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Abstract: In human cognition, the expansion of perceived between-category distances and 

compression of within-category distances is known as categorical perception (CP). There are 

several hypotheses about the causes of CP (e.g., language, learning, evolution) but no functional 

model. Whether CP is essential to categorisation or simply a by-product of it is not yet clear, but 

evidence is accumulating that CP can be induced by category learning. We provide a model for 

learning-induced CP as expansion and compression of distances in hidden-unit space in neural 

nets. Basic conditions from which the current model predicts CP are described, and clues as to 

how these conditions might generalize to more complex kinds of categorization begin to 

emerge.  

  

1 Categorical Perception 

Categorical Perception (CP) is defined by the expansion of the perceived differences among 

members of different categories and/or the compression of the perceived differences among 

members of the same category (Harnad 1987). In simple terms, if a1 and a2 belong to category A 

and b1 belongs to category B, then a1 is perceived subjectively as more different from b1 than from 

a2 even when the objective differences are equal. A clear consensus on the conditions generating 

CP has yet to be reached. According to the “Whorf Hypothesis” (Kay & Kempton 1984; Hussein 

2012), the between-category separation and/or within-category compression that defines CP is 

cause by “language”. (Things given different names look more different than things  

Figure 1. Hues crossing the boundary between two adjacent color categories in the spectrum are perceived as more 
distant than hues within the same category, even when physical (wavelength) distances are the same. 
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given the same name.) Without ruling out language as a factor in CP, genetics (i.e. biological 

evolution) and learning are also known influences.  Biological factors are supported by the case 

of color perception: Two colors separated by the same distance in wavelength are perceived as 

more different when each color resides on separate sides of a color boundary. This CP effect is 

not a result of language, but a result of the brain’s innate feature-detectors for colors (Jacobs 

2013). Evidence (Bao 2015; Folstein et al. 2015; de Leeuw et al 2016; Goldstone et al. 2017;  

Edwards 2017; Cangelosi 2017; Pérez-Gay J, 2017) also suggests that CP can be induced by 

learning in other sensory domains. In such cases, perceived distances before learning are 

independent of category membership, but after the category has been learned, there is a 

perceived expansion of the distance between members of different categories and a compression 

of the distance between members of the same category.  

We propose a model for CP induced by category learning based on an idea originally proposed by 

Stephen J. Hanson (Harnad, Hanson & Lubin 1995), consisting of an unsupervised learning phase 

before category learning followed by a supervised category-learning phase. As a potential 

explanation for human experimental findings on learned CP our model examines the functional 

role of between-category separation and within-category compression in the internal 

representation of input stimuli before and after category learning. The explanation hinges on the 

number and proportion of category-invariant dimensions relative to the total number of 

dimensions in a simple binary stimulus feature-space.  

 

 

Figure 2. Human experimental data showing how pairwise stimulus dissimilarity judgments changed from before to 
after successfully learning the category through trial and error training with corrective feedback (adapted from Perez 
& al 2017).  
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1.1 Unsupervised and Supervised Learning  

 

An initial analytical understanding of CP can be derived from two families of learning algorithms 

for pattern classification (Richard O & al, 2001, Bishop, 2006): unsupervised and supervised 

learning. Unsupervised learning extracts the intrinsic structure of data without any information 

about category membership, whereas supervised learning partitions data into categories on the 

basis of corrective feedback. A basic model of CP emerges when comparing data representations 

resulting from these two families of algorithms, with their different goals. By learning relevant 

features and discarding irrelevant ones, both families of algorithms can modify the distances 

among data-points. Unsupervised learning does so by converging on statistically relevant patterns 

inherent in the data-structure itself (feature frequencies and correlations), whereas supervised 

learning separates the data into categories based on external feedback on correct and incorrect 

categorization). 

