angle, s is the
separation of the vortices while moving over the flat botiom;
T is the strength of the dipole calculated with formula 2.11.
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Fig. 4.19: Time series of the non-dimensional strength of the main vortices calculated for the three
percentiles 90%, 95% and 99% as explained in section 4.4.6. Time was made non dimensional with the spin-
down time scale T (see section 4.5.3). The strength was made non dimensional with the maximum of the
time series. a) is experiment 16. b) is experiment 19, c) is experiment 25. The strength of the vortices is
decreasing with time. Note the transient between the beginning of the experiment and the maximum of
strength. This is a feature of the PIV processing which was unable to resolve the smaller spatial scales.

182



4.4.7 Area and “radius” of the vortices

The estimate of integral 4.2 for different thresholds of vorticity enabled us to
calculate the area of the portion of fluid containing a fixed percentage of the
total vorticity. We defined r,g9 as a parameter proportional to the area
(Smgg) containing 99% of the total vorticity that was forming the main vortex:

S
fmos = —';ﬁ» (4.3)

Similarly, we defined the parameters ry,gs, rmgo- Note that 4.3 would be the
radius of the vortex if the vorticity would be contained in a circular surface.
Some examples of time series for the main vortices are shown in fig. 4.20.
Similarly, we defined the same parameter for the secondary vortices, i.e.:

I's.99, 595 5,00

4.5 Data analysis

4.5.1 Minimum distance from the shoreline (Ry)

In section 4.3.2 we introduced the minimum distance from the shoreline
(Ry). This was defined as the minimum distance reached by the vortices
during the along-shore motion in the interval t,<t<t; (see also in fig. 4.21). If
we define the penetration depth, d, as the distance travelled by the vortices
on the slope in the direction normal to the shoreline, then R¢+d=R;, where
R; is the distance of the border of the slope from the shoreline.
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Fig. 4.20: Time series of the non-dimensional radius of the main vortices calculated for the three percentiles 90%,
95% and 99% as explained in section 4.4.7. Time was made non dimensional with the spin-down time scale T (see
section 4.5.3). The radius was made non dimensional with the average of the time series calculated between 0 and
t,. @) is experiment 16. b) is experiment 19, c) is experiment 25.
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Fig. 4.21: Schematic side view of a vortex moving in the
direction parallel to the shoreline. The distance d, ie. the
maximum distance travelled by the vortices when they are on-
slope, is called penetration depth.

R¢ was estimated from the averaged path (see sections 4.4.2 and 4.4.3) in
the following way: we first took the minimum value (R¢iemp) Of the time
series of the distance of the vortex from the shoreline (y co-ordinate) and
the maximum error (Dymax) Of the time series. Then we calculated the
average, U, and the standard deviation, ¢, of the part of the y co-ordinate
time series satisfying the condition: Rtiemp <Y< Rttemp+ Dymax. WWe then sub-
selected the elements of the time series satisfying the second condition:
n-o<y<p+o. Rf was calculated as the average of those elements. The error
was taken as the standard deviation or the maximum error, depending on
whichever was the greatest. The results from the experiments with
fluorescine and from the experiments with particles are in tables 4.5 and
4.6 and plotted in fig. 4.22. Table 4.6 contains the final distance of the
vortices from the shoreline (R; calculated with the integral method
(formulae 4.1) as well as the one measured from streak photographs. The
greatest difference between the two kind of measurements was (16+3)%.
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Fig. 4.22: Minimum (average) distance from the shoreline reached by the vortices (R))
versus distance of the beginning of the planar slope from the shoreline (R). See tables 4.5

and 4.6.
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Experiment o (°)

vi(cms™)

1 3.4+0.1 0.3+0.8
2 5.6+0.1 0.7+0.4
3 5.6+0.1 0.7£0.4
4 7.0+0.1 0.7+0.2
5 7.0+0.1 0.8+0.4
6 8.3+0.1 1.0£0.7
7 8.3+0.1 1.0+£0.7
8 9.9+0.1 1.1+0.2
9 0.910.1 1.2+0.1
10 12.4+0.2 1.410.4
11 12.4+0.2 1.64+0.4
12 17.5+0.4 1.8+0.8
13 20.4+0.2 2.240.8
14 45.6+0.7 2.1+0.8

Tab. 4.7. Velocity of the vortices in the
direction parallel to the shore-line in the
interval [t;,t:]. Experiments with fluorescine.
The strength could not be measured for
those vortices.
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4.5.2 Speed of the vortices in the direction parallel to the
shoreline

From the time series of the speed of the vortices (section 4.4.4) we
computed the mean along-shore speed between t, and t; (see section
4.3.2 for the definition of these characteristic times). This parameter was
taken as the speed of an isolated vortex moving in the direction parallel to
the shoreline over a planar slope. The error was the maximum error
calculated with the formulae of propagation or the standard deviation of the
time series between t; and t;, depending on whichever was the greatest,
although the two errors were usually very similar. For the PIV experiments
we also computed the strengths (I 90, I'm g5, I'm oo, S€€ section 4.4.6) of the
~main vortices in this time interval. The results are in tables 4.7

(experiments with fluorescine) and 4.8 (fig. 4.23, experiments with
particles).

We have defined the Reynold’s number of the vortices as:

R, =—-, (4.4)

where T is the strength of the vortex, r is the radius, h is the local water
depth and v=0.011 cm® s is the kinematic viscosity for water (e.g.
Batchelor,1967). The ratio I'/r gives a velocity scale. A Reynolds’s number

was calculated for each percentile (90%, 95% and 99% and only for the PIV
experiments).
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Fig. 4.23: Along-shore velocity of the vortices versus Reynold's number.
Experiments with particles.
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4.5.3 Time evolution of the radius of the vortices

In section 2.4 we discussed the mechanism that induces the spin-down of
a vortex over a flat bottom. This model is a zero order approximation of the
process since the viscosity is used only to establish an inflow of fluid with
lower angular momentum into the main vortex (via a bottom boundary layer
whose thickness is given by formula 2.56) and there is no dissipation of
energy involved. This model has a strong analogy with the classical
example of the ice-skaters that spins slower by extending his arms away
from his body and vice-versa. The conservation of energy means that the
strength must be conserved as can be easily seen from formulae 2.65 and
2.66. The spin-down time scale (T) is given by formula 2.55. T increases
with depth, meaning that if the radius and the vorticity are kept constant and
the depth is increased more fluid must be pumped into the constant depth
boundary layer to obtain the same change of the rotation rate. Our vortices
are climbing up a sloping plane (i.e. they are moving towards a decreasing
depth) so we expect formula 2.55 to be an upper bound of the actual value.

It follows that equation 2.65 should underestimate the growth of the radius
of the vortex with time.

A second effect must be taken into account. This is the compression of the

vortex column when the vortex moves up-slope (see section 3.3.1 d,

formulae 3.13 and 3.14). Combining the two mechanisms, the growth of
the radius, r, with time can be approximated by,

t Ri{t, %
r(t) = r(to) [1+ ﬁ)+(—R(—(t)—>] , (4.5)
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where R is the distance of the vortex from the shoreline, {; is an arbitrary

initial instant and T is the time scale given by 2.55, i.e.:

— h2 2
T= (VQOJ (2.55)
with
Q, = o(ts) (4.6)
27zr2(to)

in which I(t) is the initial strength. The same time series of fig. 4.20 are

now shown in fig. 4.24 with the theoretical predictions of formula 4.5.

We defined the parameters (see section 4.4.7 for the definition of r):

Frvool(t)

Pmso = ot
Fros (1)
Pros = — , (4.7 a,b,c)
% I.m,95(t0)
P — rm,gg(t)
mee I’.m,99 (to)

The ratios 4.7 a, b and c, which represent the non-dimensional radius of
fthe vortex for the three percentiles, were calculated for all the experiments
during the motion of the vortices parallel to the shoreline (from t; to t;) and
these values are shown in table 4.9 together with the theoretical
predictions from formula 4.5. The comparison of the experimental data
with the theoretical prediction (i.e. their ratio) is shown in fig. 4.25. The
agreement is a function of the percentile used to calculate the radius and

of the Reynolds number. If the 90™ percentile is used, the agreement is in
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Fig. 4.24: Time series of the non-dimensional radius of the main vortices calculated for the three percentiles
90%, 95% and 99% as explained in section 4.4.7. The dashed line is the time series of the non dimensional
radius [r()/r(t,)] predicted by formula 4.5. Time was made non dimensional with the spin-down time scale T
(see section 4.5.3). The experimental radius was made non dimensional with the average of the time series
calcutated between 0 and t,. a) is experiment 16. b) is experiment 19, ¢) is experiment 25.
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Fig. 4.25:Ratio of the non-dimensional experimental radius to the non dimensional
theoretical radius calculated during the along-shore propagation (from t, to t,) plotted
against the Reynolds number (R,). For the 90" percentile the theory generally
underestimates the experimental data and the agreement is good only for low R_. for
the 90% and 99* percentiles the agreement is good for intermediate R_.
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within the error bars for lower Reynolds numbers but the theory
underestimates the experimental values when the Reynolds number
becomes greater. For the 95" and 99" percentiles the agreement is good
for intermediate Reynolds numbers, while for smaller and greater
Reynolds number we found, respectively, an overestimate and an
underestimate of the experimental values.

