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“And the LORD God caused a deep sleep to fall upon Adam, and he slept; and He took

one of his ribs, and closed up the flesh in its place”

Genesis (2:21)
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to surrender ideas when the evidence is against them: this is ultimately fine-it always

keeps the way beyond open-always gives life, thought, affection, the whole man, a chance

to try over again after a mistake-after a wrong guess”
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Abstract

General anaesthesia has been used for more than two centuries to guarantee uncon-

sciousness, analgesia and immobility during surgery, yet our ability to evaluate the level

of anaesthesia of the patient remains insufficient. This contributes on one hand to oc-

casional episodes of intraoperative awareness and recall and on the other to ‘controlled’

drug over-dosage that increases hospital costs and patients recovery times. At present

parameters used in clinical practice to monitor anaesthesia are indirect measures of the

state of the brain, which is the target organ of anaesthetics. The lack of a reliable

monitor of anaesthetic depth has led to considerable effort to develop new monitor-

ing methods based on electrophysiological measurements. This progress has produced a

series of depth of anaesthesia monitors based on various features of the electroencephalo-

gram (EEG) signal. Even though these indexes are practically useful, their theoretical

and physiological validity is poorly evidenced and they suffer from some practical limi-

tations. As a result, their clinical uptake has been quite low. In recent years increasing

attention has been given to brain connectivity as a powerful tool to investigate the com-

plex behaviour of the brain. Theoretical and experimental findings have identified the

disruption of brain connectivity as a crucial mechanism of anaesthetic-induced loss of

consciousness. In this work a novel index of anaesthetic depth based on brain connec-

tivity estimated from non-invasive scalp recordings (EEG) is proposed. Firstly, robust

estimators of directed connectivity were identified in the framework of multivariate au-

toregressive (MVAR) models. With a series of simulation studies the performances of

these methods in estimating causal connections were assessed in particular with re-

spect to the deleterious effects of instantaneous connectivity due to volume conduction.

Recently published solutions were also tested (and rejected). From a comparison of

connectivity measurements in simulations, MVAR based estimators were most robust

to the effects of volume conduction than conventional coherence measurements. Next

the performances of directed connectivity estimators were tested in two experimental

studies on NREM sleep and on anaesthesia. Features that exhibited the most robust

changes with the individual level of consciousness were identified and their performances

in discriminating wakefulness from anaesthesia tested on ten patients undergoing a slow

induction of propofol anaesthesia. The performance of the proposed method were also

compared with established depth of anaesthesia indexes such as Bispectral Index (BIS)

or Auditory Evoked Potentials (AEP). Results suggest that EEG connectivity features

are sensitive to the anaesthetic induced changes and that they have the potential to be

integrated in future monitors of intra-operative awareness and anaesthetic adequacy.
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Chapter 1

Introduction

More than 250 years have passed since the first successful demonstration of anaesthesia

(Mashour 2006) and anaesthetics are at the present day used during surgery in mil-

lions of patients per year. However monitoring the anaesthetic effects still represents a

challenge and our ability to evaluate the level of the awareness of the patient remains in-

sufficient (Lau et al. 2006). This is due to the intrinsic complexity of anaesthesia, which

is a multicomponent process, where different agents, with various neural actions, target

different conditions. An adequate level of anaesthesia prevents awareness and recall of

the surgical procedure while minimizing the untoward effect of excessively deep sedation.

Awareness of the intra-operative events is a relatively rare (0.1 to 0.2% (Sandin et al.

2000, Shepherd et al. 2013)) but a serious complication of general anaesthesia, associ-

ated with anxiety, depression and a high rate of post-traumatic stress disorders (Bruchas

et al. 2011, Shepherd et al. 2013). The incidence of unexpected awareness may be much

higher in procedures where anaesthesia is kept to a minimum like caesarean section and

cardiac surgery (Kaul et al. 2002) and it is a significant concern for patients admitted

for surgical procedures (McCleane & Cooper 1990). Moreover the use of neuromuscular

blocking drugs makes the detection of intra-operative awareness more difficult since it

removes both respiration and movement in response to a noxious stimulus, which are

valuable indicators of anaesthetic inadequacy. To avoid this, anaesthetists are used to

administer a ‘controlled overdose’ of anaesthetics that increases patient recovery times,

hospital costs and the risk of postoperative morbidities (Weiskopf 2000).

The reasons for the lack of a reliable monitor that permits a conclusive statement about

anaesthetic depth in individual patients are of different kind. Firstly, mechanisms of how

anaesthetics suppress consciousness are still unclear. Secondly, at present the parame-

ters used in the clinical practice to monitor anaesthesia (blood pressure, tear formation

and sweating, together with presumed drug pharmacokinetis) are not considered reliable

indicators (Lau et al. 2006) primarily because they are indirect measures of the state

1
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of the brain, which is the target organ of anaesthetic drugs. The necessity for a more

reliable index of consciousness, able to correspond with neurobiological processes, has

increased the interest of both clinicians and researchers in exploring alternative methods

to monitor anaesthetic depth. This has resulted in a series of commercially available

depth of anaesthesia (DoA) monitors. They are typically based on a series of elec-

troencephalogram (EEG) features that enter a proprietary algorithm whose output is a

dimensionless index, usually ranging from 0 (cortical silence) to 100 (full wakefulness).

The most widely used is the Bispectral Index (BIS R©, Aspect Medical System, USA),

whose computation is based on time features (i.e. burst suppression) and frequency

domain parameters (i.e. beta activity, bispectrum) of EEG recordings from 2 or more

electrodes on the forehead.

Studies comparing the performances of these parameters have reported contrasting re-

sults (Marchant et al. 2014) and a technology assessment report commissioned by Na-

tional Institute of Health Research has concluded that the available evidence on the

impact of these technologies on reducing the likelihood of intraoperative awareness is

limited. (Shepherd et al. 2012). This is probably one reason why the clinical uptake of

DoA monitors at the present day is quite low (only 2% of anaesthetists use them rou-

tinely (Pandit & Cook 2014)) despite the fact that the use of DoA monitoring is strongly

recommended in total intravenous anaesthesia with neuromuscular blockade in the UK

anaesthetic standards guidelines (Association of Anaesthetists of Great Britain and Ire-

land 2016). Moreover the DoA monitors that are commercially available are affected by

some limitations and reliability issues and their interpretability as indicators of patient

awareness is debated (Pandit & Cook 2014). There is therefore a need for improvement

of current DoA monitors, in particular with regard to their ability to detect unexpected

awareness (Marchant et al. 2014).

Theories of how anaesthetics suppress consciousness (Alkire et al. 2008, Mashour 2006,

John & Prichep 2005) have identified brain functional disintegration as a crucial mecha-

nism: anaesthetics are thought to disrupt the communication of brain regions that would

otherwise be coupled during wakefulness. This hypothesis is supported by a series of

experimental findings that show impaired cortico-cortical and thalamo-cortical connec-

tivity in general anaesthesia (Ferrarelli et al. 2010, Gómez et al. 2013, Boveroux et al.

2010, Lee et al. 2009) and in other states of suppressed consciousness as NREM sleep

(Massimini et al. 2005a) and vegetative state (King et al. 2013, Sitt et al. 2014, Boly

et al. 2012). In the search for a more reliable index of consciousness, it may be therefore

promising to concentrate on measures that more closely capture the neurophysiology of

the brain. While many neuroimaging studies have focussed on aspect such as regional

baseline metabolism (Alkire et al. 1995) or response to external stimuli (Bell et al. 2006,

Thornton et al. 1992) changes during anaesthesia, in recent years an increasing relevance
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has been attributed to measures of brain connectivity, as they can grasp the global orga-

nized behaviour of neural circuits, beyond the simple mapping of their localized activity

(Hudetz 2012, David et al. 2004). Among the various neuroimaging techniques, non-

invasive scalp measures (EEG) of brain connectivity seem promising because of their

relatively cheap and easy to apply technology (Sitt et al. 2014).

1.1 Aims and Hypothesis of the Research

The aim of this research project is to develop and test a novel indicator of anaesthetic

depth based on EEG brain connectivity measures. Based on literature review findings

presented in chapters 2 and 3, the research aims can be summarized as follow:

1. From the various estimators proposed to assess brain connectivity, identify those

that are more robust and, at the same time, compatible with a possible online

application for anaesthesia monitoring (chapters 4 and 5).

2. Characterize the topological features of EEG connectivity patterns during loss of

consciousness (i.e. in deep sleep and anaesthesia) as compared to wakefulness

(chapters 5 and 6)

3. Identify, among EEG connectivity estimators and features, those that exhibit the

most robust changes with loss of consciousness (LOC) and therefore are able to

reliably discriminate wakefulness from anaesthesia (chapter 6). From this develop

a single index of awareness.

4. Compare the performances of the selected connectivity features with respect to

more established DoA methods (chapter 6).

5. Assess the suitability of the proposed index to monitor anaesthesia in individual

subjects and in a clinical environment (chapter 6).

As theoretical and experimental findings suggest that brain connectivity is critically re-

lated to anaesthetic-induced unconsciousness, we hypothesize that connectivity measures

will more efficiently capture changes in the level of consciousness of the subject than

measures based on the local neuronal activity. Therefore, brain connectivity features

can be expected to have better performances than classical DoA monitors in discrimi-

nating wakefulness from anaesthesia. We also speculate that this methodology has the

potential to be implemented for routine anaesthetic monitoring, given the non-invasive,
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cheap and applicable at bed-side nature of EEG technology.

This work contributes to the development of a new signal processing tool that could

be incorporated in future DoA monitors to improve their performances in the detection

of intraoperative awareness or adequacy of anaesthesia. Anaesthesia represents also a

powerful tool to ‘probe’ the unconscious brain in the search for neural correlates of

consciousness and many scientists argue for an integrated approach to the study of

consciousness and anaesthesia (Mashour 2006, Beecher 1947). The results of this study

may therefore be of interest not only for clinicians but also for neuroscientist as they

are likely to shed new light on mechanisms of anaesthetic actions and on the patterns

of reorganization of connectivity networks with loss of consciousness.

1.2 Thesis Overview

In this work we1 assessed brain connectivity from scalp EEG using spectral estimators

derived from the multivariate autoregressive (MVAR) modelling of EEG data. We in-

vestigated the rationale behind the development of these measures and carried out an

analysis of their performances by means of different simulation studies. Due to the

remarkable behavioural and electrophysiological homologies between sleep and anaes-

thesia we first tested the connectivity estimators in a normative study on sleep, where

parameters likely to indicate awareness were identified. We ultimately investigated the

performances of the selected connectivity features in an anaesthetic study, in comparison

with alternative DoA indexes such as BIS and Middle Latency Response (MLR).

In chapter 2 general mechanisms of anaesthetic action and their effect on electrophysi-

ologic measures are reviewed, with a focus on the latest experimental findings on brain

connectivity changes during anaesthesia. A concise review of the different DoA monitors

and approaches to EEG analysis of current use in the anaesthesia field is also presented.

Chapter 3 gives an overview of the methods used to estimate linear coupling and causality

between time series with a particular focus on spectral measures of causality developed

in the framework of MVAR models. A description of the refinement and properties of

these estimators will be performed as well by means of an illustrative example. Crucial

aspects for accurate model identification will be discussed and statistical tools useful to

1In this manuscript the pronoun ‘We’ is used to indicate the work carried out by the author, unless
otherwise stated.
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assess the validity of the model described in the last section of the chapter.

A major issue in the estimation of causality among EEG derivations is the adverse effect

of instantaneous correlations among time series, which is, in turn, related to the problem

of volume conduction. The performances of different methodologies with respect to this

issue is investigated in different simulation studies in chapter 4.

In chapter 5, the spectral connectivity estimators described and tested in previous chap-

ters are applied to the analysis of sleep EEG. The sleep study was designed as a controlled

experiment in a laboratory setting in order to explore the connectivity changes in dif-

ferent states of arousal, with a view of assessing anaesthetic depth in the last stage of

the research work. In chapter 5 the rationale, experimental design and methods of the

sleep study is outlined and results of the functional connectivity analysis discussed. The

journal paper describing results from the sleep study (Lioi et al. 2017) is reported in

Appendix.

Chapter 6 presents results from the anaesthetic study in a clinical setting that included

ten patients scheduled for surgery undergoing slow induction of propofol anaesthesia.

The changes in topological features of EEG connectivity associated with different anaes-

thetic depths will be described both at cohort and individual level and their physiological

interpretation discussed. We also compared the performances of the connectivity fea-

tures with more established DoA indicators (BIS and MLR) in discriminating ‘awake’

from ‘anaesthesia’ at different levels using both a linear and a non-linear classification

approach. Results are outlined in the last section of chapter 6 while a draft version of

the paper on the anesthetic study is reported in Appendix.

Finally, chapter 7 draws overall conclusions and discuss future work.

1.3 Original Contributions

� Testing of the extended MVAR approach (proposed to account for

instantaneous connectivity) on simulated and recorded EEG. In EEG

signals, instantaneous connectivity is expected due to strong volume conduction

effects and this has the potential to confound the analysis of causal connectiv-

ity estimated with the classical MVAR approach. The extended MVAR (eM-

VAR)framework has been introduced to deal with this issue and has been tested
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in previous works on simple connectivity models where it was shown to effectively

eliminate spurious causality introduced by zero-lag effects. In this work we tested

the eMVAR approach on simulations that more realistically model EEG signals

and on EEG recordings. Our results showed that in this case the eMVAR algo-

rithm fails to reliably estimate instantaneous effects. Our findings suggest that

the characterization of instantaneous causality between EEG time-series remains

a challenging issue and that caution is required when interpreting results from the

estimation of EEG connectivity.

� Characterization of instantaneous volume conduction effects on scalp

connectivity by means of a realistic head model. The effects of volume

conduction on the estimation of scalp connectivity with MVAR estimators are not

clear. By means of a series of simulation studies using a realistic head model

we characterized volume-conducted, non-physiological connectivity as a function

of interelectrode distance and reference choice: our preliminary results show that

MVAR estimators considerably reduce the effects of volume conduction if com-

pared with classical Coherence and Partial Coherence, in particular for interelec-

trode distances larger than 10 cm.

� Correlation of directed connectivity performance with the individual

level of consciousness during (Non Rapid Eye Movement) NREM sleep.

We have assessed the performance of different EEG indexes (EEG directed con-

nectivity and normalized spectra in different frequency bands) in relation to sleep

stages in a NREM sleep study. Our results show that among all of the EEG

measures tested, a proposed index of the direction of connectivity on the rostro-

caudal axis performed well at a group level and gave the highest correlation with

individuals sleep stage and hence level of consciousness.

� Assessment of EEG directed connectivity changes during a slow induc-

tion of propofol anaesthesia. We assessed changes in multivariate EEG con-

nectivity during a target-controlled slow induction of propofol anaesthesia with a

view to proposing a connectivity-based measure of depth of anaesthesia. We ob-

served an inversion of directed connectivity from posterio-frontal in wakefulness to

fronto-posterior in anaesthesia. We have identified a step change of connectivity

features with the onset of anaesthesia (in contrast with a more gradual trend with

increasing propofol effect site concentration-ESC observed in BIS and MLR) that

is broadly consistent at individual level and is relevant in terms of a physiological

interpretation of anaesthetic-induced LOC.

� Proposal of a novel and promising index of anaesthetic depth based on

EEG directed connectivity features and assessment of its performances
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in comparison with BIS and MLR. We proposed a novel DoA index based on

EEG connectivity features. We assessed the novel index performance in discrim-

inating wakefulness from anaesthesia in a clinical setting and compared it with

MLR and BIS features extracted at stable anaesthetic brain concentrations. We

showed that directed connectivity features have the best performances in discrim-

inating wakefulness from anaesthesia, as compared with MLR and BIS, with an

average accuracy of 96% and results robust across subjects. Our results indicate

the potential for directed connectivity to be integrated into future DoA monitors

(possibly in combination with other EEG features) to improve the detection of

intraoperative awareness.





Chapter 2

Mechanisms and

Electrophysiological signatures of

Anaesthesia

In this chapter general principles of anaesthetic mechanisms will be discussed, together

with theoretical proposals and some experimental findings describing brain activity

changes associated with anaesthetic induced unconsciousness. An overview of the prin-

cipal commercially available monitoring techniques based on electrophysiological record-

ings is also given in this chapter. The methods developed to date fall into two classes:

Pattern recognition analysis of spontaneous cerebral activity, and physiological responses

evoked by sensory stimulation. A novel approach for depth of anaesthesia monitoring

is to measure changes in brain connectivity. This approach aligns with the hypothe-

sis that anaesthesia alters information processing patterns in the brain from long-range

complex connections to localised, simple, stereotyped activity. Relevant theoretical and

experimental findings describing brain connectivity changes associated with anaesthetic-

induced LOC are reviewed in the last section of this chapter. Due to the complexity and

the extent of the topic, only a brief overview is given, since a comprehensive dissertation

is beyond the scope of this work.

2.1 Component and Mechanisms of Anaesthesia

Anaesthetic drugs comprise a wide range of molecules that usually fall in two classes:

Intravenous agents (i.e. Propofol, Ketamine, etc.) and inhalational anaesthetics (i.e.

Nitrous Oxide, Sevoflurane, etc.). Usually a cocktail of drugs is used to achieve a series

9
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of clinical endpoints: Unconsciousness (hypnosis), amnesia, analgesia (nociceptive block-

ade) and immobility, together with stable cardiovascular and respiratory conditions.

Anaesthetics act by altering the neurotrasmission at multiple sites of the brain (Brown

et al. 2010). At a molecular level anaesthetics are thought to interact with neuron’s ion

channels and their regulatory mechanisms and in particular to hyperpolarize neurons by

enhancing inhibitory (gamma aminobutyric acid-GABA) receptors and therefore inhibit-

ing excitatory (N-metyl D-aspartate-NMDA) receptors (John & Prichep 2005). Because

a small number of inhibitory interneurons regulates the activity of large populations of

excitatory pyramidal neurons anaesthesia can effectively inactivate broad areas of the

brain. As a consequence of these cellular actions general anaesthesia leads ultimately to

a synchronized firing pattern of action potentials consisting of a hyperpolarized silent

state and a depolarized firing state that is reduced to short bursts of action potentials

as the drugs doses increase.

2.1.1 Clinical Signs and EEG patterns of General Anaesthesia and

their relation to Sleep

The molecular and cellular modifications induced by anaesthetic administration result

in a series of macroscopic EEG patterns (associated with specific clinical signs) that vary

in relation to the anaesthetic phase (Brown et al. 2010). During induction the patient

enters a state of paradoxical excitation (euphoria, delirious speech) characterized by an

increase in EEG beta (β) activity (13-25 Hz) that resembles the ‘β arousal’ observed in

REM sleep (also known as ‘paradoxical sleep’)(Sanders et al. 2012) (figure 2.1). Dur-

ing general anaesthesia maintenance period the EEG patterns undergo different phases:

in light anaesthesia β activity decreases and alpha (α, 8-13 Hz) and delta (δ < 4 Hz)

power increases. The intermediate state (phase 2) shows a prevalence of frontal δ and α

activity (‘anteriorization’) that is similarly found in NREM sleep. The α and δ rhythms

are thought to arise from the pyramidal neurons hyperpolarization due to the physiolog-

ical (sleep) or drug induced (anaesthesia) reduction of excitatory inputs (Brown et al.

2010). This phase of anaesthesia, where surgery is usually performed, corresponds to

Slow-Wave Sleep (SWS) where pain perception is significantly reduced and a strong

stimulation is required to produce arousal. As anaesthesia deepens the EEG alternates

periods of inactivity to burst of α and β waves known as ‘burst suppression’ (figure 2.1).

Similarly a switch of the thalamus from its tonic to bursting mode is also observed in

Slow-wave sleep. Bursts of activity become more rare as anaesthesia deepens.

Together with behavioural (hypnosis, amnesia, immobility) and electrophysiological

traits, sleep and anesthesia share specific neurophysiologic mechanisms: A series of

sleep-wake nuclei in the brainstem and thalamus are involved in anaesthetic mechanisms
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Figure 2.1: Mechanisms of anaesthetic actions and EEG patterns in anaesthesia
and vegetative states. Anaesthetic drug such as propofol have an inhibitory action on
the thalamus and decrease cortical activity. This correspond to a reduction in cerebral
activity, as measured by positron emission tomography (PET) and to dramatic changes
in EEG patterns. Example of EEG traces in Paradoxical excitation in anaesthesia and
Anteriorization and Burst Suppression in vegetative state and coma are given in the
bottom plots. General anaesthesia is characterized by similar EEG patterns. From

Brown et al. (2010)

(Mashour 2011, 2010). This suggests that, despite the important differences character-

izing these two states (Bonhomme et al. 2011), investigating the relationship between

sleep and anesthesia could provide important insight in the mechanisms of anaesthetic

action (Brown et al. 2010, Mashour 2010).
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2.1.2 Models of anaesthetic action

Anaesthetic induced loss of consciousness (LOC) does not arise from a general depres-

sion of neuronal activity but from the modulation of specific brain areas activity. The

thalamus has been identified as an important target of anaesthetics due to the consistent

reduction of thalamic metabolism and blood flow observed in PET studies (Alkire et al.

2000, 1995): although the anaesthetic state was found to be associated with a global

decrease in brain metabolism, this global deactivation was not uniform but involved

primarily the thalamus. These observations lead to the hypothesis that the thalamus

serves as a switch for consciousness. There is supporting evidence in the literature that

anaesthetic (and slow-wave sleep) induced LOC is related to the switch of thalamic cells

from a tonic-firing pattern, characteristic of vigilance, to a burst-firing behaviour (Llinás

& Steriade 2006). This switch in the thalamic neurons occurs coincident with a change

in EEG patterns from low voltage high frequency ‘Activated EEG’ to slow waves activity

and it is caused by an hyperpolarization of thalamic cells that block the transmission of

sensory input to the cortex (Alkire et al. 2000). Whether this thalamic switch is a direct

effect of anaesthetics or it is mediated by cortical activity is an open question (Alkire

et al. 2008): it is hypothesized that primary effects of anaesthesia occur at the cortical

level (with higher order cortical areas more sensitive than the lower order ones) and

then secondary effects occur in subcortical areas (Velly et al. 2007), however the exact

sequence of events remains to be defined (Marchant et al. 2014). These investigations

suggest that thalamus may be a ‘marker’ of cortical activity, i.e. its deactivation could

be an indirect outcome of the cortical effects of anaesthetics (Alkire et al. 2008).

Current theories of general anaesthesia have therefore attempted to describe how anaes-

thetics induce LOC by focussing on cortical cognitive processes. The ‘unified narcosis

theory’ proposed by Alkire (Alkire et al. 2000, 2008) suggest that anaesthetics induce un-

consciousness by disrupting thalamo-cortical circuits. This hypothesis is coherent with

the ‘cognitive unbinding’ theory proposed by Mashour (Mashour 2004): This framework

identifies the mechanism that mediates the unity of conscious experiences (‘cognitive

binding’) as central to sustain awareness and speculates that anaesthetics act by impair-

ing cognitive binding processes at different levels of brain architecture. At global level

synthetic processes may be interrupted by the uncoupling of brain structures that would

otherwise be synchronized in wakefulness (Mashour 2006). John and colleagues (John

& Prichep 2005) have attempted to describe the successive steps by which anaesthet-

ics induce unconsciousness (‘anaesthetic cascade’): while the first actions take place at

molecular level the final step of the ‘cascade’ is a functional cortico-cortical uncoupling

that ultimately results in suppressed awareness. All these theoretical frameworks sug-

gest that the ultimate effect of anaesthetic is a disruption of cognitive processing that is
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INDEX MANUFACTURER PARAMETERS VALUES

BIS
Bispectral Index

Aspect Medical Systems, USA
Beta Activity

SynchFastSlow
Burst Suppression

0-100

RE-SE
Response Entropy, State Entropy

GE Heathcare, Finland
Power Spectrum
Shannon Entropy

RE 0-100
SE 0-91

PSI
Patient State Index

SEDline, CA
Power Spectrum

Inter-hemispheric Coherence
Power Asymmetries

0-100

CSI
Cerebral State Index

Danmeter-Goalwick, Denmark
Alpha Beta Ratio

Alpha Beta Difference
Burst Suppression

0-100

Narcotrend Arbeitsgruppe Informatik/Biometrie, Germany
Power Spectrum

Entropy
Autoregressive

0-100
Letters

WAVcns
Wavelet-based Anesthetic Value

NeuroWave Systems Inc, OH Wavelet Coefficients 0-100

aepEX
Auditory Evoked Potentials Index

Medical Device Management Ltd, UK MLR latency and amplitude 0-99

Table 2.1: Principal commercially available monitors of the depth of anesthesia, with
the EEG features entering their algorithm, and the indexes reference values (adapted

from Marchant et al. (2014))

associated with thalamo-cortical and cortico-cortical uncoupling. As we will describe in

section 2.3 these hypotheses are supported by a wide scope of experimental studies in-

vestigating brain connectivity in states where consciousness is diminished or suppressed

and suggest that, in the search for a more reliable monitor of DoA, it may be promising

to concentrate on measures that more closely capture the neurophysiology of the brain.

In the next section we will describe the commercially available DoA monitors extracted

from the EEG signal and discuss some of their limitations.

2.2 Electrophysiological Measures for Anaesthesia Moni-

toring

The interest of clinicians and researchers in exploring alternative methods to monitor

anaesthetic depth has resulted in a series of commercially available depth of anaesthesia

(DoA) monitors. These indicators are typically extracted from a wide range of EEG

features that enter a proprietary algorithm whose output is a dimensionless index usu-

ally ranging from 0 (cortical silence) to 100 (subject awake and orientated). At present

at least seven market solutions are available for routine DoA monitoring: we have sum-

marized the main features of the different indexes in Table 2.1.

The most widely used is the Bispectral Index (BIS R©, Aspect Medical System, USA),

whose computation is based on time features and frequency domain parameters of EEG

recordings from two or more electrodes on the forehead.

Another classical approach, which has resulted in the commercial device aepEX (Medical

Device Management Ltd, Essex, UK), is based on auditory evoked potentials (brain
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responses elicited by the presentation of an auditory stimulus), and in particular on

the middle latency response (MLR) features. Other approaches are grounded on the

computation of one channel EEG entropy (Bruhn et al. 2000, Olofsen et al. 2008).

The rationale behind entropy indexes is found on the reduced ‘disorder’ and increased

predictability of the EEG signal in anaesthesia (Marchant et al. 2014). Other indexes

(i.e. the Patient State Index (Prichep et al. 2004)) result from a combination of ‘mixed’

EEG features as power in specific bands, burst-suppression, spectral asymmetries, etc.

Several studies have investigated the performances of different DoA indexes in predicting

the hypnotic effect (Bell et al. 2006, Schneider et al. 2003, Gajraj et al. 1999, Loveman

et al. 2001), the anaesthetics concentration (Irwin et al. 2002, Thornton et al. 1992) or

the response to surgical stimulation (Schneider et al. 2002, Myles et al. 2004): Results

are however not conclusive. So far no superiority of one type of index over others has

been established (Marchant et al. 2014) and the correlation between EEG indexes and

anaesthetic effects depends on the drug and the induction protocol used (Olejarczyk et al.

2017). In this section we will focus on the description of the BIS and the MLR indexes

primarily because they were historically developed first and they represent the most

studied and tested DoA indexes; secondly because we have compared their performances

with the proposed index based on brain connectivity measures in the last stage of this

work (chapter 6).

2.2.1 Bispectral Index

The BIS index monitor (Aspect Medical Systems, Norwood, MA, US) is based on spec-

tral analysis of scalp recordings from two or more electrodes (in addition to the ground

electrode) on the forehead and is one of the most used monitors of anaesthesia in clin-

ical practice. It was demonstrated to reduce the incidence of intraoperative awareness

(Myles et al. 2004) and to predict movement in response to skin incision (indicative

of inadequate anaesthetic depth) in patients anaesthetized but not paralysed (Kearse

et al. 1994). The BIS combines, using a proprietary algorithm (Chamoun et al. 1995),

several variables extracted from the EEG in a multivariate index scaled to a range be-

tween 0 and 100. The variables used in the computation of the BIS index are both

time domain features of the EEG traces (burst-suppression ratio, BSR) and frequency

domain measures (power spectrum, bispectrum and higher order spectral indexes). The

power spectrum is used for the computation of the beta ratio parameter (βR), while

the bispectrum is used in the computation of the SynchFastSlow (SynFS). The propri-

etary algorithm combines the sub-parameters with clinically predetermined coefficients

extracted from a model based on a database of EEG recordings matched to correspond-

ing hypnotic levels. The weights are assigned using a non-linear function and they vary
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depending on the anaesthetic stage: the βR is dominant in light sedation, the SynFS

during EEG activation and surgical level of hypnosis while the BSR detects deep anaes-

thesia (Rampil 1998). While the computation of the spectrum measures the dramatic

changes in EEG power distribution as anaesthesia deepens, bispectral analysis quantifies

quadratic phase coupling between different frequency components. During continuous

monitoring the BIS index is updated through the preprocessing and analysis of multiple

epochs overlapping in a 60 s time window. The bispectrum (BISP ) is the average of

the triple products (TP) calculated for each epoch into which the original EEG signal

x(t) was segmented, as follow:

TPj (f1, f2) = Xj (f1)Xj (f2)X
∗ (f1 + f2) (2.1)

BISP (f1, f2) =

√
1

M

∑

j

TPj (f1, f2) (2.2)

where BISP (f1, f2) represents the bispectrum computed for two frequencies f1 and f2,

M is the number of epochs in the time window and Xj(f) is the Fourier Transform

component at frequency f and for epoch j.

Whether the computation of the phase coupling information importantly contributes in

monitoring anaesthesia is a debated issue. Results from a study involving 58 subjects

who underwent a range of anaesthetic levels between light sedation and deep anaesthe-

sia showed that using a combination of spectral and bispectral features increased the

’responsive’ vs ’anaesthetized’ classification performances, if compared with spectrum or

bispectrum alone (Holt et al. 1998). On the other hand, other works reported contrast-

ing results: A study on 39 subjects undergoing elective surgery Miller and colleagues

(Miller et al. 2004) compared the performance of the bispectrum computed by emulating

the proprietary algorithm and an equivalent parameter depending only on the spectrum;

the results showed that the two indexes closely tracked each other, suggesting that al-

most all the changes in BIS index during anaesthesia is explained by the decrease in the

high frequency EEG spectrum. Moreover the same index computed using bicoherence, a

measure of phase coupling that is independent of spectral amplitude and it is defined as

the normalized degree of phase coupling, showed negligible changes with the induction

of anaesthesia, suggesting that the application of bispectral analysis does not add clini-

cally useful information that could not be obtained from the power spectrum. Similarly,

another study (Hagihira et al. 2001) found modest changes in low frequency bicoherence

as the concentration of anaesthetics was increased and demonstrated that to accurately

estimate the bispectrum at least three minutes of EEG monitoring are required, while
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the BIS monitor uses 60 s EEG segments to update the index value. Moreover the bis-

pectrum computation involves the combination of three estimators (equation 2.1), hence

its variability could represent an issue.

Despite being a well-established method, the BIS monitor suffers from several limita-

tions. BIS values show a high variability during stable physiological conditions and have

been demonstrated to be unable to detect the transition from unconsciousness to the

recovery of awareness (Gajraj et al. 1999). The ability of BIS in measuring the hypnotic

level was also questioned in a study on 20 patients monitored with the isolated forearm

technique (IFT) (Schneider et al. 2002) where the BIS index could not reliably distin-

guish between responsive and unresponsive patients. In a similar study the relationship

between BIS and postoperative recall was investigated in 56 patients and similar BIS

values were found in subjects with and without conscious recall (Kerssens et al. 2003).

Moreover BIS shows a gradual increase after the termination of anaesthesia, thus sug-

gesting it may actually measure the anaesthetic induced suppression of EEG activity,

thus being a monitor of the clearance of drugs instead of the state of arousal of the brain,

which is the result of the complex balance between analgesic and hypnotic levels and the

surgical stimulation effects (Gajraj et al. 1999). Some authors suggest that BIS value

could drop during the anaesthetic procedure as a result of neuromuscular blockade and

consequent decrease of scalp electromyographic (EMG) activity or that, equally, EMG

artifacts may falsely elevate the BIS value (Bard 2001). In addiction the BIS monitor is

‘blind’ to some anaesthetics as Nitrous Oxide (Barr et al. 1999).

2.2.2 Auditory Evoked Potentials

Auditory evoked potentials (AEPs) are brain responses elicited by the presentation of

an auditory stimulus. The electrical activity is recorded via scalp electrodes at specific

locations on the head. The characteristic features (amplitude and latency of peaks) of

AEPs have been extensively investigated and represent the activity of neural generators

along the auditory pathway1. Usually AEPs are classified on the basis of the latency (the

timing of the responses relative to the stimulus onset) into auditory brainstem responses

(ABR) -within 15 ms after stimulation; mid-latency responses (MLR) -which occurs in

the interval of 15-50 ms after stimulation; and Late cortical responses (ALR). The MLR

is characterized by a series of positive (”P” waves) and negative (”N” waves) waves; The

first MLR negative wave was called Na, followed by the positive wave Pa and by the Nb

dip and Pb peak. While the waves of early evoked responses are stable with the level

of arousal, later components, that represent activity going from the thalamus to the

1In view of anaesthetic monitoring, it is useful to point out that AEPs may give information about
different anaesthetic endpoints as compared with EEG as the first involve the processing of sensory
information, while spontaneous EEG does not.
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primary and association auditory cortices, undergo significant changes during sleep and

anaesthesia and are also modulated by the level of attention. In particular, the MLR

seems to be the most promising for discriminating conscious from unresponsive patients

during anaesthesia. Literature results report evidence of an increase in the latency and a

decrease in the amplitude of MLR peaks with anaesthesia. These properties are exploited

in a commercial device, the aepEX monitor (Medical Device Management Ltd, Essex,

UK), that extracts the MLR evoked by click stimuli to produce a diagnostic index of

DoA. A correlation between Nb negative wave latency and response to command during

anaesthesia induced with different agents was demonstrated (Thornton & Sharpe 1998,

Loveman et al. 2001, Tooley et al. 1996, 2004). However the large inter-subject variability

in Nb latency (some patients are unresponsive at latencies where others are sufficiently

awake to respond to verbal commands) gives rise to the problem of specifying a general

cut-off point for awareness. A more recent study by Bell and colleagues (Bell et al. 2006)

investigated MLR trends associated with changes in responsiveness to command and

reported a switch in MLR power with the onset of anaesthetic induced unresponsiveness

but they did not report any latency shift. Also in this study the identification of a

threshold across subjects that indicates conscious awareness was complicated by the

individual variability. Moreover the large variation in predictive threshold with different

drug combinations suggest that MLR is agent specific and that, more specifically, it

is not a pure hypnotic parameter (Tooley et al. 2004). AEP is also a difficult signal

to record, since it is embedded in EEG background activity, myogenic and electrical

artifacts, leading to signal to noise ratio (SNR) often less than -20 dB and issues of data

quality may not have been well addressed in early studies. The standard technique to

improve SNR is to register multiple responses to repeated stimulation and coherently

average them and several methods have been proposed in order to acquire a large number

of responses within a relatively short recording time. For instance the use of Maximum

Length Sequences (MLS) (Eysholdt & Schreiner 1982), which allows a higher stimulation

rate to be used by overlapping the multiple responses in time, was demonstrated to

improve the detectability of MLR waves and hence the feasibility of using MLR in clinical

monitoring (Bell et al. 2002). However the detection of significant differences between

anaesthetic infusion rates remains challenging, due to the extremely small differences in

amplitude (typical variations are a fraction of 1 µV) (Bell et al. 2006). These factors,

together with worsening SNR with increasing hearing impairment, limit the usefulness

of MLR in clinical practice for anaesthetic monitoring (Loveman et al. 2001).
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2.2.3 Comparison of DoA monitors

Despite the large number of studies on commercial monitors, comparing the perfor-

mances and effectiveness of different DoA indexes is challenging due to the heterogeneity

of anaestehtic protocols and patients populations investigated (Bruhn et al. 2006). In a

study comparing AEP, BIS and processed EEG performances including 90 patients (?)

the AEP was found most sensitive to surgical stimulation, while the BIS had the better

signal quality. BIS and entropy (RE,SE) showed similar accuracy in detecting loss of

response to verbal command. As previously discussed, BIS is also thought to be more

affected by EMG artifacts than other monitors as Narcotrend or Entropy. However,

in terms of algorithm complexity (or,equivalently, performances in monitoring rapid

changes in sedation level) Narcotrend (together with PSI) are slower if compared to BIS

or Entropy monitors (?)

In a recent update of UK guidelines for minimal standards of anaesthetic monitoring

the use of DoA monitors is strongly recommended (‘if not essential’) in total intravenous

anaesthesia with neuromuscular blockade (Association of Anaesthetists of Great Britain

and Ireland 2016). These guidelines are based on a technology assessment report com-

missioned by National Institute of Health Research that examined 22 randomized control

trials and compared BIS, Entropy and Narcotrend with standard monitoring in terms of

risk of intraoperative awareness, patient outcomes (recovery times, comorbidities), drugs

administration and cost-effectiveness of DoA monitoring. The main conclusions of this

detailed assessment are that the evidence for preferring DoA to standard monitoring is

stronger for BIS-guided anaesthesia than for Entropy or Narcotrend monitoring. How-

ever the impact of BIS monitoring in reducing the incidence of intraoperative awareness

is limited (and significant only in patients at higher risk of awareness). All the moni-

tors included in the analysis are associated with reduced anaesthetic consumption and

patient recovery times however the relative cost savings are counterbalanced by the

additional costs of DoA monitoring. The ability of current DoA monitors to reduce

the risk of intra-operative awareness is questioned (Pandit & Cook 2014) and, as we

have discussed, although the methods described above correlate well with the delivered

anaesthetic concentration, they suffers from some limitations. Together with practical

limitations, a primary issue in the use of these DoA monitors is that they do not pro-

vide direct information about the state of the brain, which is the target of anaesthetics;

in other words they lack a theoretical and physiological basis (Massimini et al. 2010).

Moreover current DoA monitors measure only the hypnotic component of general anaes-

thesia disregarding, for instance, the anti-nociception level, which is a very important

indicator of the surgical stress of the patient. These are all prossible reasons why at the
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present their uptake is quite low (only 2% of anaesthetists use them for routine mon-

itoring (Pandit & Cook 2014)). There is therefore a need for improvement of current

DoA monitors, in particular with regard to their ability to detect unexpected awareness.

In the search for a more reliable index, it may be fruitful to concentrate on correlation

with neurobiological processes involved in the conscious state, such as cortico-thalamic

information flow. In this regard theoretical and experimental observations indicate that

electrophysiological measures of brain connectivity are promising.

In the next section a review of studies investigating the relation between brain con-

nectivity and consciousness will be given together with the rationale and methods to

be explored in developing a novel indicator of depth of anaesthesia based on cerebral

connectivity.

2.3 Anaesthesia and Brain Connectivity

As seen in section 2.1, loss of consciousness induced in anaesthesia may be a result of

changes in the information flow between cortical and subcortical areas. According to

the integrated information theory of consciousness introduced by Tononi (2008), large

scale coupling that integrates information from a complex of brain areas is essential to

generate a conscious experience. In this framework a possible measure of consciousness

was proposed, the Integrated Information, defined as the amount of information gener-

ated by a complex of elements, above and beyond the information generated by its parts;

Tononi and colleagues also suggested that network patterns characterized both by large

activation and high differentiation could integrate the ensemble of stimuli characteristic

of the conscious experience.

Brain connectivity reflects statistical or causal dependencies between brain regions (Fris-

ton 2011) and it can be used to describe functional networks activated in some specific

behavioural states. Its potential to provide new insight into the neural mechanisms un-

derlying LOC (Nallasamy & Tsao 2011) has given rise to a series of works that have

investigated the anaesthetic modulation of brain connectivity using a heterogeneity of

methodologies and anaesthetic protocols. These studies have suggested that anaesthetic-

induced LOC is associated with widespread changes in brain connectivity. Convincing

evidence of a localized and stereotypic brain connectivity pattern in anaesthetic LOC

has been given in Ferrarelli et al. (2010). Ferrarelli and colleagues used a pertubational

approach involving Transcranical Magnetic Stimulation (TMS) to induce electrical cur-

rent inside the head by magnetic pulses, and EEG recording to investigate how triggered

neural activity spread from the stimulation site. Whilst during wakefulness the TMS
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elicited complex patterns of scalp waves and current spreading in distant cortical ar-

eas, during midazolam induced LOC, the TMS evoked response faded shortly after the

stimulation and was reduced to a stereotypical and local response, thus indicating a

‘breakdown of effective connectivity’ (figure 2.2). Interestingly enough, similar find-

Figure 2.2: TMS-evoked response in wakefulness (TOP) and midzodam LOC (BOT-
TOM). A and A’ represent the averaged TMS-evoked potentials for all electrodes. B
and B are maps of estimated cortical currents. The grey cross indicates the site of
TMS stimulation (premotor cortex). From Ferrarelli et al. (2010). During wakefulness
the TMS stimulus triggers a potential (in blue in the top panel) that shows complex
patterns and spreads to different cortical locations. On the other end the potential
evoked in anaesthesia (in red in the bottom panel) decays shortly after the stimulation

and remains localized at the stimulation site.

ings were observed in a TMS/EMG investigation of NREM sleep by the same group

(Massimini et al. 2005a). A general impairment of brain networks integration (with

fronto-parietal connectivity particularly affected) has also been reported in several func-

tional magnetic resonance (fMRI) studies of propofol anaesthesia (Schrouff et al. 2011,

Boveroux et al. 2010, Gómez et al. 2013). In a study involving 164 patients anaesthetized

with a variety of agents, changes in EEG coherence in different frequency bands were

investigated (John & Prichep 2005). Coherence (Coh) measures the proportion of linear

dependency between pairs of signal and will be discussed in more detail in Section 3.1.
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Results showed that coherence between frontal and occipital electrodes in the gamma

(γ) band (25-50 Hz) decreases significantly shortly after LOC and during maintenance of

anaesthesia and returns to ‘baseline’ levels at recovery of consciousness. These findings

indicate a functional uncoupling of frontal and posterior brain areas during anaesthetic

LOC: this uncoupling is more marked for the γ rhythm, known to arise from the cortico-

thalamo-cortical activity regulating the processing of complex environmental stimuli.

Changes in EEG connectivity during general anaesthesia have also been investigated

in a few recent studies. These studies have reported significant changes in the direc-

tion and functional organization of fronto-parietal networks, using directed connectivity

estimators based on EEG phase synchronization (Lee et al. 2009), symbolic transfer

entropy (Ku et al. 2011) and Granger Causality (time domain) (Nicolaou & Georgiou

2014). While these works identify a general impairment of frontoparietal connectivity in

anaesthetic-induced LOC, results regarding the changes in the direction of coupling are

not conclusive and are sometimes contrasting, probably as a result of applying different

methodologies for connectivity analysis. The activity in the fronto-parietal associative

network has been shown to be systematically altered also in other states of diminished or

suppressed consciousness, like NREM sleep, vegetative states or coma (Massimini et al.

2005a, Spoormaker et al. 2010, King et al. 2013, Sitt et al. 2014, Boly et al. 2011). A

significant impairment of medium and long-range information sharing was demonstrated

to occur in patients in vegetative state (King et al. 2013); a weighted symbolic mutual

information (wSMI) analysis of EEG auditory stimuli was applied to evaluate informa-

tion sharing in different disorders of consciousness. To compute wSMI the EEG traces

were transformed in discrete symbols and then the joint probability for each pair of sym-

bols was estimated. The changes in mutual information sharing at different distances

between electrodes were investigated revealing a significant increase of long range wSMI

with the level of consciousness as showed in figure 2.3;

Taken together, these findings provide evidence for the important role of the fronto-

parietal association cortices in the maintenance of consciousness (Boly et al. 2008) and

the hypothesis that information flow break-down may affect signalling between sensory

posterior areas and associative frontal cortices that is essential for a conscious experience

(Boveroux et al. 2010). Moreover these studies indicate that anaesthetic-induced un-

consciousness is associated with widespread changes in brain connectivity and therefore

suggest that empirical measures of information sharing between brain regions represent

a useful tool to investigate the basis of anaesthetic modulation of consciousness. Dif-

ferently from the black-box approach of the current DoA monitors (that obscures the

underlying neural mechanisms in an a-dimensional index) brain connectivity measures
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Figure 2.3: Weighted symbolic mutual information (wSMI) maps computed for differ-
ent levels of consciousness (indicate by different head plots). A. Median wSMI computed
for each channel with respect to all other channels. B. Mean wSMI computed among
16 clusters (groups of adjacent electrodes) and represented by arcs whose height is pro-
portional to the distance in 3D space between clusters. From King et al. (2013). This
indicates that long range connectivity is affected by the level of consciousness of the

subjects.

may provide more information about the physiological correlates of consciousness.

Among the various neuroimaging techniques mentioned, non-invasive recordings from

surface scalp electrodes (EEG) are an interesting method, due to their high temporal

resolution, practicability and limited costs (Sitt et al. 2014). EEG-based systems can

be used in routine clinical work in the home or ward, as well as in intensive care units

or operating theatres where assessment of level of consciousness may be carried out.

Due to its practical advantages, in this work we have focused on connectivity estimated

from EEG recordings. Different methodologies have been proposed to assess EEG con-

nectivity, based on various theoretical frameworks (phase dynamics, information theory,

Granger causality, etc.). Among them, spectral estimators developed in the framework of

Granger causality represent well established, computationally convenient methods, that

allow a straightforward interpretation in terms of power content. In the next chapter, a

detailed overview of the rationale and properties of these estimators will be outlined.



Chapter 3

Measuring coupling and causality

with Multivariate Autoregressive

modeling

In the last decades a growing body of neuroimaging studies has investigated neuronal

activity during loss of consciousness in sleep, anaesthesia and vegetative states. These

studies have analysed different aspect of brain activity: for instance the baseline activity

as reflected by cerebral metabolic rate, or the blood oxygen level dependent signal as

well as the response of brain networks to external stimuli. In recent years an increasing

relevance has been attributed to the concept of brain connectivity as a way to under-

stand the organized behaviour of cortical regions, beyond the simple mapping of their

activity (David et al. 2004); currently the functional connectivity of specific large-scale

networks is in the forefront of interest (Hudetz 2012) and it is also the most relevant for

the current study. As described in section 2.3, different imaging techniques have been

used (PET, fMRI, TMS and EEG) with different measures of connectivity (i.e. Coher-

ence, Phase Synchronization, Mutual Information). While brain imaging and invasive

recordings are powerful tools to investigate brain activity, including at subcortical level,

they suffer from some practical limitations that affect their applicability for routing mon-

itoring: these technologies are often too cumbersome and expensive to be easily applied

for clinical monitoring. On the other hand macroscopic, non-invasive scalp recordings

such as EEG, due to their practicability (EEG can be applied easily at bed-side) and

limited costs, represent a suitable technique for clinical monitoring. In this work we

will therefore focus on measures of connectivity extracted from EEG signals that will be

described more formally in this chapter.

23
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Functional connectivity is defined as the statistical dependence among measurements of

neural activity (Friston 2011) and it is usually inferred through temporal correlations

among different neurophysiological events. These correlations may be, for example, a

result of stimulus triggered oscillations evoked by a common input, but do not necessarily

refer to direct coupling among neural systems mediated by anatomical connections.

The estimation of Functional Connectivity is quantifiable with measures of statistical

dependencies among recorded data, such as correlation or coherence, and it does not

require a model of how the neural systems under investigation are connected, thus being

particularly suited for the analysis of large-scale complex networks.

A considerable number of approaches (linear and non-linear) have been proposed in

the literature for estimation of Functional Connectivity from scalp recorded EEG sig-

nals, however of particular interest are frequency-based methods since it is well known

that important information in the EEG is coded in this domain and frequency specific

patterns are dominant in some behavioural states, e.g. sleep stages, performances of

cognitive tasks (Klimesch 1999). The approach employed in this work makes extensive

use of multivariate autoregressive models (MVAR) models to compute linear causality

estimator of FC in the frequency domain.

The aim of this chapter is to give an overview of the methods proposed in the literature

to measure linear coupling and causality between time series. In particular, the focus

will be on measures developed in the framework of MVAR. This approach remains of

great interest in the study of physiological signals because it can be strictly connected

to the frequency domain. The rationale for the development of these measures will be

given together with a description of their properties. In the last section some practical

issues that are essential for an accurate model estimation will be addressed (i.e choice of

the algorithm, optimum model order selection, appropriate time window length, etc.).

To continue, the validity of the estimated MVAR model will be examined and different

statistical tools recommended to check for the model validity discussed.

3.1 Non-directed measures of coupling: Coherence and

Partial Coherence

Measures of interactions among observed time series of a multivariate process have gen-

erally relied on estimates of their correlation matrix. The cross-correlation function

ri,j(k) at time lag k of two signals xi(n) and xj(n) is defined as the average of the prod-

uct of xi(n) and xj(n− k). For a M × 1 vector of M observed zero-mean time series at

time lag n
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x(n) = [x1(n)...xi(n)...xM (n)]T 1 (3.1)

the correlation matrix at time lag k is defined by the M ×M matrix R(k)

R(k) = E
[
x(n)xT (n− k)

]
(3.2)

One common way to quantify the correlation in time between two signals is the cor-

relation coefficient, which is a normalised measure of linear dependencies, as expressed

below

ρi,j(k) =
ri,j(k)√

ri,i(0)rj,j(0)
(3.3)

where ri,j(k) is the i, j element of the correlation matrix R(k) and ri,i(0) represent the

variance of the signal xi.

As previously mentioned, in EEG analysis it is convenient to have information about

the coupling in the frequency domain. The Fourier Transform of the correlation matrix

is called the spectral density matrix S(f).