Within their respective families, multiple candidates (i.e., principal component analysis, 

independent component analysis, singular value decomposition, support vector machine, linear 

regression), share similar behaviors and could serve our purposes. Basic principles of category 

learning and CP can be expressed in particularly simple terms by principal component analysis 

(PCA) and linear discriminant analysis (LDA), both of which can be related to neural network 

models. PCA belongs to the family of unsupervised learning algorithms. Given a set of 𝑛 

observations represented by 𝑛 column vectors 𝑋={𝐱1,𝐱2,𝐱𝟑…,𝐱𝑛}  in an 𝑚 dimensional space 

ℝ𝑚, PCA transforms these observations into a basis of 𝑛 uncorrelated principal components  𝐵=

{𝑢1,𝑢2,𝑢3…,𝑢𝑛} (Pearson, 1901). These components are found by minimizing the error of 

reconstruction when projecting data points on a subset of principal components. Figure 3 

illustrates this principle for a two-dimensional space. The first component found by PCA captures 

the most variation in 𝑋. The following components successively capture the most variance in 

directions orthogonal to the previous components. As a result, PCA finds the lower dimensional 

linear space that best reconstructs the data with uncorrelated components. The components 

found by PCA can be defined by the eigenvectors of the covariance matrix 𝐶 with entries (𝑖,𝑗) 

 

                                                               𝐶𝑖,𝑗=(𝐱𝐢−𝐱)
𝑇(𝐱𝑗−𝐱) .                                                            (1)  

 

As only the maximum explained variance matters, PCA yields a good reconstruction but does not 

take category information into account. In fact, the projection on the main component may yield 

a representation that is worse than the initial representation in terms of category separation.  
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Figure 4 illustrates this effect. Although the main direction found by PCA gives a good linear 

approximation of the data, the projective direction which best separates the categories is a 

different one. Linear discriminant analysis (LDA) provides this direction (Fisher, 1936), and belongs 

to the family of supervised learning algorithms. 

 

Linear discriminant analysis (LDA) uses categorical information about the data to find a projecting 

vector (i.e. an hyperplane) which separates the categories by maximizing the ratio 

                                                        𝑆=
𝑆𝑏
2

𝑆𝑤
2
  ,                                                                                   (2) 

 

where  𝑆𝑏
2 is the projected between-category-variance defined by the squared difference between 

projected category means and 𝑆𝑤
2 is the projected within-category-variance defined by the sum 

of the projected within-category-covariance. Figure 4 illustrates such a separating vector in 

relation to category space. 

Figure 3. The projection line defined by the main PCA axis may yield an inappropriate categorisation space where 
categories are entangled. 

Figure 4. In this example, PCA is not a good projection line for categorization whereas LDA provides a clear separation 
between categories. 
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A comparison of unsupervised (PCA-like) and supervised (LDA-like) representation sets the stage 

for a simple first-approximation model of categorical perception. Referring to figure 4, there are 

no conditions preventing the entanglement of the category data points on the PCA line. But with 

the addition of category-membership information, projections on the LDA line will generate -- 

with respect to the initial PCA representation -- the separation/compression characteristic of CP. 

In such a case, as illustrated in figure 5, we observe the expansion of the distances between 

members of categories A and B, and the compression of the distances among members of the 

same category  (A or B). 

 

 
What is of particular interest for modeling CP, is that PCA and LDA (and equivalent candidates in 
their respective families) can be related to the activation layers in a neural network during two 
phases of learning: an unsupervised phase (PCA-like) and a supervised phase (LDA-like). A 
representation equivalent to PCA is generated by an autoencoder with a single hidden layer 
(Boulard,H 1988 ; Baldi,p 1988). Also known as auto-associative memories (Hopfield, 1982), these 
networks learn to represent and regenerate inputs irrespective of category membership. By 
learning the relevant subspace (i.e. relevant features), autoencoders develop internal 
representations which enable reconstruction of incomplete inputs. In terms of the performance 
of human subjects, this corresponds to becoming familiar with stimuli through repeated exposure, 
with no particular contingencies or instruction regarding categories or categorization.  
 
A representation related in spirit to LDA is obtained by changing the unsupervised learning rule 
of the net to a supervised one by introducing corrective feedback about category membership. 
Supervised neural networks use error-corrective feedback (LeCun, Bengio, & Hinton, 2015) to 
learn connection weights which define a subspace separating the categories. The activation layer 
of such networks can be described as a homeomorphism, stretching and thinning the stimulus 
representation manifold, with the goal of separating the categories. For human subjects, this 
would correspond to subjects interacting with an object and receiving feedback (i.e., or 
reinforcement or “supervision”) on correct categorization until few or no errors are made. The 
next section describes a basic neural network based on these principles. 
 

Figure 5 Example of between-category distance and witin-category distance when measured as linear projection on 
unsupervised and supervised component (as in Figure 2). 
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2 Neural Network Model for Categorical Perception  
 

 
This section describes a neural network that generates a CP effect as a result of (1) mere exposure 
to the stimuli with no categorical information followed by (2) category learning with error-
corrective feedback. The network is described as a single architecture in which the connection 
weights are first learned in an unsupervised manner, followed by a supervised phase in which 
categorical information becomes available to the network. 
 