4.5.4 Time evolution of the strength of the vortices

We conclude this section by presenting the dissipation of energy of the
dipole. This was measured with the ratio, n, between the strength of the
dipole just before it moves onto the planar slope (at the time t;) and the

strength of the vortices during the along shore propagation (i.e. between
the times t, to ty): ’

T
Moo = 1-"'90 )
fe0
T
Tos = F"% : (4.8 a,b,c)
.95
r;99
Moy =
% 1_‘f,99

The ratios (see tab. 4.10) are almost independent from the percentile used
to measure the strength. Fig. 4.26 is a plot of n versus the angle, o, of the

planar slope. The dissipation is biggest when o is small.

4.6 The vertical wall case

We present the results from two experiments (15a and 15b, tab. 4.2) in

which the planar slope was substituted with a vertical wall. These
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Fig. 4.26: Plot of the dissipation ratio (n) versus the angle of the planar slope with
the horizontal (o). n was averaged for the three percentiles (90%, 95% and 99%).
The largest dissipation (smallest ) occurs for the smallest values of a.
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experiments are very similar to the ones discussed by Barker and Crow
(1977).The results are in tables 4.11.1 to 4.11.4. For the two experiments
the dissipation of energy (i.e. the loss of circulation) quantified in 30% of
the initial value (1 in tab. 4.11.2 to 4.11.4). Barker and Crow (1977) found
the loss of circulation in their experiments to be ~20%. The generation of
secondary vortices was always observed (see plate 7). They induced
rebounding of the main vortices for t > t5.

4.6.1 Final distance from the shore-line

The point vortex theory that describes this experiment was reviewed in
section 2.2.2 b. The theory predicts that if the dipole is initially at an infinite
distance from the wall the final distance of the vortices from the wall, when
they have moved infinitely apart, must be half of their initial separation. The
ratio of these two quantities, Ry/s;, from the experiménts is shown in tab.
4.1.1, last column, and is greater than 1. The final distance from the wall is
therefore greater than the theoretical prediction. Since the radius of the
vortices increases as they spin down, the centres of mass of vorticity of the
two partner of the dipole also move apart, thus resulting in values of Ry
larger than the prediction. This can be seen in fig. 4.27 that shows the

trajectory followed by the dipole. The spin down theory slightly
underestimates the growth of the radius.

4.6.2 Speed of the vortices along the shoreline.

The experimental values of the along-shore speed were compared with
the predictions of the point vortex theory (see section 2.2.2 a). The
comparison () was made for the three percentiles and is shown in the
last columns of tables 4.11.2, 4.11.3 and 4.11.4. Although the experimental

error is quite large, the theory seems to overestimate the experimental
values.

201



AV

‘2 LLy qe) sY ‘g|yueosad

466 ¥ L'y ‘qel

G0FEL

c0¥.0

0lc

¢ 0¥c’)

GOo¥r €

2 0¥8'6

0l¥E6

80%5°.

yL¥8C1

qgl

¢'0%L0

1L

2 0¥0'}

y'0¥LC

£ 0Fr 0l

JL¥.8

(,.s,wd) 41

Z'LL'b "qe) sy "a|pusdsad 66 (€LY "qel

8'0¥9'9

(wo) 4

91F0€l

(,.s,wd) 1

EG|

S0¥C’L

'l

[V

C0¥.L0

0'i¢c

AN

G0¥G ¢

AR

6FE8

L0¥L9

[453°13

951

QL+LL

8'0¥C'G

PLFYLL

EG|

(,.s,w2) 1 (wo) 4 r.mNEov 1 -dx3

‘@ :(J/A) Q00 [ejuswsadxe 0} AJI00|9A XSHOA juiod jo oney *d :Aioay} umop
-uids wouy (jeuonisuswip uou) ones snipey 'd :(u/a) ones snipey "L :ones uonedissiq 1 :9|e0s swil umop-uldg A :AJI00[A XOHOA Juiod Y Jequinu splouksy

4] SSOILOA BU} JO SNIPEJ [BUI4 ] 'SOOILOA 8y} Jo yjbuays [euld "I :S8IOA 8y} JO Shiped [eqiu] 1] 'S8o1MOA 3y} Jo yibuass [eniu] ajpuddsad 06 (2 LLY qel

yoFL}

[

[

¢0¥.0

0'lc

L'0F0°1

G'0¥9°€C

[Al0E2 >4

8¥E/

9'0%}L 'S

L1¥00}

qs}

y'0FE 'L

vl

ST

Z0FL0

121
(s)1

1'0%8°0
(

s wd) A

L-

'0%8°C
01 °d

2 0¥84

(wd) 4

8+.9

(,.s,wo) 1

8'0FS v

(wo)u (|

C1¥86

s,w)

!

BG|

N

:uonebedoid aioys-Buoje Buunp psads abelaay Y :uonebedoid aioys-Buoje Buunp auljaioys ) woly SdUESIP abeleny '€} suibaq

Buipunoqal yoym Je awi] 3 :suibaq uonebedoid aioys-Buole By} YOIUM jJe SWIL Y jlem Suj oy Jojesausb xalOA 8y} Jo aouessia

s :uonesouab oyj Joye S0ILOA 8y} JO uojeledas |enuj 0

[ejuozuoy 8y} Uim jfem auy3 jo Bjfuy I'M :[aA8| JSIEM ‘LLL'Y "Bl

L0Fr 1

c0¥60

CO0¥l9

10°0¥08°0¢

L0°0FVO V1

200 0¥

1'0FG ¥y

1¥06

L 0¥6°€

a61

C 0%.L')

's PY

L 0¥9°0

(.8 wo) Ia

20%L9
(wo) By

L0°0F00°CE
(s) 9

LO0FP9'€C
(s)a

C 0¥l 0¥

(wo) ™y

7' 0¥6°€

(wo)'s

1706
(o) ©

1 0¥9°€

(wd) I'm

BG|




<4 \JorteX generator
40
i t, ts
30
i Path of the primary vortex
&
£ 20
=
Path of the secondary vortex
L l Wall
=
iy B, L o LA et R e ki ki
0 10 20 30 40 50
x(cm)
20
i t, ts
15F

Fig. 4.27: a) Path follwed by the vortices (exp 15 a). t,=23.64, t;=33.00. Time series of the
radius of the vortices (95" percentile).
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4.7 Discussion

The vortex maker was able to generate dipoles that preserved their
coherence throughout the duration of the experiments. The dipoles were
able to propagate for distances long compared with the initial distance
between the vortices (see plates 1 to 8). The velocity field inside the core of
the vortices was turbulent especially after they were generated (see e.g.
plate 4) and it became smoother as the loss of strength increased.
Unfortunately we had very little control on the initial strength of the dipole

and this made us unable to achieve a wide range of Reynolds numbers.

The vortices were not truly two-dimensional. Our qualitative investigation
on the vertical structure of the vortices has shown that, at least immediately
after their generation (i.e. with the vortices still at the flat bottom) and
possibly at later times, there were vertical motions inside the core with

speed of the order of 1 cm s”. The spin-down theory discussed in section
2.4 gives a vertical velocity of:

r6,
4.9
27r? | 49)

W=

Formula 4.9 was obtained by combining 2.61, 2.62 and using the velocity
expression for a point vortex of strength I'. Using a typical strength of r=10°
cm® s7, typical radius r=5 cm and depth of the bottom boundary layer
8:=10" cm, formula 4.9 yields a vertical velocity w=0.06 cm s, which is
more that one order of magnitude smaller than our estimate. A strong
pumping mechanism that cannot be fully explained with the spin-down
model characterises our vortices. Barker and Crow (1977), who generated
dipoles between two rigid boundaries, did not observe vertical motions but

our experiments are different since our dipoles had a free surface. Intense
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vertical motions are a possible explanation for the loss of circulation and
for a growth of the radius bigger than the predictions of formula 4.5. Vertical
motions were also observed in form of a vortex at the forefront of the dipole
(see plate 10). This feature was analysed only qualitatively and we are

unable to assess how much energy it eventually extracts from the dipole.

