UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Civil, Maritime and Environmental Engineering and Science Unit

DEVELOPING AN INTEGRATED FRAMEWORK FOR THE POLICY DEVELOPMENT OF VEGETATION FIRES IN THE NORTH OF THAILAND

by

Sirirat Yensong

Thesis for the degree of Doctor of Philosophy

February 2018

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Thesis for the degree of Doctor of Philosophy

DEVELOPING AN INTEGRATED FRAMEWORK FOR THE POLICY DEVELOPMENT OF VEGETATION FIRES IN THE NORTH OF THAILAND

Sirirat Yensong

Vegetation fires are an important source of particulate matter in the atmosphere. Every year in the fire season from February to April, the dry and stagnant weather in the north of Thailand allows the PM_{10} (particulate matter with an aerodynamic diameter $\leq 10~\mu m$) from vegetation fires to accumulate in the atmosphere at concentrations higher than the national ambient standard of Thailand of $120~\mu g/m^3$. This affects public health in terms of respiratory illnesses and premature deaths and necessitates fire management by the Government. This study has applied air quality models to investigate forest fire emissions in eight provinces in the north region of Thailand and neighbouring countries and cost-benefit analysis for calculating and comparing benefits and costs of the government policy. The integrated framework between the use of air quality models to reduce emissions to meet the air quality standard and the cost-benefit of the government intervention has created the framework of the policy.

Results from the model simulation show that PM₁₀ from nearby countries was less affected than the local PM₁₀. After simulating fire controls in agricultural areas and forest areas within a range of 1 km of agricultural areas scenario and fire controls in agricultural areas and forest areas within a range of 1 km and the neighbouring countries scenario, PM₁₀ concentrations results from both scenarios are the same condition with >120 μg/m³ in many areas. For fires controlled agricultural areas and forest areas within a range of 4 km, PM₁₀ have decreased until below 120 µg/m³ in every district area. In addition, meteorology is an important factor for the smoke problem in this study area. A few hot spots in the area can have high concentrations of PM₁₀ because the meteorology tends to be stagnant causing the fire smoke to be trapped near the ground surface. However, fire control agricultural areas and forest areas within a range of 1 and 4 km are possible actions that could solve this problem effectively in a term of the economical investment. Fires are needed for some vegetation ecosystems and used to decrease the severity of forest fires in Thailand. Therefore, the suggested policy framework is divided into two plans: zero burning during, and quota burning outside of, the fire season. This work provides a practical case study of effective integrated air quality management and socio-economic evaluation for the development of a multi-faceted environmental policy in a rapidly developing country.

Keywords: Air pollution, CALPUFF, Vegetation fire, PM₁₀, Air quality policy, North of Thailand

Table of Contents

TABLE (OF CONTENTS	1
LIST OF	TABLES	V
LIST OF	FIGURES	XI
DECLAR	ATION OF AUTHORSHIP	XV
ACKNOV	VLEDGEMENTS	XVII
DEFINIT	IONS AND ABBREVIATIONS	XVIII
СНАРТЕ	R 1 RESEARCH OVERVIEW	1
1.1	Introduction	1
1.2	AIMS AND OBJECTIVES	5
1.2.1	Aims	5
1.2.2	Research Questions	5
1.2.3	Research Aims and Objectives	6
1.3	STUDY AREA	7
1.3.1	Forest fires in the north of Thailand	8
1.3.2	Laws in Thailand	12
1.3.3	Policy in Thailand	13
1.3.4	Studies for future forest fire policy in Thailand	15
1.4	RESEARCH DESIGN	17
1.4.1	Concept for the study	17
1.4.2	Air quality models	19
1.4.3	Economic evaluation	21
СНАРТЕ	R 2REVIEW OF THE SCALE, HEALTH, ENVIRONMENTAL A	ND SOCIO-
	ECONOMIC IMPACTS OF VEGETATION FIRES	23
2.1	INTRODUCTION	23
2.2	CAUSES OF FOREST FIRES	23
2.3	DISTRIBUTION OF FOREST FIRES AND GLOBAL TRENDS	24
2.3.1	Global area burned	24
222	Turn do in format fine	26

2.	.4	ESTIMATING EMISSIONS FROM FOREST FIRES	27
	2.4.	l Emission equations	27
	2.4.	2 Areas burned	27
	2.4.	Fuel load	29
	2.4.	4 Combustion completeness	30
	2.4.	5 Emission factors	31
2.	.5	POLLUTANTS FROM FOREST FIRES	34
	2.5.	Global forest fires emissions	34
	2.5.	2 Forest fires emissions of Asia	35
2.	.6	HEALTH IMPACTS	36
2.	.7	ENVIRONMENTAL IMPACTS	37
	2.7.	Effects of fires on the ambient air quality	37
	2.7.	2 Effects of fires on the forest ecosystem	38
2.	.8	SOCIO-ECONOMIC EVALUATION	40
	2.8.	Environmental valuation methods	41
	2.8.	2 Benefit transfer of forest values	43
	2.8.	Socio-economic impact valuation in the United States	44
	2.8.	Socio-economic impact valuation in Europe	44
	2.8.	5 Vulnerability	46
	2.8.	The integration of ecosystem services and economic approach to the policy	48
2.	.9	MEANS OF PREVENTING IMPACTS OF FOREST FIRES	49
	2.9.	The use of air quality models	49
	2.9.	Forest fires management in the United States and Australia.	50
2.	.10	SUMMARY	50
CH.	APT	ER 3 THE SIMULATION OF AIR POLLUTION SCENARIOS	53
3.	.1	DISPERSION MODELS FOR AIR POLLUTION	54
	3.1.	The CALPUFF model	56
3.	.2	GATHERING DATA ABOUT VEGETATION FIRES	59
3.	.3	THE STUDY PERIODS	60
3.	.4	SOFTWARE SELECTED FOR THE METEOROLOGY EVALUATION	63
	3.4.	MM5 meteorological model	63
	3.4.	2 The MMIF Program	66
3.	.5	SOURCE AND EMISSION DATA INPUTS	67
	3.5.	The forest fire emissions calculation	67
	3.5.	2 The estimation of the area burned	67
	3.5.	The use of the fuel load, combustion completeness and emission factor	67

3.6	MODEL VALIDATION	70
3.7	SIMULATION OF FIRE SCENARIOS	70
3.8	RESULTS OF AIR QUALITY EVALUATION	71
3.8.	1 Model validation	71
3.8.	2 The results of the MM5 Model	73
3.8	3 The distribution of fire events in the north of Thailand	79
3.8.	4 Results from the CALPUFF model	82
3.8.	5 Simulation of fire scenarios	91
3.9	CONCLUSION AND DISCUSSION	97
СНАРТ	ER 4COST BENEFIT ANALYSIS	101
4.1	THE INTEGRATION OF AIR QUALITY MODELS AND COST BENEFIT ANALYSIS	101
4.2	HEALTH IMPACT VALUATION	110
4.2	1 Health effects of short-term PM ₁₀ exposure	110
4.2	2 The values of health effects from PM ₁₀	143
4.2	The economic losses of health effects from PM ₁₀	144
4.3	SOCIO-ECONOMIC IMPACT VALUATION.	154
4.3	1 The benefit transfer values of ecosystem goods and services	154
4.3	2 The economic losses of ecosystem goods and services from forest fires	157
4.4	COST-BENEFIT ANALYSIS MODULE	168
4.5	CONCLUSION AND DISCUSSION	178
СНАРТ	TER 5 VEGETATION FIRE POLICY	181
5.1	REGULATORY MEASURES FOR BURNING CONTROL	184
5.1.	1 Zero burning in the fire season	184
5.1.	2 Prescribe burning in the rest period	185
5.1.	Quota burning for the area outside the north of Thailand in the fires season.	187
5.2	BUILDING FIRE RESILIENCE LANDSCAPES	188
5.2	1 Fuel reduction by prescribed burning in forest areas	188
5.2	2 Fires belts and fire breaks	189
5.2.	3 Fireguard officers	190
5.3	THE PRIORITY OF AREA BURNED	190
5.4	PEOPLE EDUCATION, AWARENESS AND ENGAGEMENT	193
5.5	MARKET-BASED MECHANISM	194
5.5.	1 Environmental Taxes Measures	194
5.5	2 Payments for Ecosystem Services (PES)	194

5.6 INTERNATIONAL COOPERATION ON TRANSBOUNDARY HAZE POLLUTION	195
5.7 CONCLUSION AND DISCUSSION	196
CHAPTER 6 CONCLUSION AND RECOMMENDATIONS FOR FUTURE W	VORK 199
6.1 CONCLUSION	199
6.1.1 The causes of forest fires, their emissions, and their impacts including h	nealth,
environmental, social and ecological impacts, from a global view	199
6.1.2 The amount of emissions from each source and the processes that influences.	ence fires
emissions affecting the ambient air quality of the north of Thailand to exceed the	: Thai air
quality standards	199
6.1.3 Scenarios for potential fire controls to find the optimal pollution reduct	ion targets
from selected areas	200
6.1.4 The main pollutant sources and the numbers of areas needed to control	atmospheric
emissions from fires in order to meet the air quality standards	200
6.1.5 The effects of forest fires and the value losses of each party affected	200
6.1.6 Costs and benefits to the main parties affected from government interven	entions after
controlling the different main causes of fires	201
6.1.7 Comparison between costs and benefits of the government intervention	s before and
after controlling the different main causes of fire emissions, and select the interven	entions that
are the worthwhile for the government, society and ecosystems	201
6.1.8 The government interventions	202
6.2 RECOMMENDATIONS FOR FUTURE WORK	202
GLOSSARY OF TERMS	203
LIST OF REFERENCES	209

List of Tables

Table 1.1	The PM ₁₀ standards of Thailand, the United Kingdom, the United States, Europea	ın
	countries compared to interim target values of WHO guidelines [adapted from	
	WHO (2006), European Commission (2016), Kaiser et al) .2006), Pollution	
	Control Department (2010), and Vahlsing and Smith (2012)]	. 3
Table 1.2	The name of Thai Ministries and their roles to tackle forest fire problems	
	(Tiyapairat, 2012)	14
Table 2.1	Summary of the vegetated areas burned in the African, Australian, American,	
	Asian and European regions.	25
Table 2.2	Area and time scales of satellite fire products both active fire and burned area	
	products [adapted from Manyangadze (2009) and Kaiser et al .(2006)]	28
Table 2.3	Fuel loads (g/m²) classified by vegetation types and the global regions	30
Table 2.4	The percentage of combustion completeness for fine and coarse fuels in forests	
	from different studies	31
Table 2.5	The percentage of combustion completeness for different vegetation types	31
Table 2.6	Emission factors ^c (g kg ⁻¹) for species emitted from various types of vegetation	
	burning	33
Table 2.7	Average annual emission [Tg] of selected pollutants for Africa, Australia, America	a,
	Asia and Europe regions ^a	34
Table 2.8	Total national emissions from biomass burning in Asia (Gg)	35
Table 2.9	Key studies of health impacts caused by forest fires	37
Table 2.1	0 Total economic value of forest [adapted from Lette and de Boo (2002), Adger e	t
	al .(1994) and SCBD (2001b)]	41
Table 3.1	The details including types, meteorological models and operation systems for	
	dispersion models on the atmospheric study of large scale areas	55
Table 3.2	Description of parameter setting for TERRAIN program	65
Table 3.3	Description of parameter setting for REGRID and INTERPF program	65
Table 3.4	Description of parameter setting for MM5 program	66
Table 3.5	The fuel load, combustion completeness and emission factors that were used for	
	calculating forest fire emissions.	69
Table 3.6	The statistics for evaluating performance of models	73
Table 3.7	Summary of the statistical results of coefficient of determination (R2), mean	
	normalized bias (MNB), mean normalized absolute error (MNAE), normalised	
	mean bias (NMB), normalised mean error (NME) or normalized mean absolute	