 

2.1 Auto-Encoding Phase 
 
A denoising auto-encoder (Vincent, 2008) network learns to generate as output the same training 
stimulus it receives as input (it learns to map inputs onto themselves). Through exposure, the 
network learns a representation from which it is able to regenerate learned examples x when 
presented with partial, incomplete or noisy examples 𝐱. The forward and feedback output of layer 
h and layer x are respectively given by 
 
 
                                                       𝐡=𝑓(𝐚𝐡)  ,          𝐚𝐡=𝐖𝐱+𝐛𝐡                                                        (3) 
and 

𝐱=𝑓(𝐚𝐱)   ,        𝐚𝐱= 𝐖
𝑻𝐡+𝐛𝐱   

 
where f is a nonlinear output function, W is the connection weights between the layers, and 𝐛 is 
an activation bias.  

 
The connection weights are trained by repeated presentation of noisy examples 𝐱. During the 
learning process, W is modified by error gradient backpropagation to minimize the error 𝐸=
‖𝐱−𝑓(𝐡(𝐱)‖2  obtained when the network is attempting to regenerate examples x from noisy 
examples 𝐱.  A purely unsupervised auto-encoding can be achieved by using less network units 
than input dimensions, forcing the network to learn relevant features even in the absence of noise 
during training. 

Figure 6 Basic autoencoder architecture with a symmetrical weight matrix. 
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2.2 Supervised Phase : Classification Network 

 
 
Once the auto-encoder has learned a proper space of representation, this is passed forward to a 
second level of representation where the categories are learned using error-corrective feedback. 
Connection weights 𝐖𝟏 ,𝐖𝟐 are modified through gradient backpropagation based on the net’s 
error -- the difference between its output and the correct category name -- strengthening correct 
connections and weakening incorrect ones. 
 

 

 

Stimulus representations are measured on the internal layer activation 𝐚𝐡 first after the auto-

associative phase and then after the supervised learning phase. The separation-compression 

effect is evaluated by measuring distances between these representations. 

 

2.3 Separation-Compression  Measure 

 

To assess the separation-compression effect of category learning, let ℎ𝑢 and ℎ𝑠 be respectively 

the unsupervised and supervised representation on the inner layer of the network. One can define 

the average Euclidean distances 𝐷𝐴 , 𝐷𝐵 within each category and the average distance 𝐷𝐴,𝐵 

between categories, in the case of supervised and unsupervised representations, with 

 

Figure 7. Basic classification network with one hidden layer initialized with autoencoding.   
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𝐷𝐴
𝑢=1/𝑇𝑎∑ ∑ ‖ℎ𝑖

𝑢−ℎ𝑗
𝑢‖

𝑗∈𝐴,𝑗>𝑖𝑖∈𝐴

   ,   𝐷𝐵
𝑢=1/𝑇𝑏∑ ∑ ‖ℎ𝑖

𝑢−ℎ𝑗
𝑢‖

𝑗∈𝐵,𝑗>𝑖𝑖∈𝐵

 

                       𝐷𝐴
𝑠=1/𝑇𝑎∑ ∑ ‖ℎ𝑖

𝑠−ℎ𝑗
𝑠‖

𝑗∈𝐴,𝑗>𝑖𝑖∈𝐴

   ,   𝐷𝐵
𝑠=1/𝑇𝑏∑ ∑ ‖ℎ𝑖

𝑠−ℎ𝑗
𝑠‖                      (4)

𝑗∈𝐵,𝑗>𝑖𝑖∈𝐵

 

𝐷𝐴,𝐵
𝑢 =1/𝑇𝑎𝑏∑ ∑ ‖ℎ𝑖

𝑠−ℎ𝑗
𝑠‖

𝑗∈𝐵𝑖∈𝐴

   ,   𝐷𝐴,𝐵
𝑠 =1/𝑇𝑎𝑏∑ ∑ ‖ℎ𝑖

𝑠−ℎ𝑗
𝑠‖

𝑗∈𝐵𝑖∈𝐴

 

where, 𝑇𝑎,𝑇𝑏,𝑇𝑎𝑏 are the corresponding total number of pairwise distances. The between-

category 𝑆𝑃𝑏 category separation and the within-category 𝑆𝑃𝑤 compression can be measured as 