Two different visualisation techniques were adopted: one used yellow
fluorescine and the other Pliolite particles for PIV analysis. The PIV
technique gave by far the best results since it allowed us to build a
coherent framework to analyse the experiments, especially in following the
time evolution of the parameters of the vortices. However the spatial
resolution achieved (~1 cm) and the error of the vorticity field (~10%)
translated into rather large error bars. The essentially two-dimensional
data acquisition (i.e. only a top view from above of the experiments) made
a further interpretation of the result matter for speculation (see next
chapter). The PIV analysis mainly aimed at avoiding absolute definition for
the radius and the strength of the vortices since the concept of core of a
vortex cannot be clearly defined. Instead we defined these quantities
relative to the total vorticity at the surface of the fluid. In chapter 6 we will
show that the main conclusions are independent of the way the radius and
the strength are defined. The invaluable advantage of the PIV analysis was
also to enable us to identify correctly the true centre of rotation of the
vortices (i.e with formulae 4.1, see also fig. 4.15) and therefore their
trajectory. This technique gave us the freedom to follow with a relatively
inexpensive procedure the path of the vortices, while the manual equivalent
using streak photograph, apart from giving biased results since only the

apparent centre of rotation was measured, was also very time consuming.

The trajectory and the parameters of the positive rhs vortex were averaged
with the ones of its negative partner since the flow preserved its symmetry
throughout the experiments, as shown by the figures in this chapter. This

does not restrict the analysis of our results. The evolution of the flow in our
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Plate 10: a) Experimental set-up to look at vertical motions along the horizontal axis of the dipole (plan view
from above). The angle of the slope was 0=(8.5+0.1)°, the density of the water was p=1.1 g/cm® and the water
depth at the flat bottom was (4.3+0.1) cm.

Vortical motions at the forefront of the dipole. Side view. Particles were placed at the bottom of the tank. The
fluid was also seeded with neutrally buoyant particles The time series of streak photographs shows an
horizontal vortex running up-slope (arrows). The vortices develops at the very beginning of the experiment
when the dipole is still on the flat bottom. In the upper |hs. corner is the time elapsed since the beginning of the
experiment.

b) A possible mechanism to explain the development of this vortical structure is the existence of a jet-like region
at the forefront of the recirculation cell with a vertical shear (i.e. positive vorticity in fig. b).
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experiments followed qualitatively the same phases described by Barker
and Crow (1977) and Orlandi (1990) in their analysis of a two-dimensional
dipole that approaches a vertical wall at an angle of 90° the vortices
progress towards the shoreline and move apart, then travel only parallel to
the shoreline and finally move away from it driven by newly generated
secondary vortices. Side-wall effects can also be responsible for
displacing the main vortices offshore. This contribution, roughly estimated
with the method of the images was ~10™ cm s. We did not investigate this
problem any further since the main focus was on along-shore motions. A

discussion of these results (by way of comparison with theoretical models)

is the subject of a separate chapter.

We conclude with the discussion of the two experiments with the vertical

wall case since in this case a comparison with the point vortex theory is
straightforward.

A comparison of the measured radius of the vortices with the values
predicted by the spin down theory shows that the first is slightly
underestimated. Our qualitative observations of the vertical motions inside
the vortices may indicate this as a plausible cause of a bigger than
predicted growth of the radius. However this effect might be more
important in the first part of the experiment than at later times (see e.g. fig.
4.27 b that show a quick growth of the radius until t~13 s; the growth rate
slows down at later times). The distance of the vortices from the wall
between t, and t; is bigger than the point vortex prediction (70% for the first
experiment and 40% for the second, unfortunately no similar estimates
were provided by Barker and Crow, 1977). This should be interconnected
with the growth of the radius of the vortices which causes the two centres
of rotation to move apart at a faster rate than the point vortex model
predictions (Peace and Riley, 1983).
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The experimental velocities along the shoreline are also underestimated
by the point vortex model although the accuracy of ~1/3 of the measured
values prevented us from being more assertive (average ratio of theoretical
velocity to experimental velocity of 1.4+0.5).
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Chapter 5

Comparison with theory

5.1 Objectives and structure of the chapter

5.1.1 Objectives

We compare the results of the experiments described in chapters 4 with

the theory discussed in chapter 2, i.e. the theory of vortex rings. The main
objectives of this experiment are:

- to compare the distance of the vortices from the shoreline (Ry when
they move parallel to it (see chapter 4, section 4.5.1) with the

predictions of our analytical model;

- to compare the speed of the vortices (see chapter 4, section 4.5.2),
moving over the sloping bed and parallel to the shoreline, with the one
predicted by the vortex ring-theory;

e to give an explanation of the differences between theory and
observations.

5.2 Distance of the vortices from the shoreline: the

prediction of the inviscid vortex ring model (model 1)

5.2.1 Introduction

In section 2.3.2 we used the principle of the conservation of the kinetic
energy to calculate the asymptotic value of the radius (Ry of two equal

coaxial inviscid vortex rings of opposite sign and initial separation s; that
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move infinitely apart (see fig. 5.1 a). This situation was described with
equation 2.47 (reported below) that gives Ry as a function of the initial
relative distance of the vortices (s;), the initial radius (R;) of the rings, and

the initial and final radius of the core (r; and r respectively).

, ) 4

R{log(ﬁ?i) - ﬂ - (si +Js? +4R? )[K(A) ~E(a)]= Rf[log( &R, j 7}. (2.47)
A was given by formula 2.46:

1= \SE+4R? —s,

—\/siz+4Ri2+si'

(2.46)

Since the flow is assumed to be non-viscous the ci(culation () of the two
rings is conserved and equation 2.47 is independent of this parameter.
The dependence of the right hand side of equation 2.47 from the final
radius of the core r;, was eliminated by using the conservation of volume of

the vortex (eq. 2.43), which has a simple form if the rings are approximated
by two tori of circular cross-section:

R )
(_Fd : (2.43)

The substitution of 2.43 in 2.47 leads to the following expression:

R'Z) 4

o ) - o -t o )

The situation to which the formula above applies is sketched in figures
5.1.a and 5.1.b. Bearing in mind the discussion of section 2.3.3, when the

idea of using a sector of a vortex ring as a model for a vortex over a planar
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negative vortex positive vortex

axis of symmetry

Fig. 5.1.a: Two axisymmetric circular vortex ring, of equal strength and opposite sign, are at an initial
distance si (indicated in the panel below). In this configuration the vortices move apart symmetrically in
opposite directions and their radius decreases. The motion is completely axisymmetric and can be
described with the position of the intersections of the rings with the plane “A. Therefore the problem can
be considered completely two-dimensional. If the two planes shown in figure are replaced with two solid
boundaries, the two portion of the vortices a'a™ (dark blue) and b'b™ (dark red) can be considered as an
approximation of the vortex dipole on the planar slope. The vortex lines a'a"a™ (light blue) and b'b"b™
(light red) are the images of the system.

l A

=Y

s
7

b’ path

Fig. 5.1.b: Sketch of the path followed by the intersections of the vortex rings with the plane A. The
lower half of the figure corresponds to our experimental set-up. When the vortices are far enough to be
considered independent (beyond the blue dashed lines) they continue moving along-shore under the
effect of their self-induced velocity, as discussed in chapter 2.
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slope was proposed, the analogy between the situation illustrated in the
two figures and our physical experiments is straightforward. For example
the lower half of figure 5.1.b can be imagined to correspond to the top view
of experiments like the one shown in fig. 4.6.a. In this case Ry in equation
(2.48) corresponds to the distance, given in tables 4.3 and 4.4, at which the
vortices move parallel to the shoreline. From the discussion of sections
453 and 454 we already know however that the hypothesis of
conservation of strength is wrong and that the growth of the radius is
seriously underestimated by equation 2.43. This section therefore

investigates the departures of the experiment results from the inviscid
theory.