S(f) =




S1,1(f) S1,2(f) · · · S1,M (f)

S2,1(f) · · · · · · S2,M (f)

SM,1(f) · · · · · · SM,M (f)


 (3.4)

In analogy to the definitions given in the time domain, a normalised spectral measure of

coupling is given by the Coherence (Coh) that is the ratio of the cross-spectral density

function to the product of the autospectral densities.

Cohi,j(f) =
Si,j(f)√

Si,i(f)Sj,j(f)
(3.5)

The Cohi,j(f) is complex-valued and its squared modulus |Cohi,j(f)|2 (called the Co-

herence function (Bendat & Piersol 2000)) measures the strength of linear interactions

between xi(n) and xj(n) at frequency f , i.e. the extent to which the signal xj(n) may

be predicted by the signal xi(n) by an optimum linear least square relationship. It can

assume values between 0 and 1 and |Cohi,j(f)|2 6= 0 when any linear relationship (direct

1Vector and matrices will be indicated with bold symbols.
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and indirect) between the signals xi(n) and xj(n) exists. Coherence has been ubiqui-

tously used to investigate frequency-specific synchronization in EEG and MEG studies

(Gross et al. 2001).

In order to quantify direct linear interactions between pairs of signals the concept of

Partial Coherence was introduced. The Partial Coherence (PCoh) is a measure of the

dependence between two time series after removing the linear effect of the other series

of the dataset (Bendat & Piersol 2000). It plays the same role as ordinary Coh except

that it applies to partial (or conditioned) spectral density functions. The partial cross-

spectral density function of xi(n) and xj(n) is defined as:

Sij|(X/ij)(f) = Sij(f)− Si(X/ij)(f)S−1(X/ij)(X/ij)(f)S(X/ij)j(f) (3.6)

where X/ij means all the series of the dataset x(n) except the series xi(n) and xj(n)

and S−1(X/ij)(X/ij)(f) is the inverse of the spectral matrix S(f) remaining when the ith and

jth row and column have been removed. The partial cross-spectral density represents

the cross spectrum between xi(n) and xj(n) once the linear effects of X/ij on xi(n) and

xj(n) have been removed. The second term in the right side of equation 3.6 represents

the linear least square prediction of xi(n) from X/ij 2 (Brillinger 1981).

The PCoh between xi(n) and xj(n) is defined as follows:

PCohi,j(f) =
Sij|(X/ij)(f)√

Sii|(X/ij)(f)Sjj|(X/ij)(f)
(3.7)

As for the ordinary Coh, the PCoh is complex, therefore its squared modulus |PCohi,j(f)|2

(called the Partial Coherence function) is used to quantify the strength of interaction

between xi(n) and xj(n) after subtracting the linear effect of the remaining signals of

the process.

It has been demonstrated (Dahlhaus 2000) (see appendix B for the demonstration) that

the Partial Coherence can be estimated as a function of the inverse spectral matrix

G(f) = S−1(f) (3.8)

as follows

2If the correlated effects of X/ij are removed by xi(n) it is not necessary to remove them also from
xj(n) to compute the partial cross-spectral density between xi(n) and xj(n). It can be demonstrated in
fact that the cross spectrum between xi|(X/ij)(n) and xj|(X/ij)(n) must be the same as the cross-spectrum
between xi|(X/ij)(n) and xj(n) (or xj|(X/ij)(n) and xi(n)) (Bendat & Piersol 2000)
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PCohi,j(f) =
gi,j(f)√

gi,i(f)gj,j(f)
(3.9)

This approach, that uses the inverse spectral matrix instead of the partial spectral

density functions as in equation 3.7, is more convenient as it avoids the computation of

all the M(M-1)/2 partial coherences (Dahlhaus & Eichler 1997). It is also recommended

in Eichler et al. (2003) for neural spike trains analysis and in Medkour et al. (2009) for

EEG application as an efficient computation of all frequency domain PCoh statistics.

In conclusion, the ordinary Coh quantifies the linear interactions between signals while

the PCoh measures the linear relationships between two signals of a multivariate process

once the least square dependence from the other signals of the dataset has been removed,

therefore it quantifies only direct dependencies between signals. It can be a useful

measure to identify the direct influence between two signals where the ordinary Coh can

be erroneously high (or low) because of the influence a third (or more) signal has on the

considered ones. An illustrative example of how, if the effect of other variables is not

considered properly, the ordinary coherence alone can lead to erroneous conclusions is

showed in Figure 3.1. Assume that the Coh function computed between x1 and x2 has

a value close to the unity. This would lead to believe that a linear relation is directly

relating these two variables. However this result might be only a consequence of the

presence of a third signal x3 that is highly correlated with both x1 and x2. In reality

there may be no direct relationship between x1 and x2 at all. In this case, differently

from the Coh1,2, the PCoh1,2 would be zero thus giving an appropriate indication of

the degree of linear dependence between the two signals.

The use of PCoh to identify direct interactions presents some limitations however:

Firstly, neural signals cannot be completely described by linear dynamics. In this case

one must bear in mind that PCoh is able to partial out only linear indirect correla-

tions: it can therefore be different from zero if the signals are driven by some indirect

non-linear dynamics. PCoh may also ‘falsely’ indicate a direct connection in the typical

case of ‘marrying parents of a joint child’ (Dahlhaus & Eichler 1997). This occurs when

two processes x1 and x2 are independent but they both influence a third signal x3 (i.e.

x3 = x1 +x2 + ε): in this case x1 and x2 are not independent conditional to x3 and the

PCoh1,2(f) will be different from zero.

Moreover, due to the symmetric properties of the cross-spectral matrices, Coh and PCoh

do not provide information regarding the direction of the interactions (i.e. Cohi,j(f) =

Coh∗j,i(f) and |Cohi,j(f)|2 = |Cohj,i(f)|2 and the same holds for the PCoh) and do not

allow inference on the causal structure of the process. In order to be able to quantify

directional information, measures derived from a factorization of Coh and PCoh have

been developed, primarily in the framework of the multivariate autoregressive models.
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Figure 3.1: Illustrative example of erroneous high coherence

3.2 Directed measures of causality derived from MVAR

models

In this section directed measures of interactions between time series (i.e. measures able

to quantify the strength of coupling from one signal xi(n) to another xj(n) as opposite

to the feedback interaction from xj(n) to xi(n)) will be introduced. As previously

mentioned these measures make extensive use of the MVAR model framework. A MVAR

process is a linear model of the temporal dynamics and interactions among time series.

The general expression of a MVAR process is given in equation 3.10 (Lütkepohl 2005).

x(n) =

p∑

l=1

A(l)x(n− l) + ε(n), n = 1, · · · , N (3.10)

x(n) represents the M dimensional vector of the time-series at time lag n3, N is the

number of time samples, A(l) is the coefficients matrix describing the linear interactions

among observed time series at lag l, p is the number of time lags used to model interac-

tions, i.e. the model order, and ε(n) is the vector of white innovations, with non-singular

residual covariance matrix

Σε =
{
σ2ij
}

(3.11)

and

E[ε(n)ε(m)] = 0, n 6= m (3.12)

An MVAR model describes each signal as a weighted combination of its own past values

and the past values of other signals in the model plus an error term. The weights relating

3For EEG analysis, M represent the number of channels considered and x(n) is the vector of EEG
recordings at time lag n
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the present of one signal to the past of another capture the causal or directed influence

between signals.

The expression for a MVAR model in the frequency domain is

X(f) = A(f)X(f) + E(f) (3.13)

where A(f) is the Fourier Transform of the matrix of coefficients A(l).

A(f) =

p∑

l=1

A(l)e
−2πfl
fsamp (3.14)

Equation 3.13 can be expressed in an equivalent way as a linear causal filter, defining

the transfer matrix H(f) as indicated in equation 3.15:

X(f) = H(f)E(f)

H(f) = [I−A(f)]−1 = A(f)−1
(3.15)

Taking in account equation 3.15, the spectral matrix and the inverse spectral matrices

of a MVAR process X(f) can therefore be factorized as follows:

S(f) = H(f)ΣεH
∗(f)

G(f) = A(f)∗Σ−1ε A(f)
(3.16)

where the superscript ∗ stands for the conjugate transposed. The spectral factorization

in equation 3.16 allows the unique decomposition of Cohi,j(f) into two Directed Coher-

ence (DC) terms one quantifying the strength of coupling from xi(n) to xj(n), the other

representing the feedback interaction from xj(n) to xi(n). Under the assumption that

the residuals are uncorrelated and therefore Σε = diag
{
σ2ii
}

we can express the general

element of the spectral matrix Si,j(f) as follows:

Si,j(f) =

M∑

m=1

σ2m,mHi,m(f)H∗j,m(f) (3.17)

Therefore the Coh can be factorised as (Baccalá & Sameshima 2001):
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Cohi,j(f) =

∑M
m=1 σm,mHi,m(f)√∑M
m=1 σ

2
m,m|Hi,m(f)|2

∑M
m=1 σm,mH

∗
j,m(f)

√∑M
m=1 σ

2
m,m|Hj,m(f)|2

=
M∑

m=1

DCi,mDC
∗
j,m(f)

(3.18)

The Coh is expressed in equation 3.18 as a sum of terms DC called Directed Coherence

DCi,j(f) =
σj,j |Hi,j(f)|√∑M
j=1 σ

2
j,j |Hi,j(f)|2

(3.19)

The DCi,j(f) can be interpreted as a measure of the coupling from xj(n) to xi(n) as

opposite to DCj,i(f) that quantifies the feedback interaction from xi(n) to xj(n). In

particular, the squared DC measures the coupling from xj(n) to xi(n) as the normalized

portion of Si,i(f) due to xj(n) (or transferred from xj(n) via the transfer function Hi,j(f)

to xi(n)). It is demonstrated, in fact, that (Faes & Nollo 2011)

Si|j(f) = |DCi,j(f)|2Si,i(f)

Si,i(f) =

M∑

j=1

Si|j(f)
(3.20)

where Si|j(f) is the part of the spectrum of xi(n) due to the signal xj(n). |DCi,j(f)|2

quantifies the amount of spectrum at frequency f transferred from xj(n) to xi(n) nor-

malized by the spectrum of the signal xi(n).

When the residuals variances are excluded from the definition of DC, or when, equiva-

lently, all the input variances are equal, the definition of DC in equation 3.19 coincides

with the Directed Transfer Function (DTF ) (Kamiński et al. 1997)

DTFi,j(f) =
Hi,j(f)√∑M
j=1 |Hi,j(f)|2

(3.21)

The useful equation 3.20 is not valid for the DTF, that, disregarding the signals vari-

ances σj,j , loses interpretability in the sense of power transfer and spectral causality.

Starting from equation 3.16 and with analogous steps (and assumptions) the PCoh can

be factorized as follows 4

4the order of the indexes i and m in this equation is different from equation 3.18 (i.e. A∗m,i(f) vs

Hi,m(f)) because of the conjugate transposed matrix A(f)∗ in the factorization expressed in equation
3.16.
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PCohi,j(f) =

∑M
m=1

1
σm,m

A
∗
m,i(f)

√∑M
m=1

1
σ2
m,m
|Am,i(f)|2

∑M
m=1

1
σm,m

Am,j(f)
√∑M

m=1
1

σ2
m,m
|Am,j(f)|2

=

M∑

m=1

PDC∗m,iPDCm,j(f)

(3.22)

In the last expression the PCoh has been expressed as a sum of Partial Directed Coher-

ence (PDC) terms (Baccalá & Sameshima 2001, Baccalà & Sameshima 2007)

PDCi,j(f) =
1
σi
|Ai,j(f)|

√∑M
i=1

1
σ2
i
|Ai,j(f)|2

(3.23)

The PDCi,j(f) quantifies the normalized proportion of the inverse spectrum S−1j,j (f)

that is transferred from xj(n) to xi(n) through the function |A∗i,j(f)|. In fact it can be

demonstrated that (Faes & Nollo 2011):

gi|j(f) = |PDCi,j(f)|2gj,j(f) (3.24)

where g∗(f) represents the generic element of the inverse spectral matrix G(f) (see

equation 3.8). Being the PCoh a measure of direct coupling, the PDCi,j(f) measures

the strength of the direct coupling from xj(n) to xi(n), when the linear influences from

all the other signals of the MVAR process have been excluded. The quantity defined in

equation 3.23 is the so-called generalized PDC (Baccalà & Sameshima 2007) that was

introduced in order to give the PDC the property of scale-invariance with respect to the

signals amplitudes, differently from its original formulation (ordinary PDC, equation

3.25) (Baccalá & Sameshima 2001)

orPDCi,j(f) =
|Ai,j(f)|√∑M
i=1 |Ai,j(f)|2

(3.25)

where the weighting by the residual variances is lacking. The rationale of the upgrade

from orPDC to PDC 5 was to improve the performances of the estimator with respect

to the time series scaling; the same property of scale invariance holds for the DC that,

differently from DTF , includes the normalization by the variances of processes. A

description of the effects of time series amplitude on the estimation of causality is detailed

in Baccalà & Sameshima (2007).

5For the sake of simplicity we will indicated the generalized PDC with the symbol PDC in this
report
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3.2.1 Interpretation in the sense of Granger Causality

The PDC and DC can be interpreted as measures of Granger causality. The notion

of Granger Causality was introduced in Econometrics by Granger (1969): by definition

a signal x(n) is said to Granger cause a signal y(n) if the knowledge of the x(n)’s past

significantly improves the prediction of y(n) (Lütkepohl 2005). This causal relationship

is not reciprocal and therefore allows the inference on the direction of information flow

between structures. The key concept in Granger causality is the exclusive reference to

past samples in the prediction of the time series (the cause must precede the effect).

PDC and DC (or DTF ) provide an estimation of the coupling that takes into account

only the effect of the past of the time series on the current sample. For instance the

PDC is a function of the spectral coefficients Ai,j(f) that are the Fourier Transform of

the coefficients modelling the linear lagged interactions (equation 3.10). Statistical tests

of Granger causality can be performed by direct examination of the coefficients of the

MVAR model in the time domain; for instance a signal xj(n) Granger causes a signal

to xi(n) if at least one of the coefficients Ai,j(l), l = 1, · · · , p is significantly different

from zero. For this reason PDC and DC are considered frequency domain descriptors

of Granger causality6.

3.2.2 Differences between PDC and DC

There are important differences between PDC and DC.

� Normalization: because of their mathematical derivation, the DCi,j is normalized

with respect to the effects produced by all the other signals of the M-variate

dataset on the receiving signal xi(n) (normalization with respect to the receiving

structure), while the PDCi,j is normalized with respect to all the contributions

of xj(n) to the other time series of the dataset (normalization with respect to the

source).

� DC and PDC are factors in the decomposition of Coh and PCoh, respectively,

therefore the DC measures linear interactions, while PDC direct linear interac-

tions between signals. This can be seen also looking at their expressions: the DCi,j

is function of the transfer matrix Hi,j(f) = A
−1
i,j (f) that contains a sum of terms

each one related to a possible path from xj(n) to xi(n). Hence DC (or DTF ) is

different from zero whenever any interaction from xj(n) to xi(n) is significant. On

the contrary PDC is a direct function of the coefficient of the spectral matrix of

parameters Ai,j(f), therefore it is different from zero only when a direct connection

6For the sake of simplicity, from now on the term causality will be used to indicate Granger causality.
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is present.7

These two measures highlight different aspects of coupling between time series: DCi,j(f)

measures causality as the amount of information flow from xj(n) to xi(n) through all

the possible paths, therefore is not a measure of direct coupling; however it has an easier

interpretation since it measures the normalized amount of spectrum transferred from

one signal to another. This is particular relevant in the analysis of EEG time series

that are characterized by specific brain rhythms (frequency bands). On the other hand,

the interpretation of PDC in the frequency domain is not straightforward because it is

function of the inverse spectra of signals. However PDC is able to resolve the causality

structure of the multivariate process, since it measures the amount of information flow

from xj(n) to xi(n) through the direct path. PDC aims to quantify the direct interac-

tions between time series that cannot be attributed to the other simultaneously observed

time series of the process; therefore it represents a useful tool for inferring functional

structure. The properties of the spectral causality estimators defined in this section will

be clarified with an illustrative example in the next section.

3.2.3 An Illustrative Example

In order to compare the performances of the different measures previously introduced

and to give general guidelines for the interpretation of the graphical results, a theoretical

example will be considered in this section. The model proposed is adapted from Faes

et al. (2001). This choice was made with the additional purpose of comparing the results

and validate the implemented software. A simple MVAR model of order p = 2 involving

M = 3 processes is shown in Figure 3.2 and generated by the following equations:

x1(n) = 1.34x1(n− 1)− 0.81x1(n− 2) + ε1(n)

x2(n) = x1(n− 1) + 0.5x3(n− 1) + ε2(n)

x3(n) = 0.5x2(n− 1) + 0.5x2(n− 2)− 0.54x3(n− 1)− 0.81x3(n− 2) + ε3(n)

Σε = diag{1, 9, 1}

(3.26)

.

The matrix of parameters at the two lags l = 1, 2 are therefore

7as for the PCoh the PDC is a measure of linear relationships, therefore it can be different from zero
also when indirect non-linear dynamics affects the signals considered.
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A(1) =




1.34 0 0

1 0 0.5

0 0.5 −0.54


 (3.27)

A(2) =




−0.81 0 0

0 0 0

0 0.5 −0.81


 (3.28)

.

Figure 3.2: Imposed model involving three interacting processes. The arrows rep-
resent linear direct dependencies among time series at time lag p=1 (black) and p=2
(red); the values of the MVAR coefficients ai,j(l), i 6= j are shown in gray for each

connection. The processes variances are indicated by σ2.

The coupling among the processes is introduced imposing MVAR coefficients ai,j(l), i 6=
j, l = 1, 2 different from zero. The diagonal elements of the matrix of parameters A(l) on

the other hand determine the autoregressive contribution, i.e. the intrinsic oscillations

of the processes. The simulated processes were generated applying the MVAR filter

expressed in equation 3.26 to the white Gaussian random processes whose variances

were imposed respectively equal to 1, 9 and 1, in order to show the performances of the

estimators with respect to the unbalanced variance of signals. The sampling frequency

fsamp was set to 250 Hz and the length of the simulated time series set to 4 s (1000 sam-

ples). The coupling measures were then estimated on simulated data after an MVAR

model was fit on the dataset. First the optimum model order was estimated applying

the Schwarzs Bayesian Criterion (Schwarz, 1978) order selection criterion. Secondly a

Least Square Algorithm was used to estimate the matrix of coefficients (ARfit, Matlab,

Schneider and Neumaier, 2001) (details about the estimation of MVAR models from a
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given time series set will be given in the section 3.3.1 of this chapter). The generation-

estimation procedure was repeated for 100 iterations as for previous simulation studies

(Astolfi, Cincotti, Mattia, Marciani, Baccala, de Vico Fallani, Salinari, Ursino, Zavaglia,

Ding, Edgar, Miller, He & Babiloni 2007, Faes et al. 2013).

First the time domain measures were computed on simulated data. Figure 3.3 represents

the absolute value of the correlation coefficient ρi,j(k) computed for all pairs of signals

and for k = 1, · · · , 25. The cross-correlations coefficients (off-diagonal elements) show

that there are linear dependencies among all the processes for the first 10 time lags, with

peaks of correlations for time lags 1 and 2, on the other hand the autocorrelations coef-

ficient (diagonal elements) peaks are aligned with zero. The values of cross-correlation

are different from zero also for processes 1 and 3 that are not directly dependent and

different from zero also when a directed connection is absent, for instance ρ1,2(k) 6= 0,

(first row, second column of figure 3.3). For these reasons it is not possible to determine

the coupling structure of the model from the cross-correlation coefficients estimation.

Figure 3.3: Matrix plot showing the correlation coefficients values |ρi,j(k)| computed
for all pairs of signals and for time lags k = 1, · · · , 25. From an inspection of the
cross-correlation coefficient values it is not possible to determine the coupling structure
of the model represented in figure 3.2: for instance |ρ1,3| (first row, last column) and
|ρ3,1| (first column, last row) show values different from zero for some time lags even if

a connection between node 1 and node 3 in figure 3.2 is absent.
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The spectral measures of coupling were computed by first estimating an MVAR model

from the simulated processes, then estimating the matrix of parameters A(l) and its

Fourier Transform A(f). In order to evaluate the accuracy of the estimation for each

measure the correspondent theoretical value was computed from the imposed matrix of

parameters given in equation 3.27 and 3.28.

The diagonal elements in figure 3.4 show the spectra of the three processes. The peaks

of the spectra of x1 and x3, at f1 = 0.11fsamp (27.5Hz) and f3 = 0.3fsamp (75Hz) are

a result of the oscillations imposed with the autoregressive parameters that introduce

complex conjugate poles in the transfer function of the processes. As a result of the

imposed linear coupling the peaks are transferred on the process x2. The Coh is reported

in the off-diagonal elements of Figure 3.4 as a function of the frequency: the plot on the

ith row and jth column represents the Coh between signal xj and xi.

Figure 3.5 shows the inverse measures. The diagonal elements represent the inverse

spectra while the off-diagonal elements show the PCoh as a function of the frequency.

The Coh measures both the linear direct and indirect coupling, being significantly dif-

ferent from zero for each pair of signals, also for processes not directly dependent (i.e.

Coh3,1(f) 6= 0, third row, first column in figure 3.4), while the PCoh measures the direct

coupling, being close to zero in absence of directed linear interactions (i.e. PCoh3,1(f),

third row, first column in figure 3.5). Both measures are symmetric hence they can-

not give information regarding the direction of coupling; therefore a full picture of the

network structure cannot be inferred from the analysis of Coh or PCoh.

Following the same order of the methods section, the measures representing the factori-

sation of Coh and PCoh are shown. Figure 3.6 is a matrix plot of the DTF estimated

on simulated data and the theoretic DTF computed from the imposed matrix of param-

eters. The generic off-diagonal element DTFi,j(f) represents the normalized transfer of

spectrum from signal xj to signal xi. For instance DTF2,1(f) (second row, first column)

indicates that the spectrum of x1 is transferred to x2 mainly for frequency up to 65 Hz,

with a peak at the frequency of oscillation f1, while the higher part of the spectrum of

x2 is due to x3 (i.e. DTF2,3(f), second row, third column, has a peak at the frequency

f3). The generic diagonal element DTFi,i represents the part of the spectrum of the

process xi that is not due to other time series (i.e. x1 is not influenced by the other

processes, therefore its autospectrum is equal to 1 for all the frequencies considered). As

can be observed in the DTF is not symmetric thus allowing to identify the direction of

the linear coupling; for instance DTF1,2(f) = 0 while DTF2,1(f) is nonzero, indicating

that the direction of information flow is x1 → x2 (as in figure 3.2). On the other hand

the DTF quantifies all instances of coupling, also indirect ones; for example DTF3,1(f)

is non zero because of the indirect coupling path x1 → x2 → x3. This does not hold
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Figure 3.4: Diagonal elements: spectra (power spectral density, [µV 2Hz−1]) of the
processes . Off-diagonal elements: Coh. The Grey area represents the theoretical
measure while the estimated measures are plotted in blue. This image shows how
the Coh is a symmetrical measure, hence it is not able to convey information about
the direction of connections: i.e. |Coh|1, 2 = |Coh|2,1 therefore it is not possible to
establish that the direction of the connection is from x1 to x2 as showed in figure 3.2.
Moreover the value of Coh are different from zero even if a direct connection is absent:
|Coh|1,3 = |Coh|3,1 are different from zero even if a direct link between x1 and x3 is

absent (figure 3.2).

for the orPDC, illustrated in figure 3.7, that is uniformly zero when no direct connec-

tion is present in the imposed model (i.e. orPDC3,1(f) = 0). The orPDC represents

the normalized portion of the inverse spectrum that is transferred from one process to

another. The structure of the original network can be inferred examining the orPDC

trends (the nonzero off diagonal elements in figure 3.7 corresponds to the imposed direct

connections on the model in figure 3.2). Differently from what is observed for the DTF ,

the elements of the orPDC do not have a straightforward interpretation in terms of

spectral content, as they are function of the inverse spectrum.

As a final step in the refinement of the causality estimators the effect of signal scaling

has been considered and the DC and the generalised PDC introduced. Results showing

the trends of these measures are given in figures 3.8 and 3.9. DC and PDC show trends

similar to, respectively, DTF and orPDC, but with different scaling. In particular

it can be observed that the DTF2,3(f) (second row, third column, figure 3.6) exhibits

higher values than the DTF3,2(f) (third row, second column) while one would expect

higher values of coupling from x2 to x3 rather than in the opposite direction, because of

the double arrow in figure 3.2 (see also equation 3.26). The explanation to these results

is that the coefficients of the MVAR model are affected by the amplitude of signals. In
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Figure 3.5: Diagonal elements: Inverse spectra of the processes. Off-diagonal ele-
ments: PCoh. The Grey area represents the theoretical measure while the estimated
measures are plotted in red. This image shows how the PCoh is a symmetrical mea-
sure, hence it is not able to convey information about the direction of connections: i.e.
|PCoh|1,2 = |PCoh|2,1 therefore it is not possible to establish that the direction of the

connection is from x1 to x2 as showed in figure 3.2.

particular the variance of the process x2 is 9 times higher than the variance of the other

two processes. This results in the observation that the coefficient quantifying the cou-

pling from x2 to x1 and x3 are scaled by the signal amplitude and thus underestimated.

The scaling is corrected introducing the normalisation by the variances of the processes

as indicated in equation 3.19: in fact one can observe in figure 3.8 that DC3,2(f) exhibits

higher values than DC2,3(f), as expected. The same holds for the PDC that correctly

estimated a higher causality in the direction x2 → x3 than in the direction x3 → x2,

differently from the analogous orPDC.

As this example and the example in Baccalà & Sameshima (2007) (where the PDC

was originally introduced) show, if the source signal variance is high with respect to

the other signals (i.e. in this case σ22 = 9 vs σ23 = 1), the gains of the connections will

be ‘erroneously’ reduced if estimated with the DTF and orPDC. For this reason, in

order to appropriately estimate the connection strength, it is important to include the

variances of the signals to compensate for the scaling (as in DC and PDC). This may

be very important to properly estimate the functional structure in the case of highly

unbalanced signals amplitudes. For this reason, and because of their straightforward

interpretation in terms of power (or inverse power) transfer 8, in this study we will

8the decompositions 3.20 and 3.24, very useful for the interpretation in term of power content, hold
only for DC and PDC respectively, not for DTF and orPDC
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Figure 3.6: Directed transfer Function DTF as a function of frequency. The Grey
area represents the theoretical DTF , in blue is shown the estimated DTF . Differently
from what observed for the Coh and PCoh in the previous figures, the values of the
DTF are not symmetrical hence enabling the determination of the coupling direction:
i.e. |DTF |1,2 (first row, second column) is close to zero while |DTF |2,1 (second row,
first column) is different from zero thus indicating that a link from x1 to x2 exists,
but not from x2 to x1 (as showed in the connectivity model in figure 3.2).The DTF is
however different from zero for indirect connections, i.e. x1 → x2 → x3 results in the

profile of |DTF |3,1 (last row, first column) being different from zero.

consider the DC and PDC only.

Figure 3.10 provides a graphical representation of how the spectrum of x2 can be decom-

posed into power contributions from all the other processes weighted by the respective

DC values (squared). As previously mentioned the power spectrum of each signal can be

decomposed into a sum of contributions from the spectra of all the time series weighted

by the square of the respective DCi,j , as expressed in equation 3.20. In the example

given in figure 3.10 we observe that the power peak of S2,2(f) at f1 is entirely due to

x1, while the second peak at f3 is only in part due to x3, because of the bidirectional

interaction between x2 and x3: the oscillation at f3 is generated in x3, then transmitted

to x2 and backward to x3. This example clarifies the interpretation of DCi,j as the

normalised portion of the spectrum of xj that is transferred to xi.
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Figure 3.7: Ordinary Partial directed Coherence orPDC as a function of frequency.
The Grey area represents the theoretical orPDC, in red is shown the estimated orPDC.
An inspection of the orPDC profiles allows to identify the directed causal structure of
the imposed connectivity model: orPDC is different from zero only for the imposed

connections showed in figure 3.2.

Figure 3.8: Directed Coherence DC as a function of frequency. The DC differs from
the DTF because it includes the variance of the residuals (compare equations 3.19 and
3.21) and it therefore takes in account the effect of signal scaling in the computation
of directed causality. The Grey area represents the theoretical DC, in blue is shown
the estimated DC. DC profiles are slightly different from those observed in figure 3.6
for the DTF (i.e. compare |DC|3,2 and |DTF |3,2): due to the normalization by signal
variance, DC more correctly estimate (with respect to DTF ) the strength of imposed

connections (see figure 3.2).
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Figure 3.9: Generalized Partial directed Coherence PDC as a function of frequency.
The PDC differs from the orPDC because it includes the variance of the residuals
(equations 3.23 and 3.25) and it therefore takes in account the effect of signal scaling in
the computation of directed causality. The Grey area represents the theoretical PDC,
in red is shown the estimated PDC. PDC profiles are slightly different from those
observed in figure 3.7 for the orPDC (i.e. compare |PDC|3,2 and |orPDC|3,2): due
to the normalization by signal variance, PDC more correctly estimate (with respect to

orPDC) the strength of imposed connections (see figure 3.2).

3.3 MVAR Model Identification and Validation

3.3.1 MVAR model estimation

As discussed in the previous sections, one necessary precondition for an accurate estima-

tion of a MVAR model from the observed dataset is that the latter is a stationary, stable

process (Lütkepohl 2005). This is commonly valid for records of resting EEG data, but

caution is required in considering extended segment of EEG data9 and the transition

between different EEG patterns. On the other hand there is a concern that the number

of samples considered for the analysis is sufficient to accurately fit the model. Given a

M -variate dataset and a model of order p it is necessary to estimate M2p number of free

parameters for the model fitting, therefore a minimum of M2p data point is required.

However, in practice it is recommended to consider a number of data points larger than

about 10M2p for an accurate model estimation (Schlögl & Supp 2006). In this work the

length of time series was chosen so as to include a number of data points sufficient to

estimate the free parameters and at the same time to analyse the shortest EEG segment

9The approximate time during which an EEG signal can be considered stationary varies with the
condition the EEG was recorded in; EEG epochs of 1-5 s length were found approximately stationary
(Sugimoto et al. 1978, Gath & Inbar 1996)
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Figure 3.10: Example of spectral decomposition. The Spectrum of x2 S2,2(f) (grey
area) is expressed as a sum of 3 contributes from the spectrum of x1 (green), x2 itself
(blue) and x3 (red) weighted by the respective DC squared functions. This figure shows
how DC2

i,j can be interpreted as the normalized spectrum of xi due to the signal xj .

in order to approximate the stationary condition. Short data windows are also desirable

in monitoring applications, in order to quickly respond to changes in the signals.

3.3.1.1 MVAR estimation algorithm

Different approaches can be used to estimate a MVAR model from the observed time

series, for instance multivariate Least Square (LS) algorithms, lattice algorithms or ap-

proaches grounded on the Kalman filter (Lütkepohl 1993). Since all these approaches are

based on the minimization of the residuals (prediction error) there are small differences

in their performances, especially when a sufficient number of data points are considered

for the estimation (Schlögl 2006). However it has been shown that the Nuttal-Strand

(1976) and the ARfit (Schneider & Neumaier 2001) algorithms yield the best results,

giving a smaller prediction error and describing more accurately the properties of data.

In this work the multivariate LS estimator implemented in the ARfit package (Mat-

lab) will be used: it applies LS algorithm to high-dimensional EEG data in order to

calculate the matrix of parameters A(l) and to give an estimate of the residual noise



Chapter 3. Measuring coupling and causality with MVAR modeling 43

covariance Σε. A detailed derivation of the LS estimators and their asymptotic is found

in Lütkepohl (1993), Chapter 3; we will refer widely to this extensive work.

Given the M-variate process:

x(n) =

p∑

l=1

A(l)x(n− l) + ε(n), n = 1, · · · , N (3.29)

we will call the time series of p previous samples (with respect to the actual sample n)

the predictor vector u

un =




xn−1

xn−2

· · ·
xn−p




(3.30)

and cast the M-channels MVAR model in the form of a regression model as follows

xn = Aun + εn, n = 1, ..., N (3.31)

Using the following notation is useful to express the MVAR model in more compact

ways: we therefore define

X := (x1, ...,xN ) [M ×N ]

A := (A1, ...,Ap) [M ×Mp]

U := (u1, ...,uN ) [Mp×N ]

E := (ε1, ..., ε2) [M ×N ]

x := vec(X) [MN × 1]

α := vec(A) [M2p× 1]

ε := vec(E) [MN × 1]

(3.32)

where xn, un and ε are the M-variate vectors of the time series, the predictor vector and

the innovation respectively and vec is the column stacking operator10. We can therefore

10Given a [m × n] matrix A = (a1, ...,an) the ‘vec operator’ transforms A in a [mn × 1] vector by
stacking its column, i.e.

vec(A) =


a1

a2

· · ·
an

 (3.33)
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write the MVAR model expression in compact form

X = AU +E (3.35)

or in the column stack form:

x = vec(AU) + ε (3.36)

.

The multivariate LS algorithm chooses an estimator that minimizes the squared estima-

tion error, i.e. the following cost function CF:

CF (α) = εTε (3.37)

that is equivalent, for the properties of the vec operator (see footnote), to

CF (α) = tr[(X −AU)T (X −AU)] (3.38)

It is demonstrated that the multivariate LS estimator is identical to the ordinary LS

estimator (OLS) applied for each of the M equations of the M-variate model in 3.29

(Lütkepohl 1993). This result is due to Zellner (1962) who showed that, if the regres-

sors in all equations are the same, the multivariate LS minimizes the sum of squared

estimation errors and also the single (for each time series) errors separately.

The solution (that minimizes the CF)is given by (Lütkepohl 1993)

Â = XUT
(
UUT

)−1
. (3.39)

In terms of the moment matrices

. The vec operator has the following useful property

vec(BT )T vec(A) = vec(AT )T vec(B) = tr(AB) = tr(BA) (3.34)
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Υ =
N∑

n=1

unu
T
n

V =
N∑

n=1

xnx
T
n

Ω =
N∑

n=1

xnu
T
n

(3.40)

The estimated matrix of parameters can be expressed as

Â = ΩΥ−1 (3.41)

and the residual covariance matrix is

Σ̂ε =
1

N − pM
N∑

n=1

ε̂nε̂
T
n =

1

N − pM
(
V −ΩΥ−1ΩT

)
. (3.42)

Under the assumption of a standard white noise process

E(εn) = 0;

Σε non singular;

E[εnεm] = 0, n 6= m.

(3.43)

it is demonstrated that (Lütkepohl 1993) that the LS estimator of the MVAR model

parameter is consistent 11 and asymptotic normal.

3.3.1.2 Model Order Selection

A critical issue in the estimation of an MVAR model is the selection of the model order.

For this purpose it is useful to make use of criteria for an adequate selection. The most

common approach consists in minimizing an information criterion over a range of model

orders. Commonly used criteria are functions of the residual covariance matrix Σ̂ε(p)

estimated for a model order p (equation 3.42) and a second term that is a function of

the number of free parameters to estimate, which increases with increasing model order.

11An estimator of a quantity A is called consistent if

limN→∞Pr(Â = A) = 1 (3.44)
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By minimizing both terms the forecast precision error is minimized and the degrees of

freedom of the model are adjusted to avoid data over-fitting with too many parameters.

Akaike (1969,1971) introduced a criterion called final prediction error (FPE) that is:

FPE(p) =

[
T +Mp+ 1

T −Mp− 1

]M
detΣ̂ε(p) (3.45)

and its logarithm

ln(FPE(p)) = ln

[
T +Mp+ 1

T −Mp− 1

]M
+ ln(detΣ̂ε(p)) (3.46)

where Σ̂ε(p) is an estimator of the residuals covariance matrix and T is the number of

time samples.

Another commonly used criterion is the Schwarz’s Bayesian Criterion (SBC) (Schwarz,

1978)

SBC(p) = ln|Σ̂ε(p)|+
lnT

T
pM2 (3.47)

For a given criterion the optimum model order is the one that minimizes the information

criterion. The FPE criterion (and the similar Akaike Information Criterion, AIC) tends

to overestimate the true order of the MVAR model and thus the model order estimate

obtained using FPE is not consistent. On the other hand, the SBC criterion severely

penalizes large model orders and its estimate of the optimal order is consistent for any

dimension of the model (Lütkepohl 1993). Moreover, as observed in EEG applications,

usually the FPE criterion does not show a distinct global minimum over a reasonable

model orders range, while it is common for the SBC to show a clearer minimum. For

these reasons, even if the FPE (and AIC) criterion may have better properties for small

samples and for forecasting problems (Lütkepohl 1993), in this work the optimal model

order popt will be chosen on the basis of the SBC criterion, since the aim is to accurately

estimate the MVAR model.

3.3.2 Model Validation

As stated before, it is recommended, once estimated the MVAR model, to perform model

validation steps to insure a correct interpretation of the obtained estimators. The model

validation consists in making use of a range of different tools to check if the MVAR model

is adequately estimated. Although these tools have been rarely applied in the literature
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and in applications of causality estimators (DC or PDC) for the analysis of EEG data,

they represent an important protective measure against making erroneous inferences

from misleading results. A detailed description of the validation criteria can be found

in Lütkepohl (2005) while in this context we will focus on two critical conditions: the

whiteness and independence of residuals.

A simple approach used to validate a MVAR model is to compare the spectra estimated

with the MVAR parametric method with another non-parametric approach (Mullen

2010). Even if the assumption that the non-parametric spectra are the optimal es-

timates may not always be justified (Burg, 1975), this represents a useful validation

procedure.

An MVAR model fitting a multiple time series can be regarded as a filter that transforms

white noise into the given structured data series (figure 3.11). If we have adequately

modelled the full causal structure of the data, the residuals should be white. In this

regard a validation criterion is to check whether the residuals are close enough to white

noise. If the residuals are correlated in some extent some correlation structure in the

data has not been described.

Figure 3.11: Schematic representation of a MVAR model as a linear filter having in
input a white process E(f) and in output the multivariate dataset X(f): if the filter
transfer function H(f) is estimated correctly, then it models all the causal structure of

the process X(f) and the residual E(f) are white.

Testing the whiteness of residuals typically involves the analysis of the autocorrelation

matrix coefficients up to a fixed lag h > 0. A simple test for checking the null hypothesis

that a given multiple time series is generated by a white process is based on the asymp-

totic distributions of white noise autocorrelations and it is called the Autocorrelation

Function Test.

Given a M-dimensional vector of identically independently distributed (i.i.d.) time series,

the covariance matrices at different time lags k are estimated as:



Chapter 3. Measuring coupling and causality with MVAR modeling 48

Σε,k =
1

N

N∑

t=k+1

εtεt−k, i = 1, ..., h (3.48)

where N is the number of time samples. The correlation coefficient matrix at lag k Pk

is obtained from Σε,i as follows

Pk = D−1ε,0Σε,kD
−1
ε,0 (3.49)

where Dε,0 is a diagonal matrix with elements equals to the square roots of the elements

of Σε,0, i.e. the covariance matrix of residuals at lag zero. The matrix Pk is an estimator

of the true correlation matrix for k 6= 0. A typical element of Pk is ρij,k:

ρij,k =
σij,k√

σii,0
√
σjj,0

(3.50)

where σij,k is a generic element of the covariance matrix Σε,k at time lag k.

The matrix of autocorrelations and its vector (obtained stacking its columns) up to a

time lag h are

Ph =
(
P1 · · ·Ph

)

ρh = vec
(
Ph
) (3.51)

It is demonstrated that the vector
√
Nρh for h ≥ 1 converges in distribution to a

multivariate normal distribution, therefore the variances of the asymptotic distributions

of the elements of
√
Nρh are unity. The null hypothesis of autocorrelation equal to zero

is accepted at the 5% level if

|
√
Nρh| < 1.96 (3.52)

The statistic of the Autocorrelation Function test is a function of the number of auto-

correlation coefficients for whom the condition in equation 3.52 is valid, with respect to

the total number of autocorrelation coefficients considered:

ζ =
num[|

√
Nρh| < 1.96]

num[ρh]
(3.53)
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If ζ > 0.95 then the null hypothesis of white residuals is accepted at 5% level of sig-

nificance. When using this test it is important to consider that for small samples the

test may be conservative in the sense that it may tend to accept the null hypothesis of

whiteness more often than indicated by the significance level, because 1√
N

may consid-

erably differ from the true variance of the correlation coefficients. Moreover this test is

specifically designed for individual coefficients and, if applied in the multivariate case, it

assumes that the elements of the vector ρh are independent: this may be not necessarily

true for the elements of Ph.

The Portmanteau tests (Lütkepohl 2005) are on contrast specifically designed to test the

null hypothesis of white residuals of a multivariate process. This class of tests is based

on the fact that, under the null hypothesis, the statistic

Qh = N
h∑

i=1

tr
(
ΣT
ε,iΣ

−1
ε,0Σε,iΣ

−1
ε,0

)
(3.54)

approximates the asymptotic χ2 distribution with M2(h− p) degrees of freedom (d.o.f.)

(M is the number of time series, h the maximum time lag the covariance is computed

for, p the order of the MVAR model). A statistic test can hence be performed compar-

ing the test statistic with the χ2 distribution. A p-value can be obtained comparing Qh

with the cumulative distribution function (cdf) of the χ2 distribution. If the p-value

is greater than the significance level α = 0.05 the null hypothesis of whiteness cannot

be rejected (residuals are white). In order to improve the performances of the test for

small time samples, the statistic in equation 3.54 has been modified in what is called

the Ljung-Box Portmanteau test (LBP) (Lütkepohl 2005).

Testing the whiteness of residuals represents an important tool to check the validity of

MVAR estimation. More specifically it represents a way to check if the lagged correlation

structure of time series has been adequately estimated (only lagged correlations in fact

are considered in whiteness tests). On the other hand the identification of a MVAR

model should results in residuals uncorrelated also at lag h = 0. When this condition is

violated there are significant zero-lag effects that have not been modeled by the MVAR

model (Faes et al. 2001). The significance of instantaneous causality between time

series can be tested checking the diagonality of the residual covariance matrix Σε,0.

In fact statistical test of lack of instantaneous causality reduce to demonstrate that

Σε,0 is diagonal. As will be detailed in the next chapter, instantaneous effects may

seriously affect the estimation of causality, in particular from EEG multichannel data.

In this regard checking the significance of instantaneous causality represents a relevant

validation step for the correct interpretation of results. Leaving the description of the
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impact of instantaneous effects on the estimation of causality to the next chapter, in

this paragraph we will demonstrate that the non-diagonality of the residuals covariance

matrix Σε,0 gives an indication that instantaneous correlations among time series exist.

Given a MVAR model of order p of an M -variate process as expressed in equation 3.55

x(n) =

p∑

l=1

A(l)x(n− l) + ε(n), n = 1, · · · , N (3.55)

with the covariance matrix of white residuals

Σε,0 =
{
σ2ij
}
, (3.56)

this model can be can be expressed in such a way that residuals are uncorrelated. For

this purpose the covariance matrix can be decomposed as follows, from the Choleski

decomposition12

Σε,0 = WΣω,0WT (3.57)

where W is a lower triangular matrix with unit diagonal and Σω,0 is a diagonal matrix

having the same diagonal elements of Σε,0.

Premultiplying equation 3.55 by W−1 gives

W−1x(n) =

p∑

l=1

A•(l)x(n− l) + ω(n), n = 1, · · · , N (3.58)

with

A•(l) = W−1A(l)

ω(n) = W−1ε(n).
(3.59)

Equation 3.58 can be written as

x(n) = A•(0)x(n) +

p∑

l=1

A•(l)x(n− l) + ω(n), n = 1, · · · , N (3.60)

12If a matrix M is positive definite, then it exists a triangular matrix T such that M = TT ′. The
decomposition where T is lower triangular with positive main diagonal is called Choleski decomposi-
tion(Lütkepohl 1993).
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where

A•(0) = I −W−1 =




0 0 0 0

a2,1(0) 0 0 0

· · · · · · 0 0

aM,1(0) · · · aM,M−1(0) 0




(3.61)

The matrix A•(0) represents the matrix of instantaneous effects (zero-lag dependencies)

that, given the hypothesis (W lower triangular with unitary diagonal), is a lower trian-

gular matrix with zero diagonal. The elements of the matrix of instantaneous effects are

a function of the covariance of the residuals (equation 3.57). If the residuals are uncor-

related the matrix W−1 coincides with the identity matrix and as a result the matrix of

instantaneous effects is null (equation 3.61). Based in this result, a statistical test of lack

of instantaneous causality consists in demonstrating that Σε,0 is diagonal. In this work

the covariance matrix of residuals will be inspected and its non-diagonality considered

as an indication of the significance of zero-lag correlations among time series. Instanta-

neous correlations among residuals indicate that significant zero-lags interactions among

time series have not been adequately modeled: In this case the issue of misleading results

caused by instantaneous causality must be considered. In the next chapter a throughout

description of the instantaneous connectivity issue and of the approaches proposed to

model it will be given, together with an analysis of the reliability of these approaches

and their impact on EEG causality estimation.

3.4 Summary

In this section a rationale for the development of spectral causality measures based on

the factorisation of the Coherence and the Partial Coherence was given. A description

of what the different measures aim to quantify has been provided with the help of

an illustrative example. In this example the behaviour of all the estimators on data

generated imposing a simple connectivity scheme was examined.

PDC and DC provide a frequency domain representation of multivariate time series

grounded on the concept of Granger causality. The DC was shown to quantify the direct

and indirect causality in the frequency domain as the normalised portion of the spectrum

that is transferred from one process to another. The PDC provides a clearer represen-

tation of the structural interaction, with PDC equal to zero corresponding to the lack

of direct causality. Both measures are able to identify the direction of information flow,

something that cannot be inferred from the analysis of other spectral estimators such as
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Coh, PCoh and their equivalent in the time domain. When orPDC and DTF are nor-

malised with respect to the variances of the processes (thus giving PDC and DC), they

have the important property of scale invariance (Baccalà & Sameshima 2007); therefore

PDC and DC may be less confounding as causality estimators in the case of time series

with highly unbalanced variances. In previous work PDC and DC have been applied13

to the simultaneous analysis of multichannel EEG in various physiological conditions

and behavioral tasks (Astolfi et al. 2006, Astolfi, Cincotti, Mattia, Marciani, Baccala,

de Vico Fallani, Salinari, Ursino, Zavaglia, Ding, Edgar, Miller, He & Babiloni 2007,

Baccalá & Sameshima 2001, Kamiński et al. 1997, Kuś et al. 2008, Brzezicka et al. 2011)

and were shown to be able to effectively estimate functional connectivity patterns, with

a remarkable agreement with anatomical and neuroimaging based evidences (Kaminski

& Blinowska 2014). They were shown to represent a useful tool to investigate the macro-

scopic network structure generating the EEG signal, whose information is mainly coded

in frequency, and perform well also in case of non-linear and non-stationary interactions

(Winterhalder et al. 2005).

PDC and DC are efficient estimators of directed connectivity provided that the condi-

tions that guarantee a reliable fitting of the MVAR model (i.e. adequate signal length,

appropriate model order choice etc.) are fulfilled. In the last section of this chapter

we have more formally looked at crucial aspects for an accurate MVAR model fitting

describing the ARfit algorithm for the estimation of MVAR coefficients and the FPE and

SBC criteria to determine the optimal model order. Once a MVAR is estimated from

a multivariate dataset, it is recommended to check for the model validity to avoid mis-

leading interpretation of results. As described in the last paragraph a series of statistical

tools are available to check if the MVAR model is adequately estimated: in particular we

have shown that the conditions of whiteness and independence of residual are important

indicators that the lagged and zero-lag causality structure of the dataset are correctly

modelled. The critical issue of instantaneous causality and its effects on the estimation

of EEG connectivity has been often ignored in the literature: it will be the focus of the

next chapter where methods to deal with its adverse effects will be tested and its impact

on lagged DC and PDC characterized.

13mainly in their non-normalised version orPDC and DTF
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The Impact of Instantaneous

Effects on the Estimation of Scalp

Connectivity

In this chapter the issue of instantaneous causality and its impact on DC and PDC

estimation will be addressed. Firstly we will review the work carried out in literature

and formally outline an approach introduced to deal with the adverse effects of zero-lag

correlation on lagged causality: the extended MVAR model (eMVAR). We will test the

reliability of the eMVAR approach with a particular emphasis on EEG applications.

Finally, in section 4.2, the instantaneous mixing of sources (volume conduction) effects

on the estimation of scalp connectivity will be more thoroughly characterized by means

of a realistic model of EEG signal generation.

4.1 The impact of instantaneous causality on the estima-

tion of DC and PDC between scalp channels

As described in section 3.2.1, the key concept in Granger causality is the exclusive ref-

erence to past samples in the prediction of the time series and hence it is fairly simple

to deal with in the context of MVAR models. The term causality suggests a cause-effect

(past-present) relationship between time series. When also the influence of present sam-

ples is considered then it is usual to speak of instantaneous causality (Lütkepohl 1993):

it refers to the zero-lag effect of one signal upon another signal. Instantaneous causal-

ity does not say anything about the cause-effect relationship because the direction of

causation cannot be determined in this case. The classical MVAR framework does not

53
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include zero-lag dependencies therefore it does not model instantaneous causality. We

can only argue that if the residuals are correlated (at lag zero) then some instantaneous

correlation structure exists in the data that has not been described by the estimated

MVAR model and the assessment of lagged causality may be erroneous. The problem

of zero-lag interactions is of particular relevance for EEG signal analysis because it has

been suggested that in EEG data instantaneous causality may be related mainly to non-

physiological phenomena such as volume conduction (Nolte et al. 2008): deep cortical

sources of EEG activity that spread through the tissues of the head on the scalp could

result in instantaneous dependencies among surface recordings .

