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GEOCHEMISTRY AND ORIGIN OF THE ASIMOTRYPES CARBONATE-

HOSTED MESOTHERMAL GOLD DEPOSIT, PANGEON Mt., N. GREECE

by Demetrios George Eliopoulos

The Asimotrypes mesothermal gold deposit located in the Pangeon Mt (E. Macedo¬
nia, N. Greece), is part of the Western Rhodope Massif (WRM), which represents the
metamorphic core complex of an alpine collision orogen. Alpine metamorphism, of
U. Cretaceous - M. Eocene age, reached upper greenschist to lower amphibolite con¬

ditions. A low-pressure greenshist fades retrograde overprint during uplift marked
the end of Alpine metamorphism in the Miocene. Post-metamorphic Miocene uplift
has been recognised in the Pangeon Mt and it was ascribed to Late Cainozoic exten-
sional tectonics.

The Asimotrypes ore, of replacement and shear-zone style consists mainly of arse-

nopyrite, pyrite and gold, with subordinate sphalerite, galena, chalcopyrite, pyr-
rhotite, tetrahedrite-tennantite, marcasite, covellite and malachite. Gold is either re¬

fractory occurring mainly in arsenopyrite and to a lesser extent in As-pyrite, or free
in the oxide minerals.
Three types of fluid inclusions (with subtypes) were recognised based on constitu¬

ent phases at room temperature and microthermometric behaviour: (i) H2O-CO2 3-
phase inclusions: Li (Ü2O)+L2 (CO2)+V (CO2); (ii) Aqueous 2-phase inclusions: L+V;
and (iii) Naturally decrepitated and/or leaked inclusions: V or L+V. The fluids have
low salinity (<5 wt % NaCl equiv.), but variable CO2/H2O ratios. Microther¬
mometric studies in gangue quartz indicate early ore deposition at P-T conditions of
275-310C and 2.7-3.1 kb during unmixing of the mineralising fluids, followed by
deposition at temperatures down to 130C and low near surface pressures.
834S values of primary sulphide minerals suggest a magmatic source for the sul¬

phur. 513C values in marble calcite are indicative of a marine environment of deposi¬
tion, also supported by a plot of 813C versus 518O for the same samples. Calculated
isotopic composition of ore fluids in quartz, sericite and whole rock at 275C and
340C are consistent with values of metamorphic fluids. Whole rock hydrogen iso¬
topic composition of -1177.5(la) indicates that the mineralising fluid was of mete¬
oric origin. Sr isotope data implies seawater origin for strontium. Lead isotope data
in ores from the Rhodope showed that Pb is derived from crustal rock types.
Sulphide species such as Au (HS)"2, were probably the most effective complexing

agents for gold in the Asimotrypes fluids, which were typically low in salinity. A de¬
crease of sulphur species activity and cooling are suggested to be the favoured de-
positional mechanism in a reducing environment. Combined with geological evi¬
dence, the fluid inclusion and stable data of the Asimotrypes gold ore, are consistent
with genesis from deeply convecting meteoric waters driven by regional uplift
through rocks undergoing retrogressive greenschist facies metamorphism.
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INTRODUCTION

Mesothermal gold deposits constitute the principal source of lode and placer Au
world-wide. In addition, these deposits are significant to the understanding of the

genesis of gold deposits in general, since they are young analogues of the larger
and more enigmatic Archean gold deposits.

Throughout earth history mesothermal gold deposits are found in structurally
controlled sites within, and adjacent to, orogenic belts. These belts can be classi¬

fied as peripheral or internal orogens, based on their spatial relationship to exter¬

nal and internal oceans during the supercontinent cycle. Peripheral orogens are

zones of subduction and terrane accretion at the margins of oceans, which remain

open during the break-up, dispersal, and re-aggregation of continental fragments
to form supercontinents. The Paleozoic and Mesozoic margins of the Pacific are

peripheral or external orogens. In contrast, internal orogens are zones of collision,
which are formed where internal oceans close and continental fragments aggre¬

gate to form a supercontinent. The Appalachian/Caledonian orogen, which

formed during the closure of the Iapetus Ocean, is an example of an internal oro¬

gen. Both types of orogen contain significant mesothermal gold provinces. How¬

ever, if the interpretation that Late Archean and Paleoproterozoic granitoid-
greenstone terranes represent peripheral orogens which formed during the

breakup and dispersal stages of a supercontinent cycle is correct, then peripheral

orogens host the majority of mesothermal gold deposits.

Mesothermal gold deposits are mostly gold-only deposits associated with car-

bonatised wall rocks. They occur in low- to medium-grade metamorphic terrains



of all ages, but only in those that have been intruded by granitoid batholiths. A

numerically minor subgroup of these deposits occurs in high-grade terrains and

calc-silicate mineral alteration zones. The deposits are characterised by a high

gold/silver ratio, great vertical continuity with little vertical zonation, and a

broadly syn-tectonic time of emplacement (Hodgson, 1993). Commonly associ¬

ated minerals include pyrite, less commonly pyrrhotite, the common base-metal

sulphides, arsenopyrite, tourmaline and molybdenite. Mineralisation may occur

in any rock type and ranges in form from veins, to veinlet systems, to dissemi¬

nated replacement zones. Most mineralised zones are hosted by and always re¬

lated to steeply dipping reverse - or oblique-slip brittle-fracture to ductile-shear

zones.

Mesothermal gold deposits irrespective of age, world-wide, share a range of

similar characteristics which include:

spatial association with major fault systems

considerable depth extent

deposition from deep metamorphic ,
low salinity, H2O-CO2 CH4 fluids which

advent into zones of structural permeability

similar element association and alteration assemblages

One of the enduring and least tractable problems in gold metallogeny remains

the origin of these mesothermal lode deposits. Not only the nature of the funda¬

mental processes involved in the generation of these deposits remains controver¬

sial, but also there are a diversity of hypotheses on the source of volatiles and sol¬

utes, especially gold. Mesothermal Au-Ag deposits have variously been attributed

to lateral secretion (Boyle, 1979), magmatic (Carter, 1948; Ferguson et al., 1968;

Mason and Melnik, 1986) exhalative (Fripp, 1976a; Ridler, 1976; Hutchinson and

Burlington, 1984), structurally focussed metamorphic outgassing (Fyfe and Hen¬

ley, 1973; Kerrich and Fryer, 1979; Kerrich, 1987; Groves and Phillips, 1987; Wall,



1987), and meteoric water circulation (Nesbitt and Muehlenbachs, 1989). Recently,

mantle degassing-granulitization (Fyon et al., 1984; Colvine et al., 1984, 1988;

Cameron, 1988) has been advocated as a new genetic scheme, and the possible di¬

rect orthomagmatic link of Au to felsic igneous rocks has been revived (Burrows

et al., 1986; Wood et al., 1986a; Hattori, 1987; Cameron and Hatori, 1987; Burrows

and Spooner, 1987).

The most generally accepted genetic models for the formation of Phanerozoic

mesothermal gold deposits are:

derivation from metamorphic processes and metamorphic fluids, and

deep convection of meteoric water in the brittle continental crust

These two principal genetic models are similar in many respects, such as the

importance of regional structure and the chemistry of the ore deposits, and differ

in the source and migration paths of the fluids. Additional testing is required to

resolve the conflicts over fluid source between the metamorphic and meteoric

models and more detailed investigation on the structure and chemistry of the ore

zones to determine the exact controls on gold deposition.

Under this concept the area of Asimotrypes in northern Greece, which has been

intensively mined by the ancient Greeks for a long period of time, has been se¬

lected for further research focussed on the application and corroboration of the

concepts briefly described above and amplification of many of these concepts in

an area providing different lithologies and geological age compared to the ones

studied so far world-wide. The concepts are particularly investigated from the

standpoint of geological, geochemical, fluid inclusion and isotopic studies. Fi¬

nally, the model is compared to other similar deposit types world-wide.



CHAPTER 1

REGIONAL GEOLOGY AND TECTONICS

1.1. The Rhodope Massif

The Rhodope Massif is located in northern Greece and it is bounded to the west

by the Strymon River fracture zone, to the east by the Evros River, to the north it

extends into Bulgaria, whereas to the south its border remains unclear since it is

subducted underneath the northern Aegean sea (Fig. 1.1).

Three lithological units are distinguished in the Rhodope Massif: the metamor-

phic basement, the Circum Rhodope Belt and the Tertiary volcano-sedimentary

basins. The Rhodope Massif is upthrusted by the Serbomacedonian Massif along a

flat N-S trending thrust fault, the Strymon Fault. Both, the Rhodope and the Ser¬

bomacedonian Massifs form a continental fragment, which was extensively re¬

worked during the Alpine Orogeny.

The metamorphic basement of the Rhodope Massif consists of para- and or-

thogneisses, mica schists, amphibolites and thin calcareous schists. Mineralogical

and geochemical evidence suggest that the protoliths of the basement gneisses are

mainly magmatites of Hercynian age 285 Ma in West Rhodope (Wawrzenitz et al.,

1994) and 296 Ma in East Rhodope (Peicheva et al., 1992), whilst most of the am¬

phibolites are MORB basalts (Liati, 1989). In the eastern Rhodope Massif a thick

sequence of dismembered metamorphosed mafic and ultramafic ophiolites occur.

Carbonate series dominant in the Western Rhodope Zone consists of marbles with

intercalation of mica schist, chlorite schist and quartzite.
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The Circum Rhodope Belt formation occurs at the south-eastern margin of the

Rhodope Massif and forms the western border unit to the Serbomacedonian Mas¬

sif. It is composed of a series of phyllites, greenschists, calcareous schists, marbles

and volcanosedimentary rocks. The Belt was folded, metamorphosed and

thrusted onto the Rhodope Massif during the late Cretaceous.

The Tertiary volcano-sedimentary basins occur along the southern and eastern

margins of the Rhodope massif. According to Papadopoulos (1980) the basins

have tectonic contacts with the metamorphic basement and the Circum Rhodope

Belt. The base is composed of conglomerates, marls and limestones. These sedi¬

ments are followed by a mixed volcano-sedimentary sequence of Eocene to Oligo-

cene age, which comprises andesites, dacites, rhyodacites and rhyolites with in¬

tercalations of calcareous sandstones and shales. These are associated with a se¬

ries of subvolcanic intrusive rocks of intermediate compositions.

The age of the massif is uncertain. Dimitrov and Zidarov (1969), have sug¬

gested Archean or Proterozoic age based on comparisons with basement terrain

in other parts of the world. Nesbitt et al., (1988) assume that the Rhodope Massif

must be of Lower Carboniferous or older. This assumption is based on a Rb/Sr

whole rock age of 342 27 ma (Moorbath and Zagorcev, 1983) of an intrusive

granitoid complex which intrudes equivalent basement rocks in southern Bul¬

garia.

All the metamorphic rocks of the massif are intensively folded, strongly faulted

and penetrated by intrusive rocks. On the basis of geological criteria the Rhodope

Massif is subdivided into the Western, Central and Eastern Zones (Fig. 1.1).

1.2 Geotectonic Setting

Many attempts were made to relate the metallogeny of the Rhodope Massif to

plate tectonic developments in the north-eastern Mediterranean. Northern Greece



is located at the junction between the African and Eurasian plates and many geo¬

logical features, including the styles and distribution of mineralisations, result

from Permian to Tertiary plate movement. Basically, the African Plate was driven

down below the Eurasian Plate, but the Rhodope and Serbomacedonian Massifs

formed a rigid pivotal block causing sinistral rotation with the result that micro-

plates developed through the whole Aegean region.

Several plate tectonic models have been proposed by various authors, mainly

based on complex movements of distinct micro-plates in the Tethyan area since

Jurassic times to address the geotectonic evolution of the Rhodope and Serbo¬

macedonian Massifs. These models are summarised and comprehensively re¬

viewed by Frei (1992).

Channel and Horvath (1976) suggest that during the Senonian a NNW-ward

drift of the Serbomacedonian-Rhodopian micro-plate caused a partial subduction

of the Tethys along the NE edge of the Serbomacedonian, which was active to the

early Eocene. Subsequent rifting and northward convergence of Africa resulted

inwestward movement and final arrangement of the Serbomacedonian-

Rhodopian micro-continent during Palaeocene and Pliocene times, accompanied

by subduction related magmatism and associated metallogenesis.

According to Dewey et al., (1973), in relation to the position of the Africa and

European plates during the Eocene to Miocene, the Rhodope and Serbomacedo¬

nian Massifs formed a common micro-continent with Turkey and Iran between

north and south facing subduction zones accompanied by extensive Eocene acid

intermediate volcanism. From Miocene to present, in relation to the convergence

of Africa to Europe, the Rhodope and Serbomacedonian Massifs were docked

with Europe. The collision led to the formation of napes and ophiolite zones,

which were completed during the Oligocene. The formation of the Hellenic sub¬

duction took place during the Upper Miocene or later, in relation to the welding

of microplates with Europe. The convergence between Iran and Iraq, squeezed



North Anatolian Faul

Mioc e ne

Figure 1.2: Proposed plate boundary during the Miocene (after Dewey et al., 1973).
Apulia, Moesia, and Rhodope were welded against Europe. Convergence of Africa

against Europe continued along the sutures. At the very end of the Miocene -

beginning of Pliocene the Hellenic subduction system formed. Turkey was pushed
westward and the Anatolian Fault Zone was initiated, the extension of which can be

traced into the North Aegean (in Frei, 1992).
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Turkey westward and the Anatolian fault zone was developed. Continued con¬

vergence led to complex intraplate deformations and seismidty over wide zones

(Fig. 1.2). The Rhodope and Serbomacedonian Massifs were affected by exten-

sional deformation leading to graben structures and steep faults along which

various subvolcanics were emplaced into shallower crust levels.

Hsu et al., (1977) suggested that the Rhodope and Serbomacedonian Massifs

together with the Moesian platform formed a micro-continent during the Alpidic

time, whilst the inner Balkanides root in an intracontinental basin. The rotation of

the Rhodope and Serbomacedonian micro-continent caused the opening of the

Vardar Ocean followed by the development of the Kimmerian orogeny. The rota¬

tion of the Italo-dinaric micro-continent to the west during the Upper Triassic -

Lower Cretaceous initiated the subduction of the Vardar Ocean. The Rhodope

and Serbomacedonian Massifs together with the North Anatolian Massif were

part of an island arc, while back arc basins such as the Srednogorie and the Black

Sea were developed to the east.

1. 3 Structural Geology and Regional Tectonics

The Rhodope and Serbomacedonian Massifs constitute major complex geotectonic

elements of the internal Hellenides. Both Massifs have undergone repeated com¬

pression, extension and rotation during plate movements from the Jurassic to

Quaternary. The result of the above activity is that the region is cut by major low

angle thrusts and extension faults upon which are superimposed a network of

large horst-graben structures (Fig.1.3 &1.4).

The massifs also show at least three periods of regional metamorphism and five

separate phases of folding while all younger rocks are folded and faulted (Pa-

panikolaou and Panagopoulos, 1981; Chatzipanagis et al., 1983; Tsombos and

Karmis, 1988; Kilias and Mountrakis, 1989; Patras et al., 1989; Pavlides et al., 1989;

9
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Figure 1.4: ]Major hörst and graben structures in Serbomacedonian Massif and

Western Rhodope Zone (Tsombos, 1993).
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Zagorcev, 1989; Tsombos and Kalogeropoulos, 1990). Large acidic and smaller ba¬

sic intrusives accompanied this tectonic activity.

In addition, Tsombos (1993), reported that there is a generally good correlation

between airborne magnetic and remote sensing data concerning major lineaments

(Fig.1.3 & 1.5). There are four main directions of lineaments in northern Greece:

NW-SE, NE-SW, E-W, and N-S. These directions reflect the main lithological and

structural elements in the region as described below by Tsombos, (1993).

Ophiolites and plutons in the Rhodope Massif are formed in NW-SE and NE-

SW trending zones, which coincide with prominent sets of fractures and linea¬

ments. In addition the major lineaments which are identified on the Landsat TM

mosaics of northern Greece show that the majority of ophiolites and plutons were

formed at the basin borders of this region.

Fold and fault patterns are complex in both the Rhodope and Serbomacedonian

Massifs. These patterns for the Rhodope Massif, according to Tsombos (1993) are

as follows:

A first fold system is shown by a few closed folds of relict character which

are related to an early period of eclogite facies regional metamorphism.

A second fold system, produced by NE-SW movements during the early

Eocene, consists of numerous isoclinal compression folds with axial planes strik¬

ing NW-SE and dipping approximately 50 to the NW. A brittle deformation of

early Eocene age also produced a NE-SW trending lineation system.

A third fold system is comprised of open drag folds and dislocation cleav¬

ages as a result of decompressional forces during the uplift of the Rhodopian

orogeny. Major horst-graben structures began to develop at this time and move¬

ment has continued to the present day (Fig.1.4).

Three main sets of low angle thrusts and shears are observed in northern

Greece. The two earliest thrust sets are strike NE-SW and NW-SE respectively and

12



the latest approximately E-W (Chatzipanagis, 1991; Arvanitides and Ashworth,

1993; Tsombos, 1993). Most appear to be Tertiary, but some may be reactivated

older structures. The character of these low angle structures is, however, based

heavily on conjecture as illustrated by the case of the Strymon Valley Fault. This

fault structure separates the Rhodope Massif from the Serbomacedonian Massif

(Fig. 1.1) and is of particular interest because it influences debate on whether the

two massifs were formed separately or are portions of a single massif dislocated

by a major fault system. Many authors have interpreted the Strymon Valley fault

as a flat lying thrust striking north-west and inclined gently to the south-west.

The Serbomacedonian Massif rocks are considered to have moved northeastwards

along the thrust and now rest upon the Rhodope Massif (Kockel and Walther,

1965; Omenneto, 1985; Zagorcev, 1989). Other authors, however, consider the

fault to be part of a major graben structure or a block-dividing deep fault zone

(Ryazkov and Dobrev, 1989; Pavlides et al. 1989). Shanov et al, 1989 and Ryazkov

and Dobrev (1989) used geophysical data to postulate an internal block structure

within the Rhodope Massif, flanked on the west by the Strymon Valley fault and

on the east by the equally large Nestos fault. Recently, the Strymon Valley fault

has been interpreted as a major south-west dipping detachment normal fault of

late Cainozoic age, which emplaced the medium grade Rhodope metamorphic

complex (Dinder and Royden, 1993; Sokoutis et al. 1993) and the mid-crustal

rocks of the Pangeon complex.

Although the character, age and influence of major low angle fault structures is

debatable, the presence of major horst-graben fault systems can be clearly demon¬

strated by remote sensing, and field mapping (Tsombos, 1993). The horst-graben

structures extend throughout the whole Aegean region, and they appear to have

controlled the distribution of the Tertiary volcanosedimentary basins to the south

of the Rhodope Massif since the Miocene (Fig. 1.4 & 1.5). The major faults which

bound the horst-grabens are essentially vertical wrench faults trending mainly

NW-SE and NE-SW. The NW-SE faults are antithetic and the NE-SW faults are

13
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Figure 1.5: Major lineaments and airborne magnetics interpretation in the West Rhodope
Zone (Tsombos and Skianis, 1993).
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synthetic to the main dextral fault system of the north Aegean trough (Fig. 1.5).

The system of dextral faults appears to be repeated north of the Aegean trough.

The angle between the trend of the major dextral faults (strike slip faults) and

the bounding normal faults of the graben/hörst systems, as well as normal faults

of the pull- apart basin boundaries, is highly oblique 35-45. The other main

lineaments are in E-W and N-S directions and represent younger tectonic ele¬

ments. The whole area seems to be a transpressive zone.

The same NW-SE, NE-SW, E-W and N-S directions can be identified in smaller

scale in large Landsat TM images and air photographs, and have more or less

constant directional density and frequency. Lineaments in other directions seem

to have only local significance. The NW-SE, NE-SW, E-W and N-S lineament pat¬

terns are persistent in all geological units, including the young basins, or may rep¬

resent reactivated older fractures superimposed on all younger geological units.

The kinematics of the regional structures, the relationships between mineralisa¬

tion and tectonism, as well as the location of the mapped lineaments and their zo-

nation, are important factors for exploration. In particular, the control and distri¬

bution of the vein type mineralisation in northern Greece are in many cases of

similar orientation to the deduced fracture patterns.

1. 4 Igneous Activity

According to Fytikas et al. (1980) volcanic activity was widespread throughout

the whole southern Balkan and the northern Aegean region during the Tertiary.

Published isotopic data shows that the Aegean region volcanism was first ex¬

pressed in the north (Bulgaria) during the Cretaceous and progressively was

spread to the south, through northern Greece, during the Oligocene to Lower

Miocene, to develop the currently active south Aegean volcanic arc. The northern

Aegean Tertiary calc-alkaline magmatism is documented in a belt, which extends

15



in an E-W to NE-SW direction from the NE continental Greece to the central Ae¬

gean and into the central Anatolia. There is a clear discrimination in the type of

the north-eastern Greece magmatic activity, with volcanic and subvolcanic rocks

dominating the eastern Rhodope Zone and co-magmatic plutons dominating the

Western Rhodope Zone. This activity was accompanied by large acidic intrusives

which penetrated both the Rhodope Massif and the Circum Rhodope Belt rocks.

More specifically the Western Rhodope Zone itself contains only co-magmatic

plutons.

The plutonic intrusives of the Rhodope Massif (Fig. 1.6) have Eocene to Miocene

ages, Table 1.1, (Meyer, 1968; Theodorikas, 1983; Soldatos, 1985; Kyriakopoulos,

1987) with the exception of the Elatia granite which is Upper Cretaceous (Solda¬

tos, 1985). The most intense period of magmatism was during the Oligocene and

early Miocene (38 ma to 17 ma). The compositional trend was calc-alkaline mon-

zodiorite-granodiorite-granite and some are accompanied by skarn mineralisa¬

tion.

Table 1.1: Summary of age determinations of intrusions in the Rhodope Massif.

Location

Kavala

Xanthi

Maronia

Kirki-Leptokaria

Samothraki

Vrondou

Pangeon

Symvolon

Elatia

Skaloti

Intrusion Type

Granodiorite

Granite

Monzodiorite

Monzodirite

Granite

Granitoid

Granodiorite

Granodiorite

Granodiorite

Granitoid

Age (Ma)

13.9+0.06 to 15.9+0.1

26.311.0 to 28.8+0.7

28.910.1 to 29.8+1.3

31.8+0.6 to 31.9+0.5

18.5+0.3 to 18.9+0.4

29.111.0 to 33+2.0

13-15

21

87.7+27

Oligocene

Determination Method

Rb-Sr

Rb-Sr, K-Ar

Rb-Sr

Rb-Sr, K-Ar

Rb-Sr, K-Ar

K-Ar

K-Ar

K-Ar

K-Ar

K-Ar

Reference

Kyriakopoulos, 1987

Kyriakopoulos, 1987

Kyriakopoulos, 1987

Kyriakopoulos, 1987

Kyriakopoulos, 1987

Marakis, 1969

Meyer, 1968

Dinter, 1995

Soldatos, 1985

Soldatos, 1985
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The Elatia granite intrusion hosted in the Skaloti granitoid in the north Western

Rhodope Massif, was dated to Upper Cretaceous age (Soldatos, 1985), being the

southern edge of the Bulgarian Mesozoic granite belt in the central Rhodope. In

the northern Western Rhodope Massif the Oligocene plutonism is accompanied

by co-magmatic volcanic rocks (Haidou) filling a major Tertiary basin (Innocenti

et al., 1984).

1. 5 Metamorphism

Penological research in the Greek part of the Rhodope Massif showed that the

Rhodope Zone has been involved in an Alpine metamorphic cycle and has been

affected by three successive metamorphic episodes. The basement gneisses, which

are considered to be the oldest rocks in the Massif, show evidence of high pres¬

sure metamorphism in the upper amphibolite-eclogite phases, which presumably

reflects an early period of regional metamorphism in the Lower Cretaceous (Mpo-

skos and Perdikatsis, 1987; Mposkos, 1994; Wawrzenitz and Mposkos, 1997). The

overlying Transitional Zone rocks and marbles have reached only middle-upper

amphibolite phases (Mposkos and Liati, 1993; Mposkos, 1994) during an Upper

Cretaceous to Middle Eocene 45-50 Ma (K/Ar in hornblende from amphibolites,

Liati, 1986) period of regional metamorphism. The metamorphic cycle was com¬

pleted by retrograde metamorphism in the lower greenschist facies under low-

pressure conditions in Miocene 13.9 to 15.9 Ma (Rb/Sr Kyriakopoulos, 1987) and

15.5 to 17.8 Ma (K/Ar, Kokkinakis, 1980).

Significant differences in metamorphic grade (in the order of 100 - 150C), for

the medium- pressure metamorphic event, identified in closely lying rocks (sepa¬

rated by a distance of less than 200 m) led to the delineation of an intervening dis¬

continuity that subdivides the Rhodope Zone (Fig. 1.7) into two major tectonic

units:

the lower tectonic unit, characterised by metamorphism at conditions of the

upper greenschist facies, and

18
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the upper tectonic unit, characterised by medium to upper amphibolite facies

conditions.

P-T conditions of high-pressure metamorphism in the lower tectonic unit, as es¬

timated in metabasic rocks and orthogneiss, are 550 - 600 C and 14 - 15 kbar for

the eastern Rhodope part (Mposkos, 1989 c; Liati and Mposkos, 1990), and 520C

and 12 kbar for the western part (Mposkos, 1991,1994; Mposkos et al., 1998). In

the upper tectonic unit, peak metamorphic conditions are uncertain because of the

extended, high-grade metamorphic overprint. However, temperatures of 750 -

775 C and 13.5-16 kbar pressures have been estimated for the eclogite facies in

the eastern Rhodope part (Mposkos et al., 1994).

Based on the data described above, it is apparent that the two tectonic units

show abrupt differences in the grade of metamorphism within the Rhodope Zone

and in their alpine tectonometamorphic evolution. The lower tectonic unit was

subducted following a path with a mean temperature increase of 11.5 C/km. The

uplift part (Fig.1.8) was isothermal from a maximum depth of 53 km up to 14

km, and was accompanied by dehydration reactions (Mposkos, 1994). The upper

tectonic unit was subducted following a path with a mean temperature increase of

15.5 C/km. The uplift part is characterised by continuous cooling, with various

cooling rates for different periods, and was mainly accompanied by hydration re¬

actions (Mposkos, 1994). In eastern Rhodope, the high pressure metamorphism of

the upper tectonic unit took place in the lower Cretaceous, while that of the me¬

dium pressure is of Palaeocene age. It is possible that during Palaeocene the lower

tectonic unit was subducted under the upper tectonic unit (Mposkos and Liati,

1993).

In conclusion, the Rhodope Massif constitutes a major complex geotectonic

element of the internal Hellenides. It is distinguished in the Lower and Upper tec¬

tonic units. Three deformation phases have been recognised in both units related

to the main metamorphic events of the area. Deformation phase A (Di), of ap¬

proximately N-S direction, is illustrated by recumbent isoclinal folds and a pri-
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Figure 1.8: P-T conditions of the high-pressure metamorphism and uplift path of the

Lower tectonic unit from Rhodope Massif (Mposkos, 1994).
W.R: Uplift path for West Rhodope Zone

E.R: Uplift path of East Rhodope Zone.

mary lineation due to axial plane schistosity. These early structures have been mostly

destroyed by those of Deformation phase B (D2) of NE-SW direction. B phase, which is

the main Deformation phase, is characterised by close to isoclinal folds associated to

pervasive lineation. Open folds of NW-SE axes mark deformation phase C (D3). The

relative time of deformation and metamorphism in the Rhodope Massif is schematically

illustrated in Table 1.2. Igneous activity and properties of ore forming fluids of the

Asimotrypes mesothermal gold deposit are also shown.
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CHAPTER 2

GEOLOGY OF THE PANGEON MOUNTAIN REGION

2.1 General Statement

The Rhodope Massif, on the basis of geological criteria is divided in the Eastern, Cen¬

tral and Western Rhodope Zones. The boundaries between the Western and Central

Rhodope Zones are not clearly defined. However, geographically the Western Rho¬

dope Zone includes the following areas: Falakron, Lekani, Pangeon, and Menikion

Mountains and the island of Thassos in the Greek territory. The Pirin and the South¬

ern Rila Mountains occur in Bulgaria. (Fig. 1.1 & 2.6).

2.2 Geological Setting of the Pangeon Mountain Region

The Pangeon Mtn. region geologically belongs to the Western Rhodope Zone and

forms a highly uplifted, dome like, horst structure composed of metamorphic rocks

of Palaeozoic-Mesozoic age, Oligocene magmatic rocks (Meyer, 1968; Kyriakopoulos,

1987), and sedimentary rocks of Upper Miocene age to Recent (Xydas, 1978).

The metamorphic rocks, consisting mainly of marbles, schists, augen gneisses and

amphibolites cover the largest part of the area (Fig. 2.1). Granodioritic stocks intrude

all the metamorphic formations and occur along a NE-SW trending line. The sedi¬

mentary rocks, which are terrestrial, lacustrine to brackish and marine deposits are

mainly developed in the western and north-western parts of the area.
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Based on field observations, the metamorphic rocks of the area are sub-divided

into three main lithological units Figure 2.2:

A Carbonate Unit, of approximately 500 m thick, which is exposed in the N-

NW part of the mountain, comprising white coarse grained marble of calcific compo¬

sition with intercalations of dolomite lenses. The lower part of this Unit consists of

banded-crystalline siliceous marbles.

A Transitional Unit of approximately 600m thick, representing a strong

sheared zone consisting of the following alternating horizons:

a. two-mica gneiss horizons, the thickness of which ranges between 5-15m

b. albite-gneisses, 20-25m thick

c. banded crystalline siliceous marble blocks, from a few to 70m thick, or crystal¬

line siliceous marble lenses of longer dimensions

d. amphibolite lenses or blocks. These are metamorphosed basaltic rocks com¬

prising of amphibole (hornblende/actinolite) and plagioclase.

A Gneiss Unit more than 1000 m thick, exposed at the south-east part of the

mountain, comprising leucocratic muscovite, orthogneisses and augen gneisses.

Granitoids of different generations are emplaced into the supracrustal sequence

and are seen to underlie the entire mountain. These rocks are medium grained to lo¬

cally porphyritic granodiorites and include the Mesolakia, Podochori, Mesoropi and

Nikisiani bodies. At their contacts with the banded-crystalline siliceous marble, small

skarn bodies are found, e.g. at Skala. The Pangeon granodiorites are considered as

late kinematic with calc-alkaline composition (Meyer, 1968; Kokkinakis, 1980; Kyria-

kopoulos, 1987). The actual age of these granites, with the exception Nikisiani (dated

as Oligocene 13-15 Ma, Meyer, 1968), is not known, though it is likely they are ge-
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Quaternary and Tertiary
sediments

Carbonate unit

Transitional unit

Gneisses unit

Figure 2.2: Lithostratigraphic unit of the Asimotrypes, Pangeon (Chatzipanagis et

al., 1991).
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netically related to the Kavala granite with an age of 13.9 to 15.9 ma (Kyriakopoulos,

1987).

The lithostratigraphic sequence of the Pangeon region metamorphic rocks is

analogous to that of the Falakron region (Chatzipanagis et al., 1983; Chatzipanagis,

1991), and representative of the western Rhodope lithostratigraphy (Fig. 2.3).

The sedimentary rocks have an average thickness of approximately 500m. The

oldest sediments found in the area are represented by terrestrial and lacustrine to

fluvio-lacustrine deposits of Upper Miocene occurring at the margins or ridges of the

trough basins (Xydas, 1978). These sediments are unconformably developed on the

palaeorelief of the metamorphic rocks. The Neogene is completed with terrestrial

and rather coastal lacustrine to brackish and marine deposits of Pliocene age. The

predominant rock types are marls, calcific sand, calcific sandstones, limestones, silica

sands, conglomerates, coarse-grained sand and volcanosedimentary formations. The

Pleistocene consists of sand, pebbles, sandy clays, and conglomerates, cobbles etc.

The Holocene consists of recent deposits, deltaic and coastal deposits, recent lacus¬

trine sediments and peat at the Philippi basin.

2.3 Structural Evolution of the Pangeon Mountain Region

The overall structural evolution of the Western Rhodope Zone rocks shows a com¬

plex development of corroborative tectonometamorphic events. Intensive plastic and

brittle deformation characterise the Zone. The successive stages of the plastic defor¬

mation are overprinted almost in all metamorphic rocks, giving a complete picture of

the tectonometamorphic evolution of the Rhodope Massif. Associated brittle defor¬

mation, though of great metallogenic significance, is difficult to interpret because

only traces of the last tectonic events can be recognised in the field (Chatzipanagis et

al., 1992). The major elements of brittle deformation comprise compressional thrust
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Tertiary and Quaternary
sediments Pangaeo Mountain

Carbonate Unit

Transitional Unit

Gneiss Unit

Magmatic rocks

Figure 2.3: Lithostratigraphic correlation of the Falakro and Pangeon Mountains

(Chatzipanagis, 1991).
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and shear structures, and extensional fault zones. The latter are clearly obtained by

integrated interpretation of remote sensing, aeromagnetic, and seismic data com¬

bined with field observations.

a. Ductile Deformation

Pre-Alpine to Alpine ductile deformation, dominated by various styles of isoclinal

folds, is referred to five stages by Patras et al., (1986); Sakellariou, (1988); Patras et al.,

(1989), or three stages by Chatzipanagis et al., (1992), with corresponding metamor-

phic fades (Sidiropoulos, 1991).

The first fold system, consists of a few closed faults of relict character. This fold¬

ing system, which is probably related to the last stages of eclogite metamorphism,

was not found in the Pangeon Mountain area.

The second fold system, produced by NE-SW movements during the early Eo¬

cene, consists of numerous isoclinal compressional folds with axial planes striking

NW-SE and dipping approximately 50 to the NW. This fold system characterises all

the metamorphic rocks of the Pangeon Mountain and it is best expressed in the areas

of Rhodolivos and Proti, at the northern edge of the mountain (Fig. 2.1). This folding

system, related to the medium pressure type metamorphism, has caused reversals of

the lithological units locally, and in many cases has increased the initial rock thick¬

ness with overthrusts and reversed faults (Fig. 2.4 & 2.5).

The third fold system is comprised of open drag folds and dissolution cleavages

as a result of decompressional forces during the uplift of the (post middle Miocene)

Rhodopian orogeny. Major host-graben structures began to develop at this time and

movement has continued to the present.
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Figure 2.4: Structural sketch map illustrating the evolution of the Pangeon and Symvolon
Mountains (Chatzipanagis, 1991).
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Pliocene-
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Serbomacedonian
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Figure 2.5: Schematic sketches illustrating the evolution of the West Rhodope Zone

and the Serbomacedonian Massif, from Middle Miocene up today (Chatziuanagis,
1991).
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These events were followed by erosion and general peneplanation in the Rhodope

area. During the early Miocene, the Pangeon relief was no more than 200-300m high

according to Psilovikos and Vavliakis (1982).

b. Brittle Deformation

Compressional tectonics developed NE-SW, NW-SE and E-W trending low-angle

thrust and shear faults, referred to as palaeo-thrust and neo-thrust structures (Fig.2.4

& 2.5). The palaeo-thrust are tectonometamorphic thrusts, of pre-Oligocene age, de¬

veloped during reverse folding and faulting, in relation to medium pressure meta-

morphic conditions (Arvanitidis, 1993). The Stratoni-Varvara thrust-fault in the Ser-

bomacedonian Massif and the Nestos thrust-fault in the Western Rhodope Massif are

characteristic palaeo-thrust structures. The NW-trending and SW-verging Nestos

thrust fault (Papanicolaou and Panagopoulos, 1981; Dimadis and Zachos, 1986) or

block-dividing fault (Ryaskov and Dobrev, 1989) marks the overthrusting relation¬

ship of the basement gneiss on the upper carbonate unit, referred to as Sidironero-

Paranesti, and Pangeon Units respectively (Patras et., 1989; Kilias and Mountrakis,

1989). The Sidironero-Paranesti unit is also considered to belong to the allochthonous

high metamorphic supergroup of the Nestos nape (Ivanov, 1989), comparable in

lithology to the Serbomacedonian Zone. The T-Zone lithostratigraphic sequence of

the Western Rhodope Zone, being also a regional scale shear zone of great metallo-

genetic significance (Hellingwerf et al., 1991; Galanopoulos et al., 1992), is probably

co-tectonic with the compressional palaeo-thrust event.

The neo-thrust event developed during the Middle Miocene, and it is mainly ex¬

pressed by the north-eastward thrusting of the Serbomacedonian Massif on the

Western Rhodope Zone (Fig. 2.6). The thrust front reached the imaginary line, which

starts at Angistron and ends at Thassos Island (Fig. 2.6), (Chatzipanagis et al., 1992).

Also, during this thrust on the Pangeon Region shear structures and reversed faults
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Figure 2.6: The tectonic relationship between the West Rhodope Zone and the Serbo-
macedonian Massif (Chatzipanagis, 1991).
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were created in the rocks underlying the Rhodope Massif. The compressional fault

structures are the oldest ones, which were recognised in the field.

During the late Miocene to early Pliocene, the brittle tectonism is represented by

extensional structures, comprising two major post-thrust fault systems with gener¬

ally NW and SE trending directions (Kronberg, 1969). These high-angle faults are

vertical and created horst-graben structures (Fig.2.4 & 2.5). The graben type struc¬

tures also identified as a number of long, steep and deep major lineaments by remote

sensing and aeromagnetic data (Tsombos, 1993). In spite of the block dividing charac¬

ter of the extensional brittle deformation, to form major rift basins, co-tectonic intra-

faults are frequently developed within the blocks themselves.
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CHAPTER 3

ORE GEOLOGY

3.1 General Statement

The Pangeon Mountain Region contains typical examples of vein and shear-

hosted precious and base metal deposits. The majority of these deposits were

worked in ancient times and especially during the Alexander the Great era, as it is

reported by several authors of that time. Kronberg and Schenk (1974), and Xydas

(1984) initially mapped the area. During the course of this work only minor

modifications were made on the existing geological maps.

The north eastern part of the Pangeon gives a vertical section, greater than 1000

metres, through a vein and replacement style of mineralisation, with a strong

structural control on each occurrence. NW-SE sub-vertical fractures can be traced

up the mountain with a paragenesis changing from pyrite + quartz to pyrite +

quartz + sericite to sericite in the granite underlying the Asimotrypes, and finally

pyrite + chalcopyrite + malachite where the veins cross overlying marble and

schist units (Fig. 3.1).

The granite is overlain by an alternating sequence of shear banded marbles and

sheared supracrustals including amphibolites, gneisses and schists (Fig.3.2). These

are in turn overlain by 700 meters of massive marble which is considered as

equivalent to the Falakron marble of the Drama region (Chatzipanagis, 1991). The

contacts between sheared marbles and sheared supracrustals are low angle shear

thrusts, dipping 30 to the east. Lenses of arsenopyrite - pyrite quartzite are
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Figure 3.1: Vertical profile through the Asimotrypes mineralising system, showing
also Au contents (ppm) in ore and marbles.
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T.Z: Transitional Zone

C.U: Carbonate Unit
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developed along these thrusts where sheared marble overlies supracrustals (Fig.

3.3).

In some cases the NW-SE veins can be seen crossing the ore lenses developed

on the thrust. The continuation of the NW-SE vein system can be seen several

hundred metres higher up, on the top of the mountain at Avgo (Pilaf Tepe),

where oxidised veins are found in ankeritised marble. Limonite and manganese

bearing minerals and minor malachite traces mostly fill the veins.

Gold is found in the sub-vertical vein system which cuts all the rock lithologies

including the granite, as well as in the irregular pods and lenses of ore developed

along the thrusted contacts between the marbles and schists. The highest gold

values come from the arsenopyrite-pyrite pods at Asimotrypes, with average

values ranging from 11 to 16 ppm, decreasing to 1 to 3 ppm at the margins of the

pods. Sulphides, which are developed as small lenses in the sub-vertical vein

system above the main ore lenses, either through later remobilisation or during

the first mineralising phase, are also high in gold, from 4 to 13 ppm. Gold values

decrease rapidly at higher levels, in the minor orebodies at Avgo (Pilaf Tepe), and

are low in the sub-vertical vein system where it crosses the granite and marbles

below Asimotrypes.

3.2 The Asimotrypes Ore

The area around the ancient galleries and the more recent adits opened by the

Bauxite and Parnasse Mining Company in 1978, were studied in detail (Fig.3.4).

The main adit runs into the north side of a very steep gully. The trend is about

130. To the east of the adit there is an excavated pod (Fig.3.4) of variably

alternating arsenopyrite-pyrite quartzite, in contact with shear banded marble.

The marble shear banding, and presumably the thrust fault it parallels, dips

gently 30 to the east with the result that the shear plane is exposed at
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Figure 3.4: 3K-D adit (Photo) and situation sketch, also showing Au distribution in

(ppm).
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successively higher levels to the west. The Nikisiani granodiorite was found at a

depth of 180 meters underneath the Asimotrypes ore, during drilling operations.

The shape of the ore is important in this particular 3K-D adit. It is elongated in

the W-E plane of the thrust and constitutes an irregular pod about 1-2 m wide, 1

m thick and 5 m long. A large part of the ore has been removed during mining

operations, leaving a skin of sulphides against the marble to the north. The

contact between the ore and marble is a 2 cm zone of limonitised material.

Importantly there is no skarn development between the sulphides and marble; a

calc-silicate assemblage as such is absent. However, the underlying schist seems

to have been biotised / phlogopitised, which is the skarn equivalent. Not

exposed, but documented, is the orebody that is developed along the contact

between the marble and schist, with the marble being replaced. The most

remarkable structure is the alternation in the ore quartzite, which parallels to the

shear banding in the marble, with more or less quartz rich bands, from lmm to

2cm thick. The arsenopyrite and pyrite are equigranular, mostly 1 to 2 mm grains,

either defining the foliation or forming more massive ore.

Pyrite is volumetrically less important than arsenopyrite in this outcrop,

although dump material from the adit shows abundant pyrite. Sphalerite and

galena are also present. The ore is not a boudin, since nothing here is being

boudinaged. The form of the ore and it relationship to the host rocks mean that it

must be post shearing. It seems to be a replacement of the marble, with the actual

shear banding of the marble being mimicked by the arsenopyrite. Pyrite is

developed in NW-SE sub-vertical veins in the ore quartzite. Possibly pyrite is

disseminating laterally into an arsenopyrite quartzite along the relict foliation.

Within the adit entrance there is a major brecdation zone. This NW-SE plane

dips 55 N, with abundant limonitisation around the fragments, and truncates the

western end of the ore.
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The marble above the orebody is crosscut by sub-vertical NW-SE fractures,

which are often coated with limonite. In general where the fractures cut schist or

gneiss, only limonite is found, whereas where a marble unit is crossed, sulphides

may developed. However, this is not uniform since to the east of the adit entrance

a NW-SE fracture crossing schists contains malachite, stained quartz as well as

thin lenses of arsenopyrite and pyrite.

Quartz boudins are abundant in the sheared marble, and boudinaged and

folded quartz layers are seen in the schist sequence. The schist close to the

orebody is hydrothermally altered, with what appears to be phlogopitisation. The

minor skarn bands with magnetite some 150 m east of the orebody are simply

skarn bands in the sheared marble, unrelated to the mineralisation.

Some 200m west up the gully there are several adits dating from the time of

Philip of Macedonia - large enough for hopeless slaves to creep into, and often

quite extensive. One of these adits was sampled (Fig. 3.5), since it shows the

relationship between the thrust related arsenopyrite-pyrite quartzite and the NW-

SE fractures. Above the thrust plane ore a NW-SE shear is strongly limonitised,

and contains sub-vertical lenses of arsenopyrite-pyrite. These are small compared

to the main ore at this point, but indicate an upward movement of hydrothermal

fluid along the fracture system, linking the two. The main question here is

whether the ore was remobilized from the thrust by later superposition of NW-SE

fractures, or whether the fractures acted as channel ways for hydrothermal fluids.

These may have resulted in both the sub-vertical mineralised veins and the

replacement bodies in marble along the shear contact at the same time. The latter

seems more likely at present.

A further point is the potential role of the Nikisiani granidiorite in this and

other mineralisations. The presence of the granodiorite intersected by drilling and

cropping out in the general region suggests a possible genetic link with the
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Figure 3.5: Situation sketch of the archaeological adit 3K-H, located above the main

adit 3K-D, Asimotrypes. Au contents (ppm) are also illustrated.
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mineralisation. This is supported by the presence of weak foliation and NW-SE

fracturing together with dispersed pyrite.

3.3 The Avgo (Pilaf Tepe) Mineralisation

The passage of the NW-SE veins through the upper massive marble can not be

easily observed, as this is a vertical cliff face. However, the top of the mountain

known as Pilaf Tepe (rice bowl) is scarred with trenches and pits from former

activity. The Bauxite and Parnasse Mining Co has driven an adit into the

mountain (adit 18 S), but without crossing any mineralisation. Breccia zones in

massive marble with ankeritisation and limonite is also present. E-W joints with

malachite coatings were observed and suggest intersections with another

structural control. Interestingly this is the same fault direction recorded in the

granite below Asimotrypes, which seems to divide the mineralised from the non-

mineralised regions.

The marbles are locally intensively sheared and phlogopitised, a further

similarity with the topographically lower Asimotrypes system. Massive marble,

which is not brecciated, is karstified, with large open space solution joints. The

ancients removed all the limonitised material in the larger veins, so only sample

dump material was sampled. Gold values are small and only minor chalcopyrite
and malachite were found.
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CHAPTER 4

PETROLOGICAL STUDIES OF THE PANGEON LITHOLOGICAL UNITS

4.1 General Statement

Carbonate rocks comprise the main part of the Western Rhodope and the Serbo-

macedonian Zones. In the Pangeon Region, marbles form an upper thick unit above a

sequence of interlayered gneisses, calcareous schists and banded marbles. The mar¬

bles of the upper thick unit of the Pangeon Region have been correlated with the

major Falakron Series marbles of the Drama area (Chatzipanagis, 1991). The contact

between the Falakron marble and the underlying Pangeon gneiss lies within an early
Miocene ductile shear zone (Dinter, 1998). The spatial link of these rocks to the

hosted mineralisation is studied in order to define their association and an attempt is

made to determine their depositional environment.

The penological studies in the Pangeon Mountain were carried out in the top sec¬

tion of the central area, namely Avgo and Mati, lithostratigraphically corresponding
to the Upper Carbonate Unit, and in the north east area of the mountain along the

road from Nikisiani to Asimotrypes, which corresponds to the underlying Transi¬

tional Zone, and the basement gneiss unit.

Based on textural and mineralogical criteria and the participating degree of the

non-carbonate minerals (insoluble residue), Varti-Matarangas and Eliopoulos (1992);

Varti-Matarangas (1993); Varti-Matarangas and Eliopoulos (1999), classified the car-
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bonate rocks of the Pangeon Region in six types. Types I to III belong to the Upper

Carbonate Unit (Falakron Series), whereas Types IV to VI belong to the Transition

Zone.

4.2 Petrography of the Upper Carbonate Unit (Falakron Series)

The complex geological history of the studied area has affected the evolution (gene¬

sis, diagenesis and metamorphism) of the crystalline carbonate rocks. All primary

features of these rocks have been obliterated. Therefore recognition of the modifica¬

tions and overprinting of the earlier carbonate rocks is difficult to determine.

Field observations showed that the Carbonate Unit, of 500m thickness, consists of

alternations of thick-bedded massive grey marble, with thin banded, dark marbles of

smaller thickness. (Plates: 4.1/a-d & 4.2/a-c). The laminated texture in the old sur¬

faces is in the form of relief (PL 4.1/a,d). Locally they present a cellular structure.

Type I: Laminated grey to rose-colored marble

The lamination of this marble type is exposed on the weathered surfaces and it is the

result of the different degree of dissolution of the dolomitic and calcific laminae (PL

Petrographic studies showed alternations of thin laminae of medium to coarse¬

grained dolomite with coarsely grained dedolomite (PI 4.3/a). The coloured laminae

consists of coarse non-planar dolomite crystals with very fine opaque minerals, while

interstitial dedolomite crystals are developed. Sometimes when the dedolomitisatioh

process is increased the dolomite crystals seem to be residual and float within the

dolomite crystals. In other cases, the alternating calcitic laminae do not show

dedolomitisation, the size of calcitic crystals has a wide range -fine to coarse- and the

46



MARBLES FROM THE UPPER CARBONATE UNIT (FALAKRON SERIES)

PLATE 4.1

a: Thick bedded laminated marble, locally with cellular texture in a small quarry.

b & c: Alternation of light grey, massive calcitic marble (Petrographic Type III) with
thin banded, dark grey to rose marble (Petrographic Type I) in smaller thickness.

d:. White grey, thick bedded dolomitic marble. The laminated texture in the old sur¬
faces is in the form of relief. Cellular texture is locally present.

PLATE 4.2

a & b: Alternations of white calcitic marble strongly deformed (Petrographic Type
III) with beige dolomitic marble (Petrographic Type II).

c : Alternation of grey laminated marble (Petrographic Type I), with calcitic marble
strongly deformed.
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PLATE 4.2
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texture seems cataclastic. The content of the non-carbonate minerals such as quartz,

phyllosilicates and amphiboles is variable and ranges between 15-45%.

Type II: Fine grained non-ferroan dolontitic marble

This type of marble is widespread in the Pangeon Mountain. It is usually comprised

of unimodal, slightly elongated, non-planar dolomite crystals (equal size, sutured

boundaries) with clear-rims and cloudy centres (PL 4.3/b,c). Elongated cavities with

dedolomite are common. (PL 4.3/d).

In the lower part on the main Carbonate Unit (Falakron series) the dolomitic mar¬

ble microscopically appears polymodal with non-planar boundaries. The coarser

dolomite crystals form saddles with many inclusions and usually are dedolomitised

(PL.4.3/d).

This type of marble is strongly tectonised in the upper part of the main Carbonate

Unit and less so in the lower parts of the same sequence. Finally, this type often cor¬

relates with iron and manganese mineralisation.

Type III: Grey calcific marble, strongly deformed

Type III marble is characterised by high tectonism and calcific porphyroblasts usu¬

ally float within a finer calcific matrix. It alternates with the Type II (laminated mar¬

ble) and occurs mainly in the upper members of the main Carbonate Unit (PL 4.4).

4.3 Petrography of the Transition Zone Lithologies

The carbonate rocks of the Transitional Zone are medium to thick bedded, laminated

to banded, impure calcific marbles and beige to grey in colour (PL 4.5/a,b). They al-
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MARBLES FROM THE UPPER CARBONATE UNIT (FALAKRON SERIES)

PLATE 4.3

a: Fine to medium laminated marble (Petrographic Type I). Alternations of thin
laminae of medium grained dolomite with coarsely grained calcite, probably
dedolomite (After Varti- Matarangas, 1993).

b: Fine to medium grained dolomitic marble (Petrographic Type, II). The dolomite
crystals are unimodal and non-planar (After Varti- Matarangas, 1993).

c: Similar to the previous. Elongated cavities fill with dedolomite (After Varti- Mata¬
rangas, 1993).

d: Saddle dolomite crystal in the centre of the cavity (After Varti- Matarangas, 1993).
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PLATE 4.4

Plate 4.4: Calcitic marble strongly deformed (Petrographic Type V),
with calcite pyroclasts and calcite which floats within fine calcitic

crystals (After Varti- Matarangas, 1993).
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ternate with gneiss and amphibolite beds and are best developed adjacent to the

major auriferous mineralisation of Asimotrypes (Plate 4.5/a-c).

Type IV: Impure calcific marble

The impure calcific marble (siliceous marble) are medium to thick bedded, laminated

to banded, multicoloured and alternate with gneiss and amphibolite beds (P1.4.5/a-

c). It is coarse-grained with slightly elongated and deformed ferroan-calcitic crystals.

Boundary shapes are sutured to slightly curved and exhibit deformational twinning

and undulate extinction (PL 4.6/a & 4.6/b).

The content of the non-carbonate minerals is considerable and ranges between 13-

33%. Quartz is the main non-carbonate mineral and usually is finely crystalline or

forms elongated aggregates with undulate extinction. Mica and amphiboles, as well

as opaque minerals are observed in lesser amounts.

Type V: White, very coarsely crystalline calcific marble

Type V marble occurs in the path from Nikisiani to Asimotrypes and at the contact

with the granite. It is very coarsely crystalline with lobate to sutured boundaries,

slight deformational twinning and contains numerous small dolomite exsolutions

(PI. 4.6/c).

Type VI: Dedolomitic marble

Type VI marble is found in the Asimotrypes area and it is associated with the miner¬

alisation hosted within the marbles. It is characterised by mortar texture, deforma¬

tional twinning and numerous residual dolomite crystals (PL 4.6/d).
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MARBLES FROM THE TRANSITION ZONE

PLATE 4.5

a: Laminated to banded, medium to thick bedded, beige impure calcitic marble (Pet-
rographic Type IV), alternated with gneiss and amphibolite, in contact with ore at

Asimotrypes.
b: Grey laminated, thick bedded calcitic marble (Petrographic Type IV), alternating
with amphibolite beds.

c: Alternations of medium bedded calcitic marbles with schist rocks.

PLATE 4.6

a: Impure calcitic marble (Petrographic Type IV) from the lower part of the Transi¬
tion Zone. Coarse grained with slightly elongated ferroan-calcite crystals, sutured
boundaries, deformational twinning and mortar texture (After Varti- Matarangas,
1993).
b: Impure calcitic marble (Petrographic Type IV). Coarse grained with slightly elon¬
gated and deformed ferroan calcitic crystals. The boundary shapes are slightly
curved to suture (After Varti- Matarangas, 1993).
c: Very coarsely grained calcitic marble (Petrographic Type V) with suture bounda¬
ries of the crystals (After Varti- Matarangas, 1993).
d: Dedolomitic marble (Petrographic Type VI). It is characterised by mortar texture,
deformational twinning and numerous residual dolomite crystals (After Varti- Mata¬

rangas, 1993).
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According to field observations made, more specifically the thickness and banding

of marbles of both the Carbonate Unit and the Transition Zone, petrographic studies

and the comparison to other carbonate sequences mainly of the Pelagonian tectonic

zone, the depositional environment of these rocks seems to be shallow marine (plat¬

form or shelf) environment.

The gneiss and mica schist rocks of the Transition zone are mainly pelitic gneisses

and two-mica schists alternated with impure calcific, coarsely crystalline and

dedolomitic marbles and amphibolitic rocks. Petrographic studies showed that these

pelitic gneisses and two-mica schists consist of albite, oligoclase, quartz, phen-

gite/muscovite, biotite, K-feldspar, garnet, chloritoid, chlorite and clinozoisite.

Quartz veins and small lenses, with minor amounts of sericite, chalcedony and

epidote crosscut the two-mica schist rocks of the area. These veins also contain minor

amounts of arsenopyrite and pyrite in equal ratio. Some chalcopyrite was found in¬

tensively altered to malachite and goethite. Altered chalcopyrite, was also found

within the schist rocks.

The amphibolitic rocks of the Pangeon area are made up the following mineral as¬

semblage: hornblende, garnet, albite, pyroxene, clinozoisite, chlorite, quartz, rutile

and titanite. Also, minor metallic minerals were found in these amphibolitic rocks,

such as pyrrhotite, which is often altered to a mixture of pyrite-marcasite-pyrrhotite

characterised as "intermediate product". The pyrrhotite crystals are orientated par¬

allel to the rock schistosity. Usually pyrrhotite is accompanied by chalcopyrite hav¬

ing the same form and orientation. Titanite and leucoxene are the typical accessory

minerals. The metallic minerals described above are typical for these amphibolitic

rocks and they do not show any genetic link to the main ore in the studied area. Also,

the effect of retrograde metamorphism is apparent on these metallic minerals.
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The presence of hornblende in the amphibolites and garnet in the amphibolites
and metapelites show that the metamorphic conditions in the Pangeon region ex¬

ceeded those of the middle-greenschist phases. The coexistence of albite and oligo-
clase in all rock types of the study area suggests that during the metamorphic evolu¬

tion of the Pangeon region ,
the degree of metamorphism did not exceed the condi¬

tions defining the boundary of the greenschist to amphibolitic phases ( albite-

oligoclase zone). The P-T conditions for the high pressure metamorphism have been

estimated at 520 C and 12 kbar by Mposkos (1991,1994), based on the highest Si (6.9)
value in phengite of orthogneisses and the garnet formation in the metapelites.

4.4 Gneiss Basement Unit

The basement gneisses are actually orthogneisses representing magmatic rocks of the

pre-Alpine basement which have been folded and metamorphosed at the same time

as the overlying sedimentary and igneous rocks (Mposkos et al., 1989). The or¬

thogneisses are distinguished as leucocratic gneisses characterised by the mineral as¬

semblage K-feldspar, albite, oligoclase, quartz, phengite/muscovite and two-mica

gneisses with biotite as additional phase. Frequently, in the same rock sample, phen¬

gite and phengitic- poor muscovite coexist. The highest Si values are usually found at

the centre of phengites exhibiting zonation, whereas the lower Si values are found at

the edges of large crystals, which are replaced by secondary biotite and muscovite.

This change in the chemical composition of the white K-micas by phengitic to less

phengitic, as it is mainly expressed in crystals characterised by zoning, is interpreted

by Mposkos (1998) as an evidence of the geological evolution of the Pangeon region
from high pressure metamorphic conditions to lower ones.

4.5 Nikisiani Granodiorite
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The Nikisiani granodiorite is characterised by the following mineral assemblage:

quartz, sericite, plagioclase, microcline, biotite, epidote and opaque minerals. In its

peripheral parts the granodiorite shows banded textures with minor re-

crystallisation phenomena and retrograde metamorphism. Pyroxene, epidote and

titanite form thin bands surrounding the phenocrysts. In places, especially close to

the crosscutting quartz veins in contact with the marble, the granodiorite shows in¬

tense alteration -sericitisation- transformed to "white granite". The altered granite

contains minor pyrite strongly altered to goethite. This "white granite" is intensively
tectonised showing cataclastic texture becoming arenaceous.

Numerous quartz veins, with strong marginal development of biotite crosscut the

granodiorite. The quartz veins contain abundant iron hydroxides (goethite) and re¬

sidual pyrite. Four microscopic, 1-5 m, native gold crystals were located in goethite
microfissures.

60



CHAPTER 5

MINERALOGY

5.1 General Statement

Mineralisation at Asimotrypes is of replacement and shear-zone-controlled style and

has the form of irregular quartzite pods or lenses and quartz veins cross-cutting the

marbles. The ore occurs in both deformed and undeformed varieties with the former

constituting the largest part of the overall sulphide mineralisation. The deformed ore

predates the undeformed one and is characterised by intense mylonitisation.

Quartz is a major gangue mineral intimately associated with the sulphide ore and

can be distinguished in two types. Type A quartz occurs in well-developed individ¬

ual euhedral to anhedral crystals. Some triple point junctions occur, interpreted to be

the result of hydrothermal recrystallisation. This quartz type shows evidence of de¬

formation, exhibiting wavy extinction and micro-fracturing. Type B quartz is micro-

crystalline, recrystallised and surrounding Type A quartz crystals. Chalcedony and

muscovite-sericite, both in lesser amounts, comprise the gangue material of the min¬

eralisation.

The Asimotrypes ore has a relatively simple sulphide mineral assemblage of arse-

nopyrite, pyrite, and gold, which forms the bulk of the sulphide material. This ore

variety is highly deformed during the brittle/ductile deformation and shear zone

precipitation and it is associated to regional uplift. This deformation implies that this
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mineralisation variety slightly predates main the deformation. The undeformed ore

variety is also comprised of arsenopyrite, pyrite and gold with subordinate

sphalerite, galena, chalcopyrite, pyrrhotite, tetrahedrite-tennantite, marcasite, covel-

lite and malachite (Table 5.1).

Ore/Gangue
Phase

Quartz

Chalcedony

Muscovite-sericite

Arsenopyrite

Pyrite

Gold

Pyrrhotite

Chalcopyrite

Marcacite

Tetrahedrite-tennantite

Sphalerite

Galena

Limonite

Malachite

Covellite

Free gold

Deformed

-

Undeformed Oxidized

Table 5.1: Generalised paragenetic sequence for the Asimotrypes ore. Deformed ore

is associated with the main deformation stage resulting from regional uplift. Defor¬

mation is shown by cataclastic arsenopyrite and pyrite crystals.
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Gold mainly occurs as submicroscopic grains in arsenopyrite and less in arsenian

pyrite, rarely as free native gold and finally as free gold in the oxidation products.

The term submicroscopic gold includes both solid solution and colloidal size (< l^m

in diameter) particulate gold. Both forms are refractory to direct cyanidation , even

after pulverising the sulphide minerals.

5.2 Sulphide Mineralisation

The ore mineral association consists of arsenopyrite, pyrite, with subordinate pyr-

rhotite, sphalerite, chalcopyrite, tetrahedrite-tennantite, and galena, and very rare

microscopic native gold.

Arsenopyrite is the dominant ore mineral at Asimotrypes. Arsenopyrite generally

occurs as coarse idiomorphic grains; single crystals are found dispersed in the host

rock or are concentrated in individual coarse-grained assemblages of large idiomor¬

phic crystals with pyrite. Arsenopyrite is often intensely fractured and displays cata-

clastic texture where replaced by quartz (Plate 5.1). Frequently arsenopyrite shows

intense alteration phenomena at the rim.

Electron microprobe analysis of arsenopyrite crystals showed As-contents range

from 41.66 to 43.00 wt% with a mean value of 42.47 (0.37) and S-contents range from

21.76 to 23.59 wt% with a mean value of 22.72(0.50). Co, Ni and Sb contents are be¬

low the detection limits of the wavelength dispersion analyser. As/S ratios in the ar¬

senopyrite core, outer zones and crystal rims are constant. This internal chemical

homogeneity of the arsenopyrite crystals is indicative of chemical equilibrium inter¬

nally and also with other phases in the Fe-As-S system. In addition, the composition

of deformed and undeformed arsenopyrite is the same, indicating similar conditions

of formation.
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Plate 5.1: (a) Replacement of arsenopyrite prismus by quartz, (b) Advanced
replacement of arsenopyrite by quartz along cataclastic fractures.
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Plate 5.2: Advanced replacement of pyrite prismus by quartz along cataclastic
fractures.
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Pyrite occurs either as scattered crystals intensely fractured and altered or inter-

grows with arsenopyrite forming massive agglomerates in varying proportions

(Plate 5.2). However, pyrite is always less abundant than arsenopyrite. In some sam¬

ples pyrite displays cataclastic textures with quartz replacing pyrite (Plate 5.3). Fre¬

quently these crystals are found as residuals-inlets within pseudomorphs of goethite-

limonite. Electron microprobe analyses of pyrite crystals showed As-contents rang¬

ing between 1.12 to 1.66 wt%.

Pyrrhotite is strongly localised. It is pervasively oxidised and is associated with mar-

casite and chalcopyrite. Partial to complete replacement of pyrrhotite by marcasite or

pyrite or both is common.

Marcasite replaces pyrrhotite, or is less commonly mutually intergrown with pyrite

or pyrrhotite. It is interpreted to be a primary constituent of the ore and probably re¬

flects an increase in sulphur and /or oxygen fugacity during late waning stages of

mineralisation (Oberthur et al. 1997).

Sphalerite presence is erratic in the form of irregular scattered crystals replaced by

galena and/or chalcopyrite. Sphalerite crystals contain chalcopyrite drop-like inclu¬

sions of varying size, in some cases with a consistent orientation indicative by an ori¬

gin by exsolution. Frequently the rims of sphalerite crystals are transformed to

covellite or are crosscut by covellite veinlets.

Chalcopyrite is a trace constituent of the ore with one notable exception where it oc¬

curs as residual in the oxidation products (Fe-hydroxides+malachite) (Plate 5.4).

Tetrahedrite-tennantite is also a trace constituent of the ore accompanying chalcopy¬

rite either in the form of crosscutting veinlets or surrounding chalcopyrite crystals.
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Plate 5.3: (a) Equilibrium deposition of arsenopyrite and pyrite (more yellow).
(b) Intergrowth of arsenopyrite prismus and pyrite (more yellow).
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Plate 5.4: Oxidised chalcopyrite in goethite.
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Plate 5.5: Gold in goethite veinlets, as oxidation product.
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Likewise the galena presence is erratic. In the samples where galena was located al¬

though it forms macroscopically visible crystals, it shows intense alteration around

its boundaries and appears as residual within cerrussitic mass and hydroxides.
Covellite traces within the oxidation products indicates the initial copper presence in

the galena.

Free gold is rare in the ore and only few grains (< 20 m ) were observed, in Fe-

oxide (goethite) veinlets with residual pyrite. Gold grains were generated in goethite

fissures, in all likelihood during the oxidation processes (Plate 5.5), exsolved from

sulphide minerals. Electron microprobe analysis showed Au-contents range from

90.92 to 91.16 wt%, Ag-contents from 8.54 to 8.87 wt% and Fe-contents from 0.20 to

0.24 wt%.

5.3 Mineralogical Position of Gold in the Sulphide ores

Two representative arsenopyrite-pyrite samples from the Asimotrypes ore were se¬

lected for further studies in order to establish the occurrence of gold. Assays of the

samples are given in Table 5.2.

Sample No. Au (gr/t) As (%) S (%)

As-14 9.90 32.30 21.90

As-31 16.60 34.70 19.30

Table 5.2: Assays of arsenopyrite-pyrite ore from Asimotrypes.
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Gold Minerals

Only a small number (5) of free native gold grains of * 20 m were identified in the

panned concentrates of the studied samples (Plate 5.6). The intensive cyanidation

tests on pulverised (-5 m) samples indicate that only 10% of the gold is soluble in

cyanide. Therefore, the remaining 90% must be submicroscopic gold.

SIMS Spot Analysis

Secondary ion mass spectrometry (SIMS) was performed in order to:

quantify the gold contents in arsenopyrite and pyrite and

to map the distribution of gold in individual crystals of the same minerals.

Fifty particles of arsenopyrite and pyrite from samples As-14 and As -31 were

analysed. The results are shown in Table 5.3

Mineral n Au Range (ppm) Mean (ppm)

Arsenopyrite 34 0.47-29.00 11.59

Pyrite 16 0.14-11.00 2.31

Table 5.3: Gold contents of the Asimotrypes ore, as determined by SIMS spot analy¬

ses on different grains, n= number of grains

Results from the Asimotrypes ore indicate that both arsenopyrite and pyrite are

carriers of gold and there is a preferred enrichment of gold in arsenopyrite relative to

pyrite. The submicroscopic gold concentration in pyrite ranges from 0.14 to 9.3 ppm

with an average of 2.3 ppm gold. The arsenic content of the pyrites ranges from 0.01
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20 um

Plate 5.6: Free native gold particles (bright yellow).
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to 3.8 wt% averages 1.4 wt%. Submicroscopic gold and arsenic in the pyrite structure

are positively correlated (Fig. 5.1). Submicroscopic gold concentrates preferentially in

the arsenopyrite (Fig. 5.2). The gold concentration in arsenopyrite ranges from 0.5 up

to 29 ppm with an average of 12+5.3 ppm. The partition coefficient of gold between

arsenopyrite and pyrite is 12/2.3=5. The large range of gold concentrations of the

spot analyses point to the inhomogeneous distribution of gold in the arsenopyrite

crystals. The gold deportment is depicted graphically in Figure 5.3.

SIMS Gold Distribution Mapping

SIMS gold distribution mapping revealed the actual location of gold in sulphide crys¬

tals. Submicroscopic gold in arsenopyrite shows a zoned distribution pattern (Plates

5.7, 5.8 and 5.9) with several zones of high concentration interspaced with zones of

low gold content. The inhomogeneous distribution of gold in arsenopyrite implies an

intermittent supply of gold, and less likely periods of arsenopyrite crystal growth
with gold being allowed to incorporate in the lattice followed by periods where it

was not.

The excellently preserved gold distribution patterns in arsenopyrite suggests that

remobilisation of gold played a minor role in the post-depositional history of the

gold mineralisation investigated in this study and that most of the sulphide-bound

gold is still in place where it was crystallised first.
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Figure 5.1: Correlation of gold with arsenic in the Asimotrypes pyrites.
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Figure 5.2: Histogram of submicroscopic gold concentration in arsenopyrite and

pyrite in the Asimotrypes ore.
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Sample Number

Au Content

Native Au

Submicroscopic Au

in pyrite

in arsenopyrite

As-14

9.9 g Au/t

100%

88.4

84.4

As-31

16.6 g Au/t

100%

96.4

Figure 5.3 : Graphical illustration of gold deportment in the Asimotrypes ore.
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Plate 5.7: Zoned distribution of gold in arsenopyrite. The dark spot is the area

analyzed. The gray scale gives the range of gold content noted in the particle.
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Plate 5.8: Zoned distribution of gold in arsenopyrite. The dark spot is the area

analysed. The gray scale gives the range of gold content noted in the particle.
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Plate 5.9: Zoned distribution of gold in arsenopyrite. The gray scale gives the range
of gold content noted in the particle.
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CHAPTER 6

GEOCHEMICAL CHARACTERISTICS OF THE ASIMOTRYPES

ORE AND ITS CONTIGUOUS ROCKS

6.1 General Statement

This chapter is devoted to the chemical characteristics of the Asimotrypes gold

deposit and its contiguous rocks, with emphasis on major and trace element

analyses of whole rocks and ore samples. The salient features to emerge from in¬

spection of the chemical data is the substantial variations in bulk chemical compo¬

sition exhibited by the different rock groups as defined in previous chapters. The

data are discussed below with respect to its significance within each rock group,

and in relation to the overall chemical environment of the deposit.

6.2 Major and Trace Element Geochemistry

Abundances of major element oxides and selected trace elements of the Asimo¬

trypes gold deposit are reported in Tables 1-10, Appendix III.

Marbles

S1O2 contents in the analysed marbles range between 0.30-6.30 wt% except for the

ones adjacent or close to the ore which are highly silicified and where the SiO2

content ranges up to 35 wt% (Table 1, Appendix III).

The spatial distribution of Fe2O3 parallels that of SiOz The average concentra¬

tion of total iron in the carbonate rocks of Pangeon is 482 ppm (Table 2, Appendix
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III). However, the average concentration of iron in the calcitic marbles is 200 ppm,

in the dolomite 508 ppm, and in the impure calcitic marbles of the Transitional

Zone is 743 ppm. Finally in the dolomitic marbles near to the Fe, Mn, mineralisa¬

tion the iron concentration ranges from 5692 to 7216 ppm.

The correlation of iron with the percentage of insoluble residue is relatively

strong (Fig. 6.1) and the iron enrichment is developed in the non-carbonate min¬

erals. The average values of dolomites (508 ppm) fall within the range of those at

other deep burial and/or late diagenetic dolomites (Mattes and Moyntjoy, 1980;

Budaj et al., 1984; Zenger and Dunham, 1988). The relatively high concentration of

iron could be attributed to burial diagenetic modification because of its large dis¬

tribution coefficient D Fedoi >1. The iron concentration of the impure calcitic mar¬

bles in the Asimotrypes area is likely due to the hydrothermal activity and the

high percentage of the non-carbonate minerals.

The average manganese concentration in the carbonates of Pangeon is 91 ppm.

(Table 2, Appendix III). More specifically, the average manganese concentration

in the dolomitic marbles is 120ppm and that in the calcitic ones is 23 ppm. In the

impure calcitic marbles of the Transitional Zone the average concentration is

123ppm, and in the dolomitic samples near to the Fe, Mn mineralisation ranges

from 2964 to 3294 ppm.

The correlation of manganese with the percentage of insoluble residue is rela¬

tively strong (Fig. 6.1), and the manganese enrichment is also developed -like

iron- in the non-carbonate minerals. The correlation of manganese with iron is

also similar. The relatively low manganese content, as well as the low Fe and Sr

contents may be attributed to the high degree, of major element stoichiometry of

these dolomites. However, the manganese concentration in dolomites is relatively
enriched compared to the calcitic marbles.
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Figure 6.1: Correlation of Fe, Mn and Sr concentration and the insoluble

residue. Correlation of Sr is low, implying incorporation into the lattice

of carbonate minerals.
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The average Sr concentration for the carbonate rocks of the Transitional Zone

of the Pangeon is 156 ppm, whilst for the carbonates of the main carbonate se¬

quence, mostly dolomites and de-dolomites, is 76ppm Table 2, Appendix III),
with a mean value for the 1000 Sr2+/Ca2+ dolo (weight) of 0.3

.

The correlation between Sr concentration and the percentage of insoluble resi¬

due is very low (Fig.6.1) implying that the Sr has probably been incorporated into

the lattice of the carbonate minerals.

The Sr concentration of the Pangeon dolomites is lower than all Holocene

dolomites but it is comparable to many ancient dolomites (Baker and Burns, 1985;

Andrews et al, 1987; Machel and Anderson, 1989). Al-Hashimi (1976) and Veizer

et al., (1978) have demonstrated values of 1000 Sr2+/Ca2+ of 0.1 to 0.3 for post

burial dolomite and values > 1.0 for early diagenetic ones.

In dolomite, Sr is assumed to substitute almost exclusively for Ca, and not for

Mg (Behrens and Land, 1972; Kretz, 1982). Thus, the correlation between the Sr

content and MgCC>3 participation into the dolomite lattice (Fig.6.2) may suggest

that the Pangeon dolomites originated from solutions with a ratio Sr2+/Ca2+ simi¬

lar to that of the composition of the marine environment (Vahrenkamp and Swart,

1990). This environment is in agreement with interpretation based on C, O stable

isotope results (Chapter 8).

Chemical analyses performed on carbonate samples close to the main minerali¬

sation of Asimotrypes (samples As-1, As-4, As-5, As-7, As-9, As-12, As-32, Table 1,

Appendix III), showed enhanced contents of base metals and gold, but only in

samples adjacent to the ores. However, these enhancements are restricted to a few

tens of centimeters, implying that the replacement of marble is governed by fluid

release along shear planes. The escape of hydrothermal fluids along these struc¬

tural pathways meant that was no reason for any diffusion into the surrounding
marbles.
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Orebodies

The salient geochemical features of the Asimotrypes carbonate-hosted gold de¬

posit (Tables 3-10 Appendix III) are as follows:

The sulphide ore is dominated by Fe2O3(T) at a level of 37.72 wt% 8.93 (Ia), S

at 157,100 ppm 61,400 (Ia), and SiO2 21.12 wt% 12.5 (Ia), reflected in the

presence of arsenopyrite, pyrite and quartz.

Gold is found in the sub-vertical vein system, which cuts all the rock litholo-

gies including the granite, as well as the irregular pods and lenses developed

along the thrusted contacts between the marbles and schists. The highest gold
values come from the arsenopyrite-pyrite pods at Asimotrypes, with average

values apparently ranging from 11-13 ppm, decreasing to 1-3 ppm at the mar¬

gins of the pods, and reaching highest values of 26 ppm (Fig.3.1). Sulfides,

which are developed as small lenses in the sub-vertical vein system above the

main ore lenses, during the same mineralizing phase, are also high in Au,

from 4-13 ppm. Au values decrease rapidly at higher stratigraphic levels, in

the minor mineralisation at Avgo (Pilaf Tepe), and are low in the sub-vertical

vein system where it crosses the granite and marbles below Asimotrypes.

Silver distribution is variable and is concentrated at a level of 31.71 ppm

49.6 (Ia). Silver exhibits a distinct correlation with gold, indicating a close as¬

sociation between Ag and Au deposition. Ratios of Au/Ag are scattered, but

the median ratio for the ore samples is 0.9, whilst the Ag/Pb ratio is 0.03

0.02 (Ia).

The arsenic content of auriferous rocks is high at 188,637 ppm + 166,473 (Ia)

compared to most mesothermal gold deposits (Boyle, 1979), endorsing the so-

called Au-As association. The correlation between Au and As is high, and
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taking into account that Au is located within the arsenopyrite crystals, sug¬

gests that the deposition of these two elements was contemporaneous.

Antimony shows the same overall distribution as arsenic through the sul¬

phide ore, but at lower absolute levels 58.5 ppm 25 (Ia).

Bismuth is a characteristic element in association with many types of hy¬
drothermal gold deposits, but analytical data are notably scarce. According to

the present study and data from literature, Bi is commonly enriched in meso-

thermal gold deposits, although concentration varies markedly between indi¬

vidual deposits. At Asimotrypes Bi contents are at the level of 53.4 ppm 20

(Ia). Bismuth shows a fairly good correlation with Au implying coeval depo¬
sition of the elements.

Cr, Ni and Co are mostly somewhat depleted in carbonate-hosted mesother-

mal gold deposits (Boyle, 1979). However, concentration of Cr is at the level

of 159.6 ppm 60 (Ia), of Ni at 66.15 ppm 20.8 (Ia), and of Co at 69 ppm

17 (Ia). These enrichments may be attributed to the host-rock Ethology ex¬

plained by the presence of metabasite and ortho-rocks in the Transitional

Zone.

In general, the base metal content is uniformly low with Cu content at a level

of 550 ppm 956 (Ia), Pb at 1660 ppm 1987 (Ia), and Zn at 1391 ppm + 1864

(Ia). Base metals do not show any affinity for gold, nor does Mn or Fe. This

agrees with the observations that malachite bearing vein samples are low in

Au.

Statistical analysis has been used to define geochemical associations i.e., ele¬

ments that are geochemically linked or follow each other using the Microstat

Software Package (1987). Critical values for (1-Tail, 0.05) and (2-Tail, 0.05) are +/-

0.42706 and 0.49580 respectively. The correlation coefficiant for the ore grade
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samples with >0.5 ppm Au shows that As, S, Bi and Ag are well correlated with

gold (Table 6.1). These correlations are relatively high given the complex nature of

hydrothermal systems. Although the magnitude of correlation varies, these ele¬

ments also correlate well with each other.

However, it is apparent that there is a single auriferous mineralising system,

which at this structural level is low in base metals. In this respect the Asimotrypes

gold deposit conforms to the general pattern of highly enriched rare elements

coupled with low degrees of enrichment of base metals, characteristic of many

mesothermal lode gold deposits of both vein and chemical sedimentary types.
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CHAPTER 7

FLUID INCLUSION STUDIES

7.1 General Statement

The main mineralisation of the Pangeon Mnt is located at Asimotrypes and it is of

shear-zone controlled and replacement style. All fluid inclusions studied are

hosted in gangue quartz. On the basis of microscopic examination this quartz can

be distinguished in two types:

Type A quartz occurs in well-developed individual euhedral to anhedral crys¬

tals. Some triple point junctions occur which are interpreted to be the result of

hydrothermal recrystallization. Type A quartz crystals show evidence of deforma¬

tion, exhibiting wavy extinction and micro-fracturing. Type B is microcrystalline,

recrystallised quartz, surrounding Type A quartz crystals.

All fluid inclusions studied are concentrated towards the sulphide-rich areas in

quartz which is always in intimate association with the ore sulphides and appears

to be in textural and physicochemical equilibrium with them (Plate7.1).

7.2 Background Information

The application of fluid inclusion investigations to geological problems has been

the subject of numerous studies since the middle of nineteenth century (Sorby,
1858; Smith, 1953). Fluid inclusion examination began with the search for the

composition of the ore-forming fluids and the conditions of genesis of mineral

deposits. Today fluid inclusion work, excellent reviews of which are given by
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Plate 7.1: Quartz in textural equilibrium with (a) undeformed (euhedral)
and (b) cataclastic arsenopyrite replaced by quartz precipitated in active

tectonic environment (shear zone). Random distribution of primary Type
I inclusions.
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Roedder (1972, 1979, and 1981) and Sheppherd (1985), has become an important
tool in understanding ore formation processes. Unless otherwise noted the fol¬

lowing discussion is based on Roedder's summaries.

Elaborate classification schemes have been proposed by a number of re¬

searchers based on the differing proportions of solids, liquids and vapour in the

inclusions. Such schemes are certainly easier to use than paragenetic classifica¬

tions because subjectivity is kept to a minimum. A simple but convenient classifi¬

cation scheme based on the major phases present at room temperature is dis-

cribed by Shepherd et al., (1985) and it is illustrated in Table 7.1.

When a mineral grows or recrystallises in a fluid medium, any process that

hinders the growth of prefect crystals may result in the trapping of small portions
of the fluid within the crystal. If this fluid is trapped during the formation of the

enclosing crystal, the result is a primary fluid inclusion (Plates 7.2, 7.3, 7.4 a). Sec¬

ondary inclusions form when later and entirely different fluids become trapped in

cracks during fracturing or recrystallisation (Plate 7.6b). A fluid inclusion that be¬

comes sealed off in a healing fracture before complete formation of the hosting

crystal is called pseudosecondary.

Thus, fluid inclusions represent microscopic samples of fluids associated with

the geological history of the hosting crystal.

Distinction of types of fluid inclusions is of fundamental importance. This is

because the time elapsed between the trapping of primary and secondary inclu¬

sions, sometimes millions of years, may result in inclusions of extremely different

compositions and P-T histories. Unfortunately, the inclusion's origin cannot al¬

ways be inferred with certainty because of lack of genetic information. The most

important suggestive criteria for assigning a primary origin is the absence of any

planar arrangement. Primary inclusions can be reliably identified if they can be

related to growth phenomena. Secondary inclusions usually mark healed frac-
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INCLUSION TYPE ESSENTIAL PHASES TYPICAL EXAMPLES ABBREVIATION

VIonophase liquid

Liquid-rich,
two-phase

Vapour-rich
two-phase

Monophase vapour

Multiphase solid

Multisolid

Immiscible liquid

Glass

L=100%

L > 50%

V = 50 to 80%

V 100%

L = variable

S < 50%

S > 50%

L,V variable

GL > 50%

o

o

o
not shown

L

L + V

V + L

V

S + LV

S + LV

L2V

GLVS

Table 7.1: Qassification scheme for liquid and melt inclusions in minerals based upon

phases observed at room temperature. L = liquid, V = vapour, S = solid, GL = glass. (After
Shepherd et al., 1985).
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tures, are small in size, on the order of a few microns (^), and exhibit divergent
behaviour during heating or freezing runs, in relation to nearby primary inclu¬

sions. Pseudosecondary inclusions are in many cases associated with fractures or

dislocation surfaces that can be traced to an abrupt ending within the crystal.

Of importance in the application of fluid inclusion research, is whether neck¬

ing down or leakage has occurred. Necking down is the process during which

large inclusions split into a series of smaller ones.

If several liquid and/or gas phases have been equilibrated in the original in¬

clusion, the resulting inclusions will exhibit varying phase ratios and a spread of

microthermometric data. Choosing isolated inclusions to work on would elimi¬

nate inclusions that might have necked down. Leakage is the non-isochemical ad¬

dition or removal of inclusion material between trapping and experiment. Some

inclusions have been shown to leak under conditions that do not represent those

in nature. The systematic variation of results from fluid inclusion studies of zoned

single crystals (Roedder, 1963) and the demonstrated endurance of CCVrich in¬

clusions to severe internal pressure at high temperatures (Roedder, 1965), consti¬

tute the greatest evidence against significance leakage.

The trapped fluid may be homogeneous, carry solid particles in suspension,

or be composed of two or more immiscible components or have a gas phase (i.e.

boiling fluid). Water, with rare exceptions, is the dominant constituent. The total

dissolved salt content is usually expressed in terms of equivalent weight percent

NaCl and is referred to as salinity.

After trapping, the inclusion follows a cooling and presumably isochoric and

isodensity path and it may evolve into a multiphase inclusion. The phase transi¬

tion or unmixing occurs on the solvus of the corresponding chemical system. A

trapped aqueous brine may evolve a vapour bubble because of differential ther -
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mal contraction of the host crystal and the fluid. These bubbles should be distin¬

guished from the primary gas trapped from a boiling fluid.

If an H2O-CO2 fluid was trapped at elevated temperature, it may unmix be¬

low 300 C, due to H2O, CO2 immiscibility, and separate CO2 into a second fluid

phase. If the CO2 concentration is high enough, or if the CO2 partial pressure ex¬

ceeds 75 bars, gaseous CO2 will separate usually below the critical point for pure

CO2,31 C.

Regularity both of phase volume ratios and microthermometric data provides
the best evidence available that the original fluid was homogeneous.

Decreasing solubility during cooling may result in saturation with respect to

the solutes and precipitation of daughter minerals.

The composition, density and P-T conditions of the inclusions can be deduced

from univariant phase transitions observed during cooling and heating experi¬

ments assuming that the inclusions retain constant volumes. The temperature of

homogenisation of the inclusion (Th) on heating can be used to estimate the trap¬

ping temperature. Th represents a minimum trapping temperature and a pressure

correction must be applied to compensate for the pressure differences between

the experiment and the trapping, and for the salinity of the fluid. An independent
estimate of pressure or temperature can be used for pressure correction. Pressure

can be evaluated from fluid inclusion studies in a limited number of cases (Roed-
der and Bodnar, 1980). Salinity can be estimated by freezing the inclusion and re¬

cording the temperature at which melting of the frozen inclusion occurs. The

melting point is related to the composition of the dissolved salts. In CO2-bearing
inclusions, the clathrate compound, carbon dioxide hydrate (CO25.75 H2O) forms

upon freezing. When pure this compound melts at about +10 C (Collins, 1979).
Solutes present depress the clathrate melting point, providing an estimate for the

salinity, for the case of CCh-inclusions.
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However, methane and solutes exert opposed effects on the clathrate melting
behaviour: thus melting point data from CCVbearing liquid inclusions are not

easy to interpret without knowledge of the gas species present.

Cooling CC>2-rich inclusions to temperatures as low as -80 C causes freezing
of the CO2 phase. Melting of solid CO2, upon heating, in equilibrium with liquid
and vapour CO2, at a temperature of T=-56.6 C, is the best indication yet avail¬

able in fluid inclusion research, of the purity of the CCVphase. The temperature

(T -56.6 C) where three CO2 phases (solid, liquid, vapour) coexist is known as

the CO2 triple point (Weast, 1974).

The values obtained for homogenisation temperatures and salinity can then

be compared to experimental results on fluid phase equilibrium systems: H2O +

NaCl (Sourirajan and Kennedy, 1962); H2O + CO2 (Takenouchi and Kennedy,

1964); H2O + CO2 + NaCl (Takenouchi and Kennedy, 1965; Gehring te al, 1979;

Hendel and Hollister, 1981) in order to infer trapping conditions (i.e. boiling or

immiscibility) or interpret homogenisation behaviour.

7.3 Compositional Types of Fluid Inclusions

A total of 19 samples were collected from this locality for fluid inclusion mi-

crothermometry and gas analysis. These wafers were prepared from quartz asso¬

ciated with massive, arsenopyrite-pyrite quartzite lenses in contact with the shear

banded marble from the main adit at Asimotrypes, and sub-vertical sulphide-

bearing quartz veins, cutting gneiss-schist, which has been biotized/ phlogopi-
tized, 10m north-west of the main adit.

The shape of the inclusions is irregular to euhedral with smooth boundaries

and their size varies from <4 to 20 m. Three types of inclusions are recognised in

the studied samples on the basis of the phases present at room temperature:
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Type I:3-phase COi - rich inclusions: L1 + L2+V

Type I aqueous-carbonic fluid inclusions are restricted in Type A quartz and

are characterised at room temperature by visible amounts of both undersaturated

aqueous liquid plus carbon dioxide and consist of three phases: liquid ftO-rich

(Li) + liquid CO2 (L2) + vapour CO2 (V). Type I inclusions are characterised by

highly variable CO2 to H2O ratios. (Plates 7.2 & 7.3). Type I inclusions are further

subdivided to Type la and Type Ib which are H2O- and CCh-rich respectively.
The vol. % of the CO2 phase, as estimated visually at 25 C, range from 10 to 50 in

Type la, although most inclusions contain between 20 and 30 vol. % CO2, and 70

to 90 in Type Ib (Fig. 7.1).

Type II: 2-phase inclusions: L + V aqueous

Type II aqueous fluid inclusions occur in Type A quartz and at room tempera¬

ture they contain both H2O liquid + vapour phases with L>V (Plate 7.4). The va¬

pour bubble typically occupies 10-20 vol. % of the inclusion volume. Clathrate

hydrate melting characteristics observed at temperatures above 0 C, indicate that

Type II inclusions actually contain traces of CO2, possible maximum 2.2 molal

(Hendequist and Henley, 1985).

Type III: Decripitated and/or leaked inclusions: V+L

Type III inclusions are small in size -up to 15 m- and range from irregular,

through elongate to ovoid in shape. They occur at the interfaces of dynamically

recrystallised Type B quartz and between grains of strained and unstrained Type
A quartz (Plate 7.5). They characterise the migration fronts of grain boundaries

and are interpreted as leaked and decripitated inclusions swept up by the bound¬

ary as it migrates through the strained material (Giles and Marshall, 1994). The

inclusions-free cores of recovered grains support this. Indeed, in highly recovered
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Plate 7.2: 3phase CO2-H2O Type I inclusions along intragranular fractures in quartz
Type A. Note the variable CO2/H2O ratios, implying immiscibility phenomena.
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# b

Plate 7.3: Variable CO2/H2O ratio in Type I inclusions indicating
immiscibility. Note that some inclusions in (a) have been decripitated to

vapour phase before homogenisation.
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H2O-rich fluid inclusions

COl-rich fluid inclusions

.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Degree of fill

Figure 7.1: Histogram showing the distribution of FbO-rich and CO2-rich
Type I fluid inclusions.
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Plate 7.4: (a) Type I fluid inclusions aligned along intragranular fractures,
suggesting quartz precipitation in a tectonic active environment (shear zone), (b)
Primary, low temperature, Type II, 2 phase liquid vapour, H2O inclusions.
Negative crystal shape.
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Plate 7.5: Type III fluid inclusions, (a) decripitated at grain boundaries of hy-
drothermally recrystallised quartz B, (b) leaked.
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(recrystallised) quartz, the frequency and size of inclusions diminishes until all

inclusions are eliminated. Kerrich (1976) and Wilkins and Barkas (1978) have sug¬

gested that the process of recovery and re-crystallisation progressively eliminate

both pre-existing inclusions and the grain boundary inclusions.

Type I inclusions are by far the most abundant followed by Types II and III in

decreasing frequency of occurrence.

7.4 Occurrence of Fluid Inclusions

All the fluid inclusions studied are hosted by clear domains of Type A quartz

crystals being in textural equilibrium with undeformed arsenopyrite. No work¬

able inclusions were found in Type B.

Fluid inclusions in quartz Type A may occur as: (a) irregular clusters randomly

distributed of Types I and II inclusions (Plate 7.2), (b) single isolated Type I inclu¬

sions, (c) irregular groups of Type I inclusions with variable CO2 / H2 O ratio

(Plates 7.2 & 7.3), and (d) trails along narrow well healed intragranular microfrac¬

tures of Type I inclusions (Plate 7.6). Occurrence types a, b, and c conform to those

suggested for primary fluid inclusions, whereas type d conform with pseudosec-

ondary origin (Roedder 1984). Most Type II inclusions occur along narrow well

healed transgranular microfractures (Plate 7.6) and are of secondary origin.

No systematic differences were observed in fluid inclusion characteristics in the

various samples studied.

7.5 Microthermometry Results

Types la and Ib inclusions described are considered to belong to the same ore-

forming event related to the sulphide mineralisation, whilst Type II inclusions re¬

port later introduction of meteoric water into the mineralising system.
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Plate 7.6: (a) Type I inclusions along intragranular fractures in quartz Type A
surrounded by microcrystalline recrystallised quartz Type B. (b) Type II,

secondary inclusions in transgranular well healed fractures, cross-cutting
quartz Types A and B.
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Type 1:3 phase CO2 - rich inclusions

Fluid inclusion microthermometric data and ore-fluid properties of Type I, H2O-

rich (la) and CO2 -rich (Ib) are summarised in Table 7.2.

Melting temperatures of solid CO2 (Tm co2 ) in Type I inclusions range from -

56.9 to -56.2, which is close to the triple point of pure CO2 (- 56.6 OC), suggesting
that the gas phase in the inclusions is predominantly CO2 and do not contain sig¬
nificant amounts of other dissolved volatiles such as CH4, N2 etc. This was also

confirmed by bulk volatile analyses (see later). Homogenisation temperatures of

the CO2 phase (Th C02) range from +25.5 to +29.4 C (Fig.7.2).

An initial and final melting temperature of ice were very difficult to observe

due to the small size of the inclusions and has not been recorded. Temperatures of

melting of clathrate hydrate (Tm ciath) in the presence of both liquid and vapour

CO2 range from + 7.7 to +8.8 C (Fig. 7.3).

Microthermometric data were used to calculate the salinity and bulk density of

the fluid (FLINCOR, Brown, 1989). Salinities range from 2.61 to 7.31 wt% NaCl

equiv. (Collins, 1979) and bulk densities from 0.88 to 0.99 gr.cnr3 for the H2O -

rich inclusions and 0.61 to 2.22 wt% NaCl equiv. and bulk densities 0.37 to 0.52

gr.cnr3 for the CO2 - rich inclusions.

Total homogenisation temperatures (Th) for Type I inclusions range between

275 C and 340 C and homogenisation to both liquid and vapour was observed.

Homogenisation to liquid occurred in the H2O - rich inclusions in the range 275

C to 335 C (median value 302 C) and homogenisation to vapour occurred in the

CO2 - rich inclusions in the range 308 C to 340 C (median value 322 C). Homog¬
enisation temperatures in either phase cluster between 300 C and 330 C (Fig.
7.3).
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Type la: H2O-rich
inclusions

Type Ib: CO2-rich
inclusions

-56.2 -56.3 -56.4 -56.5 -56.6 -56.7 -56.8 -56.9

CO2 melting temperature ( C)

0)

01

3
01

12

10

a 6j

B
Type Ia:H2O-rich

inclusionSrhomogenise
to liquid

Type Ib: CO2-rich

inclusions, homogenise
to vapour

25.5 26 26.5 27 27.5 28 28.5 29

CO2 homogenisation temperature (C)
29.5

Figure 7.2 : Microthermometry data on Type I inclusions in quartz.
A. Temperatures of final melting of CO?