                                                            𝑆𝑃𝑤=
(𝐷𝐴
𝑠+𝐷𝐵

𝑠)−(𝐷𝐴
𝑢+𝐷𝐵

𝑢)

2
                                                (5) 

𝑆𝑃𝑏=𝐷𝐴,𝐵
𝑠 −𝐷𝐴,𝐵

𝑢  

 

2.4 Simulation 1 

 

There is no a-priori way to equate the particular parameters of the simulations reported in this 

paper directly with those of any human experiment. The neural model described above is not a 

model of visual or auditory perception (which would require at least a convolutional neural 

network); it is a general fully connected model (every unit is connected to every other unit) where 

the dimensions processed by the network are meant to be purely formal and arbitrary. 

Nevertheless, for a first attempt at modeling and understanding the kinds of findings observed in 

humans, the experiment reported by Perez-Gay J & al (2017) provide us with a set of formal 

stimulus definitions with no obvious perceptual structure. These stimuli are explicitly defined in 

terms of the number 𝑘 of category-invariant features relative to the total number of features 𝑁. 

  

2.5 Stimuli 

 
 
The stimuli for this initial experiment are defined similarly to those of Perez-Gay J & al. (2017) 
who reported learning-induced CP (between-category separation, and sometimes also within-
category compression) using randomly generated stimuli composed of small binary image 
patches.  These stimuli were composed of 6 local micro-features consisting of binary image pixel 
grids, 𝑘 of them co-varying with membership in each category. The other 6−𝑘 dimensions were 
random, having no relation to category membership. 
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The stimuli in the two categories, A and B, were larger grids, consisting of 𝑀×𝑀 dimensional 

binary images composed out of the 𝑁 micro-features randomly distributed in equal proportions. 

For this experiment, a very approximate simulation of the stimuli used in Perez-Gay J & al. (2017) 

on human subjects was generated by computer as shown in Figure 9, using 4 micro features. 

 

   

2.6 Results 

 

Classification rates of 99 % or more are achieved when the nets are given enough training trials. 

But what is of interest is the correlates of having successfully met the categorization criteria. As a 

simulation of the human experimental results shown in Figure 2, Figure 10 shows the effect of the 

number 𝑘 of covariant features on the separation-compression measures 𝑆𝑃𝑤 and 𝑆𝑃𝑏, for 𝑁=4  

micro features, and decreasing values of 𝑘. An increase in between-category separation and 

within-category compression is observed as 𝑘 decreases. 

 

 

 

 

 

  

Figure 9 Sample images from category A and B. 

Figure 8. Binary visual micro-features used to create the stimuli in Perez-Gay J & al (2017). In the present formal 
simulation, the stimuli are not arrays but vectors with N binary components.  
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The effect of the relative number of category-covariant features (𝑘/4) on separation-compression 

already provides clues as to what might underlie the experimental results on humans. The 

network is able to capture statistically relevant patterns because of the redundancy created by 

the 𝑘 covariant features.  We observe an increase in between-category separation and an increase 

in within-category compression as 𝑘 increases. The 𝑁 micro-features (figure 8) used to construct 

the stimuli (figure 9), however, are spatially and randomly distributed. This prevents making an 

explicit one-to-one mapping between the 𝑘 covariant features with the network dimensions 

because units in the network are not invariant under transformations in spatial position 1. In other 

words, the spatial randomization of the micro-features is not well-suited to identifying the 

influence of category-covariant features in a network that is not spatially invariant. To better 

explore the impact of the number of category-covariant features in a purely abstract manner, 

independent of spatial topology (i.e. no requirement of spatial invariance), the next simulation 

defines a stimulus space where each dimension directly represents an arbitrary binary feature.  

 

 

  

 

 

                                                           
1 For human experiments in Perez-Gay J & al. (2017), equating features for salience and detectability is also a 

problem. 

 

Figure 10. Evolution of between-category separation and within-category compression with training. The vertical axis 
gives the separation-compression measures 𝑆𝑃𝑏 and 𝑆𝑃𝑤, as defined by equation 3 (difference between average 
pairwise distances measured following unsupervised learning and then following supervised learning). 
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3 Simulation 2 

 

 

3.1 Stimuli: Category Definition 

 

The stimuli used for this simulation are 𝑁 dimensional binary/bipolar vectors 𝐱∈{−1,1}𝑁. Each 

constituent dimension is interpreted as a binary feature. The stimulus space thus corresponds to 

the corners of an 𝑁 dimensional hypercube.  Two categories are defined by randomly selecting a 

subset of 𝑘 dimensions that co-vary with category membership. Each of these 𝑘 dimensions is 

randomly assigned -1 or 1 for one category and its binary complement (1 or -1) for the other 

category. These 𝑘 dimensions are thus the (conjunctive) covariants defining the categories. The 

other 𝑁−𝑘 dimensions are completely random, having no correlation with category 

membership. 