The hypothesis that DC/PDC are affected by instantaneous causality is debated. Some

authors claim that these estimators are only sensitive to phase shifts therefore they

are not affected by zero-lag effects (Kaminski & Blinowska 2014). In contrast, vari-

ous studies (Faes et al. 2013, Faes & Nollo 2010, Billinger et al. 2016) demonstrated

both analytically and by means of simulations on simple MVAR models that zero-lag

interactions adversely influence lagged causality estimated with DC/PDC. These works

have shown in fact that when significant instantaneous dependencies among signals are

present, the omission of adequate modelling of zero-lag effects (as in the classical MVAR

modeling) can lead to misleading results; in particular instantaneous effects can change

the values of time-lagged coefficients and introduce spurious connections (Faes & Nollo

2010). Billinger and colleagues (Billinger et al. 2016) have shown both analytically and

by a numerical simulation involving 3 cortical sources and 3 surface signals that volume

conduction generates spurious (non physiological) DTF scalp connections.

As a possible solution an extended MVAR (eMVAR) approach modelling the full causal

structure (instantaneous and lagged) of time series has been proposed by Faes & Nollo

(2010). The eMVAR approach was tested on simple MVAR processes showing to reduce

estimation errors with respect to the classical MVAR model, provided that the assump-

tions for its identification were respected. The eMVAR framework was also tested on

two dataset recorded from, respectively, the cardiovascular and neurophysiologic sys-

tems (Faes et al. 2013) showing promising results, but an analysis of the reliability of

the eMVAR algorithm applied for EEG causality estimation is missing. Moreover a

characterization of the instantaneous causality generated in EEG time series by volume

conduction and its impact on the estimation of Granger causality is lacking, because

this issue has been ignored in the majority of practical applications.

In the following sections we will first describe the rationale and assumptions of the

eMVAR framework and then outline the objectives of this study.
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4.1.1 The extended MVAR model

As showed in the previous chapter, the traditional MVAR model (which in this chapter

will now be referred to as a strictly causal MVAR model scMVAR- from now on) used

for the estimation of causality from EEG recordings, takes into account only the linear

influences of past samples on present samples .

x(n) =

p∑

l=1

A(l)x(n− l) + ε(n), n = 1, · · · , N (4.1)

The scMVAR does not model instantaneous dependencies (l = 0) among time series,

therefore any significant zero-lag influence among signals is transferred in the model

residuals generating a correlation structure within them and making the innovation

covariance matrix not diagonal (Lütkepohl 2005). This results in two practical issues:

� the model is not estimating the causal structure correctly and the performances

of PDC and DC in estimating lagged causality are potentially degraded (Faes &

Nollo 2010, Faes et al. 2013), as stated in the introduction.

� The factorizations expressed in equations 3.18 and 3.22 are not valid, because

they are based on the assumption of uncorrelated residuals; therefore the interpre-

tation of the estimators as normalized portions of spectrum (or inverse spectrum)

transferred between signals is not correct, and the interpretation of results may be

misleading.

In order to integrate both instantaneous and lagged effects in multivariate time series

modelling, an alternative framework was introduced (Shimizu et al. 2006, Hyvarinen

et al. 2010, Faes & Nollo 2010) and defined by the following expression (note the lag

index l now ranges from 0 to p):

x(n) =

p∑

l=0

B(l)x(n− l) + ω(n), n = 1, · · · , N (4.2)

with residual covariance matrix

Σω = diag
{
σ2ii
}

(4.3)

As previously indicated, this new approach is named extended MVAR (eMVAR) to dis-

tinguish it from the traditional multivariate modelling. The hypothesis for the scMVAR
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model is that the residuals (or innovation processes) are white, while for a model that

includes instantaneous effect (eMVAR) the assumption is that residuals are white and

uncorrelated (Lütkepohl 1993)1. In order to find the relation between the scMVAR and

eMVAR model we can express the equation 4.2 as follows

x(n) = B(0)x(n) +

p∑

l=1

B(l)x(n− l) + ω(n), n = 1, · · · , N (4.5)

(
I −B(0)

)
x(n) =

p∑

l=1

B(l)x(n− l) + ω(n), n = 1, · · · , N (4.6)

(4.7)

Therefore the eMVAR model can be expressed in a scMVAR ‘form’ using the matrix

L =
[
I −B(0)

]−1
as follows:

x(n) =

p∑

l=1

LB(l)x(n− l) +Lω(n), n = 1, · · · , N (4.8)

Hence the relation between the two models, comparing equations 4.1 and 4.8, is

A(l) = LB(l) (4.9)

ε(n) = Lω(n) (4.10)

Σε = LΣωL
T (4.11)

From these considerations it is evident that the matrices of lagged effects for the two

models are different (because of the multiplication by L) and it is (mathematically)

demonstrated that instantaneous interactions affect the values of parameters expressing

lagged effects. In the absence of instantaneous effects, the two models coincide (B(0) =

0, L = I). Moreover equations 4.9 and 4.10 show that an eMVAR model can be

estimated from the identification of a scMVAR model provided that L (which is in turn

function of the matrix of instantaneous effects B(0)) is known. If this is the case, once

the matrix A(l) and the vector of residuals ε(n) have been identified from the estimation

1Note that in this contest we use the term white to refer to time series that have the following property

E[ε(n)ε(m)] = 0, n 6= m (4.4)

and that are therefore white in the temporal dimension. With the term uncorrelated we indicate time
series that are independent ‘spatially’, therefore their multivariate covariance matrix is diagonal.
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of the scMVAR, the correspondent matrix B(l) and vector of innovations are obtained

from L−1 = I −B(0).

The estimation of the zero-lag effects matrix however is challenging. While for a lagged

influence the direction of causality is from the less recent sample to the most recent

one, this directional information is lacking in the case of instantaneous interactions.

Therefore, while the knowledge of the covariance matrix is sufficient for the estimation

of the matrices of lagged effects, additional information is required to identify the matrix

of instantaneous effects. Following the fitting of the correspondent scMVAR, two possible

approaches can be adopted to estimate the instantaneous matrix B(0) (and the eMVAR

model as a consequence):

1. A priori approach. Imposing a priori the structure of the instantaneous causality,

causally ordering the time series, for instance in accordance with the order the

signals are recorded, and hence imposing the direction but not the strength of

instantaneous effects2. This approach, called a priori eMVAR (Faes & Nollo 2010),

is however not suitable for EEG signals since they are measured simultaneously

and the direction and order of zero-lag effects is not known a priori.

2. Non-Gaussian approach. This approach was developed based on arguments similar

to those behind the use of non-Gaussianity in finding independent components

in independent components analysis (ICA). It exploits the non-Gaussianity of the

corresponding scMVAR model residuals to estimate the matrixB(0) of the eMVAR

model. As previously stated, differently from what happens with lagged effects, the

concept of instantaneous causality does not give information about the cause and

effect relation. The direction of instantaneous causality cannot be derived from the

covariance matrix of the multivariate process that is symmetrical, therefore further

knowledge about the relationship between variables must be included (Lütkepohl

2005). Algorithms based only on second-order statistics (i.e. PCA, based on

the covariance matrix) generally fail to estimate the full causal structure. For

example, in the case of two variables x1 and x2 , such methods cannot prefer the

instantaneous model x1 → x2 over x2 → x1, because they have the same value in

the covariance matrix, therefore different models are plausible for the same set of

data3. Other information, for instance obtained from higher order statistics, has to

be exploited to identify a unique model underlying the data. Higher order statistics

(e.g. skewness, and kurtosis) are not informative when the data are Gaussian.

2The amplitude of the coefficient of B(0) can then be estimated from a decomposition of the residual
covariance matrix, as showed in equation 4.11

3Even if both models (B(0) matrices) fit the data, only one B(0) is ’correct’: if the allocation of
zero-lag effects is not correct this may lead to misleading values of the matrix of lagged coefficients (see
equation 4.9).
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However in the case of non-Gaussian residuals, one can exploit the information

of higher order statistics and estimate the full structure of instantaneous effects

(Dodge & Rousson 2001, Shimizu et al. 2006, 2005).

In equation 4.10 the matrix L can be considered as a mixing matrix that transforms

independent time series ω into correlated time series ε. Equation 4.10 in fact

defines the standard linear ICA model. This approach (non-Gaussian eMVAR) has

been proposed by Shimizu and colleagues (Shimizu et al. 2006, Hyvarinen et al.

2010) in order to estimate causal influences that occur either instantaneously or

with time lags. It is rooted on the following assumptions:

(a) The observed data can be arranged in a causal order, meaning they can

be represented by a directed acyclic graph (DAG): A DAG is a graph that

contains no cycles (Pearl 1993), i.e. there is no way to start at some vertex

and loop again to it through a sequence of directed edges. The assumption

of acyclicity insure that no later variable causes an earlier variable. This

property is reflected in the matrix B(0) having zero diagonal elements and

the existence of a a permutation matrix that makes B(0) lower triangular.

Note that this assumption is very strict and may be flawed in the case of

EEG signals: it is likely that a cortical source may instantaneously affect two

or more scalp signals thus generating between them a bidirectional zero-lag

connection. This issue was ignored in previous application of eMVAR but

may be central in case of eMVAR application to recorded EEG.

(b) The residuals are independent random variables with a non-Gaussian distri-

bution. This assumption is a fundamental hypothesis for the ability to apply

ICA and the accurate estimation of the de-mixing matrix L−1.

The de-mixing matrix Ŵ = L−1 that transforms correlated time series ε into

independent components ω is estimated applying ICA to the residuals of the scM-

VAR model, ε. Ŵ is however an unordered and non-normalised version of the

true de-mixing matrix L−1, since the ICA gives the factors in a random order.

Therefore additional steps are required to establish the correct order of compo-

nents and hence the correct correspondence between residuals ε and ω. This step

is performed applying the constraint that the matrix B(0) has a null diagonal (by

definition) hence the matrix Ŵ = L−1 = I − B(0) has diagonal elements equal

to 14. More details about the estimation algorithm can be found in Shimizu et al.

(2006), Hyvarinen et al. (2010).

4It is demonstrated in fact that for a DAG model it exists one and only one permutation matrix P
that would give a matrix W̃ = PŴP T with no zeros on the diagonal elements. Once W̃ has been
obtained, the rows are normalized in order to obtain a diagonal with ones and then B(0) is estimated
as B̂(0) = I − W̃
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The scMVAR does not model instantaneous dependencies among time series and any

significant zero-lag influence may affect the estimation of causality, ‘appearing’ as lagged.

On the contrary, the eMVAR model (provided that the estimation of instantaneous and

lagged effects is accurate) opens the possibility to estimate Granger causality considering

only pure lagged effect, hence excluding the contribution of the estimated matrix B(0)

of zero-lag effects in the computation of spectral causality. Being B(l), l = 0, ..., p the

matrix of parameters of the eMVAR model then

Bext(f) = I −
p∑

l=0

B(l)e
−2πfl
fsamp (4.12)

is the eMVAR coefficient matrix in the frequency domain. The spectral coefficient matrix

that includes only lagged causality is then obtained by removing from B(f) the zero-lag

matrix B(0):

Blag(f) = I −
p∑

l=1

B(l)e
−2πfl
fsamp = Bext(f) +B(0) (4.13)

The focus in this work will be on PDC and DC estimated from Blag(f). The purpose

of the analysis is in fact to estimate causality in the Granger sense, hence considering

only the effect of past samples in the estimation of spectral measures of coupling. These

estimators were called lagged PDC and DC by Faes and colleagues (Faes et al. 2013).

From now onward the terms PDC and DC will refer implicitly to lagged PDC and DC. In

is important to notice from equation 4.13 that the spectral matrix of eMVAR coefficient

Blag(f) is function also of the matrix of instantaneous coefficients B(0): it is crucial

therefore that the matrix of zero-lag coefficients is accurately estimated for a correct

assessment of lagged connectivity (DC or PDC) from Blag(f).

4.1.2 Objectives

As mentioned in the introduction, the eMVAR approach tested on simple MVAR models

seems promising in removing the effect of instantaneous causality (Faes et al. 2013).

However the eMVAR algorithm reliability in EEG applications has not been thoroughly

tested. The eMVAR approach has been tested (Faes & Nollo 2010, Faes et al. 2013)

on simple connectivity models where the direction of zero-lag connection was imposed

a priori: this is quite different from how EEG zero-lag connectivity is generated (i.e.

by instantaneous mixing of underlying source signals). The assumption of acyclical

unidirectional zero-lag connections has been therefore imposed or taken for granted in
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previous work. We believe that this hypothesis may be flawed in the case of application to

recorded EEG and lead to misleading results. The purpose of this chapter is therefore

to compare the performances of eMVAR approach with the classical scMVAR model

in estimating lagged connectivity in simulated and recorded EEG data. The analysis

aims at determining if in our (and related work) the more complex and less established

eMVAR should be used, or if the simpler original algorithms should be recommended,

addressing the following research question:

1. Is the eMVAR model a reliable estimator of instantaneous causality in simulated

and recorded EEG data?

2. How does the eMVAR approach perform if applied on multichannel EEG record-

ings, compared to the classical MVAR method? Does it improve the identification

of expected physiological patterns?

These issues have been addressed performing a series of simulation studies and applying

the methodologies to EEG recordings. The methods and results of these studies will be

outlined in the following sections.

4.1.3 Methods

Simulation study I The aim of the first simulation study is to investigate the per-

formances of the causality measures obtained using the scMVAR approach compared

to the eMVAR method on a simple connectivity model. For this purpose theoretical

values computed from the imposed model and measures estimated from simulated data

will be compared. Another objective of the study is to investigate the reliability of the

non-Gaussian approach and compare it to the a-priori method for the estimation of the

eMVAR model. In this case the a-priori method is applicable because the causal order

of instantaneous interactions is imposed and thus known. The current study is similar

to that carried out by Faes and colleagues (Faes & Nollo 2010, Faes et al. 2013) that

performed an analysis on simulated signals obtained applying an MVAR filter with white

noise innovations. The simulation study presented here was designed to model more re-

alistically (compared to the model of Faes and colleagues) EEG time series, generating

simulated signals with spectral features typical of EEG data. The imposed connectivity

scheme involved four signals having lagged, instantaneous and autoregressive dependen-

cies, as showed in figure 4.1. In order to generate time series with spectral features

similar to EEG signals the first process (x1) was a 4 s EEG trace recorded during rest

with closed eyes (sampling frequency fsamp = 250Hz). Other signals were generated im-

posing the connectivity scheme, iteratively applying the equation of the eMVAR model
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(equation 4.14) and adding white innovations ω with a uniform amplitude distribution

to allow for the eMVAR estimation based on non-Gaussianity.

Figure 4.1: Imposed connectivity scheme for the Simulation study I. Note that the
imposed instantaneous connections are unidirectional, to fulfill the DAG assumption. In
case of EEG signal this may not be physically ‘true’ because the zero-lag dependencies
are generated by instantaneous mixing of underlying source signals. This model is
similar to the connectivity scheme used by Faes & Nollo (2010), Faes et al. (2013)
however we modified it in order to generate time series with spectral features similar

to EEG signals by imposing the first process x1 equal to a EEG recorded signal.

The chosen model was given by the following set of equations:

x2(n) = 0.8x1(n) + 0.4x1(n− 1)− 0.5x1(n− 2)− 0.64x2(n− 1) + 0.2x2(n− 2) + ω2(n)

x3(n) = 0.7x2(n) + 0.5x4(n− 2)− 0.4x4(n− 3)− 0.3x4(n− 4) + ω3(n)

x4(n) = 0.6x1(n− 1)− 0.3x1(n− 2)− 0.4x1(n− 4) + ω4(n)

(4.14)

As can be observed from the equations of the eMVAR model (4.14), both instantaneous

and lagged effects are present and the maximum lag of interaction is p = 4 (imposed

model order). The autoregressive coefficients for the signal x2 were chosen in order to

generate a peak in the spectrum of x2 distinct from the alpha peak (8-12 Hz) in the EEG

signal x1, while the off-diagonal coefficients were chosen in a range of realistic values as

observed in previous studies testing the performances of connectivity estimators (Astolfi,

Cincotti, Mattia, Marciani, Baccala, de Vico Fallani, Salinari, Ursino, Zavaglia, Ding,

Edgar, Miller, He & Babiloni 2007, Baccalá & Sameshima 2001). Both direct (i.e.

1→ 2, 1→ 4) and indirect (i.e. 1→ 3) connections were included in the model.
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scMVAR eMVAR a-priori eMVAR non-Gaussian

PDC scPDC apPDC ngPDC
DC scDC apDC ngDC

s

Table 4.1: Table of symbols indicating the acronyms for the connectivity estimators
PDC and DC estimated with the classical scMVAR approach (scDC, scPDC), the a-
priori eMVAR framework (apDC, apPDC) and the non-Gaussian eMVAR approach

(ngDC,ngPDC).

A scMVAR model was then fitted on simulated time series. First the optimum model

order was estimated applying the SBC criterion. Secondly the LS algorithm (ARfit,

(Schneider & Neumaier 2001)) was used to estimate the matrix of coefficients. From

the estimated spectral matrix of parameters A(f) and transfer function H(f), PDC

and DC were computed. Following the estimation of the scMVAR, a corresponding

eMVAR model was fitted on the simulated data using both the a-priori and the non-

Gaussian approaches (the non-Normality of residuals was always true, because the white

innovations ω were imposed with a uniform amplitude distribution). In the first case (a-

priori) the (known) direction of zero-lag interactions was imposed on the matrix B(0).

In the second case (non-Gaussian) ICA was applied to the residuals of the scMVAR

model in order to estimate the matrix of instantaneous effects as described in section

4.1.1. The eMVAR model was estimated using the eMVAR toolbox implemented by the

original authors in Matlab (Faes et al. 2013). Lagged DC and PDC were then computed

as a function of the spectral coefficient matrix of the extended model Blag(f) applying

equations 3.19 and 3.23.

The generation-estimation procedure was performed with 100 repetitions in order to

examine the repeatability of the estimators. The number of repeats was chosen equal

or larger than the number of realizations used in previous simulation studies (Astolfi,

Cincotti, Mattia, Marciani, Baccala, de Vico Fallani, Salinari, Ursino, Zavaglia, Ding,

Edgar, Miller, He & Babiloni 2007, Faes et al. 2013). In order to distinguish among

the spectral causality estimators derived from the three approaches (scMVAR, a-priori

eMVAR, non-Gaussian eMVAR) the different measures were named as indicated in table

4.1. This nomenclature holds for all the studies described in this chapter.

Simulation study II In this second simulation study the instantaneous interactions

among EEG channels were more realistically modelled as mixing of source signals. Dif-

ferently from the previous simulation model where a connectivity scheme between EEG

signal was imposed, here a more realistic EEG generation model involving 3 sources and

3 signals simulating scalp EEG was designed, as showed in figure 4.2. EEG signals are

in fact measured at the scalp, thus being a result of the volume conduction through
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the tissues of the head of cortical signals. The aim of this model is to represent EEG

signals as a mixture of source signals and noise and to investigate the impact of instan-

taneous source mixing on the lagged causality measured ‘at the scalp’. The model in

figure 4.2 was designed in order to investigate how the instantaneous mixing of sources

affects lagged causality among scalp signals (estimated with eMVAR and scMVAR) and

to compare it with the imposed causality among source signals. The diagonal elements

of the matrix A chosen produce distinct spectral peaks in each source when they are

driven with white noise. This was chosen to simulate sources si, i = 1, 2, 3 with different

frequencies ( f1 = 30Hz, f2 = 50Hz, f3 = 75Hz). The off-diagonal elements of A were

set different from zero, as shown in equations 4.15 and 4.16, in order to introduce some

linear dependencies among sources. The sampling frequency was set to fsamp = 250Hz.

Figure 4.2: Scheme of the imposed source model. Note that linear lagged interactions
have been imposed among the sources (black arrows). For the sake of clarity of the
representation, we have indicated only the S3 signal ‘spreading on the scalp’ with grey
arrows, but this holds also for the other sources S1 and S2. The expression of scalp
signals xi, i = 1, 2, 3 as a function of source signals sj , j = 1, 2, 3 is and the distances

di,j is given in equation 4.18

.

A(1) =




1.34 0 0

1 0 0.5

0 0.5 −0.54


 (4.15)

A(2) =




−0.81 0 0

0 0 0

0 0.5 −0.81


 (4.16)

As innovations vector ε(n) a non-Gaussian white noise was considered in order to respect

the assumption of the non-Gaussian approach5. The simulated scalp signals xi, i = 1, 2, 3

5The non-Gaussian noise was generated applying to a Gaussian white noise vector η(n) the nonlinear
transformation, as in Faes et al. (2013):

εi(n) = sign
(
ηi(n)

)
|ηi(n)|a, i = 1, 2, 3 (4.17)

The exponent a was chosen equal to 0.7 to generate a sub-Gaussian distribution.
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were obtained applying the following equations:

x1(n) =
1

d211
s1(n) +

1

d212
s2(n) +

1

d213
s3(n) + ε1(n)

x2(n) =
1

d221
s1(n) +

1

d222
s2(n) +

1

d223
s3(n) + ε2(n)

x3(n) =
1

d231
s1(n) +

1

d232
s2(n) +

1

d233
s3(n) + ε3(n)

(4.18)

si(n), i = 1, 2, 3 being the source processes at time lag n, dij the imposed distance

between source i and scalp electrode j and εi(n), i = 1, 2, 3 the non-Gaussian noise.

As expressed in equation 4.18, the source signals were attenuated with the square of

their distances from the hypothetical scalp locations, considering that cortical sources

contributions to the scalp potential decay with the square of the distance between source

location and scalp electrode (Buzsáki et al. 2012). The objective of this simulation was to

investigate instantaneous and lagged causality on simulated EEG signals resulting from

a mixture of sources signals. At this stage, a realistic model of signal attenuation and

distortion through the soft and hard head tissues was beyond the purpose of the study.

A more realistic model of the source signal propagation through the tissues of the head

will be proposed in section 4.2. In this context by ‘volume conduction’ we will indicate

the weighted mixing of sources as expressed in equation 4.18. The variance of the noise

εi(n) was set in order to have a SNR=10 (power of sources before attenuation/power of

noise ε(n)). The distance among simulated scalp signals was set equal to 4 cm, as it is a

reasonable estimate of the average distance between two electrodes in the International

10-20 system.

Also for this second study, simulated signals were generated with 100 repetitions each

of N = 1000 samples in order to test the reliability of estimators. For each repeti-

tion a MVAR autoregressive model was estimated on the simulated data xi using a LS

Algorithm and the optimum model order selected with the SBC criterion. As for the

Simulation Study I, two different approaches were applied for the fitting of the MVAR

model, the scMVAR and the non-Gaussian eMVAR approach, where the latter is used

to model instantaneous effects. In this case the a priori eMVAR approach could not be

applied since the direction of instantaneous effects is not known. In this simulation zero-

lag dependencies among scalp channels are generated by instantaneous mixing of source

signals; as a consequence the hypothesis that zero-lag connections are unidirectional and

acyclical may not be respected (because not physiologically ‘true’ when considering the

effects of the spread of electric fields). The aim of this second simulation study is to

test the performance of the non-Gaussian eMVAR approach in estimating instantaneous
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causality in this case, i.e. when the direction of zero-lag connectivity is not imposed

a-priori.

Application to recorded EEG data As a final step of the work carried out in this

chapter to assess the performances of the eMVAR approach in estimating lagged connec-

tivity, the spectral measures previously tested on simulated EEG data were applied to

multichannel EEG recordings from 2 representative subjects in resting with eyes closed.

The purpose of this study was to check the validity of the ngDC and ngPDC estima-

tors (i.e. their ability to identify expected physiological patterns) and to compare their

performances with those of the classical MVAR approach in estimating connectivity on

recorded EEG data.

Fifteen 2 s epochs of resting state EEG with closed eyes sampled at fsamp = 250Hz

were considered in the analysis. In order to reduce the computational effort only 6 well

separated electrodes were considered (two frontal, two central, two occipital) as the in-

terest was focussed on long range connectivity. The length of EEG traces was chosen

so as to include a number of data points sufficient to estimate the free parameters and

at the same time to analyse a short EEG segment in order to better approximate the

stationary conditions (see 3.3.1). Estimation of connectivity (PDC, DC) was performed

fitting EEG data first using the scMVAR (ignoring the modelling of instantaneous ef-

fects) and then the extended model using the eMVAR toolbox (Faes et al. 2013). In this

case, differently from the simulation studies, information about the theoretical causality

patterns among signals was not available. However the validity of connectivity estima-

tion could be examined on the basis of physiological considerations about the expected

spectral coupling among brain areas and by comparison with results in the literature.

Moreover in order to examine the performances of the two approaches (scMVAR vs eM-

VAR) with respect to volume conduction artifacts, the estimated PDC and DC between

EEG channels were also compared with connectivity estimated between the underly-

ing source signals estimated solving the so-called Inverse problem, i.e. the problem of

finding the putative electric sources in the cortex that generate the given set of scalp

recordings. The source time series were estimated making use of a distributed source

model (Dale & Sereno 1993) and a realistic head model (Montreal Neurological Institute

brain, Collins, 1994) implemented in the software eConnectome (Bin et al. 2011). The

intensity of the current dipoles distributed on the cortex was then estimated applying

a weighted minimum norm algorithm (Fuchs et al. 1999) with anatomical constraints.

The solution of the inverse problem gives an estimate of cortical signals, thus removing

the volume conduction artifacts that affects signals recorded on the scalp. Once esti-

mated, in the current work the cortical dipole signals were then averaged in six regions
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of interest (ROIs), corresponding to the six electrodes considered in Figure B.1. More

details about the model and algorithms used to solve the Inverse Problem are given in

Appendix B.

4.1.4 Results

In this section the results of the simulation studies and the application on EEG record-

ings are presented. The nomenclature given in table 4.1 will be used to indicate all the

results of the study.

Simulation Study I The following figures show the results relative to the first sim-

ulation study, whose imposed model is showed again in 4.4. An analysis of the quality

of MVAR estimation showed that for all the 100 realisations, the optimum model order

estimated with the SBC criterion coincided with the imposed one. An example of the in-

formation criteria’ trend for one repetition is given in figure 4.3: the SBC curve presents

a clear minimum for p = 4, while the FPE curve presents a shallower profile. A test for

whiteness of residuals was performed for each repetition: for 99 of 100 repetitions the

residuals resulted white when tested with the Ljung-Box Portmanteau test (p < 0.05),

therefore the lagged correlation structure of the time series was adequately estimated

for all the repetitions.

Figure 4.3: Example of model order selection for one iteration: SBC and FPE criteria
values as a function of model order. The model order used in generating signals was 4.
This is a representative example of the SBC and FPE criteria trends and shows that,
while the SBC presents a clear minimum for the optimal model order, the FPE has a

shallower, less interpretable profile.
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Figure 4.4: Imposed connectivity
scheme for the Simulation Study I,
repeated from figure 4.1 in order to
compare the effect of instantaneous
causality (red) with the off-diagonal
element of the covariance matrix-next
figure 4.5. Note how the instanta-
neous connections between 1 and 2
and 2 and 3 correspond to the ele-
ments of the covariance matrix differ-

ent from zero.

Figure 4.5: Covariance matrix Σε,0

of the scMVAR residuals ε averaged
for the 100 iterations. The diagonal
elements σii represent the variance of
residuals. The off-diagonal elements
σ2
ij represent the cross-covariance be-

tween residuals and indicate the pres-
ence of zero-lag effects.

An inspection of the covariance matrix of residuals (figure 4.5) reveals that they are

correlated at lag-zero, as some off-diagonal elements are different from zero; therefore

there are instantaneous dependencies among signals that have not been modelled with

the classical scMVAR. It is useful to remember here that the matrix of instantaneous

effects is a function of the residual covariance matrix (as demonstrated in section 3.3.2)

and that the non-diagonality of the residual covariance matrix indicates the presence of

instantaneous causality. The results showed in figure 4.5 were therefore expected since,

when significant zero-lag effects are present among time series (in this case they were

imposed in the generating model) the scMVAR residuals are correlated. The covariances

(off-diagonal elements) different from zero correspond in fact to the zero-lag interactions

imposed on the model (i.e. 1 → 2, 2 → 3, as well as those in the opposite direction

2→ 1 3→ 2 since the covariance matrix is symmetric).

In order to check the validity of the non-Gaussian hypothesis for the application of the

eMVAR method, the non-normality of residuals was checked for each repetition with the

Jarque-Bera Test6: for all the repetitions, residuals were found to be non-Gaussian, and

therefore the necessary assumption for the application of the non-Gaussian algorithm

was justified.

6The Jarque-Bera test compares the skewness and kurtosis of a given process with the theoretical
distribution of a Gaussian process (Lütkepohl 2005).
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The following plots represent the coupling measures derived from the estimation of

scMVAR and eMVAR on simulated data.

Figure 4.6: DC (squared) estimated with the three methods: scMVAR-blue, eMVAR
non-Gaussian Approach-red, eMVAR a priori approach-orange and compared with the
theoretical values-shaded gray area. The errorbars represent the 99% confidence interval

for the 100 repetitions.

Figure 4.6 is a matrix plot of the DC estimated with the classical scMVAR and the

eMVAR compared with theoretical values. Theoretical values (in grey in figure 4.6 and

following) were computed on the basis of the imposed matrix of parameters7 and show

that, as expected, none of the other signals contribute to the spectrum of x1 (the off

diagonal theoretical values of the first row are all zero while the autoregressive component

of x1 is equal to 1 across all frequencies). The peak at α frequency (10 Hz) of the signal

x1 is transferred to x2, x3 and x4 as the DCi,1(f), i = 2, 3, 4 (first column) has a peak at

the α frequency. Since in the computation of DC only lagged coefficients are considered,

the theoretical values are different from zero only when lagged connections are present

in the original model. By contrast the DC estimated on simulated data shows a non-zero

profile also in absence of lagged interactions (causality), for instance the profile of the

7Being the signal x1 a EEG recording from which all the others signals xi(i = 2, 3, 4) were generated,
the theoretical values of the first row of the matrix MVAR parameters were not known a priori. For this
reason the autoregressive coefficients of x1 were estimated considering x1 as an univariate autoregressive
process with the LS algorithm (ARfit, MATLAB), imposing the model order equal to the theoretic one
(p = 4).
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Figure 4.7: PDC (squared) estimated with the three methods: scMVAR-blue, eMVAR
non-Gaussian Approach-red, eMVAR a Priori approach-orange and compared with the
theoretical values-shaded gray area. The errorbars represent the 99% confidence interval

for the 100 repetitions.

DC is non-zero for DC1,2(f) (first row, second column) and DC3,2(f) (third row, second

column) as a result of the zero-lag links x1 ↔ x2
8 and x2 ↔ x3 but in the absence of

a lagged correlation. The apDC however shows the best performance, closely matching

the theoretical results (except for apDC1,2(f)). The non-Gaussian method (ngDC) is

affected by a larger variance across repetitions and has poorer performances (for instance

note the bias for ngDC3,1(f), third row, first column). However ngDC is close to zero

when lagged effects are absent but there are instantaneous effects (e.g. x2 → x3),

differently from scDC estimated with the classical scMVAR model, that indicates as

lagged the dependence x2 → x3, where only instantaneous coupling is present (third

row, second column).

Similar considerations are valid for the estimated squared PDC, showed in Figure 4.7.

Theoretical PDC shows values different from zero only when lagged direct effects are

present, because the PDC measures only direct lagged coupling. In this case apPDC

and ngPDC are able to identify only direct effects, with values close to zero when

8Note that we have used a bidirectional arrow to indicate instantaneous effects: Even if in the
imposed connectivity model zero-lag connections are unidirectional (i.e.1→ 2 ), their effects on estimated
connectivity is bidirectional (i.e. DC1,2(f) is different from 0)
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instantaneous (x2 → x3) or indirect (x1 → x3) effects are present; scPDC cannot do that.

For instance scPDC3,2(f) (third row and second column of figure 4.7) clearly presents a

peak at f2 quantifying as lagged what is in fact an instantaneous connection from x2 →
x3. Therefore the lagged connectivity structure of the imposed model can be inferred

only from the observation of PDC estimated from the eMVAR models (ngPDC and

apPDC). However the performances of PDC estimated with the non-Gaussian approach

are affected by a larger variance across repetitions and larger bias and, as for the DC in

figure 4.6, ngPDC values for the link x2 → x1 are not ideal.

In conclusion, this first simulation study used an imposed connectivity scheme to simu-

late signals with spectral features similar to an EEG recording. Simulated signals were

generated from the imposed (instantaneous and lagged) connectivity scheme. The aim

of the study was to examine the performances of the eMVAR approach in estimating

lagged connectivity in comparison with the classical scMVAR. The model produces the

intended connectivity patterns (as calculated from theoretical DC and PDC), but all the

estimates fail to reproduce this pattern accurately. The apDC (and apPDC) is probably

closest to the correct results; the scDC is furthest, with ngDC showing intermediate per-

formance. However the relative performance was frequency dependent, and also varied

between channels considered. Furthermore, it should be emphasized that this is only one

illustrative case, and while it aims to provide a realistic example, one cannot generalize

to all cases.

Results are in line with the finding in the literature (Faes & Nollo 2010, Faes et al.

2013) and suggest that the scMVAR model, in the presence of significant zero-lag de-

pendencies, may lead to erroneous estimates of lagged causality. Both scPDC and scDC

estimated with the classical scMVAR model indicate as lagged the zero-lag interaction

from x2 to x3 (i.e. the zero-lag connectivity has affected the lagged connectivity). An

analysis of the consistency of the estimators for all the connections was not previously

performed: results indicate that the non-Gaussian approach for the estimation of the

eMVAR model presents a larger variance across repetitions and a bias in estimating

certain connections as compared with the a-priori method.

In this simulation study the imposed model included significant instantaneous depen-

dencies among signals, but all these zero-lag dependencies were unidirectional, which is

also the assumption made for an accurate eMVAR model estimation. This is unrealistic

in the case of EEG signals, where volume conduction effects spread all signals widely.

In the next section this will be included in the simulation with zero-lag effects generated

by instantaneous mixing of sources at the scalp-level.

Simulation Study II In the following, results obtained from the source simulation

study are shown. In order to make the interpretations of findings easier, the scheme of
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the imposed model is shown again in Figure 4.8 (see also figure 4.2). As for the previous

study, the results of the different tests to check the model validity will be commented

first.

Figure 4.8: Scheme of the imposed model for Simulation II repeated from figure 4.2 in
order to compare results. The green arrows represent the autoregressive contributions
to the source signals while the black arrows are linear interactions among sources. The

scalp signals x are the results of the instantaneous mixing of the three sources s.

Figure 4.9: scMVAR residual co-
variance matrix averaged across repe-
titions. The diagonal elements σii rep-
resent the variance of residuals. The
off diagonal elements σij represent the

covariance between residuals.

Figure 4.10: Off-diagonal elements
of the residual covariance matrix σij
as a function of the number of the rep-

etition.

The model validity analysis showed that for 84 out of 100 repetitions the estimated

optimum model order was p=3, and p=4 for the rest of the repetitions. Note that the

imposed sources model order was p = 2. In this case the estimated model of the scalp

signals has a higher order than the imposed source model, differently from the previous

EEG simulation were for all the repeats the estimated optimum model order was equal

to the imposed one. This may be due to the fact that the scalp signals are generated

as a mixture of sources and therefore additional correlation among them is introduced.

This effect could increase the model order among scalp signals with respect to the source

model. The test for whiteness of residuals revealed that for 55 iterations the hypothesis

of whiteness of residuals of the scMVAR model was rejected, therefore for half of the
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repetitions the full causal structure was not estimated properly. The average covariance

matrix of residuals and the profile of the covariance for all the repetitions are shown

in figures 4.9 and 4.10. The covariance values are different from zero, thus indicating

the presence of significant instantaneous effects that are higher for adjacent electrodes

in all the repetitions. In this case the covariance9 between signals x1 and x2 has higher

values with respect to σ23 = σ32, because the signal x1 has a larger power than x2 and

x3 (results not shown for the sake of brevity).

Figure 4.11: DC estimated from the scMVAR model (scDC, blue) and with the eM-
VAR non-Gaussian approach (ngDC, red). The errorbars represent the 99% confidence
interval over 100 repetitions. The grey areas represent the theoretical values of DC
computed from the source signals, i.e. the theoretic profile of DC obtained from the

imposed coefficient matrix of the source model.

Figure 4.11 is a matrix plot of the DC estimated on simulated data and the theoretical

values computed from the imposed source model. In this case the a priori eMVAR

approach was not applicable as the direction of zero-lag connections is not known a

priori. Comparing the theoretical and estimated values two cases can be identified:

1. When theoretical values of DCij(f) among sources are different from zero (i.e.

a connectivity path exists in the original source model) then the theoretical DC

shows larger values than the DC estimated on scalp signals but the scDC (scMVAR

model) performs better than the ngDC (eMVAR model), showing values of scDC

9The scale of all the results of the Simulation Study II is relative to the source signals that were
generated numerically with unit variance.
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Figure 4.12: PDC estimated from the scMVAR model (scPDC, blue) and with the
eMVAR non-Gaussian approach (ngPDC, red). The errorbars represent the 99% con-
fidence interval over 100 repetitions. The grey areas represent the theoretical values of
PDC computed from the source signals, i.e. the theoretic profile of PDC obtained from

the imposed coefficient matrix of the source model.

much closer to the theoretical sources values, for example DC12(f) (first column,

second row) or DC13(f) in figure 4.11.

2. When theoretical values of DCij(f) among sources are equal to zero (i.e. absence

of connections among sources) then in the process of mixing sources to generate

scalp signals some instantaneous dependencies are introduced in the absence of

connections in the source model, here DC21(f) or DC31(f), therefore the estimated

values are non-zero while the theoretical values are zero. In this case the eMVAR

ngDC performs better than scDC, being closer to zero.

The matrix plot of the PDC (figure 4.12), shows that the PDC underestimates the cou-

pling between scalp signals if compared with theoretical values, but, differently from DC,

is close to zero when a lagged connections is absent among corresponding sources (i.e.

PDC2→1 or PDC3→1). Moreover, the two methods (scMVAR and eMVAR) gave more

similar results then were observed for the DC. An explanation for this has to be found in

the properties of the PDC. The PDC is a factorization of the PCoh that quantifies the

strength of the direct linear interactions between two signals, after removing the effects

of the other time series of the MVAR process, i.e. the effect common to any other signal
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combination; it therefore also removes some common effects of the source mixing, even

if not included in the original model (scMVAR).

Figure 4.13: Coefficients of the estimated instantaneous interactions (i.e. off-diagonal
elements of the matrix B(0) estimated with the non-Gaussian eMVAR approach) for
all 100 repetitions. Note how the estimated B(0) coefficients present large variability
from one repetition to another. This is in contrast to what expected since the process
that generates zero-lag connectivity (instantaneous mixing of source by multiplication
with a matrix) is constant across repetitions. These results indicate that the estimation
of B(0) by means of the non-Gaussian approach is adversely affected by random initial

conditions.

A plot of the estimated zero-lag model coefficients (using the non-Gaussian eMVAR

approach) for all the 100 simulated signals is presented in figure 4.13. It shows that

the values of zero-lag coefficients present a large variability across repetitions. Moreover

the zero-lag coefficients for distant scalp signals (B1,3(0)-magenta- and B3,1(0)-yellow)

are larger than the instantaneous coefficients for adjacent signals in some repetitions,

differently from what was expected and was observed from the covariance matrix of

residuals in figure 4.10. These results are quite unexpected, since if instantaneous in-

teractions among scalp signals are mainly generated by the instantaneous mixing of

sources we would expect consistent values of the matrix B(0) across repetitions, being

the imposed mixing matrix identical. The residual cross-covariances give information

about instantaneous effects among time series, therefore an agreement of results would

be expected comparing the residuals covariance matrix (figure 4.10) and the elements of

B(0). Contrary to this the profiles are very different; for instance we cannot conclude

from estimates that B(0) values (for single iterations, but also on average) for adjacent

scalp signals are higher than for distant electrodes.



Chapter 4. The Impact of Instantaneous Effects on the Estimation of Scalp
Connectivity 75

The non-Gaussian algorithm for the estimation of the instantaneous effects matrix seems

to be affected by the random noise εi(n), i = 1, 2, 3 in equation 4.18, which is the only

component that changes from one repetition to another, and gives a wide scatter in the

results.

Application to recorded EEG data The estimators first tested on simulation

signals were then applied to EEG recordings of rest with closed eyes. As described in

the methods section, the different connectivity estimators were applied on two datasets:

1. Multichannel EEG signals from 6 electrodes (Fp1, Fp2, C3, C4, O1, O2)

2. Putative cortical source signals reconstructed solving the inverse problem for six

cortical areas underlying the electrodes Fp1, Fp2, C3, C4, O1, O2 (figure B.1 in

Appendix B).

The DC estimated with the classical scMVAR model on the raw EEG signals (blue) and

the underlying cortical sources signals (black) is represented in figure 4.14.

As expected, the causal dependence between EEG signals has generally higher values

than the coupling among corresponding sources: in fact the dependencies among scalp

signals result both from correlation among the underlying cortical sources and the ad-

ditional correlation of the spreading of sources (volume conduction). It is possible to

identify a significant bidirectional coupling between occipital electrodes O1 and O2 with

a peak at α frequency (around 10 Hz, O1→ O2 fourth row, last column and O2→ O1

last row, fourth column) for both the dataset (EEG estimated sources). The α oscilla-

tions are in fact known to originate in the occipital visual cortex due to synchronisation

of neurons discharge in the α frequency range (8-12 Hz) during rest with closed eyes

(Klimesch 1999). Moreover results show an information flow from posterior channels to

frontal ones in the α frequency range both on EEG and source estimated scDC, for in-

stance for O1→ Fp2, C4→ Fp2, O1→ C4, O2→ C4. The detection of a preferential

back-to-front direction for the α EEG activity is in agreement with previous findings,

and is explained by the occipital nature of the α oscillations, which are thought to orig-

inate in the visual cortex and then spread towards the central and frontal regions in

the brain (Kamiński et al. 1997, Faes et al. 2013). As stated previously, the diagonal

elements of the matrix plot represent the part of the signals spectrum that is not due to

other signals of the multivariate series. An inspection of the diagonal elements of figure

4.14 reveals that most of the spectrum of the EEG channels is due to the autoregressive

contribution because the DC is close to 1 for all the frequencies except the ones in which

a significant transfer of spectrum occurs. For instance, scDC1,1 (first row, first column,
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Figure 4.14: scDC estimated from the classical scMVAR model on raw EEG data
(blue) and sources signals (black) as a function of the frequency. The diagonal elements
scDCii(f) represents the autoregressive component of the scDC (i.e. the part of the
spectrum of the process xi that is not due to other time series) while the off-diagonal
elements scDCij(f) represent the normalised spectrum that is transferred from signal

xj to signal xi

channel Fp1) is close to one for most of the frequencies but presents a sharp dip at the

α frequency (8-12 Hz), since in this frequency range there is a significant information

flow from O1 to Fp1 (first row, last column).

Results relative to the DC estimated with the eMVAR approach applied on EEG data

are showed in figure 4.15: the ngDC estimated with the non-Gaussian eMVAR approach

on EEG exhibits a flat behaviour across frequencies for all the connections. Moreover

ngDC values largely vary depending on the original dataset (EEG, sources) and it is

difficult to interpret the results: for certain connections source values are very close

to ngDC estimated on EEG, i.e O2 → C3, for others the values are very different,

i.e.Fp2→ O1, O1→ C4.

Results obtained from a second subject with the classical scMVAR approach are similar

(results not shown): an information flow from occipital and central electrodes towards
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Figure 4.15: ngDC estimated with the non-Gaussian eMVAR approach on raw
EEG data (blue) and sources signals (black) as a function of the frequency. The diagonal
elements ngDCii(f) represents the autoregressive component of the ngDC (i.e. the part
of the spectrum of the process xi that is not due to other time series) while the off-
diagonal elements ngDCij(f) represent the normalised spectrum that is transferred

from signal xj to signal xi

the frontal ones is observed and connectivity estimated on EEG data and source data

show comparable trends, with coupling among sources having lower amplitude. As for

the first subject, lagged connectivity estimated with the eMVAR approach (ngDC) shows

a flat behaviour in frequency and very different values of scalp and source connectivity,

making the interpretation of results quite difficult.

Figure 4.16 shows the covariance matrix of residuals from the scMVAR estimation. As

demonstrated in section 3.3.2, instantaneous effects are a function of the covariance of

the residuals and when residual covariances are non-zero some instantaneous correlation

among time series exists. The variance of residuals (diagonals elements) is extremely

small compared to the power of EEG data, which is of the order of 100µV 2, indicating

that the prediction error of the model is relatively small. However, the residual co-

variance matrix is not diagonal, suggesting that some instantaneous effects exist among

signals (in particular between the adjacent channels O2-O1) and have not been modelled
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by the classical scMVAR model. The matrix of instantaneous effects estimated on the

same EEG set is shown in figure 4.17: the highest zero-lag dependences are estimated

between C3-Fp1 and C3-Fp2. Similarly to what observed for the Simulation Study II

there is poor consistency between the instantaneous effects indicated by the residual co-

variance matrix and zero-lag coefficients B(0) estimated with the non-Gaussian eMVAR

approach.

Figure 4.16: Residuals covariance
matrix of the scMVAR model estima-
tion on EEG signals.The off-diagonal
elements σij(0) indicate instantaneous
causality between channels xj and xi.

Figure 4.17: Matrix B(0) estimated
with the eMVAR non Gaussian ap-
proach. The generic element Bij(0)
represents the zero-lag linear depen-

dency from channel xj to xi.

The connectivity measures estimated with the non-Gaussian eMVAR approach exhibit

unexpected flat profiles in frequency when estimated on recorded EEG. These flat trends

cannot be ascribed to low model order because the eMVAR is estimated starting from

the scMVAR fitting and thus the classical and the extended models have the same order

(p=18 in this case). These trends were observed also for the respective transfer functions

H(f) (scMVAR) and eH(f) (eMVAR) (results not shown). In the computation of the

matrix of lagged coefficients for the eMVAR model Blag(f) the constant matrix of in-

stantaneous effects B(0) is added for each frequency (see equation 4.19). An erroneous

estimation of the matrix B(0)(in particular an overestimation) may be the reason why

the profile of Blag(f) (and the spectral connectivity measures estimated from it) is flat

in frequency.

Blag(f) = I −
p∑

l=1

B(l)e
−2πfl
fsamp = Bext(f) +B(0) (4.19)

Our examples suggest that, when applied on recorded EEG data, the non-Gaussian

framework fails to characterize reliably zero-lag interactions and that caution is required
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when interpreting results of this approach. Moreover there is a very poor agreement

between the connectivity networks estimated on scalp EEG channels with the eMVAR

approach and those on underlying source signals. These results add further uncertainty

to the reliability of estimation of instantaneous effects on real EEG data with the non-

Gaussian eMVAR algorithm. Scalp connectivity estimated with the classical scMVAR

approach (scDC, scPDC), on the other hand, exhibit patterns that are in agreement

with previous findings in literature and show similarity with the connectivity patterns

estimated between underlying source signals.

4.1.5 Summary

The results of the two simulation studies and the application on recorded EEG data are

discussed and summarized in the following points:

1. Neither of the two methods (scMVAR and eMVAR) accurately estimate lagged

(theoretical) connectivity. The a-priori eMVAR approach cannot be applied in

EEG simulated or recorded data as the direction of zero-lag interactions is not

known a priori. The non-Gaussian eMVAR framework performs better than the

scMVAR when the zero-lag dependences are imposed as directed and acyclic in

the original model (Simulation I). However when the zero-lag effects are more real-

istically modelled as source mixing (Simulation II) and in application to recorded

EEG the performances of the eMVAR are degraded, and not superior to those of

the classical scMVAR.

2. Our examples suggest the non-Gaussian algorithm estimates of instantaneous in-

teractions are not consistent across repetitions and the results obtained from the

estimation of the non-Gaussian eMVAR model may be misleading. This was in

some way expected in simulated and recorded EEG data because the assumption of

unidirectional acyclical zero-lag effects is physiologically ‘violated’ and the correct

application of non-Gaussian eMVAR compromised.

3. Compared with the DC, the PDC estimated with the two methods (ngPDC and

scPDC) present similar results and is less affected by instantaneous causality (even

if the eMVAR methods exhibited larger variance across repetitions). These results

are in line with the theoretical properties of this estimator: The PDC is in fact a

measure of linear dependencies between two time series once the effect common to

all the other signals of the multivariate dataset is excluded. In EEG multichannel

analysis, volume conduction effects are common to adjacent electrodes, therefore

the use of PDC should reduce the volume conduction artifacts in the compu-

tation of directed causality, independently from the algorithm used (eMVAR or
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scMVAR). This suggest that the PDC may be the optimal choice for causality

structure inference because of its properties of excluding indirect connectivity and

reducing instantaneous effects.

These results suggest that the estimation (and removal) of instantaneous effects in the

estimation of lagged causality remains a challenge. Given that, the issue of instanta-

neous causality remain unresolved. In the case of the EEG signal, which is our main

focus, the removal of instantaneous causality is beneficial because it represents the non

physiological correlation produced by volume conduction of underlying sources. If re-

moving instantaneous connectivity between scalp channels is not possible, then it is

useful to characterize to what extent the DC and PDC estimators are affected by the

instantaneous effects of volume conduction in order to correctly interpret the significance

of estimated connectivity. We will address this issue with a more realistic model of EEG

signal generation in the next section.

4.2 The effect of volume conduction on the estimation of

DC and PDC between scalp channels: a realistic sim-

ulation

Whether PDC and DC estimated from EEG scalp channels are affected by the instan-

taneous mixing of cortical sources (volume conduction) is a debated issue. Kaminski

and Blinowska, who introduced the DTF estimator, claim that DTF is not influenced

by volume conduction (Kaminski & Blinowska 2014) because it is nonzero only if there

is a phase difference between channels. Since the volume conduction is an instantaneous

propagation of electromagnetic field that does not generate phase difference at electrodes,

it should not influence connectivity estimators DC/DTF and PDC. To demonstrate that

Kaminski performed a simulation adding a sinusoid at 20 Hz to the set of EEG signals

(with the same phase for each EEG channel) and showed that the estimated DFT was

not affected. Other authors (Schlögl & Supp 2006) justify the independence of PCoh

and PDC from the volume conductions effects because of the property of these estima-

tor to remove the components common to other channels from the estimation of linear

dependencies between two channels.

However we have shown in the previous section how instantaneous correlation between

residuals affects the estimation of lagged causality. These instantaneous effects are likely

to represent, in the case of the EEG signal, the effect of the zero-lag mixture and propa-

gation of sources across the head tissues on the scalp. Moreover a recent work (Billinger

et al. 2016) has demonstrated, both mathematically and with a simulation, that scalp
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connectivity (DTF) is adversely affected by volume conduction. The simple simulation

model used involves only 3 scalp electrodes placed directly above 3 coupled sources and

is lacking a more realistic characterization of volume conducted sources currents. Sim-

ilarly in the work by Faes and colleagues (Faes & Nollo 2011, Faes et al. 2013) volume

conduction is modelled imposing directed zero-lag dependencies between signals: this,

as suggested in the previous section, may not realistically model the effect of source

mixing on scalp signals. The work of Faes suggests that PDC and DC reduce the effects

of instantaneous correlation if compared to Coh and PCoh, however a comparison of the

performances of the different MVAR spectral estimators by means of a realistic model

of volume conduction of sources is lacking.

In a series of studies Nunez and colleagues (Nunez et al. 1997, 1999, Srinivasan et al.

1998) have investigated and extensively characterized the effects of volume conduction

on scalp Coh estimates as a function of the interelectrode distance and reference choice.

Using a multilayer sphere model of the head they have characterized both analytically

and with simulations the Random Coh between scalp potentials only due to the effect of

instantaneous volume conduction from random uncorrelated cortical sources (called Ran-

dom because it does not arise from actual correlation among underlying cortical sources

but exclusively from the spread of source signals on the scalp (Nunez et al. 1997)). In

particular analytical and simulations results showed that for an inter-electrode distance

of 4 cm the Random Coh is in the range 0.4-0.9 (for a linked ears or average reference)

(Nunez et al. 1997, 1999, Srinivasan et al. 1998). They also have shown how Coh es-

timates are affected by the reference choice providing a useful baseline for interpreting

the physiological significance of coherence estimates for scalp data. To the best of our

knowledge, a similar characterization of volume conduction effects for MVAR derived

estimators (DC, DTF, PDC and orPDC) is lacking.

4.2.1 Objectives

In this last section of the chapter we will address the issue of the impact of volume

conduction (instantaneous mixing of cortical sources) on EEG lagged causality by means

of a series of simulations and using a realistic head model. The aim of this second study

is to characterize volume conduction effects on DC, DTF, PDC and orPDC (estimated

with the classical scMVAR) as a function of the interelectrode distance and reference

electrodes. We believe that these issues are fundamental for the correct physiological

interpretation of scalp connectivity (estimated with DC or PDC) as compared to the

connectivity between underlying sources.



Chapter 4. The Impact of Instantaneous Effects on the Estimation of Scalp
Connectivity 82

4.2.2 Methods

Differently from the simulation study II (section 4.1.4) where EEG signals were gen-

erated by the instantaneous mixing of sources weighted by the inverse of the squared

‘distance’ from the scalp, in this study a Lead Field Matrix (LFM) from a realistic

head model (Montreal Neurological Institute, Collins et al. (1994)) describing the signal

propagation through the tissues of the head was used. The high-resolution LFM was

available in the software eConnectome (Bin et al. 2011). The Montreal Neurological In-

stitute brain was defined by using a large series (250) of MRI scans on normal subjects

to obtain a ‘brain’ representative of the population. The head model determines the

way the current dipoles at a given cortical location produces the scalp signals and in-

cludes electromagnetic and geometric properties of the whole head volume, thus taking

in account both superficial and deep sources. Once the properties of the head model

are known it is possible to generate a LFM. Each jth column of the LFM describes the

potential distribution generated on the scalp electrodes by the jth source current dipole.

Since the Montreal Neurological Institute cortex is segmented in 7850 triangles, the high

resolution LFM relates the 7850 current dipoles centred in the triangles (source space)

and the voltage at the 62 channels on the scalp (sensor space).

In a first simulation scalp potentials for 62 electrodes were generated by mixing uncor-

related uniformly distributed source dipoles. We selected 1600 sources (out of the 7850)

evenly distributed on the cortex surface (figure 4.18) 10 and imposed the white noise

variance equal to 10−2 (mA*mm), that corresponds to the typical dipole strength from

a patch of 1cm2 of cortex (Hämäläinen & Sarvas 1989).

The sensor measurements x(n) were generated as a linear instantaneous mixture of

sources s(n) through the LFM M , [62× 1600]

x(n) = M ∗ s(n), n = 1, · · · , N (4.20)

where N is the number of samples considered (5000).

A MVAR model (scMVAR) was then estimated from the scalp time series and then

the MVAR spectral estimators (including Coh and PCoh) computed using the usual

equations (3.5,3.19,3.23,3.25). The generation-estimation procedure was repeated 100

times. At each repetition random uncorrelated source signals were generated using the

Matlab function rand.m, that generates uniformly distributed random numbers. The

scalp potentials were referenced with respect to the average value across all electrodes

10Nunez and colleagues used 4200 dipole sources in their simulations. In the current work, we main-
tained the order of magnitude but cut down the number of sources considered in order to reduce com-
putational cost.
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Figure 4.18: Locations of the sources dipoles (1600, in red) selected on the cortex
surface to generate the voltage distribution on the scalp and selected electrodes loca-
tions and labels (62, in yellow). The figure shows how the source dipoles are evenly

distributed and cover all the cortex surface.

(Average Reference) and the average of channels T7 and T8 (Linked mastoids Reference)

as in Nunez et al. (1997). For each index, the estimated values of ‘random’ connectiv-

ity11 between channels were plotted as a function of the interelectrode distance and for

different frequencies in the interval (1, fs/2), with sampling frequency set equal to 250 Hz.

In order to reduce the computational cost we repeated the same procedure using a

reduced number of electrodes (32) and sources (62) (figure 4.19), obtaining very similar

results. In this case we also introduced some coloured noise sources: The uniform

noise was pass-band filtered with Butterworth filters (order 3) with central frequencies

ranging from 1 to 121 Hz and pass band of roughly 4 Hz in order to obtain uncorrelated

coloured noise sources. The hypothesis of uncorrelated sources is fundamental here

because the aim of the simulation is to quantify the random connectivity generated

only by instantaneous mixing of sources, in absence of dependencies between them.

The independency of sources was therefore tested by means of a Kendall test for each

11The term Random Coh introduced in the previous section to indicate spurious non physiological
Coh introduced only by the volume conduction of uncorrelated sources, will be here extended to Random
Connectivity to indicate the volume conduction induced spurious connectivity assessed with DC/PDC.



Chapter 4. The Impact of Instantaneous Effects on the Estimation of Scalp
Connectivity 84

repetition. The usual criterions for optimal model order selection (SBC) and model

validation (whiteness of residuals) were used.

Figure 4.19: Locations of the 62 sources
dipoles (red) selected in the second simulation
study to generate the voltage distribution on
the scalp and 32 selected electrodes locations
and labels (yellow). The figure shows how
the scalp electrodes and the source dipole are
evenly distributed on, respectively, the scalp

and cortex surface.

Figure 4.20: Example of
scalp signals variance distribu-
tion for the linked mastoid ref-
erence and white sources show-
ing how the signals at elec-
trodes in different locations

have different power.

4.2.3 Results

An example of the simulated scalp variances is given in figure 4.20: even if source

signals are generated with equal variance, scalp channels have different power. This

is because sources contributions are weighted differently depending on their position

and the electrical property of the local tissues and correspond with unbalanced power

distribution observed in recorded EEG signals (i.e. the EEG power of some channels is

higher than for electrodes in other locations).

Figures 4.21 and 4.22 show results for squared Coh, PCoh, DC and PDC estimated

respectively from average and linked mastoid referenced scalp signals and for f=10 Hz.

The white noise sources are uncorrelated, therefore the scalp electrodes non-zero cor-

relations are only due to the instantaneous volume conduction and reference electrode

effects. Results indicate that, as extensively described by Nunez and colleagues for the

Coh (Nunez et al. 1997, Srinivasan et al. 1998), the random Coh and PCoh values are

significantly different from zero, especially for shorter interelectrode distances, and are

affected by the reference choice. The Coh show expected trends (see figure 4.23 from
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Figure 4.21: Simulated squared measures (Coh, PCoh, DC and PDC) of ‘random
connectivity’ estimated from scalp signals at frequency 10 Hz as a function of the
interelectrode distance. Sources are 1600 dipoles distributed on the cortex surface and
scalp signals are referenced with respect to the average potential. Each plot is showing
results for all the possible pairs of 60 electrodes and 100 repetitions (for a total of

354000 points).

Srinivasan et al. (1998) for a comparison): for the average reference, random Coh ex-

hibits values ranging from 0.4 to 0.9 for surface distances shorter than 5 cm. Coh falls

off to zero for distances of roughly 10 cm. At larger distances there is a small rise in

coherence as the each source contributes a small negative potential due to the known

behaviour of superficial dipoles12. The simulated Coh values for the mastoid reference

show a more gradual decay with the interelectrode distance and long distances volume

conduction effects are close to zero. The random PCoh trends are similar to those ob-

served for the Coh, however random PCoh shows lower values for both the reference

choices (mostly below 0.5 also for distances lower than 5 cm) and more steeply falls off

with distance in the linked mastoid reference case.

Interestingly both random DC and PDC are close to zero for all the interelectrode dis-

tances range and are not affected by instantaneous mixing of white random sources. In

12The field of each dipole source falls off to zero with the square of distance but then rises again with
opposite sign for larger distances (Srinivasan et al. 1998). A dipole in a spherical volume conductor
generates a potential (with respect to infinity) whose integral over the surface is zero (Bertrand, 1985).
This is also valid for multilayer spherical volume. The positive and negative potentials of each dipole
always appear anti-symmetrically on the sphere surface, thus their integral is zero. This behaviour is
observed for the reference with respect to infinity and for the average reference, but is not observed for
single channel or linked mastoid reference (see figure 4.22). The average potential in fact approximate
the potential at infinity (is close to zero) when numerous and widespread channels are considered.
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Figure 4.22: Simulated squared measures (Coh, PCoh, DC and PDC) of ‘random
connectivity’ estimated from scalp signals at frequency 10 Hz as a function of the
interelectrode distance. Sources are 1600 dipoles distributed on the cortex surface and
scalp signal are referenced with respect to the (digitally) linked mastoids. Each plot
is showing results for all the possible pairs of 60 electrodes and 100 repetitions (for a

total of 354000 points).

Figure 4.23: Results from Srinivasan et al. (1998). Simulated random coherence due
to uncorrelated white sources for (a) average reference and (b) linked mastoids. The
scalp potentials are simulated by mean of a four spheres head model. The bars indicate
the reference-independent analytical solution. The dots represent simulated data for
111 scalp electrodes. Adapted from Srinivasan et al. (1998) and reported here in order
to compare with the Coherence results obtained from the present simulation study and
showed (black triangles) in figures 4.21 (average reference) and 4.22 (linked mastoid).

figures 4.21 and 4.22 results for one frequency (f=10 Hz) are shown. These results are

consistent for all the frequencies analysed (see figure 4.24 where results for the average

reference for another frequency, f=1 Hz, are shown to give an example) as expected since
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Figure 4.24: Simulated squared measures (Coh, PCoh, DC and PDC) of random
connectivity estimated from scalp signals at frequency 1 Hz as a function of the inter-
electrode distance. Scalp signal are referenced with respect to the average potential.
Results are remarkably consistent with those showed in figure 4.21 for f=10 Hz and
show how the instantaneous volume conduction of white sources is independent from

frequency.

the instantaneous mixing of sources (the passive conduction of dipole currents across the

tissues of the head) is independent of frequency13.

These trends are consistent also if a smaller number of sources and electrode is consid-

ered, as for the second simulation study. The Kendall test indicated that source signals

were independent for all the iterations. We also performed a test of the whiteness of

residuals to check for MVAR estimation accuracy: the whiteness test indicated that sim-

ulated scalp potentials were accurately modelled for most of the repetitions (residuals

were found white in 89 out of 100 repetitions for the average reference and in 88 rep-

etitions for the linked mastoid reference). The optimal MVAR model order was found

equal to 1 for all the repetitions and for both reference choices. In figure 4.25 averaged

results across the 100 iterations for the linked mastoid reference are showed for 5 fre-

quencies (1, 10, 20, 50, 100 Hz). Random PDC and DC average values are lower than

0.005 for all frequency surface distances. Results remarkably matches for all the frequen-

cies considered as expected since, as previously mentioned, in the range of frequencies

13Over the frequency range usually considered for EEG analysis, tissue resistivities are insensitive to
temporal frequency and the spread of cortical current on the scalp can be modelled as linear weighed
sum of signals (Nunez 1981).
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Figure 4.25: Average values (across 100 repetitions) of simulated squared measures
for the realistic head model showed in figure 4.19 (62 sources, 32 electrodes). Scalp
potentials are generated from white uncorrelated sources and referenced with respect to
the linked mastoid. Although perfectly overlapping in this case, results for 5 frequencies

are showed.

considered for EEG analysis, the volume conduction can be modelled as passive current

spread independent from temporal frequency.

Figure 4.26: An example of Power Spectral Density -PSD (computed using the Welch
method, Hanning window, 50% overlap) for 15 coloured sources as compared to a white

noise dipole signal (dashed black line).

We have also investigated the effect of coloured uncorrelated sources on causality mea-

sures. As described in the methods section, 30 of the 62 source signals were generated by

band pass filtering the white noise in order to obtain narrow band coloured sources, with
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Figure 4.27: Average values (across 100 repetitions) of simulated squared measures for
the realistic head model showed in figure figure 4.19. Scalp potentials for 32 electrodes
are generated from coloured uncorrelated sources (62) and referenced with respect to

the linked mastoid.

non-overlapping central frequencies. An example of the PSD for 15 coloured sources in

comparison with a white noise dipole PSD is given in figure 4.26. Also in this case

sources were found independent for all the repetitions (Kendall test). In this case the

optimum MVAR model order was equal to 2 for both the linked mastoid and average

references in all the repetitions, suggesting that the instantaneous mixing of coloured

signals introduces some lagged correlation between scalp channels.

As figure 4.27 shows, Coh and PCoh exhibit average trends similar to those observed

for white noises sources, however random PCoh show slightly higher values for coloured

sources across all the distances range. Random DC and PDC are significantly affected

by volume conduction of coloured sources and show much higher values than those ob-

served for white uncorrelated sources, in particular for interelectrode distances lower

than 10 cm. In the case of coloured sources small differences in estimates for different

frequencies can be observed as well, which are expected (Nunez et al. 1997) and caused

by the differences in the spectral properties of the sources. Interestingly, the random

PDC exhibits higher values for close electrodes than the DC (figure 4.27, right plots).

On the other hand random PDC shows a monotonic decrease with interelectrode dis-

tance, while random DC exhibit a slight increase for distances larger than 15 cm. In

both cases volume conduction induced connectivity is lower than 0.05 for interelectrode

distances larger than 10 cm.
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Figure 4.28: MVAR estimators for
white noise sources: a comparison.
Mean and standard errors (across 100
repetitions) values for squared DC
(red), DTF (black), PDC (blue) and
orPDC (gray) as a function of in-
terelectrode distances. Scalp poten-
tials are generated by volume conduc-
tion of 62 white sources. The figure
shows how random connectivity gen-
erated by white uncorrelated sources
and quantified with MVAR estimators
is close to zero for all the interelec-

trode distances considered.

Figure 4.29: MVAR estimators for
coloured noise sources: a compari-
son. Mean and standard errors (across
100 repetitions) values for squared DC
(red), DTF (black), PDC (blue) and
orPDC (gray) as a function of inter-
electrode distances. Scalp potentials
are generated by volume conduction
of coloured sources. The figure shows
how random connectivity generated
by coloured uncorrelated sources and
quantified with MVAR estimators is
different from zero for interelectrode
distance shorter than 10 cm. DTF and
orPDC random connectivity for large
interelectrode distances (> 15 cm) it
is higher than the respective measures

DC and PDC.

In figures 4.28 and 4.29 the average trends of the four estimators DC, DTF, PDC and

orPDC are compared for white and coloured sources respectively. In both cases DTF

and ordinary PDC (orPDC) show higher values for large interelectrode distances if

compared the respective estimators normalized by signals variances (DC and PDC).

This may be a results of the poor performances of DTF and orPDC (as compared to

DC and PDC, respectively) when the time series of the multivariate set have different

variances (Baccalà & Sameshima 2007). As shown in figure 4.20, distant electrodes are

more likely to have different variances: as a result the unscaled estimators DTF and

orPDC erroneously overestimate random connectivity for large interelectode distances,

while DC and PDC show more robust results.

4.2.4 Summary

In summary, we have investigated the effect of instantaneous mixing of uncorrelated

cortical sources on scalp connectivity using a realistic model of the head (Montreal

Neurological Institute brain). In particular we looked at the effects of the type of sources
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(white or coloured), the scalp interelectrode distance and the reference choice. The aim

of the study was not only to confirm that instantaneous source spreading affects DC

and PDC, but to investigate under what conditions lagged connectivity is significantly

affected and how this vary as a function of interelectrode distance. Results showed

that Coh and PCoh are significantly affected by volume conduction both for white and

coloured sources (and roughly to the same extent in the two cases). As expected, by

subtracting the common linear effects, the PCoh remove some of the volume conducted

random connectivity and shows lower values of random connectivity if compared to Coh.

This is, however, not enough to remove all the volume conducted connectivity generated

by white or coloured uncorrelated sources. On the other hand, DC and PDC are affected

only by the instantaneous mixing of coloured sources, when random connectivity is

significantly different from zero especially for close electrodes. A comparison of the

different MVAR derived spectral estimators confirmed results in literature by Baccalà &

Sameshima (2007): DC and PDC perform better than DTF and orPDC in the case of

unbalanced signal variances (i.e. for distant electrodes, in this case). We have also shown

that, despite being affected by volume conduction, DC and PDC significantly reduce

the spurious effects of uncorrelated sources mixing if compared with Coh and PCoh.

In particular our preliminary results show that volume-conducted spurious connectivity

estimated with PDC or DC is reduced to almost zero for interelectrode distances larger

than 10 cm.

4.3 Discussion

Several methods have been proposed to more reliably estimate multi-channel EEG con-

nectivity by (partially) removing the spurious, non-physiological coherence introduced

by volume conduction. One approach reduces the correlation between scalp channels

by applying a Laplacian filter to the EEG time series. The Laplacian is the second

spatial derivative of the scalp potentials and it was shown to remove almost all volume

conduction artifacts for distances larger than few centimetres (Nunez et al. 1997). This

approach is based on the assumption that scalp potential are generated mainly by su-

perficial radial dipoles and is insensitive to tangential or deep sources. Moreover it has

been shown that the surface Laplacian improves the resolution at intermediate length

coherence however it underestimate the value of many coherences at long distances (> 20

cm) because its spatial bandpass characteristic attenuates low spatial frequencies (Srini-

vasan et al. 1998). Moreover, the application of such a filter is thought to alter the phase

distribution of the original time series, eliminating any physiological phase relationships
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and therefore is considered an invalid method of calculating coherence and directed co-

herence (Kaminski & Blinowska 2014, Thatcher 2012) 14.

Another approach uses inverse imaging methods (see Appendix B) to estimate the time

course of cortical sources activity in areas of interest (ROI). This approach requires a

realistic electric and geometric model of the head and the solution of the inverse problem

(the problem of finding the putative cortical sources given the scalp voltage distribution).

It involves therefore a considerable computation effort that may not be compatible with

real time EEG analyis.

Classical MVAR models do not include zero-lag coefficients, therefore disregarding the

modeling of possible volume conduction effects. However the presence of instantaneous

effects, often ignored in practical applications, affects the estimation of pure lagged

causality and invalidates the assumption in the usual definition of Granger causality,

that only the lagged interaction need to be considered in the computation of ‘causal-

ity’. To deal with the misleading effects of zero-lag interactions on the estimation of

time-lagged causality, an eMVAR framework has been introduced (Shimizu et al. 2006,

Hyvarinen et al. 2010, Faes & Nollo 2010). The eMVAR approach includes instanta-

neous effects in the model introducing zero-lag coefficients. The aim of the first series of

simulations was to compare the performances of the eMVAR approach and the classical

scMVAR method in estimating lagged connectivity from imposed connectivity mod-

els of EEG signals and on recorded EEG data. For this purpose the two frameworks

were applied in two simulation studies and eventually on EEG recordings (appendix B).

In the first study the simulated signals were generated from an imposed connectivity

scheme including directed zero-lag interactions. Results showed that, in agreement with

previous finding, the eMVAR approach leads to better estimates of pure lagged causality.

In the second simulation study the frameworks were applied to a more realistic EEG

model, where instantaneous effects were not imposed a priori but generated as zero-lag

mixing of source signals. Results in this case showed that the reliability of the non-

Gaussian eMVAR approach was low and the eMVAR based connectivity did not perform

notably better than the classical scMVAR in removing the volume conduction effects.

In addition, the eMVAR based spectral measures showed a dramatic decrease of spectral

resolution when applied on EEG recordings, exhibiting flat profiles in frequency. These

findings suggest that, when applied on more realistic simulations or on recorded EEG

data, the non-Gaussian approach may fail to characterize reliably zero-lag interactions

14‘The process of adding together all of the phase differences from all electrodes destroys the physi-
ologically based time differences that were present in the original time series and replaces the original
time series with scrambled phase and thus an inability to accurately relate coherence and phase to an
underlying neurophysiology’ (Thatcher 2012).
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and that caution is required when interpreting results of this approach. This may be due

to both the complexity of this computational method and the underlying assumptions

which are incompatible with omnidirectional volume conduction effects. The authors of

the non-Gaussian algorithm Shimizu et al. (2005) have in effect expressed their concern

about the computational stability of this method, alerting on the fact that it may be

affected by the random initial conditions. The assumptions behind the application of

this method may represent the fundamental problem. As described in section 4.1.1, the

non-Gaussian algorithm is based on the hypothesis that the instantaneous effects can

be arranged in a causal order, meaning they can be represented by a directed acyclic

graph (DAG). Imposing a sequence to the instantaneous effects either based on a priori

assumptions or on the non-Gaussianity may be the main reason why this method fails

on more realistic EEG simulations or on recorded EEG data, since from a physical point

of view such a restriction may be incorrect. These considerations suggest that estima-

tion and characterization of instantaneous causality in the EEG remains unresolved and

challenging issue.

The scMVAR approach applied in realistic simulations and on recorded data is adversely

affected by zero-lag effects. However the scMVAR connectivity estimators gave results

in line with literature findings and were found to detect expected spectral features such

as the spread of α oscillation from occipital to frontal areas, typical of EEG at rest with

closed eyes. Of the two estimators considered (scDC and scPDC), scPDC was found to

be less affected by instantaneous effects than scDC, indicating that it may represent a

better estimator of lagged causality from EEG recordings.

Since our examples showed that the eMVAR approach is not able to remove the effect of

instantaneous causality and that in practical EEG applications it may only add compu-

tational effort without improving the estimation of lagged causality, in the following we

will use the classical scMVAR framework to estimate scalp connectivity because, even

if affected by volume conduction, it represents a simpler, more reliable and established

method than eMVAR.

In the study of the EEG signal the issue of instantaneous connectivity is mainly re-

lated to problems like volume conduction effects and the impact of a reference electrode

(Nunez 1981, Nunez et al. 1997, Srinivasan et al. 1998). Given that the estimation and

removal of instantaneous effects using the eMVAR remains a challenge, it is important

to quantify the impact of volume conduction on scMVAR lagged causality in order to

more appropriately interpret the physiological significance of connectivity estimators.

We addressed this issue in a second series of simulations that more realistically mod-

elled volume-conducted connectivity. Scalp potentials were generated by mixing random
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source dipoles uniformly distributed on the cortex through a realistic model of the head

(LFM).

Results in section 4.2 showed that DC/DTF and PDC/orPDC considerably reduce the

effects of volume conduction as compared to Coh and PCoh and that for interelectrodes

distance larger than 10 cm spurious DC/PDC connectivity is close to zero. In line with

previous findings in literature, we showed that Classical Coh (and PCoh) are signifi-

cantly affected by both white and coloured sources. Going beyond previous work we

showed that DC and PDC are affected only by the instantaneous mixing of coloured

sources. When sources are white their autocorrelation is positive only at lag zero (i.e.

given a source signal, its samples at different time lags are not correlated). In contrast,

for coloured sources, the autocorrelation is different from zero also for positive time lags

(samples at different lags are correlated) and the instantaneous (zero-phase) mixing of

non-white source signals affects scalp lagged causality estimated with DC and PDC.

In other words, we showed that the claim of Kaminski (Kaminski & Blinowska 2014)

that the scMVAR derived estimator DTF/DC is not affected by zero phase mixing holds

only for white sources. The zero phase mixing of coloured sources (being their lagged

correlation different from zero) introduces some phase delay between scalp electrodes,

and it therefore generate spurious connectivity.

Moreover, in contrast to the hypothesis that PCoh and PDC partialize out the effects

of volume conduction(Schlögl & Supp 2006), we showed that both PCoh and PDC are

significantly affected by volume conduction: the partialization of Coh (PCoh) removes

some of the volume conduction effects common to other electrodes but does not reduce

them to zero.

A comparison of the different scMVAR derived spectral estimators confirmed that DC

and PDC perform better than DTF and orPDC in the case of different scalp signal

variances. In these study we also showed, in agreement with previous results on Coh

(Nunez et al. 1997, Srinivasan et al. 1998), that the linked mastoid reference cancels some

of the long distances volume conduction effects that are present if the average reference is

used. These findings oriented the choice to use DC and PDC as connectivity estimators

(from EEG data referenced with respect to the linked mastoid) in the following studies

on sleep and anaesthesia (chapters 5 and 6).

That being said, this study should be considered as a preliminary work since it presents

some limitations. Firstly we have investigated scalp voltage generated by a specific

source dipole distribution (therefore using only one lead field matrix LFM): future work

should investigate results obtained randomly varying the source dipole distribution, as

in Srinivasan et al. (1998). A second consideration regards the sources signal choice: we

first have investigated effects generated from a mixture of white uncorrelated sources as
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in Nunez et al. (1997), and secondly introduced coloured sources by band-pass filtering

the white noise to test the hypothesis that lagged connectivity is affected by the volume

conduction of uncorrelated coloured sources. In future work realistic cortical dipole

spectral features may be used to more accurately model volume conduction effects. For

instance we could have estimated more realistic source signals applying the inverse model

to EEG recordings. In this case however it would have been more challenging to ensure

the independence of source signals, which was the assumption of the simulation study to

assess random volume conducted connectivity. We believe however, that despite these

limitations, our preliminary result provide novel contribution in the characterization of

volume conduction impact on PCoh, PDC and DC, and can represent useful guidelines

for the interpretation of physiological significance of PDC and DC for the experimental

studies on sleep and anaesthesia that will be outlined in the next chapters. It also opens

the way for a new series of simulations studies that could provide considerable insight

in the interpretation of EEG MVAR connectivity.





Chapter 5

Functional Connectivity Analysis

of Sleep

The spectral connectivity estimators previously described and tested in simulation stud-

ies were applied for the analysis of EEG recordings collected during a sleep experiment.

Considering the results of the simulations and their properties, the DC and PDC esti-

mators derived from the classical MVAR model were applied in this first experimental

study. In this study the changes in functional brain connectivity with level of conscious-

ness were explored comparing wakefulness with different sleep stages. In this chapter

the experimental design and methods will be described, then results from the EEG con-

nectivity analysis will be shown and discussed.

Preliminary results from the sleep study were presented at the PGBiomed 2015 con-

ference in Liverpool and at the MEDICON 2016 (XIV Mediterranean Conference on

Medical and Biological Engineering and Computing) in Paphos (Cyprus).

Results from this study are published in: Lioi G, Bell SL, Smith DC, Simpson DM.

Directional Connectivity in the EEG is able to discriminate wakefulness from NREM

sleep. Physiol. Meas. 38 (2017) 18021820

5.1 Introduction

Sleep is a naturally-occurring rest condition ‘in which the eyes usually close and con-

sciousness is completely or partially lost, so that there is a decrease in bodily movement

and responsiveness to external stimuli’ (Stedman 2005). The macrostructure of sleep

consists of two different phases: NREM and rapid eye movement (REM) sleep. During a

97
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whole night’s sleep there is a periodic alternation of NREM and REM sleep. The NREM

phase is in turn divided in different stages classified on the basis of their neurophysiolog-

ical features: N1, N2 and N3 sleep, the latter also named slow wave sleep (SWS) because

the brain rhythms in this stage are characterized by highly synchronized oscillation at

frequency f < 4Hz (Iber et al. 2007). SWS represents the deepest stage of sleep, where

the subject is not responsive and is unaware of the external environment. During REM

sleep, in contrast, reports of dream-like conscious experiences are common. A nap gen-

erally includes only NREM sleep (N1, N2 and N3) with sleep N2 representing the largest

proportion and the time spent in N3 increasing with the nap-length for naps longer than

10 minutes (Brooks & Lack 2006). Naps, as also used by Massimini and Tononi (Massi-

mini et al. 2005a), therefore represent a convenient condition to investigate LOC at the

onset of NREM sleep, with the advantage of only requiring a simple experimental setup

that does not entail the practical challenges of overnight sleep recordings.

Sleep and anaesthesia are the result of distinct sequences of events (Bonhomme et al.

2011) and have different behavioural endpoints. However the view of general anaesthe-

sia as ‘deep sleep’ has deep roots, and it is common to hear the expression ‘putting

someone to sleep’ to indicate the administration of general anaesthetics. NREM sleep

and anaesthesia share important features such as closing of the eyes, hypnosis, reduced

mobility and amnesia. As described in section 2.1.1, beside these behavioural analogies,

these two states share common EEG properties (slow waves patterns, sleep spindles and

similar scalp distributions of EEG activity (Lydic & Baghdoyan 2005, Murphy et al.

2011)) and important neurophysiology mechanisms as brain networks involved in sleep

regulation are modulated by anaesthetics (Mashour 2010). These important homologies

represent one of the rationales of this sleep study as a first experimental step, with a

view to assessing the depth of anaesthesia in the later stages of this project, and com-

paring the normative sleep study with the anaesthetic study. In this study, performed

in a controlled laboratory setting, brain connectivity features changes with the level of

consciousness were investigated on good-quality recordings. This represented a useful

step before moving to a clinical setting typically affected by electrical noise.

Changes in cortical connectivity associated with sleep have been widely investigated in

functional magnetic resonance (fMRI) studies, but their relationship with consciousness

remains unclear (Klimova 2014). Results point to a general impairment of functional

connectivity in the thalamocortical system (Spoormaker et al. 2010, 2012); in particular,

long-range connectivity was shown to be affected by sleep (Tagliazucchi et al. 2013) and

connectivity networks in NREM sleep showed increased local clustering when compared

to wakefulness (Boly et al. 2012). Studies investigating early NREM sleep with combined
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transcranial magnetic stimulation and EEG approaches (Massimini et al. 2005a) report

a break-down of large-scale connectivity in the sleeping brain.

EEG is often preferred in studies of brain connectivity from a practical point of view

(Sitt et al. 2014), as it can be applied relatively easily at the bed-side and at low cost, and

EEG-based systems can be used in routine clinical work in the home or ward, as well as in

intensive care units or operating theatres where assessment of level of consciousness may

be carried out. Functional connectivity in the EEG during sleep has been investigated in

previous studies mainly using correlation or coherence analyse, with inconclusive results

(Achermann & Borbély 1998, Corsi-Cabrera et al. 2003) that show sometimes contrasting

findings. The limitation of these studies is that, as demonstrated in the previous sections,

Coh is a symmetric measure not able to convey directional information and which is

strongly affected by volume conduction artifacts. A series of more recent EEG sleep

studies have investigated the functional interactions between EEG channels by mean

of the Synchronization Likelihood index (Ferri et al. 2005, 2008); the SL quantifies

dynamical interdependencies in time, without an analysis in the frequency domain where

important information of the EEG signal is coded. Except for one early application of

DTF for a topographic analysis of EEG activity during overnight sleep (that will be

considered in more detail in the Discussion, section 5.4), to the best of our knowledge

there is no study that applies advanced functional connectivity techniques such as DC

or PDC to the analysis of sleep EEG.

The aim of the current study is therefore to describe changes in strength and direction

of functional connectivity associated with NREM sleep using Directed Coherence and

to propose and test indexes of brain connectivity based on DC that could distinguish

between states of consciousness. The performances of the proposed approaches will be

compared to more established spectral measures and assessed in discriminating between

NREM sleep and wakefulness. Since the overarching aim of any proposed measure is to

assess the level of consciousness in individual subjects, performance is assessed against

each subject’s own time-line through the sleep stages. The focus on individual variability

is an important and distinctive feature of this work, since the majority of previous studies

investigating correlates of consciousness (where consciousness is diminished or reduced)

have focussed on the analysis of the average values across the cohort. This work is also

original in investigating directional connectivity (using Directed Coherence) on EEG,

where previously the strength of connection, rather than the direction of information

flow, was the focus. In view of applying the proposed methodology to the monitoring of

anaesthesia we are looking for an index that is computationally convenient and suitable

for online monitoring of individuals. In this sense the spontaneous EEG is preferable to

fMRI and TMS approaches as it represents a low cost and easily implementable method

with good temporal resolution.
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5.2 Methods

5.2.1 Subjects, Experimental Protocol and Preprocessing

Sixteen healthy subjects participated in the sleep study. However only ten subjects

(three females and seven males, aged between 22 and 30 years) underwent N1, N2

and N3 stages of NREM sleep and so were included in the analysis. The experiment

was approved by the local ethics committee (University of Southampton) and following

informed consent, and conformed to requirements of the Declaration of Helsinki. In order

to exploit the circadian sleep drive, the experiment was performed in the afternoon after

lunch. The subjects were asked to refrain from drinking coffee or tea on the day of

the experiment. The subjects, lying with eyes closed on a reclining chair, were invited

to sleep. After they spontaneously woke up again, they were asked to rest with eyes

closed (REST W) and then to perform mental arithmetic with eyes closed (ACTIVE

W). EEG was collected using a 32 channel system with active electrodes (Biosemi BV,

Amsterdam) placed according to the international 10-20 system. Additional electrodes

were used to record the electrooculogram (EOG) and the chin electromyogram (EMG)

(see figure 5.1). The plan was to use auditory stimulation in order to investigate the

changes of MLR features: however in pilot work subjects woke up when stimulated,

demonstrating the challenges of using this procedure, which was then removed from the

protocol. It was therefore decided to focus the analysis on brain connectivity for the

sleep study. Sleep stages were scored by visual inspection of contiguous epochs of 30

s according to the standard criteria (Iber et al. 2007), summarized in table 5.1. The

signals traces in the time domain were inspected and classified with the help of an EEG

sleep atlas (Bonnet et al. 1992). Data were then downsampled to 250 Hz and digitally

referenced with respect to the average of T7 and T8 channels (linked mastoids), as in

previous EEG functional connectivity studies during wakefulness and sleep (Kus et al.

2005, De Gennaro et al. 2004). This reference choice is recommended for functional

connectivity estimation (Kaminski & Blinowska 2014) and it was shown to reduce long

distance volume conduction effects in our simulations and previous literature results

(Srinivasan et al. 1998, Nunez et al. 1997). Moreover this choice preserves the symmetry

of data, in contrast to a single non-midline electrode reference. The EEG time series

were band pass filtered (1-45 Hz) and additionally notch filtered at the mains frequency

using zero phase filters1. Only continuous and artifact-free epochs were selected and

included in the following analysis.

1The filter order nf ilt used was automatically selected by the function firfilt.m implemented in
EEGlab and equal to

nf ilt =
3.3 ∗ Srate

0.25 ∗ passband (5.1)

, where Srate is the EEG sampling rate (250Hz in this case).
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Figure 5.1: Electrodes set up for polysomnographic recordings.

Stage EEG EMG EOG

Wakefulness More than the 50% of
the epoch has 50% α
rhythm over the occip-
ital region

High muscle tone Present if the
subject has open
eyes. Irregular
conjugate rapid
eye movement

Sleep N1 Reduced α rhythm
(with respect to
wakefulness). Mixed
frequency activity. Ver-
tex sharp waves over
the central region

Lower amplitude
(with respect to
wakefulness)

Possible Slow eye
movements

Sleep N2 K complex (negative
sharp wave immedi-
ately followed by a
positive component) in
frontal and central elec-
trodes. Sleep spindles
(train of waves f = 8-16
Hz and duration < 2s)
in central electrodes

Variable ampli-
tude (lower than
N1, as low as
REM)

Not present

Sleep N3 Slow wave activity
(SW) (f=0.5-2 Hz,
amplitude > 75µV ,
frontal electrodes) in
more than the 20% of
the epochs. Spindle
activity can persist.

Variable ampli-
tude (lower than
N1, as low as
REM)

Not present

Table 5.1: Summary of sleep scoring rules from Iber et al. (2007)
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5.2.2 Brain connectivity estimation and significance assessment

A subset of 12 electrodes (Fp1, Fp2, F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1, O2)

evenly distributed on the midline scalp was considered for connectivity estimation, in

order to reduce the computational cost typical of multivariate connectivity estimation.

Traces of continuous data of 60 s (i.e. 15000 samples in each channel) that were not

interrupted by artifacts or high-level noise (according to visual inspection) were consid-

ered for connectivity analysis in order to include a sufficient number of data points for

the estimation of the free parameters (see section 3.3.1). Therefore only segments with

two consecutive 30 s epochs of the same sleep stage were included in the study while

isolated epochs were excluded from the following analysis. For each segment a scMVAR

model was estimated using the LS estimator implemented in ARfit (Matlab,(Schneider

& Neumaier 2001)) and the DC and PDC computed as a function of the scMVAR coeffi-

cients in the frequency domain as extensively described in section 3.2. In particular the

squared PDC and DC were used due to their higher accuracy and stability with respect

to corresponding not squared measures (Astolfi et al. 2006) and their useful interpreta-

tion in terms of spectrum (or inverse spectrum) transfer (section 3.2).

When making inferences about EEG connectivity it is crucial to assess the significance

of the estimator producing confidence intervals of statistical thresholds. In this study

the significance of the causal links was assessed using a surrogate statistics based on a

shuffling procedure. The shuffling was performed in the frequency domain and generated

a set of surrogate data in which any temporal correlation between channels is removed.

To this end the Fourier Transform of the time series was performed and their phases

randomly and independently shuffled between frequencies, while keeping the magnitude

of the Fourier coefficients unchanged. In this way the surrogate data have the same

power spectrum as the original time series but the temporal order, and therefore the

causality between signals, is removed. An MVAR model was fitted on the surrogate data

and the PDC/DC values estimated. In order to obtain a reliable null distribution the

shuffling procedure was repeated 1000 times, as in previous studies (Astolfi et al. 2006).

In this way an empirical null PDC/DC distribution was obtained for each frequency and

pair of channels. The significance of causal links was assessed comparing the estimated

connectivity with the null distribution setting the statistical significance level at 0.01.

Correction for multiple comparisons was performed using the false discovery rate (FDR)

approximation for dependent measurements (Benjamini & Yekutieli 2001). Only links

that were thus found to be statistically significant were included in the subsequent anal-

ysis and in the calculation of EEG indexes of connectivity.

A widespread practice in connectivity analysis is to threshold connectivity matrices to
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remove weak or spurious connections and retain only a small percentage of the strongest

links (Sporns 2013). In this study the connectivity matrices were thresholded to retain

either 10% or 30% of the strongest connections, as in Chennu et al. (2014). The con-

nectivity matrices were then averaged in the four frequency bands of interest delta (δ)

[1-4] Hz, theta (θ) [4-7] Hz, alpha (α) [8-13] Hz and beta (β) [13- 25] Hz. In order to

specifically investigate changes in long-range connectivity, the PDC and DC links were

subdivided with respect to the 3D Euclidian interelectrode distances, computed using

default channel coordinates. Distance thresholds were set for differentiating between

three groups of channel pairs in roughly the same proportions with respect to the total

number of possible links: 35% of short-range links (interchannel distances below 10 cm),

32% of medium range links (between 10 and 14 cm) and 33% of long-range links (above

14 cm).

5.2.3 Computation of EEG indexes

For each 60 s epoch of different sleep stages and for each subject, a series of EEG

measures were jointly extracted. We organized indexes into two classes: Spectral mea-

sures (as commonly used in many previous studies) and connectivity based measures.

The power spectral density (PSD) for each epoch and electrode was estimated using

the Welch method (Hanning window 7.5 s long, 50% overlap); the power in each fre-

quency band was calculated as the integral of the PSD within each frequency band. The

spectral analysis was focused on δ, θ and α bands since previous studies of neural cor-

relates of consciousness report major changes in these bands (Koch et al. 2016, Chennu

et al. 2014). To allow for differences in power between EEG channels, we estimated

the normalized power in these three frequency bands by the total power (1-45 Hz) in

each time epoch and for each electrode. Normalized power is thought to be a more

reliable estimator because it encompasses the individual variances in the absolute EEG

power caused, for instance, by variations in electrodes impedances (Sitt et al. 2014).

We assessed connectivity through indexes quantifying the strength of the connectivity

networks and indexes estimating the direction of information flow. The rationale for the

former is to be found in the large number of studies showing that long-range connec-

tivity is significantly affected by the level of consciousness. The rationale for the latter

comes from published results showing a prevalence of frontal EEG activation in sleep as

opposed to a strong posterior activation in wakefulness (Brown et al. 2010), with indi-

cations that the direction of long-range connectivity may represent a prominent feature

of sleep as compared to wakefulness (De Gennaro et al. 2004). To this end we assessed

the number of significant connections from centro-posterior (O1, O2, P3, P4, C3, C4,

Cz) to anterior (Fp1, Fp2, F3, F4, Fz) electrodes and vice versa. We thus defined an



Chapter 5. Functional Connectivity Analysis of Sleep 104

index that quantifies the dominant direction of information flow on the front-posterior

axis (DirP→A) as the normalized differences of the number of links in the two opposite

directions over the rostro-caudal axis:

DirP→A =

∑
i

∑
j num(|DC|2P→A)− num(|DC|2A→P )

∑
i

∑
j num(|DC|2P→A) + num(|DC|2A→P )

(5.2)

where the sums are taken over all pairwise connections between the posterior and an-

terior channels (P → A) and anterior to posterior channels (A → P ), respectively and

num(.)=1 when that connection is significant, and zero otherwise.

In the following, first some preliminary results on 5 subjects where the most promising

connectivity features were identified will be presented. Then results at a group (cohort)

level, showing differences in connectivity based measures between the different sleep

stages and frequency bands, with associated statistical analysis will be shown. Finally,

results at an individual subject level are presented, and the most promising measures are

correlated (Spearman coefficient) with the manual scoring of sleep stages (hypnogram)

in each individual, using the indexes from consecutive 1-minute segments. The presen-

tation of results from individual subjects, in addition to the statistical analysis across

the cohort, provides insight into the potential of the method in monitoring individual

patients.

5.3 Results

According to standard criteria (Iber et al. 2007), hypnograms were generated for each

subject, using consecutive one-minute artefact-free signal segments. The hypnograms

represent the sleep stages visually identified from off-line scoring, and their assessment

was carried out blinded to the connectivity analysis that followed. The following per-

centages in time (mean ± standard deviation) spent in the sleep and wakefulness stages

were obtained across subjects: sleep N3 21± 9%, sleep N2 27± 4%, sleep N1 16± 7%,

REST W 19± 6%, and ACTIVE W 16± 4%. Since volunteers were allowed to sponta-

neously wake up from the post-prandial sleep, sleep duration was highly variable across

subjects (16.2± 5.9 minutes of sleep were analysed per subject).

As for the previous chapters, statistical tools were applied to check the validity of MVAR

model estimation. A MVAR model was estimated for each of 60 s segments the exper-

imental stages were divided into and the validation tests applied for each independent

MVAR estimation; it is therefore unpractical to show all the results and general findings

will be commented on. Residuals of the MVAR estimation were found not white both

with the Ljung-Box Portmanteau (LJB) test and the Autocorrelation Function (ACF)
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test in the majority of stages for all the subjects. The average probability to reject

the whiteness hypothesis was around 0.2 for all the conditions and subjects (ACF test).

This suggests that the full lagged correlation structure of the data was not always ac-

curately estimated. However an examination of the variance of residuals revealed that

the prediction error was extremely small (in the order of 10−4µV 2) if compared with the

power of EEG data, which is in the order of 100− 150µV 2. For each stage the residuals

covariance matrix was inspected and its non diagonality considered as an indication of

the significance of zero-lag correlations among time series. Typical results are showed

in figures 5.2 and 5.3 for ACTIVE W and SLEEP N2 respectively. In general, the resid-

ual covariance matrices were not perfectly diagonal, suggesting that some instantaneous

effects existed among signals; however in the majority of cases only the covariances of

residuals from adjacent leads were significantly different from zero, suggesting that the

zero-lag effects were mainly introduced by volume conduction in adjacent electrodes but

were negligible for distant scalp locations (long-range connectivity).

Figure 5.2: Example of the residu-
als covariance matrix for a 1- minute
epoch of ACTIVE W in one subject.
The matrix is not perfectly diagonal,
indicating that some instantaneous ef-
fects existed among signals, in par-
ticular for adjacent electrodes. This
suggest that the zero-lag effects are
mainly introduced by volume conduc-

tion in contiguous electrodes.

Figure 5.3: Example of the residu-
als covariance matrix for a 1- minute
epoch of SLEEP N2 in one subject.
Compared to wakefulness (figure 5.2),
the residuals matrix in sleep appears
less affected by zero-lag correlations

since it is closer to be diagonal.

As a first step of the analysis, preliminary results from few subjects were analysed in

order to identify the most discriminative connectivity measures.

Before analysing results at group level individual DC and PDC pattern were inspected.

Figure 5.4 shows connectivity scalp plots estimated with DC for a representative subject

(1). The scalp plot were obtained using the software eConnectome (Bin et al. 2011), a

MATLAB toolbox for functional brain connectivity imaging. The DC connectivity net-

works in wakefulness (REST W and ACTIVE W) were found to be characterized by a
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Figure 5.4: Examples of scalp maps of DC from a representative subject (subject 1).
DC patterns averaged in the five frequency bands of interest δ (1-4 Hz), θ (4-8 Hz), α
(8-13 Hz), β (13-30 Hz) and γ (30-45 Hz) for the four experimental stages SLEEP N2,
SLEEP N3, REST W and ACTIVE W are showed. The strength of the connections is
coded by the colour and size of arrows. Only significant links above the threshold of

0.1 are shown.

denser network of statistically significant connections with respect to sleep, in particular

in the θ and α bands. These networks are characterized by the presence of long-range

connections linking occipital, central and frontal areas in both hemispheres. The num-

ber of long-range connections considerably drops in SWS, in particular in the α range,

and the connectivity patterns are localized, linking adjacent electrodes mainly in the

frontal and occipital regions. In the δ band the number of links elicited during sleep is

comparable to wakefulness. The topographies of the connectivity networks elicited in

the two sleep stages are very similar. Sparse and weak connections are elicited in the β

and γ bands in all the stages. A dense posterior to frontal spread of α rhythms can be

observed in both in REST W and ACTIVE W, in analogy with results shown in section

4.1.4 and previous published results (Kamiński et al. 1997, Faes et al. 2013).
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Figure 5.5: Examples of scalp maps of PDC from a representative subject (subject 1).
PDC patterns averaged in the five frequency bands of interest δ (1-4 Hz), θ (4-8 Hz), α
(8-13 Hz), β (13-30 Hz) and γ (30-45 Hz) for the four experimental stages SLEEP N2,
SLEEP N3, REST W and ACTIVE W are showed. The strength of the connections is
coded by the colour and size of arrows. Only significant links above the threshold of

0.05 are shown.

Figure 5.5 is a matrix plot of connectivity networks in sleep and wakefulness and esti-

mated with the PDC (subject 1). Similarly to what observed for the DC, the connectiv-

ity networks elicited in sleep present sparse and localized connections while in ACTIVE

W more long-range links can be observed in the delta and theta bands. However the

number and strength of significant PDC links is significantly lower if compared with

DC connections because the PDC estimator takes into account only direct pathways

between structures. As a results the majority of scalp plots show fragmented or absent

networks also in other subjects (results not shown).

Figures 5.6 and 5.7 show the number of significant causal links in two bands of interest

(θ and α) estimated with, respectively, DC and PDC and averaged across all the avail-

able epochs of each experimental stage for five subjects. A trend of increasing number
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Figure 5.6: Mean number of significant DC links (averaged across all the epochs of
each stage) as a function of the experimental state in the α (left) and θ (right) bands.
The different curves represent results from 5 subjects of the study and show a trend of
increasing DC links strength in the transition between sleep and wakefulness in the α

band.

of connections with the level of arousal can be observed for the DC averaged in the α

band (figure 5.6, left plot). It is interesting how the number of DC links exhibits a small

scatter among subjects in sleep and a larger variability in wakefulness. This may be the

results of EEG patterns in sleep being more stereotyped while in wakefulness brain ac-

tivity presents a larger inter-subject variability. The number of PDC connections show

similar trends, dramatically increasing in the transition sleep-wakefulness in the θ band

(figure 5.7, right plot); however for few subjects the number of significant PDC causal

links is close to zero in all the experimental stages, making the identification of a trend

and the interpretation of results difficult (i.e. the number of PDC links in the alpha band

in subjects 2, 3 and 5 shows little change, Figure 5.7). For this reason, and in order to

reduce the number of parameters considered, we only included connectivity estimated

with DC in the following analysis.