	error (NMAE), and root mean square error (m/s) (RMSE) by comparing modelled
	and simulated wind speeds in the north of Thailand during 26 February to 1 March
	201275
Table 3.8	The type of landuse of the hotspot in Chiang Mai, Chiang Rai, Nan, Phrae,
	Lampang, Lamphun, Phayao and Mae Hong Son provinces
Table 3.9	The distance between fire events and the agricultural area in Chiang Mai, Chiang
	Rai, Phrae, Mae Hong Son, Nan, Phayao, Lampang and Lamphun
Table 3.1	0 Statistic results of PM ₁₀ validation between simulated and observed values in
	Chiang Mai, Lampang, Lamphun, Phayao, Mae Hong Son, and Phrae during 24
	February to 1 March 2012.
Table 3.1	1 Statistic results of NO ₂ and NO validation between simulated and observed values
	in Chiang Mai, Phayao, Phrae, and Nan during 24 February to 1 March 2012 83
Table 3.1	2 Summary of PM ₁₀ concentrations from three scenarios; 1) actual fires, 2) fires
	controls both agricultural and forest around agricultural area ranging 1 km, and 3)
	fire controls both agricultural and forest around agricultural area ranging 4 km
	areas, in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan,
	Phayao, and Phrae during 26 February to 1 March 2012
Table 4.1	Summary of economic value of goods and services from semi-deciduous forests
	and plantations [adapted from Secretariat of the Convention on Biological
	Diversity (SCBD, 2001a) and Millennium Ecosystem Assessment (MEA, 2005)].
Table 4.2	The health, socio-economic and ecological impacts from vegetation fires in the
	north of Thailand and variables for calculating in the monetary processes 106
Table 4.3	The percent increase of mortality, cardiovascular and respiratory illness from \mbox{PM}_{10}
	increase of 10 μ g/m ³
Table 4.4	Population, actual cardiovascular, respiratory illness and death rate from the
	government records in year 2012 in Chiang Mai, Chiang Rai, Mae Hong Son,
	Lampang, Lamphun, Nan, Phayao and Phrae
Table 4.5	Summary of estimated deaths, hospital admissions for respiratory and cardiovascular
	illness, and respiratory outpatient visits caused by average 5-days PM_{10} increase from
	actual fires during 26 February to 1 March 2012 in Chiang Mai, Chiang Rai, Mae Hong
	Son, Lampang, Lamphun, Nan, Phayao and Phrae provinces
Table 4.6	Summary of estimated deaths, hospital admissions for respiratory and
	cardiovascular illness, and respiratory outpatient visits caused by average 5-days
	$\ensuremath{\text{PM}_{10}}$ increase after fires controlled both agricultural and forest around agricultural
	area 1 km to be no fire areas during 26 February to 1 March 2012 in Chiang Mai,

	Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae
	provinces 122
Table 4.7	Summary of estimated deaths, hospital admissions for respiratory and
	cardiovascular illness, and respiratory outpatient visits caused by average 5-days
	PM ₁₀ increase after fires controlled both agricultural and forest around agricultural
	area 4 km to be no fire areas during 26 February to 1 March 2012 in Chiang Mai,
	Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae
	provinces
Table 4.8	Regression line equations for estimating PM_{10} concentration for fire events from 1
	February to 30 April 2012 generated by using 2 variables including hotspot
	numbers and simulated PM_{10} concentrations during 26 February and 1 March 2012
Table 4.9	The list of PM ₁₀ concentrations range of Daily Air Quality Index (AQI) from
	Thailand, United Kingdom and United States including low, moderate, high and
	very high concentrations and people's health impacts (Pollution Control
	Department, 2016, Department for Environment Food & Rural Affairs, 2016, US
	EPA, 2016)
Table 4.1	0 The average values of PM ₁₀ concentration from actual fire events and number of
	days for daily PM_{10} average concentrations in Chiang Mai, Chiang Rai, Lampang,
	Lamphun, Mae Hong Son, Nan, Phayao and Phrae during 1 February to 30 April
	2012
Table 4.1	1 The average values of PM_{10} concentration after fires controlled in agricultural and
	forest areas within a range of 1 kilometre and number of days for daily PM_{10}
	average concentrations in Chiang Mai, Chiang Rai, Lampang, Lamphun, Mae
	Hong Son, Nan, Phayao and Phrae during 1 February to 30 April 2012131
Table 4.1	2 The average values of PM ₁₀ concentration after fires controlled in agricultural and
	forest areas within a range of 4 kilometres and number of days for daily PM ₁₀
	average concentrations in Chiang Mai, Chiang Rai, Lampang, Lamphun, Mae
	Hong Son, Nan, Phayao and Phrae during 1 February to 30 April 2012132
Table 4.1	3 Summary of estimated deaths, hospital admissions for respiratory and
	cardiovascular illness, and respiratory outpatient visits caused by PM ₁₀
	concentration increase from actual fires during 1 February to 30 April 2012 in
	Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and
	Phrae provinces
Table 4.1	4 Summary of estimated deaths, hospital admissions for respiratory and
	cardiovascular illness, and respiratory outpatient visits caused by PM ₁₀
	concentration increase after government intervention by fires controlled in

a	gricultural and forest areas within a range of 1 km during 1 February to 30 April
2	2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan,
F	Phayao and Phrae provinces
Table 4.15	Summary of estimated deaths, hospital admissions for respiratory and
c	eardiovascular illness, and respiratory outpatient visits caused by PM ₁₀
c	concentration increase after government intervention by fires controlled in
a	gricultural and forest areas within a range of 4 km from actual fires during 1
F	February to 30 April 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang,
I	Lamphun, Nan, Phayao and Phrae provinces
Table 4.16	Summary of estimated deaths, hospital admissions for respiratory and
c	eardiovascular illness, and respiratory outpatient visits caused by PM ₁₀
c	concentration increase for the no-fire situation during 1 February to 30 April 2012
i	n Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and
F	Phrae provinces
Table 4.17	The per-unit cost of mortality and morbidity by the US EPA (1999) adjusted to
У	year 2007 level by Kochi et al .(2010) and applied to Thai people values by using
(GDP
Table 4.18	Summary of costs for deaths, hospital admissions for respiratory and
c	eardiovascular illness, and respiratory outpatient visits caused by average 5-days
F	PM ₁₀ increase from fires during 26 February to 1 March 2012 in Chiang Mai,
(Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae
p	provinces
Table 4.19	Summary of costs for deaths, hospital admissions for respiratory and
c	eardiovascular illness, and respiratory outpatient visits caused by average 5-days
F	PM10 increase from after fires controlled both agricultural and forest around
a	gricultural area 1 km to be no fire areas during 26 February to 1 March 2012 in
(Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and
F	Phrae provinces
Table 4.20	Summary of costs for hospital admissions for respiratory and cardiovascular
i	llness, and respiratory outpatient visits caused by average 5-days PM ₁₀ increase
f	from after fires controlled both agricultural and forest around agricultural area 4
k	cm to be no fire areas during 26 February to 1 March 2012 in Chiang Mai, Chiang
F	Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae provinces 148
Table 4.21	Summary of costs for hospital admissions for respiratory and cardiovascular
i	llness, and respiratory outpatient visits from actual fires during 1 February to 30
A	April 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan,
F	Phayao and Phrae provinces

Table 4.22 Summary of costs for deaths, hospital admissions for respiratory and
cardiovascular illness, and respiratory outpatient visits after fires controlled both
agricultural and forest around agricultural area 1 km to be no fire areas during 1
February to 30 April 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang,
Lamphun, Nan, Phayao and Phrae provinces
Table 4.23 Summary of costs for deaths, hospital admissions for respiratory and
cardiovascular illness, and respiratory outpatient visits after fires controlled both
agricultural and forest around agricultural area 4 km to be no fire areas during 1
February to 30 April 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang,
Lamphun, Nan, Phayao and Phrae provinces
Table 4.24 Summary of costs for deaths, hospital admissions for respiratory and
cardiovascular illness, and respiratory outpatient visits for the no-fire situation
during 1 February to 30 April 2012 in Chiang Mai, Chiang Rai, Mae Hong Son,
Lampang, Lamphun, Nan, Phayao and Phrae provinces
Table 4.25 The economic transfer values per hectare of each ecosystem goods and services in
tropical forests from various studies
Table 4.26 The impact values of forest fires to ecosystem goods and services of mixed
deciduous forest, hill evergreen forest, dry evergreen forest, and dry dipterocarp
forest in Chiang Mai during 26 th February to 1 st March 2012
Table 4.27 Summary of impact values from forest fires to ecosystem goods and services of
mixed deciduous forest, hill evergreen forest, dry evergreen forest, and dry
dipterocarp forest in Chiang Mai, Mae Hong Son, Nan, Chiang Rai, Lampang,
Phrae, Phayao and Lamphun during 26 February to 1 March 2012162
Table 4.28 Summary of impact values from forest fires to ecosystem goods and services after
fires controlled both agricultural and forest around agricultural area 1 km for mixed
deciduous forest, hill evergreen forest, dry evergreen forest, and dry dipterocarp
forest in Chiang Mai, Mae Hong Son, Nan, Chiang Rai, Lampang, Phrae, Phayao
and Lamphun during 26 February to 1 March 2012
Table 4.29 Summary of impact values from forest fires to ecosystem goods and services after
fires controlled both agricultural and forest around agricultural area 4 km for mixed
deciduous forest, hill evergreen forest, dry evergreen forest, and dry dipterocarp
forest in Chiang Mai, Mae Hong Son, Nan, Chiang Rai, Lampang, Phrae, Phayao
and Lamphun during 26 February to 1 March 2012
Table 4.30 Summary of impact values from forest fires to ecosystem goods and services of
mixed deciduous forest, hill evergreen forest, dry evergreen forest, and dry
dipterocarp forest in Chiang Mai, Mae Hong Son, Nan, Chiang Rai, Lampang,
Phrae, Phayao and Lamphun during 1 February to 30 April 2012165
ix

Table 4.31 Summary of impact values from forest fires to ecosystem goods and services after
fires controlled both agricultural and forest around agricultural area 1 km for mixed
deciduous forest, hill evergreen forest, dry evergreen forest, and dry dipterocarp
forest in Chiang Mai, Mae Hong Son, Nan, Chiang Rai, Lampang, Phrae, Phayao
and Lamphun during 1 February to 30 April 2012
Table 4.32 Summary of impact values from forest fires to ecosystem goods and services after
fires controlled both agricultural and forest around agricultural area 4 km for mixed
deciduous forest, hill evergreen forest, dry evergreen forest, and dry dipterocarp
forest in Chiang Mai, Mae Hong Son, Nan, Chiang Rai, Lampang, Phrae, Phayao
and Lamphun during 1 February to 30 April 2012
Table 4.33 Summary of costs and benefits from forest fires interventions by the government.
Table 4.34 The cost of fire management for agricultural area, forest areas nearby agricultural
ranging 1 to 4 km and all forest area by government measures
Table 4.35 Lists of costs and benefits of fire impacts and government budgets for fire
management in agricultural and forest area ranging 1 and 4 km (US\$ millions) 176
Table 4.36 Summary of cost-benefit analysis including cost and benefit values, incremental
cost and benefit values, and net values for fire management in agricultural and
forest around agricultural area with the range of 1 and 4 km
Table 5.1 The ranking of top 30 fire frequencies in the districts in the north of Thailand
during year 2009 to 2012