 

 

  

3.2 Design of Simulations 

 

Each simulation consists in training and testing the network with 1500 examples of binary vectors 

as defined above, for two categories, 𝐴 and 𝐵. A total of 5 simulations was done, each time with 

new randomized values defining the categories and the initial network connection weight 

matrices 𝐖1, 𝐖2. For each simulation, the auto-encoder and the classification layers were trained 

until a 99% success rate was reached. The representation ℎ of each stimulus is first recorded on 

the inner layer of the network following the unsupervised training phase; then following the 

supervised training phase the measures 𝑆𝑃𝑤 and 𝑆𝑃𝑏 are computed. 

 

3.3 Results  

 

The first criterion that should be satisfied, irrespective of any separation of compression, is the 

ability of the network to categorize stimulus space. Averages of 99 % classification success or 

better are achieved when given sufficient examples. But what is of interest is the correlate of 

having reached the categorization criterion. Figure 12 shows the evolution of between-category 

Figure 11. Binary (bipolar) stimuli defined by a conjunctive rule on the constituent dimensions. 
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separation and within-category compression for values of 𝑁=10 ,20 ,50,100 and 

corresponding decreasing values of 𝑘.  

 

 

 

As the number 𝑘 of category-covariant features decreases, a general increase of between-

category separation and within-category compression is observed. When learning the categories 

the network allocates more weight to category-relevant (covariant) dimensions and less weight 

to category irrelevant (i.e., noisy, uncorrelated) dimensions. This is what creates the observed 

increase in between-category separation and within-category compression. Why? With higher 

values of 𝑘 (large proportion of conjunctive covariants), the categories are already far apart (i.e. 

very different) structurally. Large distances between categories create a high variation in the data 

along category-separating directions. Because non-supervised representations favor directions of 

high variance, this makes the non-supervised representation a near optimal solution for 

categorization when the proportion of covariants is high: there is little or no difference between 

the unsupervised and the supervised values between and within categories for high values of 𝑘. 

Figure 12. Evolution of between-category separation 𝑆𝑃𝑏 and within-category compression 𝑆𝑃𝑤 for different numbers 
of dimensions (𝑁) and covariants (𝑘). As defined by equation 5, the vertical axis gives the difference between distances 
computed after supervised learning and after unsupervised learning.  
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But as 𝑘 decreases, the unsupervised learning becomes less optimal for categorization, and 

separation is then generated by supervised category learning.  

Why do we observe a drop in between-category separation correlated with an increase in within-

category compression at the extreme low values of 𝑘?  As the value of 𝑘 decreases, more irrelevant 

(i.e. noisy) dimensions are eliminated or weakened by category learning. This progressive 

dimension reduction with decreasing 𝑘 creates an exponential decrease in the volume of space 

occupied by the categories after categorization and hence a commensurate decrease in the 

average pairwise distances: everything is measured inside a smaller space. This explains the more 

pronounced within-category compression at the very lowest values of 𝑘, correlated with 

weakened (but still present) category separation. This intensified compression and weakened 

separation near the lowest values of 𝑘 is simply the effect of dimension-reduction on Euclidean 

distances. This is a natural consequence of the model used in this simulation. Ascertaining 

whether this property is relevant for explaining human results, however, will still call for a lot of 

systematic testing and comparison.  

If instead of looking at the compression and separation measures of equation  5 one looks directly 

at the average pairwise distance using equation 4, a clearer pictures emerges. Figure 12 shows 

the average pairwise distances measured on the network’s inner layer after unsupervised learning 

(𝐷𝐴
𝑢+𝐷𝐵

𝑢,𝐷𝐴,𝐵
𝑢 ) and after supervised learning (𝐷𝐴

𝑠+𝐷𝐵
𝑠,𝐷𝐴,𝐵

𝑠 ) for 𝑁=50 and decreasing values 

of 𝑘. 

 

Figure 13. Average between-category pairwise distance and within-category pairwise distance measured first after 
unsupervised learning and then after supervised learning. Vertical axis in on logarithmic scale. 
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The range of values on all distance axes indicates what is expected from the stimulus definition 

and from the model. In stimulus space (i.e. physical space), for high values of k, the stimulus 

definition is such that categories are far apart and compressed (most dimensions are identical). 

But for low values of 𝑘, categories are closer and larger in volume. This results in a larger initial 

difference between pairwise within-category distances and between-category distances at high 

values of 𝑘. But Figure 12 also shows that as 𝑘 decreases, the difference between the initial within-

category distances and the between-category distances following the unsupervised phase (before 

the supervised phase) decreases. One would expect that at 𝑘=1, the minimum number of 

covariants needed to create two categories, the initial difference would be zero. Figure 12 shows 

a decrease in initial difference, but it does not quite reach the expected zero at 𝑘=1. Why?  The 

stimulus definition (Figure 11) creates a linear space between categories. This forces the average 

pairwise distance between categories to be larger than the average pairwise distance within 

categories. But one can easily create a zero initial difference in the average pairwise distance at 

𝑘=1 by narrowing the linear space between categories, making categories closer to each other. 

Figure 13, illustrates a stimulus definition that will generate a zero initial difference. This definition 

is the same as the previous one, except that the categories are brought closer to each other at 

𝑘=1. It is equivalent to reducing the salience of the only covariant feature at the hardest level 

of categorization.  It follows that just as in Pérez-Gay et al’s (2017) human experiments, the a-

priori salience of the perceptual features is a parameter that needs to be closely examined and 

controlled as much as possible. 

 

 

Figure 15 shows the average pairwise distance measured on the network inner layer after 

unsupervised learning and after supervised learning, for values 𝑎= 0.6 ,  b = 1 and  𝑁=20.   

 
 

 

 

 

Figure 14. For 𝑎<1 the linear space between categories at 𝑘=1 is narrowed, reducing the average pairwise 
distance between categories. This can be thought of as lowering the salience of the only covariant feature (i.e., the 
most difficult level). 
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What the model predicts is again increased between-category separation and increased within-

category compression with decreasing values of 𝑘, except at the lowest values of 𝑘 (i.e. near 𝑘=

1).  This time, however, when  𝑘=1, the initial difference is zero, indicating that average 

between- and within-category distances are equal when the number of category covariants is 

minimal. 

 

4 Analysis and Discussion  

 

  
In the model introduced above, two factors determine whether CP separation-compression 

occurs: initial encoding and dimensionality. 

 

4.1 Initial Encoding 

  

If mere exposure to stimuli, without categorical information (i.e. error correction, feedback), 

provides sufficient separation to achieve categorisation by simply associating a label with each 

category after the unsupervised learning, the above model predicts that no separation-

compression (CP) will be observed. Consider the following analogy. Someone has never seen cats 

or cars and is presented with pictures of them. After repeated unlabelled exposure to hundreds 

Figure 15. As the number 𝑘 of covariants decreases, there is less difference between the initial average pairwise 
distance between and within categories, with zero initial distance at  𝑘=1. Results are shown for 𝑁=20.  Vertical 
axis in on logarithmic scale. 
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of different examples of each, the viewer is told the category name associated with each picture, 

namely, “cat” or “car”. Cats and cars are already so different that being told their name does not 

improve the ability to detect which is which. No supervised learning is necessary; just a few trials 

to learn what to call each. According to our model this means that in cases where the 

unsupervised separation is already along categorical lines, there is less separation-compression in 

going from the unsupervised to the supervised representation. In such cases, further training 

might be unnecessary, depending on factors such as weight-initialization at the top layer (i.e. 

random initialization) and how high the performance criterion (percent correct) for successful 

categorization  is.  

 

Figure 16 illustrates this principle. On the right, the subspace that is learned without supervision 

and best describes the data (i.e. PCA) is also a category-separating subspace. In such a case, the 

addition of categorical information (i.e. LDA) does not change the learned subspace, and little or 

no separation-compression will be observed when going from one representation to the other. 

 

This pattern is observed in the results of Simulation 2. With large values of 𝑘 (large number of 
conjunctive invariants), the distance between the categories is large and the network needs 
almost no modification of its unsupervised state to achieve error-free categorisation. There is still 
some separation (see figure 12), but less than for lower values of  𝑘. Large values of 𝑘 generate 
almost no change from unsupervised to supervised learning in terms of between-category 
distances. The analogy with human learning is that categories that differ in enough features need 
less supervision to learn their names: hence the perceived differences between and within 
categories do not change much as a result of supervised learning (Pérez-Gay J, 2017). 
 