We calculated the average strength of magnitude squared DC links in the different exper-

imental stages and then averaged this across subjects. In this case we differentiated short

and long-range links on the basis of the interelectrode distance. Figure 5.8 shows DC

average strength (across subjects and electrodes) as a function of the distance threshold

and the sleep stages. The strength of connectivity links exhibit different trends across

sleep stages depending on the distance range considered. Long-range connections are
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Figure 5.7: Mean number of significant PDC links (averaged across all the epochs of
each stage) as a function of the experimental state in the α (left) and θ (right) bands.
In order to reduce the great number of features available, a preliminary analysis on 5
subjects was carried out to identify the most promising features. For some subjects
the mean PDC curves are close to zero in all the experimental stages. Due to the
predominance of fragmented or absent networks estimated with PDC, we only included

connectivity estimated with DC in the following analysis.

generally disrupted in NREM sleep where connectivity networks gain a more localized

character (there is a prevalence of short-range links in sleep N2 and N3, in particular

in the δ band) and long-range connectivity in the α band showed the best performance

in distinguishing sleep from wakefulness. This is in accordance with previous works

(Chennu et al. 2014). In order to further reduce the number of parameters investigated

and for the sake of the clarity of displayed results, we therefore only included indexes

relative to the α band as connectivity markers in the later results.

Figure 5.9 shows the group topographic characteristics of a number of features derived

from the EEG (band power, strength of long range functional connections and the direc-

tion of functional connections) as a function of experimental stages, along with mean and

standard error plots for those features. In order to reduce dimensionality and quantify

the discriminative power of the different measures, we summarized the topographic infor-

mation by averaging across electrodes and investigated whether the global indexes were

able to discriminate NREM sleep from wakefulness (two level analysis) and also specific

experimental stages (multilevel analysis). For the two level analysis a Mann-Whitney

test explored whether the different markers in the two wakefulness stage (average of

ACTIVE W and REST W) significantly differed from NREM sleep (average of N2 and
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Figure 5.8: Short and long-range connectivity (as measured by DC) in δ, θ and α
bands. Top bar row: short-range connections. Bottom row: long-range connections.
Bars indicate average strength of 10% strongest DC (magnitude squared) links across
subjects (N=10). The error bars represent the within group standard error. The
asterisks specify that the two means designated by the brackets significantly differ
(Friedman test with post-hoc analysis, ∗p < 0.05, ∗∗p < 0.01).Short-range connectivity
is dominant in NREM sleep (N2+N3) while the strength of long-range links is reduced

as compared to wakefulness, in particular in the α band.

N3). To test whether the measures could differentiate the specific sleep or wakefulness

stages, a Friedman test was conducted, with post-hoc testing using Tukey’s honestly

significant difference (HSD) test. In figure 5.9 changes in normalized power can be seen

that are consistent with those commonly reported in the literature: low frequency (δ

and θ) power (rows 1 and 2 of figure 5.9) is dominant in NREM sleep and gradually

decreases from SLEEP N3 to ACTIVE W. The two wakefulness states are characterized

by a dominant occipital α rhythm (row 3 of figure 5.9). The power spectrum in all

three bands significantly distinguished wakefulness from NREM sleep, as found when

averaging the result of N2 and N3, and comparing these with the average of both stages

of wakefulness (rest and active) (p < 10−4, Mann-Whitney test). However, the normal-

ized δ and θ power more efficiently discriminate NREM stages N2 and N3 from sleep

N1 and wakefulness. The two-level analysis (sleep N2 and N3 vs. awake) follows the

approach used by Massimini et al. (2010). As described in chapter 2, theoretical models

of consciousness and experimental results obtained in sleep, anaesthesia and disorders

of consciousness predict that the long-range information sharing is essential to maintain

consciousness. In agreement with these findings we observed that the average strength

of long-range connections in the α band gradually increases in the progression from deep

sleep (N3) to ACTIVE W (rows 4 and 5 of figure 5.9). The difference between sleep and

wakefulness is more marked if only a small percentage (10%) of strongest connections

is included in the analysis (row 5 of figure 5.9). This index is able to significantly dis-

criminate SLEEP N3 from SLEEP N1 and the two wakefulness stages (p < 0.01), and

SLEEP N2 from active wakefulness (p < 0.01).
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Figure 5.9: Scalp topography of the different EEG measures (rows), averaged across
all 10 subjects, with associated statistics. Rows 1 to 3 show the normalized power
distributions (δn, θn and αn) across sleep stages. Rows 4 and 5 show the Grand
Average of the strength of long-range connections in the α band plotted for the 10%
and 30% strongest connections respectively. Rows 6 and 7 indicate the average number
of postero-anterior (black) and antero-posterior (red) connections in the α band coded
by the length and thickness of the arrows for 10% and 30% strongest connections
respectively. Columns 1 to 5 indicate the experimental stage. The last column on the
right indicates whether the indexes averaged across electrodes significantly discriminate
wakefulness (REST W and ACTIVE W) from NREM sleep (N2 and N3) as assessed
with a two level Mann-Whitney test (p value indicated in blue) and shows results of a
Tukey’s HSD test on indexes averages across electrodes to assess significant differences
across all the stages. The asterisks specify that the two means designated by the
brackets significantly differ (∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 10−4) (results showed
for 10% strongest connections fourth row, last column- are repeated from figure 1, to
aid comparison). Power distributions are consistent with results reported in literature.
The most significant findings regarding the reorganization of connectivity patters are a
increase in strength and number of connections in wakefulness (compared to sleep) and
an inversion of the main direction of links on the fronto-posterior axis. Abbreviations:

AW-ACTIVE W, RW- REST W, SN1, SN2 and SN3 NREM sleep stages.
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We also assessed changes in the direction of the information flow over the rostro-caudal

axis. The most notable trends were observed in the α band (which also showed that

greatest changes in connectivity strength as seen in figure 5.8) and plotted in the two bot-

tom rows (6 and 7) of figure 5.9. The number of posterior to anterior links dramatically

increases from NREM sleep to wakefulness and reaches its maximum in ACTIVE W. In

contrast, the number of connection in the antero-posterior direction gradually shrinks in

the progression from NREM to wakefulness. Thus the DirP→A index, that summarizes

the dominant direction of information flow, is particularly efficient in discriminating

between stages, as revealed by the multilevel analysis. This provides evidence of a sig-

nificant inversion of information flow in the α band from frontal to posterior vs posterior

to frontal in the progression from sleep to wakefulness.

5.3.1 Individual analysis

A clinically useful index of consciousness needs to distinguish between sleep stages at an

individual and not only at the group level. In order to investigate whether the changes

observed were both consistent at the individual level and able to correlate with the

experimental stage across the individual sleep-wake cycle, we show in figure 5.10 the

different indexes for each subject and epoch of the experimental time-line. This epoch

by epoch analysis allowed comparison with the individual hypnograms.

Among the connectivity measures, we have plotted the indexes that in the group analysis

showed best discriminatory performances: The average strength of the 10% strongest

long-range links and the DirP→A computed from the 30% strongest connectivity links.

Given that the shift in EEG power toward lower frequencies is a well-known and promi-

nent feature of NREM sleep (sleep δ waves) and that the δ and θ power showed similar

discriminative properties at group level, we have only plotted the normalized δ power

from the spectral measures (the plots were inverted to facilitate the comparison with

the hypnogram and the connectivity derived indexes). The experimental stages were

assigned a value as a measure of the level of consciousness, ranging from 0 (SLEEP N3)

to 4 (ACTIVE W), and Spearman correlation was computed between each parameter

and the individual hypnogram. Table 5.2 shows the resulting correlation values for in-

dividual subjects. All the indexes considered exhibit dramatic changes as a function of

the experimental stages at the individual level. As shown in figure 5.10, the normalized

δ power follows the experimental time-line in the majority of subjects. However in two

subjects (2 and 4) the changes in δ power do not track the hypnogram and do not signif-

icantly correlate with the level of consciousness (table 5.2). Similar results are obtained

for the θ power, with a significant negative correlation with the experimental time-line

only in 7 of the 10 subjects. The average strength of long-range connections is severely
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Figure 5.10: Individual trends over the experimental timeline. Each epoch is 60 sec-
onds in duration. For each of the 10 subjects the amplitude (magnitude squared) of
significant long-range DC links (blue dashed line), the DirP→A index (orange dashed
line) in the α band and the normalized power in the δ band (green dotted line) are
plotted and can be compared to the manually scored hypnogram (solid black line).
The individual plots suggest that the changes observed at group level are broadly con-
sistent at single subjects’ level and that the connectivity features have a good degree of
correlation with the hypnogram (see also table 5.2). Abbreviations: AW-ACTIVE W,
RW- REST W, N1, N2 and N3 NREM sleep stages. For ease of visualization, all plots

were rescaled, and δ power was inverted.

reduced in NREM sleep at an individual level. It shows performance similar to the nor-

malized power indexes, highly correlating with the level of consciousness in the majority

of subjects, but failing to do so in three of them. Of all the parameters considered, the

DirP→A showed the best performances in ‘tracking’ the individual hypnogram, with a

high and significant correlation in each of the subjects and the highest mean correlation

value. It also is able to significantly discriminate between NREM sleep and wakeful-

ness at an individual level in all the subjects (table 5.2, last column), as assessed by a

Wilcoxon test across the epochs of each stage.
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Index Subject Mean % Subjs

1 2 3 4 5 6 7 8 9 10 2 level

Power
δn

-0.36 -0.44 -0.52 0 -0.67 -0.89 -0.79 -0.64 -0.83 -0.63 -0.58±0.26 100%

Power
θn

-0.54 -0.15 -0.51 -0.38 -0.50 -0.72 -0.76 -0.87 -0.55 -0.80 -0.58±0.2 90%

Power
αn

0.34 0.2 0.13 0.02 0.1 0.41 0.45 0.22 0.58 0.51 0.29±0.18 80%

DClong

10%
0.77 0.27 0.84 0.08 0.49 0.48 0.69 0.16 0.72 0.63 0.51±0.25 70%

DClong
30%

0.83 0.21 0.75 0.51 -0.01 0.63 0.38 -0.23 0.75 0.46 0.43±0.34 70%

DirP→A
10%

0.56 0.73 -0.34 0.87 0.86 0.67 0.78 0.77 0.85 0.89 0.66±0.37 90%

DirP→A

30%
0.82 0.74 0.68 0.70 0.85 0.84 0.82 0.79 0.68 0.80 0.77±0.06 100%

Table 5.2: Spearman correlation coefficient computed between the hypnogram and
each EEG index for individual subjects. Values in bold correspond to a significance
level of p < 0.01, values in italic to a significance level p < 0.05; other values are
not significant. Results relative to the DirP→A, long-range DC links and δ power
were highlighted in bold, to facilitate comparison with figure 5.10. The last column
shows the percentage of subjects where the specific EEG index was able to significantly
discriminate wakefulness (rest and active) from NREM sleep (N2 and N3) at individual
level, as assessed by a Wilcoxon signed rank test (p < 0.05). Among the different
features considered, the DirP→A showed the best performance, significantly correlating

with the individual hypnogram for all the subjects.

5.4 Discussion

The objective of the current work was to propose and test indexes of brain connectiv-

ity that could distinguish between states of consciousness. These indexes should also

be computationally relatively simple for clinical application such as in sleep studies or

depth of anaesthesia monitoring. As discussed in Chapter 2, theoretical and experimen-

tal findings suggest that the ability of the brain to integrate information is critical to

maintain consciousness (Tononi & Massimini 2008) and that unconsciousness may be

associated to a disruption of large scale connectivity. Given this conceptual model, we

focussed on connectivity measures, that include directional information. In assessing the

performance of these measures, we compared them to the more established power spec-

tral indexes taken from the EEG. To this end we collected polysomnographic recordings

from a sample of 10 healthy subjects undergoing post-prandial sleep and extracted the

EEG indexes across the sleep-wake cycle at individual and group level. Those indexes

were chosen exploiting previous theoretical and experimental findings on neural corre-

lates of consciousness and our preliminary results on a subgroup of 5 subjects. These

included normalized power and DC based indexes. We found that the proposed ampli-

tude of long-range connections across the scalp and especially the DirP→A index (that

quantifies the dominant direction of information flow in the rostro-caudal axis) showed

a monotonic change with level of consciousness. In the current sample, the DirP→A



Chapter 5. Functional Connectivity Analysis of Sleep 115

index showed the best performance in tracking the individual experimental time line: It

consistently correlated well with the hypnogram, and significantly discriminated NREM

sleep from wakefulness in each of the subjects in the sample. Its performance was found

to be superior (Mann-Whitney test, p=0.041) to that of the power in the δ frequency

band, which has been widely used in the past, and still represents the gold standard to

stage deep sleep (N3).

5.4.1 Methodological considerations

In this study an advanced method (DC) for the estimation of functional connectivity

that is able to infer directed causal information was chosen. The direction of con-

nectivity networks has not previously been well explored in finding indexes of level of

consciousness, even though it has been suggested that it could provide important in-

sights into neural correlates of consciousness (Sitt et al. 2014). As mentioned in chapter

3, functional connectivity estimators based on an MVAR model have been shown to be

robust to noise (Blinowska 2011) and to perform well even in the case of some non-linear

interactions (Winterhalder et al. 2005), and have also been widely applied for estimat-

ing functional connectivity from multichannel EEG in different experimental conditions

other than sleep (Astolfi et al. 2008, Blinowska 2011).

Despite DC having become well established, caution is required in the interpretation of

its results as necessarily indicating causal links connecting underlying cortical sources.

We have seen in chapter 4 how volume conduction effects lead to spreading of electrical

activity to a number of electrodes, which could be confused with functional (neurolog-

ical) connectivity between these brain regions. Our results, as well as those of Faes

and colleagues (Faes & Nollo 2010, 2011, Faes et al. 2013), have suggested that while

DC and DTF do not eliminate volume conduction effects, they do reduce them, when

compared to conventional coherence. In particular our results (chapter 4) showed that

volume conduction induced DC connectivity is close to zero for interelectrode distances

larger than 10 cm. In this study, volume conduction effects are less of an issue since the

analysis focused on long-range connectivity (>14 cm), whereas short-range connections

(which are likely to be dominated by the spread due to electrical conduction in tissue

and bone) were disregarded. Non-significant connectivity was also removed from the

study using surrogate data analysis.

In the analysis of brain connectivity, the many relatively weak links can obscure im-

portant connections. Thresholds are thus usually recommended and applied (Rubinov

& Sporns 2010) to only select connections deemed to be important. The choice of the

threshold is somewhat arbitrary (Sporns 2013), but statistical significance (i.e. a thresh-

old set at the critical value) should always be satisfied. In the current work either the
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10% or the 30% strongest connections were analysed, following some preliminary inves-

tigations. The choice of threshold reflects a compromise between including too many

connections that may only be weakly related to LOC and discarding connections that

might hold useful information. Further work in optimizing the threshold for specific

tasks such as assessing depth of anaesthesia or sleep stage should be carried out on a

larger sample of recordings.

5.4.2 The relationship of our findings to previous studies

To the best of our knowledge there is only one study investigating EEG networks us-

ing directional measures of connectivity, but this used the closely related approach of

DTF in sleep (Kamiński et al. 1997). DC, which includes information on signal power

flowing between different regions of the brain, as well as the transfer function of the

linear ‘filters’ linking these regions (as used in DTF), would seem to be more appro-

priate than DTF for quantifying the functional connections between brain regions: DC

performs better than DTF in the case of time-series with different variances (Baccalà

& Sameshima 2007) and has a straightforward interpretation in terms of power transfer

(Faes & Nollo 2011). The current study thus goes beyond previous work in describing DC

patterns during the change from wakefulness to NREM sleep, extending the analysis to

different frequency bands and refining the methods with rigorous statistical significance

assessment of the estimated links. Furthermore, we differentiate connectivity links with

respect to their interelectrode distance and we provide an assessment of performance

in individual subjects, as well as that at the cohort-level. Our findings are in line with

results from the study of Kamiński et al. (1997) that showed more complex and denser

connections in wakefulness than in NREM sleep and a prevalence of posterior sources

during wakefulness (figure 5.11). Despite the strong topological similarities, in the study

of Kaminski, connectivity networks exhibited a notably larger number of connections,

possibly as a result of not performing a significance test (or using a different choice

of threshold criterion) for including the estimated DTF in the final analysis, and also

because connectivity was integrated over a larger frequency range (0-30 Hz) than in the

current study.

The underlying conjecture of our as well as a number of other studies (Kamiński et al.

1997, Tononi 2008) etc. is that changes in level of consciousness are critically associated

with a dynamic reorganisation of large-scale connectivity patterns. In line with previous

results in disorders of consciousness (Chennu et al. 2014) the connectivity networks in the

α band showed the best discriminative performance between sleep stages. Long-range

connectivity in the α band was shown to be impaired in NREM sleep, when networks are

active but characterized mainly by short-range links. Our results thus support previous
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Figure 5.11: Grand Average (N=8 subjects) of EEG connectivity estimated by means
of DTF integrated in the 0-30 Hz band. Only DTF links greater than 0.06 are shown.
The connectivity patters estimated with DTF from Kaminski and colleagues show
strong topological similarities with our results. Adapted from Kamiński et al. (1997).

studies using different methods and protocols suggesting that the disruption of wake-

fulness in NREM sleep may be a result of impaired information sharing among cortical

areas. Massimini and colleagues (Massimini et al. 2005a, 2010) used a pertubational

approach involving Transcranical Magnetic Stimulation (TMS) and EEG recording to

investigate how TMS triggered neural activity spread from the stimulation site. During

wakefulness the TMS elicited complex patterns of scalp waves spreading to distant cor-

tical areas. During NREM sleep TMS evoked a stereotypical and local response, thus

indicating a breakdown of long-range effective connectivity. The findings of Massimini et

al. (2010) and our data suggesting that long range connections reduce during sleep also

fit well into a wide range of evidence from a growing literature investigating fMRI brain

connectivity in altered states of consciousness such as NREM sleep (Spoormaker et al.

2010, 2012) , general anaesthesia (Boly et al. 2011, Schrouff et al. 2011) and vegetative

states (King et al. 2013, Boly & Seth 2012). It appears that those states share, among

other major features, a suppression of functional connectivity.

In SLEEP N1 all the EEG indexes showed values intermediate between deeper sleep (N2

and N3) and wakefulness. Often spectral and networks features elicited in SLEEP N1

were more similar to wakefulness than to NREM sleep. SLEEP N1 represents the tran-

sition between wakefulness and sleep and it is considered unstable sleep (Klimova 2014).

When awakened from SLEEP N1 subjects often report dream-like experiences or claim

they were awake (Nir et al. 2013). Experimental results suggest preserved long-range

connectivity in this stage (Massimini et al. 2005a). For this reason we have considered

only sleep N2 and N3 trials to characterize stable NREM sleep in the two level analysis,

as used by Massimini et al. (2010).

The findings of recent seminal works in Network Physiology (Bartsch et al. 2015, Liu
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et al. 2015, Bashan et al. 2012) broadly align with our study. Network physiology is

a new research field that aims to characterize how the various physiological systems

dynamically integrate their functions in different physiological (and pathological) states

(Ivanov et al. 2016). A series of studies investigating changes in networks of interactions

between (Bartsch et al. 2015) and within (Liu et al. 2015) different physiological systems

(muscular, cardiac, respiratory and central nervous systems) during the transition from

wakefulness to sleep and across sleep stages have provided important progress in this

emergent field, contributing to the realization of an atlas of global network physiology

in sleep and wakefulness. In these studies network connectivity was assessed using an

estimator based on the stability of the delay between signals (time delay stability -TDS),

which quantifies in fine temporal detail the undirected strength of coupling

Despite the differences in approach, EEG networks estimated from six channels and in

different frequency bands in Liu et al. (2015) and Bartsch et al. (2015), showed important

similarities with those shown in our study for the α band: they observed a significant

decrease in the strength and number of links (in particular of long-range fronto-occipital

connections) in deep sleep (as compared to wakefulness and light sleep) and a remarkable

symmetry between the two hemispheres, characterizing all physiological states. Another

important analogy with our results regards EEG networks elicited in sleep N1, whose

features are more similar to wakefulness than to deeper sleep. As Liu and colleagues

have observed this is an interesting result, given that sleep N1 is commonly classified as

belonging to the same macro state (NREM sleep) of sleep N2 and N3. In their analysis

of brain networks Liu and colleagues have also reported that while local connections

(frontal/frontal, central/central and occipital/occipital) are reduced but preserved in

deep sleep, fronto-occipital and occipital-frontal networks show practically no connec-

tions in deep sleep: these findings agree with the significant impairment of long-range

connectivity we observed in sleep N2 and N3.

Our study provides important new contributions beyond this work (and previous stud-

ies) in the characterization of brain networks by assessing the direction of links and the

consequent ability to identify a switch in the direction of information flow with sleep

onset, that constitutes the most characteristic change observed in DC patterns. Group

analysis reveals a significant inversion of the direction of posterio-frontal networks with

state. The marked posterior to anterior spread of rhythm in wakefulness is reversed

in NREM sleep (N2 and N3) that is characterized by a dominance of frontal sources of

activity. An inversion of information flow from frontal-posterior in sleep to posterior-

frontal in wakefulness has also been found in a previous analysis of sleep onset (De

Gennaro et al. 2004).

Another important original contribution of this work is the investigation, and presenta-

tion, of patterns for individual subjects, in addition to aggregated cohort results. The
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majority of studies investigating EEG markers of LOC have only performed group anal-

ysis or found the disagreement between behavioural and EEG-based measures too high

for a reliable individual assessment (Sitt et al. 2014). The aim of this study is to iden-

tify an EEG index able to ‘track’ the consciousness level of the subjects, with a view

to assess depth of sleep or anaesthesia. The performance of the proposed measures in

individuals provides an indication of the potential of the proposed approach. Among all

the markers considered, the DirP→A index was found to be the most reliable in tracking

the level of consciousness during individual sleep experiments, strongly correlating with

the hypnogram in all the subjects. It should be noted that the staging of the EEG

time series was performed taking in account the proportion of δ waves, as recommended

in standard sleep staging criteria, therefore high correlation between measured δ power

and sleep stages is only to be expected. Given that EEG spectral features are used to

characterize sleep (Corsi-Cabrera et al. 2003) and to monitor hypnotic level in anaes-

thesia (Myles et al. 2004), it is interesting that the DirP→A index, which reflects very

different features of the EEG signals, showed better performance than the δ power in

correlating with the sleep stage at an individual level. These results suggest that the

inversion of information flow represents a promising indicator of the descent into deep

sleep. We speculate that this may also be seen in other states of altered consciousness,

such as anaesthesia. In order to arrive at an even more powerful index of LOC, it may

be beneficial to combine power-spectral measures with those obtained from DC and this

approach is explored in the next chapter.

5.4.3 Limitations

The current work was carried out on a relative small sample (10 subjects) recorded

during a nap, not all-night sleep. Thus only between 13 and 31 one-minute segments

were available from each subject in this cohort (see figure 5.10). The rationale for this

sample size and for the choice of the nap recordings is to be found in the exploratory

character of this study. While the results showed the power of the DirP→A index, this

could be specific to this small sample. The current work should thus be considered

as an investigation in which the hypothesis of superior performance of DirP→A was

generated, but cannot be robustly tested, on the same small sample. Further tests on

an independent sample and whole night sleep recordings collected in a sleep lab should

be carried out. Such a study might also include a wider range of indexes as well as their

combination in order to independently statistically test relative performance measures.





Chapter 6

EEG directed connectivity as a

monitor of anaesthetic depth

6.1 Introduction

6.1.1 Background and challenges of the anaesthetic study

As a last stage of the project, EEG connectivity measures were tested in an anaesthetic

study involving ten patients scheduled for surgery. Before that, considerable effort was

spent in the design and ethics submission for a study involving healthy volunteers. The

rationale for the volunteer study was to obtain high quality EEG recording to test con-

nectivity measures. We thought that collecting EEG in a controlled environment from

volunteers would have provided better quality data if compared with experiments per-

formed in a clinical operating theatre, contaminated by electrical environmental ‘noise’.

Moreover our previous experience suggested that carrying out the study on patients

would present a series of difficulties and constraints: One of them is that we needed a

period of time in the anaesthetic room, before surgery, to collect the EEG data during a

slow induction of anaesthesia. This was very difficult to organise in an operating theatre

schedule. We needed to know, before we consented a patient for the study, that the

previous patient on the list was going to have surgery of long enough duration to allow

us to have the necessary time to collect data. Otherwise the risk was to cut the data

collection before the end of the designed protocol. These motivations were not judged

by the local ethics board (Research Governance Office, University of Southampton) to

be strong enough to justify the risk of exposing healthy volunteers to the small (but se-

rious) risk of anaesthesia. As a result our application for a volunteer study was rejected

by the ethics committee.
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We proceeded therefore to a patient study for which an ethics approval for electrophys-

iological recording from patient (with and without auditory stimulation) was already in

place. Patients scheduled for elective surgery were recruited by one of the research team,

Dr. David Smith. We found recruitment of patients for the clinical anaesthetic study

quite challenging. The majority of patients suitable for our study were admitted on the

day of surgery, having been seen previously in a pre-assessment clinic. The logistics of

the recruitment and consent process in this situation have been quite frustrating. We

have therefore extended the duration of the study to try to ameliorate the recruitment

difficulties.

6.1.2 The Anaesthetic Study on Patients

In this work we assessed EEG directional connectivity between brain regions in a sample

of 10 patients using DC during a slow anaesthetic induction in which the concentration

of propofol in the brain (Effect-site concentration, ESC) was increased gradually to a

peak level of 4 µg ·ml−1.
Given that theoretical considerations and experimental findings suggest that brain con-

nectivity is critically related to LOC and considered our results in sleep (chapter 5)

our hypothesis is that measures of LOC based on connectivity can be expected to be

more effective than measures based on local neuronal activity. A few recent studies have

investigated EEG directed connectivity during anaesthesia using phase synchronization

(Lee et al. 2009) , Information theory entropy (Ku et al. 2011) and Granger Causality

(time domain) (Nicolaou & Georgiou 2014) approaches. However it is not clear how

directed connectivity measures correlate with other DoA indexes. The objectives of this

work are therefore:

1. to identify EEG directed connectivity features that robustly reflect anaesthetic-

induced LOC at group as well as at an individual level

2. to test the performances of DC features (in comparison with other DoA indexes)

in discriminating wakefulness from anaesthesia at different depths

3. to propose an index based on EEG connectivity that could be incorporated into

future DoA monitors. The latter would add connectivity to current measures based

on activity in individual EEG channels.

We compared the performances of the DC with more established DoA indicators (BIS

and MLR) in discriminating ‘awake’ from ‘anaesthetized’ states. We investigated the

group and individual trends of the different indexes and assessed their discriminative
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performance using a linear and non-linear classifier to test the use of directed connectivity

as an indicator of adequacy of anaesthesia.

This study goes beyond previous work in three important points:

1. We used a slow target-controlled induction of propofol anaesthesia that allowed in-

vestigation of graded changes in directed connectivity for increasing, stable anaes-

thetic depths ranging from light to deep (surgical) sedation. Because of its rapid

action, propofol is ideal for ultraslow step-wise induction of general anaesthesia

(Mhuircheartaigh et al. 2013b). This is in contrast with previous EEG connectiv-

ity studies that are carried out in settings where general anaesthesia induction is

performed at once (Lee et al. 2009, Barrett et al. 2012, Untergehrer et al. 2014,

Nicolaou et al. 2012) (typically with a bolus of intravenous drugs), causing the

crucial transition to LOC to occur within 30-60 s. Moreover, we have focused only

on the hypnotic effect of one agent (propofol), avoiding confounding factors (i.e.

the administration of muscle relaxants).

2. We described, together with group results, single subject trends and individual

variability in connectivity features. On the other hand the majority of studies

investigating neural correlate of consciousness have focussed on average results

across the cohort. The rationale for the individual analysis is to be found in the

potential practical applications: we aim to assess adequacy of anaesthesia using

DC features and in this sense the measure should be able to assess anaesthetic

effect in individual subjects, rather than on ‘average’.

3. To the best of our knowledge, a comparison between directed connectivity and

other DoA indexes has not been performed. We assessed DC performances in

discriminating ‘wakefulness’ from ‘anaesthesia’ in comparison with BIS and MLR

jointly extracted from 60 s EEG epochs in stable propofol ESC.

6.2 Methods

6.2.1 Subjects and Experimental Protocol

The study was approved by the Southampton and Southwest Hampshire Research Ethics

Committee (ref 002/98) and included ten patients: Three females, seven males, aged

between 44 and 79 years (mean 63.8 ± 8.1). The rationale for this sample size is

based on effect size considerations of a similar study carried out by our group (Bell

et al. 2006). They were selected from the cardiac surgical operating schedule the day

before their planned operation, based on their ability to tolerate an additional 90 min
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Figure 6.1: Experimental protocol schematic: Slow induction of general anaesthesia
with computer-controlled infusion of propofol to achieve brain ESC of 2, 3, 4 µg ·
ml−1. For each stable anaesthetic level EEG was collected with and without auditory
stimulation (blue squares). At a peak level of 4 µg ·ml−1 the target ESC concentration

was set to 2 µg ·ml−1 and the patient prepared for surgery (yellow squares).

period of anaesthesia before their surgery commenced and they all provided written

informed consent. A standard pure tone audiometry test was then performed using an

AS608 audiometer (Interacoustics, Assens, Denmark) before the anaesthetic induction.

We used a computer-controlled infusion to achieve central nervous system effect-site

propofol concentrations (ESC) of 2, 3, 4 µg ·ml−1 as in Mhuircheartaigh et al. (2013b)

and Purdon et al. (2013) in order to cover a range of anaesthetic depths from light to

deep anaesthesia (figure 6.1). During the experiment EEG was collected at different

stable propofol ESC: the recording protocol included an equilibration period and then

the maintenance of stable propofol ESC for 10 minutes: in the first 5 min subjects were

presented with auditory stimulation and in the last 5 min stimulation-free EEG was

recorded. The target propofol effect-site concentration was increased to 3 µg ·ml−1 and

then to 4 µg ·ml−1 , with the EEG recording protocol repeated at each target level, again

allowing 5-10 minutes for stability to be achieved (stability was considered ‘achieved’

once the patient ESC reached the target level, as verified by the experimenters). EEG

was collected using a 32 channel system with active electrodes (Biosemi BV, Amsterdam)

placed according to the international 10-20 system. Auditory stimuli were delivered

binaurally by means of a computer controlled interface (CEDmicro1401), a headphone

amplifier (Creek Audio Ltd, OBH 21) and through ER-2 insert headphones (Etymotic

Research). Chirps sweeping from 0.1 Hz to 10 kHz in 10.4 ms were delivered at 60

dB HL with a stimulation rate of 143 Hz using maximum length sequences (MLS).

MLS are pseudo-random binary sequences that enable evoked potentials to be acquired

at stimulation rates beyond conventional values (Bell et al. 2001). Results in literature

have shown that the combination of chirp stimuli at high MLS rates produces the highest

improvement of SNR, corresponding to a tenfold reduction in test time if compared with

conventional recording (Bell et al. 2002).
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The EEG recording protocol was repeated at each ESC target. At the end of the

induction, at a propofol ESC of 4 µg · ml−1, the target propofol ESC was reduced to

2µg ·ml−1 and the patients were prepared for surgery. EEG was continuously monitored

until the ESC reached 2µg ·ml−1.

6.2.2 MLR estimation and analysis

The MLR is usually recorded placing the active electrode either on the midline forehead

(Fz) or on the vertex (Cz), with the ground electrode on the low forehead. The position

of the reference electrode often represents an issue because of the myogenic interference

of the postauricular muscle (PAM). Tooley and colleagues (Tooley et al. 2004) showed

that the vertex-inion electrode site gave the best results against the PAM artifact both

in awake and anaesthetized subjects and reference electrode close to the nape of the

neck are also recommended in Bell et al. (2004). In this study data were referenced with

respect to the occipital electrode Oz and the channels Fz and Cz were selected for MLR

estimation. Data were then down-sampled to 1 kHz and band pass filtered (15-250 Hz),

as recommended by Bell and colleagues (Bell et al. 2004). In order to remove the 50

Hz mains interference and its harmonics a bank of notch filters at 50, 150 and 250 Hz

was also applied. All the filters were applied forwards and backwards in order not to

introduce phase distortion. Data were then segmented in 105 ms epochs aligned with

the stimulus onset and an amplitude threshold criterion (20 µV ) was applied in order

to remove artifactual trials. The number of epochs included in the estimation of MLR

was then set to 2500 for all the experimental stages and subjects. In order to estimate

the MLR evoked by a MLS sequence from the overlapped response a deconvolution al-

gorithm (Thornton et al. 1998) was additionally applied to the matrix of trials and then

the coherent average performed (see Appendix C for a description of the MLS properties

and deconvolution algorithm).

The SNR of the MLR was assessed using the F-value at a single point (Fsp) (Erberling

& Don 1984). The Fsp statistic is the ratio of the variance of the reconstructed MLR

and the variance of the background noise (estimated as the variance of a single point

at a fixed latency across trials). In this study we selected a latency of 30 ms from the

stimulus onset for the single point and a time window of [30-80] ms to compute the

variance of the signal, according to the assumption that the brainstem response (within

the 20 ms from the end of the 10 ms chirp stimuli) is not affected by the level of arousal

of the subject.

To determine if real MLR responses were present in recordings that were significantly

different from background noise, a bootstrap procedure was carried out for all the ex-

perimental stages and for each of the subjects. Each epoch of the original set of EEG
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data was de-trended and rotated starting for a random sample point (different for each

epoch). 1000 epochs for each propofol ESC were considered for the bootstrap procedure.

A ‘null MLR’ estimate was obtained first applying the deconvolution algorithm and then

the coherent average of the randomly rotated epochs. A Fsp value for each of the boot-

strap iterations was estimated as well. The same procedure was performed for 500 times

to obtain a null distribution for the MLR and the Fsp value. The significance of the

estimated MLR was assessed comparing the Fsp value with the null Fsp distribution

obtaining, using the Davison and Hinkley (1997) formula, an empirical p-value. Before

applying it to the study data, we have validated the bootstrap procedure assessing its

false positive rate on Gaussian noise.

Literature results report a significant reduction of MLR amplitude and an increase of

the Nb latency during anaesthesia as compared to responsiveness (Tooley et al. 1996,

Thornton & Sharpe 1998, Loveman et al. 2001, Tooley et al. 2004, Bell et al. 2006). We

therefore assessed changes in MLR amplitude (power) and Nb latency. As a first step

the MLR was computed using all the available non artifactual recordings for each ex-

perimental stage, i.e using 2500 sweeps, corresponding to 4.3 min of recordings for each

propofol ESC. This improves the quality of MLR estimation but on the other hand, due

to the relatively long averaging period, may smear MLR changes in time and reduces

the time resolution. In order to overcome these limitations and to allow comparison

with other EEG indexes, a second analysis was performed to obtain a time resolution of

1 min, therefore considering 600 epochs for the computation of the MLR.

6.2.3 Estimation of BIS index

All the methodologies for BIS estimation were designed to reproduce as far as possible

the proprietary algorithm for the computation of BIS and the published computation

of BIS sub-parameters (Rampil 1998, Miller et al. 2004). The latest version of the BIS

monitor has four electrodes placed on the forehead corresponding to the bipolar mon-

tage F3-F7 and Fz-F7 in the 10-20 international system (Johansen 2006), we therefore

used electrodes F3 and Fz (with F7 as reference) to compute BIS. The signal was down-

sampled at 256 Hz, high pass filtered (0.5 Hz) and notch filtered with zero phase filters.

The raw signals were divided in 2 s long segments and epochs with signals whose am-

plitude exceeded 100 µV were rejected. The BIS is a combination EEG parameters in

time (burst suppression ratio, BSR) and frequency domain (beta ratio βR and Synch-

FastSlow SynFS). Due to the random nature of the EEG signals all the sub-parameters

are computed for the 2 s epochs and then smoothed by averaging in 60 s segments (the

BIS index value is therefore updated each minute).



Chapter 6. EEG directed connectivity as a monitor of anaesthetic depth 127

The BSR was computed as the fraction of epoch length in which the EEG was sup-

pressed (‖EEG‖ < 5µV ) for more than 0.5 s (Rampil 1998). The epochs were then

preprocessed for frequency domain transformation by multiplication by a Blackman

window. The spectral power was computed using direct FFT method and then aver-

aging the complex product of FFT across 30 2 s long epochs; it was then integrated in

empirical frequency bands to estimate the βR , as indicated in the equation 6.1

βR = log10
(Power)30−47Hz
(Power)11−22Hz

(6.1)

The bispectrum was computed using direct FFT method using the Matlab function

bispecd.m (1 Hz resolution, 75% of overlap) as in Miller et al. (2004). The SynFS

parameter was then computed according to the equation:

SynFS = log10
(BispectralPower)0.5−47Hz

(Power)40−47Hz
(6.2)

Because of the symmetry properties of the bispectrum (Miller et al. 2004), the latter was

computed only for the non-redundant subset of frequencies represented by the triangle

with vertices (0, 0), (fs4 ,
fs
4 ), (fs2 , 0).

As for the BSR, the βR and the SynFS were computed for each 2 s epoch and then

averaged in 1-min long segments. The BIS proprietary algorithm combines the sub-

parameters with weights extracted from a multivariate model based on a database of

EEG recordings matched to corresponding hypnotic drug levels. The weights are as-

signed using a non-linear function and they vary depending on the anaesthetic stage:

the βR is dominant in light sedation, the SynFS during EEG activation and surgical

level of hypnosis while the BSR detects deep anaesthesia (Rampil 1998). It has been

shown that with increasing anaesthetic levels the BSR increases while the SynFS and

βR decrease (Morimoto et al. 2004). In this analysis we assessed the changes of the

single subparameters and also combined them to obtain a BIS equivalent index (eqBIS)

using the simple formula:

eqBIS = −BSR+ βR + SynFS (6.3)

Since the algorithm that combines the different sub-parameters to obtain the BIS value

is proprietary, in this study the analysis was focused on the trends and variability of the

different BIS sub-parameters and their sum (eqBIS).
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6.2.4 Estimation of Connectivity

Directional connectivity was assessed estimating DC from the MVAR model of multi-

channel EEG time-series (60 s long), following the procedure described in the previous

chapters (chapter 3). As for previous works (and for the sleep study), a subset of M = 12

electrodes that are fairly evenly distributed across the scalp (Fp1, Fp2, F3, Fz, F4, C3,

Cz, C4, P3, P4, O1, O2) was selected and connectivity was estimated for epochs of 60 s,

in order to reduce the computational cost typical of multivariate connectivity estimation

and to ensure a number of samples sufficient to accurately fit the MVAR model. The sta-

tistical significance of each DC link was tested with surrogate analysis (phase shuffling

procedure, p < 0.01) and corrected for multiple comparison using the false discovery

rate (FDR) approximation for dependent measurements (Benjamini & Yekutieli 2001).

As for the sleep study, in addition to the statistical threshold, we applied thresholds to

retain the strongest connections. Since the choice of the threshold is somewhat arbi-

trary, it is useful to investigate results over a range of plausible thresholds (Bullmore &

Sporns 2009). In this study we retained respectively the 10%, 30% and 50% of strongest

connections. In order to specifically investigate changes in long-range connectivity, DC

connections were also grouped on the basis of the 3D Euclidian interelectrode distances

into 1) short-range links connecting adjacent electrodes (interchannel distances below

10 cm) and 2) long-range links.

6.2.4.1 Computation of EEG Connectivity Features

Building on our previous work on sleep (chapter 5) and previous literature results

(Chennu et al. 2014), we focussed the analysis on the α band and long-range links

only, as these parameters were shown to be most sensitive to changes in the level of

consciousness. We therefore assessed connectivity using two measures: The dominant

direction of information flow and the strength of long-range connectivity networks. The

rationale for the former comes from the literature (Purdon et al. 2013, De Gennaro et al.

2004, Barrett et al. 2012, Lee et al. 2009) and our previous work on sleep, indicating

that the direction of fronto-parietal connectivity represents a promising indicator of the

level of consciousness. The rationale for the latter is to be found in the large number

of studies showing that long-range connectivity is significantly modulated by the level

of consciousness. To this end we assessed the number of significant connections from

centro-parietal (P3, P4, C3, C4, Cz) to frontal (Fp1, Fp2, F3, F4, Fz) electrodes and

vice versa. As for the sleep study, we defined an index that quantifies the dominant

direction of information flow on the front-posterior axis (DirP→A, see equation 5.2) as

the normalized differences of the strength of links in the two opposite directions over the



Chapter 6. EEG directed connectivity as a monitor of anaesthetic depth 129

rostro-caudal axis. In order to assess the statistical significance at group level, a Fried-

man test (followed by a Tukey’s honestly significant difference HSD test) was performed

across subjects considering the experimental stages (AWAKE , ANES 2µg ·ml−1, ANES

3µg ·ml−1, ANES 4µg ·ml−1) as independent variables.

Together with a cohort analysis we have compared network feature trends in individual

subjects with their ESC time-line. In order to summarize the individual DC features in

a unique parameter, for each subject and 60 s epoch e we summed the strength of long-

range links and the DirP→A to obtain what we have called the DCindex (equation 6.4).

While the DirP→A is a normalized index varying from -1 to 1 for all the subjects, the

strength of long-range DC can vary from one subject to another as a result of individual

networks differences. For this reason we normalized the strength of DC links in each

epoch by the average strength of long-range connectivity across all epochs in each subject

as follows

DCindex(e) =
|DC(e)|2

1
L

∑L
e=1 |DC(e)|2

+DIRP→A(e), e = 1, ..., L (6.4)

where |DC(e)|2 is the average strength (across electrode pairs) of connectivity links for

the epoch e and L is the number of the 60 s segments considered for each individual.

6.2.5 Wakefulness vs Anaesthesia Classification and Assessment of

Performances

The aim of the study was to investigate the performances of the different EEG indexes

in discriminating wakefulness from the different anaesthetic levels (ESC). To this end

we used a binary classification procedure based on support vector machine (SVM) (Br-

ereton & Lloyd 2010). A linear SVM classifier estimates the optimal linear combination

of features (in this case MLR, BIS and DC sub-parameters) that separates the samples

in distinct classes in the hyperspace of features (in other words, it finds the hyperplane

that separates the classes and has the maximum distance from the features of the two

groups). The optimal weights depend on the nature of the data and are usually found

by training the SVM model on a number of datasets (also called ‘folds’) and then testing

the model on the remaining data (‘multifolded cross-validation’). In this study we used

a leave-one-out approach to cross-validate the SVM models: the model was trained on

the entire set of observations except those relative to the specific subject, and then it

was tested on the selected subject. The data in input to the classifier for the cross-

validation were the different sub-parameters (EEG features) arranged on a matrix X

[N × f ] (N , number of observations; f , number of features) and a vector Y of N el-

ements corresponding to the classes. The SVM was estimated by using a Sequential

Minimal Optimization (SMO) routine (Fan et al. 2005). The classifier’s outputs are
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the probabilities of each observation (series of features) of belonging to a specific class.

The posterior probability is estimated from the output scores of the classifier using a

transform function (Platt 1999).

We used a linear SVM binary classifier to distinguish wakefulness (AWAKE) from

light anaesthesia (ANES 2µg · ml−1) and deep anaesthesia (ANES 3µg · ml−1, ANES

4µg · ml−1), therefore using three separate binary classification procedures. Another

aim of the analysis was to test if a combination of the various EEG features (MLS, BIS

and DC sub-parameters) would improve the classification performances or if the perfor-

mances of the different measures combined were comparable with those of one ‘optimal’

index. To this end, after having tested the single indexes, we have applied the paradigm

to all the EEG indexes combined. The cross-validation/classification procedure was im-

plemented using the matlab functions fitcsvm.m and predict.m.

We have also more generally assessed the performances of the different indexes in dis-

tinguish ‘Wakefulness’ vs ‘Anaesthesia’ (including in the binary classification all the

anaesthetic stages), as it is a crucial feature for a monitor of the adequacy of anaes-

thesia. To this end we compared the performances of the EEG indexes using the SVM

linear model with a non-linear classifier based on a multilayer neural networks (NN), to

investigate if a more complex classifier would improve performances.

Artificial NN are mathematical models inspired to the stimuli processing in the brain

(Krogh 2008). They are composed by simple units that are defined by connection weights

w, a threshold t and an activation (or transfer) function g. The total input to the unit

neuron is a weighted sum of all the inputs xi, i = 1, ...N it receives from other neurons

or sources: the output can be expressed as

g(

N∑

i=1

wi ∗ xi − t). (6.5)

If the activation function is a step function then the output will be 1 if the weighed sum

of inputs is above the threshold t and 0 otherwise. A neuron whose activation function

is the step function is called a threshold unit, or perceptron. The points in the input

space that satisfy the condition
∑N

i=1wi ∗ xi > t define an hyperplane.

Classification problems can be solved by a threshold unit NN if the classes are sepa-

rable by hyperplanes: i.e. if they are linearly separable. However many classifications

problems are non-linear: to separate classes in these problems more hyperplanes are

required therefore more neurons are introduced in the networks. This results in the

basic multilayer NN structure that includes input, hidden and output layers of neurons

and is able to solve more complex pattern recognition and decision making problems.

The weights and thresholds of the neuron units are adjusted to the particular model by

means of a learning process. Commonly NN are trained by supervised learning where a
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series of training inputs together with the correct outputs are iteratively provided to the

network: for each training set an error vector can therefore be defined and the weights

(and thresholds) adjusted in such a way that the error is reduced. The learning rule

that updates the weights in order to decrease the cost function (mean squared error)

is called gradient descent algorithm (Krogh 2008) and it is usually applied to the error

of each layer starting from the NN output and back-propagating the error to the input

layer (back-propagation).

Once the network is trained it can be applied to unseen data to test for its classification

and generalization performances. The generalization is the ability of the trained NN

to extend the performances to a new set of data: if the model is overfitted the error

for the training data may be very small but when the NN is applied to new data it

may have scarce classification performances. For this reason a common practice during

training is to test the NN on a new set (validation set): if the accuracy over the training

data increases but the performances on the validation set worsen then the training is

stopped. This procedure is called ‘early stopping’ and represents one way to minimize

model overfitting. In this work the NN was implemented using the Matlab NN toolbox.

We used the 85% of the available data for trainining and the 15% for validation and we

tested the NN with a ‘leave-one-out’ procedure.

The design of a NN include the choice of the activation function of the unit neurons

and of the particular learning algorithm and also the number of neurons in the hidden

layer. We used the default Matlab standard functions for patterns recognition (sigmoid

function for the hidden layer, softmax for the output, conjugate gradient descent algo-

rithm) which provide optimal performances. The number of neurons in the hidden layer

is normally an undefined parameter and has to be tested. We repeated the classification

procedure for 2, 5, 10, 15, 20 and 25 neurons in the hidden layer, selecting the NN with

best performances as in Nicolaou & Georgiou (2013).

To reliably and completely characterize the performances of a DoA monitor, they should

be described in terms of Sensitivity, Specificity and global Accuracy (Pandit & Cook

2014). Specificity refers to number of true positives (in this case the number of ‘wakeful-

ness’ observations correctly classified as AWAKE) while Sensitivity was assessed as the

fraction of observations in ‘anaesthesia’ correctly classified. The Accuracy summarizes

the two properties and represent the fraction of correctly classified examples.

6.3 Results

EEG signals at different anaesthetic levels presented the characteristic changes associ-

ated with increasing depth of anaesthesia (Murphy et al. 2011, Rampil 1998, Marchant

et al. 2014). Typical example of EEG traces from one subject are shown in figure 6.2.
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Figure 6.2: Representative examples of 4 s long EEG recordings in wakefulness
(AWAKE) and for increasing ESC levels (ANES 2, ANES 3, ANES 4) in one sub-
ject (subject 1). Note the α (8-13 Hz) oscillation in wakefulness (first trace) and the
increased β (13-30 Hz) activity in ANES 2 (second trace). In ANES 3 the high am-
plitude slow waves are dominant (third trace) while ANES 4 is characterized by an
alternation of burst (last second of the recording) and suppression (first three seconds)

patterns.

For ESC of 2 µg ·ml−1 the EEG time series showed increased activation in frequencies

between 13 and 30 Hz (β) typical of light anaesthesia. For ESC 3 µg ·ml−1 or 4 µg ·ml−1

the EEG was characterized by slow wave (δ) activity. In most of the subjects a burst

suppression pattern, typical of deep anaesthesia, was observed only for ESC 4 µg ·ml−1.
We can therefore argue that the slow induction of anaesthesia included a series of levels

ranging from light to deep anaesthesia.

In the following, we will first present findings relative to the single EEG features group

and individual trends. Results comparing the different EEG indexes with associated

statistical analysis will be then showed. The discrimination performances of the EEG

indexes will be eventually compared in the last section of the results, with a particular

focus on the global ‘wakefulness vs anaesthesia’ classification.