B. Temperatures of homogenisation of CO2 liquid and vapour.
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Type la: H2O-rich inclusions

Type Ib: CO2-rich inclusions

7.5 8 9.5 10

Clathrate melting temperature (C)

42
c

I
011
O)

a
M-i
O

S3

12,

10

B

IType la: H2O-rich inclusions

I Type Ib: COZ-rich inclusions

1
270 280 290 300 310 320

Total homogenisation temperature (C)
330 340

Figure 7.3: Microthermometry data on Type I inclusions in quartz.
A. Temperatures of final melting of clathrate in Type I inclusions

B. Temperatures of homogenisation to liquid (L) or vapour (V) of Type I inclusions
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Type II: 2- phase inclusions

Fluid inclusion microthermometric data and ore-fluid properties of Type II inclu¬

sions are summarised in Table 7.3.

Temperatures of final melting of ice (Tm iCe) in type II inclusions range from -

5.9 C to -3.5 C (median value -4.7 C ). Temperatures of homogenisation were

between 135 C and 256 C always to the liquid phase. (Fig. 7.4).

Microthermometric data were used to calculate the salinity and bulk density of

the fluid (FLINCOR, Brown, 1989). Salinities were calculated using the equation
of Potter et al. (1978) and range from 5.62 to 9.05 wt% NaCl equiv. and bulk densi¬

ties from 0.84 to 0.98 gr.cnr3.

7.6 Bulk Volatile Analyses

Analytical results for the fluid inclusion volatiles are shown in Table 7.4. Water is

by far the dominant volatile component in the Asimotrypes fluid inclusions and

typically comprises 85.59 to 98.18 mole percent of the inclusion fluid. CO2 com¬

prises most of the remaining volatile component varying between 1.31 to 13.73

mole percent, whereas the other gases- CH4, N2, Ar, H2 and CO - are generally

present in amounts smaller than 1 mole percent. CO2, CH4, and CO abundances

may suggest a contribution of carbonic species from the marble host rock as a re¬

sult of interaction with the hydrothermal fluids. This confirms the aqueous nature

of mineralising fluids and provides good agreement with the previously made

fluid inclusion microscopic and microthermometric observations. The results of

the volatile analyses also show that the H2O/CO2 ratio increases towards the

mineralisation. In samples which contain predominantly CO2-bearing inclusions,

the composition estimated from microthermometry agrees closely with that ob¬

tained by bulk volatile analyses. Finally, data for the principal volatiles H2O, CO2,

combined with geological data shows that structures hosting gold mineralisation
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Table 7.3 zMicrothermometric data and ore-fluid properties of Type II inclusions
from the Asimotrypes area

Min.

Max.

n

Mean

Tmice

C

-5.9

-3.5

19

-4.7

Th

C

135 (L)
256 (L)

25

190 (L)

Degree fill.

%

10

20

25

15

Salinity*
t% NaCl equiv

5.62

9.05

25

7.33

Bulk dens.

gr.cm"3

0.84

0.98

25

0.91

m
,. Melting temperature

Th : Total homogenization temperature
* Calculated using FLINCOR (Brown, 1989)
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re 4

01

-1

Final ice melting temperature (C)

150 170 190 210 230 250 270

Total homogenisation temperature (^C)

Figure 7.4 Microthermometry data on Type II inclusions in quartz.
A. Temperatures of final ice melting in Type II inclusions.

B. Temperatures of homogenisation (to liquid) of Type II inclusions
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Table 7.4: Volatile data table (mole %) for samples from the Asimotrypes ore

Sample

AsF-1

AsF-2

AsF-3

AsF-4

AsF-6

AsF-7

AsF-8

AsF-9

H2O

96.992

98.184

96.716

94.770

94.245

97.845

85.592

91.130

CO2

2.366

1.315

1.666

4.995

5.160

1.620

13.739

8.750

CH4

0.075

0.093

0.519

0.016

0.008

0.202

0.014

0.006

N2

n.d

n.d

n.d

0.007

0.057

n.d

0.182

0.007

Ar

n.d

n.d

n.d

0.0027

n.d

n.d

0.0043

ltd

H2

0.134

0.145

0.705

0.320

0.325

0.050

0.281

0.047

CO

0.433

0.264

0.405

0.289

0.205

0.283

0.188

0.060

have acted as conduits for CO2-enriched, mixed volatile EbO-CCh-NaCl fluids

and it is considered a primary metallogenetic characteristic.

7.7 Compositions, Bulk Densities and Molar Volumes of Type I and II In¬

clusions

Bulk compositions, densities and molar volumes of Type I inclusions can be cal¬

culated in the system HbO-CCh-NaCl based on:

the clathrate melting temperature

the CO2 - phase homogenisation temperature (hence the CO2 - phase densities)
the visual volume percent estimate of the CO2 phases at room temperature.

The molar fractions of H2O, CO2 and NaCl, and bulk densities and molar vol¬

umes of the examined fluid inclusions were calculated using the FLINCOR

(Brown, 1989). Calculated bulk densities range from 0.88 to 0.98 gr.cnr3 (median
value 0.92) and 0.39 to 0.52 gr.cnr3 (median value 0.42) for Types la and Ib inclu¬

sions respectively (Table 7.2).
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Calculated bulk densities range from 0.84 to 0.98 gr.cnr3 with median value at

0.91 (Table, 7.3). The presence of a possible maximum of 2.2 molal CO2 in these

H2O - rich inclusions would decrease the density by 0.03 to 0.05 gr.cnr3

(Hendequist and Henley, 1985).

7.8 Fluid Immiscibility and P-T Conditions of Entrapment

Three types of fluid inclusions have been observed in quartz from the Asimotry-

pes mineralisation:

Type I, containing liquid H2O + liquid CO2 + vapour CO2 phase, with vary¬

ing CO2 to H2O ratios

Type II, containing IHbO-rich liquid + vapour phase with liquid > vapour, and

Type III, decripitated and/or leaked inclusions.

Textural observations suggest that Type A quartz and arsenopyrite, which is

the main gold host mineral, have co-precipitated and that the fluids represented

by Type I and Type II inclusions are related to the ore-forming event, whereas

fluids represented by Type III inclusions are related to the uplift.

The FLINCOR program (Brown, 1989) was used to calculate the pressure at

homogenisation for Type I inclusions. Using the Brown and Lamp (1989) equation
of state, calculated pressures range from 2.7 to 4.3 kbar and cluster around a me¬

dian value of 3.3 kbar.

Coexisting Type la and Ib inclusions with highly variable CC^/lHbO-phase ra¬

tios which homogenise into the H2O or CO2 phase over the same temperature

range (Fig. 7.3) strongly suggests the existence of a fluid which has undergone
CO2-H2O separation prior to or during entrapment as fluid inclusions (Ramboz et

al, 1982). The variable phase ratios of Type I inclusions may due to mixed en¬

trapment of variable physical proportions of immiscible HbO-rich and CCVrich
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components. In this context the CC^-rich Type Ib inclusions may represent an end

product of complete CO2-H2O phase unmixing; Type II inclusions corresponding
to the "tail" of the histogram of Figure 7.4 represent continuing effervescence

with decreasing temperature depleting the fluid in CO2.

Additional evidence that Type I inclusions represent the products of immisci-

bility is that the estimated salt contents increase in more tfcO-rich inclusions

(Fig.7.6). The higher salinity of HbO-rich Type la inclusions is produced by un¬

mixing of a relatively low salinity, CO2-H2O fluid, because salt will preferentially

partition into the H2O-rich liquid rather than into the CCVrich vapour (Bowers
and Helgeson, 1983b).

Fluid inclusions representing entrapment of immiscible fluids in the H2O-CO2-

NaCl system should homogenise on the solvus curve corresponding to the spe¬

cific immiscible fluid compositions at the pressure of entrapment. In the CO2-H2O

system, the solvus top at 2 kbar is at a temperature of 269 C and for a mole frac¬

tion of CO2 of 0.37 (Sterner and Bodnar, 1991). Addition of NaCl to the system

raises the crest of the solvus to higher temperatures and broadens its limbs, as il¬

lustrated in Figure 7.5 for a content of 6 wt% NaCl relative to the aqueous phase
at 2 kbar pressure (Hendel and Hollister, 1981; Bowers and Helgeson, 1983; Ge-

hring, 1986). Included in Figure 7.5 are total homogenisation temperatures ob¬

tained on Type I inclusions as a function of their mole % CO2 content. The overall

distribution of data in Figure 7.5 strongly suggest entrapment on a solvus curve.

Most data lie between 2 kbar CO2-H2O solvus and the CO2-H2O 6 wt% NaCl sol¬

vus. This is in agreement with the salinities estimated from clathrate melting data

of 2.61 to 7.31 equivalent wt% NaCl.

As shown in Tables 7.2 and 7.3 and Figure 7.6, Type la inclusions show a trend

of increasing salinity with decreasing temperature, whilst Types Ib and II inclu¬

sions define the opposite. Such salinity patterns indicate fluid unmixing (Types la

and Ib) and cooling and dilution (Type II).
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Figure 7.5: Total Homogenisation Temperature versus calculated mole % CO2

content of Type I inclusions. Also shown are solvi for the H2O-CO2 system at 2 kb

(Sterner and Bodnar, 1991) and the H2O-CO2-NaCl system at 2kb (Bowers and

Helgeson, 1983) and 3 kb and 6 wt% NaCl relative to the aqueous phase (Naden and

Shepherd, 1989) in Antona et al. (1994).
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Since immiscibility has been strongly indicated, fluid inclusion homogenisa-
tion conditions represent trapping conditions and thus depositional conditions of

Type A quartz and sulphide + gold mineralisation. Considering that for coeval

inclusions, the minimum homogenisation temperatures for inclusion homogenisa-
tion into the H2 O, and into the CO2, phases, are provided by inclusions trapping
pure end-members (Fig. 7.3B), minimum homogenisation T and P conditions of

275-310 C at fluctuating pressures between 2.8 and 3.3 kbar can be safely consid¬

ered as depositional conditions for gold mineralisation. Some of the most aque¬

ous-rich Type la inclusions homogenising at higher temperatures may represent

trapping of homogeneous fluids. Calculated pressures at homogenisation tem¬

perature for these inclusions are higher than the rest of Type I inclusions.

The mineralising fluids and P-T conditions of ore formations are not compati¬
ble with the high and medium pressure conditions (Fig. 7.7), however but more

closely approach those of the retrogressive greenschist phases ( 3-5 kbar; 350-400

C) conditions, thus indicating that ore emplacement is consistent with observa¬

tions in other fields within Pangeon and elsewhere.
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CHAPTER 8

STABLE AND RADIOGENIC ISOTOPES

8.1 General Statement

The purpose of this chapter is to discuss whole rock and mineral separates iso-

topic composition data obtained from selected ore samples from the Asimotrypes
mesothermal gold deposit and their enveloping calcitic marble host rocks. Sul¬

phur, carbon, oxygen, hydrogen and strontium isotopic analyses were performed
on the previously referred samples. Lead isotopic data incorporated in this study
are compiled from the available literature. Unless otherwise noted, discussions on

the background information of the various isotopes are based on Faure's (1986)
and Kerrich's summaries (1987). Finally, the aims of this chapter are to evaluate

the possible sources of sulphur, the depositional environment of host rocks and

mineralisation and finally to determine the origin of the H2O involved in ore

deposition.

8.2 Stable Isotopes

8.2.1 Sulphur Isotopes
8.2.1.1 Background Information

Sulphur has four stable isotopes with the approximate natural abundance of 32S =

95.02 %, 33S = 0.75 %, ^S = 4.2 % and 36S = 0.017 %. Although some studies have

been made on the variation of 36S/ 32S ratios in natural samples, the majority of

sulphur isotopic studies deal with the variation of 34S/32S ratios. The sulphur iso¬

topic composition of a compound is usually expressed as 8 MS value, which is de¬

fined as a per mil deviation of the ^S/^S ratio of the compound relative to that of
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the troilite phase of the Canyon Diablo meteorite:

5 34S = [ (34S/32S)spl.(34S/32S)std/ (3S/S)std ] X 103

Variations in the isotopic composition of sulphur are caused by two kinds of

processes: (i) reduction of sulphate ions to hydrogen sulphide by certain anaero¬

bic bacteria which results in the enrichment of hydrogen sulphide in 32S; (ii) vari¬

ous isotopic exchange reactions between sulphur-bearing ions, molecules, and

solids by which 34S is generally concentrated in compounds having the highest
oxidation state of S, or greatest bond strength (Bachinski, 1969).

Granitic rocks contain S with variable isotopic compositions because the

magma from which they crystallised either formed by melting of sedimentary
rocks or because the magma was contaminated with S of biogenic origin in the

crust. Some plutonic and volcanic igneous rocks of basaltic composition also con¬

tain fractionated S. It is unlikely that such variations are attributable to differences

in the isotopic composition of S in the mantle. Instead, they can be caused by (i)
contamination of magma with crustal S in a process called sulphurisation; (ii) al¬

teration by seawater; and (iii) outgassing of SO2 from the magma at different oxy¬

gen fugacities.

One of the principal objectives of the study of S isotopes in geology is to con¬

tribute toward a better understanding of the origin and conditions of formation of

sulphide ore deposits. The origin of sulphur in ore deposits is defined by the cal¬

culated isotopic composition of the total sulphur in solution (8 34Sss). Based on the

summaries of 8 34Sis data for 15 representative hydrothermal ore deposits made

by Rye and Ohmoto (1974), the 8 34Szs values fall into three groups. One group

has slightly positive 8 ^S^s values, the second has values between 5 and 15 per

mil, and the third has average values near 20 per mil. These groups reflect the

three major sources of sulphur in hydrothermal ore deposits.
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Deposits such as Providencia and Casapalca that have 8 34Sxs values near 0

per mil are associated with felsic igneous rocks. Their sulphur was probably de¬

rived from igneous sources, which include sulphur released from silicate melts

and sulphur leached from sulphides in igneous rocks. Igneous sulphur must be

derived either from the upper mantle or from the homogenisation of large vol¬

umes of deeply buried or subducted crustal material.

Deposits such as Kuroko, Echo Bay, and Pine Point have 5 34Szs values close to

that of sea-water sulphates. The sulphur in these deposits was most likely derived

either from ocean water, as at the Kuroko and Echo Bay deposits, or from marine

evaporites, as at Pine Point.

Deposits such as Cortez and the Black Hills Tertiary deposits whose fluids

have intermediate 8 34Szs values probably collected their sulphur from local

country rocks -from either disseminated sulphides or older ore deposits. The sul¬

phur in the Bluebell deposit was probably a mixture of sulphur from evaporites
and sedimentary sulphides. Rye and Ohmoto (1974) determined the proposed

source of sulphur in each of these deposits by the relationship of the time and

space distribution of their 8 34S^ values to geologic details. The range of 8 34Sss

values in deposits where sulphur is derived from sedimentary or mixed sources

can be large or small depending on the extent to which the sulphur was homoge¬
nised by the ore-generating event. The reasonably narrow range of 8 34Sis values

for the Bluebell fluids indicates that the different sulphur components were fairly
well mixed in the hydrothermal solutions.

The previous discussion is related to the principles of application of sulphur

isotope data to undisturbed ore deposits. The question is what happens to sul¬

phur isotope distributions in sulphide minerals during metamorphism. Several

detailed studies on metamorphosed stratiform deposits have been published and

two principles of sulphur isotope distribution during metamorphism of these de¬

posits are summarised by Rye and Ohmoto (1974). These principles are:
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(i) Large - scale premetamorphic 5 34S variations are generally preserved. The

average 8 34S for sulphides in major units such as formations are generally not

changed.

(ii) Small scale sulphur isotope changes are in many cases superimposed

upon the original sulphur isotope distribution during metamorphism. These in¬

clude: (a) redistribution of sulphur isotopes among coexisting minerals that define

the temperature of metamorphism, and (b) local 5 34S variations which reflect the

structural or chemical metamorphic history.

These principles can be illustrated from the data for the Homestake, South

Dakota, gold deposit (Rye and Rye, 1974). The ore occurs mainly in the Home-

stake formation and sulphides also occur in the overlying Ellison and underlying
Poorman formations. Each formation has a distinct lithology and the 8 MS distri¬

bution is 6-10 %o
,
4 -30 %o and 3-5 %o respectively. Stratigraphic dependence of 8

34S values in metamorphosed sulphide deposits has also been observed in the

massive sulphide deposits at Bathust, New Brunswick (Lusk, 1972), and Duck-

town, Tennessee (Mauger, 1972). The fact that original large-scale 8 34S were re¬

tained in these deposits indicates that large amounts of sulphur were added to

and not subtracted from the system during metamorphism and that

remobilization of sulphur was restricted to a small scale during metamorphism.

8.2.1.2 Analytical Results

Ten representative sulphide samples from the 3K-D and 3K-H adits at Asimotry-

pes were collected for sulphur isotope analysis.

The sulphur isotope results are presented in Table 8.1. The 8 34S values for ar-

senopyrite, pyrite and chalcopyrite from the Asimotrypes deposit are 2.19 to 2.89,

2.28 to 3.13 and 2.17 to 2.24 per mil respectively. No significant variations are ob¬

served within the Asimotrypes gold deposit, and the mean 8 34S for the sulphides
is 2.54 per mil 0.29 (Ia). Microscopic textural evidence from this study indicates
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that arsenopyrite and pyrite were deposited contemporaneously and, hence sul¬

phur isotopic equilibrium might have existed between them. Also, the A Asp-Py
fractionation values, for all arsenopyrite and pyrite separates that have been ana¬

lysed, are similar with a range from 0.25 to 0.54 and mean value of 0.39 per mil,

and these small differences indicate that isotopic equilibrium did exist between

arsenopyrite and pyrite. Theoretical (Sakai, 1968) and experimental studies (Kaji-
wara and Krouse, 1971), indicate that under isotopic equilibrium conditions 5 34S

py > 5 34S cpy. The samples analysed in this study (Table 8.1) follow this trend

suggesting that isotopic equilibrium was attained. The extent to which isotopic

equilibrium has been attained cannot be evaluated by utilising the various plot¬

ting techniques of Smith et al. (1977,1978) and Shelton and Rye (1982) because of

the limitations of the available data.

8 34S values of primary sulphide minerals from the Asimotrypes ore have a

mean value of 2.54 which is generally considered characteristic for a felsic igneous
rock source for the sulphur (Ohmoto, 1972; Rye and Ohmoto, 1974).

Fluid temperatures were calculated from the pyrite-chalcopyrite pair in equi¬
librium using the Ohmoto and Rye (1979) equations. Calculated temperature is in

the range of 274 C. The validity of the estimates of depositional temperatures on

the basis of minimum fluid inclusion (Th) between 270 C and 280 C, is sup¬

ported by independent estimates of 274 C of the pyrite-chalcopyrite equilibrium

sulphur isotope pairs. The excellent fit of the minimum fluid inclusion homogeni-
sation temperatures (270 C to 280 C) with the deposition temperatures deter¬

mined from sulphur isotopes, indicate that a formation pressure of 3.3 kbar is ac¬

ceptable for the Asimotrypes gold ore.

The absence of sulphate minerals at Asimotrypes is characteristic of Mesozoic

mesothermal gold deposits (Taylor, 1987) and suggests that H2S was the domi¬

nant sulphur species in the ore fluid (Ohmoto and Rye, 1979). From diagrams
showing the relationship between oxygen fugacities and pH, and between log S 34
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H2S and pH, for specific sulphide 8 34S values (Ohmoto, 1972; 1985), upper limits

for fo2 at IO-31 and for pH at 6.5 are obtained for 5 34S gg = 0 per mil and ES < 0.01

moles/ kg H2O (Ohmoto, 1985).

8.2.2 Carbon Isotopes

8.2.2.1 Background Information

Carbon has two stable isotopes: 12C = 98.89 % and 13C = 1.11 %. In addition radio¬

active 14C occurs in nature due to its formation in the upper atmosphere.

The carbon isotopes are fractionated by a variety of natural processes, in¬

cluding photosynthesis and isotope exchange reactions among carbon com¬

pounds. Photosynthesis leads to enrichment of 12C in biologically synthesised or¬

ganic compounds. On the other hand, isotope exchange reaction between CO2 gas

and aqueous carbonate species tend to enrich carbonates in 13C. As a result, the

isotopic abundance of 13C in terrestrial carbon varies by about 10 %.

The isotopic composition of carbon is expressed in terms of the delta notation

used also for oxygen and hydrogen and it is defined by the parameter:

5 13C= [ (13 C/>2 Qspi - (13 C/12 C) std/ (I3 C/ 12 Qstd I! X 103

The reference standard is CO2 gas obtained by reacting belemnites of the Peedee

Formation with 100 percent phosphoric acid, that is, the PDB standard of the Uni¬

versity of Chigago.
The principles of the application of carbon isotope data to hydrothermal ore

deposits are similar to those of sulphur. The carbon content of hydrothermal ore

deposit is represented primarily by carbonates of calcium, magnesium, iron and

manganese and by CO2 and CH4 gas in fluid and gaseous inclusions in ore and

gangue minerals.
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The isotopic composition of carbon in hydrothermal carbonates depends not

only on the 613C of the total carbon in the ore-bearing fluid but also on the fu-

gacity of oxygen, the pH, the temperature, the ionic strength of the fluid, and on

the total concentration of carbon. These relationships have been investigated by
(Ohmoto, 1972) and were reviewed by Rye and Ohmoto (1974). The dependence
arises from the fact that various physical and chemical parameters control the

concentrations of different carbon-bearing ions and molecules, which fractionate

carbon isotopes depending on the temperature. A change in any one of the above

physical or chemical parameters affects the chemical equilibrium by which the

ions and molecules are related and thereby also changes their isotopic composi¬
tion.

In order to determine the carbon isotope composition of the fluids from which

ores actually precipitated, we need to have 513C analyses of total carbon, usually
CO2 ,

in fluid inclusions. Available analyses for §13C in CO2 in fluid inclusions for

a number of hydrothermal ore deposits range from about -4 to -12 per mil (Rye
and Ohmoto, 1974). In these analysed samples 513C co2 = 513C C , so the data re¬

flect the carbon isotopic composition of the hydrothermal fluids. The ranges of

S13C values for the major reservoirs of carbon in hydrothermal systems are:

(i) marine limestones, which have average 813C values near 0 per mil

(ii) deep-seated carbon, which has an average 813C value of about -7 per mil as

indicated by analyses of carbonatites, and

(iii) reduced or organic carbon in sediments which normally has 513C values of

less than -15 per mil.

In low-temperature environments where bacteriogenic sulphides are pro¬

duced, anaerobic bacteria also produce CO2 and CEU from the associated organic

matter, which they consume as an energy source (Cheney and Jensen, 1965). De¬

pending upon the depositional environment and the proportion of carbonate de¬

rived from CO2 and CH4, precipitated carbonates may show a wide and random

spread of variations in 813C values, including some large negative values. Very
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large negative 513C values, however, can also be produced in syngenetic carbon¬

ates in volcanic environments by the refluxing of organic carbon from restricted

ocean basins, and a wide range of 813C values can be produced in the carbonates

by changes in the fo2 of the depositional environment or by mixing of refluxed or¬

ganic carbon with marine or deep-seated carbon (Rye and Rye, 1974).

Preliminary carbon isotope data from Precambrian iron carbonates in the

Homestake gold deposit indicate that no significant change in average 513C values

of major units occurred during metamorphism (Rye and Rye, 1974). Detailed

studies of marbles representative of a wide range of metamorphic grades, in¬

cluding marbles in anatectic granites, indicate that 813C values of carbonates are,

in general, little changed during regional metamorphism events, when the meta¬

morphic fluid/rock ratios are high and the fluids are CCh-rich. Exceptions may
occur, where the marbles have been decarbonated (Rye and Ohmoto, 1974).

The possible sources for CO2 in ore-forming fluids with respect to 5 13C, sug¬

gested by various authors, are as follows:

Metamorphic decarbonation or dissolution reactions of carbonate (Ohmoto
and Rye, 1979). The 5 13C value of such a metamorphic fluid will depend on: (1)
the degree of decarbonation or dissolution, (2) the 8 13C value of the carbonate

minerals, and (3) the isotopic fractionation factor between CO2 and the carbonate

mineral which is temperature dependent (Ohmoto, 1986). According to Bottinga

(1968) and Kerrich (1990) CO2 liberated by such reactions at 400 and 500 C

would be enriched by about 3 per mil relative to the source. Carbon isotopic ratios

of Greek marbles range from -2 to +6 per mil, with most values clustering be¬

tween 0 and +4 per mil (German et al, 1980). Consequently, liberated CO2 can be

expected to have 8 13C values > 0 per mil. In addition carbon isotope data for cal-

cites in synvolcanic sea-floor alteration of basaltic origin, metamorphosed to low

amphibolite or low- to mid-greenschist facies indicate 8 13C values ranging from -

2.1 to +1.4 per mil (Groves et al., 1988). Considering that high-temperature disso-
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lution in such low-carbonate rocks produces CO2 that is isotopically similar to or

slightly heavier than the original carbonate (Ohmoto and Rye, 1979) sea floor car¬

bonate may produce 513CÜ2 close to 0 per mil. Ohmoto (1986) has calculated that

under most geologic conditions the 5 13C of CO2 derived from carbonate rocks

may fall between -8 and +4 per mil.

Oxidation of organic carbon in the rocks during metamorphism. According
to Schidlowski (1988) the bulk of 8 13C values for organic carbon are -26 7 per

mil throughout the geologic record. Also 8 13C from -1 to -5 per mil might be ex¬

pected if CO2 from a decarbonation source exchanged with graphite or mixed

with CO2 resulting from oxidation of graphite. However, mass balance calcula¬

tions indicate that rather large amounts of graphite are needed to bring the 8 13C

of decarbonation down to values between -1 and -5 per mil (Kreulen, 1980).

CO2 may be of deep seated origin and represent either juvenile CO2 , possi¬

bly derived from degassing of the upper mantle (Touret, 1981), or magmatic CO2

(Ohmoto and Rye, 1979; Taylor, 1986). Juvenile CO2 is generally accepted to have

8 13C values between -3 and -8 per mil based on isotopic analyses of carbonatites

(Deines and Gold, 1973), and diamonds (Deines, 1980; Milledge et al, 1983). The

characteristic 813C of most magmatic-melt carbon is generally considered as being
between -8 and -5 per mil (Taylor, 1986). CO2 - melt fractionations are approxi¬

mately 3 per mil such that magmatic CO2 is -5 to -2 per mil (Taylor, 1986). Kreulen

(1980), in a study of the Naxos metamorphic terrain in Greece, identified a popu¬

lation of CO2 - rich fluids occurring in low-grade to high-grade schists, and peg¬

matites, with 8 13C values of -5 to -1 per mil, as probably deep seated origin.

8.2.2.2 Analytical Results.

Fifteen representative calcite samples from the Asimotrypes area were collected

along a profile away from the arsenopyrite-pyrite ore on the main thrust zone

between gneisses and sheared marbles, at a distance from a few cm up to 50 m
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from the ore and subsequently were analysed for their13 C isotopic composition.

The results of the carbon isotope analyses are given in Table 8.2. Carbon iso¬

tope values are remarkably constant over a narrow range between 1.89 to 2.94 per

mil and median value 2.54 0.34 (Ia). The constancy of the 8 13C values shows

that fugacities were well above the H2CO3 / CH4 equal concentration boundary.
This implies that log oxygen fugacities were most probably within the range -30

to -32 at 312 C (Ohmoto, 1972; Steed and Morris, 1997). Fluid inclusion studies

showed that CO2 was a major constituent in the ore fluids. In these circumstances

8 13C for CO2 (or H2CO3 apparent) will be essentially the same as for total carbon

in the ore fluid. The fractionation equation for calcite-CO2 presented by Friedman

and O' Neil (1977) at 275 C and 340 C
, suggests that the 8 13C in the ore fluid

was 4.12 0.35 () and 4.68 0.35 (Ia) respectively during the ore deposition

stage.

8 13C isotope data of 2.54 + 0.34 (Ia) per mil is consistent with a marine envi¬

ronment of deposition for the Asimotrypes marbles that is commonly associated

with 813C of 0 4 per mil (Veizer and Hoefs, 1976; Ohmoto and Rye, 1979). A plot
of the 8 13C versus 818 O values of calcite is illustrated in Figure 8.1, and it is also

suggesting a marine environment of deposition (Ohmoto and Rye, 1979; Faure,

1986; Kerrich, 1987). In addition, field data (thickness and banding of marbles), Sr

geochemistry (Chapter 6) and isotopic composition (later in this Chapter) also in¬

dicate a marine environment of deposition for the Asimotrypes marbles.

The rather high 8 13C, above +2 per mil suggests a shallow sea and warm cli¬

mate conditions (Woo et al. 1992). Evaporation of seawater increases the 8 18 O

values, but on the other hand
, higher temperatures lowers the fractionation be¬

tween the water and carbonates. Increased temperatures, however, explain the

carbonate 813C values, which are increased by +1 to +2 per mil.
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Finally, 5 13C values in the fluid of 4.68 0.35 (Ia) (Table 8.2) are consistent

with CO2 of metamorphic origin produced during metamorphic decarbonation

reactions of carbonate rocks (Ohmoto and Rye, 1979). This interpretation is in

agreement with de-dolomitisation processes in marbles as these are discussed in

the following Chapter 9.

8.2.3 Oxygen and Hydrogen Isotopes
8.2.3.1 Background Information

Oxygen is the most abundant chemical element in the crust and has three stable

isotopes whose approximate abundances are 16O = 99.63%, 17O = 0.0375 % and 18O

= 0.1995%. Hydrogen has two stable isotopes 1H and 2H, whose abundances in

Lake Michigan water are 99.9852 atom % and 0.0148 atom % respectively (Lederer
et al., 1967). The isotope geology of hydrogen is especially interesting because of

the large mass difference between its isotopes and because of its occurrence

throughout the Earth and the solar system in H2O, OH-, H2, and CH4. Because of

the large mass difference, the D/H ratios of terrestrial samples vary up to 70 %,

which is a record among the stable elements.

The isotopic composition of oxygen and hydrogen are reported in terms of dif¬

ferences of 18O/16O and D/H ratios relative to SMOW (Standard Mean Ocean

Water). Consequently, positive values of 5 18O and 8D indicate enrichment of a

sample in 18O and D compared to SMOW, whereas negative values imply deple¬
tion of those isotopes in the sample relative to the standard.

The isotopic compositions of oxygen and hydrogen of a sample are expressed
as per mil differences relative to SMOW:

5 18O = [ ( 18O/16O )spl - ( 18O/16O ) smow / ( 18O/16O ) smow ] X 10*

5 D = [ ( D/H ) spi - ( D/H) sMow/( D/H) smow ] X 103
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Two methods are utilized to determine 18O/16O and D/H ratios of natural hy¬
drothermal fluids: (i) direct measurement of the fluid itself in a geothermal area or

fluid inclusions in the minerals of an ore deposit, and (ii) isotopic analyses of

minerals, calculation of temperatures of formation utilizing various geother-

mometers, and finally, calculation of D/H and 18O/16O ratios of waters in equilib¬
rium with the assemblages at their temperatures of formation.