5.2.2 Comparison with theory

Eq. 2.48 reveals that the distance R; (at which the vortices move parallel to
the shoreline) must be independent not only of the strength T of the dipole
but also of the angle that the planar slope forms with the horizontal. We
now seek a suitable parameter to scale equation 2.48. The problem has
two natural length scales: 1) the radius of the core (r) and 2) the distance
between the centres (s;). We choose to use s; (since it could be measured

univocally) and therefore defined the non-dimensional quantities:

R =N, (5.1.a)
Si

=X (5.1.b)
Si

R =t (5.1.c)
S

Substituting the three eq. 5.1 into eq. 2.48 and 2.46 we obtain,
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R’ (Iog 8 -F:— - 27{) - (1 + m )[K(/l) ~E(%)]=Ri{log| &R; (%ET - % ,

and,

¢ AR)- J+4R) -1 N

\/12 +4(R) +1 ]

(5.3)

Equation 5.2 was solved numerically for Re [1,6] and e [0.2,1.3]. The
parameter R;'=1 corresponds to a dipole for which the initial distance from
the shoreline is equal to the initial separation of the vortices. The
parameter ri*=0.2 corresponds to a dipole for which the initial radius of the
core is 1/5 of the initial separation of the vortices. The solutions for this
range of values are shown in fig. 5.2. The relationship of Rf with Ry

becomes less sensitive to r; when ri* increases and Rf is small.

The radius of the vortices is difficult to identify since the boundaries of the
region that contains the vorticity are not clearly defined. We therefore
started making the assumption that the initial radius (r;) is equal to half of
the initial separation of the vortices (s), i.e. ri*=ri/si=0.5 for all the
experiments, and we used the experimental values of R;, Ry, and s;, (tab.
4.4) for a comparison with the values of the final distance from the
shoreline as predicted by equation 5.2 (see tab. 5.1 and fig. 5.3). The error
bars for the theoretical predictions were calculated numerically with
equation 5.2, while those for the experimental values were calculated
using the standard formulae for the propagation of the errors. Figure 5.3
shows that for almost all the experiments, except n. 1 and n. 14, the
theoretical predictions overestimate the experimental measurements, (but

note that the experimental data points are consistent with the predictions if
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Fig. 5.2: Two co-axial equal vortex rings of opposite sign at an initial distance si and with initial
radius R, move apart from each other. When si tends to « the radius of the rings tends to R, (see fig.
5.1). R’ (see def. 5.1.c) was calculated numerically from equation 5.2, parametrised with the non
dimensional radius of the cross-section of the rings (see def. 5.1.b), as a function of the non-
dimensional initial radius (see def. 5.1.a). Since the parameters are scaled with the initial separation
of the vortices, s, the condition R’=1 means that the initial radius of the rings is equal to their initial
separation and the conditions r’=0.5 (bold line) means that the initial radius of the circular cross-
section of the vortices is half their separations.
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1 | 6.840.3 0.5 5.8+0.3| 3.7+0.2| 3.7x0.4 0.1
2 | 6.840.3 0.5 4.0£0.2 | 2.3£0.1| 2.9£0.3 1.5
3 | 7.11£0.3 0.5 6.1+£0.3| 3.2+0.2 | 3.9+0.4 1.8
4 16.7+0.3 0.5 3.210.2 | 2.4+0.2} 2.520.3 0.4
5 | 7.440.3 0.5 48+0.2| 2.840.1| 3.3x0.4 1.3
6 | 7.0£0.3 0.5 2.6+0.2| 1.940.1] 2.2+0.3 0.7
7 | 7.1+£0.2 0.5 3.6+0.2| 2.4£0.1] 2.740.2 0.9
8 | 7.1+0.3 0.5 2.1+0.2| 1.840.1] 1.9+0.2 0.4
9 | 7.2¢0.3 0.5 3.3+0.2 | 2.2+0.1| 2.6+0.3 1.0
10 | 6.6+0.3 0.5 1.940.2 | 1.64£0.1| 1.8%0.3 0.3
11 | 6.8+0.3 0.5 2.6£0.2| 2.0+0.1| 2.220.3 0.4
12 | 7.320.3 0.5 1.9+0.1| 1.64£0.1| 1.8+0.2 0.4
13 | 7.3£0.3 0.5 1.4+0.2| 1.320.1} 1.56%0.3 0.3
14 | 7.84¢0.3 0.5 0.6+0.1| 0.8£0.1| 0.8+0.2 0.0
16 | 7.320.5 0.5 5.0+0.3| 2.9+0.3 | 3.3+0.6 0.2
17a] 8.21¢0.8 0.5 20:03| 2.0:02| 2.350.5 0.4
17b| 7.020.3 0.5 3.4£0.2 | 2.3%0.1] 2.6x0.3 0.3
18 Videotape corrupted: not processed.
19 | 7.420.7 0.5 2.6+0.31 1.910.2 ] 2.2+0.5 0.3
20 | 6.840.6 0.5 4.8+0.5| 3.0£0.3| 3.3+0.7 0.2
21 ] 8.1+0.5 0.5 2.2+0.2| 1.8£0.2 | 2.0+0.3 0.2
22 | 7.240.7 0.5 45+0.4| 3.0£0.3| 3.240.7 0.1
23 | 7.9£0.5 0.5 1.8+0.1| 1.6+0.2] 1.740.3 0.2
24 | 8.21#0.5 0.5 32402 | 2.4%0.2| 2.5+0.4 0.1
25 | 8.24#0.5 0.5 1.4+0.1| 1.3£0.1| 1.5+0.2 0.3
26 | 7.610.4 0.5 2.4+0.2| 1.7£0.1] 2.1+0.3 0.4
27 | 7.3%0.3 0.5 1.8£0.1| 1.520.1] 1.740.2 0.4

Tab 5.1: s; initial separation of the vortices. This was used as length
scale; r*; non-dimensional radius of the vortices. This was set to 0.5 for
all the experiments; R*: non-dimensional initial radius from the
experiments; R*.: non-dimensional final radius from the experiments;
R*%: non-dimensional final radius from eq. 5.2; AE: ratio of the
difference between the final theoretical kinetic energy and the final
experimental kinetic energy (calculated with the rhs term of equation
5.2) to the final theoretical kinetic energy (see formula 5.4).
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the error bars are taken into account). The last column of table 5.1 shows
the ratio AE of the difference between the final (or initial) theoretical kinetic

energy and the final experimental kinetic energy to the final (or initial)
theoretical kinetic energy, i.e.:

E(RI.Ry:)~E((RI.R:e)

E=
: E(R'Ry,)

, (5.4)

where E; is given by the rhs of equation 5.2, R* is the non-dimensional
initial distance from the shore-line, R*f,t is the final distance from the shore-
line predicted by equation 5.2 and R*f,e is the final distance from the shore-
line measured from the experiments. AE is always positive and its average
is 0.5 (last column, tab. 5.1). The persistent overestimate of the theory can
be interpreted in terms of a predicted final state of the system that is too
energetic if compared with the energy computed With the experimental
data. Up to 30% of the initial circulation of the main vortices may be lost.
We conclude that, whilst the inviscid vortex ring model may be used as a

zero order model to interpret the experiments, it systematic_ally
underestimates values of Rf*.

5.3 Distance of the vortices from the shoreline: the
prediction of the model with dissipation (model 2)

In the attempt to enhance the agreement between the theoretical
predictions and the experimental observations we now present a new
energy balance that takes in account: 1) dissipation of energy by mean of
loss of circulation of the vortices. This is represented by n (see section
4.5.4 and tab. 4.10); 2) transfer of energy from the main flow (main vortices)

to the secondary flow (secondary vortices); 3) final radius of the vortices
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bigger than the prediction of the compression mechanism (eq. 2.43). The
new energy balance is therefore written as:

Ei=Ef'1+Ef,2, (55)

where:

E, = o'R|log 2?_1 —-} —aﬂz(si+m [K(2)-E(3)] (5.6)
)

is the initial kinetic energy of the flow (i.e. when the vortices impinge on the
slope forming an angle o with the horizontal);

E, = a(nﬂ)ZR{log(BRfj— ﬂ | (5.7)

Te

is the kinetic energy of the vortices when they move parallel to the
shoreline at a distance R; and parallel to it, which take in account the effect
of the final radius of the vortices, r;, and the loss of strength, n; |

Ef,z =0, + (I)lost (5.8)

is a term that represents the transfer of energy from the primary to the
secondary flow (@) plus the energy dissipated and lost in small-scale

turbulence (®ysy)-
We estimated @, by making the gross assumption that the secondary

vortices behave like Hill's spherical vortices of strength Ty and with kinetic

energy (e.g. Saffman, 1992, p. 199):
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By =25, (5.9)

where rg and T are respectively the radius and the circulation of the
secondary vortices. This assumption is probably not very precise, since the
secondary vortices do not exhibit axial symmetry (e.g. fig. 4.10 and 4.11)

but it should give at least the order of magnitude of the energy extracted by
the secondary vortices from the main flow.