List of Figures

Figure 1.1 The location and the name of provinces in the upper north of Thailand
Figure 1.2 Forest fire occurrence and area burned in the north of Thailand [adapted from
Department of National Parks Wildlife and Plant Conservation (2012)]1
Figure 1.3 Relative causes of forest fires in Thailand, which include gathering forest products,
hunting, burning agricultural residue, pasture, logging, tourists 'activities, conflicts
between people and government, and neglect
Figure 1.4 Annual average PM ₁₀ of Thailand and the north region monitored by Pollution
Control Department, Thailand1
Figure 1.5 The number of hotspots in Thailand and neighbouring countries including Vietnam,
Myanmar, Cambodia and Laos1
Figure 1.6 Conceptual flow diagrams for the study of "Developing an Integrated Framework for
the Policy Development of Vegetation Fires in the North of Thailand"1
Figure 2.1 Global annual emission of CO (Tg (CO)) from forest fires using data from a study of
Schultz et al .(2008a) and global annual area burned from forest fires using data from
a study of Giglio et al .(2009)2
Figure 2.2 Techniques of monetary valuation for environmental valuation4
Figure 3.1 Overview of the main programs for running CALPUFF modelling system [adapted
from Scire et al .(2000)]5
Figure 3.2 The set of software programs including MM5, MMIF and CALPUFF, and the input
data for programs processing5
Figure 3.3 The number of hotspots and the monthly average concentration of PM_{10} in the north
of Thailand during January 2011 until December 2012 analysed from the monitored
PM ₁₀ data byThai Meteorological Department (2016) and the hotspot data by Nationa
Aeronautics and Space Administration (NASA) (2014)6
Figure 3.4 The maximum and average concentration values of PM ₁₀ , SO ₂ and NO ₂ monitored by
Thai Meteorological Department (2016) during 2008 to 2012 in the north of Thailand
compared with the ambient air quality standard of Thailand and WHO guidelines
(WHO, 2006)6
Figure 3.5 The area of the domain in MM5 covered Thailand and neighbouring countries6
Figure 3.6 The system flow chart of MM5 programs and data sets that were used in this study.6
Figure 3.7 Outline of the simulation scenarios by focusing on fires caused by humans as the
most significant for the policy developing

(a), 27 February 2012 (b), 28 February 2012 (c), 29 February 2012 (d), and 1 March
2012 (e)
Figure 3.21 Averaged mixing height (feet) in the study area during 26 February 2012 to 1 March
2012
Figure 3.22 Contour maps of monthly meteorological data of pressure (hPa), humidity (%),
wind speed (m/s), temperature (°C) and precipitation (mm) in the north of Thailand in
January, February, March, April and May year 2012 [adapted from Thai
Meteorological Department (2016)]99
Figure 4.1 Schematic diagram of the monetary valuation process and the input data for the
estimation values of forest fire impacts
Figure 4.2 Scatterplot graphs with trend line showing the relationship between hotspot numbers
and simulated PM_{10} concentrations during 26 February and 1 March 2012 and the
square of the coefficient of determination (R ²), t-stat, F-test, and P-value127
Figure 4.3 The distribution of hotspots numbers in agricultural area, forest area around
agricultural area ranging 1 km, 2-4 km and >4 km during 1 February to 30 April 2012.
129
Figure 4.4 The example of GIS results of hotspot-locations after fires controlled in agricultural
area and forest areas within a range of 1 and 4 kilometres in Chiang Mai province
during 1 February to 30 April 2012130
Figure 4.5 A schematic of comparing costs and benefits from policy scenarios in a cost-benefit
analysis169
Figure 5.1 Schematic diagram of policy options to control areas of vegetation burning generated from
results of previous chapters; air quality simulations and CBA
Figure 5.2 Hotspots location during 26 February to 1 March 2012 (a) and through fire season in
February (b), March (c) and April (d) year 2012187
Figure 5.3 The map showed averaged annual fire frequencies during 2009 to 2012 in 465 sub-
district areas in the north of Thailand

DECLARATION OF AUTHORSHIP

I, Sirirat Yensong declare that this thesis and the work presented in it are my own and has been generated by me as the result of my own original research.

Developing an Integrated Framework for the Policy Development of Vegetation Fires in the North of Thailand

I confirm that:

- 1. This work was done wholly or mainly while in candidature for a research degree at this University;
- 2. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated;
- 3. Where I have consulted the published work of others, this is always clearly attributed;
- 4. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work;
- 5. I have acknowledged all main sources of help;
- 6. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself;
- 7. Parts of this work have been published as:

YENSONG, S., WILLIAMS, I. D. & PRESTON, J. 2016. Mitigation of Particulate Matter Problem Caused by Vegetation Fires in Thailand. 2016 NOAA ESRL GLOBAL MONITORING ANNUAL CONFERENCE. Boulder, Colorado, USA: National Oceanic and Atmospheric Administration

Signed:	
Date:	

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisors Professor Ian Williams and Professor John Preston for the continuous support of my PhD study, for their patience, motivation, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis. I could not have imagined having better advisors and mentors for my PhD study.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr Malcolm Hudson and Dr Kevin Hicks, for their insightful comments and encouragement, but also for the hard questions that encouraged me to widen my research from various perspectives.

This thesis would not have been accomplished without funds supported of the Royal Thai Government Scholarship and Pollution Control Department of Thailand.

I thank all of my PhD friends for supporting me.

And finally, I would like to thank my family: my parents and to my brothers and sister for supporting me spiritually throughout writing this thesis and my life in general.

Definitions and Abbreviations

μg/m³ Micrograms per cubic meter

AQI Air Quality Index

CALPUFF CALifornia PUFF model

CBA Cost Benefit Analysis

CC Combustion completeness or burning efficiency (%)

CH₄ Methane

CO Carbon monoxide

CO₂ Carbon dioxide

EF Emission factor (g/kg Dry Matter).

ENSO El Niño Southern Oscillation

FL Fuel load (or biomass density kg Dry Matter m⁻²)

FRI Fire return interval

GDP Gross domestic product

GIS Geographic Information System

Ha Hectare

hPa Hectopascal (unit of pressure, = 100 pascal)

MM5 Fifth-Generation Penn State/NCAR Mesoscale Model

MMIF Mesoscale Model Interface program

MODIS Moderate Resolution Imaging Spectroradiometer

NASA National Aeronautics and Space Administration

NCAR National Centre for Atmospheric Research

NO Nitrogen monoxide

NO₂ Nitrogen dioxide

PAHs Polycyclic aromatic hydrocarbons

 PM_{10} Particulate matter with aerodynamic diameter ≤ 10 micrograms

per cubic meter

ppb Parts per billion

PPP Purchasing power parity

Tg Tera grams (= 10¹² grams)

US\$ or \$ or USD United States dollar

VOCs Volatile organic compounds

WTP Willingness to Pay

WUI Wildland-urban interface

NPV Net Present Value

PES Payments for ecosystem services or Payments for

environmental services

VSL Value of statistical life

Chapter 1

Research Overview

1.1 Introduction

Vegetation fires occur regularly throughout the world. They release atmospheric pollutants, trace gases and aerosols, which adversely affect the environment and human health. Air pollution was estimated to cause of 7 million global premature deaths in 2012 (WHO and OECD, 2015). The largest premature deaths caused by air pollution in 2012 were occurred in low- and middle-income countries of the WHO South-East Asia and Western Pacific Regions with the number of 3.3 million deaths related to indoor air pollution and 2.6 million deaths related to outdoor air pollution (WHO, 2014). Fires also damage forests and ecosystem goods and services. This directly and indirectly impact humans in terms of food and timber provision, water regulation and carbon.

The occurrence of forest fires is an important issue and tends to be more frequent in summer periods when temperatures are high and air humidity and fuel moisture are low (Pinol et al., 1998). These types of conditions also occur in the north of Thailand in the fire season. This region faces an air pollution problem in terms of smoke caused by forest fires every year from February to April, the region's dry season with warm to hot weather. Besides forest fire events, in these months, the still, dry weather allows particulate matter (PM) to accumulate in the air, which increases the severity of an air pollution problem in this area. Temperature inversions are also an important factor of haze problems in the north of Thailand to raise PM₁₀ concentrations to a high level. They influence pollutants becoming trapped near to ground level (Pengchai et al., 2009, Amnauylawjarurn et al., 2010, Kim Oanh and Leelasakultum, 2011). Kim Oanh and Leelasakultum (2011) showed that >70% of weather conditions in Chiang Mai, Thailand during February and April could enhance the formation of ground-based radiative inversions.

In 2007, forest fire occurrences and weather conditions led to the accumulation of the 24-hour averaged PM_{10} in the north of Thailand reaching up to $382.7~\mu g/m^3$, which was three times higher than the 24-hour averaged national ambient standard of Thailand of $120~\mu g/m^3$ (annual mean standard at $50~\mu g/m^3$) (Pollution Control Department, 2010). The WHO guidelines state that this should not exceed $50~\mu g/m^3$ for a 24-hour mean and $20~\mu g/m^3$ for an annual mean. However, the WHO air quality guidelines are designed for worldwide protection of public health

based on scientific evidence. Countries can develop national standards to fit their socio-economic context by balancing health risks, technological feasibility, economic considerations and various other political and social factors (WHO, 2006). Not only Thailand that adjusted national airquality standard in order to achieve their objectives, but Europe and the United States also developed the standards to suit their socio-economic situations. The 24-hour and annual means PM_{10} of the European standard state that they should not exceed 50 $\mu g/m^3$ and 40 $\mu g/m^3$, respectively (European Commission, 2016). For the 24-hour mean PM_{10} standard of the United States, this should not exceed 150 $\mu g/m^3$ (Vahlsing and Smith, 2012). The level of standards of PM_{10} in Thailand, the United Kingdom, the United States and European countries compared with WHO guidelines, are presented in Table 1.1. There are few countries, United Kingdom and European countries, that set 24-hour mean standard to meet air quality guideline by WHO at 50 $\mu g/m^3$. For annual mean standards, there is no country in Table 1.1 applying air quality guideline at 20 $\mu g/m^3$ as their national standard.

Table 1.1 The PM₁₀ standards of Thailand, the United Kingdom, the United States, European countries compared to interim target values of WHO guidelines [adapted from WHO (2006), European Commission (2016), Kaiser et al. (2006), Pollution Control Department (2010), and Vahlsing and Smith (2012)]

	24-hour mean concentrations		Annual mean concentrations		
	$PM_{10}(\mu g/m^3)$	Basis for the selected level	$PM_{10}(\mu g/m^3)$	Basis for the selected level	
Interim target-1 (IT-1)	150	Based on published risk coefficients (about 5% increase of short- term mortality over the air quality guidelines value). - United State standard is 150 µg/m³ (IT-1) - Thailand standard is 120 µg/m³ (between IT-1 and 2)	70	These levels are associated with about a 15% higher long-term mortality risk relative to the air quality guidelines level.	
Interim target-2 (IT-2)	100	Based on published risk coefficients (about 2.5% increase of short- term mortality over the air quality guidelines value).	50	In addition to other health benefits, these levels lower the risk of premature mortality by approximately 6% (2–11%) relative to the IT-1 level. - Thailand standard is 50 μg/m³ (IT-2) - United Kingdom and European countries standards are 40 μg/m³ (between IT-2 and 3)	
Interim target-3 (IT-3)	75	Based on published risk coefficients (about 1.2% increase in short-term mortality over the air quality guidelines value).	30	In addition to other health benefits, these levels reduce the mortality risk by approximately 6% (2-11%) relative to the IT-2 level.	
Air quality guideline	50	 Based on relationship between 24-hour and annual PM levels. United Kingdom and European countries standards are 50 μg/m³ 	20	These are the lowest levels at which total, cardiopulmonary and lung cancer mortality have been shown to increase with more than 95% confidence in response to long-term exposure to PM _{2.5} .	