Water is the dominant constituent of ore-forming fluids and the knowledge of

its origin is fundamental to any theory of ore formation. The ultimate source of

the H2O can be best deciphered by studying some geochemical parameter based

on the water molecules themselves. Stable isotope analyses provide just such a

parameter, because natural waters of various origins exhibit systematic differ¬

ences in their deuterium and18 O contents. At present the most useful application
lies in using D/H and l8O/wO analyses as indicators of the origin and history of

the H2O in hydrothermal fluids. Hydrothermal fluids may have originated as

meteoric water, sea water, geothermal waters variously enriched in 18O, connate

or formation waters with variable 8 D and S18O values, metamorphic and mag-

matic waters as well as mixtures of several of the above. Mixing of waters of dif¬

ferent sources in fact seems to be one of the most characteristic features of ore

deposition and hydrothermal alteration in a number of localities world-wide.

The 818O and S D of average modern meteoric waters are related by the mete¬

oric line equation:

5D = 8 818O + 10 (1)

Local extremes in temperature, relative humidity and evaporation rate will

change the slope of the above equation (1). Any change in the 818O of seawater

(relative to SMOW) however, would have been accompanied by corresponding
shift in the intercept of equation (1).
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Seawater refers to water from open oceans unchanged by local evaporation

(which enriches the water in D and 18O) or admixture of fresh waters (which de¬

creases the 8 D and &8O seawater). Sheppard (1986) summarised the modern

range in 8-values as 5 D from -7 to +5 per mil, and 518O from -1.0 to +0.5.

Formation waters include the common oil-field brines, as well as waters of

variable salinity often referred to as connate waters. Formation waters from vari¬

ous basins trend away from the meteoric water line towards higher oxygen and

hydrogen isotope values. Samples at the highest temperatures and with the high¬
est salinities are normally more enriched in 18O and D. The coolest, least saline

waters within a given basin generally have the lowest 818O and 8 D values. For¬

mation waters from sedimentary basins at high latitudes tend to plot along trends

that intersect the meteoric water line at lower 518O and 8 D values than formation

waters from basins located at lower latitudes. This systematic behaviour strongly

suggests that meteoric water comprise an important fraction of the formation

waters in such basins.

Metamorphic water is defined as water associated with, or in equilibrium, with

metamorphic rocks during metamorphism. It has long been recognised that dur¬

ing contact metamorphism, waters of dehydration, pre-intrusion pore fluids, me¬

teoric water and magmatic water may all be involved to various degrees (Valley,

1986). A wide range of 818O values (+5 to +25 per mil) is often attributed to meta¬

morphic water (Taylor, 1979), reflecting a wide range in both metamorphic tem¬

peratures and isotopic compositions of metamorphic rocks. The 8 D values for

metamorphic fluids in general may range from 0 to -70 per mil. Devolatilisation

can be modelled as either continuous (closed system) or fractional (Rayleigh;
open-system) devolatilisation, but with a changing bulk fluid-rock fractionation

factor (Valley, 1986).

Magmatic fluids are those volatile compounds of H, C, and S which exsolve

from magmas, usually as H2O, CO2, SO2, and H2S. The isotopic composition of
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these volatiles varies as a function of both source material and isotopic fractiona¬

tion during degassing (Taylor, 1986). The term juvenile water refers to water,

which has never passed through the hydrologic cycle. The solubility of water in

mafic and ultramafic magmas is small and its contribution to the crustal reservoir

is probably insignificant.

The 818O values of magmatic water is typically assumed to be in the range of

+5.5 to +10 per mil (Taylor, 1979). The 5 D of magmatic water varies during de¬

gassing , resulting in a positive correlation between 8 D and the residual water

content of igneous rocks (Taylor ,1986). The initial 6 D of magma is defined as the

5 D value of the magma prior to any degassing. The subsequent variation in 5 D

value of the magma and the exsolved H2O depends on whether the degassing is

dominantly an open- or closed-system process (Taylor, 1986). The 8 D value of the

first exsolved water will be approximately 20 to 25 per mil enriched relative to the

bulk magma. The 8 D of most of the water exsolved from many felsic melts is in

the range of -30 to -60 per mil, but the associated magmatic rocks may be signifi¬

cantly depleted.

The 8 D value of a magma is generally determined by its source material plus

any crustal material assimilated during emplacement of the magma; direct con¬

tamination by non-magmatic waters appears to be rare. For most felsic magmas,

magmatic water represents recycled water derived primarily from the melting of

hydrous crust (largerly fractionated seawater, Magaritz and Taylor, 1976). Water

associated with mafic magmas appears to have somewhat lower 8 D values -50 to

-70 per mil than that associated with felsic magmas. The 8 D value of apparently
unaltered MORB is approximately -80 10 per mil (Kyser and O'Neil, 1984).

Much progress has been made in measuring oxygen and hydrogen fractiona¬

tion factors between minerals and water at varying temperatures. Equations ex¬

pressing isotope fractionation of oxygen and hydrogen between minerals and

water over a range of temperature can be combined to give mineral isotope-

thermometry equations. In general, the minerals of volcanic rocks indicate rea-
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sonable temperatures of crystallisation while those of plutonic rocks yield lower

temperatures due to re-equilibration of oxygen isotopes during slow cooling.

The differences in 8 18O of minerals in metamorphic rocks generally decrease

with increasing grade of metamorphism. Temperatures calculated from mineral

pairs are concordant and also increase with metamorphic grade. However, they
do not necessarily reflect the maximum temperatures because of reequilibration

during cooling. This effect is particularly noticeable in high-grade metamorphic
rocks and minerals, such as calcite and feldspar, which equilibrate oxygen iso¬

topes rapidly.

The volume of rock within which oxygen isotopes are re-equilibrated by ex¬

change with an aqueous fluid or with CO2 during metamorphism depends on the

permeability of the rocks. The development of fractures enhances the opportunity
for isotope exchange in large volumes of rocks. In the absence of adequate perme¬

ability, large isotopic differences may persist over short distances.

8.2.3.2 Analytical Results

Oxygen Isotopes

518 O values for marble calcites are closely grouped, with a range of 28.11 to 30.93

per mil SMOW, with a median value of 29.31 0.94 (Ia) per mil and are presented
in Table 8.3. Oxygen isotopic values of around 30 per mil are considered as

metamorphic oxygen values (Taylor, 1979). The range of marble 818 O values

could be either a primary oxygen isotopic range caused by increased temperature
conditions during carbonate deposition or caused by weathering at an ancient

sub-surface. Equilibrium isotopic fractionation in the system calcite -water implies
that the S18 O in the fluid was 22.94 0.93 (Ia) per mil and 24.77 0.93 (Ia) per mil

for 275 C and 340C respectively. These values clearly imply a metamorphic ori¬

gin of the ore fluids (Sheppard, 1986).
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Taking into account the remarkably constant carbon isotope values for the

same samples it is suggested that replacement of the marbles by the sulphides ob¬

viously took place along sharply restricted zones, e.g. fault planes channelling the

metal bearing fluids. Directly outside the channel zones only weak, if any, oxygen

isotopic exchange between the marble and the fluids occurred, with the carbon

isotopic signature remaining undisturbed.

Quartz S18 O values consistently lie between 20.82 and 22.58 per mil with a

mean value of 21.87 0.52 (lcr) and are presented in Table 8.4. The quartz-water

fractionation of Matsuhisa et al., (1979) was used to derive the oxygen isotopic

composition of the hydrothermal fluid which equilibrated with quartz at 275

and 340 C from the trapping and hence deposition temperatures derived from

fluid inclusion studies (Table 7.2).The calculated fluid values range between 13.01

and 14.77 per mil with a mean value of 14.06 0.52 (Ia) at 275 and 15.25 and

17.01 per mil with a mean value of 16.31 0.52 (Ia) at 340 C. These compositions

are consistent with values of metamorphic fluids (3 to 20 per mil, Sheppard,

1986). The 518 O of the hydrothermal fluids reflects the original isotopic composi¬

tion of the source fluid modified by mixing of fluids, unmixing (immiscibility),

fluid rock reactions, or by any other chemical change of the fluid. Immiscible

separation of CO2 is a consistent feature of most mesothermal lode gold deposits

(Robert and Kelly, 1987). Separation of gaseous CO2 from an H-C-O fluid may act

to perturb isotopic relationships in hydrothermal systems. Higgins and Kerrich

(1982) have calculated that separation of 20 mole % CO2 at 300 C would induce a

3 per mil depletion in the residual fluid, given a CO2 (gas) - H2 O(iiquid) fractionation

of 14 per mil at this temperature (Bottinga, 1968). Differences between single-stage

quantitative separation and Rayleigh fractionation are only apparent for fluids

where the molar proportion of CO2 is in excess of 35 percent. Smith and Kesler

(1985) estimate that the molar proportions of CO2 are in the range of 1 to 12 per

cent, such that the magnitude of the effect is restricted to <-2 per mil. This in turn,

is consistent with the previously discussed uniformity of the quartz 818 O values.
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The values for 818 O for seriates range between 12.28 to 14.33 per mil with a

mean value of 13.38 0.86 (Ia) and are presented in Table 8.4. The fractionation

equation for water-muscovite of Friedman and O' Neil (1977) was utilised to de¬

rive the oxygen isotopic composition of the hydrothermal fluids. The calculated

518 O values at 275 C and 340 C range between 8.25 to 10.30 per mil with a mean

value of 9.41 0.81 (Ia) per mil and 9.76 to 11.76 per mil with a mean value of

10.88+ 0.84 (Ia) per mil respectively. These values are consistent with metamor-

phic fluids, although the lower 518 Ofiuid values (less than 10 per mil) overlap with

the uppermost values of magmatic water (5.5 to 10 per mil, Taylor, 1979a).

Fluid temperatures were calculated from two quartz-muscovite pairs in equi¬

librium from the Asimotrypes ore. The 818 O analyses of quartz and muscovite

separates yield Aquartz-muscovite (518 Oquartz - S18 Omuscovite) values of 9.87 and 9.17 for

sample pairs AsO-2 and AsO-5 respectively. Calculated temperatures for the pairs

using the equations of Matsuhisa et al., (1979), and Friedman and O' Neil (1977)

yielded temperatures of 327 + 10 C. The average observed homogenisation tem¬

perature for inclusions for the area is 312 C. This difference of the quartz-

muscovite temperature relative to the fluid inclusion temperature may reflect a

certain amount of retrograde re-equilibration of the quartz-muscovite oxygen

isotope fractionation or the difference is small and overlaps with analytical error.

Whole rock oxygen isotope data are presented in Table 8.5. Whole rock 518 O

values for the Asimotrypes ore lie within a narrow range from 15.79 to 16.48 per

mil and with a mean value of 16.15 0.26 (Ia). 818 O whole rock values for the

Nikisiani granite-granodiorite consistently lie between 10.59 to 12.24 per mil with

a median value of 11.58 0.65 (Ia) per mil. It is apparent that whole rock 518 O

values for the Asimotrypes ore and the Nikisiani granite-granodiorite show a nar¬

row spread and are consistent with values of metamorphic fluids.

Summarising, oxygen isotope results obtained for samples from the Asimotry¬

pes mesothermal gold deposit are as follows:
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Table 8.5: Whole Rock Oxygen Isotope Data, Asimotrypes area, Pangeon.

Sample Rock Type 518 O SMOW

per mil

16.16

15.83

16.24

16.32

15.79

16.42

15.87

16.48

16.26

11.65

11.02

10.59

12.11

12.24

11.90

As-11

As-14

As-16

As-19

As-21

As-31

As-15

As-17

As-62

As-33

As-34

As-35

As-38

As-39

As-40

As-py quartzite
massive arsenopyrite ore

massive arsenopyrite ore

As-py quartzite
As-py quartzite
massive pyrite ore

amphibolite
amphibolite
amphibolite

foliated granite
granite
white, altered granite
granodiorite
granodiorite
granodiorite
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Median 518O values for marble calcites, quartz, sericite and whole rock are

29.31 0.94 (Ia) %o, 21.87 0.52 (Ia) %o,13.38 0.86 (Ia) %o, and 16.15 0.26 (Ia)

%o respectively, and are considered as metamorphic oxygen values. Calculated

median ore fluid composition at 275 C and 340 C in the system calcite-water is

22.94 0.93 (Ia) %o and 24.770.93 (Ia) %o, in the quartz-water system is 14.06

0.52 (Ia) %o and 16.31 0.52 (Ia) %o and in the water-muscovite is 9.41 0.52 (Ia)

%o and 10.88 0.52 (Ia) %o respectively. These values are consistent with values

of metamorphic fluids.

Hydrogen Isotopes

Hydrogen whole rock isotopic analysis was performed on eight representative

samples from the main ore, the Transition zone and the granite. The aim of these

analyses is to use the D/H values combined with 18 O/ 16 O as indicators of the

origin and history of the H2O in the ore forming fluids.

Whole rock hydrogen isotopic data are presented in Table 8.6. These are the

first 5 D values reported for ore in the Rhodope massif and there is no other com¬

parative database. 5 D values for the ore are in the range of -105 to -125 per mil,

with a median of -117 7.5 (Ia) per mil and for the granite are in the range of -79

to -89 per mil with a median value of -82 6.21 (Ia) per mil. The 5 D values re¬

ported above imply that all fluids contained in the Asimotrypes ore and granite

fluid inclusions represent evolved meteoric waters (Shelton et al., 1988; Nesbitt et

al-, 1989). The isotopically light 5 D values cannot be the result of incorporation of

modern surface waters or metamorphic waters -20 to -65 per mil (Taylor, 1979),

since those reservoirs are significantly heavier isotopically.
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Table 8.6: Whole Rock Hydrogen Isotope Data, Asimotrypes area, Pangeon

Sample

As-11

As-14

As-16

As-19

As-21

As-31

As-15

As-17

As-62

As-33

As-34

As-38

As-39

Rock Type

As-py quartzite
massive arsenopyrite ore

massive arsenopyrite ore

As-py quartzite
As-py quartzite
massive pyrite ore

amphibolite
amphibolite
amphibolite

foliated granite
granite
granodiorite
granodiorite

6 D SMOW

per mil

-115

-105

-120

-125

-110

-125

-120

-110

-125

-79

-75

-89

-85
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8.3 Radiogenic Isotopes

8.3.1 Strontium Isotopes

8.3.1.1 Background Information

Strontium has four naturally occurring isotopes 88Sr, 87Sr, 86Sr and 84Sr all of which

are stable. Their isotopic abundances are approximately 82.53 %, 7.04%, 9.87 %

and 0.56 % respectively. The isotopic abundances of strontium isotopes are vari¬

able because of the formation of radiogenic 87Sr by the decay of naturally occur¬

ring 87Rb. For this reason, the precise isotopic composition of strontium in a rock

or mineral that contains rubidium depends on the age and Rb/Sr ratio of that

rock or mineral.

The isotopic composition of Sr in circulation in the hydrosphere depends on

the 87Sr/86Sr ratios of the rocks that interact with water at or near the surface of

the earth. The Sr released into solution is homogenised isotopically by mixing

during transport until it arrives in the oceans or in a closed basin on the conti¬

nents. From there the Sr re-enters the rock cycle primarily by co-precipitation with

calcium carbonate. The sedimentary carbonate and evaporite rocks of the world

have therefore preserved a record of the changing isotope composition of Sr in the

oceans throughout Proterozoic and Phanerozoic time.

Analysis of marine carbonates indicates that the 87Sr/86Sr ratio of the oceans

has varied systematically throughout Phanerozoic time (Figure 8.2), and has ap¬

parently been constant in modern oceans at 0.709060.00033 (Faure, 1986). The

reasons for the isotopic homogeneity of Sr in the oceans are: (i) the long residence

time of about 5 X lO6 years compared to the mixing time of the oceans of about lO3

years, and (ii) the concentration of Sr in the oceans is high (7.7 g/g) compared to

average river water (0.068 g/ml). The time-dependent variation of this ratio in

the oceans can be explained in terms of changing proportions of strontium con¬

tributed to the oceans from different sources, which are hydrothermal circulation

and continental input.
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The 87Sr/86Sr ratio of seawater is controlled by mixing of three isotopic varieties

of strontium derived from the following sources: (i) young ocean-floor volcanic

rocks, (ii) old sialic rocks of the continental crust and (iii) marine carbonate rocks

of Phanerozoic age. Therefore, the 87Sr/86Sr ratio of seawater is an indirect indi¬

cator of the kinds of rocks that are exposed to chemical weathering on the surface

of continents and in the ocean basins. It also is an indicator of overall climate

(arid-wet), of geomorphology-peneplanation or recent collision tectonics. These

considerations lead to the observation that the 87Sr/86Sr ratio has varied during
the course of geologic time in response to changes in the kinds of rocks exposed to

chemical weathering; essentially an interplay between riverine input of Sr ex¬

change at the ocean ridges.

The isotopic homogeneity of Sr in the oceans may allow us to use the observed

time-dependent variation of the 87Sr/86Sr ratio to date marine carbonate rocks.

The systematic variation in the 87Sr/86Sr ratio of the oceans since Cambrian time

indicates that the three principal sources of Sr identified above have contributed

varying proportions of Sr entering the oceans at different times. During the Pa¬

laeozoic era the 87Sr/86Sr ratio of the oceans fluctuated repeatedly from a high

value of about 0.70910 in Late Cambrian time to about 0.70680 during the Late

Permian period. After an initial increase to about 0.70770 in Middle Triassic time

the ratio declined again to 0.70680 in Middle to Late Jurassic time and then in¬

creased during the Cretaceous and Tertiary periods with only a few minor fluc¬

tuations in Mid-Cretaceous and Early Tertiary time.

8.3.1.2 Analytical Results

87 Sr / 86 Sr isotope ratios are presented in Table 8.7 and vary from a maximum of

0.708040 to a minimum of 0.707850 with an average of 0.707920 0.00010 (Ia)

(Fig.8.2). These values are consistent in all three samples analysed close and away

from the ore. The 87Sr / 86Sr ratio range is consistent with a Lower Carboniferous
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sea water age (Peterman et al., 1970; Dasch and Biscaye, 1971). This age determi¬

nation is in agreement with field and geologic interpretation. The seawater Sr

derivation is consistent with interpretation made based on bulk rock geochemis¬

try results (Chapter 6) and conclusions drawn from C and O isotope results from

ore-host calcific marbles (this Chapter).

8.3.2 Lead Isotopes

8.3.2.1 Background Information

Ordinary lead has four naturally occurring isotopes: 208Pb, 207Pb, 206Pb, and 204Pb.

The first three are products of decay of uranium and thorium and only 204Pb is not

radiogenic, although it is very weakly radioactive and decays to stable 200Hg by

alpha emissions with a half-life of 1.4X1017 years (Faure, 1986). Because of its long
half-life, 204Pb is treated as a stable reference isotope.

Lead is widely distributed throughout the earth and occurs not only as the ra¬

diogenic daughter of U and Th but also forms its own minerals from which U and

Th are excluded. Therefore the isotopic composition of Pb varies between wide

limits from the highly radiogenic Pb in very old U, Th-bearing minerals to the

common Pb in galena and other minerals that have low U/Pb and Th/Pb ratios.

Galena is frequently associated with other sulphide minerals, which enables us to

study the origin of metallic ore deposits by the isotope composition of Pb in ga¬

lena and other common Pb minerals.

Lead is also a trace element in all kinds of rocks. Its isotopic composition in dif¬

ferent kinds of rocks contains a record of the chemical environments in which Pb

resided. These may include the mantle, crustal rocks, or Pb ores. Each of these en¬

vironments has different U/Pb and Th/Pb ratios that affect the isotopic evolution

of Pb. The Pb/Pb and Th/Pb ratios are changed by magma generation and frac¬

tionation, by hydrothermal and metamorphic processes and by weathering and

other low temperature processes at the earth's surface. The isotopic composition
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of a particular sample of Pb may be modified both by decay of U and Th and by

mixing with Pb having different isotope compositions.

As a result, the isotopic compositions of Pb in rocks and ore deposits display

complex patterns of variation that reflect their particular geological histories.

In the simplest case, represented by the single-stage Holmes-Houtermans

model, Pb evolved in a homogeneous reservoir having characteristic U/Pb and

Th/Pb ratios until it was withdrawn from that reservoir and was sequestered in a

Pb mineral such as galena. The equations describing Pb evolution in this model

require knowledge of the isotope ratios of primordial Pb and the age of the earth.

These were determined from analyses of Pb in stony and iron meteorites.

The single stage model was found to apply only to a small number of conform¬

able ore deposits associated with sequences of volcanic and sedimentary rocks

deposited near island arcs and subduction zones. However, even for conformable

ore deposits the dates calculated from the single-stage model do not agree well

with the geologic ages of the associated rocks. Moreover, most other metallic ore

deposits yield single-stage model dates that are highly discrepant and, in some

cases, even negative, i.e., associated with the future rather than with the past.

The isotope ratios of so-called anomalous leads that do not fit the single-

stage model form linear arrays in the Pb evolution diagram. Such anomalous-Pb

lines may be caused by the addition of varying amounts of radiogenic Pb to ordi¬

nary single-stage Pb. If that is true, the slope of the anomalous Pb line can be used

to derive information about the age and the Th/Pb ratio of source rocks that pro¬

vide the radiogenic lead. In addition, estimates can be made of the time of with¬

drawal of the single-stage Pb from its reservoir and the age of ore deposit in

which the Pb now resides. In this case the linear data array defines a mixing line

whose slope does not convey information about the age of such leads.
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The two-stage model of Stacey and Kramers (1975) is based on a selected data

set and proposes that ore leads evolved in two reservoirs having different U/Pb

and Th/Pb ratios. The change in these ratios took place at about 3.7 Ga and was

caused by the geochemical differentiation of the earth. The mantle of the earth

may have been the first reservoir but after 3.7 Ga, Pb evolution probably occurred

in frequently- mixed continental sediments from which Pb was extracted during
subduction into the mantle. The two-stage model yields dates for Pb in galena and

K-feldspar that agree much better with their geologic ages than dates derived

from single-stage models.

The isotope ratios in volcanic rocks from mid-ocean ridges, oceanic islands, is¬

land arcs, and continental regions tend to form linear arrays on the Pb-evolution

diagrams. The co-linearity of Pb-isotope ratios may be caused by the heterogene¬

ity of the magma sources with respect to the U/Pb and Th/Pb ratios. In this case

the lines are secondary or higher order isochrons whose slopes depend on the

time elapsed since the last homogenisation of Pb in the magma sources. Dates cal¬

culated on the basis of this assumption from Pb-Pb isochrons of MORBs and OIBs

range from 1.0 to 2.0 Ga and suggest the occurrence of large- scale geochemical
differentiation in the mantle under the oceans.

However, the linear data arrays of Pb in young volcanic and plutonic rocks in

subduction zones and in continental regions are probably caused by mixing of

mantle-derived Pb associated with crustal rocks. This interpretation is consistent

with the evidence provided by other radiogenic isotopes (Sr, Nd, Hf) that intru¬

sive and extrusive rocks in these geologic settings are extremely contaminated by
interactions between magma and the country rock. Such contamination of magma

is less likely in the oceans but cannot be ruled out entirely.

8.3.2.2 Analytical Results

Lead isotopic analyses from the main polymetallic sulphide deposits, and repre-
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sentative mineralised occurrences from the Rhodope and Serbomacedonian Mas¬

sifs, have been carried out in the past by various researchers and data with corre¬

sponding reference are shown in Table 8.8.

207 Pb / 204 Pb versus 206 Pb/ 204 Pb ratios of Uranogenic lead in galenas from

ores hosted in the Rhodope and Serbomacedonian Massifs are plotted in Figure
8.3, according to the data of Table 8.8. Growth curves and isochrons of the dia¬

gram are according to the models: plumbotectonics (upper crust, orogene, man¬

tle), Cumming and Richards (C-R), Stacey and Kramers (S-K), Amov (A). It is

clear that the 207 Pb / 204 Pb ratios vary within a small range between the growth
curves of orogene and upper crust. This indicates a uniform, crustal type, source

for the rocks and ores in which crustal material predominates.

The overall isotopic pattern of the studied ores are very similar and their data

fields overlap significantly. This can be taken as an indication for a similar crustal

evolution and a more or less contemporaneous ore deposition period in both the

massifs. On the basis of lead isotopic data it is not possible to distinguish between
different ore types. Pb-Zn Au replacements, vein and stratiform type ores and

porphyry copper style ores show all very similar lead isotope signatures. Varia¬

tions in the isotopic compositions of ore minerals in the studied ores however ex¬

ist and they are suggested to reflect local structural inhomogeneities (Frei, 1992).

Lead isotope patterns with spreads in the 207Pb / 204Pb and 208 Pb / 204Pb ratios

similar to those defined by the ore leads from the Rhodope and Serbomacedonian

Massifs are typically observed in cases where older crustal components are in¬

volved in young orogenies. Using the average crustal lead evolution model pro¬

posed by Stacey and Kramers (1975), it is possible to obtain an approximate
minimum age for the crustal material in the Rhodope and Serbomacedonian Mas¬

sifs from the ore lead isotopic data points. The slopes of the tangents through the

data points to the growth curve represent the momentary production rates of 207

Pb / 204 Pb at the time these leads started to evolve independently in distinct res
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Figure 8.3: 207Pb/204Pb versus 206Pb/204Pb composite diagram for Uranogenic lead in
galenas from ores in the Serbomacedonian and Rhodope Massifs, with growth
curves and isochronons according to the models: Plumbotectonics (upper crust,
orogene, mantle), Cumming and Richards (C-R), Stacey and Kramers (S-K) and
Amov (A). Data from Table 8.8; numbers of dark circles correspond to numbers in
brackets in Table 8.8.

152



ervoirs which were characterised by different 2 (f38 U/ 204 Pb) and W2 (232 Th/ 204

Pb) values. Three such tangential lines are illustrated in Figure 8.4 (Frei, 1992),
which characterise the average ore leads for the Rhodope, northern Serbomace-

donian, and the southern Serbomacedonian Massifs. According to the Stacey and

Kramers (1975) model the minimum age of the crust from which the lead derived

was calculated at ~ 1100 Ma, ~ 800 Ma and ~ 720 Ma for the northern Serbomace¬

donian, the Rhodope and southern Serbomacedonian Massifs ore leads. The cor¬

responding average 207 Pb / 204 Pb and 206 Pb/ 204 Pb ratios were taken as 15.68,

15.67,15.66 and 18.68,18.73 and 18.80 respectively for the three regions.
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Figure 8.4: 207Pb / 204Pb versus 206Pb /204Pb diagram showing the fields defined by ore

leads from the Serbomacedonian Massif (diagonally hatched) and the Rhodope Massif

(cross-hatched). The three data points correspond to the average lead isotope values of

ores from the northern Serbomacedonian Massif (207Pb / 204Pb =15.68, 206Pb /24pb

=18.70), from the southern Greek Serbomacedonian Massif (207Pb / 204Pb =15.66, 206Pb

/204pb =18.80) and from the Rhodope Massif (207Pb / 204Pb =15.665, 206Pb /204Pb =18.74).

The three tangents to the Stacey and Kramers average crustal lead evolution curve

fa 2=9.74) define a range between ~ 720 to 1100 Ma for the minimum age of the crust,

from which the leads were derived (in Frei, 1992).
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CHAPTER 9

DISCUSSION AND INTERPRETATION

9.1 General Statement

This Chapter is devoted to the discussion and interpretation of the results ob¬

tained during this research in order to formulate the metallogenetic model of the

Asimotrypes carbonate-hosted mesothermal gold deposit. Any attempt to inter¬

pret and explain the possible mineralising fluid and gold source and/or (s),

transportation, and deposition should take into consideration the following pa¬

rameters:

spatial and genetic link between host rocks and ore;

the nature of the fluids which, based on fluid inclusion evidence is character¬

ised by high but variable contents of CO2 and traces of CH4
, H2 O - CO2

phase separation during mineralization at P - T conditions of 3.3 kbars and

312 C respectively, and relatively low aqueous phase salinity at 4 wt%

NaCl equivalent;

* the relationship of the ore to the retrograded amphibolite to lower greenschist
facies metamorphic terranes coupled with the presence of the spatially related

syn-kinematic granite-granodiorite of Nikisiani;

the oxygen and carbon isotopic composition of the fluids in addition to the

hydrogen and sulphur isotopic signatures;

devolatilisation/decarbonation reactions during regional metamorphism;

uplift acting as the heat source for deep circulating meteoric waters mixing
with metamorphic waters;

hydrothermal fluids generated by any combination of the above.
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9. 2 Comparison of the Asimotrypes Gold Deposit with Archean Mesothermal

Gold Deposits of the N. American Cordillera and Mesozoic Korean Gold De¬

posits.

Geological and geochemical characteristics of Phanerozoic mesothermal gold de¬

posits (Table 9.1), show that many characteristics, especially in timing of ore for¬

mation, structure, metamorphism, ore morphology, textures, associated elements,

mineralogy, paragenesis, fluid inclusions, and stable and radiogenic isotopes, ex¬

hibit a considerable degree of similarity among the major districts, world-wide.

The existence of this degree of similarity suggests that in many respects the ge¬

netic processes are similar as well. The principal differences between districts
,

largerly in host-rock type, hydrothermal alteration, and relation to plutons, most

likely reflect local geological heterogeneities. The most important conclusion

arising from Table 9.1 is the close similarity between Archean and Phanerozoic

mesothermal gold deposits, also reported by Hutchinson (1987) and Kerrich

(1987)..

Fluid inclusion data from the present study indicate that sulphides and associ¬

ated gold were deposited between 340 and 275 C from relatively dilute fluids (^4
wt% equiv. NaCl) and mean calculated pressure 3.3 kbars (Table 9.2). Gold depo¬
sition was likely a result of decrease sulphur activity caused by sulphide deposi¬
tion and/or H2S loss accompanying fluid unmixing combined with cooling and

dilution of the ore-forming fluids.

Measured and calculated compositions of ore fluids in the Asimotrypes area

showed 818O between 14 to 16 per mill and 8D between -75 to -125 per mil (Table

9.2), indicating that gold was deposited from a highly evolved meteoric water that

underwent extreme 18O enrichment and moderate D enrichment. Mineralogy and

ore fluid chemistry of the Tertiary Asimotrypes deposit are similar to those of

mesothermal lode gold deposits of the Canadian Cordillera occurring in Canadian

Archean greenstone belts, the Mother Lode district of California and the Mesozoic
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Table 9.1: General geological and geochemical characteristics of Phanerozoic
mesothermal gold deposits (Nesbitt, 1993).

Tectonics

Host lithology

Metamorphism

Relations to

plutons

Structure

Timing

Ore morphology
and textures

Mineralogy and
paragenesis

Hydrothermal
alteration

Zoning and
elemental

geochemistry

Fluid inclusions

Stable isotopes

Radiogenic
isotopes

Typically in accreted, deformed and metamorphosed continental
margin or island arc terranes.

Widely variable; greywackies-pelites, chemical sedimentary
units, volcanics, plutons, ultramafics.

Typically sub-to upper greenschist; occasionally host terranes
are metamorphosed to higher grade prior to mineralisation.

Variable; some areas close spatial and probable genetic link;
other districts no evidence of plutonic activity.

Varies from fold to fault control; where fault controlled,
mineralisation is generally confined to second-order faults
related to major structures.

Late in orogenic sequence; subsequent to principal deformation
and metamorphism.

Thick quartz veins, typically banded, occasionally vuggy with
high-grade ore shoots; vertically continuous, mineralised zones;
occasional stockwork and disseminated mineralisation.

Early phases: quartz, Ca-Mg-Fe carbonates, arsenopyrite, pyrite,
albite, sericite, chlorite, scheelit, stibnite, pyrrhotite, tetrahedrite,
chalcopyrite, and tourmaline.
Late phases: gold, galena, sphalerite, tellurides.

Carbonitisation, albitisation, sericitisation, silicification,
sulphidation, chloritisation; listwanite development.

Au:Ag typically >1; associated elements: Ag, Sb, As, W, Hg, Bi,
Mo, Pb, Zn, Cu, Ba. Zoned from high temperature Au Ag, As,
Mo, W to Sb Au, Hg, W to Hg Sb.

H2O-CO2 inclusions, typical X CO2 0.05 to 0.2; < 5 equiv. wt%
NaCl; T homogenisation 250-350 C, P > 1000 bars.

Typical values: 518O (Qzt) = +11 to 18 %o; 513C (Cb) = -25 to -3
%o; 5 D (fluid inclusions) = -160 to -30 %o, 5 34S = -10 to + 10 %o

.

Indicate heterogeneous crustal sources for Sr, Pb, and Nd.
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gold-rich mesothermal vein deposits of the Republic of Korea (Table 9.2).

The geochemical similarity and more specifically the fluid inclusion and iso-

topic data of the Asimotrypes mesothermal gold deposit to those of the Canadian

Cordillera and the Republic of Korea, of different age and occurrence may suggest

a more general application of the meteoric model for the origin of mesothermal

lode gold deposits. As emphasised by Nesbitt et al., (1986), the diversity of host

rocks of Canadian and other mesothermal deposits (mafic to felsic volcanic rocks

and intrusions, serpentinites, and clastic and chemical sedimentary rocks) indi¬

cates that the host rock petrology is not a controlling factor in the formation of

such deposits. The occurrence of the Tertiary Asimotrypes mesothermal gold de¬

posit at the contact of marbles and gneisses and the geochemical data derived

from this study corroborate this point and validate a more general application of

meteoric models to the formation of mesothermal gold deposits.

9.3 Dolomitisation

Field observations and detailed petrographic studies in the main carbonate se¬

quence of the Pangeon indicate that the dolomite rocks are widespread. The com¬

plex diagenetic-metamorphic history of the carbonates is one of the main difficul¬

ties in interpreting the origin of the dolomites and the process of dolomitisation.

Generally the various processes that would lead to the dolomitisation of

limestones or calcareous sediments (Morrow, 1982) can be divided in two groups:

early diagenetic processes involving modified or unmodified seawater (Ad¬
ams and Rhodes, 1960; Badiozamani, 1973; Folk and Land, 1975; and

late diagenetic or epigenetic processes, commonly involving magnesium-rich,
basin derived fluid (Zenger, 1983; Gregg, 1985; Machel and Moyntjoy, 1986;

Hardie, 1987).
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On the basis of field observations, petrographic characteristics and geochemical
data it can be concluded that the last dolomitisation process in Pangeon results

from processes in the second group. In the Pangeon area, dolomites do not form

large units, and are not present as fronts. On the contrary, the alternations of

dolomitic and calcitic marbles are clear. The dominant dolomite type, the unimo-

dal, nonplanar, medium to coarse crystalline dolomites as well as the minor sad¬

dle dolomite types show the petrographic criteria that support a burial environ¬

ment of dolomitisation.

In the studied areas, the crystal size of dolomites ranges from medium to

coarse. Zenger (1983) and Gregg (1985) used coarse crystallinity as one of the cri¬

teria for a deep burial origin and it is suggestive of higher temperature. The pres¬

ence of even minor saddle dolomite indicates that these rocks have undergone
some burial, probably to epigenetic conditions. The near stoichiometry ( Ca 49.5

Mg 50.5 to Ca 50.03 Mg 49.97) of the dolomites reflects burial conditions (Zenger and

Danham, 1988) and either neomorphism and stabilisation of early diagenetic
dolomites or replacing crystalline dolomite formed initially in the mesogenetic
zone (Lumsden and Chimahuski, 1980).

It is difficult to interpret the trace element content of ancient dolomite quanti¬

tatively (Hardie, 1987) because of a number of factors including uncertainty about

appropriate distribution coefficients, although general statements can be made.

The trace element (Sr, Fe, Mn, and Pb, Zn) content indicates, as in most ancient

carbonates, the effects of late diagenesis and some signatures from seawater ori¬

gin of the initial dolomitised fluids. Most of the previous evidence could be ac¬

counted for either by neomorphism of an earlier dolomite or replacement of lime¬

stone under burial conditions. The fact that the dolomitisation is widespread and

therefore vast amounts of Mg are needed, as well as that it is lithostratigraphically
controlled, leads to the hypothesis that neomorphic process of an earlier dolomite

took place.
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9.4 De-dolomitisation

The de-dolomitization process (calcitisation of dolomite), including the selective

dissolution of dolomite as well as the replacement of dolomite by calcite, is wide¬

spread in Pangeon. The de-dolomitisation is often interpreted as a near surface

diagenetic product either reflecting near surface alteration associated with

subaerial exposures, unconformity, fault and fractures related surfaces or late al¬

teration during burial (Goldberg, 1967; Scholle, 1971; Chafetz, 1972; Budaj, 1984).
As with dolomite formation, relations between depth, temperature and calcitisa¬

tion of dolomite are very poorly constrained (Enamy, 1963; Katz, 1971; Frank,

1981).

All possible transitions from partial to almost complete de-dolomitisation of

the whole rock are developed in the studied area. De-dolomite ranges from a mi¬

nor to a major component of the investigated carbonate rocks and it is associated

with the Petrographic types I and VI. Corrosion boundaries between calcite and

dolomite constitute the main textures mainly in the Petrographic type I. In the

initial stages of de-dolomitisation, the dolomite may be attacked at its edges pro¬

ducing centripetal corrosion. The corrosion continues and the de-dolomitisation

moves towards the centre of the crystal either along particular fractures or cleav¬

age planes in the crystal or as embayments.

Additional alteration of the dolomite produces a mosaic of calcite enclosing
small relics of euhedral dolomite. This texture is mainly present in the de-

dolomitic marble type VI. Usually, the de-dolomitisation process starts from the

larger (saddle) dolomite crystals. Small grains of iron oxides and hydroxides may
occur with these crystals which are thought to be by-products of the de-

dolomitisation process of ferroan dolomite (Enamy, 1963; Katz, 1971; Frank, 1981).
The two classic de-dolomite fabrics, rhombohedral calcite after dolomite and

granular calcite after dolomite (Enamy, 1967) are present, but are not common in

the carbonates. Based only on petrography it is difficult to distinguish the possible
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existence of more than one de-dolomitisation phase.
The calcite related to the de-dolomitisation process, in the samples examined is

Mg and Fe enriched. The enrichment of de-dolomite in Mg is most probably due

to the high Mg quantities freed during de-dolomitisation (Richter, 1974). These

geochemical data confirm the petrographical evidences, as described above. Ac¬

cording to the existing field data, petrographic and geochemical studies, we can

assume that the de-dolomitisation took place under near surface, oxidised condi¬

tions and close to tectonic discontinuities, such as faults, fractures and other dis-

conformities. These surfaces also are favourable for ore deposition. Fracture re¬

lated de-dolomite has also been reported in connection to tectonic vein type min¬

eralisation (Budaj, 1984). Moreover, the ore oxidation is favourable for de-

dolomitisation mechanisms, without precluding the elevated temperature of hy¬
drothermal solutions, which may also cause the de-dolomitisation. In experi¬
mental work by Kastner (1982), calcitisation of dolomite took place at tempera¬
tures up to 200 C. Based on the above, we can explain the positive relationship
between the de-dolomitisation and mineralisation.

9.5 Dolomitisation and Mineralisation Processes

The fourth petrographic type (impure calcitic marble) belonging to the alternation

zone is correlated to the arsenopyrite + pyrite ore. The Petrographic types I and

VI are correlated to the oxidised sulphide ore within the marbles and the Pet¬

rographic type II with the manganese oxide mineralisation. The relationship be¬

tween the dolomitisation and the mineralisation bearing carbonate rocks is debat¬

able. Significant differentiations of the petrographic and geochemical characteris¬

tics were not observed either close or away from the ore body. The ore hosted in

carbonate rocks of the Transitional Zone (impure calcitic marble) do not show any

relation with the dolomitisation. The inverse process of dolomitisation, the de-

dolomitisation has a positive relationship with the ore hosted within the marbles.

It is probably due to the similar favourable conditions for de-dolomitisation and

ore deposition processes, which are related to the tectonic discontinuities and/or
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the elevated temperature of hydrothermal solutions.

9.6 Origin of the Asimotrypes Fluids

The fluid composition range (518 Onuid 14.38 -16.14 per mil, 5D fluid -117 7.5 per

mil) is shown on a 8D versus 518O plot (Fig. 9.1). Also shown for reference are the

regions occupied by metamorphic and magmatic waters (Sheppard, 1986). The

cluster of 518Oquartz values between 20.82 to 22.58 per mil (Table 8.4) and the cal¬

culated average 818 Ofiuid value of 15.43 0.52 per mil (Table 8.4) are somewhat

enriched in 818 O relative to the most mesothermal lode gold deposits, which gen¬

erally display regional homogeneity in 818 CWd values (Kerrich, 1989; Nesbitt and

Muehlenbachs, 1989a). However, for the Asimotrypes fluids shown in Figure 9.1,

the SDfiuid values clearly lie outside of the magmatic and metamorphic water

field.

Any interpretation of the stable isotope results must address the question of

the origin of the seeming incongruity of18 O - enriched and D - depleted ore flu¬

ids. As shown in Figure 9.2, the S18 O values for the ore fluids of the Asimotrypes
mesothermal gold deposit are in good agreement with results from other meso¬

thermal gold deposits. However, the 8D values from the Asimotrypes gold de¬

posit are slightly heavier than observed values in other mesothermal deposits

(Fig. 9.2). As pointed out in Nesbitt et al. (1986), these 8D results unequivocally
indicate the involvement of meteoric water in the formation of mesothermal de¬

posits.

Mechanisms, which have been invoked to account for generation of the miner¬

alising fluids involved in mesothermal gold deposits genesis, include:

lateral secretion (Boyle, 1979)

mantle degassing - granulitisation (Colvine et al., 1984; Cameron, 1988)
meteoric water circulation (Nesbitt et al., 1986; Shelton et al., 1988)

metamorphic devolatilisation (Kerrich and Fyfe, 1981; Goldfarb et al., 1989),

163



Metamorphic waters
20OeC

Magmatic waters

Nikisiani granite

Meteoric Water Line

518O per mil (SMOW) Ore Fluid

25

Figure 9.1: Plot of 8 D inclusion fluids versus 5 18O fluids of the Asimotrypes
mesothermal gold deposit and the Nikisiani granite. The isotopic composition of the

Asimotrypes fluids clearly lie outside of the metamorphic and magmatic water

fields. Metamorphic and magmatic water fields from Sheppard (1986). Curvilinear

trajectories represent the evolution in isotopic composition of meteoric water

undergoing exchange at conditions low water/rock ratios for specified

temperatures (in Kerrich, 1987).
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gold deposit. The isotopic composition of the Asimotrypes fluids clearly lies outside
of the metamorphic and magmatic water fields (Sheppard, 1986). Data for Klondike
from Rushton et al., (1993): Snowbird from Madu et al., (1990); Athabasca Pass, from
Shaw et al., (1991); Bridge River, From Maheux, (1989); Cassiar, from Nesbitt et al.,
(1989a). Korean deposits data from Shelton et al., (1988).
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and

orthomagmatic origin (Colvine et al., 1984; Hattori, 1987)

The genetic model which is presently more widely accepted is the generation of

H2O and CO2 during prograde metamorphism under greenschist to amphibolite
facies conditions (Kerrich and Fyfe,1981; Groves and Phillips, 1987). The fluids are

focused along and channelled into major crustal structures, for example, terrane

boundary faults, and migrate upward along the structures losing volatiles and

precipitating ore and gangue minerals ( Nesbitt and Muehlenbachs, 1989a; Kyser
and Kerrich, 1990).

Recently, the general applicability of the metamorphic devolatilisation model

to all mesothermal lode gold deposits has been questioned (Nesbitt et al., 1986;

Shelton et al., 1988; Nesbitt, 1990). Based primarily on the interpretation of stable

isotope data acquired during studies of Canadian and Korean lode gold systems,

Nesbitt et al. (1986) and Shelton et al. (1988) proposed that the mineralising fluids

responsible for lode formation are not metamorphic in origin but rather deeply

connecting, chemically evolved meteoric waters. The observed isotopic composi¬
tion of the mineralising fluids is generated through interaction with rock at fairly

high temperatures (275- 340 C) and low water / rock (w/r) ratios (Nesbitt and

Muehlenbachs, 1989a).

In epithermal Au + Ag deposits, where the involvement of meteoric water is

widely recognised, 8D values are generally low, latitudinally dependent, and are

accompanied by correspondingly low 518O values. In mesothermal gold deposits,
on the other hand, low 5D values are latitudinally dependent but accompanied by

high and latitudinally independent 818O values. The origin of this pattern of iso¬

tope enrichment and depletion is a direct result of relatively low water / rock ra¬

tios in the mesothermal systems. Shown in Figure 9.1 are a set of varying water /
rock ratio at varying temperatures (Kerrich, 1987). The initial large shift in 818O

with little change in 8D at relatively high water / rock values is a result of the
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high O / H ratio typical of most rocks. Due to the high O / H ratio of rocks, the

818O values of fluids will be influenced even at relatively high water / rock values

with little effect on 8D values. Only with a very low water / rock ratios the 5D of

the fluids will be affected significantly (Fig. 9.1). As shown in Figure 9.1, the fluid

evolution curves readily indicate the water / rock and thermal conditions neces¬

sary to generate the isotopic chemistry of fluids in mesothermal gold deposits.
Also demonstrated in Figure 9.1 is the fact that in order to obtain typical 818O val¬

ues of the ore fluids, the fluids must have interacted with sedimentary rocks

(Nesbitt and Muehlenbachs, 1989a). The 518O values of pristine igneous rocks are

too low to generate the observed 818O values.

The model predicts that the 8Dfiuid values should retain much of their original
meteoric signature, whereas the S18OfiUid values should reflect equilibration with

the oxygen composition of the host-rock mass, a process which is reflected in the

Canadian Cordillera mesothermal gold deposits and the Asimotrypes results as

well. The meteoric water model was proposed by Nesbitt and Muehlenbachs

(1989a) to account for the common observation in Cordilleran lode deposits that

8D values of inclusion fluids in quartz are extremely depleted in deuterium rela¬

tive to the magmatic and metamorphic water fields. Also, the 8Dfiuid values dem¬

onstrate a systematic latitudinal dependence, in that they become progressively
more depleted in deuterium at higher latitudes. A metamorphic dehydration
model can not explain this observation.

From Figures 9.1 and 9.2, the area occupied by the Asimotrypes fluids lies out¬

side of the metamorphic and magmatic water fields and could only be derived

from these fluids through a significant negative shift in the 8Dfiuid values. It is

suggested therefore, that the Asimotrypes mineralising fluids are of meteoric ori¬

gin, perhaps incorporating a metamorphic fluid component, and that the ob¬

served fluid composition was derived by substantial interaction of this fluid with

the rock mass. However, it is difficult to estimate the degree of this interaction,
since the isotopic composition of the Palaeozoic to Upper Miocene meteoric water
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in the study area is unknown, and hence the absence of a fluid evolution curve in

Figure 9.1. The incorporation of the metamorphic fluid component in the Asimo-

trypes mineralised fluids is further evidenced from fluid inclusion microther-

mometric studies, where estimated P - T trapping conditions coincide with those

of the retrograde metamorphism (Chapter 7, Fig. 7.6).

The apparent time lag between peak metamorphism and the onset of minerali¬

sation is a common feature in many mesothermal gold deposits and it is a recur¬

ring problem for those in favour to the metamorphic dehydration model (Kyser
and Kerrich, 1990; Nesbitt, 1991). To account for the discrepancy, Kyser and Ker-

rich (1990) suggest that in collisional belts which have experienced significant
crustal thickening, peak metamorphism at depth may post-date peak metamor¬

phism at shallower levels by up to tens of millions of years, thus accounting for

the apparent discrepancy in age between mineralisation and metamorphism.

However, theoretical modelling by Connolly and Thompson (1989) suggest
that much of the fluid generated by prograde reactions at depth is probably con¬

sumed by retrograde hydration reactions in the overlying dehydrated rocks. They
also suggest that the amount of silica transported by metamorphic fluids is insuf¬

ficient to explain the volume of quartz veining seen in metamorphic terranes, un¬

less significant convective re-circulation of fluids occurs.

9.7 Transport of Gold

Most experimental studies pertaining to the transport of gold in hydrothermal ore

solutions have focused on the role of chloride and reduced sulphur - containing
ligands, although other complexes such as thio-arsenites and tellurium species

may play some role (Seward, 1984). Gold solubility studies in chloride (Ogryzlo,
1935; Henley, 1973; Vilor, 1973; Wood et al., 1987; Zotov and Baranova, 1989; Se¬

ward, 1991; Gammons and Williams-Jones, 1995) and reduced sulphur - contain¬

ing solutions (Ogryzlo, 1935; Zviaginicev and Paulsen, 1940; Weissberg, 1970; Se-

168



ward, 1973; Shenberger and Barnes, 1989; Renders and Seward, 1989; Hayahi and

Ohmoto, 1991; Pan and Wood, 1994; Gibert et al, 1993; Zotov and Baranova, 1995;

Benning and Seward, 1996) have demonstrated that under typical hydrothermal
conditions (low oxidation potential, neutral to slightly acid pH), the dominant

gold complexing ligands are reduced sulphur species. The stability constants for

Au (I) chloride complexes at 25 C, are up to twenty orders of magnitude smaller

than those of Au (I) hydrosulphide complexes are (Seward, 1991) and, therefore

the latter predominate. Despite this observation, the stability constants for Au (I)
hydrosulphide complexes in high temperature and high-pressure environments

are not yet well defined. This is particular true for low pH regions where no satis¬

factory data are available.

It is generally accepted that in near neutral pH, reduced sulphur bearing solu¬

tions, the dominant Au (I) hydrosulphide complex is Au(HS)-2 (Seward, 1973;

Shenberger and Barnes, 1989; Renders and Seward, 1989; Zotov and Baranova,

1995). The stoichiometry of this complex has been firmly established over a wide

range of temperatures (from 25 C to 350 C) and pressures up to 1000 bar. How¬

ever, the high temperature equilibrium formation constants for this species from

the different studies, vary up to 1.5 log units. The maximum solubility of gold as

Au(HS)"2 is found where pH = pKi of H2 S. With increasing temperature, in ac¬

cordance with the shift of pKi of H2 S towards more alkaline pH (Ellis and Gig-
genbach, 1971; Suleimenov and Seward, 1995), the maximum gold solubility also

shifts to higher pH. Consequently, above 300 C the species stable at lower pH
will become increasingly important for gold transport (Benning and Seward,

1996).

For the acid pH region, two complexes have been proposed: AuHS0 and

HAu(HS)2. For the neutral species, AuHS0, proposed as the stable species at high
temperatures by Seward (1973), the stoichiometry and stability constant were

clearly determined at 25 C by Renders and Seward (1989). Zotov and Baronova

(1995) have conducted experiments at 350 C in acid H2 S bearing solutions and
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also suggested AuHS0 as the stable species. The protonated complex, HAu(HS)2,
was suggested by Hayashi and Ohmoto (1991) on the basis of experiments in

NaCl- and H2S-bearing aqueous solutions at 250-350 C. Gibert et al., (1993) have

determined the solubility of gold in KCl solutions at temperatures up to 450 C.

From their data, AuHS0 is likely to be the dominant species.

Recent studies by Benning and Seward (1996) in sulphide solutions at near

neutral pH showed that the complex Au(HS)2' is the dominant gold species.
However, with increasing temperature, in accordance with the shift of pKi of

H2S towards more alkaline pH, the maximum solubility also shifts to higher pH
values and consequently, at high temperatures the species stable at lower pH will

dominate. It has been proven that over a wide range of temperatures and pres¬

sures in reduced sulphur-containing hydrothermal solutions of low pH, the stoi-

chiometry of the dominant Au(I)-hydrosulphide complex, is AuHS0
. High tem¬

perature and high pressure equilibrium constants for the formation of the Au(I)-

hydrosulphide complexes, AuHS0, and Au(HS)2", pertaining to the equilibrium

Au(s) + H2S = AuHS0 + 1 / 2 H2 (g) (1)
and

Au(s) + H2S + HS- = Au(HS)2- + 1 / 2 H2 (g), (2)

have been calculated by Benning and Seward (1996). The equilibrium constant

for reaction (1) varies from logKi =-6.81 at 150 C / 500 bar to a maximum of -5.90

at 200 C / 1500 bar and decreases again at higher temperatures. For reaction (2),
a similar variation occurs: logK2 = -1.45 at 150 C / 500 bar to a maximum of -1.03

at 200 C / 1500 bar and decreases again at higher temperatures. The equilibrium
constants for the uncharged complex AuHS0

,
show that this species plays an im¬

portant role in the transport and deposition of gold in ore depositing environ¬

ments which are characterised by low pH fluids.

Data obtained through this study allow the following summation to be made
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regarding the mineralising fluid, which formed the Asimotrypes carbonate-

hosted mesothermal gold deposit. Mineralisation was formed at a mean tem¬

perature of 312 C and a mean pressure of 3.3 kbars; the average mole fraction

carbonic species in the fluids was about 0.06 as determined by the mass spec¬

trometer gas analyses, and fluid salinities range from 0.61 to 7.31 wt% NaCl

equivalent with an average of 4.41 wt% NaCl equivalent, as indicated by mi¬

crothermometric calculations. Furthermore, 534 S and 813 C analyses and inter¬

pretation suggest that the log oxygen fugacities were most probably within the

range -30 to -32 and pH near neutral at 6.5 (Chapter 8). At Asimotrypes there is no

indication that sulphates were ever deposited and thus it is likely that/Ch levels

were below those at the SO4 / H2 S equal concentration boundary during all

phases of mineralisation (Ohmoto, 1972; Ohmoto and Rye, 1979). Further evi¬

dence for this is the relative constancy of 534 S values for all the main sulphides.
The presence of pyrrhotite in association with pyrite (Chapter 5) is an indicator

for strongly reducing conditions (Ohmoto, 1972). Although in the Asimotrypes
ore, pyrrhotite is strongly localised, it is fairly common in otherwise similar arse-

nopyrite-pyrite mineralisations (Steed and Morris, 1997). It is not certain that the

two minerals were simultaneously deposited and thus this can only be taken as

an indication of a generally reduced environment. However, additional evidence

for a reducing environment is the presence of CH4 in the mineralising fluids.

Based on the above, it is suggested that sulphide species, such as Au(HS)2~ ,

were probably the most effective complexing agents for gold in the Asimotrypes
hydrothermal fluids which were typically low in salinity. A relative paucity of

base metals in the ore may also indicate that chloride complexing of gold was not

important.

9.8 Mechanisms of Gold Deposition.

Gold is precipitated from hydrothermal ore fluids in response to changes in the

physicochemical conditions of the fluid at the site of ore deposition. These specific
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changes in ore-fluid chemistry can result from a number of processes, including:
pH changes toward more acidic or alkaline conditions from near neutral

solutions

/O2 shifts via redox reactions and / or CO2 immiscibility
a decrease of the reduced sulphur species activity due to sulphide precipi¬

tation

wall-rock alteration and / or H2 S loss accompanying fluid unmixing
cooling and dilution of ore fluids

It is never only one factor which causes gold to precipitate from the transport¬
ing solution but a mixture of interdependent factors which are different from de¬

posit to deposit. The main reasons for decreasing the solubility of gold in high
temperature sulphide solutions are because of changes in pH and/or total re¬

duced sulphur concentrations. In ore depositing systems, this is achieved by wall-

rock interaction, oxidation of the fluids (e.g. mixing with meteoric or seawater),
boiling with loss of the volatile components (H2 S, H2, CO2 ) or precipitation of

sulphide minerals. A temperature and pressure decrease is often assumed to

cause precipitation. The effect of temperature on the solubility of gold in sulphide
solutions is very strongly related to the total sulphur concentration and the oxy¬

gen fugacity. In systems where high sulphur and low oxygen fugacities occur, de¬

creasing temperature may play an important role in the precipitation. It has been

shown experimentally by Benning and Seward (1996), that in acid pH solutions, a

decrease in pressure will favour the precipitation of gold from solution, whereas

in near neutral solutions, a drop in pressure will increase the solubility of gold,
and, therefore, precipitation will be impeded. However, this effect is probably
only important in the near neutral region.

The pH change was not an effective cause for gold precipitation at Asimotry-
pes, because wall-rock alteration, if any, was too weak. This is suggested by 818O

and 813C isotopic analyses (Chapter 8). Finally, the gold ore at Asimotrypes is re¬

stricted to thrust and shear planes.
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The oxygen fugacity of the earliest Asimotrypes fluids decreased through in¬

teraction with wall-rock carbon, with a likely reduction in solubility of the gold

bisulphide complex. However, this mechanism was also not a major control on

gold deposition because there is no spatial relationship between gold concentra¬

tion and amount and distribution of carbon in ore hosting marbles.

A decrease of sulphur species activity and cooling are suggested to be the fa¬

voured depositional mechanisms for Asimotrypes. Figure 9.3 shows a probable
mechanism for gold precipitation based on mineralogical and fluid inclusion con¬

straints. The close association of gold and sulphides indicates that sulphide pre¬

cipitation caused a decrease of sulphur activity, and thus decreased the solubility
of gold thio-complexes (Groves et al., 1987; Neall and Phillips, 1987). Fluid immis-

cibility and accompanying Hb S loss to the vapour during entrapment of early,
CO2 -rich fluids could also enhance the decrease of sulphur activity (Walsh et al.,

1988; Lu and Seccombe, 1993). Total sulphur concentrations in ore fluids are as¬

sumed to have decreased from approximately 0.01 to 0.001 moles. Evidences of

cooling and dilution include the presence of aqueous fluid inclusions as samples
of late stage, cooler and more dilute fluids, and interpretation of available mineral

assemblages.

RoleofCOi

Although detailed textural evidence for CO2 effervescence is generally equivocal
or circumstantial, the areal fluid composition trends documented in this research

are compelling evidence in favour of effervescence of CO2 from the mineralising
fluids. Effervescence of CO2 may have occurred either in response to a switch

from lithostatic to hydrostatic fluid conditions as the fluid was forced through the

solvus in the H2O-CO2-NaCl system, or during regional uplift.

If loss of CO2 from an effervescing system accounts for the areal trends seen at
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Asimotrypes, the peak in homogenisation temperatures observed in the studied

area becomes readily explainable. When the P-T path of an rtO-CCb-NaCl fluid

intersects the solvus, a CCb-rich phase is exsolved. As the fluid is trapped on the

solvus, the fluid inclusion homogenisation temperatures will be approximately
equal to the trapping temperature but will be higher than homogenisation tem¬

peratures recorded for higher density fluids trapped at greater depths and higher
pressures within the hydrothermal system. Thus, as fluid decreases, homogenisa¬
tion temperatures would be expected to increase to a maximum at the point of

CO2 loss. The system then becomes IHhO-NaCl ( CO2), and as the fluid density
increases with decreasing temperature, progressively lower homogenisation tem¬

peratures will be recorded by primary inclusions. Thus homogenisation tem¬

peratures would be expected to peak at the point of CO2 effervescence.

The general trends observed in the Asimotrypes P-T-X data correspond well

with this model, implying that the loss of CO2 from the system occurred in re¬

sponse to a gradual pressure drop as the fluid moved up through a large scale

hydrothermal system or more likely as regional uplift forced the hydrothermal
system through the solvus in the IHbO-CC^-NaCl system, rather than in response
to rapid pressure loss due to the fault-valve action or seismic pumping (Sibson,
1990). This argument is supported in part by the general lack of brecciation of the

mineralisation.

Finally, Shelton et al., (1988), Nesbitt and Muehlenbachs (1989), Rushton et al.,

(1993), and So and Yun (1997) have shown that decrease of sulphur activity via

sulphide precipitation and/or H2S loss accompanying boiling and CO2 efferves¬

cence was the most important and critical mechanism for gold deposition in the

Korean and Canadian Cordillera mesothermal gold deposits.

9.9 Heat Source

Uplift rates in some metamorphic belts have been shown to be very high. Craw
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(1988) reported that uplift rates in the Alpine schists in New Zealand were as high
as 10 km per million years, approximately equal to removal of the entire green-

schist facies. In such areas, crustal geotherms tend to curve upward toward the

surface. Theoretical modelling of the thermal state of high uplift regions by Craw
and Coons (1988) indicates those uplift rates of greater than 2mm per year

(2km/m.y.) result in temperatures of greater than 300 C at depths of less than 5

km. In this type of system, fluid flow is initiated by buoyancy effects because of

the high heat flow as a result of topographic effects due to uplift. Also, hy¬
drothermal fluid systems in these areas are likely to be longer lasting than, say,

pluton related systems, because the heat source is a regional feature (Norris and

Heley, 1976; Nesbitt, 1990).

In the Western Rhodope the regional uplift started in the Eocene and it was

completed in the Miocene. During this time the Lower Tectonic Unit was isother-

mally uplifted from an approximate depth of 53 km to 14 km (Mposkos, 1994).
This implies that for the time given, the rate of uplift was lmm per year (1
km/m.y.) for temperatures over 300 C, estimated from fluid inclusions mi-

crothermometry (Table 7.2). Thus it is conceivable that the Asimotrypes system
was of sufficient duration to allow mineralisation to occur during significant ver¬

tical uplift; perhaps as much as approximately 30 Km during the life of the hy¬
drothermal system ,

if uplift rates were high enough. Perturbation of the normal

geothermal gradient caused by uplift would probably be sufficient to drive con¬

vection of meteoric fluids in the rock mass.

9.10 Genetic Model for the Asimotrypes Carbonate-hosted Mesothermal Gold

Deposit

The results of this research on the genesis of the Asimotrypes carbonate-hosted

mesothermal gold deposit suggest deep convection and chemical evolution of

meteoric water. In this model, meteoric water penetrates rock units of the brittle

regime of the continental crust to a depth limited by the brittle-ductile transition,
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which occurs at depths of approximately 14 Km and temperatures of 350 to 450

C in terranes undergoing strike-slip faulting (Sibson, 1986). Beneath this bound¬

ary, the permeability of the rock units most likely undergoes a major reduction,
which serves as a hydrologic barrier for the lower extension of the convection cell.

During fluid influx in this system, the downward migrating water will be ex¬

posed to a large rock surface area producing low water/rock ratios. This is re¬

flected in the light 8 18O values for the ore-forming fluids, which have been

strongly enriched in 18O and are relatively uniform throughout the system. As

these fluids move through the brittle regime at temperatures up to 400 C, they
will approach equilibrium with the rock units, which are undergoing active, low-

grade metamorphism. This interaction with the rock units at a low water/rock
ratio will tend to produce values for variables, such as Xco2 //O2 ,/S2 , pH etc.,
which are buffered by the rock units. In addition, the fluid acquires the Si, W, As,
Sb, and Au, which are later precipitated.

As the fluids begin to rise, they cool and depressurise. At approximately 2.7

kbar pressure, immiscible separation of the CC^-rich phase occurs, decreasing the

density of the residual fbO-rich phase. At approximately neutral pH of 6.5 with

Au in Au(HS)2" complexes, and at 300 C sulphides will be precipitated due to

decrease of sulphur activity resulting in decreased solubility of gold thiocom-

plexes (Groves et al., 1987; Neall and Phillips, 1987; Benning and Seward, 1996).
This process will cause Au superaturation and precipitation.