If the term @ is assumed to be small, R; can be found by solving the
equation:

i T*f 4 70

R*{Iog(g?—*—i) - -ﬂ - (1 +1+4R )[K(;L) ~E(4)) = nZR*{log( 8R' ) - Z} + 2 e

(5.10)
with B=I'J/T;. Equation 5.10 was obtained by substituting eq. 5.6, 5.7 and
5.8 into 5.4 and the initial separation of the vortices s; was used to make
equation 5.10 non-dimensional (the dimensional quantities are indicated
with the symbol *). The parameters used to solve eq. 5.10 are in tab. 5.2.
I's and rs were estimated during the along-shore propagation in the same
way described for the main vortices (sections 4.5.3 and 4.5.4). For n and r;
we used the average of the values calculated for the 90", 95" and 99"
percentiles. The theoretical predictions of the final distance from the shore-
line, R*f,t, are shown in fig. 5.4. As in the previous section, we have

calculated the relative difference of final kinetic energy from theory and
experiments, i.e.:

Ef(nziﬁzirf*’r;’R;!R;,t) _Ef(nziﬁz’rf"r;’Ri*’R;,e)
AE = P —
Ef(n2vt32’rf’rs’Ri’Rf.t)

) (56.11)
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where now E; is the rhs of equation 5.10. The average absolute value of AE
is now 0.2. For the majority of the experiments AE is negative, indicating
that the kinetic energy calculated from the experiments is greater than the
theoretical kinetic energy. The measurements that are most likely to lead to
this inaccurate conclusion are the dissipation of energy, n, and the final
radius of the main vortex, r;. Our estimate of the relative importance of the
two terms of the rhs of equation 5.10, i.e. the ratio of the kinetic energy of
the secondary vortex to the kinetic energy of the primary vortex (Es/E, ) is ~
1%, thus suggesting that the energy of the secondary flow can be
neglected in the computation of R;. Note that the term @, in eq 5.8 was
arbitrarily neglected. An estimate of the energy dissipated by small-scale
turbulence could help to improve the predictions of equation 5.10, but given
the accuracy of our estimates of n and r; we cannot be more assertive.
However the average value of AE passes from 0.5 (inviscid model 5.2) to
0.2, and therefore model 5.10 represents an improvemént as can be seen
from fig 5.5 that shows a comparison of the predictions from model 1
(equation 5.2) and model 2 (equation 5.10). We note that eq.4.5, or a
similar refined version, may be used to predict the final value of the radius,
r. We should also note from fig 5.5 a that there is a remarkably good
agreement with the predictions for those vortices which still cross the
border between the slope and the flat bottom regions but have a large
portion of the core on the flat bottom (experiments 25, 26 and 27)".
Computation of R¢ from equation 5.10 using values of r; and h calculated
using the 90™, 95™ and 99" percentile criteria (not shown) did not lead to
different conclusions. The new model accounts for the loss of circulation of

the main vortices and, on the other hand, it reduces the loss of energy of

"We can justify this result theoretically by noting that (see fig. 6.2) for a small initial
radius, R/, the predicted value of R¢ is less sensitive to the size of the radius of the core,

r;, i.e. the range of values that Rf can assume is much narrower if compared with the
predictions for large R
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Fig 5.5: a) Comparison between final distance from the shoreline as predicted by
model 1 (eq. 5.2), Rf,t, and the experimental observations. With the exceptions of
experiments 14 (45°) and 1 (3.4°) the theory systematically overestimate the
experiments (but is in agreement within the experimental error.

b) As a) but now the comparison is made with the predictions from model 2 (eq.

5.10). This models shows a better agreement. A more correct energy balance was
used.
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the main flow by including, via the bigger-than-predicted final radius of the
vortices, a larger volume of rotational flow.

5.4 Speed of the vortices parallel to the shoreline

during their along-shore motion. Comparison with
theory

5.4.1 Introduction

In section 4.5.2 we measured the speed of the vortices in the direction
parallel to the shoreline (v;) in the interval [t,t3]. For the PIV experiments we
were able to compute a Reynolds number (R., formula 4.4). We showed
that v, is almost proportional to R, (fig. 4.23). In this section we shall not
discuss the experiments with fluorescine since from them we could not
measure the strength and the radius of the vortices'during their along-
shore motion. Fig. 5.6 a, 5.6 b and 5.6 ¢ shows the range of R, achieved in
our PIV experiments as a function of a for the three percentiles used. The
three figures are almost identical (see also tab. 4.8) and we conclude that

our estimate of R (i.e. of I'/r) is independent from the percentile used.

In this section we compare the speed measurements with two models:
1)the analytical formula for the speed of a thin cored vortex ring (i.e. rings
for which the condition £<<1 should be verified, where ¢ is the ratio of the
radius of the core to the radius of the ring (see also section 2.3.1 and
formula 2.28). We call this model A but it is consistent with the formulation
of model 1, section 5.2, since eq. 2.30 and eq. 5.2 are obtained from the
theory of inviscid thin cored vortex rings); 2)the numerical results computed
by Norbury (1973) that apply to rings for which the less stringent condition
0.1 < e < 2" s true (model B, tab. 5.3).
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Fig 5.6: Range of Reynolds numbers for the PIV experiments as a function of the angle
of the planar slope with the horizontal. The estimates made with the three percentiles
are very similar. Unfortunately we were unable to achieve high Reynolds number at

smali angles.
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... 01 02 0-3 0-4 0-5 06
W 1-0195 0-8488 0-7402 0-6586 0-5922 0-5357
a ... 09 1-0 1-1 1-2 1-3 1-35
W 0-4043 0-3703 0-3402 0-3136 0-2901 0-2793

07 0-8
0-4863 0-4428

J2

0-2667

Tab. 5.3: Table showing the numerical results for the non-dimensional
speed of a vortex ring, made non dimensional with the ratio T/(nR), as a
function of the ratio, o, of the cross section area to the ring area (l e. e~a,

with € given by formula 6.12). From Norbury, 1973.
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For both models we show a comparison of the quantities measured with
the three percentiles and averaged in the three time intervals [t t3], [t
t,+0.5At] and [t,+0.5At, t3), where At=ty-t;, to show that the conclusions are

always consistent amongst them.

5.4.2 Comparison with vortex ring and Norbury theory
The self-induced velocity of an inviscid circular vortex ring with circular
cross section of area mrf (e.g. Lamb, 1932) was given by formula 2.30,

which is reported once more below:

r [ 8 1 3 8 15] (., 8
= I _——— '——‘ —t Io - ) 230
e 4mm{°g& 4+8{ 809q+3é}%{& ge)} (2:30)

f

where T} is the strength of the vortex, R¢ is the radius of the ring, r; is the

radius of the cross section and ¢; is defined by:

&= (5.12)

The formula was obtained with the assumption & <<1 (see e.g. Saffman,
1992 , p. 195-201). If formula 2.30 can explain our results, the speed of the
vortices in the direction parallel to the shoreline, v, (see section 4.5.2) must

be independent of the angle of the planar slope with the horizontal.

When the condition g<<1 is relaxed the results of Norbury (1973) can be
used. The author calculated numerically the solution of the speed of rings
with € in the interval [0.1, 2°°), i.e. for a family of rings ranging from thin
cored rings (¢=0.1) to Hill's spherical vortices (¢=2°°). The non-

dimensional speeds are shown in table 5.3. Interpolated values were
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used for comparison with our experimental results and were made

dimensional with the factor:—r:—.
£

The results are shown in tables 5.4, 5.5 and 5.6 for the 90", 95™ and 99"
percentiles respectively. The measured quantities shown in the tables
were averaged in the interval t,t;. The ratio between the experimental
speed and the predictions of equation 2.30 and the ratio between the
experimental speed and the predictions of tables 5.3, 5.4 and 5.5 are
plotted in figures 5.7 (90%), 5.8 (95%) and 5.9 (99%) as a function of the
Reynolds number and for the 3 time intervals mentioned in section 5.4.1.
All the plots indicate that for low Reynolds numbers (Re<Rp, with
Rep~1500-2000) both models overestimate the experimental data but the
agreement improves for larger values of R.. A dependence on other
parameters, the most likely being the angle of the planar slope «, could
also be possible but the size of the error bars only allows us to speculate
and prevents us from being assertive.

