Phenomenological aspects of Beyond the Standard Model Theories at the LHC
Phenomenological aspects of Beyond the Standard Model Theories at the LHC
In this thesis, we study the phenomenological implications of different Beyond the Standard Model (BSM) theories at the Large Hadron Collider (LHC) with a focus on the anomalous magnetic moment of the muon Δaμ and dark matter (DM). We consider two Grand Unified Theory (GUT) scale models, namely a Pati-Salam model with A4×Z5 family symmetry as well as an SU(5) with A4 family symmetry. After both models break down to the Minimal Supersymmetric Standard Model (MSSM), we study their capabilities of explaining Δaμ, DM and further collider and non-collider constraints. We find that both models comprise a viable set of parameters leading to distinctive solutions, provided the gaugino masses are non-universal. We also explore the capability of models with extra vector resonances Z' to account for DM when combined with a coloured vector-like top partner sector. We find that the presence of a Z' boson may greatly improve the sensibility of the LHC to such models, especially in regions where non-collider searches are considerably less sensitive. Finally, we study the potential of current and future hadron colliders to narrow down the nature of the 2012 discovered scalar particle at the LHC, which matches the Standard Model (SM) Higgs boson astonishingly well so far. To further determine whether this scalar may belong to a different BSM theory, we use an effective field theory to study the unitarity violations arising from Higgs couplings to vector bosons slightly different as compared to the SM. We find that triple Higgs production substantially benefits from non-SM couplings and can be probed effectively at a 100 TeV future collider with high precision.
University of Southampton
Schaefers, Patrick Bernhard
b261be61-b2e8-4c2d-8972-2a2247fd8169
January 2018
Schaefers, Patrick Bernhard
b261be61-b2e8-4c2d-8972-2a2247fd8169
Belyaev, Alexander
6bdb9638-5ff9-4b65-a8f2-34bae3ac34b3
Schaefers, Patrick Bernhard
(2018)
Phenomenological aspects of Beyond the Standard Model Theories at the LHC.
University of Southampton, Doctoral Thesis, 185pp.
Record type:
Thesis
(Doctoral)
Abstract
In this thesis, we study the phenomenological implications of different Beyond the Standard Model (BSM) theories at the Large Hadron Collider (LHC) with a focus on the anomalous magnetic moment of the muon Δaμ and dark matter (DM). We consider two Grand Unified Theory (GUT) scale models, namely a Pati-Salam model with A4×Z5 family symmetry as well as an SU(5) with A4 family symmetry. After both models break down to the Minimal Supersymmetric Standard Model (MSSM), we study their capabilities of explaining Δaμ, DM and further collider and non-collider constraints. We find that both models comprise a viable set of parameters leading to distinctive solutions, provided the gaugino masses are non-universal. We also explore the capability of models with extra vector resonances Z' to account for DM when combined with a coloured vector-like top partner sector. We find that the presence of a Z' boson may greatly improve the sensibility of the LHC to such models, especially in regions where non-collider searches are considerably less sensitive. Finally, we study the potential of current and future hadron colliders to narrow down the nature of the 2012 discovered scalar particle at the LHC, which matches the Standard Model (SM) Higgs boson astonishingly well so far. To further determine whether this scalar may belong to a different BSM theory, we use an effective field theory to study the unitarity violations arising from Higgs couplings to vector bosons slightly different as compared to the SM. We find that triple Higgs production substantially benefits from non-SM couplings and can be probed effectively at a 100 TeV future collider with high precision.
Text
final thesis
- Version of Record
More information
Published date: January 2018
Identifiers
Local EPrints ID: 420880
URI: http://eprints.soton.ac.uk/id/eprint/420880
PURE UUID: 06a40957-33dd-4202-8bb2-09064dfea3bd
Catalogue record
Date deposited: 17 May 2018 16:30
Last modified: 16 Mar 2024 03:55
Export record
Contributors
Author:
Patrick Bernhard Schaefers
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics