Špakula, Ján (2010) Uniform version of Weyl–von Neumann theorem. Archiv der Mathematik, 95 (2), 171-178. (doi:10.1007/s00013-010-0147-8).
Abstract
We prove a “quantified” version of the Weyl–von Neumann theorem, more precisely, we estimate the ranks of approximants to compact operators appearing in Voiculescu’s theorem applied to commutative algebras. This allows considerable simplifications in uniform K-homology theory, namely it shows that one can represent all the uniform K-homology classes on a fixed Hilbert space with a fixed *-representation of C 0(X), for a large class of spaces X.
This record has no associated files available for download.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.