We conclude that either mode! A or model B can explain our experimental
results when R, > R.p, Where R,y is of the order 2:10°. The conclusion is
‘robust’ in that it is not sensitive to the definition of the strength and of the

radius (in the sense explained in sections 4.4.6 and 4.4.7), or on the time
interval used for the average.

5.6 Conclusion

In sections 5.2 and 5.3 we have shown that model 1 and model 2, both
based on the vortex ring theory, are able to explain the observed final
distance from the shoreline within the experimental errors. Model 2 is a
development of the first, which was modified to take in account energy

dissipation. A different form of energy distribution, represented by a volume
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Fig 5.7: Speed of the vortices in three time ranges. 90 percentile. Comparison of the experimental data with
theory (see caption of table 5.4 for a definition of p, and p,). The agreement between theory and experiments

is good for R, go>R, ,, With Re,p~1500. At=t;-t,.
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Fig 5.9: Speed of the vortices in three time ranges. 99t percentile. Comparison of the experimental data with

theory (see caption of table 5.4 for a definition of p, and p,). The agreement between theory and experiments
is good for R, g5>R 1, With Rep~1500. At=ty-t,.
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of rotational flow different from the predictions of the spin-
down/compression equation (eq. 4.5) was also included by using the
experimental observations. The angle of the planar slope does not
necessarily have to be small to give a good agreement between theory and
observations. On the contrary the model seems to perform better for
intermediate angles. The dissipation of vortex strength is largest for small
angles (fig 5.10). If the plot of R¢/R¢e versus the Reynolds number, shown
in fig. 5.11, is compared with fig. 5.5 b) the conclusion is that the
predictions worsen when R is low, i.e. when dissipation is 'high, for then
the physics behind model 5.10 appears inadequate. The arbitrarily
neglected term ®,,; may become important and/or the estimate 5.9 may be

wrong.

The predictions of the vortex-ring theory of the speed of a vortex ring
(models A and B) is consistent with the experiments if R, is greater than
about 1500. The model performs better when the dissipation is low.
Experiments conducted with a wider range of (a,Re) would provide further

test and insights into the limitation of the theory.
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Fig. 5.10: Dissipation of strength as a function of the Reynolds number.
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Fig. 5.11: Ratio of the final distance from the shoreline from model 5.10 to
the experimental observations as a function of the Reynolds number.
Average for the 90th, 95" and 99 percentiles and over the interval [t,,t,].
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Chapter 6

Conclusions
6.1 Dispersion

- We have performed a series of numerical tests made with two models
reproducing vortices in a coastal sea, one with a step-like shoreline
and a flat bottom and the other with a uniformly sloping bottom. Both
models had a very simplified physics. They revealed that a system of
near-shore vortices, in which the vortices are the only dynamical
features, has a tendency to disperse in a direction parallel to the
shoreline. Dispersion in the direction normal 'to the shoreline is
possible, especially when two vortices pair to form a dipole. For then
the dipole can move offshore. If the two partners of the dipole have the
same circulation the dipole moves on a straight path. If the dipole ‘is
unbalanced, the path will be curved, the radius of curvature depending
on the difference of strength of the two vortices. If the radius of curvature
is large, the ability of the vortices to migrate offshore is seriously
reduced. However, this transport process could be regarded as a
mechanism for transporting water off shore where stronger currents
may overcame the self-driving effect of the dipole and set up a different
dispersion regime. Transport of fluid by the recirculation cell of a vortex

seems to be the most likely mechanism for dispersion of pollutants in
a direction normal to the shoreline.
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6.2 Comparison of theory and observations

The numerical model mentioned above of a coastal sea with a planar
sloping bottom used an array of co-axial vortex rings as a model for the
vortices in the wedge of fluid delimited by the sea surface and the
bottom. We have conducted an investigation with laboratory
experiments to test the validity of the analytical vortex ring model. The
experiments have confirmed that the vortex ring can be used, especially
for situations in which dissipation is not too high (i.e. large R¢). The
influence of the angle, a, which the planar slope makes with the

horizontal, is still not clear. We were unable to achieve high R, at small
Q.

6.3 Applications and related observations

Maps of the velocity and vorticity fields obtained with two sector
scanning Doppler sonar during the Sandy Duck 97 experiment
(unpublished data, courtesy of Dr. J. Smith, 1988) suggest the
existence of an intense vortex dipole propagating offshore. The dipole
was probably originated by a rip current event. The slope of the beach
was o (= tan o) ~ 0.011 rad (~0.6°) and the dipole was at about 250 m
from the shoreline. The strength of the dipole was ~ 20 m?s™, its radius
~10 m and the water depth ~ 2 m. If we assume that these
measurements describe a typical near-shore vortex, its Reynolds
number, calculated with formula 4.4, is R~ 1 10°. This implies that, if
our results are correct, the vortex ring theory applies. For such a vortex,

the theory (formula 2.30), predicts a speed in the along-shore direction
of~3cms™.
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6.4 Directions for further research

Perhaps the most pressing are experiments to test theoretical
predictions at high Reynolds numbers and small o. The study of
eddies in shallow water with a sloping bed is important in relation to
the transfer of near-shore pollution and sediments, and further field

observations are merited.
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Appendix 2A
2A.1 Boundary layer velocities, volume flux into the
bottom boundary layer and vertical velocity

The velocities in the bottom boundary later are described by the Ekman
spiral (e.g. Pedlosky, 1987):

u= V(p)(1 _ % cos -gg} (2A.1)
v=V(p) o sin-;—E, (2A.2)
with

v(p):-z%=%’3=gp, (2A3)

representing the two dimensional velocity field induced by the vortex at a

distance p =+/x*+y® from the centre of the vortex (a Cartesian xy.z system

with origin at the centre of the vortex and z pointing upwards is assumed
here), and,

S = (—21)2 2.A4)

The bottom boundary layer volume flux in the radial direction per unit length

is maximum at p=r and is expressed by:
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oo {

Ty= !V(r,C )t = V(p)]; e * sin 5% o = V(r)6EI e*sin ok = -V(rzﬁ, (2A.5)

since,

T 1
je sinAdA = —.
5 2

Here { is the vertical co-ordinate. The total volume flux inside the vortex
bottom boundary layer is therefore:

Tw=T'm 2rr=nrV(r)de (2A.6)
For the conservation of volume, Ty must therefore be equal to the volume of
fluid moving upwards that is entering the interior vortex from the bottom
boundary layer, e.g.:

Tu=wir?, (A7)

where w is the velocity of the water entering the inviscid interior of the vortex.

Assuming a constant gradient for w and with the condition of w=0 at the

surface, we also have:

¥

o Tw 1r)o _ (2A.8)
r

~ nhr? h
2A.2 Vorticity equation.

The vorticity equation is (e.g. Tritton, 1988, p. 85):
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%‘"m-va:a-vmw% (2A.9)

[with @ = (u,v,w) and ® =(0,0,,)]. If we impose the additional condition:

w,(X,y,z)=const., (2A.10)

equation 2A.9 reduces to the first equation of system 2A.11 with the
addition of formulae 2A.3, 2A.4 and 2A.8:

0 _, 0

ot oz’
ax

v =2

(r) 5

! ' (2A.11)
2v |2

(5

ﬂV_: V(r)ée

| 0z hr

The system reduces to 2A.12 with the addition of the initial value of the

spatially constant vorticity at t=0:
T o (2A.12)
a)(O) = 0.

Renaming the integral variables, &= and t=t, the solution for the vorticity is

found by solving:

T?é (2] j&, (2A.13)
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which has solution given by:

=251, (2A14)
1
2 2
j_(;_ :) -_-(4? ¢ (2A.15)
0 .