6.3.1 Changes in connectivity topography associated with increasing

anaesthetic levels

Based on literature results (Chennu et al. 2014), previous work carried out on sleep by

our group (Lioi et al. 2017) and for the sake of the clarity, we will only show results

for the most discriminative connectivity features, focusing on long-range connectivity

networks in the α band.
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Figure 6.3: Scalp topography of connectivity networks, averaged across all 10 sub-
jects, with associated statistics, plotted for the 10% (first two rows) 30% (rows 3 and 4)
and 50% (last two rows) strongest connections. The first row of each subplot represents
the Grand Average of long-range connections (average across subjects of long range
|DC|2 matrices) , with the color and size of arrows coding for the average strength
of the specific link. The second row indicates the average strength of postero-anterior
(black) and antero-posterior (red) connections in the α band coded by the length and
thickness of the arrows. The bar plots on the right hand side show the mean and stan-
dard error (across subjects) of the respective features (strenght and DirP→A). The
asterisks specify that the two means designated by the brackets significantly differ (*,
p < 0.05; **, p < 0.01), as revealed by Friedman and Tukey’s HSD test. Connectivity
scalp plots were obtained using eConnectome imaging software (Bin et al. 2011).This
figure shows how, for all the percentages of strongest connections included in the anal-
ysis, two significant trends are observed. Firstly, an abrupt drop in the strength of
long-range connectivity occurs at the onset of anaesthesia. Secondly the main direction
of connectivity links switches from posterio-frontal in wakefulness to fronto-posterior in

anaesthesia.
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Figure 6.3 represents scalp plot of DC networks in wakefulness and the in three anaes-

thetic levels. Theoretical models of consciousness and experimental results obtained in

sleep, anaesthesia and disorders of consciousness predict that large-scale information

sharing is essential to maintain consciousness and that anaesthetic induced LOC is as-

sociated with a breakdown of long-range connectivity. In agreement with these findings

we observed that the strength of long-range links in the α band is notably reduced at

all the anaesthetic levels (figure 6.3, last three column of each subplot) as compared

to wakefulness (figure 6.3, first column of each subplot) and significantly distinguishes

AWAKE from deep anaesthesia (ANES 3 µg · ml−1 and ANES 4 µg · ml−1) at group

level, as indicated by the group statistics bar plots in the right hand side of figure 6.3. A

threshold effect can be observed: in light anaesthesia (ANES 2 µg ·ml−1 ) the strength

of long-range links decreases if compared with wakefulness, and then shows a plateau

remaining relatively constant across the increasing propofol ESC.

We also assessed changes in the direction of information flow over the rostro-caudal

axis. The average strength of parieto-frontal and fronto-parietal links across experimen-

tal stages are shown in figure 6.3 (second row of each subplot). The strength of posterior

to anterior links dramatically decreases during anaesthesia as compared to wakefulness,

while the contribution of fronto-posterior connections is dominant in anaesthesia, fol-

lowing an opposite trend. As a consequence the DirP→A index, that summarizes the

dominant direction of functional links, shows a switch associated with the onset of anaes-

thesia. This indicates a significant inversion of information flow form posterio-frontal

in wakefulness to fronto-posterior in anaesthesia (bar graphs, last column in figure 6.3).

Also for the DirP→A a step effect is observable, rather than a gradual change with

anaesthesia deepening, that significantly distinguishes AWAKE from the different anaes-

thetic stages. The connectivity networks estimated considering the 10%, 30% or 50%

of strongest connections exhibit very similar trends, indicating that the choice of the

threshold does not critically affect the results. For the sake of brevity, in the follow-

ing analysis we will only show results for the DC networks obtained retaining the 30%

strongest links.

DCindex individual trends A reliable and useful index of adequacy of anaesthesia

should be able to distinguish between anaesthetic stages for an individual and not only

at the group level; we therefore looked at single subject trends and individual variability.

To this end, we have assessed DCindex values across the whole experiment, including the

anaesthetic induction phase and the transitions between stable anaesthetic levels. This

allowed comparison with the individual propofol ESC time-line as indicated by the phar-

macokinetic model. During the transition periods we assumed that the propofol ESC

followed an exponential time course between measured concentrations, in line with the
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Figure 6.4: DCindex individual trends (dashed orange line) compared with ESC time-
line (black solid line) for all the length of the recording and for all the subjects. DCindex

is inverted to facilitate comparison with the propofol ESC. The epochs in wakefulness
(ESC=0) are highlighted in green and each time point refer to a a 60 s epoch. The
epochs where auditory stimulation was delivered are indicated on the ESC time-line
by blue markers while the epochs in deep anaesthesia in which muscle relaxant was
administered are indicated by yellow markers. In the last subject (10) the recovery
period was was heavily contaminated by artefacts and therefore this period was excluded

from the analysis.
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typical pharmacokinetics of anaesthetic drugs (Roberts & Freshwater-Turner 2007); dur-

ing the recovery to light anaesthesia the times when the ESC reached intermediate values

(3.5, 3 and 2.5 µg · ml−1) were recorded and the ESC values followed an exponential

wash-out curve (figure 6.4). In order to reduce computational effort, the DC links esti-

mated for the transition and recovery periods were not tested for statistical significance

and only the threshold to retain the 30% of strongest connections was applied. The shuf-

fling procedure takes the 95% of the total connectivity computation time. If we exclude

the shuffling procedure, the time required to estimate connectivity for a 1 min recording

with 12 electrodes is roughly 20 s, when using Matlab and a typical Windows-based PC.

For some subjects (and for the grand average of DC links) we compared results with

and without significance assessment and found very similar values, indicating that the

30% strongest links are likely to be significant (see figure 6.5). In figure 6.4 individual

DCindex trends for all the subjects are presented. With the exception of subjects 3 and

5, a steep transition at the onset of anaesthesia is noticeable. In the majority of subjects

an abrupt change occurs soon after the start of propofol administration, sometimes (i.e.

subjects 6 and 8) with 3-4 minutes of delay. The step change in DC values shows then

a plateau (with some oscillations) with increasing propofol ESC that does not appear

to be significantly affected by the injection of muscle relaxants (indicated with a yellow

square in figure 6.4), the following intubation, preparation for surgery nor recovery to

ESC 2 µg ·ml−1.

6.3.2 MLR changes during a slow induction of anaesthesia

With the exception of one patient that had normal hearing, the majority of them pre-

sented mild hearing loss (HL) at low frequencies and 7 patients were affected by moderate

to severe HL at high frequencies. However, a clear response was evoked during wake-

fulness in all the subjects (with the exception of subject 5 when we could not assess

the MLR in wakefulness because of technical issues during the experiment). The rel-

ative Fsp values are in fact significantly different from the empirical null distribution

obtained with the bootstrap procedure (p < 0.01). On the other hand MLR evoked in

anaesthesia is not always significant in all subjects. Figure 6.6 shows MLR results for

subject 1: MLR waveforms for different stable anaesthetic levels are showed (left plot)

together with the relative Fsp value (as compared with the bootstrap distribution). Due

to the strong similarities between trends obtained from the two channels considered for

MLR estimation (Fz and Cz), only results for Fz are showed. Results in figure 6.6 show

that the MLR morphology changes abruptly from wakefulness to anaesthesia: the Pa-Nb

complex amplitude dramatically decreases and in general the MLR features disappear

in all the anaesthetic levels. As a result, the responses evoked in anaesthesia are not
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Figure 6.5: Comparison of DC connectivity networks obtained applying the signif-
icance and the strongest connections (30%) thresholds (first row) or only the 30%
strongest connections threshold (second row) in two representative subjects (top graphs)
and for the Grand Average across subjects (N=10) (bottom graphs). This figure in-
dicates that both at single subject level and at cohort level the connectivity networks
obtained with and without applying the significance threshold and selecting the 30%
strongest connections are very similar. This suggests that the 30% strongest links are
likely to be significant and that in future applications the computational demanding

procedure to assess significance of links may be omitted.
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Figure 6.6: Representative example of MLR for increasing ESC levels in subject
1. Left plot: MLR waveforms estimated from 2500 sweeps (4 minutes of recording) in
AWAKE (green solid line), ANES 2 µg ·ml−1 (light gray dashed line), ANES 3 µg ·ml−1
(gray solid line), ANES 4 µg · ml−1 (black dashed-dotted line). The respective 95%
critical values are showed in the same colours. Right Plot: Estimated Fsp (red star) with
relative null distribution (blue histogram) for each experimental stage. The empirical
p-value obtained comparing the null distribution with the estimated Fsp is indicated

for each stage in the subplot title.

Figure 6.7: MLR for increasing propofol ESC in subjects 2 to 10. MLR waveforms
were estimated from 2500 sweeps (4 minutes of recording) in AWAKE (green solid line),
ANES 2 µg ·ml−1 (light gray dashed line), ANES 3 µg ·ml−1 (gray solid line), ANES
4 µg ·ml−1 (black dashed-dotted line). The respective 95% critical values are showed

in the same colours.
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Subject REST CE ANES 2 µg ·ml−1 ANES 3 µg ·ml−1 ANES 4 µg ·ml−1
1 40 NA NA NA
2 36 55 69 67
3 50 52 60 66
4 42 45 44 46
5 NA 53 56 NA
6 51 54 62 69
7 42 NA NA NA
8 39 50 54 56
9 38 47 55 59
10 48 51 NA NA

Mean ± Std 43.8 ± 5.4 50.8 ± 3.4 57.1 ± 7.7 60.5 ± 8.6

Table 6.1: Nb latency (ms) measured by visual inspection of the estimated MLR for
all the subjects of the sample and experimental stages. The NA symbol indicates the

cases where it was not possible to objectively assess the Nb latency.

significantly different from the background noise (e.g. the estimated Fsp values are not

significantly different -p < 0.01- from the null distribution). Figure 6.7 shows MLR

trends for all the other subjects of the sample. In some of them the MLR exhibit an

abrupt change during anaesthesia as observed in subject 1. However a more gradual

effect was observed in other subjects (e.g. 3, 5, 8, 9 in figure 6.7) where the MLR am-

plitude more gradually decreases with the deepening of anaesthesia and a shift in the

peaks latency is clearly identifiable.

In table 6.1 we show changes in Nb latency for increasing anaesthetic depths for all

the subject of the study. In the majority of subjects, we observed a gradual shift in

Nb latency with increasing levels of anaesthesia, as previously reported in literature

(Thornton et al. 1992, Loveman et al. 2001, Tooley et al. 2004). In average, a Nb la-

tency shift of around 7 ms was observed between AWAKE and ANES 2 µg ·ml−1 and

between ANES 2 µg ·ml−1 and ANES 3 µg ·ml−1(table 6.1). A smaller shift of about

3 ms characterized the transition between the deeper anaesthetic levels. However, in

a considerable number of subjects the MLR evoked in anaesthesia was within the null

distribution 95% critical values or very small, thus making the identification of the Nb

peak quite subjective. As a result we could assess Nb latency only in 8 (out of 10)

subjects for ANES 2 µg · ml−1, in 7 for ANES 3 µg · ml−1 and only in 6 subjects in

ANES 4 µg ·ml−1 1. There is therefore an indication of Nb latency shift with increas-

ing propofol ESC but it can’t be consider it as a robust indicator of the anaesthetic level.

1In one subject (5) we could not assess the MLR in wakefulness because of technical issues during
the experiment
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6.3.3 Comparison of EEG indexes changes associated with increasing

ESC levels

Changes in BIS features with anaesthesia have been previously described in literature

(Rampil 1998, Miller et al. 2004, Morimoto et al. 2004). In this study we aim at com-

paring the performances of these different EEG indexes in discriminating the ESC levels

during a slow anaesthetic induction. In this section results at cohort level for the differ-

ent EEG sub-parameters will be shown.

Figure 6.8 shows the cohort averages (and standard error) of connectivity features (first

two rows), MLR variance and latency (third row) and BIS sub-parameters (last row),

in wakefulness and in the three stable anaesthetic stages.

The MLR power (MLR variance calculated between 30 and 80 ms after the stimulus

onset, as in Bell et al. (2006)) and Nb latency are able to significantly distinguish wake-

fulness from deep anaesthesia but not from ANES 2 µg ·ml−1. On the other hand both

the DCindex and the eqBIS exhibit significant changes between wakefulness and all the

three anaesthetic levels. The two indexes show a different trend with the deepening

of anaesthesia: the DCindex (and its single features) is characterized by a step change,

abruptly decreasing in light anaesthesia (ANES 2 µg ·ml−1) and showing a near plateau

for increasing anaesthetic depths. The eqBIS index exhibits a more gradual change as

a function of the anaesthetic level, more closely ‘tracking’ the propofol ESC. The BIS

sub-parameters (represented in the last subplot of figure 6.8) shows properties that are in

agreement with those reported in literature: the BSR efficiently detects deep anaesthe-

sia, the βR is sensitive to light anaesthesia and the SynFS more generally differentiate

‘activated EEG’ in wakefulness from hypnosis (Rampil 1998).

These trends appear to be consistent at individual level. Figure 6.9 shows trends of

the three indexes (eqBIS, MLR power and DCindex in the last subplot) in wakefulness

and stable ESC for all the subjects of the sample. The MLR power values show great

variability across subjects and in some of them the values in wakefulness and ANES 2

µg ·ml−1 overlap. As also observed at group level, individual DCindex values undergo

a dramatic drop in anaesthesia and then remain relatively constant with increasing

propofol ESC in all the subjects, with the exception of one outlier (subject 3, in purple

in figure 6.9, bottom plot). Individual eqBIS values exhibit a more gradual trend with

the deepening of anaesthesia in the majority of subjects and a relatively good consistence

across segments of the same stable propofol ESC.
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Figure 6.8: EEG indexes changes associated with increasing anaesthetic depth. Each
bar plot represents the mean and standard error (N=10 subjects) of the specific EEG
feature, with relative statistics (Friedman test). The asterisks specify that the two
means designated by the brackets significantly differ (*, p < 0.05; **, p < 0.01), as
revealed by Tukey’s HSD test. The EEG features are distinguished in three classes,
indicated by brackets on the left. The plots in the first bracket represent connectivity
networks results (30% strongest connections, α band): the first row shows bar plots of
the long-range DC average strength (with associated standard error across subjects)
while the second row shows the mean and standard error of the DirP→A. The two
subparameters were summed to obtain a single index (DCindex) whose results (averaged
across electrodes) and statistics are showed in the last plot on the first row. The second
subplot (third row) show results for the MLR variance and Nb latency. The last bracket
include results relative to the BIS sub-parameters (BSR, βR and SynFS) and the
global index eqBIS. Results obtained from the two channels (F3 and Fz) considered
for BIS estimation were very similar, therefore only results for Fz are showed. Both
the DCindex and the eqBIS exhibit significant changes between wakefulness and all the
three anaesthetic levels. The two indexes are however characterized by different trends:
the DCindex is characterized by a step change while the eqBIS index exhibits a more

gradual change as a function of the anaesthetic level.
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Figure 6.9: MLR power, eqBIS and DCindex individual trends (in a different color for
each subject, N=10) in wakefulness and in stable anaesthetic levels. Each time point
represents results from a 60 s epoch.The MLR power values show great variability across
subjects with overlapping values in wakefulness and anaesthesia. As also observed at
group level, individual DCindex values undergo a dramatic drop in anaesthesia and then
remain relatively constant with increasing propofol ESC while individual eqBIS values

exhibit a more gradual trend with the deepening of anaesthesia.

6.3.4 ‘Wakefulness vs Anaesthesia’ classification performances

We tested the performances of the different EEG indexes in distinguish wakefulness

from the different propofol ESC using a SVM binary classifier trained with a ‘leave-one-

out’ cross-validation procedure. In the analysis of the classification properties of MLR

the Nb latency was excluded as we could not objectively assess it in all the subjects.

Table 6.2 indicates the classification accuracy obtained using the different EEG features

(MLR, BIS, DC). In figure 6.10 we show the respective confusion matrices showing the

specificity and sensitivity for the different binary classifications.

The SVM classifier trained on MLR power shows the poorest performances, with a per-

centage of correctly classified epochs lower than 80% for all the binary classifications

(table 6.2). In particular it highly misclassifies wakefulness as anaesthesia, as indicated

by the confusion matrices in figure 6.10 (first row). The percentage of correctly classified

epochs in the binary classification AWAKE vs ANES 2 µg ·ml−1 is only 54%. Among the



Chapter 6. EEG directed connectivity as a monitor of anaesthetic depth 143

Figure 6.10: Comparison of SVM classification based on EEG indexes and experi-
mental stages assessed by propofol ESC. The confusion matrices show on the y-axis the
experimental stage and on the x-axis the prediction of the SVM classifier. The percent-
age of observations classified in each stage (and the associated number of observations
in brackets) are reported in each cell. Elements on the main diagonal represent the
percentage of correct classifications of ‘Awake’ observations (Specificity, SP, first diag-
onal element) and ‘Anaesthesia’ (Sensitivity, SE, second diagonal element), while on
the opposite diagonal are indicated misclassifications. Different columns show results
for the three binary classifications, while the rows refer to the type of EEG predictor
used in the classification. Results for each of the different EEG indexes (MLR power,
BIS and DC, first three rows) and for the combination of DC and BIS subparameters

(last row) are showed.
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MLR BIS DC BIS+DC BIS+DC+MLR

AWAKE vs ANES 2 54.1 (61) 89.2 (65) 90.2 (61) 96.7 (61) 91.8 (61)
AWAKE vs ANES 3 63.3 (60) 85.7 (63) 95 (60) 96.7 (60) 93.3 (60)
AWAKE vs ANES 4 62.7 (59) 87.3 (63) 94.9 (59) 93.2 (59) 87.9 (58)

AWAKE vs ANES (all) 77.9 (154) 90 (131) 94.9 (126) 96.8 (126) 94.3 (124)

Table 6.2: Classification accuracy results. The percentage of correctly classified ob-
servations (Accuracy) and corresponding number of observations tested (in brackets)
are indicated for each of the four different binary classifications (rows) and for dif-
ferent features (columns). The features considered were MLR power, BIS and DC
sub-parameters separately (first three columns) or the combination of BIS and DC
parameters (fourth column) and MLR, BIS and DC features (last column). Of all
the parameters considered, the MLR features showed the poorest classification perfor-
mances; on the other hand DC features (alone or in combination with BIS) gave the
highest classification accuracy, with more than 90% of correctly classified epochs for all

the binary classifications.

different single EEG features, the DCindex shows best classification performances with

a percentage of correctly classified observations above 90% for all the classifications

and very low mis-classification percentages (figure 6.10, third row of matrix plots). DC

features exhibit significantly higher classification accuracies than MLR (Kruskal Wallis

test across subjects, p= 0.001). When the BIS and DC parameters are combined to

train the SVM model, the performances slightly improve and the percentage of correct

classifications increases above 93% for all the cases (see table 6.2). Moreover the misclas-

sifications of anaesthetic stages as wakefulness are strongly reduced (to 0% in AWAKE

vs ANES 2 µg ·ml−1 and AWAKE vs ANES 3 µg ·ml−1) and the number of AWAKE

observations correctly classified (specificity) increases as well, as showed in figure 6.10. If

the MLR variance is included in the predictors, together with BIS and DC features, the

SVM classifier performances are not further improved (see table 6.2, last column) and

for most of the classifications the classifier is outperformed by the SVM model trained

only on DC features.

We have performed the ‘wakefulness’ vs ‘anaesthesia’ classification with the linear SVM

model and using a non-linear classifier based on NN, using in both cases a ‘leave-one-out’

training procedure. A comparison of the average performances of the linear (SVM) and

non-linear (NN) models is summarized in table 6.3 (for the sake of brevity we have not

reported results for MLR). The SVM and NN classifiers show remarkably similar per-

formances, indicating that the BIS and DC features are linearly separable and the use

of a more complex non-linear classifier does not add anything to the discrimination per-

formances. The similarities between the performances of the SVM and NN classifier are

considerable also across subjects, we have therefore reported results for single subjects

only for one classifier (NN) in table 6.4. The DC performs significantly better than the
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Accuracy Specificity Sensitivity

# TOT SVM NN # AWAKE SVM NN # ANES SVM NN

BIS 131 0.901 0.90 30 0.767 0.716 101 0.95 0.941
DC 126 0. 945 0.964 27 0.815 0.866 99 0.99 0.988

BIS+DC 126 0.966 0.964 27 0.889 0.833 99 0.99 1

Table 6.3: Average classification (‘Awake’ vs ‘Anaesthetized’) performances (ex-
pressed as the fraction of correctly classified epochs) for the linear SVM classifier and
the non-linear NN classifier. For each performance descriptor (accuracy, specificity and
sensitivity) is indicated the number of epochs it was tested on (total number of epochs
for the accuracy, number of observations in wakefulness and anaesthesia for specificity
and sensitivity, respectively). Results indicate that DC features exhibit higher classifi-
cation performances than the BIS and that results obtained with a linear SVM classifier

are very similar to those relative to the non-linear NN classifier.

Accuracy Specificity Sensitivity

Subject BIS DC BIS-DC BIS DC BIS-DC BIS DC BIS-DC

1 0.785 0.928 0.928 0 0.666 0.666 1 1 1
2 0.916 1 1 0.5 1 1 1 1 1
3 0.900 0.800 0.800 1 0 0 0.875 1 1
4 0.916 1 0.916 1 1 0.666 0.888 1 1
5 1 0.916 1 1 1 1 1 0.888 1
6 1 1 1 1 1 1 1 1 1
7 0.812 1 1 1 1 1 0.75 1 1
8 0.818 1 1 0 1 1 1 1 1
9 0.923 1 1 0.666 1 1 1 1 1
10 0.928 1 1 1 1 1 0.9 1 1

Mean 0.909 0.964 0.964 0.716 0.866 0.833 0.941 0.988 1

Table 6.4: ‘Wakefulness’ vs ‘anaesthesia’ classification performances (in terms of ac-
curacy, specificity and sensitivity) for all the subjects using the non-linear NN classifier
trained on BIS subparameters, DC sub-parameters and a combination of them. This
table shows classification performance at individual level and indicate that the cohort
results showed in previous tables and figures are quite consistent across subjects. This
is particularly relevant in view of a possible application of the DCindex as a clinical

monitor.

BIS (Mann-Whitney test across subjects, p=0.039). The ability of DC (and combined

DC+BIS) to correctly classify anaesthesia is particularly high: the sensitivity is equal

to 1 in 9 subject out of 10 if only the DC features are used (second to last column in

table 6.4) and in all the subjects if both the BIS and DC sub-parameters are included

in the classification (last column in table 6.4).

Another consideration regards the optimal linear weights estimated with the validation of

the linear SVM model. In order to reduce the dependence of the estimated linear weights

from the different subjects dataset we standardized all the EEG features before the cross-

validation procedure. We then obtained an array of optimal weights and a linear bias
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Figure 6.11: Optimal linear coefficients distribution (across subjects) of the SVM
model trained on BIS sub-parameters for the three binary classifications (AWAKE vs
ANES 2, AWAKE vs ANES 3 and AWAKE vs ANES 4). The box plots indicate the
first and third quartiles (blue) and the median (in red) and the whiskers represent the

99.3% of the data distribution (outliers are indicated by a red cross).

for each EEG index and for all the subjects and binary classifications. The box plots in

figure 6.11 show the distribution (across subjects) of the optimal weights as a function

of the binary classification for the BIS and DC indexes. The weights of the different BIS

sub-parameters notably vary as a function of the anaesthetic depth classified against

wakefulness (figure 6.11, first row). In particular the BSR optimal weight is different

from zero only in the classification of AWAKE against ANES 4 µg · ml−1 , while the

contribution of the βR to the global index is twice larger (in average) in light anaesthesia

(ANES 2 µg ·ml−1) than in deep anaesthesia (ANES 4 µg ·ml−1). On the other hand, the

optimal weights estimated for the normalized strength of long-range DC and the DirP→A

exhibit more uniform values (the median is close to 1 for both sub-parameters) across

the different binary classifications. This confirm that the BIS features have different

discriminative power for different stages of anaesthesia and indicate that the weights

used to compute the BIS from its subparameters need to be ‘tuned’ depending on the

anaesthetic level, which is quite challenging (and controversial) to realize in real-time

monitoring. On the other hand the DC features have broadly the same ‘weight’ across

anaesthetic levels: This may represent an advantage in the implementation of a more

stable index for anaesthesia monitoring.
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6.4 Discussion

The objectives of this study were to characterize changes in EEG directed connectivity

during a slow induction of anaesthesia and to test the ability of connectivity features to

discriminate wakefulness from anaesthesia at different depths in comparison with other

DoA indexes. The overarching aim was to propose and test a novel index that could

be integrated as a new signal processing tool in future DoA monitors. To this end we

collected EEG data (with and without auditory stimulation) from a sample of 10 pa-

tients undergoing a slow induction of anaesthesia and extracted different EEG indexes

in stable propofol ESC. In addition to well established indicators of depth of anaesthesia

(BIS and MLR), we proposed a novel index based on functional connectivity features.

The rationale behind this index is found in theoretical models predicting that anaes-

thetic induced LOC is associated with a disruption of brain circuits with a consequent

impairment of ‘cognitive binding’ (Tononi 2008, Mashour 2006, Alkire et al. 2008) and

experimental findings showing that brain connectivity is significantly affected in states

where consciousness is diminished or suppressed (Ferrarelli et al. 2010, Gómez et al.

2013, Boly et al. 2011). In order to quantify the discrimination performances of the

different indexes we have implemented a linear SVM classification analysis by which we

also tested if a combination of indexes could result in improved performances. To test

for results robustness, we have also used a non-linear classification approach based on

artificial NN. This may be able to utilise non-linear dependencies that the SVM cannot.

Our results show that connectivity networks undergo dramatic changes with anaesthesia

and long-range fronto-posterior connectivity is particularly affected. The most charac-

teristic changes observed in DC during anaesthesia are a significant reduction in the

strength of long-range DC links and a marked inversion of direction of information flow,

from posterio-frontal in wakefulness to antero-posterior in anaesthesia. These findings

appear to be consistent at individual level for the majority of subjects, where a brisk

change in DC features is observed at the onset of anaesthesia.

We found that all the different EEG indexes (MLR, BIS and DC) exhibit significant

changes in general anaesthesia as compared to wakefulness. The eqBIS and DC index

show different trends but they are both particularly efficient in discriminating wakeful-

ness from anaesthesia. Of all the EEG index considered, however, the DC features have

the highest accuracy, specificity and sensitivity in discriminating ‘awake’ vs ‘anaesthesia’.
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6.4.1 Relation of our results to previous findings

Directed connectivity changes during anaesthesia In order not to interfere with

the natural fading of consciousness during the slow anaesthetic induction, we did not

assess the responsiveness of patients. Moreover previous works alert on the accuracy of

verbal assessment when the protocol involves auditory stimulation, because the insert

headphones may interfere with normal hearing (Tooley et al. 1996). Other studies using

a similar ESC regimen have assessed the responsiveness of subjects with randomized

auditory tasks and have identified an ESC around 2 µg ·ml−1 as the threshold for loss

of behavioral responsiveness (Mhuircheartaigh et al. 2013a, Purdon et al. 2009, 2013,

Forrest et al. 1994). Similarly, in Forrest et al. (1994) a blood propofol concentration

(at equilibrium2) of 2.3 µg · ml−1 was required for suppression of consciousness (50%

probability of no response to verbal command and eyelash reflex). We therefore expect

that in our protocol LOC occurred somewhere between start of propofol infusion and

achieving an ESC of 2 µg ·ml−1.
The decrease of the long-range connectivity strength observed in anaesthesia is in line

with a wide scope of experiments in the literature that report an impairment of large-

scale information flow across brain areas in anaesthetic-induced LOC. A general im-

pairment of brain network integration (with fronto-parietal connectivity particularly

affected) has been reported in fMRI and TMS studies of propofol anaesthesia (Schrouff

et al. 2011, Boveroux et al. 2010, Massimini et al. 2010). Also activity in the fronto-

parietal associative network is systematically altered in other states of diminished con-

sciousness (such as vegetative states, coma or NREM sleep (Massimini et al. 2005a,

Spoormaker et al. 2010, King et al. 2013, Sitt et al. 2014)). Together with these find-

ings, our results support the important role of the fronto-parietal association cortices in

the maintenance of consciousness (Boly et al. 2008) and the hypothesis that the break-

down of information flow may affect signaling between the sensory posterior areas and

the associative frontal cortices that is essential for a conscious experience (Boveroux

et al. 2010).

The inversion of information flow from parieto-frontal in wakefulness to fronto-parietal

during anaesthesia deserves a special comment. The observed switch in the direction of

connectivity from wakefulness is consistent with results reported in studies investigat-

ing EEG directional connectivity during anaesthesia. Nicolaou and colleagues (Nicolaou

et al. 2012, Nicolaou & Georgiou 2013) used a bivariate Granger Causality approach

to assess directed connectivity in anaesthesia and they found a significant increase in

fronto-posterior causality in anaesthetic induced LOC. They have not observed, on the

other hand, a significant decrease in the opposite direction. DC is grounded in Granger

2At equilibrium, the effect site concentration is expected to be the same as the blood concentration
since the whole system (concentration in blood, fat, muscle, brain, etc.) is in equilibrium.
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theory, therefore the two estimators are conceptually similar, however they are charac-

terized by substantial differences: Granger Causality is a pairwise measure in the time

domain, while DC is a multivariate measure of causal interactions in the frequency do-

main and it therefore captures the causality structure of the whole electrodes set. A

dominance of fronto-posterior coupling in the cingulate cortex was also observed in a

Granger Causality study of propofol anaesthesia (Barrett et al. 2012). Even though

fronto-parietal coupling has been suggested as a central mechanism for consciousness,

contrasting results about its direction have been reported in the literature. Some studies

have shown an impairment of fronto-posterior connectivity in LOC (Boly et al. 2012, Lee

et al. 2009) and in some cases two different methodologies applied to the same dataset

gave divergent results regarding the dominant direction of coupling (Ku et al. 2011).

These conflicting findings are likely to be the results of the use of different estimators of

directed connectivity and they are a warning that it may be difficult to interpret results

from different brain activity models.

Comparison with the NREM sleep study Results from our previous study on

NREM sleep report DC changes associated with deep sleep (N2 and N3) very similar

to those observed in anaesthesia. The reduction of long range connectivity observed in

NREM sleep as compared to wakefulness has roughly the same proportion in anaesthesia

(compare figures 5.9 and 6.3). A switch in the direction of information flow was also

observed in NREM sleep (from posterior-frontal in wakefulness to fronto-posterior in

sleep N2 and N3); however the inversion observed in anaesthesia appear more marked

than in NREM sleep (compare figures 5.9 and 6.3). Similarly, Massimini and colleagues

(Massimini et al. 2005b, Ferrarelli et al. 2010) observed a remarkable resemblance be-

tween EEG patterns elicited by TMS in NREM sleep and midazolam-induced LOC,

as compared to wakefulness. A high-density EEG sleep study (Massimini et al. 2004)

showed that deep sleep is characterized by a travelling wave that originates in frontal re-

gions and propagates in the anteroposterior direction. Given the similarities of sleep and

anaesthesia neurobiology (Mashour 2010) it has been suggested (Nicolaou et al. 2012)

that a similar behaviour characterizes the anaesthetic slow wave and that the observed

increase in fronto-posterior coupling may be a result of these mechanisms. These results

also suggest that DC networks exhibit consistent changes with the level of conscious-

ness of the subject and that these changes are scarcely influenced by the mechanisms

(physiological or drug-induced) by which LOC was induced.

MLR changes during anaesthesia In agreement with previous studies (Bell et al.

2006, Loveman et al. 2001, Thornton et al. 1992, Tooley et al. 1996, 2004), we found a

significant change in MLR amplitude and a shift in Nb peak latency with anaesthesia.
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Bell and colleagues (Bell et al. 2006) investigated MLR changes associated with changes

in responsiveness to command and reported a switch in MLR power with the onset of

anaesthetic induced unresponsiveness but they did not report any latency shift. On the

other hand, in the study of Loveman and colleagues (Loveman et al. 2001) observed

a shift in average Nb latency from 48.4 ms during responsiveness to 54.6 ms in peri-

ods of propofol (in combination with fentanyl) induced unresponsiveness. In an earlier

study using volatile agents (Thornton et al. 1989) a threshold Nb latency of 44.5 ms

distinguished responsiveness from unresponsiveness epochs in four out of seven patients.

Interestingly enough, this threshold would separate wakefulness from anaesthesia in 7 of

the 10 subjects in our study (table 6.1). In two studies Tooley and colleagues investigated

relationships between MLR features, subject’s responsiveness and blood concentration

of propofol alone (Tooley et al. 1996) or in combination with alfentanil (Tooley et al.

2004): Nb latency was identified in both studies as the best indicator of unconsciousness

with an optimal threshold of 53 ms for propofol alone and 46 ms in combination with

alfentanil. In contrast with the majority of works but in line with the present study,

Tooley et al. (1996) also report cases where MLR was too suppressed to allow reliable

estimation of Nb. Taken together, these results report a large variation of the Nb cut-off

threshold and suggest that changes in Nb latency strongly depend on the combination

of drug used. We found a significant change both in MLR amplitude and latency dur-

ing anaesthesia. However we couldn’t reliably assess the Nb latency in all the subjects,

especially in deep anaesthesia, because the evoked MLR was not significantly different

from noise and/or the Nb peak not objectively identifiable. Moreover, together with an

abrupt change of the MLR amplitude, we also observed in few subjects a more graded

decrease in amplitude. This may be a result of the gradual induction of anaesthesia

used in this study but it emphasizes that there is a critical individual variability in the

effect of anaesthesia on the MLR. As also previous results have shown, we found a large

range of individual Nb latencies and MLR amplitudes that complicates the identification

of a general cut-off point. This is also reflected in the scarce ‘awake’ vs ‘anesthetized’

classification performances of the MLR. These findings suggest that the relation between

anaesthetic concentration and AEP is complex and not fully understood and alert on

the limitations of the clinical application of MLR as an anaesthetic monitor.

Comparison of EEG indexes performances Both BIS and connectivity fea-

tures efficiently distinguish wakefulness form light and deep anaesthesia. The BIS sub-

parameters exhibit values and performances that are expected, if we consider previous

literature (Morimoto et al. 2004, Miller et al. 2004, Rampil 1998). As also previous

studies have showed, BIS presents a gradual change with anaesthesia deepening. It has
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Accuracy
Prediction
Probability

Index

0.98 Granger Causality
0.92 Narcotrend Monitor

0.86 Recurrence quantification analysis
0.86 Approximate Entropy
0.86 Spectral Edge Frequency
0.78 Median Frequency
0.82 BIS Monitor
0.87 Permutation Entropy
0.87 Order Recurrence Rate
0.87 Phase coupling of order patterns

0.69 Time-Encoded Signal Processing and Recognition
0.89 State Entropy
0.88 Response Entropy

0.93 Complexity based on Lempel-Ziv
0.76 Spectral Entropy
0.64 Median Frequency

Table 6.5: Quantitative comparison of classification performances with other methods
reported in the literature. Adapted from Nicolaou et al. (2012)

. Even if a rigorous comparison is not possible due to the different methodologies used
to assess classification accuracy, this table gives an indication about the performance of
various depth of anaestesia indexes proposed in literature as compared to the results

obtained using the DCindex.

been suggested that BIS actually measures the anaesthetic induced suppression of EEG

activity and thus may be an indicator of the clearance of drugs instead of the state of

arousal (Gajraj et al. 1999), which is the results of a complex balance of anaesthetic

(hypnosis) level, analgesic level and surgical stimulation (Schneider et al. 2002, Chan

& Gin 2000). BIS values show a high variability during stable physiological conditions

and in some studies have been demonstrated to be unable to detect the transition from

unconsciousness to the recovery of awareness (Gajraj et al. 1999). The ability of BIS in

measuring the hypnotic level was also questioned in a study on 20 patients monitored

with the isolated forearm technique (IFT) (Schneider et al. 2002) where the BIS index

could not reliably distinguish between responsive and unresponsive patients.

The DC index shows a substantial different trend from BIS and MLR and other indexes

that have been proposed as DoA indicators. The majority of commercially available

indexes usually exhibit monotonic graded changes with increasing anaesthetic doses, as

reflected by the use of an index ranging from 0 (cortical silence) to 100 (subject awake

and oriented). Nicolaou and colleagues Nicolaou et al. (2012) have investigated EEG

directed connectivity assessed with Granger causality and found a similar categorical
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changes of Granger Causality associated with LOC. They have suggested that such an

abrupt change may more closely reflect the point at which consciousness is lost.

Should we consider consciousness as a ‘switch’ or expect a gradual change from wake-

fulness towards LOC? There is supporting evidence in literature that anaesthetic (and

slow-wave sleep) induced LOC is a switch-like phenomenon because it is related to the

switch of thalamic cells from a tonic-firing pattern, characteristic of vigilance, to a burst-

firing behaviour (Llinás & Steriade 2006). This switch in the thalamic neurons occurs

coincident with a change in EEG patterns from low voltage high frequency ‘Activated

EEG’ to slow waves activity and it is caused by an hyperpolarization of thalamic cells

that block the transmission of sensory input to the cortex (Alkire et al. 2000). Whether

this thalamic switch is a direct effect of anaesthetics or it is mediated by cortical activity

is an open question (Alkire et al. 2008): it is hypothesized that primary effects of anaes-

thesia occur at the cortical level (with higher order cortical areas more sensitive than

the lower order ones) and then secondary effects occur in subcortical areas (Velly et al.

2007), however the exact sequence of events remains unclear. We observed at individual

level that the DCindex is scarcely influenced by the administration of muscle relaxants,

auditory stimulation or the intubation of the patient: this supports the speculation that

it reflects the general physiological mechanism of hypnosis, rather than, for instance, the

level of anti-nociception (Marchant et al. 2014, Nicolaou et al. 2012).

Irrespective of its physiological interpretation, the DCindex step change identifies a clear

boundary between the DC features in ‘awake’ and anaesthesia’, leading to very high

classification performances. DC performs better than BIS in distinguish wakefulness

from light ananesthesia, deep anaesthesia and anaesthesia in general. The DC index is

particularly efficient in discriminating wakefulness from anaesthesia if compared with

the qualitative performances of other commercially available devices regardless from the

type of classifier (linear and non-linear) used (see, table 6.5 from Nicolaou et al. (2012)

for a comparison of different DoA indexes; note that, due to the use of different meth-

ods to assess performances- Prediction Probability vs Accuracy-, a rigorous comparison

between different methods is not possible). Despite the inter-subject variability in con-

nectivity networks that one would expect, the DCindex performances are robust across

subjects (see table 6.4).

A monitor of anaesthetic adequacy should perform equivalently well in detecting all

the episodes of awareness (specificity) and in identifying when a patient is adequately

anaesthetized (sensitivity). The classifier based on the DC features show both very

high sensitivity and specificity. In particular its ability to correctly detect adequate

anaesthesia its ideal (100%) in all the subjects of the sample but one. When the DC

subparameters are combined with BIS features the classification performances slightly

(but not significantly) increase. The ability to detect ‘awareness’ is a fundamental fea-

ture of a monitor of the adequacy of anaesthesia. EEG-derived DoA monitors are now
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recommended in the clinical practice with the specific purpose of reducing the risk of in-

traoperative awareness (Association of Anaesthetists of Great Britain and Ireland 2016).

However the ability of these devices to discriminate episodes of unexpected awareness is

limited (Pandit & Cook 2014, Shepherd et al. 2012) and need to be improved (Marchant

et al. 2014). In view of possible application to clinical setting, the DCindex ‘on-off’

response may be useful during anaesthetic onset, but potentially less useful during off-

set. However, if the DCindex switch becomes ‘on’ before the patient is conscious, then

it could help to ensure the adequacy of anaesthesia during the maintenance phase and

could give warnings that the patient will soon awaken during the recovery phase. Further

studies are required to determine when the switchover occurs in relation to conscious

responsiveness (during induction and recovery from general anaesthesia) and to test the

use of the DCindex (in combination to other DoA indexes) in monitoring of anaesthetic

adequacy. Our exploratory work indicates that connectivity features may be useful if

applied in the clinical practice alone or in combination with established DoA monitors to

improve their performances. In this sense an important advantage of our methodology

(with respect to other brain imaging technique) is its clinical applicability, due to its

relatively cheap technology, the possibility to be applied at bedside and the relatively

short computational time.

6.4.2 Limitations

The binary classification wakefulness vs anaesthesia performed with the SVM and NN

models deserves an additional comment. Due to the design of the experimental protocol,

the number of epochs available in wakefulness and anaesthesia was highly unbalanced

(27 and 99 respectively). This may bias the classifier performances towards a higher sen-

sitivity to the detriment of the specificity. In our study in fact the sensitivity obtained

with the DCindex is ideal in 9 subjects out of 10, while in some subjects the specificity

is zero, because the number of observations in wakefulness is very low if compared with

the anaestesia examples (i.e. in subject 3, that shows a DCindex specificity equal to zero,

the observations in wakefulness are only two, table 6.4). Nonetheless, the average values

of specificity are quite high (around 87% in average and 100% in 7 out of 10 subjects),

thus indicating that despite the relatively scarce number of observations in wakefulness,

DC shows promising performances that may improve if a higher number of wakefulness

instances is considered.

In this work we have compared the performances of a novel index based on connectivity

features with established DoA monitors as the BIS. In interpreting our findings some

limitations in the computation of the BIS index must be taken in account. Using the

commercially available BIS monitor requires the application of a large strip of electrodes
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on the front of the patient. In this exploratory study we decided not to compromise the

EEG recording from frontal electrodes for connectivity estimation and therefore to esti-

mate the BIS values a posteriori from frontal EEG recordings. The exact algorithm that

combines with predetermined weights the different BIS sub-parameters is proprietary

(Rampil 1998). In addition the optimal weights are changing depending on the level of

anaesthesia thus making the reproduction of BIS values more complicated. The aim of

this work was, however, to assess changes and trends in the BIS sub-parameters and the

performances of an optimal combination of these features in discriminating wakefulness

from anaesthesia. Future work will include an anaesthetic study where EEG recording

and BIS R© monitoring will be performed simultaneously in order to more reliably com-

pare their performances.

The methodology used to assess brain connectivity suffers from some limitations. DC

quantifies the normalized amount of spectrum transferred from one signal to another

through all the possible paths in the multivariate set and therefore it is not able to

distinguish between direct and indirect linear causality. This may represent an issue in

the typical case where two channels are influenced by a third one, if the aim of the anal-

ysis is to specifically assess the direct connection between the former two. DC however

presents, differently from estimators of direct causality developed in the same framework

(i.e. Partial Directed Coherence) the advantage of offering a straightforward interpreta-

tion in terms of frequency bands (Faes & Nollo 2011): This is particular relevant in the

analysis of EEG time series that are characterized by specific brain rhythms associated

with behavioural states (Klimesch 1999). Moreover, in order to infer the precise struc-

tural causality of the dataset, all the sources of influences must be considered, together

with the effect of the volume conduction of cortical sources across tissues of the brain

to the scalp. This is obviously not practicable in a clinical contest. However if, as in the

present study, the interest is on the broad changes observed on scalp connectivity rather

than the investigation of specific effective connections, DC represent a valid (Kaminski

& Blinowska 2014), relatively simple methodology, that performs well also in the case

of non-linear interactions and non-stationary signals (Winterhalder et al. 2005).

An important consideration regards the number of electrodes considered, a parameter

that affects the computational times and the clinical applicability of this methodol-

ogy. In future, considerable effort will be spent in refining the methodology through

the identification of a reduced number of electrodes and the simplification of the signal

processing pipeline. In this work we tested the significance of DC links by means of a

shuffling procedure that significantly increases the computation time (it takes approxi-

mately the 95% of the total connectivity estimation time, that for 1 min epoch and 12

electrodes is roughly of 6 min, using a Windows based pc). Our findings (an example is
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given in figure 6.5) however indicate that the network features obtained applying only

the 30% threshold on strongest links are very similar to those obtained using also the

significance threshold. This suggests that in the computation of the DC index the com-

putationally costly shuffling procedure may not be required, thus making the real-time

implementation more efficient.

A critical limitation of this study is that we did not assess the behavioural responsive-

ness of the patients during anaesthetic induction: the rationale for this choice was not

to interfere with the natural fading of consciousness by asking the subject to respond to

a verbal command and to reduce to the minimum the movement artifacts during EEG

collection. We considered as a gold standard measure of the anaesthetic depth the ESC

that quantifies, through pharmacokinetic models, the concentration of the anaesthetics

in the brain. The choice of a reference measure presents the intrinsic problem of the

absence of a gold standard measure of anaesthetic depth (Boly & Seth 2012). As a

consequence indirect parameters must be used. Critics moved to the choice of defining

the level of consciousness on the basis of the ability to respond to a command are that

it relies also on the subject willingness to respond (Ferrarelli et al. 2010) and that un-

responsiveness and consciousness are not causally linked (consciousness occurs in case

of non-responsiveness: for example in REM sleep subjects are conscious of their dreams

but are unresponsive to sensory stimuli and incapable of moving because of brainstem

induced paralysis (Sanders et al. 2012)). Generally DoA monitors performances are in-

vestigated with respect to the estimated or measured anaesthetics’ concentration, how-

ever more parameters (or anaesthetic induced ‘effects’) should be explored to thoroughly

describe the properties of an index. This need a detailed understanding of anaesthetic

effects on consciousness (subjective experience), connectedness (awareness of external

stimuli) and responsiveness (goal-directed behaviour). These concepts are not clearly

distinguished in literature (Marchant et al. 2014) and further work should be carried out

in future to test how DC (and other EEG indexes) perform in relation to these different

endpoints.

Finally, the sample size of the current anaesthetic study is relatively small and mea-

surement were performed in the electrically noisy environment of a clinical department

(although this does represent a real world situation): A larger study is therefore needed

to confirm these initial findings.





Chapter 7

Conclusions and future works

In this thesis a novel approach to monitor anaesthetic depth based on EEG connectivity

measures has been developed and tested. The work aimed at proposing and testing

such methods, but also addresses with some more basic signal analysis issues that might

confound the results in the application to multichannel EEG signals. In the following

we will summarize the main contributions first. A related discussion and suggestions for

future works will follow.

7.1 Summary of Original Contributions

� Limitations in the proposed eMVAR approaches to account for instan-

taneous connectivity in the EEG. Classical MVAR models do not include

zero-lags coefficients, therefore they disregard the presence of instantaneous con-

nectivity that may affect the estimation of lagged causality. With EEG signals,

instantaneous connectivity is expected due to strong volume conduction effects and

this has the potential to confound the analysis of causal connectivity. The eM-

VAR framework has been introduced to deal with this issue and has been tested

in previous works on simple connectivity models where it was shown to effectively

eliminate spurious causality introduced by zero-lag effects. In this work we tested

the eMVAR approach on simulations that more realistically model EEG signals

and on EEG recordings and showed that in this case the eMVAR algorithm fails

to reliably estimate instantaneous effects. Our findings suggest that the character-

ization of instantaneous causality between EEG time-series remains a challenging

issue and that caution is required when interpreting results from the estimation of

EEG connectivity.

157
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� Characterization of instantaneous volume conduction effects on scalp

DC and PDC by means of a realistic head model. The effects of volume

conduction on the estimation of scalp connectivity are not clear and some authors

claim that PDC and DC are not affected by the zero-phase (instantaneous) mixing

of cortical sources. By means of a series of simulation studies using a realistic head

model we demonstrated that DC and PDC are affected by volume conduction

when source signals are coloured. We also characterized volume-conducted, non-

physiological connectivity as a function of interelectrode distance and reference

choice: our preliminary results show that DC and PDC considerably reduce the

effects of volume conduction if compared with Coh and PCoh, in particular for

interelectrode distances larger than 10 cm.

� Correlation of directed connectivity performance with the individual

level of consciousness during NREM sleep. We have assessed the perfor-

mances of different EEG indexes (PDC and DC directed connectivity and normal-

ized spectra in different frequency bands) in relation to sleep stages in a NREM

sleep study. Our results show that among all of the EEG measures tested, a pro-

posed index of the direction of information flow on the rostro-caudal axis that is

based on DC performed well at a group level and gave the highest correlation with

individuals sleep stage and hence level of consciousness.

� EEG directed connectivity changes during a slow induction of propo-

fol anaesthesia -group and individual trends. We assessed changes in mul-

tivariate EEG connectivity estimated with DC during a target-controlled slow

induction of propofol anaesthesia with a view to proposing a connectivity-based

measure of depth of anaesthesia. We observed an inversion of directed connectivity

from posterio-frontal in wakefulness to fronto-posterior in anaesthesia. We have

identified a step change of connectivity features with the onset of anaesthesia (in

contrast with a more gradual trend with increasing propofol ESC observed in BIS

and MLR) that is broadly consistent at individual level and is relevant in terms of

a physiological interpretation of anaesthetic-induced LOC.

� Proposal of a novel and promising index of anaesthetic depth based on

EEG directed connectivity features and assessment of its performances

in comparison with BIS and MLR. We proposed a novel DoA index based on

DC features (DCindex). We assessed DCindex performance in discriminating wake-

fulness from anaesthesia in a clinical setting and compared it with MLR and BIS

features extracted at stable anaesthetic brain concentrations (ESC). We showed

that directed connectivity features have the best performances in discriminating

wakefulness from anaesthesia, as compared with MLR and BIS, with an average
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accuracy of 96% and results robust across subjects. Our results indicate the poten-

tial for directed connectivity to be integrated into future DoA monitors (possibly in

combination with other EEG features) to improve the detection of intraoperative

awareness.