In the case of health impacts, data from the Ministry of Public Health showed that during 15-23 March 2007, there were 61,000 reported outpatient visits stimulated by haze-related illnesses such as respiratory, ophthalmological, cardiovascular, and dermatological diseases in eight provinces of the upper northern region of Thailand. However, it is unclear to what extent these illnesses are attributable to the air pollution (Wiwatanadate and Trakultivakorn, 2010). In 2002, the Pollution Control Department of Thailand (PCD) identified major sources of PM in Chiang Mai province, the largest city in the northern region. It was found that 89% of PM was from forest fires and 2.3% from agricultural residue burning whereas industrial sources contributed only 0.08%, transportation sources 2.6% and other sources 0.56% (Kim Oanh and Leelasakultum, 2011). Forest fires are one of the significant sources of PM that concern the government. The Pollution Control Department of Thailand showed that 64% of fire events occurred in forest areas, whereas 36% were in the agricultural areas (Pollution Control Department, 2011). The main causes of forest fires were communities breaking a law by using fires to clear forest ground for collecting natural products such as mushrooms and honey (Department of National Parks Wildlife and Plant Conservation, 2012), and illegal forest plantations. Amnuaylojaroen and Kreasuwun (2012) reported that forest fire emission sources contributed 54-71 % of total PM emissions in Chiang Mai province.

In addition to local burning, another contributory factor to smoke haze comes from outside of the country. Satellite imagery shows that there are hotspots because of biomass burning activities in Thailand as well as in the neighbouring regions of Laos, Cambodia, and Myanmar. These activities generally peak in March, April and May (Reid et al., 2013). Transboundary haze pollution from other countries clearly affects air quality in the southern part of Thailand. Severe vegetation fires in 1997 in Indonesia led to air pollution problems in Singapore, Malaysia, Brunei and the southern part of Thailand (Sahani et al., 2014). Haze problems continuously occurred via a series of serious regional haze episodes until recent years (Miriam et al., 2015) and this has become a shared concern within the region. In 2002, member countries in the Association of Southeast Asian Nations (ASEAN) started to sign the Agreement on Transboundary Haze Pollution (Forsyth, 2014). The objective of the agreement is to prevent and monitor transboundary haze pollution caused by land and/or forest fires. In 2010, the Association of Southeast Asian Nations (ASEAN) have provided funding for activities under the Technical Working Group on Transboundary Haze Pollution in the Mekong Sub-Region (TWG Mekong). Member countries collectively agreed to closely monitor the fire occurrence in their own countries (Pollution Control Department, 2012).

To mitigate these problems, an investigation of the processes that spread air pollution from forest fires by using suitable tools to classify the significant cause and their effects is important. Subsequently, both the potential economic costs of forest fires and the benefits of prevention/mitigation measures should be considered and integrated into public policies in order to control fires.

1.2 Aims and Objectives

1.2.1 Aims

The aim of this study is to investigate an air pollution problem caused by forest fires in the northern region of Thailand and develop a framework to enhance policy development to solve this problem. The framework to enhance policy development will be based on the both the air quality meeting standards and the budget of the government intervention being appropriate. This will be a practical case study of effective integrated air quality management in a rapidly developing country.

1.2.2 Research Questions

Vegetation fire is the main cause of air pollution problems in many parts of the world. There are a number of studies of forest fire emissions and their impacts and the impact of policies such as the dispersion of particulate matter (PM₁₀) from forest fires in Chiang Mai province (Amnauylawjarurn et al., 2010). Fire effects the entire forest landscape of continental Southeast Asia (Baker and Bunyavejchewin, 2009). Policy responses from transboundary haze caused by vegetation fires in Southeast Asia (Murdiyarso et al., 2004) have not addressed the north of Thailand including: Chiang Mai, Lampang, Lamphun, Chiang Rai, Phayao, Mae Hong Son, Phrae and Nan provinces. Many studies of forest fire policies are developed by approaches such as public sector responses to haze management in the north of Thailand (Tiyapairat, 2012). However, there is no study using an integrated framework involving the use of air quality models to reduce emissions to meet the air quality standard and cost-benefit analysis of potential government interventions. To develop a policy to deal with the air pollution caused by vegetation fires in the north of Thailand based on an integrated framework, several questions need to be answered:

- 1. What are the main causes and effects of forest fires? How do forest fires affect people's health, environment and ecology?
- 2. What are the processes that influence fires emissions impact on the ambient air quality of the north of Thailand? How can we control forest fire emissions in the north of Thailand to meet air quality standards? What are the main sources and emissions to be controlled?
- 3. Before applying any government intervention, who are the main groups affected and in what ways are they affected? How much will government interventions cost?

- 4. After applying government interventions by controlling the main causes of fires by following the air-quality model scenarios, who are the main groups affected and in what ways are they affected? How much are the costs and benefits? Which government intervention is the most worthwhile?
- 5. Which government interventions should be developed as public policies? Can the policies be used to relieve problems both in the short-term and long-term? Do they yield a significant net gain to society?

1.2.3 Research Aims and Objectives

The Thai government has tried to mitigate annual air pollution problems caused by vegetation fires in the north of Thailand, but problems still occur. The relatively large size of vegetation areas and the wide range of impacted stakeholders were important factors when compared to the limited amount of government officers and budgets available to address the issues. Therefore, this study aims to solve these air pollution problems efficiently in terms of facilitating air quality to meet the Thai standard within the available budget. To achieve the research aims, an air quality model is applied for investigating the control of main source pollutions, while cost-benefit analysis is applied for comparing between costs and benefits from each source controls. It is anticipated that a suitable fire-management option will be generated via the integration of air quality model and cost-benefit analysis. The processes that are necessary to achieve the research aims are outlined as follows.

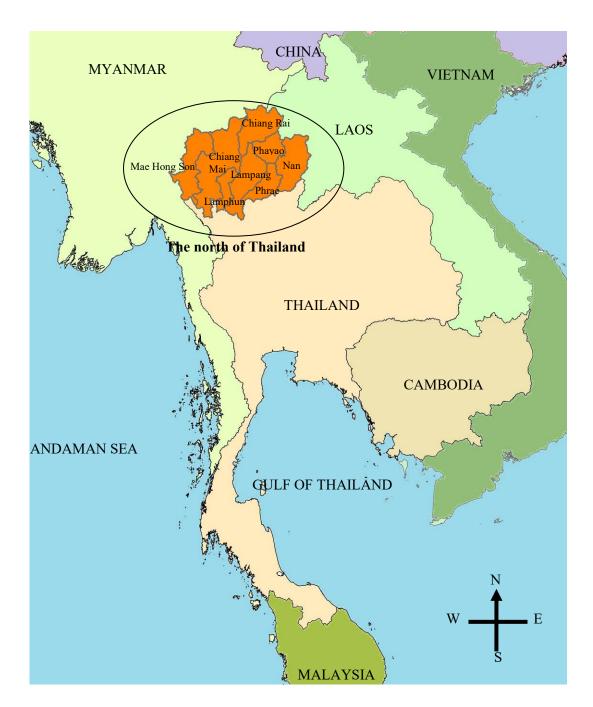
- An investigation of the causes of forest fires, their emissions, and their impacts including health, environmental, social and ecological impacts, from a global view. This was shown in Chapter 2.
- An investigation of the air quality in the north of Thailand caused by the forest fires from the different type of vegetation, the surrounding area and neighbouring countries. (Chapter 3). The processes are shown below.
 - To estimate emissions from each source.
 - To determine the processes that influence fire emissions affecting ambient air quality in the north of Thailand and cause them to exceed the Thai air quality standards.
 - To simulate scenarios for potential fire controls to find the optimal pollution reduction targets from selected areas.
 - To indicate the main pollutant sources and the numbers of areas needed to control atmospheric emissions from fires in order to meet the air quality standards.

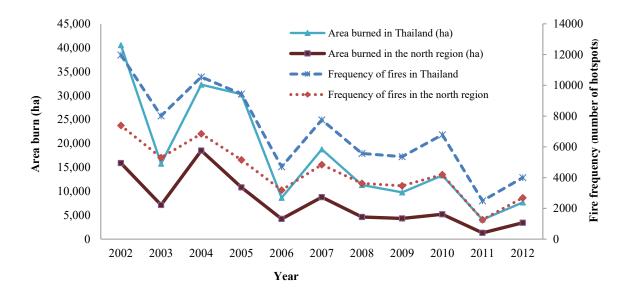
- An evaluation of the impacts of forest fires by assessing damage costs to the parties affected, including the government, people's health, and ecosystem goods and services (see Chapter 4).
 - To identify the main parties affected and the effects of forest fires.
 - To value the losses of each party affected.
- An evaluation of the Thai government's interventions after controlling the main causes of fires following the air-quality model scenarios (see Chapter 4).
 - To evaluate costs and benefits to the main parties affected by interventions after controlling the different main causes of fires.
 - To compare costs and benefits of the interventions before and after controlling the different main causes of fire emissions, and select the interventions that are the worthwhile for the government, society and ecosystems.
 - To assess costs and benefits of the selected interventions for short- and long-term periods.
- To develop a policy for forest fire management from the selected government interventions (see Chapter 5).

1.3 Study area

The north of Thailand borders Myanmar to the north and west, and Laos to the north and east (see Figure 1.1). Its geography is generally mountainous with north-south-aligned hill ridges parallel from west to east. This geography leads to agricultural activity on the hillside area. Farmers on the hillside area of northern Thailand not only cultivate rice for subsistence but are also engaged in cash crop production. The planted cash crops in this area changed dramatically after the 1970s (Michaud, 1997). These changes in cash crops contributed to changes not only in agricultural techniques but also to socioeconomic activities (Jian, 2001).

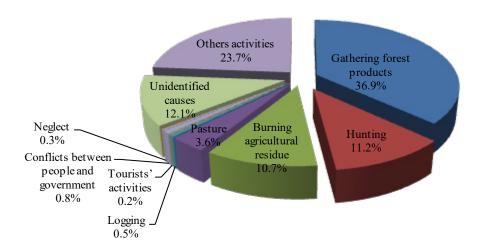
According to Office of the National Economic and Social Development Board (2011), in 2009, poverty in the upper north of Thailand area was a significant problem with 16.84% of the population regarded as "poor" with income less than 1,586 Baht/ capita/ month (48 USD/capita/month). People who were under the poverty line almost all lived in rural areas.



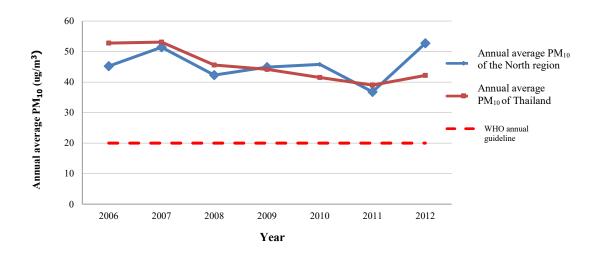

Figure 1.1 The location and the name of provinces in the upper north of Thailand.

1.3.1 Forest fires in the north of Thailand

The total area of Thailand's forests was estimated by the Royal Forest Department of Thailand in 2008 as 17,158,600 ha, around 9,507,500 ha (55%) of which was in the northern region. There are two main forest types: evergreen and seasonal forest. The types of vegetation


in the evergreen forest are tropical rainforest, hill evergreen forest, dry evergreen forest, pine forest, mangrove forest and peat forest, while seasonal forests are mixed deciduous forest and dry deciduous dipterocarp forest (Wiriya, 2010). The Royal Forest Department (2008) stated that the forest area of Thailand rapidly decreased between 1961 and 1981 by 5.47% per year mainly due to the conversion of forest areas to agriculture and logging activities. After 1982 until 1998, the forest areas only declined by around 0.75% per year. The slower decline in forest area was a result of the logging ban Act. In 1989, the Thai government declared a logging ban after which all logging contracts and concessions were cancelled, and applications for new concessions were dismissed. However, logging can be operated by the government and wood via the private sector can be produced from forest plantations. Between 1998 and 2008, the forest area increased by around 1.16% per year.