(v _an+ (2t

1
ot o (2A.16)

2
1 1
W = o, — | =, n (2A17)
2 1+ —
14 (2a)0v) t aT
4h
where T is:
T= h -
(2600v)E

2A.3 Radius of the vortex

The decrease in vorticity (i.e. the “spin-d‘own of the vortex) must be
accompanied by an increase of the (supposed) circular area that contains
the vorticity, i.e. of the radius of the vortex. The growth of the radius is a
consequence of the volume flux directed from the bottom boundary layer
into the inviscid interior of the vortex (note that fluid with zero angular
momentum must be sucked from outside the vortex if the vortex has to

spin-down without loosing energy).
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The time evolution of the radius of the vortex can be calculated from the law

of conservation of the volume A (first equation of the system 2A.18):

x
A =mrth,

1Tu = V(1) (2A.18)
V(r) = Qr,

Here h is the water depth. Substituting we obtain,” by adding the initial

condition for the radius at t=0,
éh — _a..)_r &l_ 2 .
ot 4\ o)’ (2A.19)

The first equation becomes:

1

2 1
—5{- - %(2v)2 &, ~ (2A.20)

which, by using 2A.17 and renaming the integral variables, p=r and =t

leads to:
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r 4T 6K
Inrj = —,
T
[ 1 K
ie.
1+—t—’
In—:lmcl1 4T
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Appendix 3A

3A.1 2-D model. Input-output structure

At the beginning of the execution the program reads from a file that
contains the position, the intensity and the radius of the vortices, and from
another one with the position of the particles of fluid that are tracked during
the evolution of the system. To generate the input files we have written
several programs designed to fill a rectangular or semi-circular portion of

the fluid, of arbitrary size, with vortices and marked particles.

The programs that initiate the position of the vortices use a generator of
uniformly distributed random numbers: the same algorithm is used to

calculate random variations of strength, sign and radius of the core.

The programs that generate the position of the marked particles are
designed to fill a region of fluid that is not necessarily coincident with the
region in which the vortices are: at the beginning of the run the particles
can either be evenly spaced or be arranged in a way to simulate the

release of a tracer from a point source or a finite line source.
Characteristic time and length scales, number of iterations, time step,

parameter fthat controls the collision between vortices and length of the
output are retrieved from a different file. |

The output of the program consists of several files that contain, at a

common and constant interval of time the following parameters:

e position and circulation of the vortices;

e position of the marked particles;
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dispersion of the vortices in the direction parallel (x) and normal (y) to
the boundary, together with the total dispersion, with reference to the
initial centre of mass of the vortices, (Xem,Yem); those parameters are
indicated with DX, DY?,, and D%, respectively, and are defined as

the variances of the x and y co-ordinates of the vortices:

2]

DXy = Eeo— _
i n (3.7 a,b,c)
2
z(Y| - ch)
DYZV,O - =1 s
n
D2v,0 = Dsz,O -+ Dsz,O,
where,
3x
Xcm = = ¥
L (3.8 a,b)
ZYi
Y= e
cm n

Here n is the number of vortices, (x;y;) are the co-ordinates of the centre

of the vortices and X, and Y, are calculated at the instant t=0.

The same quantities calculated for the marked particles are indicated
with the following symbols: DX?%n0, DY?mo and D’ the definitions 3.7

and 3.8 given for the vortices apply when the word “vortex” is replaced
with “particle”.

The same quantities defined above are also calculated with respect to

the instantaneous centre of mass. Those are indicated in the following
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text with DX2,;, DY2,, , D2, for the vortices and DX’y DY?ms and D%y for
the marked particles.

« the time derivatives of the twelve dispersions defined above; those have
the meaning of a parameter proportional to an eddy dispersion
coefficient and are indicated by kx,o, kyyo, Kyo and so on, with obvious
meaning of the symbols;

e the distance between each pair of vortices.

One file also contains a summary of the initial conditions of the run and,
finally, the last file keeps record of collisions between vortices and
absorption events at the boundary.

3A.2 Dispersion of a group of sign-like vortices far
from the boundary

We start from the definition:

2
Do

kV,O = & ’

where Dzv,o is given by 3.7 c. Substituting we have:
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The distance of the vortices from the boundary is such that D? is constant

in time (see section 2.2). Therefore its time derivative is zero.

We also have:

where
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Similarly we can show that:

n

218 2 )lt) el et |3 S0 )V

i=1

Nyl (1) - Vet =0

Therefore, the only contributions left are:

o= 2]l Xl )Yl -

2(Xcm(t) - Xcm(to )) % Xcm(t) + Z(ch(t) - ch(to)) % ch (t) =
2(xcm(t) - Xcm(to))vx,cm (t),

since

d

5 ch(t) = Vy,cm =0.
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3A.3 Plots of dispersion (see chapter 3, sections 3.5
and 3.6)
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Fig 3.36: 2-D model. Dispersion of vortices and particles. Set 1: 5
vortices. Time series of: @) Dyo; b) DXy0,; €) DYy ; d) Dyy; €) DXy, )
DYyt 5 @) Dmo; h) DXmos; i) DYmo 5 J) Dmy s k) DXmy,; 1) DYy . See
appendix 3A.1 for a definition of the dispersion.
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Fig 3.37: 3-D model. Dispersion of vortices and particles. Set 1: 5
vortices. Time series of: a) Dy ; b) DX,0,; ¢) DYy ; d) Dyyt; €) DXyp;
f) DYyt ; @) Dmo; h) DXmoss ©) DYmo ; J) Dmes k) DXy, ) DYy - See

appendix 3A.1 for a definition of the dispersion.
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Fig 3.38: 2-D model. Dispersion of vortices and particles. Set 2: 10
vortices. Time series of: @) Dyg; b) DXy0,; €) DYy ; d) Dyy; €) DXy
f) DYys ; @) Dmo; h) DXmoy; i) DYmo ; J) Dme; K) DXmygy; 1) DYmy . See

appendix 3A.1 for a definition of the dispersion.
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Fig 3.39: 3-D model. Dispersion of vortices and particles. Set 2: 10
vortices. Time series of: a) Dyg; b) DXy0,; ¢) DYy ; d) Dyy; €) DXy f)
DYyi ; 9) Dmo; h) DXmosi i) DYmo ; §) Dmt i K) DXmp; 1) DYmy . See
appendix 3A.1 for a definition of the dispersion.
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Fig 3.40: 2-D model. Dispersion of vortices and particles. Set 3: 15
vortices. Time series of: a) Dyg; b) DXy0,; ¢) DYy ; d) Dyy; €) DXyyy;
f) DYyt ; @) Dmo; h) DXmo,; i) DYmo 5 ) Dmy; K) DXmy; 1) DYmy . See
appendix 3A.1 for a definition of the dispersion.
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Fig 3.41: 3-D model. Dispersion of vortices and particles. Set 3: 15
vortices. Time series of: @) Dyo; b) DXy0,; €) DYy ; d) Dyyt; €) DXyyis
f) DYy 5 @) Dmos h) DXmos; i) DYmyo ; J) Dmt; K) DXmg,; 1) DYmy - See
appendix 3A.1 for a definition of the dispersion.
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Fig 3.49: 2-D model. Dispersion of vortices and particles. 20 vortices.
Time series of: @) Dyo; b) DXy0,; €) DYy ; d) Dyy; €) DXop; f) DYur s )
Dmo; 1) DXmos; ) DYmo 5 i) Dmg; K) DXmp; 1) DYy -

258



120
100

120 120
100 100
80 80
o 60 60
40 40
20 20
0 0
0 0.5
tAmax
a)
120 120
100 100 100
80 80
=
a 60 60 Y
40 2 40 ;o
20 20
0 0
0 0.5 0 0.5 1
tAmax t/tmax
e) f)
120 120 120
100 100 100
80 80
a 60 80
40 40
20 20
0 0 0
0 0.5 il 0.5 1
ttmax ttmax

100

tmax

K)

0.5 1
tmax

Fig 3.50: 3-D model. Dispersion of vortices and particles. 20 vortices.
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3A .4 Significance tests

Tables showing the results of the significance tests. The hypothesis to be
tested is indicated with H,. D, denotes the dispersion, defined by formulae
3.7 a, b and ¢, from the instantaneous centre of vorticity (or mass, if

particles are considered). The subscript v refers to vortices, m to particles.

The overbar denotes the average over the ensemble (dispersions from 30

run with “homogeneous” initial conditions) as discussed in paragraph
3.5.1.