The genetic model proposed requires convection of meteoric water down

through the brittle regime to the brittle-ductile transition. This can be tested using
the Rayleigh-Darcy equation:

Ra = ( gap(pCp)ATHK/uX)

whereas: Ra = Rayleigh number, g = gravity, a = thermal expansity, p = den¬

sity, Cp = heat capacity, AT = temperature difference, H = thickness of permeable
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unit, K = intrinsic permeability, u = viscosity, X = thermal conductivity. In con-

vective regimes, values for Ra are greater than 40 (Straus and Schubert, 1977).

Rüssel (1983), Criss and Taylor (1986) and Nesbitt (1988) have considered ap¬

plications of the Rayleigh-Darcy equation to the evaluation of convection in the

brittle crustal regime among others. In each of these studies the limiting factor in

the determination whether fluids will convect or not is invariably the permeabil¬
ity. There is general agreement between the various authors that a permeability of

approximately lO'17 m2 or greater is necessary for convection. Due to the highly
fractured nature of the rock units in active continental margins, permeabilities in

excess of lO17 m2 are typical and may be as high as lO14 m2 (Brace, 1980). The

presence of strike-slip fault zones is particularly important, because the zones

provide highly permeable, vertically continuous pathways for fluid movements.

Consequently, convection of meteoric water can and must occur within the brittle

regime of active continental margins with a probable lower limit provided by the

brittle-ductile transition (Nesbitt and Muehlenbachs, 1989).

As described above, the convecting meteoric water passes through rock units

undergoing active, low-grade metamorphism. Consequently, the fluid phase will

be a mixture of the convecting meteoric water and the fluids produced by meta-

morphic devolatilisation. Some first approximation calculations can serve to de¬

termine how significant the contribution of each fluid source is to the ore fluid

(Nesbitt and Muehlenbachs, 1989). A typical estimate for the velocity of the con¬

vecting meteoric water in these systems is 1 m/year (Chris and Taylor, 1986),
combining this figure with a density for H2O at 300 C and 1 kbar of 0.83 g/ cm3

(Burnham et al., 1969) and porosity estimates varying from a maximum of 1 per¬
cent to a minimum of 0.1 percent (Chris and Taylor, 1986) infers a maximum flux

rate of meteoric water of 8.3 kg/m2/year and a minimum rate of 0.83 kg/m2/year
(Nesbitt and Muehlenbachs, 1989). Estimates by Walter and Orville (1982) of the

total fluid flux of devolatilisation fluids during metamorphism range from a

maximum of 0.3 kg/m2/year to a minimum of 0.03 kg/m2/year, passing verti-
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cally through a column of rock. The results of this calculation indicate that the

component of convecting meteoric water constitutes about 95 percent of the fluid

in the brittle regime.

In the previous Chapters and sections an attempt has been made to describe

the regional structural setting of the Asimotrypes ore, its mineralogy and geo¬

chemistry, P-T conditions, fluid chemistry and source in order to define the ge¬

netic model. A final attempt will be made to link the origin of the mineralisation

and ore formation with a coherent geologic model in which ore formation oc¬

curred during, and in response to, an extended regional tectonic event.

Deposition of carbonates in a shallow marine environment during Paleozoic-

Mesozoic, followed by diagenesis, lithification and metamorphism.

Thrusting of marine carbonates over a quartzo-feldspathic basement sequence;

shear zones are concentrated in the Transitional Zone along schist-gneiss-marble
contacts. Subduction of the whole unit to a maximum depth of 53 Km in the

ductile deformation zone, following a path with a mean temperature increase of

11.5 C/Km, during Palaeocene to Eocene. Ductile deformation is dominated by

compressional tectonics in depth resulted in the formation of isoclinal folds corre¬

sponding to high-pressure eclogite metamorphic phases.

Uplift, following an isothermal path reached the brittle deformation zone 14

Km, accompanied by dehydration reactions. Brittle tectonism characterised by
compressional tectonics developed NE-SW, NW-SE and E-W trending low-angle
thrust and shear faults referred to as palaeo-thrusts of pre-Oligocene age and neo-

thrusts of Middle Eocene. These thrusts are tectonometamorphic events associ¬

ated with medium pressure metamorphic phases. During late Eocene to early
Miocene the brittle tectonism is due to extensional deformation. This event, ac¬

companied by the intrusion of the Nikisiani granodiorite in Oligocene, formed

subsequently the horst-graben structures. Descending meteoric water mixed with
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ascending metamorphic fluids generated by dehydration reactions, initiate a met-

allogenie hydrothermal convective system driven by uplift rates in the transition

of the ductile-brittle zone.

Post magmatic development of sub-vertical faults and veins along the margins
and the interior of the horst, related to retrograde metamorphism in Miocene,
acted as channels driving the metalliferrous fluids into the tectonically prepared
sites and replacement type mineralisation was formed. Mineralisation cross-cuts

the granodiorite and follows earlier shears.

Uplift continues with cooling and basins are developed in the intervening ar-

, eas; oxidation of sulphide ores.
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CHAPTER 10

CONCLUSIONS

As outlined in Chapter 1, the purpose of this study was to investigate the Asimotry-

pes carbonate-hosted mesothermal gold deposit from a geochemical standpoint in

order to define its nature and origin. The conclusions arrived at, on the basis of the

interpretations placed on the data acquired in this study include the following:

The Asimotrypes carbonated-hosted mesothermal gold deposit is of replacement
and shear-style mineralisation. Precious and base metal mineralisation is emplaced
as irregular pods along thrusts between marble units and schists within the Transi¬

tional Zone, or as small quartz veins within the marbles. Mineralisation has also been

located in vertical fault zones which extend upwards through the underlying schists

and appear to be feeders for the main mineralisation.

According to field observations and petrographic studies, the carbonate rocks of

Pangeon can be grouped in six types. Dolomites rocks, partially or completely de-

dolomitised, are abundant and they are lithostrigraphically controlled. Field observa¬

tions combined with petrographical textures and geochemical data could be ac¬

counted for by either neomorphism of an earlier dolomite or by replacement of a

limestone under burial conditions.

The impure calcitic marble (Type I) is correlated with mineralisation and Types II

and VI are correlated with the oxidised sulphide mineralisation. The relationship of

dolomitisation and the mineralisation bearing carbonate rocks is debatable. The in¬

verse process of dolomitisation, de-dolomitisation has a positive relationship with
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the mineralisation within the marbles, which is probably due to similar favourable

conditions for the de-dolomitisation mechanism and ore deposition.

The mineral paragenesis through a NW-SE sub-vertical fracture up the mountain

changes from pyrite + quartz, to pyrite + quartz + sericite, to sericite in the granite

overlying the Asimotrypes, to pyrite + sulphides where the veins cross overlying
marble and schist units. The Asimotrypes ore consists mainly of arsenopyrite, pyrite

and gold, with subordinate sphalerite, galena, chalcopyrite, pyrrhotite, tetrahydrite-

tennantite, marcasite, covellite and malachite. Gangue minerals include dominantly

quartz and lesser muscovite-sericite.

Gold appears relatively early in the sulphide paragenetic sequence. Gold miner¬

alisation is often typified by refractory ore as solid solution in arsenopyrite and less

frequently in arsenian-pyrite, or can be found free in Fe-oxide (goethite) veinlets with

residual pyrite.

Gold is found in the sub-vertical vein system, which cuts all the rock lithologies

including the granite, as well as in irregular pods and lenses developed along the

thrust contacts between the marbles and schists. The highest gold values come from

the arsenopyrite-pyrite pods at Asimotrypes, with average values ranging from 11-13

ppm. Sulphides developed as small lenses in the sub-vertical vein system are also

rich in gold.

The base metal content is uniformly low. In this respect the Asimotrypes gold de¬

posit conforms to the general pattern of highly enriched rare elements coupled with

low degrees of enrichment of base metals, characteristic of many mesothermal lode

gold deposits of both vein and chemical sedimentary types.

Three types of fluid inclusions (with subtypes) were recognised based on con-
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stituent phases at room temperature and microthermometric behaviour:

(i) H2O-CO2 3-phase inclusions: Li (H2O) + L2 (CO2) + V (CO2), characterised by

highly variable CO2/H2O volumetric ratios. These inclusions are further subdivided

into H2O-rich inclusions (10-40 volume CO2) which homogenise to the liquid (aque¬

ous) phase and CO2-inclusions (70-90 volume % CO2) which homogenise to the va¬

pour (carbonic) phase.

(ii) Aqueous 2-phase inclusions: L+V. These contain an aqueous liquid and an aque¬

ous vapour phase occupying 10-20 % of the inclusion volume. They always homoge¬
nise to the liquid phase.

(iii) Naturally decripitated and/or leaked inclusions: V or L+V. Decripitated inclu¬

sions are either empty or contain a vapour phase, whereas leaked varieties exhibit

inconsistent vapour/liquid ratios.

Mineralising fluid pressures and temperatures indicate early ore deposition dur¬

ing phase separation at temperatures between 275 C and 310 C at calculated pres¬

sures between 2.7 and 3.1 kb followed by late deposition at temperatures down to

130 C and very low near-surface pressures.

Mineralising fluid temperatures and pressures approach closely those of regional

retrogressive greenschist facies metamorphism ( T=350 - 400 C, P=3-5 kb), and atr

test to the conditions of syn-to post-metamorphic cooling.

The 5 ^S values for arsenopyrite, pyrite and chalcopyrite from the Asimotrypes
ore are 2.19 to 2.89, 2.28 to 3.13 and 2.17 to 2.24 per mil respectively. Petrographic
textural evidence and A Asp-Py fractionation values indicate that isotopic equilib¬
rium did exist between arsenopyrite and pyrite. 5 34S values have a mean value,
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which is generally considered characteristic for a magmatic source for the sulphur
and it is recorded for magmatic intrusions in the surroundings of the mineralised

sites.

From diagrams showing the relationship between oxygen fugacities and pH for

specific sulphide 8 34S values, upper limits for fo2 at lO31 and for pH 6.5 are obtained.

Carbon isotope values from calcite marbles are remarkably constant over a nar¬

row range between 1.89 to 2.94 per mil, and the 513C in the fluid was 4.12 + 0.35 (Ia)

and 4.68 0.35 (Ia) at 275 C and 340 C respectively, during ore deposition stage.

813C values around 0 + 4 per mil are indicative of a marine environment for ore

deposition. A plot of 513C versus 8 18O values of calcite show also a marine environ¬

ment of deposition. The rather high 813C
,
above +2 %o suggest a shallow sea and

warm climate conditions. 813C values of 4.68 0.35 are consistent with CO2 of meta-

morphic origin produced during decarbanation reactions of carbonate rocks, inter¬

pretation in agreement with the de-dolomitisation processes in marbles.

Median 818O values for marble calcites, quartz, sericite and whole rock are 29.31 +

0.94 (Ia) %o, 21.87 0.52 (Ia) %o, 13.38 0.86 (Ia) %o, and 16.15 0.26 (Ia) %o respec¬

tively, and are considered as metamorphic oxygen values. Calculated median ore

fluid composition at 275 C and 340 C in the system calcite-water is 22.94 0.93 (Ia)

%o and 24.77+0.93 (Ia) %o, in the quartz-water system is 14.06 0.52 (Ia) %o and

16.31 0.52 (Ia) %o and in the water-muscovite is 9.41+ 0.52 (Ia) %o and 10.88 + 0.52.

(Ia) %o respectively. These values are consistent with values of metamorphic fluids.

The remarkably constant carbon and oxygen isotope values for marble samples,
close and away from the ore, suggest that replacement of the marbles by the sul¬

phides obviously took place along sharply restricted zones, i.e. fault planes channel¬

ling the metal bearing fluid. Directly outside the channel zones only weak, if any,
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oxygen isotopic exchange between the marble and the fluids occurred, with the car¬

bon isotopic signature undisturbed.

Whole rock hydrogen isotopic data for the Asimotrypes ore and the Nikisiani

granite have a median value of -117 + 7.5 (Ia) %o and -82 6.21 (Ia) %o respectively.
These values imply that ore fluids represent meteoric waters.

The Asimotrypes mineralising fluids are of meteoric origin, perhaps incorporat¬

ing a metamorphic fluid component.

87 Sr / 86 Sr isotope ratios have an average of 0.707920 0.00010 (Ia) implying a

seawater derivation of Sr that is consistent with interpretation made based on bulk

rock geochemistry results and conclusions drawn from C and O isotope values from

ore-host marble samples.

Lead isotope data in ores from the Rhodope and Serbomacedonian Massifs are

largely uniform and show a crustal affinity with high 208 Pb / 204Pb ratios.

Sulphide species, such as Au(HS)2" , were probably the most effective complexing
agents for gold in the Asimotrypes hydrothermal fluids which were typically low in

salinity. A relative paucity of base metals in the ore may also indicate that chloride

complexing of gold was not important.

A decrease of sulphur species activity and cooling are suggested to be the fa¬

voured depositional mechanisms for Asimotrypes. The close association of gold and

sulphides indicates that sulphide precipitation caused a decrease of sulphur activity,
and thus decreased the solubility of gold thiocomplexes. Fluid immiscibility and ac¬

companying H2 S loss to the vapour during entrapment of early, CO2 -rich fluids

could also enhance the decrease of sulphur activity. Evidences of cooling and dilu-
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tion include the presence of aqueous fluid inclusions as samples of late stage, cooler

and more dilute fluids, and interpretation of available mineral assemblages.

Regional uplift started at Eocene in Western Rhodope Massif and it was com¬

pleted in Miocene. During this time the Lower Tectonic Unit was isothermally up¬

lifted from an approximate depth of 53 km to 14 km, in the transition of the ductile-

brittle zone. Perturbation of the normal geothermal gradient caused by the regional

uplift was probably sufficient to drive convection of meteoric fluids in the rock mass.

Combined with geological evidence, the fluid inclusion and stable isotope data of

the Asomotrypes gold mineralisation, are consistent with genesis from deeply con-

vecting meteoric water driven by regional uplift through rocks undergoing retro¬

gressive greenschist fades metamorphism.

Finally, the present study and the comparison of the Asimotrypes Tertiary meso-

thermal gold deposit with other similar Archean and Phanerozoic mesothermal de¬

posits, revealed an apparent and close similarity among them. Some differences be¬

tween the compared districts, largely in rock-host type, hydrothermal alteration, and

relation to plutons, most likely reflect local geological heterogeneities. Recognition
and documentation of the similarities between Archean and Phanerozoic mesother¬

mal deposits stated above reported also by Hutchinson (1987) and Kerrich (1987),

support a classification scheme of a single general category of mesothermal lode gold

deposits encompassing mesothermal ores ranging from Archean to Tertiary in age.
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SAMPLE DESCRIPTIONS
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Sample Descriptions

Samples As-1 to As-18, As-31 and As-65, As-66, As-67, As-71, As-72 and As-75 are

from the main 3K-D adit, altitude 1200 m above sea level (Fig.l). It is a wide con¬

struction made by Bauxite Parnassus Company, who opened three adits into the

Asimotrypes mineralisation in order to investigate the continuation and quality of

the ore exploited by the ancients. On the East Side of the adit entrance an arseno-

pyrite-pyrite sub-horizontal lens is exposed against shear banded marble. The

lack of skarn between the ore lens and the marble is noticeable. Only a 2cm thick

skin of limonite.

In addition to the sub-horizontal lenses, sub-vertical 130 trending faults

are present crossing in some cases the ore lenses and are variably mineralised

with pyrite, limonite and sometimes malachite. At a higher level above the adit

entrance thin sub-vertical limonite filled structures are present, with limonite dis¬

seminating laterally out along sub-horizontal planes in the marble. It is apparent

that the 130 fracture system is post shearing.

As-1: Shear banded, impure calcific Type IV marble, with thin fractured zones.

As-2: Limonitic banded rock, forming skin to sulphide ore.

As-3: Limonite with pyrite, skin to arsenopyrite-pyrite lens.

As-4: Shear banded, impure calcific Type IV marble, hanging wall.

As-5: Shear banded, impure calcific Type IV marble, 5 m above As-4.

As-6: Phlogopitised gneiss with pyrite, above the As-5.

As-7: Fresh, shear banded, impure calcific Type IV marble, 10 m above the 3K-D

adit entrance.

As-8: Phlogopitised gneiss schist, intercalated in impure calcific Type IV marble.

As-9: Shear banded, impure calcific Type IV marble to the east of As-8.

As-10: Phlogopitised gneiss schist, highest point above the 3K-D adit entrance.
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As-11: Massive arsenopyrite-pyrite quartzite, from the ore lens to the east of 3K-D

adit.

As-12: Shear banded, fine-grained impure calcitic Type IV marble, 8m inside the

3K-D adit, to the east.

As-13: Limonitised quartzite with arsenopyrite, from the ore lens to the east of

3K-D adit.

As-14: Massive arsenopyrite ore, from the lens to the east of 3K-D adit.

As-15: Amphibolitic schists.

As-16: Massive arsenopyrite from the eastern end of the ore.

As-17: Hydrothermally altered, foliated amphibolite.
As-18: De-dolomitic marble, overlying 3K-D adit on the West Side.

As-31: Massive, medium grained pyrite ore, from the interior of 3K-D adit.

As-65: Massive arsenopyrite-pyrite ore from the entrance of 3K-H adit

As-66: Massive arsenopyrite-pyrite ore, 10 m inside the 3K-H adit.

As-67: Massive arsenopyrite-pyrite ore, 20 m inside the 3K-H adit.

As-69: Massive pyritic ore, 40 m inside the 3K-H adit.

As-71: Massive arsenopyrite-pyrite ore, 60 m inside the 3K-H adit.

As-72: Massive arsenopyrite-pyrite quartzite ore lens to the east, 65 m inside the

3K-H adit.

As-75: Massive ore from the dumps in front of 3K-H adit.

Samples As-19 to As-30 (Fig. 1). Following the thrust plane separating

schists/ amphibolites and to the west, some archaeological adits are located,

thought to date from the time of King Philip of Macedonia. The excavations at

these adits followed exactly the shape of the ore lens. At most this was 1 m thick,

thinning down to 60cm. As before, no skarn developed along the contact between

ore lens and marble. NW-SE fracture system crosses the ore, with some apparent

remobilisation of sulphides upwards along the fracture to give small lenses.

As-19: Massive arsenopyrite-pyrite pods from sub-vertical fault zone.

As-20: Limonitic coating on NW-SE sub-vertical faults.
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As-21: Coarse arsenopyrite-pyrite ore from sub-horizontal thrust plane.
As-22: De-dolomitic shear banded marble, 15 m west of archaeological adit AS-4.

As-23: Fine to medium grained, laminated, Type I, shear banded marble, 6 m west

of archaeological adit AS-4.

As-24: Fine to medium grained, laminated, Type I marble, adjacent to archaeo¬

logical adit AS-4, with sub-parallel crosscutting limonite veins.

As-25: Vuggy limonitic material parallel to the foliation.

As-26: Hanging wall to lens; manganese and limonite filled cracks in marble.

As-27: Fine to medium grained, laminated, Type I marble, west of archaeological
adit AS-4.

As-28: Fine to medium grained, laminated, Type I marble, in contact with limo¬

nite and manganese.

As-29: As in As-28.

As-30: Fine to medium grained, laminated, Type I marble, 80 m before 3K-D main

adit.

Samples As-32 to As-41 in and around granite (Fig. 2), 120 m below 3K-D main

adit. A 3m wide aplitic vein crosscuts shear banded marble; the vein is weakly fo¬

liated, and cut by an open sub-vertical fracture system with sericite growing into

open spaces and across the fractures. The fracture system runs 150 / 70 W,
while the foliation runs 120 / 40 S. There are no sulphides in the fracture system.
The contact between granite and marble exposed at 1070 m.

As-32: Medium grained, recrystallised, impure calcitic, Type IV marble, in contact

with the granite.

As-33: Foliated granite with pyrite grains in joints.
As-34: Pyrite-quartz-sericite veins in granite.
As-35: Quartz-pyrite veins in white altered granite.
As-36: Disseminated and vein pyrite in altered granite. The granite is leached,

with no mafics left in a 20cm zone around the pyrite veins.

As-37: Massive pyrite lens within granite close to marble contact. There is no
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skarn developed along the contact, and the pyrite is developed in the

granite and not in the marble.

As-38: Thin, 2cm breccia zone in granite.
As-39: Weakly foliated, fresh granodiorite; minor amounts of mafic inclusions, no

alteration, no mineralisation.

As-40: Blocks of limonitised, pyritised granite.
As-41: Quartz veins with pyrite in granite.

Samples As-42 to As-50 (Fig. 1), starting 20 m west of the main 3K-D adit to 200 m

west.

As-42: Sub-vertical, barren quartz vein.

As-43: Sub-horizontal, barren quartz lenses in gneiss-schist.
As-44: Massive arsenopyrite-pyrite lenses in sub-vertical limonite zones.

As-45: Quartz veins with malachite and chalcopyrite.
As-46: Malachite disseminations in gneiss-schists hosting samples As-45 and As-

46.

As-47: Single outcrop and series of blocks of shear banded marble in which mag-

netite-epidote-hornblende-chlorite garnet skarn is developed. The skarn

bands are mostly thin, 10 cm seems to be the maximum. There is no rela¬

tion of the skarn to the mineralisation, since this kind of skarn banding is

common in marbles throughout the region.
As-48: Thin, folded skarn - magnetite bands in marble.

As-49: Intensely folded magnetite and marble bands; minor garnet.
As-50: White, very coarsely crystalline calcitic marble, Type V, 735 m elevation.

Locally sheared and banded. A thin aplite vein runs parallel to the band¬

ing.

Samples As-51 to As-54 are from the highest point of the Pangeon, at 1956 m ele¬

vation, vertically above Asimotrypes, west side (Fig. 2).
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As-51: Sheared, fine to medium grained dolomitic marble, Type II, with fine man¬

ganese network veining.
As-52: White, recrystallised de-dolomitic marble, Type VI. Part of a 700 m thick

unit above the thrust.

As-53: Sheared, fine grained, impure calcitic marble, Type IV.

As-54: Phlogopitised, mm-cm banded, impure calcitic marble, Type IV.

Samples As-55 to As-77 are from the ancient adits at Avgo (Pilaf Tepe), vertically
above Asimotrypes to the east (Fig. 2). Mineralisation has been totally exhausted

by the ancients.

As-55: Massive, fine to medium grained non-ferroan dolomitic marble, Type II,

with manganese veinlets and disseminations.

As-56: White, fine grained dedolomitic marble, Type VI.

As-57: Limonitic ore material as crust on the marble.

As-58: Mn veinlets and disseminations in marble.

As-77: Massive, fine to medium grained non-ferroan dolomitic marble, Type II.

As-78: White, fine grained de-dolomitic marble, Type VI.

Samples As-60 to As-64 are from the valley at the lowest part of Pangeon (Fig. 2).

As-60: Barren quartz vein with sericite.

As-61: Limonitised, pyrite-quartz-sericite vein, hosted in granite.
As-62: Altered amphibolite.

As-63: Quartz vein with disseminated pyrite crystals.
As-64: Limonitised, disseminated pyrite-chalcopyrite in quartzite.
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1. MICROPROBE ANALYSES

The chemical composition of arsenopyrite, pyrite and gold were determined at

I.G.M.E utilising a JEOL Superprobe 733. Operating conditions included an oper¬

ating voltage of 20 kV, a beam current of 5nA and 20-second count times. Mineral

standards were used, and an on line ZAF corrections were carried out using a

PDP-11/04 computer. The error in the iron content is less than 0.2 mol%.

2. SECONDARY ION MASS SPECTROMETRY (SIMS)

The selected samples were crushed and the wet screened at 38 and 5 m. Each

size fraction was gravity separated by superpanning to concentrate any free gold.
The plus 5 m pan tails of both samples were pulverised, screened at -5 m and

subjected to intensive double cyanidation for 48 hours. The leached residue was

gold assayed.

Secondary ion mass spectrometry (SIMS) spot analysis was used to quantify
gold concentrations in arsenopyrite and pyrite. A total of 50 sulphide grains using
the external standardisation method as described by Chryssoulis et al. (1989) were

analysed in order to obtain a sufficient data set for these potentially important
carriers.

Four sulphide mineral grains were mapped by SIMS to establish the gold dis¬

tribution within individual crystals following procedures described by Chryssou¬
lis and Weisener (1991). SIMS analyses were carried out at the Advanced Mineral

Technology Laboratory, University of Western Ontario, using an upgraded
CAMECA IMS-3f ion probe with an integrated image analysis system, and using
a primary beam of positive caesium ions. Gold was monitored as negative ions at

197 Dalton. Molecular interference was eliminated by voltage offsetting (Chrys-
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soulis et al. 1989). The instrument was calibrated using gold-implanted pyrite and

arsenopyrite. The results were standardised using mineral-specific calibration

curves produced from the gold-implanted sulphides (Chryssoulis et al. 1989).

3. BULK ROCK CHEMICAL ANALYSES

Major element oxides and trace elements were analysed at the IGME's Chemical

Laboratories in Athens by Inductively Coupled Plasma (ICP-AES). Au and Ag
were analysed by Inductively Coupled Plasma (ICP-AES) at the CALEB BRETT

Laboratories, Liverpool U.K, whilst Se, Te, Bi and Sb were analysed by Atomic

Absorption Spectrophotometry (AAS) using hydrate generator at the OMAC

Laboratories, Ireland. Detection limits of analysed elements are shown in Table 1.

Selective marble samples were analysed by XRF (pressed pellets) at IGME,

Athens. The semiquantative estimation of dolomite and calcite has been estimated

by X-Ray diffraction using the 104 peaks of both calcite and dolomite (Rouse et al.,

1971). The stoichiometry of the dolomite and percentage of MgCC>3 into calcite lat¬

tice were determined by calculating the shift of the 104 peak of dolomite using
quartz as an internal standard. Estimation of insoluble residue was made for the

investigation of the relationship of the trace element concentration with the crys¬

tal lattice of the carbonate minerals and the determination of the purity of the car¬

bonate rocks.
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Table 1: Detection limits of analysed elements.

Element

SiO2

TiO2

AI2O3

Fe2O3

MgO

MnO

CaO

K2O

Na2O

P2O5

Au

Ag

Pb

Zn

Cu

As

Analytical Method

ICP-AES AAS

0.01%

0.01%

0.01%

0.01%

0.01%

0.01%

0.01%

0.01%

0.01%

0.01%

5ppb

0.2 ppm

0.01%

0.01%

0.01%

lppm

Element

Sb

Bi

Se

Te

Cr

Ni

Co

V

Rb

Sr

Zr

Y

Nb

Th

U

Ba

S

Analytical

ICP-AES

2 ppm

1 ppm

1 ppm

1 ppm

2 ppm

2 ppm

2 ppm

2 ppm

2 ppm

0.5 ppm

0.5 ppm

1 ppm

100 ppm

Method

AAS

0.2 ppm

5 ppm

3 ppm

0.1 ppm
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4. FLUID INCLUSION STUDIES

Microthermometry

All samples studied were prepared for fluid inclusion microthermometry as dou¬

bly polished lOO-lSC^m thick wafers. Microthermometric work was undertaken

using a LINKAM THSM 600 Heating/Freezing stage. The stage was attached to a

LEITZ ORTHOLUX microscope carrying a NIKON PLAN 40 long working dis¬

tance objective. The operating procedures followed are described in Shepherd et

al. (1985). Calibration of the stage was done by using the melting point of pure

CO2 (-56.6C) in a natural sample where the CO2 is known to be >99.96 pure CO2.

The data obtained from the 13 standards were used to construct the calibration

curve, which is shown on Figure 3. The calibration curve relates a temperature

correction factor AT, which is the difference between the actual temperature read

from the digital read-out of the instrument, to the read temperature. Thus, any

read temperature is simply converted to the actual temperature by the addition of

the appropriate value for T. Accuracy is estimated at -0.5 C (between -100 and -

20 C), -0.2 C (between -20 and 30 C), ~1 C (between 30 and 200 C) and ~5 C

(between 200 and 500 C). Thus, analytical errors are insignificant with regard to

any geological interpretation. Data reductions were undertaken using FLINCOR

(Brown, 1989), software packages relating fluid inclusion microthermometry to

fluid composition and P-T conditions of fluid trapping.

Bulk Volatile Analyses

Decrepitation-bulk volatile analyses of vein quartz provides a quantitative meas¬

ure of the total fluid inclusion volatile content of a sample. For geologically and

paragenetically well-constrained material, the analyses can be used to compare

and contrast different generations of veins and identify temporal and spatial
variations in volatile geochemistry. A total number of 9 samples were analysed at

BGS, following
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Figure 3: Calibration curve for Linkam TH 600 heating-cooling stage.
T read C: Actual temperature read from the instrument.

DT C: Correction factor
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the method by Shepherd et al. (1991). The quartz samples were crushed, sieved

and the 0.5-1.0 mm size fraction retained. The concentrates then were acid washed

in hot 6m HCL to remove carbonate and sulphide impurities, rinsed several times

in boiling de-ionised water and then dried under infrared lamps. Using hand-

picked 0.5 gr sub-samples, the inclusion volatiles were released by thermal de¬

crepitation at 550 C under vacuum. Bulk analysis of the inclusion volatiles was

performed using a purposed built extraction line linked to a VG Micromass gas

source quadrapole mass spectrometer (Shephered et al. 1985). By cryogenic trap¬

ping at -196 C, H2O and CO2 were isolated from the "non-condensable" compo¬

nents: CH4, N2 and noble gases, together with any H2 and CO. By measuring the

pressure of the non-condensable gas fraction using a capacitance manometer, the

total number of moles of gas in this fraction could be calculated. The mass spec¬

trometer was then used to quantitatively identify the various individual gas spe¬

cies. After pumping away the non-condensable gas fraction, the trap temperature
was raised to -78 C, using a solid CO2 / liquid nitrogen slush path. CO2 was thus

released and its pressure measured in a standard volume. For the determination

of H2O, a reduction furnace containing zinc at 400 C was used to convert the wa¬

ter vapour to H2, the pressure of which was subsequently recorded. Values for the

volumes of CO2 and H2O released from replicate quantities of host mineral pro¬

vided a valuable check of sub-sample homogeneity.

5. STABLE AND RADIOGENIC ISOTOPES

5.1 Stable Isotopes

Sulphur Isotopes

Ten representative sulphide samples from the 3K-D and 3K-H adits at Asimotry-
pes were collected for sulphur isotope analysis. The samples were crushed to a

<0.5 mm grain size and subsequently pure sulphide concentrates (>97%) were

produced by selection under a microscope. The sulphide separates were analysed
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for their sulphur isotope signature relative to the Canyon Diablo troilite (CDT)
standard, employing standard methods (mass spectrometer) at the Centre des Re-

cherches Petrographic et Geochimiques, Nancy, France. Analytical uncertainties

are 0.2 per mil for 8 34S and 0.4 per mil for the A S 34S.

Carbon Isotopes

Fifteen representative calcite samples from the Asimotrypes area were collected

along a profile away from the arsenopyrite-pyrite ore on the main thrust zone be¬

tween gneisses and sheared marbles, at a distance from a few cm up to 50 m from

the ore. These samples were analysed for their 13 C isotopic composition, at the

University of Utrecht. XRD determinations were made on powdered carbonate

samples prior to isotopic analyses to determine the relative percentages of calcite,

dolomite and other carbonate types. No pure dolomite samples were found. Cal-

cites were reacted with 100% phosphoric acid at 25 C according to the method of

McCrea (1950). Pure calcites, with less than 5% vol. dolomite, were reacted over¬

night, and mixtures of calcite and dolomite were reacted for about 2 hours after

which calcite CO2 was extracted. The carbon isotopes are related to the Peedee

belemite (PDB) international standard. Both carbon and oxygen isotopes are

measured with a precision of 0.2 per mil or better.