Generally, there are three types of forest fires: crown fire, surface fires and ground fires. The forest fire that burns and spreads through the tops of trees or shrubs is a crown fire. A surface fire is a fire that burns loose debris on the surface including dead branches, leaves and low vegetation. A ground fire consumes organic material beneath the surface litter level (National Wildfire Coordinating Group, 2012). Forest fires in Thailand are predominantly surface fires that consumed surface fuel including litter and small vegetation. Fires occur annually in the dry season, between December and April in the dry dipterocarp and mixed deciduous forests (Wiriya, 2010). The intensities of fires in Thailand are low to moderate levels with fire-line intensity 35-865 kWm⁻¹ and a rate spread of 0.5-9 m.m⁻¹. However, high intensity fires seldom occur in grass land and the canopy in mixed deciduous forest with bamboo or pine plantations (Tanpipat et al., 2009, Wiriya, 2010). The Thai Department of National Parks Wildlife and Plant Conservation estimated the area burned during 2002 to 2012 by using satellite images, as shown in Figure 1.2. The annual area burned in the northern region of Thailand has significantly decreased since 2004 from about 18,000 ha to <5,000, while the frequency of fires has declined by about 50% (~6,000 to 3,000).


Figure 1.2 Forest fire occurrence and area burned in the north of Thailand [adapted from Department of National Parks Wildlife and Plant Conservation (2012)]

Furthermore, the Department of National Parks Wildlife and Plant Conservation (2012) revealed that a major cause of forest fires - about 88% in Thailand - were human activities, with around 12% unidentified causes. Gathering forest products was a major cause of fire (37%), followed by hunting, burning agricultural residue, pasture, tourists' activities, conflicts between people and government, and neglect (see Figure 1.3).

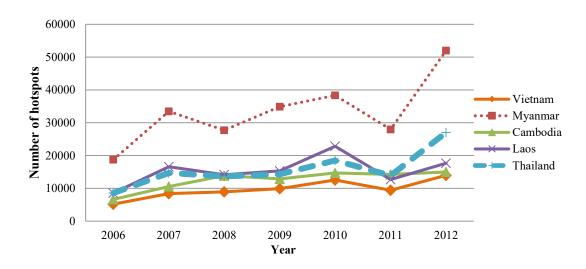


Figure 1.3 Relative causes of forest fires in Thailand, which include gathering forest products, hunting, burning agricultural residue, pasture, logging, tourists' activities, conflicts between people and government, and neglect.

Approximately 500,000 families in Thailand heavily depend on a variety of forest products and services for their subsistence and livelihoods (Salam et al., 2006). In the dry season, forest products such as fuel wood, bamboo, honey and mushrooms, are collected by rural people. Fires are used to clear out litter, grasses and undergrowth on the forest floor in order to help collecting products easier. In the agricultural sector, farmers use fires to clear agricultural residue for preparing their land. A fire is used as a tool by rural people due to it being the most cost-effective and time-effective way to clear land. Uncontrolled fires from these activities have become a major source of fires.

Figure 1.4 Annual average PM₁₀ of Thailand and the north region monitored by Pollution Control Department, Thailand.

Figure 1.5 The number of hotspots in Thailand and neighbouring countries including Vietnam, Myanmar, Cambodia and Laos.

Forest fires emit large amounts of gases and PM in the north of Thailand. PM_{10} in this area reached up to $382.7 \,\mu\text{g/m}^3$ and $279.9 \,\mu\text{g/m}^3$ at Province of Chiang Mai Government Centre in March 2007 and March 2010, respectively (Pollution Control Department, 2009, 2012). The government made an effort to mitigate air quality problems in domestic areas and this problem can be solved by taking action to decrease the annual average PM_{10} . However, annual average PM_{10} in the north region has fluctuated depending on the area burned in both the north of Thailand (see Figure 1.4) and potentially in the neighbouring countries (see Figure 1.5). The graphs of Thailand, Myanmar and Laos during 2006 to 2012 show the same direction of hotspot numbers and PM_{10} concentrations in the north of Thailand. The highest values of hotspot numbers and PM_{10} concentrations appeared in 2012.

1.3.2 Laws in Thailand

The Thai government has legislated relevant laws and regulations for preventing and mitigating forest fires and air pollution. In a forested area, the conserved area classified by laws may be divided into 3 types of forests: 1) national park, 2) wildlife conservation and protection and 3) national reserved forest. The related legislation is as follows.

- 1) The National Reserved Forest Act, B.E.2507 (1964) Chapter 2, in the National Reserved Forest, these activities: occupying or possessing land, burning forest, collecting forest products, or doing any matter with purport to decay a condition of forest are not permitted accept with a license from a competent officer or by time period permission of a competent officer of each National Reserved Forest.
- 2) The National Park Act, B. E. 2504 (1961) Chapter 3, in the National Park, these activities: occupying or possessing land, burning forest, collecting some forest products or doing any matters with purport to decay a condition of forest are not permitted.
- 3) The Wildlife Conservation and Protection Act, B.E.2535 (1992) Chapter 6, in a wildlife sanctuary, no person shall possess or occupy the land or build up, or any other means whatsoever construct, or cut, fell, clear, burn, or destroy trees.

The relevant regulations for the use of fires also appeared in the Public Health Act, B. E. 2535 – Chapter 5. Local officials have powers to forbid any person who makes a source of nuisance that includes foul odour, toxic particles or any matter that may be harmful to health.

Moreover, there are indirect laws that may be applied to control forest fires in the Enhancement and Conservation of National Environmental Quality Act (B.E. 2535). In Section 6, for the purposes of public participation in the enhancement and conservation of national environmental quality, individual persons have rights to petition or lodge a complaint against the

offender in case of being a witness to any act committed in violation or infringement of the laws relating to pollution control or conservation of natural resources, and to cooperate and assist government officials in the performance of duty relating to the enhancement and conservation of environmental quality.

In Section 9, in case there is an emergency or public danger arising from a natural disaster or pollution caused by contamination and spread of pollutants, the Prime Minister shall have the power to order, as deemed appropriate, government agencies, state enterprises or any persons, including the persons who are or may be the victims of such danger or damage, to take prompt action, individually or jointly, in order to be able to control, extinguish or mitigate the adverse effects of such danger or damage.

1.3.3 Policy in Thailand

1.3.3.1 The functions of each government organization

According to the Thai Government's cabinet resolution (on Tuesday 8th January 2013), eleven ministries were assigned to solve problems from haze, including the Ministries of: Natural Resources and Environment, Agriculture and Cooperatives, Interior, Transportation, Education, Public Health, Defence, Foreign Affairs, Office of the Permanent Secretary, Science and Technology, and Tourism and Sports. Measures for mitigating the problem consist of: 1) the control of burning from February to April; 2) preparing officers for prevention and control forest fire events; 3) the promotion of zero burning to communities; 4) cooperating with private organisation, state enterprises and contracting parties to manage the haze problem; 5) giving knowledge about the prevention and control of open burning (refuse and vegetation burned) to the target party such as local communities and farmers; 6) monitoring and warning about haze pollution; 7) international cooperation on transboundary haze pollution control; and 8) establishing centres for management of pollution from haze and forest fires in every province in the upper north region. However, the main ministries that clearly involve the management of forest fires in their missions are summarised in Table 1.1.

Table 1.2 The name of Thai Ministries and their roles to tackle forest fire problems (Tiyapairat, 2012).

Thai Government Ministry	Role
Natural Resources and	- Prevention and control of forest fires.
Environment	- Development of monitoring and warning systems for forest fires and
	haze.
	- Cooperating with neighbouring countries to solve transboundary haze
	pollution
Agriculture and	- Promotion and dissemination of organic agriculture without burning.
Cooperatives	- Management and control plan for burning in post-harvest periods.
Interior	- Prevention and control of forest fires by local administrative offices.
Transportation	- Controlling and preventing burning of weed and waste along roads.
Office of the Prime	- Promotion of education on haze pollution and forest fires at a
Minister	community level.
Public Health	- Development of health monitoring and health service systems

1.3.3.2 Measures to solve haze problem

Various agencies in Thailand take measures to mitigate haze problems from biomass burning in the upper north region. Many measures have been employed as outlined in the following sections.

1.3.3.2.1 Preparation for forest fires

At the beginning of the so-called "forest fire season", every province in the upper north of Thailand will set an action plan to control forest fires in conservation and national reserve forest areas. There is also a preparation of teams via training and provision of equipment to help extinguish forest fires in relevant areas and permission for people to enter a forest area is stricter than during other periods. Fire breaks are set up in the areas connecting villages and between agricultural and forest areas (Pollution Control Department, 2012).

There are different plans for the rest of the year than at the start of the forest fire season. These general plans require the provinces to establish provincial administration and cooperation centres to tackle haze and forest fire problems. Provincial announcements are typically issued to set measures on controlling and preventing haze and forest fires. Villages' forest fire control areas

are announced. Arrangements for the cooperation have been agreed between central and local administration organizations on preventing and fighting forest fires. In addition, training for volunteer forest fire fighters is provided. The sub-district rescue teams are tasked to extinguish forest fires. Campaigns to prevent and eradicate haze and drought problems are organised and delivered. Information about management of haze and forest fires is disseminated (Pollution Control Department, 2012, The Secretariat of the Senate, 2009).

1.3.3.2.2 The action plan on tackling haze and forest fire problems in 2010 and the management plan for haze and forest fire problems 2012 - 2016

The National Forest Fire and Haze Management Committee, in its report No. 1/2553 (2010), approved an action plan intended to solve haze and forest fire problems in 2010 and assigned agencies to execute the plan. The Upper North forest fire and haze management subcommittee was appointed. The haze and forest fire management plan for 8 provinces in the Upper North was established. A practical solution plan was put in place by cooperation between 8 provinces and related organizations to prevent and suppress all vegetation fires. Restricting the using of forest goods, prohibiting the burning of agricultural residues, volunteers training for fire fighters, building firebreaks are the focus of this plan.

1.3.3.2.3 The international cooperation on transboundary haze pollution control

Every year, there are two international meetings, Meeting of the Technical Working Group on Transboundary Haze Pollution in the Mekong Sub-Region (TWG-Mekong) and the Sub-Regional Ministerial Steering Committee (MSC), which aim to mitigate transboundary haze problems (Pollution Control Department, 2012). The TWG-Mekong was established in 2007 to provide methodology and technology in fire management to the member countries, including Thailand, Laos, Myanmar, Cambodia, and Vietnam. Member countries agreed to prepare a project proposal in order to obtain financial support from international organizations and other financial sources under the Association of Southeast Asian Nations (ASEAN) framework (ASEAN Haze online, 2012). In 2011, the MSC on Transboundary Haze Pollution in the Mekong Sub-Region was established. The meeting was set to oversee the implementation of measures to control and solve the open burning problems as well as transboundary haze pollution in the Mekong Sub-Region (Pollution Control Department, 2012).

1.3.4 Studies for future forest fire policy in Thailand

According to Tiyapairat (2012), a study showed that the state policy responses have been via a centralized political structure. There is an effort to decentralize to provincial and district levels, but the result has not been satisfactory to date. There is an on-going need to build the capacity of government officers especially at provincial and district levels. Moreover, the

management of forest areas lacked the appropriate involvement and participation of the local communities. Generally, community members of forested areas are highly interested in methods to protect trees, especially rural people who have a long relationship with natural systems and processes. Non-timber forest products (NTFPs) play a crucial role in local livelihoods for subsistence and necessitate protection of the forest watershed, which is vital to support their occupations (Salam et al., 2006). Individuals are viewed as a key resource for the development of effective solutions to environmental problems. Accordingly, there is a continual need for prevention campaigns to enhance local people's understanding, awareness, and participation as well as local communities' networking in the quest for sustainable solutions to the haze problem. As transboundary haze pollution from a regional point of view is a problem too large for one agency to manage alone, it requires concrete actions collaboratively undertaken by various agencies and stakeholders, together with a considerable amount of resources in terms of time, finance and technical inputs (Tiyapairat, 2012).

Zero burning is not a practical land management method for farmers with many limitations, such as insufficient budgets for buying machinery to manage agricultural residues and a limited time to prepare the next cycle of products (Murdiyarso et al., 2004, Thai Environment Foundation, 2010). The Thai Environment Foundation (2010) tried via engagement with farmers and concerned agencies in the north of Thailand to assess feasible ideas and suggestions to regulate the use of fire in agricultural areas. A requirement to obtain permission for burning is an acceptable approach for such farmers. For this approach, an air quality model was used to assess the maximum loading of pollutants released from a field burning without affecting people's health. A quota for burning areas can then be set by local government. The farmers have to ask for permission and process the use of fire by following the legislation. However, the box model could not effectively investigate air pollution problems in the study area. The results were rough and less accurate since some meteorological data are needed for running this model.

Various methodologies have been developed for managing fire problems in many countries. Integrating various approaches to synthesize a practical and effective solution for Thailand is an important and prudent process and different cultural, economic, social, climate and ecological issues should be considered. Air pollution problems in the north of Thailand are the results of three main sources: burning agricultural residues, transboundary haze pollution and forest fires. Air quality models will be applied to find the proportion of each source's emissions to decrease. Then the optimum policy will be evaluated using an appropriate socio-economic approach.

1.4 Research design

1.4.1 Concept for the study

Air quality models and cost-benefit analysis (CBA) will be used as the main tools for this study. Carefully selected air quality models will give the results of the approaches to control fires to meet air quality standards in terms of locations, the amount of areas burned, emissions and sources of pollutants. Costs and benefits associated with different mitigating strategies will be used to develop policies. A comparison of the benefits of a given action with the economic costs of taking action in a policy was undertaken by evaluating the positive and negative changes associated with policy changes. CBA will be calculated based on air quality impacts (i.e., people's health) from the change of pollutants' concentrations after fire events, ecological impacts (i.e., watershed protection and carbon sequestration) from the changes of amount of area burned and forests damaged, social impacts classified by selected social indicators (i.e., farmer and employee of fire company). The details of costs and benefits are shown in sections 4.1 and 4.2 of Chapter 4. For this study, people's health is the first priority because it is the most serious problem in the north of Thailand every year. Then fire emissions will be controlled to meet the air quality standard. Then ecosystem services values will be added to evaluate the whole costs and benefits for developing the national policy. The approach needs results from air quality models, which show the location, type of fire area and the amounts of area, burned before and after the fires control. The methods used in this study can be categorized into four:

1) The analysis and evaluation of emissions that affect health, air quality and ecosystem caused by vegetation fires in the study area

Information on topography, meteorology and social background of the study area will be collected to analyse how they influence forest fire emissions. Previous studies will be used alongside new data to summarise and evaluate study results. In addition, data on vegetation types and their potential emissions will be evaluated for estimating emissions in a study area.

- 2) Assessment of emissions control scenarios to find the optimal pollution reduction strategies from forest fires by simulating scenarios that reduce biomass burning emissions from each type of vegetation and land use (also see Figure 1.6)
- 3) Evaluation of physical, social and economic impacts from forest fires by assessing damage costs of the parties affected

Previous studies and statistical data collected by reliable organizations will be used to assist in the evaluation of costs to stakeholders.

- 3.1) Estimation of damage costs to people who are affected from fires by accounting for health impacts, lost life and loss of income.
- 3.2) Estimation of damage costs to ecological systems caused by fires such as wildlife, water regulations, and soil erosion.
 - 4) Investigation of suitable policies to mitigate problems and associated costs.

Case studies from various countries and previous research on forest fire management will be evaluated in order to devise optimum policies for the northern region of Thailand. The steps in evaluating policies consist of the following:

- 4.1) Evaluating costs of various policies for short-term and long-term periods.
- 4.2) Weighting costs and benefits of potential government interventions to mitigate problems.

Figure 1.6 Conceptual flow diagrams for the study of "Developing an Integrated Framework for the Policy Development of Vegetation Fires in the North of Thailand"

1.4.2 Air quality models

An air quality model is an important tool for an action plan especially when air quality is below the legal standards. It can be used for investigating source apportionment, transboundary and natural contributions, and its results can cover areas where there are no monitoring stations installed (Denby et al., 2010). In this study, the north of Thailand faces an air pollution problem in a term of smoke caused by forest fires every year. The source apportionment of forest fires, transboundary haze from neighbouring countries and pollution dispersion processes needs to be investigated. However, the study areas of the fire emissions locations are large, with a diameter of about 735 km (~ 425,000 km²) covering the north of Thailand and some parts of neighbouring countries. The limitation of each model was considered when applying the models in the study. The size of the study area is an important condition for selecting the model.

Generally, regional and long-range models are used when the areas are larger than 300 km (Denby et al., 2010). Examples of these models are the CALifornia PUFF (CALPUFF), CAMx (Comprehensive Air Quality Model with extensions), WRF-Chem (Weather Research & Forecasting Model with Chemistry), HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) and Community Multi-scale Air Quality (CMAQ) models. For regional and long-range models, the CALPUFF model is the non-commercial software that runs on the Windows operating system. This study used the CALPUFF modelling system for evaluation the air quality from vegetation fires. The CALPUFF model has been approved by the U.S. Environmental Protection Agency and is suitable for regulatory use for long-range transport and on a case-by-case basis for short-range applications involving complex and non-steady-state flows such as in complex terrain, coastal situations, and where flow stagnation and flow reversals are important (Environmental Protection Agency (US EPA), 2003).

There are many studies using CALPUFF for evaluating air quality impacts. For example, Henderson et al. (2008) used CALMET/CALPUFF package to assess smoke exposure for an area of 325,000 km² with complex terrain. The study concluded that the CALPUFF model could provide a simple and globally applicable approach to understand the relationship between health risks and forest fire smoke. Choi and Fernando (2007) applied the CALPUFF modelling system coupled with the MM5 prognostic model to simulate PM₁₀ dispersion from agricultural fires in the Yuma/SanLuis area along the U.S./Mexico border, with the aim of investigating local and regional air quality impacts of fires.

To evaluate the amount of pollutant loading reduction for an optimum air-quality value in this study, CALPUFF was used to simulate various scenarios (see Figure 1.6). Most previous studies have highlighted that fire events are caused by humans (Cardille et al., 2001, San-Miguel-Ayanz and Ravail, 2005, Food and Agriculture Organization (FAO) of the United Nations, 2007, Department of National Parks Wildlife and Plant Conservation, 2012, Soto et al., 2013). Each scenario was set to find the optimum reduction of pollutant loading from each fire source, including agricultural areas and various types of forests near villages or agricultural areas. Dontee et al. (2011) showed that the locations of hotspots in Chiang Mai province, Thailand, at around 89% were in forests areas ranging 1-4 km from villages and 30-40% occurred in the range of 1 km. Therefore, the fire controls in agricultural area and forest areas ranging 4 km from agricultural areas will be focused as the main source of fire emissions in this study. The transboundary haze from neighbouring countries, which may relate with the change of pollutants concentrations in the north of Thailand, is also considered for the air quality models scenario.

The objective of each scenario is that the air quality value should not exceed the daily Thai ambient air quality standard at $120 \,\mu g/m^3$. The expected results from the air quality model

are the land-use types and size of target areas to be controlled and pollutant concentrations before and after fires controlled in target areas. These results will be fed to the economic evaluation part for estimation damages and costs from vegetation fires including people's health and ecosystem goods and services impacts. The costs and benefits of fires before and after government interventions will be compared for indicating the suitable policy options.

1.4.3 Economic evaluation

Forest fires affect people's health and ecosystems. To control fires, a large amount of money is spent every year. Socio-economic tools play an important role for forest fire management. Cost-Benefit Analysis (CBA) (Peachey et al., 2006) is a socio-economic tool that compares the gains with the losses for specific policy decisions. There are many approaches to estimate the value of costs and benefits, including the production function, revealed preference and stated preference, economic welfare and risk approaches. This study will use the benefit transfer approach to evaluate the impact/ value of the parties affected. CBA was used to evaluate the gains and the losses from government interventions both before and after fire-controls scenarios.

Chapter 2

Review of the Scale, Health, Environmental and Socio-Economic impacts of Vegetation Fires

2.1 Introduction

A forest fire (or wildfire) may be defined as "an unplanned, unwanted wildland fire including unauthorized human-caused fires, escaped wildland fire use events, escaped prescribed fire projects, and all other wildland fires where the objective is to put the fire out" (National Wildfire Coordinating Group, 2012). The occurrence of forest fires has become an important issue at local, regional and international scales. Fire events release trace gases and aerosol particles into the atmosphere, causing environmental hazards in terms of air pollution and climate effects (Langmann et al., 2009). Aerosol particles may be the cause of global cooling in the short-term (Ramanathan et al., 2001, Lohmann and Feichter, 2005) whereas other trace gases such as carbon dioxide (CO₂) may cause global warming after several decades (Jacobson, 2004). More recently, Methane with an atmospheric life time of 10 years, is described as a short-lived climate pollutant (SLCP) (Shindell et al., 2012). In addition, forest fires can lead to significant socioeconomic costs such as medical and property damage. It is estimated that forest fires cause the deaths of about 339,000 people annually (Johnston et al., 2012). In the United States, fire suppression costs are around \$1 billion annually and economic losses are estimated around \$1.6 billion annually in South America (González-Cabán, 2008).

This review presents and critically analyses the scale, health, environmental and socioeconomic impacts of forest fires in various countries and regions of the world by identifying, discussing and evaluating the:

- Causes of forest fires
- Global trends and distribution
- Emissions and methods of estimating emissions
- Pollutants and impacts
- Socio-economic impacts.

2.2 Causes of forest fires

Forest fires start via a combination of fuel, particular weather conditions and ignition agents (Stolle et al., 2003). Ignition can be caused naturally by lightning or via anthropogenic

initiation such as using fire for hunting and clearing areas for plantation. Globally, fires are mainly caused by human pressure on the environment (San-Miguel-Ayanz and Ravail, 2005). The Food and Agriculture Organization of the United Nations (2007) has shown that >79% of the causes of fire in the Mediterranean, South Asia, South America and Northeast Asia were from humans. In Chile, a study of risk variables from forest fires showed that approximately 99% of fires are caused by humans (Soto et al., 2013). In another study, Cardille et al. (2001) revealed that human settlement and land use clearly correlated with fire patterns in and near Lake States forests in the Upper Midwest, United States.

Climate and weather significantly affect the occurrence of fires. Forest fires tend to be more frequent when temperatures are high and air humidity and fuel moisture are low (Pinol et al., 1998, Daniau et al., 2012). Vasilakos et al. (2009) showed that rain is the most influential meteorological variable followed by temperature, wind speed and relative humidity, respectively. Moreover, this study indicated that temperature and relative humidity are positive influences while wind speed and rain are negative effects on fire ignition.

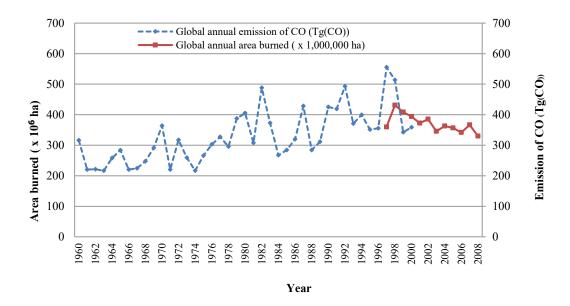
Fuels are an important factor in the occurrence of forest fires. Fuels include downed trees, forest litter, mosses/lichens, forbs/dwarf shrubs, flammable trees and other combustible matter. The capacity for fire ignition tends to decrease when moisture values of the fuel increase (Vasilakos et al., 2009). The first stage for fire development is from fine fuels (e.g. grass, heather, leaves/needles, moss, surface litter etc.) because these fuels are easy to ignite and burn rapidly. The light, medium and coarse fuels (e.g. small trees, sticks, branch wood, shrubs, Mature trees, standing and fallen deadwood, logs etc.) are more difficult to ignite because of fuel moisture but generate higher temperatures and longer periods of burning (Department of Agriculture and Rural Development, 2014). According to the US EPA (2002), fuel consumption for burning depends on the pre-burn fuel loading, fuel types, fuel conditions, meteorological factors, and fire intensity. Fuel consumption will vary for different types of fuel or vegetation. To estimate fuel consumption, various models have been developed based on values of pre-burn fuel loadings for different types of vegetation.

2.3 Distribution of forest fires and global trends

2.3.1 Global area burned

Forest fires occur on every vegetated area of the world. They tend to concentrate in the warmer parts of the world: Africa, Australia, South America, Asia and North America (Giglio et al., 2009, Ito and Penner, 2004). Many studies (see Table 2.1) show that Africa has the largest area of burning - >50% of the global burning - followed by Australia, America, Asia and Europe, respectively.

Table 2.1 Summary of the vegetated areas burned in the African, Australian, American, Asian and European regions.


Study	Method	Global Area Burned (x 10 ⁶ ha) ^a						
Period	Method	Africa	Australia	America	Asia	Europe	Global	ces
1997-	Satellite dataset from 4	231.7-	24.9-88.3	19.3-	23.7-	0.4-1.2	329.7-	Giglio et
2008	sensors; Moderate Resolution Imaging Spectroradiometer (MODIS) during 2001- 2009), Calibrated data of Tropical Rainfall Measuring Mission (TRMM), Visible and Infrared Scanner (VIRS) and the Along- Track Scanning Radiometer (ATSR) during 1997-2008	301.8		50.5	44.2		431.2	al. (2009)
1960- 2000	Use of literature reviews, different satellite products and numerical models	269	57	32.8	23.9	0.5	383.2	Schultz et al. (2008)
2000	Use of dataset from Global Burnt Scar satellite product (GLOBSCAR) and Lund- Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM)	118.1	17.8	13.2	21.6	1.3	172.0	(Hoelzem ann et al., 2004)
1998- 2001	Using satellite dataset from Tropical Rainfall Measuring Mission (TRMM), Visible and Infrared Scanner (VIRS)	282	118	104	39	n/a	543	van der Werf et al. (2003)

^a Burning areas of each study were classified with different criteria

Grassland fires were the highest proportion of area burned in Africa and America and they were the most burned areas (>71%) of the global area burned (Ito and Penner, 2004, Giglio et al., 2013). Beside grassland fires, cropland fires were the most prevalent in Europe and the Middle East whereas forest fires were dominant in Equatorial Asia (Indonesia, Philippines, Malaysia and Brunei) (Giglio et al., 2013). The Food and Agriculture Organization of the United Nations (2007) has stated that the large number of areas burned in Africa occur because the climate, wet and dry seasons in Africa are suited to vegetation fires. The plants grow well in the wet season and then the dry season provides good conditions for fires. Moreover, the human use of fire for slash-and-burn practices and forest maintenance are significant causes of fires.

2.3.2 Trends in forest fires

Schultz et al.'s (2008a) study of burning emissions from 1960 to 2000 indicated that there was an increase in vegetative burning during the 1960s to 1990s, as shown in Figure 2.1. After that, from 2000 to 2012, Giglio et al. (2013) showed that global area burned tends to decrease by around 1.2% per year. The decreases in areas burned occurred in South America, Europe, North Africa, North/Central/Equatorial Asia and Australia while the areas burned in North/Central America, Middle East, South Africa and Southeast Asia increased.

Figure 2.1 Global annual emission of CO (Tg (CO)) from forest fires using data from a study of Schultz et al. (2008a) and global annual area burned from forest fires using data from a study of Giglio et al. (2009)

In the years 1997 and 1998, the El Niño Southern Oscillation (ENSO) event started and it affected the trends of fires. Giglio et al. (2009) reported that the ENSO event affected continental Southeast Asia to have greater burning. Duncan et al. (2003) showed that the extreme ENSO event during 1997-1998 induced forest fires in Indonesia and Malaysia to have an increased frequency and intensity. This was a result of ENSO-induced droughts. The ENSO event during 1997–1998 was the most extreme of the century and the event of 1982–1983 was the second largest one. El Niño events also influenced weather conditions in South America and Africa to become severe droughts and to be causes of widespread forest fires in 1992, 1993, 1997 and 1998 (Food and Agriculture Organization of the United Nations, 2007)

2.4 Estimating emissions from forest fires

2.4.1 Emission equations

Forest fires generate greenhouse gases and hazardous pollutants such as carbon dioxide (CO₂), carbon monoxide (CO), polycyclic aromatic hydrocarbons (PAHs), aldehydes, volatile organic compounds (VOCs), mercury and particulate matter (PM) (Sapkota et al., 2005, Sigler et al., 2003, Wang et al., 2010). The types and composition of pollutants generated depend on many factors, including meteorological conditions, vegetative types and their characteristics.

Generally, burning emissions (E) for each vegetative type can be estimated using the equation from Seiler and Crutzen (1980).

$$E = A \times FL \times CC \times EF \tag{2.1}$$

Where A denotes the burned area (m²), FL is the fuel load or biomass density (kg Dry Matter m⁻²), CC is combustion completeness or burning efficiency (%) and EF is the specific emission factor (g/kg Dry Matter).

2.4.2 Areas burned

Images from various satellites are used to estimate the areas burned by forest fires. Fire products can be divided into 2 main groups: burned area and active fire products. Burned area products are characterized by changes in the reflectance of the surface which results from charcoal and ash, the vegetation removed, and the change of the vegetation structure (Roy, 1999). Active fire products are based on the apparent temperature of the fire pixel and the difference between the fire pixel and its background temperature that are burning at the time of overpass under relatively cloud-free conditions (Giglio et al., 2003). An advantage of the burned area products over active fire detection is that observational gaps due to cloud cover and satellite revisit time can be filled by the burn scar of the next overpass (Roy, 1999). However, data from the burned area products are not real-time information because the forest has already burnt. Active fire products can detect a fire in near-real-time and have been used in forecasting of air pollution e.g. the Realtime Air Quality Modelling System (RAQMS) for supporting flight planning and data analysis during March-May and August-October 2006 NOAA (Al-Saadi et al., 2008). A study by Zhang et al. (2008) used active fire products to develop the near-real-time monitoring of biomass burning particulate emissions in the United States. The National Aeronautics and Space Administration (NASA) have generated digital maps of global fires by using the MODIS, Terra and Aqua MODIS systems to support emission models (Justice et al., 2011). An overview of fire products from satellites is shown in Table 2.2.

Table 2.2 Area and time scales of satellite fire products both active fire and burned area products [adapted from Manyangadze (2009) and Kaiser et al. (2006)]

SENSOR(S) of SATELLITE	Owner	COVERA Spatial	GE Status	RESOLU Spatial	TION Temporal	Expenditure
Active Fire Product	s (no quantitative i	nformation)			
MODIS	NASA	global	2001 – present	1 km	1 day 4 times in 24 hrs (2-day and 2-night)	Free (There are additional prices for higher-level product)
ERS2-ATSR2, Envisat-AATSR	European Space Agency (ESA)	global	1995 - present	1 km	1 day	Not free
AVHRR	NOAA	global	1978-present	1.1 km	1 day (2 times in	Free for raw L1B data
TRMM-VIRS	NASA	40°N - 40°S	1988-2002	2 km	24 hrs) 1 month	
Active Fire Product GOES-E/W	s with quantitative NOAA	informatio N/S- America	n 1995-present	1 km 4 km	15,30 min and 3 hrs	
MODIS	NASA	global	2001-present	1 km	1 day	Free (there are additional prices for higher-level
Met SEVIRI	European satellite (operated by EUMETSAT)	Africa & Europe	1981-present	1.6 km 4.8 km	15 min	product)
MTSAT-2,1R	Japanese (operated by JMA)	Asia & Australi a	2005-present	1 km 4 km	1 hr	
Burned Area Produ						
AVHRR	NOAA	global	1978-present	1.1 km	1 day	Free for raw L1B data
SPOT 4,5	France (Space Imaging)	global	1998-present	2.5-20 m	3 days	Not free
MODIS	NASA	global	2001-present	500 m	1 day	Free (there are additional prices for higher-level product)
ERS2-ATSR2, Envisat-AATSR, Envisat-MERIS, SPOT-VGT	European Space Agency (ESA)	global	1998-2007	8 km	1 month	1

The detection of active fire products depends on a number of factors including the fire temperature and satellite viewing angle. MODIS active fires can detect flaming fires (~1,000 Kelvin, K) as small as~100 m2 under ideal conditions with a 50% detection probability, or 1,000–2,000 m² for a smouldering fire (~600K) (Hawbaker et al., 2008, Giglio et al., 2003). The detected area with fire temperature is plotted to produce a 'hotspot', which means an area of smouldering or flaming fires. Estimating the hotspot area burned is different for each vegetation type. Tansey et al. (2008) showed that tropical peat swamp forest burnt area was around 15–16 ha for each hotspot detected. Wotawa et al. (2006) used a value of 180 ha for boreal forests. However, the studies of Ballhorn et al. (2009), Wiedinmyer et al. (2006) and Henderson et al. (2008) have assumed that each hotspot was equivalent to 1 km² (100 ha) of the area burned.

2.4.3 Fuel load

Generally, not all biomass is burned in a fire event. To calculate fire emissions, the fuel load or the amount of biomass available that can be burned in each fire will be required in order to estimate emissions. The fuel load depends on factors such as vegetation type, weather, soil type and other disturbance. Fuel loads can be estimated by using biome-averaged values (Langmann et al., 2009) and numerical biogeochemical models can be used to simulate fuel loads (van der Werf et al., 2006, Hoelzemann et al., 2004, Ito and Penner, 2004). The Intergovernmental Panel on Climate Change (IPCC) (2006), Michel et al. (2005) and Wiedinmyer et al. (2011) have collected fuel load parameters from other studies, as shown as Table 2.3. Most of values reported in Wiedinmyer's study came from Hoelzemann et al., (2004)'s study. Studies by IPCC (2006) and Wiedinmyer et al. (2011) can be applied for a global study due to data collected from all region and whileMichel et al. (2005) is suitable for Asia area.

Table 2.3 Fuel loads (g/m²) classified by vegetation types and the global regions.

	Michel et al.		Wiedinmyer	et al. (201	1)	IPCC (2006)
	(2005)					
Vegetation Type	Asia	America	Africa	Europe	Asia	
Evergreen needleleaf forest	36,700					
Evergreen broadleaf forest	23,350					
Deciduous needleleaf forest	18,900					
Deciduous broadleaf forest	20,000					
Mixed forest Tropical Forest	22,250	20,260-	25,295-	28,076	6,181-	4,220-11,960
Tropical Folest		28,076	25,366	20,070	27,969	4,220-11,700
Temperate Forest		7,400-	3,497-	7,120-	7,865-	5,040
Temperate Potest		11,000	6,100	11,386	20,807	3,040
Boreal Forest		25,000	0,100	6,228-	25,000	4,100
Boleal Polest		23,000			23,000	4,100
Eucalypt Forest				8,146		6,940
Woodland	10,000	2,224-	2,483-	4,523-	2,946-	260-460
Woodiana	10,000	5,705	2,501	7,752	11,009	200 100
Wooded grassland	3,300	2,224-	2,483-	4,523-	2,946-	210-1,000
Wooded grassiand	3,300	5,705	2,501	7,752	11,009	210 1,000
Closed shrubland	7,200	2,224-	2,483-	4,523-	2,946-	1,430
Closed sindoland	7,200	5,705	2,501	7,752	11,009	1,430
Open shrubland	1,600	2,224-	2,483-	4,523-	2,946-	1,430
Open siliuotanu	1,000	5,705	2,463-	7,752	11,009	1,730
Grassland	1 250					
Orassianu	1,250	552-976	318-360	1,321-	655-2,170	
Cropland	5,100			1,612		

2.4.4 Combustion completeness

The combustion completeness (CC) or the combustion factor (CF) is defined as the ratio of fuel consumption to total available fuels. Fuel type, fuel moisture content and fuel spatial arrangement influence the CC value (Ito and Penner, 2004). The CC for complete combustion of fuels such as dry surface litter could be near one whereas coarse fuels such as large piece of woods burn less completely. The values of the combustion factor classified by coarse sizes and vegetation types are shown in Table 2. 4 and Table 2. 5. The percentages of combustion completeness by IPCC (2003) cover all main type of global forests then it can be used for the global views while Michel et al. (2005) and Heil (2007) focused on forests in Asia.