 
 

4.2 Dimensionality 
 
The total dimensionality of the space and the proportion of category-relevant dimensions plays a 
crucial role when we compare unsupervised and supervised internal representations. Starting 
from the full set of dimensions of variation in stimulus space, unsupervised learning first reduces 

Figure 16 If the unsupervised separation already separates the categories, little or no further separation/compression is 
needed. 
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total dimensionality by bringing into focus the intrinsic structure of the data space based on 
relative feature frequencies and feature covariation. Then the supervised learning partitions this 
intrinsic structure into categories based on corrective feedback as to what belongs in each 
category. Dimensions that separate the categories get more weight, causing between-category 
separation, and dimensions that are irrelevant to categorization get less weight or are suppressed 
altogether, causing within-category compression. But as a side-effect, the dimension reduction 
caused by category learning creates an exponential decrease in the volume occupied by the 
categories as 𝑘 decreases. Smaller volume implies reduced Euclidean distances. This side-effect 
results in even stronger compression and a weaker separation at the extreme lowest values of 𝑘. 
   
The dimensionality of the feature space defining categories also has a direct effect on the 
categorisation network’s performance, a problem known as the curse of dimensionality (Hughes, 
1968, Trunk, 1979).  For a fixed amount of training data, as the dimensionality of the stimulus-
space grows, the sparsity of the space increases exponentially (i.e., vaster space, fewer data 
points). This increases the probability that any direction is a category-defining direction. 
Consequently, for higher values of 𝑁 and a fixed number of training data points, the non-
supervised  direction (i.e., the autoencoder network) has a higher probability of being a category-
separating direction. High values of 𝑁 and 𝑘 also mean high variation in category defining 
directions. Both these factors make the unsupervised representation a good candidate for 
category separation.  

 
These principles may generalize to more complex category definitions as discussed in the 

concluding remarks. Indeed, deeper neural architectures build successive representations where 

initially tangled representations progressively become untangled, allowing linear separation of 

categories in the final layers of representation, thus potentially providing the conditions for 

inducing a CP effect  for any category structure, regardless of its complexity.  

 

5 Conclusion 

 

Apart from modeling successful category learning, our interest is in finding a functional model for 

learning-induced CP. This first pass is based on characteristics of unsupervised and supervised 

learning. The goal is not to find a model in which learning always induces CP; this is not observed 

in human learning. The goal is to predict under what conditions learning will induce CP and to 

explain how, and why. The model identifies some of the conditions under which CP does and does 

not occur. The binary rule of Simulation 2 defines N-component stimulus vectors in which each of 

the N dimensions represents a binary feature. The stimuli and categories used in the simulations 

are all simple dichotomies (only two categories) and category membership is based on conjunctive 

features: all the members of one category have one of the values (0 or 1) on all k category-

covariant binary features or dimensions and all the members of the other category have the 

complementary binary value (1 or 0) on all k. A stimulus is a member of a category if and only if 

all k category-covariant features are present. A fully connected network  (i.e. a network in which 

every unit is connected to  every other unit), as used in these simulations, can learn the categories 

by increasing the weights on category-covariant dimensions and reducing the weights on 

category-irrelevant dimensions. In visual perception, invariant features may or may not have a 
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fixed spatial locus. In Simulation 1, an approximation to experiment 3 of Perez-Gay et al (2017), 

the stimuli are defined by a conjunctive rule based on visual micro-features (local) that are 

spatially and randomly distributed rather than having a fixed spatial locus. In learning the 

conjunctive rule of Simulation 1, the spatial invariance properties of convolutional networks (a 

network composed of local filter providing invariance to position) would perform better than the 

fully connected networks described in this paper. Future simulations will go on to test 

convolutional models on more realistic and more complex categories, including non-binary 

features, multiple rather than dichotomous categories, disjunctive (inclusive and exclusive) rather 

than conjunctive features, and variation not just in N and k, but also in the feature salience 

parameters. This will require measuring distances on the deeper layers of networks composed of 

multiple inner layers. With initially complex and entangled category representations on the first 

layer, deeper architectures can learn deeper representations that are disentangled and then 

readily separable by a simple linear projection on a separation plane, as they were in our initial 

model.  
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