7.2 Discussion

7.2.1 Signal Analysis Methods

PDC and DC are well established and relatively straightforward methods that quantify

the direction and strength of linear interactions between signals. They are computa-

tionally simple and represent a convenient solution that does not require an a-priori

functional model of interactions and allows a straightforward interpretation in terms

of EEG rhythm content. The relationship between PDC/DC scalp connectivity and

effective connectivity among underlying cortical and subcortical sources remains how-

ever unclear, mainly as a result of the confounding effects of volume conduction. The

literature suggests that these measures are relatively immune to the inevitable volume

conduction effects (Kaminski & Blinowska 2014, Schlögl & Supp 2006), but the published

works are based on not very realistic simulations, confirming the potential limitations

of these connectivity measures. Furthermore, solutions proposed in the literature using

the eMVAR model are based on unrealistic assumptions (Shimizu et al. 2006, Hyvari-

nen et al. 2010, Faes & Nollo 2010): we showed that as a result the application of this

more sophisticated approach (eMVAR) to remove instantaneous causality among EEG

derivations is not reliable and the estimation of instantaneous causality in this case re-

mains a challenge. At the same time an attempt to define the conditions under which

the volume conductions effects on PDC/DC could be considered negligible was carried

out: we showed that MVAR based directed estimators importantly reduce the spurious

connectivity generated by instantaneous source mixing if compared to Coh and PCoh

and that PDC/DC are minimally affected by volume conduction for interelectrode dis-

tances larger than 10 cm. These results, even if preliminary, provided useful guidelines

to interpret the physiological significance of DC/PDC links for the experimental studies

that have followed and oriented the choice to focus on the analysis of long-range con-

nectivity (i.e. interelectrode distance larger than 10 cm) in the analysis of experimental

data that followed.

Limitations As discussed in the final sections of chapters 4, the simulations studies

carried out in this thesis suffer from some limitations and leave unresolved questions.

For instance, in the characterization of volume conduction effects on DC and PDC scalp
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connectivity, we used only a source dipole distribution and white or coloured uncor-

related sources signals. Further work is required to test how volume-conducted scalp

connectivity varies as a function of different cortical source distributions (different LFM

matrices) and if realistic cortical dipole signals are used.

A key limitation of the methodologies used in this work is that they quantify only linear

dependencies between EEG time-series. In biological systems, in particular in very com-

plex ones like brain networks, we cannot assume linearity or homogeneity. Both linear

and non-linear processes take place in the brain (Nunez 1981). Phenomena like volume

conduction of cortical source generators are accurately modelled under the assumption

of linearity (Nunez et al. 1991), but whether a linear model is an accurate approximation

of neuronal connectivity is debated (Friston 1994).

As mentioned in chapter 3, several functional connectivity estimators that quantifies

non-linear coupling have been proposed in literature (i.e. Mutual Information and Trans-

fer Entropy (Schreiber 2000), Generalized Synchronization (Rulkov et al. 1995), etc.).

Estimators based on information theory quantify statistical dependencies between time

series and requires the computation of probability density which can be computationally

demanding and requiring very large dataset (Winterhalder et al. 2005). Similarly, Gen-

eral Synchronization entails higher computational effort compared to linear estimators.

Whether non-linear measures give an important contribution to the study of synchro-

nization in EEG signals has been investigated in a study on recorded EEG (Quiroga

et al. 2002): despite their sensitivity to different properties of the signals all the mea-

sures gave similar results in estimating EEG synchronization, except for the Mutual

Information which was not robust due to the limited data length available. There is no

consensus about the best method to characterise neuronal couplings among EEG chan-

nels: each estimator has a different sensitivity in detecting connectivity that depends

on the spectral characteristics of the interaction and the nature of the coupling (David

et al. 2004). Linear modelling may outperform alternatives when the assumption of

linearity is (approximately) valid, but is likely to underperform when the assumption

is grossly violated. Linear models represent a straightforward, computationally conve-

nient method, with a good temporal resolution. These properties are important in view

of an application for anaesthetic monitoring where quick updates on the current DoA

of the patients are needed. Moreover MVAR based estimator have been shown to be

robust to noise (Blinowska 2011) and to perform well even in the case of some nonlinear

interactions (Winterhalder et al. 2005) and have also been widely applied in different

experimental conditions other than sleep or anaesthesia (Astolfi, Bakardjian, Cincotti,

Mattia, Marciani, De Vico Fallani, Colosimo, Salinari, Miwakeichi, Yamaguchi, Mar-

tinez, Cichocki, Tocci & Babiloni 2007, Ginter et al. 2001, Kuś et al. 2008, Brzezicka

et al. 2011) showing good agreement with physiological considerations. If, as in the

present study, the interest is on the broad changes observed on scalp connectivity and
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to find an efficient measure of LOC rather than elucidating physiological connections in

detail, the linear solution was deemed to be a good starting point from the authors and

it was shown to be a valid and promising methodology when applied to the analysis of

sleep and anaesthesia. Even if in future work non-linear methods are to be explored,

the linear models will be a useful baseline to which non-linear approaches can be com-

pared. Only if their performance is very clearly better, will the added complexity and

computational effort be justified.

7.2.2 Experimental Findings

As a first stage of the experimental work a sleep study was designed in order to explore

changes in EEG connectivity during the descent into NREM sleep, the macro-stage most

likely associated with LOC. This normative study of EEG changes during sleep could

be conducted in a laboratory environment, whereas a similar study using anaesthetic-

induced LOC is experimentally and ethically much more challenging. Our attempt to

obtain ethics approval for the volunteer study was rejected, based on perceived balance of

risk and scientific need. In the sleep study the connectivity estimators and features that

were most sensitive to changes in the individual level of consciousness were identified

among a set of connectivity (Coh, PDC, DC) and spectral (normalized power in EEG

bands) measures: DC showed more robust results if compared with PDC, that exhib-

ited fragmented networks in some subjects. Among the different network features, the

strength of long-range links and the dominant direction of connectivity in the posterio-

anterior axis were most sensitive to the effect of NREM sleep. The rationale behind

the investigation of EEG connectivity is in the physiological understanding indicating

that the level of consciousness is closely associated with brain connectivity (Tononi &

Massimini 2008, Prichep et al. 2004, Alkire et al. 2008, Massimini et al. 2005a, 2010,

Mashour 2004). Results from the sleep and the anaesthetic study confirmed the research

hypothesis showing that brain connectivity is significantly modulated by the individual’s

level of consciousness (sleep stage or anaesthetic depth). The changes observed in DC

patterns during a slow administration of propofol in the anaesthetic study that followed

show remarkable similarities with those observed in deep sleep: a comparable reduction

in the strength of long-range links and a slightly more marked inversion of the direction

of connections was observed during anaesthesia. These findings are in line with the

widely acknowledged hypothesis that brain networks that generates sleep are modulated

by anaesthetics (Mashour 2010).

As discussed in the last section of chapter 6, the results of the anaesthetic study are

also in line with a considerable number of other studies that used neuroimaging tech-

niques sensitive to different aspects of brain activity (fMRI, PET, TMS) and reported a
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general impairment of cortico-cortical connectivity; fronto-parietal networks appear to

be specifically affected both in anaesthesia (Schrouff et al. 2011, Boveroux et al. 2010,

Massimini et al. 2010) and other states of altered consciousness (Massimini et al. 2005a,

Spoormaker et al. 2010, King et al. 2013, Sitt et al. 2014). These findings support the

various models of anaesthetic actions proposed in the literature (Tononi & Massimini

2008, John & Prichep 2005, Alkire et al. 2000) suggesting that the breakdown of cortical

information sharing is a central mechanism of anaesthetic induced LOC.

The changes in EEG directed connectivity observed at cohort level appear to be consis-

tent at individual level for the majority of subjects, where a brisk change in DC features

is observed at the onset of anaesthesia. The DCindex is then scarcely affected by the

increasing dose of anaesthetic, the administration of muscle relaxants, auditory stim-

ulation or the intubation of the patient. Interestingly, the changes observed in EEG

connectivity patterns in NREM sleep and anaesthesia remain consistent also when the

underlying EEG rhythms vary considerably: For instance in deep anaesthesia (ESC 4

µg · ml−1) EEG time-series are characterized by burst-suppression while in sleep N2

spindle activity is dominant but the connectivity features in these two stages are sim-

ilar. Taken together, these findings support the speculation that connectivity changes

reflect the general physiology of LOC, independently of the mechanism by which it is

induced. While conventionally the EEG patterns have received more attention, because

they are more easily identified visually, connectivity may be more informative regarding

LOC. Methods based on individual channels of EEG (spectral features, AEPs) may be

sensitive to other aspect of sleep or anaesthesia and may disregard a key element of

LOC: the information sharing between different areas of the brain.

As a final step of the anaesthetic study, the performance of the DCindex in predicting

anaesthetic-induced LOC were compared with those of two established DoA indexes:

BIS and MLR. In combination with a SVM (or NN) classifier, directed connectivity

features showed the best performances in discriminating wakefulness from anaesthesia

at different depths. This is a result of the step change in DC strength and direction

that occurs at the onset of anaesthesia, in contrast to a more gradual trend observed

in MLR and BIS for increasing anaesthetic depth. In view of a possible application

to the clinical setting, the DCindex categorical ‘on-off’ response may represent a useful

feature during anaesthetic onset that supplements the more gradual trends of other DoA

indexes, provided that it occurs in correspondence to the physiological transition from

wakefulness to LOC. Even if our results suggest that the step transition occurs for a

ESC level that has been associated with behavioural LOC in other studies, further work

is required to confirm this.
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Another advantage of connectivity based index is that it can reflect changes in brain

patterns during anaesthesia. This may be better justified from clinicians than a single

index that does not have a straightforward interpretation in terms of changes in brain

state. However, there may not be a unique optimal index that effectively monitor the

different components of GA (Marchant et al. 2014). GA is defined as the presence of

hypnosis (unconsciousness), amnesia and immobility (in response to surgical stimula-

tion) that are the results of anaesthetic actions at different sites. An ideal DoA monitor

should specifically target all these behavioural end-points and it is difficult to evaluate

which of them is the most relevant. In this view a solution may be to combine a variety

of parameters that optimally correlate with the different anaesthetic goals and could give

specific indication to clinicians. AEP and EMG entropy (Response Entropy-RE) may

provide information about the level of anti-nociception (response to a surgical stimula-

tion) (Marchant et al. 2014); on the other hand, given that primary effects of hypnosis

are thought to occur at cortical level and that LOC is thought to be associated to a dis-

ruption of cortical networks, connectivity-based indexes may provide information about

hypnosis, functioning as a marker of the ‘consciousness-switch’.

Limitations The results of this thesis were obtained on a relative small sample (10

subjects for the NREM sleep study and 10 patients for the study on propofol anaes-

thesia), therefore they could also be specific to the modest sample considered and not

generalize on a larger independent dataset or when data quality is worse. The rationale

behind a relatively small cohort lies in the exploratory character of the study: given

the novelty of the approach proposed to monitor anaesthesia, the experimental studies

were designed to explore and generate hypothesis that could then possibly be robustly

tested on a much larger cohort. Moreover the analysis of a limited number of subjects

also allowed the investigation and presentation of individual trends, which were deemed

important in view of a clinical application of the methodologies proposed.

Another critical point of the present and related work is the intrinsic problem of the

absence of a gold standard of anaesthetic depth or level. The lack of a reference measure

to compare connectivity (and other DoA indexes) with, makes it difficult to rigorously

assess the validity of the proposed index. As discussed earlier in this paragraph and

in chapter 6, since general anaesthesia is has different endpoints (hypnosis,amnesia,

analgesia), then no single component of anaesthesia can be used to define overall depth.

In order to assess the validity of the proposed index several test and studies should be

performed. DoA monitors performances are usually (Bruhn et al. 2006) investigated

with respect to the estimated or measured anaesthetics’ concentration (as we did in

the present work) in correlational studies. The ability of DoA monitors to prevent
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awareness (or response to surgical stimulation or to verbal command) is usually assessed

as well. In addition, large randomized clinical trials comparing DoA-based anaesthetic

administration with routine care are usually carried out to investigate the ability of

the proposed index to reduce drug administration, recovery times and comorbidities

and assess the clinical utility of the DoA monitor. From these considerations it clearly

emerges that the development and testing of the EEG connectivity index proposed here

is at a very early stage. Further tests on independent and larger samples should be

carried out to statistically test the performance of the proposed index and to address

questions that this thesis leaves open:

1. How do DC patterns correlate with the different anaesthetic endpoints? We inves-

tigated how DC relates to changes in ESC (estimated concentrations of propofol

in the brain), but not to changes in other anaesthetic effects such as patient be-

havioural responsiveness, memory formation or response to noxious stimulation.

2. What are the DC features changes associated with recovery of consciousness? Does

the DC perform equally in detecting anaesthesia induction and emerging from

anaesthesia? We investigated loss of consciousness in a slow induction from wake-

fulness to anaesthesia however we did not explore changes in DC during the oppo-

site transition (recovery of consciousness). Results in the literature indicate that

changes in connectivity during anesthesia induction and recovery do not mirror

each other (Hudetz 2012) emphasizing the need to investigate the properties of

DC connectivity during emergence from anaesthesia in future work.

3. How does the DCindex perform in comparison to the commercial monitors in dis-

tinguish responsive from unresponsive patients? We have compared the perfor-

mances with MLR and BIS sub-parameters extracted from EEG recordings using

our own implementations of algorithms, but not with the proprietary monitor val-

ues (aepEX R© and BIS R©) and other commercial DoA indexes whose full algorithms

are not publically available.

4. Is the DC index clinically applicable for routine monitoring of anaesthesia? Re-

sults indicate that in future the signal processing pipeline may be simplified (for

instance removing the surrogate data generation procedure), however we have not

systematically addressed this issue. A clinical applicable signal processing tool

should also include a robust and automated artefacts rejection procedure, while in

this work artefactual epochs were identified by visual inspection.



Chapter 7. Conclusions and future work 165

7.3 Future works

Considering the unresolved questions listed in the previous section, future research

should develop in two directions: firstly a series of experimental studies should ex-

plore the properties of the DCindex on a larger sample (undergoing different anaesthetic

protocols) and with respect to different anaesthetic endpoints. In parallel with the ex-

perimental work, different ways to simplify the signal processing procedure should be

explored in order to test the applicability of the methodology in a clinical environment

for routine monitoring. Some specific indications for future work are listed in the fol-

lowing.

7.3.1 Signal Analysis Methods

� Simplifying the signal processing procedure to estimate connectivity for a possible

application in a clinical environment for routine monitoring by means of a

(a) Reduction of the number of electrodes used to estimate DC features to reach

an optimal compromise between monitoring efficacy and clinical applicability

(including reduced computational times). To some extent, by focussing on

long-range connections on the fronto-posterior axis we have already identified

a limited number of features. The efficacy of those feature estimated from

a reduced number of electrodes (i.e. 2 frontal, 2 parietal) in monitoring

anaesthesia should be tested in the future.

(b) Investigation of the effects of removing the computationally heavy surrogate

data generation procedure to assess the significance of links and substituting

it with an empirical threshold. Our preliminary results suggest that the 30%

of strongest connections are in most case significant. Further work should

assess if setting a threshold based on the percentage of strongest connections

give robust results.

(c) Design of an automated artefacts rejection procedure. The commercial DoA

monitors have a sophisticated artifact rejection procedure that guarantees

the quality of EEG collected in the noisy environment of the surgical theatre.

These artifacts detection algorithms are proprietary and their description is

typically vague (Bruhn et al. 2006). They usually have two main blocks: the

first identifies specific artifacts as cardiac activity (EKG), pacemaker spikes,

muscle activity and eye blinks. The second removes noisy epochs whose

variance exceeds the average variance of EEG epochs previously processed.

A similar signal processing tool that automatically rejects artifactual epochs

before the estimation of connectivity should be developed in future work.
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7.3.2 Experimental Work

� In order to assess the changes in DC features also during emergence from anaes-

thesia and performance of DC in correlating with the individual responsiveness

an experimental protocol that includes induction of anaesthesia (LOC) and full

recovery of consciousness (ROC) should be designed. The two opposite transitions

LOC and ROC should be continuously monitored with EEG and other commer-

cial monitors. The responsiveness of the subject could be assessed on a fine time

scale presenting (i.e. every 10-20 s ) a list of pre-recorded words (Purdon et al.

2013). The task could be for example to identify the stimulus type (i.e. name

of persons or of cities) by pressing an appropriate button. In this way a curve of

the individual responsiveness (Purdon et al. 2013) during the experiment would

be available with a fine time resolution. Such a protocol would allow the investi-

gation of changes in DC features in relation to probability of behavioural response

(assessed across subjects) and individual responsiveness, and a comparison of DC

performance with commercial monitors such as BIS R© and aepEX R©.

� Some DoA monitors are ‘blind’ to some anaesthetics (i.e. their are not sensitive

to their action) (Barr et al. 1999, Pandit & Cook 2014) or exhibit different trends

depending on the drug used to induce GA (Olejarczyk et al. 2017). In order to

investigate if the changes in DC features observed during propofol anaesthesia

are agent specific, an assessment of EEG directed connectivity changes during

anaesthesia induced with different agents (i.e. comparison intravenous and volatile

anaesthetics) should be carried out.

In summary, as a continuation of this thesis, future work should test measures of brain

connectivity with respect to another components of anaesthesia such as behavioural re-

sponsiveness. It should be assessed if connectivity features are able to robustly discrim-

inate responsive from unresponsive patients and if they can be effectively implemented

for routine anaesthesia monitoring. If proved to be efficient, this methodology may re-

spond to the need of improving the commercially available DoA monitors in detecting

unexpected awareness and have an impact on the development of more efficient DoA

monitors and therefore on patient care and hospital costs.



Appendix A

Partial Coherence computation as

a function of the inverse spectral

matrix

In this section we will provide the rationale behind the use of the inverse spectral matrix

to compute PCoh.

The pairwise Partial Coherence PCoh between two signals xi(n) and xj(n) is defined as

follows:

PCohi,j(f) =
Sij|(X/ij)(f)√

Sii|(X/ij)(f)Sjj|(X/ij)(f)
(A.1)

where Sij|(X/ij)(f) is the partial cross-spectral density function of xi(n) and xj(n) and

is defined as:

Sij|(X/ij)(f) = Sij(f)− Si(X/ij)(f)S−1(X/ij)(X/ij)(f)S(X/ij)j(f) (A.2)

and can be interpreted as the cross-spectrum between xi(n) and xj(n) once the linear

effects of all the other time series of the process X have been removed, so to obtain a

measure of the direct linear relations between the two signals neglecting the confounding

effects of other components.

The PCoh can be calculated recursively in terms of lower order PCoh that in turn may

be eventually computed as a function of the power spectra using equation A.2 (Bendat

& Piersol 2000). An alternative approach, that is more computationally efficient for

large PCoh orders, is to compute PCoh in one-step as a function of the inverse of the

spectral density matrix S(f). The validity of this procedure has been demonstrated by
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(Dahlhaus 2000) and will be outlined in this section.

Given the spectral density matrix S(f) and its inverse G(f) = S−1(f) we define a

matrix D(f) to be

D(f) = −H(f)G(f)H(f) (A.3)

where H(f) is a diagonal matrix whose elements are the square root of the inverse

spectral matrix diagonal elements gi,i(f)−
1
2 , then the PCoh between xi(n) and xj(n) is

obtained as the negative value of the the ith and jth element of the rescaled inverse of

the spectral matrix as follows:

PCohi,j(f) = −Di,j(f) (A.4)

Sij|(X/ij)(f)√
Sii|(X/ij)(f)Sjj|(X/ij)(f)

= − gi,j(f)√
gi,i(f)gj,j(f)

(A.5)

To demonstrate this theorem we consider i = 1 and j = 2 and the spectral density

matrix in the following form, without loss of generality:

S(f) =

[
SX1,X2(f) SX1,Y (f)

SX2,Y (f) SY,Y (f)

]
(A.6)

with

SX1,X2(f) =

[
S1,1(f) S1,2(f)

S2,1(f) S2,2(f)

]
(A.7)

Direct verification gives that the inverse of the spectral matrix is:

G(f) = S−1(f) =

[
E−1(f) −E−1(f)F (f)

−G(f)E−1(f) S−1Y,Y (f) +G(f)E−1(f)F (f)

]
(A.8)

where
E = SX1,X2(f)− SX1,Y (f)S−1Y,Y (f)SX2,Y (f)

F = SX1,X2(f)S−1Y,Y (f)

F = S−1Y,Y (f)SX2,X1(f)

(A.9)

E is then a 2× 2 matrix

E =

[
e11 e12

e21 e22

]
(A.10)
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whose rescaled inverse is

E−1rescaled =




1 −e12
(e11e22)

1
2

−e21
(e11e22)

1
2

1


 (A.11)

which, being the expression ofE as given in equation A.9 proves the equality in equations

A.4 and A.5.





Appendix B

The inverse EEG problem

The activity of a small region of the brain produces potentials that are spread out over

the scalp, overlapping potentials generated by other sources. Hence the causal depen-

dence between scalp sensors result both from correlation among cortical sources and

volume conduction through brain, cerebrospinal fluid, skull and scalp (Sanei & Cham-

bers 2007). This mixing effect can be reduced through the reconstruction of the putative

electric sources in the brain, therefore through the solution of the so-called inverse prob-

lem.

The problem of finding the current sources inside the head is strongly ill-posed, i.e. for a

given set of scalp measurements there are infinite configurations of intracranial sources

compatible with it; only by introducing a priori constraints from assumptions about the

source statistical distribution and volume conductor we can solve the inverse problem in

a unique way (Michel et al. 2004) and the nature of these a priori assumptions strongly

determines the quality of estimated data (i.e. if they actually give neurophysiologic in-

formation about signals generated in the brain).

Several approaches have been proposed. Methods assuming a certain number of corti-

cal sources as generating the surface measurements are called overdetermined models

since, in order to warrant a unique solution for the inverse problem, the number of fixed

sources is less or equal to the number of scalp recordings. This approach is mainly used

for AEP and epileptic foci’s identification, where the number and position of sources

can be set following physiological considerations. Considered that the exact number of

dipoles cannot be determined a priori, a different approach has been developed. Dis-

tributed source models estimate the electric activity of the cortex in each point of a

3D grid of solution points. The number of points is much larger than the sensor point,

which makes the inverse problem undetermined. In this thesis we have used this last
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approach (chapter 4) using the algorithm implemented in the eConnectome toolbox. In

the following models and methods employed will be described.

Figure B.1: Schematic representation of the inverse problem solution to infer the
current source time series from the spatiotemporal profile of volume conducted scalp
potentials. The electrodes considered for the causality analysis and the respective
cortical ROI locations are shown, together with an example of the EEG traces and
the respective ROIs waveforms. ROIs refer to the averaged current source densities

underneath the corresponding electrodes.

B.1 The Inverse Model

To solve the problem of finding cortical sources from a scalp voltage distribution, we used

an underdetermined, distributed source model: It does not need an a priori assumption

on the number of sources and is based on the reconstruction of the brain electric activity

in each point of a 3-D grid of solution points (much more numerous than the measured

ones). The underdetermined nature of the problem necessitates some assumptions in

order to identify the most likely solution. All the different models proposed in the

literature differ in the choice of these assumptions, which can be purely mathematical

or based on physiological and anatomical knowledge. In this work we used the cortical

current density source model CCD (Dale & Sereno 1993) to solve the inverse problem:

this method involves a linear approach with the integration of multiple constraints.

Based on the assumption that for the range of frequencies typical of EEG analysis the

electric and magnetic field can be well described by the quasi-static Maxwell equations,
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a linear relationship between the electric recordings and the component of the cortical

dipoles was considered.

xi =
N∑

j=1

aijsj + nj (B.1)

x = As+ n (B.2)

where xi is the potential at the ith electrode, sj is the strength of the jth dipole compo-

nent, N is the number of volume element in which the brain is divided and M represent

the Lead Field Matrix (LFM). The lead field matrix is a non-linear function of the

electrode locations, source locations and the permeability and conductivity of the head

model (see chapter 4, section 4.2). The ith row of M represent the how the potential of

each electrode varies with the strength of each dipole, while the jth column of M is the

gain vector for the jth dipole (i.e. how the potential at each electrode varies with the

strength of the jth dipole). n is a zero-mean random vector representing the additive

noise at the sensors.

B.1.1 Minimum norm (MN) algorithm

The inverse problem can be solved if a priori information exists about the statistical

distribution of the dipole moments and the sensor noise with algorithms that minimize

the difference between the estimated and correct solution.

Errw = |Wx− s|2 (B.3)

where W is the linear operator (demixing matrix) that maps the recorded potentials x

in the estimated source vector ŝ. Developing equation B.3 we obtain

Errw = |W (As+ n)− s|2 = |(WA− I)s+Ws|2; (B.4)

If the error Errw is minimised by tacking the gradient and setting it to zero the optimal

inverse linear operator is
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W = RAT (ARAT +C)−1 (B.5)

where R and C are respectively the covariance matrix of the dipole strength and the

sensor noise vector. If the dipole components are assumed to be independent and with

same variance σ2source (i.e. if R = σ2sourceI) and if the same assumption is made for the

noise (C = σ2sensorI, i.e. the noise is assumed to be spatially uniform across channel

sites), this solution is equivalent to the minimum-norm solution (MN). This solution re-

quires no a priori information but the only assumption that the current 3D distribution

has the smallest L2-norm; therefore it favours weak and localised activation patterns

(superficial sources).

To compensate the MN trend towards superficial sources different weighting strategies

have been proposed. The approach implemented in eConnectome toolbox (and used

for PDC source estimation in Astolfi et al. (2006), Astolfi, Cincotti, Mattia, Marciani,

Baccala, de Vico Fallani, Salinari, Ursino, Zavaglia, Ding, Edgar, Miller, He & Babiloni

(2007), Toppi et al. (2012) is the lead field weighting minimum norm (WMN) (Fuchs

et al. 1999), based on the norm of the columns of the lead field matrix. Equations B.5

is still valid but with the variation that the metric of the sensor space is equal to the

identity matrix C = I and the covariance of the source space is given by the following

metric:

Rij = |Ai|−2, i = j

Rij = 0, otherwise
(B.6)

being |Ai|2 the norm of the ith column of the lead field matrix as in Babiloni et al.

(2005). In this way the variance of the sources is taken to be proportional to the inverse

of the norm of the gain column and as a consequence the variance of deeper sources will

be larger with respect to the superficial ones (deep-weighting).

B.1.2 Regularization

Ill-posed problems suffer to be highly sensitive to high-frequency perturbations and

require the application of more sophisticated methods in order to compute a meaningful

solution. This is the goal of the regularization methods (Hansen & Zaglia 1993). The

dominating approach to regularize ill-posed problems and obtain a useful and stable

solution is requiring the L2-norm of the solution to be small. The most common method
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is the Tikhonov regularization whose idea is to obtain an optimal solution not only

minimising the estimation error as in equation B.3 but a weighted combination of the

residual norm and the solution norm

Errs = |(As− x)|2 + λ2|s|2 (B.7)

where λ is a regularization parameter introduced to account for the noise in the data

and provides stability to the solution, such that small variations in the data do not lead

to large variations in the source configuration. Therefore the optimal MN or WMN

solution derived using Tikhonov regularization in the Regularization Toolbox (Hansen

& Zaglia 1993) is the following

W = RAT (ARAT + λC)−1 (B.8)

The optimal value for the regularization parameterλ is obtained following the L-curve

approach (for a detailed description of this method see Hansen & Zaglia (1993)).

B.1.3 Head Model

As previously observed, the lead field matrix is a function of the electrical (i.e. conduc-

tivity, permeability) and geometrical (shape) properties of the volume conductor and

the relative positions of sensors and sources; to obtain an accurate estimate of the lead

field matrix is necessary

1. EEG-MRI co-registration: first is necessary to match the sensor positions to the

scalp surface, in the same reference system of the cortical and subcortical sources.

This is performed defining a wire-frame representation the cortical surface (and

eventually subcortical structures) with non-invasive imaging techniques, typically

MRI. eConnectome use one single template MRI (MNI brain from the Montreal

Neurological Institute ), and assume a standard 10-20 electrode coordinate system.

2. Head model: an accurate head model is necessary for a likely solution of the

inverse model. The simplest one is a spherical model, with uniform conductivity

properties. eConnectome uses a realistic head model with the help of the boundary

element method (BEM1, as described in Hämäläinen & Sarvas (1989)). In this work

1This method assumes that conductivity is isotropic and homogeneous in a tissue volume (brain, skull,
skin) but considers 3 conductivity discontinuities at the boundaries of the volumes (surface brain-skull,
skull-scalp, scalp-air)



Appendix B. The inverse EEG problem 176

the head is modelled as a multilayer structure, with 3 surfaces (scalp, skull, brain)

separating volumes with different isotropic conductivities. The surfaces S1, S2,

and S3 should take the form of the scalp-air, the skull-scalp, and the skull-brain

interfaces, respectively. This information is acquired from high quality MRI scans

of the MNI brain. The cortical surface obtained from the segmentation of the MRI

images was triangulated and a high resolution cortical surface (downsampled from

41136 to 7850 triangles) formed the source space (the MRI scans are segmented into

white and grey matter and sources are constrained to reside only on the grey matter

volume). The skull and scalp surface were also segmented and reconstructed from

the MNI brain and a scalp surface consisting of 2054 triangles formed the sensor

space (Collins et al. 1994). Thus an high resolution LFM (2054x7850) relating

the scalp triangles to the sources is pre-computed and used for the solution of the

inverse problem.

The ambiguity of the inverse solution can be reduced introducing anatomical informa-

tion, i.e. considering in the forward solution only those dipole locations consistent with

anatomical and physiological information. As suggested in Dale & Sereno (1993), the

EEG is mainly produced by currents in the apical dendrites of the cortical pyramidal

cells, that have a columnar orientation, therefore the resulting dipolar moment is roughly

oriented perpendicularly to the cortical surface. Hence the dipoles were constrained to

the segmented grey matter, with their orientations perpendicular to the local cortical

surface (triangle). In particular an orthogonal equivalent current dipole was placed in

each node of the triangulated surface, with direction parallel to the vector sum of the

normal to the surrounding triangles. The solution of the inverse problem is a vector

of continuous time course for cortical sources strength, one for each dipole position,

therefore the estimated source data matrix will have around 20000 time series. For

further computation (i.e. connectivity or coherence estimation) is useful to reduce the

computational cost, selecting regions of interest (ROI) source signals, whose waveform

is computed by averaging the estimated cortical sources in the ROI.
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Maximum Length Sequences

(MLS) properties and

deconvolution algorithm

In this section the properties of the MLS will be briefly described and the deconvolution

algorithm for the extraction of evoked responses will be illustrated. Details of MLS gen-

eration and deconvolution have been published in Davis (1996) and the first audiological

application (on ABR) of MLS was given by Eysholdt & Schreiner (1982). A MLS is a

quasi-random binary sequence assuming values equal to +1 or -1. If n is the order of

the sequence then its length is L = 2n−1 and the number of stimuli is Ns = 2n−1. MLS

have a number of attractive properties. The most important is that with the exception

of a DC error, the autocorrelation is a perfect impulse:

L−1∑

i=0

mls(i) = −1; (C.1)

L∑

i=−L
mls(i)mls(i+ k) =




L if k = 0

−1 otherwise
; (C.2)

As a result, a linear system with impulsive response h, when stimulated with an MLS

sequence, produces a response y given by the convolution sum:

y(k) =

L−1∑

i=0

h(i)mls(k − i); (C.3)

177
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In the case of AEPs evoked using MLS, y represents the overlapped response, h is the

‘true’ response of the system (hence the AEP itself) and mls(i) is one element of the

stimulation sequence. If a MLS is used the original response h can be recovered from

the overlapped averaged waveform by a deconvolution procedure.

Since the MLS signal is periodic of period L the expression in equation C.2 is a circular

convolution between the periodic mls and the periodic system response h. More pre-

cisely the auditory system is stimulated by a MLSS , where the subscript S stands for

stimulation sequence. It differs from the original MLS (recovery sequence) from having

0 instead of -1 (where 0 represent the absence of stimulus) (see equation C.4 and figure

C.1).

Figure C.1: An example of a MLS stimulation sequence and its respective recovery
sequence.

mlss(i) =
mls(i) + 1

2
; (C.4)

Hence the overlapped response is:

y(k) =

L−1∑

i=0

h(i)mlss(k − i) = h(i)⊗mlss(i); (C.5)

The deconvolution algorithm consist the circular convolution of the overlapped response

with the temporal reverse of the original MLS:

y(k)⊗mls(−k) = h(k)⊗mlss(k)⊗mls(−k); (C.6)

In fact, due to the properties of the MLS (see equation C.1), the following equivalence

is true
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mlss(k)⊗mls(−k) =
L+ 1

2
δ(k); (C.7)

therefore

y(k)⊗mls(−k) =
L+ 1

2
h(k); (C.8)

The AEP response is therefore equivalent to

h(k) =
2

L+ 1
sumL−1

i=0 y(i)mls(i− k); (C.9)

or, in matrix form




h(0)

h(1)

· · ·
h(L− 1)




=




mls(0) mls(1) · · · mls(L− 1)

mls(−1) mls(0) · · · mls(L− 2)

· · · · · · · · · · · ·
mls(1) mls(2) · · · mls(0)



×




y(0)

y(1)

· · ·
y(L− 1)




(C.10)

The auditory evoked response is obtained multiplying the overlapped response by the

matrix obtained left shifting the element of the original MLS sequence and dividing by

the number of the stimuli occurred.
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Abstract
A reliable measure of consciousness is of great interest for various clinical 
applications including sleep studies and the assessment of depth of anaesthesia. 
A number of measures of consciousness based on the EEG have been proposed 
in the literature and tested in studies of dreamless sleep, general anaesthesia 
and disorders of consciousness. However, reliability has remained a persistent 
challenge. Despite considerable theoretical and experimental effort, the neural 
mechanisms underlying consciousness remain unclear, but connectivity between 
brain regions is thought to be disrupted, impairing information flow. Objective: 
The objective of the current work was to assess directional connectivity between 
brain regions using directed coherence and propose and assess an index that 
robustly reflects changes associated with non-REM sleep. Approach: We tested 
the performance on polysomnographic recordings from ten healthy subjects 
and compared directed coherence (and derived features) with more established 
measures calculated from EEG spectra. We compared the performance of 
the different indexes to discriminate the level of consciousness at group 
and individual level. Main results: At a group level all EEG measures could 
significantly discriminate NREM sleep from waking, but there was considerable 
individual variation. Across all individuals, normalized power, the strength of 
long-range connections and the direction of functional links strongly correlate 
with NREM sleep stages over the experimental timeline. At an individual level, 
of the EEG measures considered, the direction of functional links constitutes 
the most reliable index of the level of consciousness, highly correlating with the 
individual experimental time-line of sleep in all subjects. Significance: Directed 
coherence provides a promising new means of assessing level of consciousness, 
firmly based on current physiological understanding of consciousness.
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1.  Introduction

Neural correlates of consciousness have attracted considerable interest in recent years (De 
Graaf et al 2012). This has motivated a series of studies that contrast brain activity in wake-
fulness, where consciousness is typically present, with conditions where it is diminished or 
suppressed, such as in dreamless sleep (Massimini et al 2005, Spoormaker et al 2010, Siclari 
et al 2016) or anaesthesia (Ferrarelli et al 2010, Gómez et al 2013). In parallel, a series of 
theoretical advances have predicted that consciousness is critically related to functional con-
nectivity that enables widespread information sharing among distant brain areas (Tononi 
2008). A series of putative markers of consciousness have been proposed in the literature that 
include event related potentials evoked by auditory or visual stimuli (Sergent et al 2005, Sitt 
et al 2014), spectral patterns (Mhuircheartaigh et al 2013) gamma synchrony and measures of 
information sharing across distant brain areas (Tononi and Massimini 2008). A recent critical 
review (Koch et al 2016) has highlighted the importance of EEG as a fundamental clinical 
tool to discriminate conscious from unconscious subjects, however, it has suggested that only 
few of these measures are promising neurophysiologic correlates of consciousness. The low-
frequency high amplitude EEG (usually referred to as slow-waves) that characterizes the loss 
of consciousness in physiological, drug-induced or pathological conditions, as opposite to 
high-frequency ‘Activated-EEG’ in wakefulness, remains one of the oldest and most reliable 
markers of awareness (Koch et al 2016). Other promising approaches appear to be measures 
of brain connectivity. These are thought to indicate the ability of the brain to integrate infor-
mation (Tononi 2008).

Consciousness naturally fades during deep non-rapid eye movement (NREM) sleep, in 
particular in the early night (Tononi and Massimini 2008), when reports after awakening refer 
to little or absent conscious experience (Stickgold et al 2001); thus the onset of NREM sleep 
may represent an opportunity to relate changes in brain activity to changes in consciousness. 
During REM sleep, in contrast, reports of dream-like experiences are common. A nap gener-
ally includes only NREM sleep (N1, N2 and N3) with sleep N2 representing the largest pro-
portion and the time spent in N3 increasing with the nap-length for naps longer than 10 min 
(Brooks and Lack 2006). Naps, as also used by Massimini et al (2005), therefore represent a 
convenient condition to investigate loss of consciousness at the onset of NREM sleep, with 
the advantage of only requiring a simple experimental setup that does not entail the practical 
challenges of overnight sleep recordings.

Changes in cortical connectivity associated with sleep have been widely investigated in 
functional magnetic resonance (fMRI) studies, but their relationship with consciousness 
remains unclear (Klimova 2014). Results point to a general impairment of functional connec-
tivity in the thalamocortical system (Spoormaker et al 2010, 2012); in particular, long-range 
connectivity was shown to be affected by sleep (Tagliazucchi et al 2013) and connectivity 
networks in NREM sleep show increased local clustering when compared to wakefulness 
(Boly et al 2012). Recent studies investigating early NREM sleep with combined transcranial 
magnetic stimulation (TMS) and EEG approaches (Massimini et al 2005) show a break-down 
of large-scale connectivity in the sleeping brain.

EEG is often preferred in studies of brain connectivity from a practical point of view (Sitt 
et al 2014), as it can be applied relatively easily at the bed-side and at low cost, and EEG-based 
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systems can be used in routine clinical work in the home or ward, as well as in intensive care 
units or operating theatres where assessment of level of consciousness (LOC) may be carried 
out. The strength of frequency-dependent relationships between EEG channels in sleep have 
mainly been investigated in previous studies with conventional coherence (COH) estimates 
(Achermann and Borbély 1998, Corsi-Cabrera et al 2003) and Synchronicity (Ferri et al 2005, 
2007). COH and Synchronicity are symmetrical measures unable to convey directional infor-
mation, therefore losing some functional significance. A more advanced measure of functional 
connectivity, the directed coherence (DC) (Baccalá et al 1998) has been proposed to overcome 
this limitation, by using a model-based approach involving causal linear filters quantifying the 
interactions between channels. The DC estimator is consistent with the framework of Granger 
Causality and provides information about the strength, direction and spectral content of linear 
dependencies. It therefore has potential to give additional information about the direction of 
functional links in the brain compared to standard COH. It has been demonstrated that for 
Gaussian and quasi-Gaussian distributions (Hlaváčková-Schindler 2011), GC is equivalent 
to transfer entropy, but has the advantages of being simpler to understand and interpret and 
easier to apply, providing a straightforward decomposition in frequency (Barnett et al 2009). 
This property is of particular relevance for EEG applications, where specific brain rhythms 
are dominant in behavioural states such as sleep stages, or when performing cognitive tasks 
(Klimesch 1999).

The aim of the current study is therefore to describe changes in strength and direction 
of functional connectivity associated with NREM sleep using DC and to propose and test 
indexes of brain connectivity based on DC that could distinguish between states of conscious-
ness. Performance of the proposed approaches will be compared to more established spectral 
measures and assessed in discriminating between NREM sleep and wakefulness. Since the 
overarching aim of any proposed measure is to assess the LOC in individual subjects, perfor-
mance is assessed against each subject’s own time-line through the sleep stages. The focus on 
individual variability is an important and distinctive feature of this work, since the majority of 
previous studies investigating correlates of consciousness (where consciousness is diminished 
or reduced) have focussed on the analysis of the average values across the cohort. This work 
is also original in investigating directional connectivity (using DC) on EEG, where previously 
the strength of connection, rather than the direction of information flow, was the focus. Our 
interest in individual variability is motivated by a potential clinical application: we hope to 
assess depth of anaesthesia in future work and so we are looking for an index that is computa-
tionally convenient and suitable for online monitoring of individuals and can show changes in 
individual subjects, not just statistical differences between groups. In this sense the spontane-
ous EEG is also preferable to fMRI and TMS approaches as it represents a low cost and easily 
implementable method with good temporal resolution.

2.  Methods

2.1.  Subjects, protocol and preprocessing

Sixteen healthy subjects participated in the sleep study. However only ten subjects (three 
females and seven males, aged between 22 and 30 years) underwent N1, N2 and N3 stages 
of NREM sleep and so were included in the analysis. The experiment was approved by the 
local ethics committee and following informed consent, and conformed to requirements of the 
Declaration of Helsinki. In order to exploit the circadian sleep drive, the experiment was per-
formed in the afternoon after lunch. The subjects were asked to refrain from drinking coffee or 
tea on the day of the experiment. The subjects, lying with eyes closed on a reclining chair, were 
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invited to sleep. After they spontaneously woke up again, they were asked to rest with eyes 
closed (REST W) and then to perform mental arithmetic with eyes closed (ACTIVE W). EEG 
was collected using a 32 channel system with active electrodes (Biosemi BV, Amsterdam) 
placed according to the international 10–20 system. Additional electrodes were used to record 
the electrooculogram (EOG) and the chin electromyogram (EMG). Sleep stages were scored 
by visual inspection of contiguous epochs of 30 s according to the standard criteria (Iber et al 
2007). Data were then downsampled to 250 Hz and digitally referenced with respect to the 
average of T7 and T8 channels (linked mastoid), as recommended for functional connectiv-
ity estimation (Kamiński and Blinowska 2014). The EEG time series were band pass filtered 
(1–45 Hz) and additionally notch filtered at the mains frequency using zero phase filters. Only 
continuous and artifact-free epochs were selected and included in the following analysis.

2.2.  Multivariate connectivity estimation

The DC is obtained from multivariate autoregressive (MVAR) model parameters. A MVAR 
process describes each multi-channel EEG time series x as a sum of p previous samples from 
the set of M-signals (here the EEG channels), weighted by model coefficients, plus a noise 
component, as given in the following equation (1):

x(n) =
p∑

l=1

A(l)x(n − l) + ε(n), n = 1, . . . .N� (1)

where x(n) is the M dimensional vector of the EEG channels time-series at time lag n, N is the 
number of samples in the signals, A(l) is the M  ×  M coefficient matrix (weights) describing 
the linear interactions between channels at lag l, p is the model order, and ε(n) is the vector of 
white innovations, with the non-singular residual covariance matrix:

Σε =
{
σ2

ij

}
.� (2)

σ2
ij is the cross-covariance between innovations signals ε(n) for channels i and j.

The weights relate the present sample of one signal to the past of another (and itself) 
and capture the directed influence between signals that can be interpreted in the sense of the 
Granger Causality (Granger 1969). It should further be pointed out that equation (1) explic-
itly excludes instantaneous connections (with zero time-lag). By transformation into the fre-
quency domain, the MVAR process is modelled as a filter with transfer matrix H( f ) and white 
noise E( f ) as an input:

X( f ) = A( f )X( f ) + E( f ) = H( f )E( f ).� (3)

In equation  (3), A( f ) is the Fourier Transform of the matrix of parameters and 
H( f ) = [I − A( f )]−1 (where I is the identity matrix), which conveys information about the 
linear dependencies between signals and their spectral features. The DC from signal j to signal 
i of the M-variate dataset is defined as follows (Baccalá et al 1998):

DCi,j( f ) =
σjjHi,j( f )√∑M

m=1 σ
2
mm|Hi,m( f )|2�

(4)

and, because of the normalization, it quantifies the linear coupling from xj to xi as compared 
to all the other contributions the signal xi receives from other structures of the M-variate 
dataset. In particular it has been shown (Faes et al 2013) that the squared modulus of DCi,j( f ) 
measures the normalized portion of the autospectrum of xi at frequency f due to the signal 
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xj (or transferred from xj via the transfer function Hi,j( f ) to xi). In other words, |DCi,j( f )|2 is 
a measure of the portion of the autospectrum of xi at frequency f due to the signal xj. Due 
to its relatively straightforward interpretation in term of spectral content, in this work we 
will use the squared modulus of DC to quantify functional connectivity. This differs from 
the related formulation of the Directed Transfer Function (DTF, Kaminiski and Blinowska 
(1991)); as DC includes the variance of the residuals σ∗, it brings the advantage of robustness 
against different signal scaling (Baccalà and Sameshima 2007). When all residuals variances 
are equivalent, the DC reduces to the DTF. One may view this as DTF reflecting the existence 
of (directional) connections, while DC also quantifies how these connections are used and it 
is interpretable in terms of signal power content.

When estimating an MVAR model of order p from a dataset, it is important that segments of 
EEG data of adequate length are collected to ensure that the number of samples is sufficient to 
accurately fit the model. Given a M-variate dataset, a minimum of M2p data points is required 
for the model fitting, since there are M2p parameters to estimate; however in practice a much 
higher number is recommended (typically 10 times the minimum number) for an accurate 
estimate (Schlogl and Supp 2006). In order to follow this recommendation and to reduce com-
putational cost, which is always of concern in multivariate connectivity estimation, a reduced 
number of electrodes was considered for connectivity analysis, as did Toppi et al (2012) and 
Marinazzo et al (2014). A subset of M  =  12 electrodes that are fairly evenly distributed across 
the scalp (Fp1, Fp2, F3, Fz, F4, C3, Cz, C4, P3, P4, O1, O2) was selected and connectivity 
was estimated for epochs of 60 s (i.e. 15000 samples in each channel) that were not interrupted 
by artefacts or high-level noise (according to visual inspection). Therefore only segments with 
two consecutive 30 s epochs of the same sleep stage were included in the study while isolated 
epochs were excluded from the following analysis.

When making inferences about EEG connectivity, only statistically significant estimates 
should be considered. In this study the significance of DC links was assessed using surrogate 
data based on a phase shuffling of the EEG signals, with 1000 repetitions that generated a 
set of surrogate data in which any temporal correlation between channels was removed, but 
autocorrelation (and thus the spectrum) of each signal was maintained. DC was then estimated 
from the surrogate dataset in order to obtain an empirical null distribution for each pair of sig-
nals at all frequencies. The significance of causal links was assessed comparing the estimated 
connectivity with the null distribution, setting the significance level at p  <  0.01. Correction 
for multiple comparisons was performed using the false discovery rate (FDR) approximation 
for dependent measurements (Benjamini and Yekutieli 2001). Only links that were thus found 
to be statistically significant were included in the subsequent analysis and in the calculation 
of EEG indexes of connectivity.

A widespread practice in functional connectivity analysis is to threshold connectivity 
matrices to remove weak or spurious connections and retaining only a small percentage of the 
strongest connections (Sporns 2013). In this study the connectivity matrices were thresholded 
to retain either 10% or 30% of the strongest connections (as in Chennu et al (2014)) and then 
averaged in the four physiologically relevant frequency bands delta (δ) (1–4) Hz, theta (θ) 
(4–7) Hz, alpha (α) (8–13) Hz and beta (β) (13–25) Hz.

In order to specifically investigate changes in long-range connectivity, the DC links were 
subdivided with respect to the 3D Euclidian interelectrode distances, computed using default 
channels coordinates. Distance thresholds were set for differentiating between three groups 
of channel pairs in roughly the same proportions with respect to the total number of possible 
links: 35% of short-range links (interchannel distances below 10 cm), 32% of medium range 
links (between 10 and 14 cm) and 33% of long-range links (above 14 cm).
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2.3.  Computation of EEG indexes

For each 60 s epoch of different sleep stages and for each subject, a series of EEG measures 
were then extracted. We organized indexes into two classes: spectral measures (as commonly 
used in many previous studies) and connectivity based measures. The power spectral density 
(PSD) for each epoch and electrode was estimated using the Welch method (Hanning window 
7.5 s long, 50% overlap); the power in each frequency band was calculated as the integral of 
the PSD within each frequency band. The spectral analysis was focused on δ, θ and α bands 
since previous studies on neural correlates of consciousness had reported major changes in 
these bands (Chennu et al 2014, Koch et al 2016). To allow for differences in power between 
EEG channels, we estimated the normalized power in these three frequency bands by the total 
power (1–45 Hz) in each time epoch and for each electrode. The normalized power is thought 
to be a more reliable estimator because it encompasses the individual variances in the absolute 
EEG power caused, for instance, by variations in electrodes impedances (Sitt et al 2014).

We assessed connectivity through indexes quantifying the strength of the connectivity net-
works and indexes estimating the direction of information flow. The rationale for the former 
is to be found in the large number of studies showing that long-range connectivity is signifi-
cantly affected by the LOC. The rationale for the latter comes from published results showing 
a prevalence of frontal EEG activation in sleep as opposed to a strong posterior activation in 
wakefulness (Brown et al 2010), with indications that the direction of long-range connectiv-
ity may represent a prominent feature of sleep as compared to wakefulness (De Gennaro et al 
2004). To this end we assessed the number of significant connections from centro-posterior 
(O1, O2, P3, P4, C3, C4, Cz) to anterior (Fp1, Fp2, F3, F4, Fz) electrodes and vice versa. 
We thus defined an index that quantifies the dominant direction of information flow on the 
front-posterior axis (DirP→A) as the normalized differences of the number of links in the two 
opposite directions over the rostro-caudal axis:

DirP−>A =

∑
i

∑
j num(DCijP−>A)−

∑
i

∑
j num(DCijA−>P)∑

i

∑
j num(DCijP−>A) +

∑
i

∑
j num(DCijA−>P)

� (5)

where the sums are taken over all pairwise connections between the posterior and anterior 
channels (P  →  A) and anterior to posterior channels (A  →  P), respectively and num( · )  =  1 
when that connection is significant, and zero otherwise.

In the following, we will first present results at a group (cohort) level, showing differ-
ences in connectivity based measures between the different sleep stages and frequency bands, 
with associated statistical analysis (Friedman tests). The average topographic distribution of 
spectral parameters and connectivity measures is then assessed and the ability of these and 
derived indexes to distinguish between sleep stages at a group-level is tested. We then also 
present results at an individual subject level, and the most promising measures are correlated 
with the manual scoring of sleep stages (hypnogram) in each individual, by Spearman cor-
relation using the indexes from consecutive 1 min segments. The presentation of results from 
individual subjects, in addition to the statistical analysis across the cohort, provides insight 
into the potential of the method in monitoring individual patients.