Oxygen Isotopes

Fifteen representative calcific marble samples from the Asimotrypes area were

collected along a profile away from the arsenopyrite-pyrite ore on the main thrust

zone between gneisses and sheared marbles, at a distance from a few cm up to 50

m from the ore. These samples were analysed for their 18 O isotopic composition,
at the University of Utrecht. The analytical method is described in the previous
Section of Carbonate Isotopes.

Quartz and sericite mineral separates from ten representative samples from the
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ore and rocks from the Transitional Zone were analysed for 518 O SMOW at the

CSIRO Petroleum Resources Laboratory in Australia. Sericite was obtained by
griding to -100 mesh followed by repeat centrifuging in a heavy liquid to yield a

concentrate of specific gravity > 2.76 and < 2.85 and taken to purification by mag¬
netic methods. Silicates were reacted with BrFs to liberate oxygen and O2 was

converted to CO2 before mass-spectrometric analysis, as described below, fol¬

lowing the method of Clayton and Mayeda (1963).

Fifteen representative whole rock samples, more specifically six As-py-bearing
quartzite samples, three amphibolite samples and six granite-granodiorite sam¬

ples, were analysed for 518 O SMOW at the CSIRO Petroleum Resources Labora¬

tory in Australia. Carbon dioxide for whole rock oxygen isotope analysis was

prepared using the method described by Clayton and Mayeda (1963). 8-10 mgs of

powdered sample is weighed into delivery probes and loaded into nickel reaction

vessels under a back flash of ultra-high purity argon. The bombs and manifold are

evacuated, firstly by a rough pump, then by a high vacuum pump, an aliquot BrFs

frozen into the bombs using liquid nitrogen and the bombs are heated to 550 C

for 14 hours. The resultant oxygen is pulsed over a hot carbon filament (30A, 50-

70V, platinum electrodes to catalyse the reaction), the carbon dioxide collected as

generated, the yield measured and gas collected for isotopic measurement in a

mass spectrometer. For the NBS 26 international standard this technique gives 518

O = 9.6 per mil. Replicate analyses of standards are generally better than + 0.1. All

oxygen isotopes are related to the Vienna-Standard Mean Ocean Water (SMOW)
standard.

Hydrogen Isotopes

Hydrogen whole rock isotopic analysis was performed on eight representative

samples from the main ore, the Transitional zone and the granite. The aim of

these analyses is to use the D/H values combined with18 O/ 16 O as indicators of

the origin and history of the H2 O in the ore forming fluids. The D/H analyses
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were done at the CSIRO Petroleum Resources Laboratory in Australia, following
a modified method published by Bigeleisen et al. 1952. The samples were heated

to > 1400 C using an RF generator furnace. H2 produced was converted to H2 O

by contact with Q1O2 at 600 C. All water was collected cryogenically and stores

in sealed 6mm odd borosilicate glass tubes. The water was released from the

sealed tubes in a vacuum line and circulated using a pump through depleted ura¬

nium at 800 C. When conversion was complete the H2 was pumped into the

mass spectrometer via a stainless steel line and analysed immediately. Samples
were analysed relative to an internal water standard prepared using the same cir¬

culation system. Standards were calibrated daily using laboratory and interna¬

tional standards. Replicate analyses of the standard waters are generally better

than lper mil. Analyses are reported in per mil relative to the SMOW standard.

5.2 Radiogenic Isotopes

Strontium Isotopes

Strontium isotope ratios (87 Sr / 86 Sr) from three representative impure calcitic

marbles, at varying distances from the ore (0.5, 5 and 500 m respectively) were

measured at the CSIRO Petroleum Resources Laboratory in Australia. Sr isotope
ratios (87 Sr / 86 Sr) were determined in calcites which were dissolved in concen¬

trated HCl and Sr was concentrated using conventional cation-exchange methods.

Isotope ratios were measured in a mass-spectrometer. Replicate analyses of the

NBS 987 international standard yielded a mean value of 87 Sr / 86 Sr = 0.710240

20 (2a). Strontium contents of marbles at Asimotrypes are in the 30 to 252 ppm

range, and Rb contents are in the 1 to 10 ppm, yielding Rb/Sr ratios generally
much less than 0.01. Accordingly, measured 87 Sr / 86 Sr ratios are assumed to be

equivalent to the initial87 Sr / 86 Sr ratio (Sr) at the time of mineralisation.
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WHOLE ROCK ANALYSES
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Table 1 :Abundances of major oxides and selected trace elements in marbles from the Asimo-

trypes Gold Deposit, Pangeon, N. Greece.

Sample

SiO2

TiO2

A12O3

Fe2O3

MgO
MnO

CaO

K2O

Na2O

P2O5

L.O.I

Total

Au

Ag

Pb

Zn

Cu

As

Sb

Bi

Se

Te

Cr

Ni

Co

V

Rb

Sr

Zr

Y

Nb

Th

U

Ba

S

H2O

As-1

22.59

n.d

0.66

1.99

1.17

1.04

39.08

0.19

0.07

0.04

31.90

98.73

0.17

17.00

3205

2465

n.d

1465

n.d

1

1

3

30

8

62

6

n.d

247

13

5

2

n.d

n.d

12

6960

0.2

As-4

15.53

n.d

0.54

0.45

1.02

0.08

45.30

0.11

0.06

0.03

37.00

100.12

0.07

26.00

210

85

n.d

118

n.d

1

1

3

24

5

56

1

2

244

13

18

2

n.d

1

1

2280

0.03

As-5

15.19

n.d

1.38

1.55

1.23

0.05

44.40

0.51

0.10

0.02

36.10

100.53

0.09

12.50

36

72

n.d

94

n.d

1

1

3

9

9

50

6

11

188

24

13

3

n.d

n.d

14

5600

0.03

As-7

18.20

n.d

0.47

0.32

1.40

0.02

43.50

0.18

0.10

0.03

35.50

99.72

0.06

8.60

10

11

n.d

18

n.d

1

1

3

14

7

50

n.d

1

280

11

18

2

1

1

9

1100

0.03

As-9

20.71

n.d

0.40

0.22

0.88

0.03

42.00

0.17

0.11

0.03

35.10

99.65

0.16

9.00

5

5

n.d

5

n.d

1

1

3

8

4

59

1

n.d

212

13

15

2

n.d

n.d

4

980

0.06

As-12

29.00

0.01

1.31

1.01

1.28

0.04

37.20

0.55

0.13

0.04

27.80

98.37

0.67

8.30

8

20

n.d

998

n.d

n.d

n.d

n.d

18

2

67

7

10

171

20

19

2

2

1

16

3350

0.01

As-32

28.50

0.11

2.95

1.83

1.32

0.05

34.95

1.06

0.31

0.05

25.50

96.63

0.04

6.20

12

27

n.d

28

n.d

1

1

3

69

55

48

15

40

248

43

17

4

6

4

102

6450

0.01

Major oxides in weight %, trace elements in ppm
Total iron is expressed as Fe2O3
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Table 1: (cont'd )

Sample

SiO2

TiO2

A12O3

Fe2O3

MgO
MnO

CaO

K2O

Na2O

P2O5

L.O.I

As-18

0.70

n.d

0.08

0.04

0.57

0.02

54.00

0.04

0.11

0.18

43.00

As-22

1.81

n.d

0.46

0.67

1.31

0.05

51.80

0.09

0.07

0.15

42.70

As-23

6.00

0.03

1.05

1.46

3.61

0.03

46.50

0.15

0.24

0.47

39.30

As-24

3.50

n.d

1.00

0.93

5.50

0.07

45.10

0.22

0.09

0.48

42.30

As-26

3.68

n.d

0.75

0.93

1.47

0.10

49.60

0.13

0.04

0.03

42.00

As-27

2.00

n.d

0.55

0.47

4.20

0.03

48.50

0.10

0.05

0.09

42.80

Total 98.74 99.11 98.84 99.19 98.73 98.79

Au

Ag

Pb

Zn

Cu

As

Sb

Bi

Se

Te

Cr

Ni

Co

V

Rb

Sr

Zr

Y

Nb

Th

U

Ba

S

H2O

0.02

11.70

6

12

n.d

163

n.d

n.d

n.d

n.d

1

1

39

n.d

n.d

160

12

11

1

n.d

3

n.d

200

0.03

0.03

11.00

12

26

n.d

508

n.d

1

1

3

7

10

34

5

10

175

11

11

1

2

1

8

1575

0.04

0.08

8.50

7

19

n.d

1364

n.d

1

1

3

50

27

37

9

7

226

19

7

2

n.d

n.d

22

3250

0.01

0.01

9.30

10

35

n.d

203

n.d

1

1

3

11

21

37

10

6

252

14

10

2

3

1

14

2270

0.02

0.04

9.80

15

19

n.d

331

n.d

n.d

n.d

n.d

29

20

29

3

2

210

18

4

1

n.d

3

12

2150

0.05

n.d

9.50

7

28

5

72

n.d

n.d

n.d

n.d

8

13

34

4

3

226

12

6

1

3

2

12

1175

0.08

Major oxides in weight %, trace elements in ppm
Total iron is expressed as Fe2O3
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Table 1: (cont1 d )

Sample

SiO2

TiO2

A12O3

Fe2O3

MgO
MnO

CaO

K2O

Na2O

P2O5

L.O.I

Total

Au

Ag

Pb

Zn

Cu

As

Sb

Bi

Se

Te

Cr

Ni

Co

V

Rb

Sr

Zr

Y

Nb

Th

U

Ba

S

H2O

As-30

1.20

n.d

0.26

0.19

15.50

0.04

36.30

0.07

0.05

0.02

45.20

98.83

0.15

7.00

8

34

n.d

28

n.d

1

1

3

2

5

33

2

1

172

11

5

1

1

n.d

11

480

0.04

As-50

1.20

n.d

0.25

0.13

0.64

0.02

53.00

0.05

0.08

0.01

43.00

98.38

0.08

9.70

6

9

n.d

46

n.d

1

1

3

1

5

32

n.d

n.d

135

12

6

1

n.d

n.d

3

260

0.06

As-51

0.70

n.d

0.22

0.25

20.50

0.05

31.20

0.06

0.06

0.02

46.50

99.56

0.01

6.00

10

30

n.d

22

n.d

n.d

n.d

n.d

n.d

"4

32

n.d

n.d

30

9

5

1

3

n.d

4

750

0.10

As-52

0.30

n.d

0.05

0.00

1.20

0.01

54.70

0.01

0.09

0.02

43.20

99.58

0.01

9.00

5

11

n.d

7

n.d

1

1

3

n.d

4

29

n.d

n.d

145

10

6

2

2

n.d

1

n.d

0.24

As-53

21.50

n.d

0.50

0.41

0.78

0.06

42.00

0.19

0.06

0.02

33.80

99.32

0.01

7.60

5

7

n.d

7

n.d

1

1

3

10

6

44

1

1

175

11

11

1

1

n.d

7

220

0.13

As-54

0.50

n.d

0.12

1.11

20.20

0.32

31.50

0.01

0.06

0.01

46.50

100.33

0.06

5.80

24

24

n.d

25

n.d

1

1

3

3

2

38

n.d

n.d

35

7

3

1

1

n.d

n.d

345

0.08

Major oxides in weight %, trace elements in ppm
Total iron is expressed as Fe2O3
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Table 2: Semiquantative calcite and dolomite estimation, insoluble residue
and Sr, Fe and Mn contents in selective marbles from the Pangeon Mt.

Sample

As-80

As-81

As-82

As-83

As-84

As-85

As-86

As-87

As-88

As-89

As-90

As-91

As-92

As-93

As-94

As-95

As-96

As-97

As-98

As-99

MgCO3
in calcite

1.5

1

1.5

1.5

1.5

6.5

1.5

1

6.5

6

5

2

MgCO3
in dolomite

50.5

50

50

50

50

49

50.5

50

50

I.R

%

0.15

0

0

0.43

0.1

0.11

0

1.1

0.34

0

0.17

0.2

0

0.13

0

0.67

0.29

0.43

0

0.15

Sr

ppm

91

92

105

99

81

78

103

37

131

39

31

76

108

32

56

49

173

232

152

29

Fe

ppm

237

248

167

176

205

252

164

249

144

325

502

476

152

395

1038

830

765

828

304

318

Mn

ppm

48

31

31

27

33

59

19

67

18

37

61

113

16

130

615

320

122

132

35

82
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Table 3: Abundances of major oxides and selected trace elements in

marbles from the Avgo (Pilaf Tepe), Pangeon, N. Greece

Sample

SiO2
TiO2

A12O3

Fe2O3

MgO
MnO

CaO

K2O

Na2O

P2O5
L.O.I

As-55

0.40

n.d

0.12

0.22

1.07

0.01

54.50

0.01

0.08

n.d

42.50

As-56

1.80

n.d

0.30

24.93

1.17

5.72

34.51

0.50

0.22

0.03

31.50

As-58

6.30

n.d

0.25

10.10

14.47

5.22

23.60

0.09

4.51

0.04

34.50

As-76

1.85

0.01

0.45

0.62

1.29

0.07

52.8

0.06

0.07

0.15

41.9

As-77

3.85

0.01

0.28

13.10

14.97

5.12

28.10

0.07

3.98

0.02

30.45

Total 98.91 100.68 99.08 99.27 99.95

Au

Ag

Pb

Zn

Cu

As

Sb

Bi

Se

Te

Cr

Ni

Co

V

Rb

Sr

Zr

Y

Nb

Th

U

Ba

n.d

9.00
'

2

6

n.d

9

n.d

n.d

n.d

n.d

n.d

4

27

n.d

n.d

125

6

2

1

n.d

2

n.d

0.35

50.00

10100

11920

n.d

3825

<2

1

1

3

6

14

21

2

n.d

125

14

n.d

2

n.d

n.d

75

0.03

26.60

3095

359460

n.d

723

<2

1

1

3

21

54

46

9

n.d

55

13

n.d

2

n.d

n.d

45

0.10

13.50

35

8

n.d

15

n.d

n.d

n.d

n.d

4

2

15

2

n.d

115

7

2

n.d

n.d

n.d

5

0.03

22.60

2987

42760

n.d

645

<2

1

1

3

19

48

37

7

1

64

15

n.d

2

n.d

n.d

43

H,O 0.12 n.d n.d 0.1 0.15

Major oxides in weight %, trace elements in ppm
Total iron is expressed as Fe2O3
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Table 4: Abundances of major oxides and selected trace elements in gneiss-schists
from the Asimotrypes Gold Deposit, Pangeon, N. Greece.

Sample As-6 As-8 As-10 As-15 As-17 As-62

SiO2

TiO2

A12O3

Fe2O3

MgO
MnO

CaO

K2O

Na2O

P2O5

L.O.I.

Total

Au

Ag

Pb

Zn

Cu

As

Sb

Bi

Se

Te

Cr

Ni

Co

V

Rb

Sr

Zr

Y

Nb

Th

U

Ba

43.12

0.61

10.10

6.39

3.23

0.10

17.59

2.81

2.15

0.10

10.10

96.30

0.08

1.80

20

85

n.d

334

2

1

1

3

306

139

121

112

80

227

99

20

10

5

n.d

255

49.00

0.73

15.30

7.66

5.27

0.11

11.30

2.50

3.60

0.14

1.00

96.61

0.06

1.20

15

90

n.d

46

2

1

1

3

328

172

110

169

80

280

116

23

10

6

3

330

50.80

0.51

10.80

8.25

11.25

0.13

14.51

1.25

2.55

0.10

0.40

100.55

0.44

0.70

10

87

n.d

15

2

1

1

3

1233

572

100

138

48

425

102

19

9

5

n.d

168

46.50

0.61

13.60

8.82

6.49

0.13

13.60

1.65

3.00

0.14

5.80

100.34

0.14

1.70

39

115

55

2050

2

1

1

3

234

113

79

221

79

290

59

16

5

n.d

n.d

224

47.00

0.60

10.50

7.16

4.50

0.17

16.50

1.52

2.30

0.19

4.70

95.14

0.01

1.10

15

64

n.d

334

2

1

1

3

295

153

88

134

62

300

92

21

6

2

n.d

171

52.50

0.71

14.80

8.50

4.55

0.17

13.70

2.04

2.19

0.20

1.20

100.56

0.01

1.30

18

106

52

14

2

n.d

n.d

n.d

566

186

93

153

'27

345

132

30

12

7

n.d

257

Major oxides in weight %, trace elements in ppm
Total iron expressed as Fe2O3
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Table 5: Abundances of major oxides and selected trace elements in arsenopyrite-pyrite ore

from the Asimotrypes Gold Deposit, Pangeon, N. Greece

Sample As-11 As-14 As-16 As-19 As-21 As-31 As-37 As-44

SiO2

TiO2

A12O3

Fe2O3

MgO
MnO

CaO

K2O

Na2O

P2O5

L.O.I

22.54

n.d

0.59

36.10

0.15

0.02

0.97

0.12

0.10

0.02

38.50

9.50

n.d

0.31

46.40

5.00

0.20

0.89

0.07

0.08

0.01

33.10

46.50

n.d

0.63

24.80

0.20

0.03

1.07

0.20

0.30

0.05

23.20

4.30

n.d

0.84

42.50

5.58

0.02

0.91

0.18

0.07

0.33

45.60

6.40

0.01

1.83

48.00

0.19

0.03

1.42

0.29

0.11

0.02

41.00

18.84

n.d

0.32

36.30

0.19

0.02

1.10

0.07

0.07

0.04

44.00

16.40

0.01

4.65

50.10

0.28

0.02

1.47

1.45

0.12

0.05

24.70

26.40

n.d

0.90

30.00

5.48

0.01

0.76

0.10

0.09

0.01

31.80

Total 99.11 95.56 96.98 100.33 99.30 100.95 99.25 95.55

Au

Ag

Pb

Zn

Cu

As

Sb

Bi

Se

Te

Cr

Ni

Co

V

Rb

Sr

Zr

Y

Nb

Th

U

Ba

11.00

6.80

316

265

n.d

461965

60

42

5

3

128

82

76

6

2

n.d

15

1

1

4

n.d

12

9.90

8.50

384

17065

n.d

323150

55

67

5

3

66

70

41

1

n.d

n.d

18

n.d

2

24

n.d

6

6.30

6.60

904

115

n.d

267450

90

35

3

3

263

51

155

4

n.d

3

15

n.d

1

n.d

n.d

8

13.50

6.70

106

45

n.d

496250

70

44

5

3

62

95

46

4

4

1

18

n.d

1

28

n.d

13

13.30

12.60

327

317

3380

396850

100

58

5

3

228

116

69

15

10

11

34

n.d

1

21

n.d

22

16.60

6.60

91

24

n.d

347250

2

9

1

3

167

19

75

3

n.d

n.d

17

n.d

1

n.d

n.d

11

1.85

3.70

89

14

0

720

2

103

5

33

160

54

89

17

41

24

46

5

5

35

2

154

5.09

10.20

100

70

210

389290

60

65

5

3

130

80

74

5

1

2

17

1

n.d

n.d

n.d

21

177600 219150 118350 215680 219750 193350 9750 192750

Major oxides in weight %, trace elements in ppm

Total iron is expressed as Fe2O3
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Table 5: ( Cont' d)

Sample

SiO2

TiO2

A12O3

Fe2O3

MgO
MnO

CaO

K2O

Na2O

P2O5

L.O.I

Total

Au

Ag

Pb

Zn

Cu

As

Sb

Bi

Se

Te

Cr

Ni

Co

V

Rb

Sr

Zr

Y

Nb

Th

U

Ba

As-46

44.50

0.02

2.30

22.60

0.77

0.01

0.07

0.03

0.09

0.08

25.50

95.97

0.22

320.00

5615

450

163675

6900

2

107

1

3

445

57

81

38

n.d

n.d

25

n.d

2

n.d

n.d

57

As-65

31.00

0.01

0.61

26.90

4.48

0.10

0.86

0.10

0.08

0.04

35.10

99.28

5.85

18.40

2390

1600

1180

101150

65

68

5

3

140

88

75

11

2

11

24

1

1

4

2

31

As-66

29.40

n.d

0.90

30.70

5.28

0.25

0.97

0.26

0.02

0.07

31.20

99.05

4.20

16.00

3610

5600

810

72700

52

35

5

3

138

96

86

8

n.d

n.d

11

n.d

2

n.d

n.d

24

As-67

35.55

n.d

0.94

25.40

1.93

0.49

0.81

0.18

0.12

0.02

32.80

98.24

4.80

17.30

5250

1050

780

71850

51

48

5

1

126

75

84

16

4

10

19

n.d

2

n.d

n.d

14

As-69

11.85

0.01

2.93

45.20

1.29

0.19

0.90

0.05

0.06

0.01

35.50

97.99

5.30

22.10

310

90

60

268870

90

65

1

3

225

45

73

7

n.d

n.d

18

n.d

1

n.d

n.d

15

As-71

32.30

n.d

2.47

33.90

0.18

0.06

0.71

0.17

0.15

0.04

28.70

98.68

3.30

173.00

80500

4250

70

156750

58

42

1

3

154

67

65

4

3

2

15

1

1

4

n.d

22

As-72

3.40

n.d

0.28

54.65

5.48

0.15

0.93

0.05

0.08

0.02

33.20

98.24

6.30

14.60

360

255

n.d

441900

20

25

1

3

67

26

17

1

n.d

n.d

16

1

2

22

4

12

As-75

12.10

0.01

1.98

44.10

1.30

0.12

0.90

0.05

0.12

0.02

38.20

98.90

5.30

104.00

3250

1360

1440

128750

86

63

5

1

213

54

37

9

n.d

n.d

16

n.d

4

n.d

n.d

24

S 121690 124650 100950 126550 223540 163580 170200 211550

Major oxides in weight %, trace elements in ppm

Total iron is expressed as Fe2O3

213



Table 6: Abundances of major oxides and selected trace elements in oxidised ore from the Asi-

motrypes Gold Deposit, Pangeon, N. Greece

Sample

SiO2

TiO2

A12O3

Fe2O3

MgO
MnO

CaO

K2O

Na2O

P2O5

L.O.I

As-2

63.11

n.d

0.73

7.66

0.31

3.66

9.98

0.71

0.11

0.06

7.50

As-3

35.82

n.d

0.43

38.60

0.14

0.17

0.93

1.00

1.13

0.04

21.20

As-13

19.22

n.d

0.79

37.30

0.36

0.29

1.86

0.19

0.10

0.03

37.00

As-20

41.80

0.01

1.04

13.82

1.84

0.25

12.60

0.23

0.11

0.02

27.50

As-29

40.00

0.48

7.15

8.37

2.31

4.56

9.00

1.02

0.29

2.28

26.30

As-25

32.60

n.d

0.81

15.00

0.75

0.14

10.90

0.20

0.08

0.04

40.00

As-57

68.81

0.10

3.60

12.14

2.20

0.32

5.07

0.67

0.86

0.11

4.50

As-64

74.70

0.03

2.71

18.44

0.27

0.01

0.85

0.54

0.55

0.14

2.00

Total 93.83 99.46 97.14 99.22 101.76 100.52 98.38 100.24

Au

Ag

Pb

Zn

Cu

As

Sb

Bi

Se

Te

Cr

Ni

Co

V

Rb

Sr

Zr

Y

Nb

Th

U

Ba

0.10

42.50

20240

4720

n.d

6900

290

28

1

3

202

23.

130

12

n.d

42

13

n.d

1

n.d

n.d

26

3.24

8.50

3790

13530

365

9810

30

1

1

3

166

20

83

4

n.d

3

13

n.d

1

n.d

n.d

8

6.77

5.60

2480

17060

105

447970

240

1

6

3

70

70

90

2

5

20

16

n.d

3

n.d

n.d

12

1.25

3.30

150

45

n.d

7300

2

4

1

3

107

31

51

8

7

166

17

5

2

n.d

1

24

0.2

16.20

1647

8537

44

2461

n.d

n.d

n.d

n.d

85

127

44

117

40

106

69

30

6

n.d

n.d

1337

0.60

4.10

125

30

12

10500

2

3

1

3

28

20

33

7

6

89

14

3

1

n.d

n.d

79

n.d

4.10

286

15210

n.d

140

<2

9

1

3

592

63

102

50

18

65

34

13

4

1

6

105

0.02

1.20

37

17

0

160

2

16

1

5

437

13

105

27

22

6

25

18

4

6

n.d

73

35760 180650 190800 62400 5700 72350 64380 90350

Major oxides in weight %, trace elements in ppm
Total iron is expressed as Fe2O3
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Table 7: Abundances of major oxides and selected trace elements in quartz veins with dissemi¬

nated pyrite from the Asimotrypes Gold Deposit, Pangeon, N. Greece

Sample

SiO2

TiO2

A12O5

Fe2O5

MgO
MnO

CaO

K2O

Na2O

P2O5

L.O.I.

AS-34A

75.00

0.01

8.08

9.85

0.33

0.03

1.05

3.80

0.26

0.02

1.30

AS-34B

75.80

0.07

12.52

7.44

0.25

0.62

1.07

0.67

0.45

0.04

1.40

As-35

73.00

0.05

9.28

7.93

0.24

0.02

1.41

3.45

2.25

0.04

1.30

As-36

73.00

0.08

13.28

3.80

0.58

0.04

1.03

5.80

0.46

0.02

0.90

As-41

89.00

0.02

3.26

3.83

0.16

0.13

0.90

0.94

0.69

0.05

0.50

As-45

94.00

0.01

0.80

2.70

0.73

0.01

0.70

0.10

0.09

0.02

0.10

As-61

65.50

0.02

9.40

15.30

0.17

0.02

0.70

4.20

1.47

0.05

3.00

As-63

76.50

0.11

4.75

9.90

2.75

0.05

3.86

0.52

0.50

0.07

1.50

Total 99.73 100.33 98.97 98.99 99.48 99.26 99.83 100.51

Au

Ag

Pb

Zn

Cu

As

Sb

Bi

Se

Te

Cr

Ni

Co

V

Rb

Sr

Zr

Y

Nb

Th

U

Ba

0.15

1.60

69

n.d

n.d

895

2

22

1

7

268

5

219

13

100

58

50

6

5

10

2

296

0.18

1.50

22

6

n.d

20

2

22

1

7

144

17.
85

9

18

352

84

22

12

24

4

123

0.05

0.90

30

n.d

n.d

227

2

2

1

3

333

7

157

4

88

132

58

15

10

10

3

266

0.12

0.70

23

n.d

n.d

44

2

25

1

9

144

6

84

15

180

93

97

9

10

26

7

518

0.07

0.70

9

n.d

n.d

92

2

1

1

3

413

5

164

11

27

44

34

5

3

3

n.d

141

0.15

9.80

15

n.d

n.d

580

2

1

1

3

286

25

5

10

25

287

31

5

5

n.d

n.d

199

0.06

4.00

210

25

n.d

140

2

103

1

58

235

9

113

7

107

130

27

11

9

32

5

569

0.01

1.20

21

47

n.d

39

2

7

1

3

866

133

126

48

9

68

33

11

4

1

n.d

122

Major oxides in weight %, trace elements in ppm
Total iron expressed as Fe2O3
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Table 8: Abundances of major oxides and selected trace elements in granites
from the Asimotrypes Gold Deposit, Pangeon, N.Greece

Sample

SiO2

TiO2

A12O3

Fe2O3

MgO
MnO

CaO

K2O

Na2O

P2O5

L.O.I.

As-33

71.50

0.07

13.40

2.00

0.33

0.63

6.00

0.68

4.90

0.04

0.30

As-36

73.00

0.08

13.28

3.80

0.58

0.04

1.03

5.80

0.46

0.02

0.90

As-38

68.00

0.13

16.08

3.53

0.68

0.03

1.14

7.30

1.52

0.04

1.40

As-39

69.00

0.18

14.80

2.42

0.77

0.06

2.94

3.70

4.70

0.11

1.30

As-40

60.00

0.23

9.33

20.20

0.50

0.04

1.20

3.10

0.50

0.31

5.25

Total 99.85 98.99 99.85 99.98 100.66

Au

Ag

Pb

Zn

Cu

As

Sb

Bi

Se

Te

Cr

Ni

Co

V

Rb

Sr

Zr

Y

Nb

Th

U

Ba

0.02

0.70

21

17

n.d

25

2

1

1

3

145

27

83

8

18

355

85

23

12

27

10

125

0.12

0.70

23

n.d

n.d

44

2

25

1

9

144

6

84

15

180

93

97

9

10

26

7

518

0.01

1.40

105

43

n.d

99

2

1

1

1

90

6

92

19

194

219

134

12

8

25

2

1150

0.03

1.00

38

15

n.d

16

2

1

1

3

111

7

89

24

136

682

108

16

8

24

10

895

0.53

3.30

188

17

n.d

5570

2

8

1

3

253

11

123

92

117

88

175

28

10

22

11

390

Major oxides in weight %, trace elements in ppm
Total iron is expressed as Fe2O3
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Table 9: Abundances of major oxides and selected trace elements in quartz veins
from the Asimotrypes Gold Deposit, Pangeon, N. Greece

Sample As-42 As-43 As-60

SiO2

TiO2

A12O3

Fe2O3

MgO
MnO

CaO

K2O

Na2O

P2O5
L.O.I.

81.50

0.06

2.40

4.45

0.30

0.08

5.85

0.25

0.07

0.03

4.90

89.00

0.05

2.00

2.09

0.68

0.02

3.20

0.39

0.17

0.03

1.30

90.50

n.d

3.00

3.65

0.27

0.04

0.77

0.69

0.75

0.03

0.10

Total 99.89 98.93 99.80

Au

Ag

Pb

Zn

Cu

As

Sb

Bi

Se

Te

Cr

Ni

Co

V

Rb

Sr

Zr

Y

Nb

Th

U

Ba

0.02

1.20

11

11

n.d

198

n.d

n.d

n.d

n.d

612

76

119

30

11

16

22

10

3

1

3

32

n.d

1.10

3

n.d

n.d

31

n.d

n.d

n.d

n.d

573

23

127

25

24

35

11

6

2

n.d

n.d

37

n.d

1.90

75

656

492

58

2

n.d

n.d

n.d

338

5

141

4

18

1

18

7

3

44

n.d

43

Major oxides in weight %, trace elements in ppm
Total iron is expressed as Fe2O3
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Table 10: Abundances of major oxides and selected trace elements in skarn, from the

Asimotrypes Gold Deposit, N. Greece.

Sample As-47 As-48 As-49

SiO2

TiO2

A12O3

Fe2O3

MgO
MnO

CaO

K2O

Na2O

P2O5

L.O.I.

35.50

0.28

4.35

2.70

1.30

0.07

30.44

1.36

0.44

0.18

23.80

15.50

0.23

3.84

3.12

1.42

0.17

41.40

0.81

0.46

0.10

33.50

35.00

0.93

13.50

8.39

1.86

0.16

23.38

2.90

0.31

0.58

13.80

Total 100.42 100.55 100.81

Au

Ag

Pb

Zn

Cu

As

Sb

Bi

Se

Te

Cr

Ni

Co

V

Rb

Sr

Zr

Y

Nb

Th

U

Ba

0.05

6.60

22

28

0

108

n.d

1

1

3

67

27

62

34

20

135

36

22

3

1

1

40

0.06

8.80

32

49

205

88

n.d

1

1

3

57

61

53

35

30

130

30

13

3

3

2

250

0.07

4.00

29

142

17

82

n.d

1

1

3

327

88

80

118

55

160

63

36

3

0

0

75

Major oxides in weight %, trace elements in ppm
Total iron is expressed as Fe2O3
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