The prime denotes the operation: §=(D——Do) where Dg is the dispersion

calculated for the initial instant.

R indicates that the hypothesis is rejected, or, in other words, that the
probability to be wrong if the hypothesis is accepted is bigger than 0.1. The
numbers are the probability to be right if the hypothesis is rejected and the
letter A indicates that the hypothesis is accepted with a confidence level of
0.002.

The minus sign indicates that the > must be changed with <.
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3A.4.1 2-D model.

the same model

Comparison between dispersions from

Ho: D, >D,,, Table 3A.3.1
#ofvort. [t=02tnax |04 tuax | =06 tmax | =08 tmax | t= tmax

5 -0.1 R 0.05 0.05 0.05
10 R R 0.1 0.05 0.005
15 R 0.05 0.05 A A

Ho: DX/, > DX/, Table 3A.3.2
#Ofvort, |t=0.2 tyax | =04 trax | 0.6 tmax | t=0.8 tmax | = tmax

5 R R 0.05 0.05 0.05

10 R R R R 0.05

15 R 0.05 0.05 0.05 A

Ho: DY, > DYy, Table 3A.3.3
#ofvort. [t=0.2 tmax | t=0.4 trax | t=0.6 tmax | t=0.8 tmax | = tmae

5 -0.005 R R R R

10 R R R 0.05 0.05

15 R R 0.005 A A

Ho: DX/, >DY{, Table 3A.3.4
#ofvort, |t=0.2 tmax | =04 tmax | t=0.6 toax | t=0.8 trax | 1= tmax

5 R A A A A

10 0.1 R R R 0.05

15 R 0.01 A A A
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Ho: DX, > DY/, Table 3A.3.5
#ofvort. |t=0.2tya | 1204 tmax | t=0.6 tmax | 0.8 tmax | 1= b

5 R 0.05 A A A

10 -0.01 R R 0.1 0.05

15 A R 0.005 A A

3A.4.2 3-D model.

the same model

Comparison between dispersions from

Ho: D, > D, Table 3A.3.6
#ofvort. |t=0.2 trax | t=0.4 tmax | t=0.6 tmax | 0.8 trax | t= tmax

5 R R R R R

10 R R R R R

15 R R 0.1 0.05 0.05

Ho: DX/, > DX, Table 3A.3.7
#ofvort. |t0.2 tyax | 0.4 trgx | £70.6 tmax | t=0.8 tmax | &= tmae

5 R R R R R

10 R R R R R

15 R R R 0.1 0.05

Ho: DY, >DY,,, Table 3A.3.8
#ofvort. |120.2 trax | t=0.4 tmax | 1=0.6 tmax | t=0.8 tmax | = troe

5 0.05 0.01 A A A

10 0.1 0.1 R R R

15 R R 0.1 0.05 0.05
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Ho: DX, > DY/, Table 3A.3.9
#ofvort. |t=0.2tma | t=0.4tmax | t=0.6 tmax | t50.8 tmax | t= tmax

5 A A A A A

10 R A A A A

15 0.05 A A A A

Ho: DX, > DY, , Table 3A.3.10
#ofvort. |t=0.2 tou t=0.4 tax t=0.6 tnax t=0.8 tmax t= thax

5 A A A A A

10 R A A A A

15 0.05 A A A A
3A.4.3 Comparison between the two models

Set 1: 5 vortices, 676 particles. 2-D/3-D comparison Table 3A.3.11
Ho: t=0.2 thax 1204t 1506t J120.8 thax | = tmax
D2 D A 0.05 R 0.1 0.1

DX® =DX® | A 0.01 0.05 0.05 0.05
DY® »DY® |A A A A A

D, # D, 0.05 0.01 A A A

D)(ZDt = DX;Dt 0.01 A A A A
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Set 2: 10 vortices, 676 particles. 2-D/3-D comparison Table 3A.3.12
Ho: t=0.2 tyax |04 tna | t=0.6 trax | 150.8 tyax | = tmax
D% D R R R R R
w R 0.1 0.05 0.05 0.05
DY2 xDy® 0.1 A A A A
D2 =D, R R 0.1 0.1 0.05
DX, 5(3“?;; R 0.1 0.05 0.05 0.01
DY, =DY® | A A A A A
Set 3: 15 vortices, 676 particles. 2-D/3-D comparison Table 3A.3.13
Ho: t=0.2 trax | t=0.4 tax | t=0.6 trax | 150.8 trax | = tmax
ﬁ 0.05 A A A A
DX% 2Dx®  |0.05 A A A A
Dv® <pv® [R R 0.05 0.01 0.01
D %D, 0.005 A A A A
DX, 2 px®, |0.01 A A A A
DYnzft % DY:& R R 0.05 A A
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3A.4.3 Comparison between the two models: plots
(see chapter 3, sections 3.5 and 3.6)
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Fig 3.42: Set 1: 5 vortices. Comparison between the two models.

Dispersion of vortices. Time evolution of the scatter-plot of Dy (*),

DXyt (x) and DYy; (o) from 2-D model (Dp) versus Dy;, DX,; and

DY,; , respectively, from 3-D model (Dr). a) t=0; b) t=0.2-tmax C)
t=0.4tmax; d) t=0.6-tmax; €) t=0.8-tmax; f) t=tmax
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Fig 3.43: Set 1: 5 vortices. Comparison between the two models.
Dispersion of particlesTime evolution of the scatter-plot of D, (),
DXmt (X) and DYmy (0) from 2-D model (Dp) versus Dpy, DXmy and
DYmy , respectively, from 3-D model (Dr). a) t=0; b) t=0.2:tnag C)
t=0.4-tax; d) t=0.6-tmax; €) t=0.8-tmax; ) t=tmax
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Fig 3.44: Set 2: 10 vortices. Comparison between the two models.
Dispersion of vortices. Time evolution of the scatter-plot Dy (*), DXy
(x) and DYy, (o) from 2-D model (Dp) versus D,;, DX,; and DYy, ,
respectively, from 3-D model (Dr). a) t=0; b) t=0.2-tnag C) t=0.4-tmax;
Ay =016t €)1=018 o ) i=tmay

268



0 20

60

Cp

40

60

50

40

Dp

40

60

60

50

40

0 20

Dp

e)

40

60

60

S0

40t

60

S0F

40}

60

20 40
Dp

60

XK

20 40
Op

50

Fig 3.45: Set 2: 10 vortices. Comparison between the two models.

Dispersion of particles. Time evolution of the scatter-plot of D,y (*),

DXmt (x) and DYm, (0) from 2-D model (Dp) versus Dpy, DXy and

DYm: , respectively, from 3-D model (Dr). a) t=0; b) t=0.2:tpa C)

t=0.4tmax; d) 1=0.6tmax; €) 1=0.8tmay; f) t=tmax
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Fig 3.46: Set 3: 15 vortices. Comparison between the two models.

Dispersion of vortices. Time evolution of the scatter-plot of Dy; (*),

DX, (x) and DYy, (o) from 2-D model (Dp) versus D,;, DX,; and

DY,; , respectively, from 3-D model (Dr). a) t=0; b) t=0.2:tnax C)

1=0.4tmay; d) 1=0.6:tmay; €) t=0.8-tmax; f) t=tmax A
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Fig 3.47: Set 3: 15 vortices. Comparison between the two models.

Dispersion of particles. Time evolution of the scatter-plot of Dy (*),

DXm: (x) and DYm, (0) from 2-D model (Dp) versus Dy, DXm: and

DYm, , respectively, from 3-D model (Dr). a) t=0; b) t=0.2tnax C)
t=0.4tmax; d) t=0.6tmay; €) 1=0.8tmax; f) t=tmax
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Fig 3.51: Dispersion of vortices. Comparison between the two

models. Time evolution of the scatter-plot of D,; (*), DXy; (x) and
DY,: (o) from 2-D model (Dp) versus Dy; , DX,;

and DY,; ,

respectively, from 3-D model (Dr). a) t=0; b) t=0.2:tnay; C) 1=0.4tmay;

d) 1=0:6:tmay €) 1=0:8a 1) t=tnay
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Fig 3.52: Dispersion of particles. Comparison between the two

models.Time evolution of the scatter-plot of Dyt (*), DXmy (x) and

DYm: (0) from 2-D model (Dp) versus Dp; , DXny

and DYny; ,

respectively, from 3-D model (Dr). a) t=0; b) t=0.2:tmax C) t=0.4tmay;
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