3.  Results

3.1.  Group analysis

According to standard criteria (Iber et al 2007), hypnograms were generated for each subject, 
using consecutive 1 min artefact free signal segments. The hypnograms represent the sleep 
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stages visually identified from off-line scoring, and their assessment was carried out blinded 
to the connectivity analysis that follows. The following percentages of time spent in the sleep 
and wakefulness stages were obtained across subjects: sleep N3 21  ±  9%, sleep N2 27  ±  4%, 
sleep N1 16  ±  7%, REST W 19  ±  6%, and ACTIVE W 16  ±  4%. Since volunteers were 
allowed to spontaneously wake up from the post-prandial sleep, sleep duration was highly 
variable across subjects (16.2  ±  5.9 min of sleep were analysed per subject).

We calculated the average strength of DC links in the different experimental stages and 
then averaged this across subjects. Figure 1 shows DC average strength (across subjects and 
electrodes) as a function of the distance threshold and the sleep stages. The strength of con-
nectivity links exhibit different trends across sleep stages depending on the distance range 
considered. Long-range connections are generally disrupted in NREM sleep where connectiv-
ity networks gain a more localized character (there is a prevalence of short-range links in sleep 
N2 and N3, in particular in the δ band) and long-range connectivity in the α band showed the 
best performance in distinguishing sleep from wakefulness. This is in accordance with previ-
ous works (Chennu et al 2014, Lioi et al 2016). In order to reduce the number of parameters 
investigated and for the sake of the clarity, we therefore only included indexes relative to the 
α band as markers of connectivity in the later results.

Figure 2 shows the group topographic characteristics of a number of features derived from 
the EEG (band power, strength of long range functional connections and the direction of 
functional connections) as a function of sleep stages, along with mean and standard error plots 
for those features. In order to reduce dimensionality and quantify the discriminative power 
of the different measures, we summarized the topographic information by averaging across 
electrodes and investigated whether the global indexes were able to discriminate NREM sleep 
from wakefulness (two level analysis) and also specific sleep stages (multilevel analysis). For 
the two level analysis a Mann–Whitney test explored whether the different markers in the two 
wakefulness stage (average of ACTIVE W and REST W) significantly differed from NREM 

Figure 1.  Short and long-range connectivity (as measured by DC) in δ, θ and α bands. 
Top row: short-range connections. Bottom row: long-range connections. Bars indicate 
average strength of 10% strongest DC (magnitude squared) links across subjects 
(N  =  10). The error bars represent the within group standard error. The asterisks specify 
that the two means designated by the brackets significantly differ (Friedman test with 
post-hoc analysis, * p  <  0.05, ** p  <  0.01). Short-range connectivity is dominant in 
NREM sleep (N2  +  N3) while the strength of long-range links is reduced as compared 
to wakefulness, in particular in the α band.
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Figure 2.  Scalp topography of the different EEG measures (rows), averaged across all 
10 subjects, with associated statistics. In the left hand box, rows 1–3 show the normalized 
power distributions (δn, θn and αn) across sleep stages. Rows 4 and 5 show long range 
connections with the grand average of the strength of long-range connection in the α band 
plotted for the 10% and 30% strongest connections respectively. Rows 6 and 7 indicate 
the average number of postero–anterior (black) and antero–posterior (red) connections in 
the α band coded by the length and thickness of the arrows in the bottom rows for 10% 
and 30% strongest connections respectively. Columns 1 to 5 indicate the experimental 
stage (from SN3 to AW respectively). On the right hand side, the last column indicates 
whether the indexes averaged across electrodes significantly discriminate wakefulness 
(REST W and ACTIVE W) from NREM sleep (N2 and N3) as assessed with a two 
level Mann–Whitney test (the p value is indicated in light blue) and shows results of 
a multifactor Friedman test on index averages across electrodes to assess significant 
differences across all the stages. The asterisks specify that the two means designated by 
the brackets significantly differ (*, p  <  0.05; **, p  <  0.01, *** p  <  10−4), as revealed 
by Tukey’s HSD test (results showed for 10% strongest connections–fourth row, last 
column–are repeated from figure  1, to aid comparison) The connectivity scalp plots 
were obtained using the eConnectome imaging software (Bin et al 2011). Abbreviations:  
AW-ACTIVE W, RW-REST W, SN1, SN2 and SN3-NREM sleep stages.
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sleep (average of N2 and N3). To test whether the measures could differentiate the specific 
sleep or wakefulness stages, a Friedman test was conducted, with post-hoc analysis using 
Tukey’s honestly significant difference (HSD) test.

In figure 2 changes in normalized power can be seen that are consistent with those com-
monly reported in the literature: low frequency (δ and θ) power (rows 1 and 2 of figure 2) 
is dominant in NREM sleep and gradually decreases from SLEEP N3 to ACTIVE W. The 
two wakefulness states are characterized by a dominant occipital α rhythm (row 3 of fig-
ure 2). The power spectrum in all three bands significantly distinguished wakefulness from 
NREM sleep, as found when averaging the result of N2 and N3, and comparing these with 
the average of both stages of wakefulness (rest and active) (p  <  10−4, Mann–Whitney test). 
However, the normalized δ and θ power more efficiently discriminate NREM stages N2 and 
N3 from sleep N1 and wakefulness. The two-level analysis (sleep N2 and N3 versus awake) 
follows the approach used by Massimini et al (2010). Theoretical models of consciousness 
and experimental results obtained in sleep, anaesthesia and disorders of consciousness predict 
that the long-range information sharing is essential to maintain consciousness. In agreement 
with these findings we observed that the average strength of long-range connections in the α 
band gradually increases in the progression from deep sleep (N3) to ACTIVE W (rows 4 and 
5 of figure 2). The difference between sleep and wakefulness is more marked if only a small 
percentage (10%) of strongest connections is included in the analysis (row 5 of figure 2). This 
index is able to significantly discriminate SLEEP N3 from SLEEP N1 and the two wakeful-
ness stages (p  <  0.01), and SLEEP N2 from active wakefulness (p  <  0.01).

We also assessed changes in the direction of the information flow over the rostro-caudal 
axis. The most notable trends were observed in the α band (which also showed the great-
est changes in connectivity strength as seen in figure 1) and plotted in the two bottom rows 
(6 and 7) of figure 2. The number of posterior to anterior links dramatically increases from 
NREM sleep to wakefulness and reaches its maximum in ACTIVE W. In contrast, the num-
ber of connection in the antero-posterior direction gradually shrinks in the progression from 
NREM to wakefulness. Thus the DirP→A index, that summarizes the dominant direction of 
information flow, is particularly efficient in discriminating between stages, as revealed by the 
multilevel analysis. This provides evidence of a significant inversion of information flow in 
the α band from frontal to posterior versus posterior to frontal in the progression from sleep 
to wakefulness.

3.2.  Individual analysis

A clinically useful index of consciousness needs to distinguish between sleep stages at an indi-
vidual and not only at the group level. In order to investigate whether the changes observed 
were both consistent at the individual level and able to correlate with the experimental stage 
across the individual sleep-wake cycle, we show (figure 3) the different indexes for each subject 
and epoch of the experimental time-line. This epoch by epoch analysis allowed comparison 
with the individual hypnograms.

Among the connectivity measures, we have plotted the indexes that in the group analysis 
showed best discriminatory performances: the average strength of the 10% strongest long-
range links and the DirP→A computed from the 30% strongest connectivity links. Given that 
the shift in EEG power toward lower frequencies is a well-known and prominent feature of 
NREM sleep (sleep δ waves) and that the δ and θ power showed similar discriminative proper-
ties at group level, we have only plotted the normalized δ power from the spectral measures 
(the plots were inverted to facilitate the comparison with the hypnogram and the connectiv-
ity derived indexes). The experimental stages were assigned a value as a measure of LOC, 
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ranging from 0 (SLEEP N3) to 4 (ACTIVE W), and Spearman correlation was computed 
between each parameter and the individual hypnogram. Table 1 shows the resulting correla-
tion values for individual subjects.

All the indexes considered exhibit dramatic changes as a function of the sleep stages at the 
individual level. As shown in figure 3, the normalized δ power follows the experimental time-
line in the majority of subjects. However in two subjects (2 and 4) the changes in δ power do 
not track the hypnogram and do not significantly correlate with the LOC (table 1). Similar 
results are obtained for the θ power, with a significant negative correlation with the exper
imental time-line only in 7 of the 10 subjects. The average strength of long-range connections 
is severely reduced in NREM sleep at an individual level. It shows performances similar to the 
normalized power indexes, highly correlating with the LOC in the majority of subjects, but 
failing to do so in three of them. Of all the parameters considered, the DirP→A showed the best 
performances in ‘tracking’ the individual hypnogram, with a high and significant correlation 
in each of the subjects and the highest mean correlation value. It also is able to significantly 
discriminate between NREM sleep and wakefulness at an individual level in all the subjects 
(table 1, last column), as assessed by a Wilcoxon test across the epochs of each stage.

Figure 3.  Individual trends over the experimental timeline. Each epoch is 60 s in 
duration. For each of the 10 subjects the amplitude (magnitude squared) of significant 
long-range DC links (blue dashed line, triangle marker), the DirP→A index (orange 
dashed line, circle marker) in the α band and the power in the δ band (green dotted line, 
square marker) are plotted and can be compared to the manually scored hypnogram 
(solid black line). Note that plots are rescaled/inverted to facilitate comparison with 
the hypnogram. Abbreviations: AW-ACTIVE W, RW-REST W, N1, N2 and N3-NREM 
sleep stages. For ease of visualization, all plots were rescaled, and delta power was 
inverted.
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4.  Discussion

The objective of the current work was to propose and test indexes of brain connectivity that 
could distinguish between states of consciousness. These indexes should also be computation-
ally relatively simple for clinical application such as in sleep studies or depth of anaesthesia 
monitoring. Given the conceptual model that the loss of consciousness is associated with a 
loss in the brain’s ability to integrate information (Tononi 2008), we focussed on connectivity 
measures that include directional information. In assessing the performance of these mea-
sures, we compared them to the more established power spectral indexes taken from the EEG.

To this end we collected polysomnographic recordings from a sample of 10 healthy subject 
undergoing post-prandial sleep and extracted the EEG indexes across the sleep-wake cycle 
at individual and group level. Those indexes were chosen exploiting previous theoretical and 
experimental findings on neural correlates of consciousness and included normalized power 
and connectivity based indexes. We found that the proposed amplitude of long-range connec-
tions across the scalp and especially the DirP→A index (that quantifies the dominant direction 
of information flow in the rostro-caudal axis) showed a monotonic change with the LOC. In 
the current sample, the DirP→A index showed the best performances in tracking the individual 
experimental time line, and consistently correlated well with the hypnogram, and significantly 
discriminated NREM sleep from wakefulness in each of the subjects in the sample. Its perfor-
mance was found to be superior (Mann–Whitney test, p  =  0.041) to that of the power in the δ 
frequency band, which has been widely used in the past.

4.1.  Methodological considerations

In this study an advanced method (DC) for the estimation of functional connectivity that is 
able to infer directed causal information was chosen. The direction of connectivity networks 
has not previously been well explored in finding indexes of LOC, even though it has been 
suggested that it could provide important insights into neural correlates of consciousness (Sitt 
et al 2014). Functional connectivity estimators based on an MVAR model have been shown 
to be robust to noise (Blinowska 2011) and to perform well even in the case of some non-
linear interactions (Winterhalder et al 2005), and have also been widely applied for estimating 
functional connectivity from multichannel EEG in different experimental conditions other 
than sleep (Astolfi et al 2008, Blinowska 2011). In this context the term ‘causality’ has been 
used to refer to Granger causality, i.e. indicating that one signal predicts another in the MVAR 
model of simultaneously observed signals. We disregarded more complex measures of func-
tional connectivity such as those based on information theory (e.g. transfer entropy) in order 
to achieve the necessary computational simplicity and temporal resolution required for on-line 
monitoring (Barnett et al 2009).

Despite DC having become well established, caution is required in the interpretation of its 
results as necessarily indicating causal links connecting underlying cortical sources. Volume 
conduction effects lead to spreading of electrical activity to a number of electrodes, which 
could be confused with functional (neurological) connectivity between these brain regions. 
One distinguishing feature of volume conduction effects is that it is virtually instantaneous, 
without the delay typical of neuronal activity. The supposition that DC is not affected by vol-
ume conduction because it is sensitive only to phase differences between channels (Kamiński 
and Blinowska 2014), is still debated (Faes and Nollo 2011). Our own studies (Lioi et  al 
2016), as well as those of Faes and Nollo (2010, 2011), Faes et al (2013), have suggested 
that while DC and DTF do not eliminate volume conduction effects, they do reduce them, 
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when compared to COH. That being said, DC networks estimated during motor (Ginter et al 
2001), attention and memory tasks (Kuś et al 2008, Brzezicka et al 2011) show a remarkable 
agreement with evidence obtained from anatomical considerations and other neuroimaging 
techniques (Kamiński and Blinowska 2014). In this study, volume conduction effects are less 
of an issue since the analysis was focused on long-range connectivity, whereas short-range 
connections (which are likely to be more strongly dominated by the spread due to electri-
cal conduction in tissue and bone) were disregarded. Non-significant connectivity was also 
removed from the study using surrogate data analysis. Caution must also be exercised in inter-
preting DC as reflecting direct connections between cortical regions because the method can-
not remove the confounding effect of sources (typically deep in the brain) that spread activity 
to pairs of electrodes on the scalp. From the signals recorded on the scalp it may be impossible 
to determine whether there are direct neuronal pathways between the corresponding two corti-
cal regions or if both are driven by another (unmeasured) source.

In this exploratory study of connectivity measures, it was important to test the statisti-
cal significance of each DC connectivity estimate, which was achieved with surrogate data 
analysis. This precaution has not always been taken in previous work. However the results 
(not shown) indicated that the 30% strongest DC connections calculated from 1 min segments 
were almost always statistically significant (i.e. DC was larger than obtained with the surro-
gate data under the null hypothesis of no connections). This suggests that in future work the 
computationally costly surrogate data analysis may not be required, when using the proposed 
indexes. This would make real-time implementation computationally feasible. The surrogate 
data generation takes the 95% of the total computation time in estimating connectivity. To give 
an indication of computational cost, if we exclude the shuffling procedure, the time required 
to estimate connectivity for a 1 min recording with 12 electrodes and 1 min epochs, is roughly 
20 s, when using Matlab® and a typical Windows-based PC.

In the analysis of brain connectivity, the many relatively weak links can obscure important 
connections. Thresholds are thus usually recommended and applied (Rubinov and Sporns 
2010) to only select connections deemed to be important. The choice of the threshold is some-
what arbitrary (Sporns 2013), but statistical significance (i.e. a threshold set at the critical 
value) should always be satisfied. In the current work either the 10% or the 30% strongest 
connections were analysed, following some preliminary investigations. The choice of thresh-
old reflects a compromise between including too many connections that may only be weakly 
related to the LOC and discarding connections that might hold useful information. Further 
work in optimizing the threshold for specific tasks such as assessing depth of anaesthesia or 
sleep stage should be carried out on a larger sample of recordings.

4.2. The relationship of our findings to previous studies

To the best of our knowledge there is only one previous study investigating EEG networks 
using directional measures of connectivity, but this used the closely related approach of DTF 
(see Methods section) in sleep (Kamiński et al 1997). DC, which includes information on 
signal power flowing between different regions of the brain, as well as the transfer function 
of the linear ‘filters’ linking these regions (as used in DTF), would seem to be more appropri-
ate than DTF for quantifying the functional connections between brain regions (Baccalà and 
Sameshima 2007, Faes and Nollo 2011). The current paper thus goes beyond previous work 
in describing DC patterns during the change from wakefulness to NREM sleep, extending the 
analysis to different frequency bands and refining the methods with rigorous statistical sig-
nificance assessment of the estimated links. Furthermore, we differentiate connectivity links 
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with respect to their inter-electrode distance and we provide an assessment of performance 
in individual subjects, as well as that at the cohort-level. Our findings are in line with results 
from the study of Kamiński et al (1997) that showed more complex and denser connections in 
wakefulness than in NREM sleep and a prevalence of posterior sources during wakefulness. 
Despite the strong topological similarities, in the study of Kamiński, connectivity networks 
exhibited a notably larger number of connections, possibly as a result of not performing a 
significance test (or using a different choice of threshold criterion) for including the estimated 
DTF in the final analysis, and also because connectivity was integrated over a larger frequency 
range (0–30 Hz) than in the current study.

The underlying conjecture of our as well as a number of other studies (Kamiński et al 1997, 
John and Prichep 2005, Mashour 2006, Tononi 2008) is that changes in LOC are critically 
associated with a dynamic reorganisation of large-scale connectivity patterns. In line with 
previous results in disorders of consciousness (Chennu et al 2014) the connectivity networks 
in the α band showed the best discriminative performance between sleep stages. Long-range 
connectivity in the α band was shown to be impaired in NREM sleep, when networks are 
active but characterized mainly by short-range links. Our results thus support previous studies 
using different methods and protocols suggesting that the disruption of wakefulness in NREM 
sleep may be a result of impaired information sharing among cortical areas. Massimini and 
colleagues (Massimini et al 2005, 2010) used a pertubational approach involving transcrani-
cal magnetic stimulation (TMS) and EEG recording to investigate how TMS triggered neural 
activity spread from the stimulation site. During wakefulness the TMS elicited complex pat-
terns of scalp waves spreading to distant cortical areas. During NREM sleep, TMS evoked a 
stereotypical and local response, thus indicating a ‘breakdown of long-range effective connec-
tivity’. The findings of Massimini et al (2010) and our data suggesting that long range connec-
tions reduce during sleep also fit well into a wide range of evidence from a growing literature 
investigating fMRI brain connectivity in altered states of consciousness such as NREM sleep 
(Spoormaker et al 2010, 2012), general anaesthesia (Boly et al 2011, Schrouff et al 2011) 
and vegetative states (Boly and Seth 2012, King et al 2013). It appears that those states share, 
among other major features, a suppression of functional connectivity.

In SLEEP N1 all the EEG indexes showed values intermediate between deeper sleep 
(N2 and N3) and wakefulness. Often spectral and networks features elicited in SLEEP N1 
were more similar to wakefulness than to NREM sleep. SLEEP N1 represents the transition 
between wakefulness and sleep and it is considered ‘unstable sleep’ (Klimova 2014). When 
awakened from SLEEP N1 subjects often report dream-like experiences or claim they were 
awake (Nir et al 2013). Experimental results suggest preserved long-range connectivity in this 
stage (Massimini et al 2005). For this reason we have considered only sleep N2 and N3 trials 
to characterize stable NREM sleep in the two level analysis, as used in Massimini et al (2010).

The findings of recent seminal works in Network Physiology (Bashan et al 2012, Bartsch 
et al 2015 and Liu et al 2015) broadly align with our study. Network physiology is a new 
research field that aims to characterize how the various physiological systems dynamically 
integrate their functions in different physiological (and pathological) states (Bashan et  al 
2012, Ivanov et al 2016). A series of studies investigating changes in networks of interactions 
between (Bartsch et al 2015) and within (Liu et al 2015) different physiological systems (mus-
cular, cardiac, respiratory and central nervous systems) during the transition from wakefulness 
to sleep and across sleep stages have provided important progress in this emergent field, con-
tributing to the realization of an atlas of global network physiology in sleep and wakefulness. 
In these studies network connectivity was assessed using an estimator based on the stability of 
the time delay between signals (time delay stability -TDS), which quantifies in fine temporal 
detail the undirected strength of coupling. Despite the differences in approach, EEG networks 
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estimated from six channels and in different frequency bands in Liu et al (2015) and Bartsch 
et al (2015), showed important similarities with those shown in our study for the α band: they 
observed a significant decrease in the strength and number of links (in particular of long-range 
fronto-occipital connections) in deep sleep (as compared to wakefulness and light sleep) and 
a remarkable symmetry between the two hemispheres, characterizing all physiological states. 
Another notable analogy with our results regards EEG networks elicited in sleep N1, whose 
features are more similar to wakefulness than to deeper sleep. As Liu and colleagues have 
observed, this is an interesting result, given that sleep N1 is commonly classified as belonging 
to the same macro state (NREM sleep) as sleep N2 and N3. In their analysis of brain networks 
Liu and colleagues have also reported that while local connections (frontal/frontal, central/
central and occipital/occipital) are reduced but preserved in deep sleep, fronto-occipital and 
occipital-frontal networks show practically no connection in deep sleep: these findings agree 
clearly with the significant impairment of long-range connectivity we observed in sleep N2 
and N3.

Our study provides important new contributions beyond this work (and previous studies) in 
the characterization of brain networks by assessing the direction of links and the consequent 
ability to identify a switch in the direction of information flow with sleep onset, that consti-
tutes the most characteristic change in DC patterns. Group analysis reveals a significant inver-
sion of the direction of posterio-frontal networks with state. The marked posterior to anterior 
spread of α rhythm in wakefulness is reversed in NREM sleep (N2 and N3) that is character-
ized by a dominance of frontal sources of activity. An inversion of information flow from 
frontal-posterior in sleep to posterior-frontal in wakefulness has also been found in a previous 
analysis of sleep and general anaesthesia onset (De Gennaro et al 2004, Nicolaou et al 2012).

The importance of quantifying, together with the strength, the direction of links has been 
highlighted in a recent work where the TDS estimator originally proposed in the framework 
of network physiology has been extended to the concept of delay-correlation landscape (DCL) 
(Lin et al 2016). While the TDS is computed considering the delay corresponding to the maxi-
mum (absolute) correlation between signals, the DCL estimator retains information about 
the delay dependence of the cross-correlation, which carries important information about the 
directionality of physiologic interactions. The DCL approach has been specifically designed 
to quantify interactions between the outputs of different physiological systems and it was 
shown to efficiently grasp the directed correlation between EEG power in different bands and 
the cardiac signal (Lin et al 2016). If, however, the aim of the analysis is to investigate inter-
actions between signals of the same subsystem (brain-brain in this case), DC may be more 
efficient in capturing the direction and strength of links as it summarizes the different delays, 
dependences using a simple metric (direction of links) that can be synthetically represented 
with a directed arrow. On the other hand, in the case of DCL the directional information is 
coded in a more complex and rich ‘landscape’ of different delays for positive and negative 
correlations. While conveying important information about the type of dependence (negative 
or positive) at different time lags, the DCL estimator is probably more difficult to interpret and 
present in a succinct manner. In addition, in the case of EEG signals, correlation (including 
DCL, as well as the coherence in the frequency domain) is likely to be more heavily affected 
by confounding volume conduction effects than the DC (Faes et al 2013).

In view of an application in the framework of Network Physiology, DC presents important 
features that are supplementary to the proposed measures based on time-delays. In the case of 
EEG signals, the two estimators measure different aspects of the interaction between signals. 
While TDS quantifies connectivity (as stable time delay) between EEG spectral power (brain 
rhythms) in different frequency bands, the DC quantifies linear connectivity (Granger causal-
ity) between channels of the original EEG time series and then transforms it into the frequency 
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domain. The application of DC may be therefore promising for the analysis of sub-system con-
nectivity and provide new insights related to the network physiology atlas in physiological and 
pathological states. DC is based on linear modelling, and may thus outperform alternatives when 
this assumption is (approximately) valid, but is likely to underperform when the assumption is 
grossly violated. Further work is required to test the application of the MVAR approach to model 
interaction between signals on different time scales and from different physiological systems.

Another important original contribution of this work is the investigation, and presentation, 
of patterns for individual subjects, in addition to aggregated cohort results. The majority of 
studies investigating EEG markers of LOC have only performed group analysis or found the 
disagreement between behavioural and EEG-based measures too high for a reliable individual 
assessment (Sitt et al 2014). Our long-term aim is to identify an EEG index able to ‘track’ the 
consciousness level of the subjects, with a view to assess depth of sleep or anaesthesia. The 
performance of the proposed measures in individuals provides an indication of the potential 
of the proposed approach.

Among all the markers considered in the current paper, the DirP→A index was found to be 
the most reliable in tracking the LOC during individual sleep experiments, strongly correlat-
ing with the hypnogram in all the subjects. It should be noted that the staging of the EEG 
time series was performed taking in account the proportion of δ waves, as recommended in 
standard sleep staging criteria, therefore high correlation between measured δ power and sleep 
stages is only to be expected. Given that EEG spectral features were used to characterize sleep 
(Corsi-Cabrera et al 2003) and to monitor hypnotic level in anaesthesia (Myles et al 2004), it 
is interesting that the DirP→A index, which reflects very different features of the EEG signals, 
showed better performance than the δ power in correlating with the sleep stage at an individual 
level. These results suggest that the inversion of information flow represents a promising indi-
cator of the descent into deep sleep. We speculate that this may also be seen in other states of 
altered consciousness, such as anaesthesia. In order to arrive at an even more powerful index 
of LOC, it may be beneficial to combine power-spectral measures with those obtained from 
DC and this approach is currently being pursued.

4.3.  Limitations

The current work was carried out on a relative small sample (10 subjects) recorded during a 
nap, not all-night sleep. Thus only between 13 and 31 1 min non-artifactual segments were 
available from each subject in this cohort (see figure 3). While the results showed the power 
of the DirP→A index, this could be specific to this small sample. The current work should thus 
be considered as exploratory, in which the hypothesis of superior performance of DirP→A 
was generated, but cannot be robustly tested, on the same small sample. Further tests on an 
independent sample, that might include a wider range of indexes as well as their combination 
should be carried out to independently statistically test relative performance measures.

Conclusions

We have assessed the performances of different EEG indexes to predict LOC during a NREM 
sleep study. Our results show that the EEG signal includes many features able to discriminate 
NREM sleep from wakefulness at a group level, but correlation with individual hypnograms 
varied across subjects. In agreement with theoretical consideration, EEG indexes relying on 
directional connectivity assessment have proven to be particularly promising. Among all 
of the EEG measures tested, a proposed index of the direction of information flow on the 
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rostro-caudal axis that is based on DC performed well at a group level and gave the highest 
correlation with individuals’ LOC.
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Abstract 

Background: The analysis of brain connectivity during general anaesthesia has the potential 

to shed light on the mechanisms of anaesthetic-induced loss of consciousness (LOC) and the 

neural correlates of consciousness and thus act as a marker of level of consciousness (LOC). 

A variety of neuroimaging techniques and anaesthetic protocols have associated a general 

suppression of long-range connectivity with anaesthetic-induced LOC and emphasized the 

important role of the cortical fronto-parietal network in the maintenance of consciousness. 

Method: We used a slow induction of propofol anaesthesia in 10 patients to assess graded 

changes in EEG directional connectivity for increasing propofol effect-site concentrations 

(ESC). Connectivity was estimated from multichannel EEG recordings using Directed 

Coherence (DC), a multivariate directed spectral estimator based on Granger Causality. We 

investigated changes at cohort and individual level to identify brain network features that 

exhibit robust changes with anaesthetic-induced LOC. 

Results: We found a significant reduction in the strength of long-range DC links and a switch 

in the direction of information flow from markedly postero-frontal in wakefulness to fronto-

posterior during anaesthesia. These changes occur at the onset of light anaesthesia (at a 

propofol ESC of 2 mcg ml-1) and remain relatively constant as infusion rate increases, 

consistent with a step change in DC with anaesthesia, rather than a gradual change with 

increasing anaesthetic dose. 

Conclusion: These results give a novel insight into the reorganization of EEG directed 

connectivity during anaesthesia and are particularly relevant to physiological interpretation of 

anaesthetic-induced LOC and with potential for exploitation in future monitors of LOC. 
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The neurobiology mechanisms by which anaesthetics induce loss of consciousness remain 

unclear1 2. The sensitivity of EEG time and spectral features to anaesthetic-induced changes 

has prompted the development of a series of EEG-derived depth of anaesthesia (DoA) 

monitors3 4. Although these indexes correlate well with the delivered anaesthetic 

concentration, they provide only limited insight into the cerebral mechanisms underlying 

anaesthetic action and may reflect the clearance of anaesthetic drugs rather than the state of 

arousal of the brain5 6. 

The potential of brain connectivity to quantify the global organized behaviour of neural 

circuits7 8 and provide insight into the neural mechanisms underlying LOC9 has prompted a 

series of investigations of anaesthetic modulation of brain connectivity. Disruption of long-

range connectivity10 11 and changes in fronto-parietal coupling12-14 have been reported as 

crucial mechanisms, although some studies report contrasting results15 16. These findings are 

supported by suggestions that consciousness arises from large-scale information sharing 

among brain areas, and that anaesthesia induces unconsciousness by disrupting cortical 

integration and information processing17 18, in particular by functional uncoupling of parieto-

frontal cortical activity2. The majority of these studies used functional magnetic resonance 

imaging (fMRI), positron emission tomography (PET) or combined transcranial magnetic 

stimulation (TMS) and EEG approaches. However recording the EEG from scalp electrodes 

has practical advantages19, as it can be applied relatively easily at the bedside and at low 

cost, and is already recognized as an important tool to discriminate conscious from 

unconscious subjects20. Among the different methodologies proposed to assess EEG 

connectivity, Directed Coherence (DC) is a well-established method that provides information 

about the strength, direction and spectral content of multivariate linear dependencies between 

EEG time series21. The objectives of this work are therefore to: 

1) identify novel DC features that reliably reflect anaesthetic-induced LOC 

2) test the robustness of these features at group and individual level 

3) propose indexes of depth of anaesthesia that could be incorporated into future depth of 

anaesthesia monitors. 
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Methods 

The study was approved by the Southampton and Southwest Hampshire Research Ethics 

Committee (ref 002/98) and all patients provided written informed consent. Ten patients (three 

females, seven males, aged between 44 and 79 years) participated in the study. They were 

selected from the cardiac surgical operating schedule the day before their planned operation, 

based on their ability to tolerate an additional 90 min of anaesthesia before their surgery 

commenced. Patients did not receive premedication. 

Routine monitoring with 12-lead ECG and pulse oximetry were started on arrival in the 

anaesthetic room. Under local anaesthesia, a 14G cannula was inserted into a forearm vein, 

and a 20G cannula into a radial artery for direct arterial blood pressure measurement. EEG 

was collected throughout the experimental period using a 32-channel system with active 

electrodes (Biosemi BV, Amsterdam) built into a headcap (similar to a swimming cap) 

according to the International 10-20 system. Once the EEG monitoring set-up was completed, 

the patients were asked to lie quietly with their eyes closed for 10 min, representing the 

AWAKE state. A target-controlled infusion of propofol 1% (B Braun, Melsungen, Germany) 

was then started by syringe driver (Alaris PK, Carefusion, Sheffield, UK) to achieve an initial 

effect-site concentration (ESC) of 2 µg ml−1 using the Marsh pharmacokinetic model. All 

patients breathed spontaneously via a Hudson mask, supplemented with oxygen at 4-6 l min. 

We allowed an equilibration period (of around 5-10 min) to reach a stable ESC that was then 

maintained for 10 min. This procedure was repeated for propofol ESC of 3 µg ml−1 and 

subsequently 4 µg ml−1. During the first 5 min of each stable ESC period, auditory stimulation 

was presented and evoked responses (AER) measured, however this paper refers only to 

EEG connectivity measurements and disregards the analysis of AER (see Supplementary 

Materials for more detail on the experimental protocol). After 10 min of recording at a propofol 

ESC of 4 µg ml−1, fentanyl 1 µg ml−1 and pancuronium 0.2 mg kg−1 were given, after which the 

patient’s trachea was intubated and mechanical ventilation commenced. Five minutes later, 

the target propofol ESC was reduced to 2 µg ml−1; EEG recording continued until the 2 µg 

ml−1 target was achieved. The patients were then prepared for surgery. 
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Connectivity estimation 

EEG recordings were down-sampled to 250 Hz and digitally referenced with respect to the 

average of the T7 and T8 channels (linked mastoid), as recommended for functional 

connectivity estimation22. The EEG time series were band pass filtered (1-45 Hz) and zero-

phase notch filtered at the 50 Hz mains frequency. Only continuous and artifact-free epochs 

were included in the following analysis. 

Directional connectivity was estimated from the multivariate (MVAR) model of multi-channel 

EEG time-series as previously reported23. A MVAR process describes each multi-channel 

EEG time series as the sum of a defined number of previous samples from the set of available 

signals (here the individual EEG channels), weighted by model coefficients, plus a noise 

component. The elements of the dataset relate the present of one signal to the past of another 

and capture the causal or directed influence between signals. Due to its straightforward 

interpretation in terms of spectral content24, we used the squared modulus of DC to estimate 

functional connectivity. Connectivity scalp plots were obtained using eConnectome imaging 

software25. 

A subset of 12 electrodes that are fairly evenly distributed across the scalp (Fp1, Fp2, F3, Fz, 

F4, C3, Cz, C4, P3, P4, O1, O2) was selected and connectivity was estimated for epochs of 

60 s, in order to reduce the computational cost typical of multivariate connectivity estimation 

and to ensure that the number of MVAR model parameters to be estimated was appropriate 

for the number of EEG samples available in each epoch26. The statistical significance of each 

DC link was tested with surrogate analysis27 (see Supplementary Materials for more details) 

and all subsequent analysis was only performed on the significant connections. We also 

corrected for multiple comparisons using the false discovery rate (FDR) approximation for 

dependent measurements28. In addition to the statistical threshold, we applied higher 

thresholds to retain only the strongest connections. This procedure is widely recommended to 

discard weak (but significant) connections that may obscure the topology of strong links29. 

Since the choice of the threshold is somewhat arbitrary, results over a range of plausible 

thresholds30 were investigated. In this study we retained respectively the 10%, 30% and 50% 

of strongest connections. The DC matrices were then averaged in the four standard EEG 
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frequency bands. In order to specifically investigate changes in long-range connectivity, DC 

connections were also grouped on the basis of the 3D Euclidian inter-electrode distances into 

short-range links connecting adjacent electrodes (inter-channel distance below 10 cm) and 

long-range links. 

Building on previous work31 23, we focused the analysis on the dominant direction of 

information flow in the α band [8-13 Hz] 32 33 15 16 and long-range links10 11, as these 

parameters have been found to be most sensitive to changes in the level of consciousness. 

We assessed the number of statistically significant connections from centro-parietal (P3, P4, 

C3, C4, Cz) to frontal (Fp1, Fp2, F3, F4, Fz) electrodes and vice versa. In order to quantify the 

dominant direction of information flow on the front-posterior axis we defined  an index 

(DirP→A), given by the normalized differences of the number of links in the two opposite 

directions over the rostro-caudal axis. In order to assess the changes with LOC at group level, 

a Friedmann test (followed by a Tukey’s HSD test) was performed across subjects 

considering the experimental stages (AWAKE, ANES 2 µg ml−1, ANES 3 µg ml−1, ANES 4 µg 

ml−1) as independent variables and the strength and dominant direction of DC links as 

dependent variables. In order to summarize the individual DC features in a unique parameter 

for each subject and 60 s epoch, we summed the normalized strength of long-range links and 

the DirP→A to obtain what we have called the DCindex (see Supplementary Materials for more 

details on the computation of DirPA and DCindex). Differences in this index between the 

experimental stages were again assessed using the Friedman test. 

As well as a cohort analysis we compared network feature trends in individual subjects with 

their ESC time-line, in order to assess if all (or most) individuals showed the same response 

as the average across the cohort. Such analysis at the individual level will indicate the 

potential to apply this in monitoring individual patients.   
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Results 

EEG signals at different propofol ESC presented the characteristic changes associated with 

increasing depth of anaesthesia3 34 35 (see Supplementary Materials): for ESC of 2 µg ml−1 the 

EEG time series showed increased activation in the beta band typical of light anaesthesia. For 

ESC 3 µg ml−1 or 4 µg ml−1 the EEG was characterized by slow wave (δ) activity. In most of 

the subjects a burst suppression pattern, typical of deep anaesthesia, was observed only for 

ESC 4 µg ml−1. We can therefore argue that the slow induction of anaesthesia achieved a 

series of levels ranging from light to deep anaesthesia. 

 

Figure 1 shows scalp plots of DC networks in wakefulness and at the three anaesthetic levels 

for the three thresholds of strongest connections. Visual analysis suggests that the strength of 

long-range links decreases at ESC 2 µg ml−1 as compared to wakefulness and then remains 

relatively constant with increasing propofol ESC, significantly (Friedman test, p<0.01) 

distinguishing AWAKE from deep anaesthesia at group level. The strength of postero-anterior 

links decreases during anaesthesia as compared to wakefulness, while the contribution of 

fronto-posterior connections becomes dominant. As a consequence the DirP→A index, that 

summarizes the dominant direction of functional links, shows a switch associated with the 

onset of anaesthesia. Also for the DirP→A , a step effect is observable that significantly 

distinguishes AWAKE from the different propofol ESCs, rather than a gradual change with 

increasing anaesthetic depth. The connectivity networks estimated considering the 10%, 30% 

or 50% of strongest connections exhibit very similar trends, indicating that the choice of 

threshold does not critically affect the results. For the sake of brevity, in the following analysis 

we will only show results for the DC networks obtained retaining the 30% strongest links. 

In order to investigate whether the changes observed for the different EEG features were both 

consistent at the individual level and able to correlate with the subject’s propofol ESC time-line 

we present results for the DC parameters in each patient (figure 2). The DCindex exhibits 

some variability across subjects, especially at ESC 2 µg ml−1. As observed at group level, 

individual DCindex values undergo a marked decrease at the onset of anaesthesia and then 

remain relatively constant with increasing propofol dose rate in all but one patient. 



 

 

 

Changes in EEG directional connectivity during slow induction of anaesthesia, DRAFT  

 
 

8 

Finally, we have assessed DCindex values for all individuals across the whole experiment to 

allow comparison with the individual propofol ESC time-line (figure 3). With the exception of 

subjects 3 and 5, a steep transition is noticeable at the onset of anaesthesia. In the majority of 

subjects this change occurs soon after the start of propofol administration, sometimes with a 

3-4 minutes delay (i.e. subjects 6 and 8). The DCindex then plateaus (with some oscillations) 

with increasing propofol ESC and is not significantly affected by auditory stimulation, the 

injection of muscle relaxants, intubation, or recovery to ESC 2 µg ml−1.  
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Discussion 

In this study we have assessed changes in the strength and direction of EEG connectivity 

during a slow step-wise induction of propofol anaesthesia. The most characteristic changes 

observed in DC during anaesthesia were a significant reduction in the strength of long-range 

DC links and a marked inversion of direction of information flow, from postero-frontal in 

wakefulness to antero-posterior in anaesthesia. These findings are consistent at individual 

level for the majority of subjects, where a brisk change in DC features is observed at the onset 

of anaesthesia. 

In order to not interfere with the natural fading of consciousness during the slow anaesthetic 

induction, we did not assess the responsiveness of patients. Other studies using a similar 

ESC regimen have assessed the responsiveness of subjects with randomized auditory tasks 

and have identified an ESC around 2 µg ml−1 as the threshold for loss of behavioral 

responsiveness32  36. We therefore expect that in our protocol LOC occurred somewhere 

between the start of propofol infusion and achieving an ESC of 2 µg ml−1. The decrease of the 

long-range connectivity strength observed in anaesthesia is in line with reports of an 

impairment of large-scale information flow and a general impairment of brain network 

integration (with fronto-parietal connectivity particularly affected) in fMRI and TMS studies of 

propofol anaesthesia37-39. Activity in the fronto-parietal associative network is also 

systematically altered in other states of diminished consciousness such as vegetative states, 

coma or NREM sleep19 39-41. Together with these findings, our results support the important 

role of the fronto-parietal association cortices in the maintenance of consciousness42 and the 

hypothesis that the breakdown of information flow may affect signaling between the sensory 

posterior areas and the associative frontal cortices that is essential for a conscious 

experience38. DC estimates obtained from multichannel EEG and indexes derived from this 

were shown to be effective in measuring the changes in connectivity.  

This study goes beyond previous work in two important points. First, we used a slow target-

controlled induction of anaesthesia that allowed investigation of graded changes in directed 

connectivity for stepwise increasing propofol ESCs ranging from light to deep sedation. This is 

in contrast with previous connectivity EEG studies that are typically carried out with a bolus of 
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intravenous drugs12 14-16, causing the crucial transition to LOC to occur within 30-60 s. Also we 

focus only on the hypnotic effect of one agent (propofol), avoiding confounding factors such 

as the administration of muscle relaxants or the use of different anaesthetic protocols and 

agents. Second, we describe both group results and single subject variability in connectivity 

features, while the majority of previous studies have focused on average results across the 

cohort. The rationale for the individual analysis is to be found in the potential practical 

applications: we aim to assess adequacy of anaesthesia using DC features and in this sense 

the measure should be able to assess anaesthetic effect in individual subjects, rather than on 

‘average’. 

The inversion of information flow from parieto-frontal in wakefulness to fronto-parietal during 

anaesthesia deserves a special comment. The observed switch in the direction of connectivity 

from wakefulness is consistent with results reported in studies investigating EEG directional 

connectivity during anaesthesia. Nicolaou and colleagues14 used a bivariate (i.e. based on 

only two EEG time series) Granger Causality (GC) approach to assess directed connectivity in 

anaesthesia and found a significant increase in fronto-posterior causality in anaesthetic 

induced LOC, but did not observe a significant decrease in the opposite direction. DC is 

grounded in Granger theory, therefore the two estimators are conceptually similar, however 

they are characterized by substantial differences. GC is a pairwise measure in the time 

domain, while DC is a multivariate measure of causal interactions in the frequency domain 

and it therefore captures the causality structure of the whole electrode set. A dominance of 

fronto-posterior coupling in the cingulate cortex was also observed in a GC study of propofol 

anaesthesia16. Furthermore, a high-density EEG sleep study43 showed that deep sleep is 

characterized by a traveling wave that originates in frontal regions and propagates in the 

anteroposterior direction. Given the similarities of sleep and anaesthesia neurobiology1 it has 

been suggested14 that a similar behavior characterizes the anaesthetic slow wave and that the 

observed increase in fronto- posterior coupling may be a result of these mechanisms. In 

support of this hypothesis, results from our previous study on NREM sleep23 show DC 

changes associated with deep sleep (N2 and N3) very similar to those observed during 

anaesthesia. Even though fronto-parietal coupling has been suggested as a central 
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mechanism for consciousness, contrasting results regarding its direction have been reported. 

Some studies have reported an impairment of fronto-posterior connectivity in LOC15 44 and in 

some cases two different methodologies applied to the same dataset gave divergent results 

regarding the dominant direction of coupling13. These conflicting findings are likely to be the 

results of the use of different estimators of connectivity, and they are a warning that it may be 

difficult to interpret or compare results from different brain activity models that quantify 

different effects. 

We assessed DC features at different anaesthetic levels ranging from light to deep 

anaesthesia. The changes in directed connectivity networks showed a step change with the 

onset of anaesthesia and then a near plateau with anaesthesia deepening. These changes 

were consistent for most individuals. The DC features show a substantially different trend from 

other EEG-derived indexes of DoA. The commercially available indexes (i.e. BIS, 

Approximate Entropy, AEPindex) usually exhibit graded changes with increasing anaesthetic 

doses, reflected by an index usually ranging from 0 to 100. They highly correlate with the 

anaesthetic drug concentration in the body and are thought to reflect the gradual clearance of 

anaesthetic drugs, rather than the level of consciousness of the patient that results from a 

more complex balance of hypnosis, analgesia, and external stimulation5. On the other hand 

the ‘switch’ transition of the DCindex that occurs at anaesthetic onset may more closely reflect 

the physiological mechanisms of anaesthetic-induced LOC14. Moreover, we have observed at 

individual level that the DCindex is scarcely influenced by the administration of muscle 

relaxants, auditory stimulation, or the intubation of the patient: this supports the speculation 

that it reflects the general physiological mechanism of hypnosis, rather than, for instance, the 

level of anti-nociception14 35. In view of possible application to the clinical setting, such an ‘on-

off’ response may be useful during anaesthetic onset, but potentially less useful during offset 

unless the DCindex switch becomes ‘on’ before the patient is responsive. Further studies are 

required to determine when the switchover occurs in relation to conscious responsiveness 

and to test the use of the DCindex (in combination with other DoA indexes) in monitoring of 

anaesthetic adequacy. 

Some consideration should be given to the interpretation of DC, which has become a well-
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established method to assess directed connectivity. It has been applied to the study of 

different behavioural tasks45 46 showing remarkable agreement with anatomical and 

neuroimaging evidence22. However caution is required in interpreting the causality estimated 

by DC as indicating effective axonal links between underlying cortical sources. In the case of 

EEG signals, volume conduction effects may lead to highly connected adjacent electrodes as 

a result of unmeasured deep cortical sources that instantaneously drive many superficial 

electrodes. Although it has been proposed that DC is not affected by volume conduction 

because it is sensitive only to phase differences between channels22, this is still debated24. In 

this study we have limited the spurious effects of volume conduction by disregarding short-

range (<10 cm) connections, which are likely to be dominated by the spread due to electrical 

conduction, and included in the analysis only long-range connectivity. Furthermore, additional 

work (not shown) has demonstrated that DC is much less sensitive to volume conduction 

effects than some of the alternative measures of EEG connectivity. To overcome the problem 

of hidden sources and resolve the whole structural causality of the dataset, one must measure 

and include all the relevant sources. However, this is not feasible in practice and would not be 

compatible with a possible online clinical monitoring application. 

The current study should be considered as exploratory, since results were obtained from a 

relatively small number of patients and tested only on one anaesthetic (propofol). Further work 

is required to investigate DC on a large sample of patients undergoing different anaesthetic 

protocols to test the reliability of directed connectivity as an indicator of LOC associated with 

anaesthesia. Future work will also compare DC measures with behavioral responsiveness 

during anaesthesia to more reliably assess changes associated with anaesthetic-induced 

LOC. 
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Figures 

 

 

Figure 1 

Scalp topography of connectivity networks, averaged across all 10 subjects, with associated 

statistics, plotted for the 10% (first two rows) 30% (rows 3 and 4) and 50% (last two rows) 

strongest connections (all connections shown are also statistically significant). The first row of 
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each subplot represents the Grand Average across subjects of long-range connections, with 

the color and size of arrows coding for the average strength of the specific link. The second 

row indicates the average strength of postero-anterior (black) and antero-posterior (red) 

connections in the α band coded by the length and thickness of the arrows. The bar plots on 

the right show the mean and standard error (across subjects) of the respective features (long-

range links strength and DirP→A). * : p < 0.05; ** : p < 0.01 (Friedman test). 

 

 

 

 

Figure 2 

DCindex individual trends (in a different color for each subject, N=10) in wakefulness and at 

stable anaesthetic levels for the 30% strongest connections. At each level of anaesthesia, 

there were at most four epochs of 1 min available for analysis. Each time point represents 

results from a 60 s epoch. 
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Figure 3 

DCindex individual trends (dashed orange line) compared with ESC time-line (black solid line) 

for the whole length of the recording and for all the subjects. The DCindex is inverted to 

facilitate comparison with the propofol ESC. The epochs in wakefulness (ESC=0) are 
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highlighted in green and each time point refers to a 60 s epoch. The epochs where auditory 

stimulation was delivered are indicated on the ESC time-line by blue markers while the 

epochs in deep anaesthesia in which muscle relaxant was administered are indicated by 

yellow markers. In subject 10 the recovery period was heavily contaminated by artifacts and 

was excluded from the analysis. 
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Achermann, P. & Borbély, A. (1998), ‘Coherence analysis of the human sleep electroen-

cephalogram’, Neuroscience 85(4), 1195–1208.

Alkire, M. T., Haier, R. J., Barker, S. J., Shah, N. K., Wu, J. C. & J, K. (1995), ‘Cerebral

Metabolism during Propofol Anaesthesia in Humans Studied with Positron Emission

Tomography’, Anesthesiology 82, 393–403.

Alkire, M. T., Haier, R. J. & Fallon, J. H. (2000), ‘Toward a unified theory of narcosis:

brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of

anesthetic-induced unconsciousness.’, Conscious. Cogn. 9(3), 370–86.

URL: http://www.ncbi.nlm.nih.gov/pubmed/10993665

Alkire, M. T., Hudetz, A. G. & Tononi, G. (2008), ‘Consciousness and anesthesia.’,

Science 322(5903), 876–880.

Association of Anaesthetists of Great Britain and Ireland (2016), ‘Recommendations for

standards of monitoring during anaesthesia and recovery (4th Ediction)’, Anaesthesia

71, 85–93.

URL: http://www.aagbi.org/sites/default/files/standardsofmonitoring07.pdf

Astolfi, L., Bakardjian, H., Cincotti, F., Mattia, D., Marciani, M. G., De Vico Fallani, F.,

Colosimo, A., Salinari, S., Miwakeichi, F., Yamaguchi, Y., Martinez, P., Cichocki, A.,

Tocci, A. & Babiloni, F. (2007), ‘Estimate of causality between independent cortical

spatial patterns during movement volition in spinal cord injured patients.’, Brain

Topogr. 19(3), 107–23.

URL: http://www.ncbi.nlm.nih.gov/pubmed/17577652

Astolfi, L., Cincotti, F., Mattia, D., De Vico Fallani, F., Tocci, a., Colosimo, a., Salinari,

S., Marciani, M. G., Hesse, W., Witte, H., Ursino, M., Zavaglia, M. & Babiloni, F.

(2008), ‘Tracking the time-varying cortical connectivity patterns by adaptive multi-

variate estimators.’, IEEE Trans. Biomed. Eng. 55(3), 902–13.

URL: http://www.ncbi.nlm.nih.gov/pubmed/18334381

219



Bibliography 220

Astolfi, L., Cincotti, F., Mattia, D., Marciani, M. G., Baccalà, L. a., de Vico Fallani,
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