Table 2.4 The percentage of combustion completeness for fine and coarse fuels in forests from different studies.

Study	Fine Fuels (Litter and leaves)	Coarse Fuels (Wood : branches and trunks)	Average Fuels
Fearnside et al. (2001)	0.68	0.26	0.30
Carvalho et al. (2001)	0.92	0.26	0.33
Araújo et al. (1999)	0.83	0.13	0.20
Guild et al. (1998)	0.95	0.47	0.51

Table 2.5 The percentage of combustion completeness for different vegetation types.

	Michel et al.	IPCC (2003)	Heil (2007)
	(2005)		
Vegetation Type			
Evergreen needleleaf forest	0.25		0.39
Evergreen broadleaf forest	0.25		0.39
Deciduous needleleaf forest	0.25		0.39
Deciduous broadleaf forest	0.25		0.39
Mixed forest	0.25		
Primary tropical Forest		0.36	
Temperate Forest		0.45	
Secondary tropical Forest		0.55	
Boreal Forest		0.34	
Eucalyptus Forest		0.63	
Woodland	0.35	0.40-0.74	
Wooded grassland	0.40	0.74-0.77	
Closed shrubland	0.50	0.72	
Open shrubland	0.85	0.72	
Grassland	0.95		0.93
Cropland	0.60		0.93

2.4.5 Emission factors

Emission factors are usually defined as grams of emitted gas per kilogram of dry matter (DM) during the burning process (Schwarze et al., 2007). There are studies that have provided new measurements of EF, but in most studies, estimation of emission burning such as studies of Hoelzemann et al. (2004) and Ito and Penner (2004), relied in some parts on emission factors

reported by Andreae and Merlet (2001) which consist of vegetation types including tropical forest, extra-tropical forest, savannah and grassland. However, Akagi et al. (2011) have collected emission factors from various studies between 2001 to 2010 on different types of vegetation, including boreal forest, temperate forest and peat lands. A summary of emission factors derived from Andreae and Merlet (2001) and Akagi et al. (2011) is shown in Table 2.6. Emission factors were estimated from various references, their values are shown as means and standard deviations $(x \pm s)$.

Table 2.6 Emission factors^c (g kg⁻¹) for species emitted from various types of vegetation burning.

Parameters	Savanna	Savanna ^b	Tropical	Tropical	Extratropical	Extratropical	Crop	Crop	Boreal	Temperate	Peatland ^b
	and		Foresta	Forest ^b	Foresta	Forest ^b	Residuea	Residue ^b	Forest ^b	Forest ^b	
	Grasslanda										
Carbon Dioxide (CO ₂)	1613 ± 95	1686 ± 38	1580 ± 90	1643 ± 58	1569 ± 131	1509 ± 98	1515 ± 177	1585 ± 100	1489 ± 121	1637 ± 71	1563 ± 65
Carbon Monoxide (CO)	65 ± 20	63 ± 17	104 ± 20	93 ± 27	107 ± 37	122 ± 44	92 ± 84	102 ± 33	127 ± 45	89 ± 32	182 ± 60
Methane (CH ₄)	2.3 ± 0.9	1.94 ± 0.85	2.3 ± 0.9	5.07 ± 1.98	4.7 ± 109	5.68 ± 3.24	2.7	5.82 ± 3.56	5.96 ± 3.14	3.92 ± 2.39	11.8 ± 7.8
Hydrogen (H ₂)	0.97 ± 0.38	1.70 ± 0.64	3.6 - 4.0	3.36 ± 1.3	1.8 ± 0.5	n/a	2.4	2.59 ± 1.78	n/a	n/a	n/a
Nitrogen Oxides (NO _x as	3.9 ± 2.4	3.9 ± 0.80	1.6 ± 0.7	2.55 ± 1.4	3.0 ± 1.4	1.12 ± 0.69	2.5 ± 1.0	3.11 ± 1.57	0.90 ± 0.69	0.16 ± 0.21	0.8 ± 0.57
NO)											
Nitrous Oxide (N2O)	0.21 ± 0.10	n/a	0.2	n/a	0.26 ± 0.07	0.38 ± 0.35	0.07	n/a	n/a	11.9 ± 7.6	n/a
Sulphur Dioxide (SO ₂)	0.35 ± 0.16	0.48 ± 0.27	0.57 ± 0.23	0.40 ± 0.19	1.0	n/a	0.4	0.32 ± 0.14	0.52 ± 0.15	0.52 ± 0.15	n/a
Total Suspended	8.3 ± 3.2	n/a	6.5 - 10.5	13	17.6 ± 6.4	n/a	13	n/a	n/a	n/a	n/a
Particulate (TSP)											
Total Particulate Carbon	3.7 ± 1.3	3.00 ± 1.43	6.6 ± 1.5	5.24 ± 2.91	6.1 - 10.4	n/a	4	n/a	n/a	n/a	n/a
Particulate matter <2.5	5.4 ± 1.5	7.17 ± 3.42	9.1 ± 1.5	9.1 ± 3.5	13.0 ± 7.0	15 ± 7.5	3.9	6.26 ± 2.36	15.3 ± 5.9	n/a	n/a
μm diameter (PM _{2.5})											
Black Carbon (BC)	0.48 ± 0.18	0.37 ± 0.20	0.66 ± 0.31	0.52 ± 0.28	0.56 ± 0.19	0.56 ± 0.19	0.69 ± 0.13	0.75	n/a	n/a	0.2 ± 0.11
Organic Carbon (OC)	3.4 ± 1.4	2.62 ± 1.24	5.2 ± 1.5	4.71 ± 2.73	8.6 - 9.7	8.6 - 9.7	3.3	2.3	n/a	n/a	6.23 ± 3.6

a Source is Andreae and Merlet (2001)

b Source is Akagi et al. (2011)

c Emission factors are given in gram species per kilogram dry matter burned.

2.5 Pollutants from forest fires

2.5.1 Global forest fires emissions

Forest fires release various gaseous substances and particles to the atmosphere. Studies by Kaiser et al. (2012), Hoelzemann et al. (2004), Streets et al. (2003), and Schultz et al. (2008) show that forest fires emit large amounts of gases and PM (Table 2.7), of which carbon dioxide (CO₂) is the main gas followed by carbon monoxide (CO) and PM. Africa emits the most pollutants from fires whereas Europe releases the least, which is consistent with total areas burned. In addition, these studies used different estimation methods and satellite products, which is a cause of the various values reported for emissions, although the emission factors for all studies were based on the work of Andreae and Merlet (2001).

Table 2.7 Average annual emission [Tg] of selected pollutants for Africa, Australia, America, Asia and Europe regions^a

Emissions	Africa	America	Asia	Australia	Europe	global	References
CO_2	3,204.7	1,706.2	1,455.0	444.0	110.6	6,906.7	Kaiser et al. (2012)
						5,716.0	Hoelzemann et al. (2004) ^b
			1,100.0				Streets et al. (2003)
C	939.9	513.8	456.0	130.1	33.1	2,068.8	Kaiser et al. (2012)
	993.0	644.2	270.1	169.0	2.6	2,078.9	Schultz et al. (2008)
						1,741.0	Hoelzemann et al. (2004)
CO	127.3	91.9	110.5	17.4	5.6	351.5	Kaiser et al. (2012)
	128.0	62.7	70.6	6.7	2.3	270.3	Hoelzemann et al. (2004)
			67.0				Streets et al. (2003)
TPM	17.3	12.2	12.0	2.4	0.74	44.6	Kaiser et al. (2012)
PM _{2.5}	10.5	8.6	8.8	1.5	0.47	29.7	Kaiser et al. (2012)
						24.3	Hoelzemann et al. (2004)
NMHC	7.3	5.8	6.7	0.98	0.41	21.1	Kaiser et al. (2012)
TC	7.7	5.8	5.8	1.1	0.29	20.6	Kaiser et al. (2012)
CH ₄	5.2	5.0	8.0	0.67	0.34	19.0	Kaiser et al. (2012)
						12.5	Hoelzemann et al. (2004)
			3.1				Streets et al. (2003)
OC	6.5	5.0	5.5	0.96	0.28	18.2	Kaiser et al. (2012)
						15.8	Hoelzemann et al. (2004)
			3.3				Streets et al. (2003)
NO_x	4.2	2.5	2.1	0.59	0.16	9.5	Kaiser et al. (2012)
	3.9	1.8	2.1	0.24	0.08	8.1	Hoelzemann et al. (2004)
			2.8				Streets et al. (2003)

^a Burning areas of each study was classified in different criteria

^b Emission from GWEM-1.21 results

2.5.2 Forest fires emissions of Asia

According to Streets et al. (2003), forests are the most significant source of burning in Southeast Asia at 330 Tg (dry matter burned) annually, whilst in East Asia and South Asia, crop residue burning is the main source of fire emissions at 114.9 and 107.2 Tg annually, respectively. Streets et al. (2003) also studied individual emissions from biomass burning, including SO₂, NO_x, CO₂, CO, CH₄, non-methane volatile organic compounds (NMVOC), black carbon (BC), organic carbon (OC), and NH₃. Similarly to global emissions, CO₂ and CO are the most significant pollutants (Table 2.8).

Table 2.8 Total national emissions from biomass burning in Asia (Gg)

Country	SO ₂	NOx	CO ₂	CO	CH ₄	NMVOC	BC	ОС	NH ₃
China	83	820	280,000	16,000	540	2,700	110	730	230
Mongolia	17	180	52,000	2,500	97	430	16	160	38
Korea, DPR	1.3	7.8	2,800	180	6.9	35	1.1	12	2.5
Japan	1.3	9.7	3,700	230	7.6	41	1.6	11	3.2
Korea, Rep. of	0.8	7	2,800	170	5.1	29	1.2	6.4	2.4
Taiwan, China	0.2	1.9	840	52	2	9.1	0.4	2.1	0.7
Total East Asia	103.6	1,026.4	342,140	19,132	658.6	3244.1	130.3	921.5	276.8
Indonesia	48	310	150,000	9,000	530	1,600	59	440	120
Myanmar	34	160	97,000	6,300	390	1,200	40	310	79
Thailand	28	190	88,000	5,200	290	930	35	250	69
Vietnam	15	130	53,000	2,900	150	500	20	140	40
Laos	13	78	39,000	2,400	140	420	15	120	31
Malaysia	13	57	36,000	2,400	150	440	15	120	30
Philippines	12	69	37,000	2,400	130	440	16	110	31
Cambodia	6.1	62	22,000	1,100	57	190	7.8	57	16
Brunei	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Singapore	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Total									
Southeast Asia	169.1	1,056	522,000	31,700	1,837	5,720	207.8	1547	416
India	74	540	200,000	12,000	420	2,200	83	650	170
Bangladesh	9.3	63	30,000	1,900	88	340	13	81	25
Nepal	5.8	31	11,000	710	29	140	4.2	52	10
Pakistan	6	61	22,000	1,200	39	210	9	52	18
Sri Lanka	2.3	10	6,500	430	27	79	2.7	21	5.4
Bhutan	0.7	3.2	1,100	75	3.3	15	0.4	6.3	1
Total South Asia	98.1	708.2	270,600	16,315	606.3	2984	112.3	862.3	229.4
Asia Total	370	2,800	1,100,000	67,000	3100	12,000	450	3300	920

2.6 Health Impacts

According to Ammann et al. (2008), PM is the principal pollutant of concern from forest fires' smoke because of the relatively short-term exposure periods (hours to weeks). The sizes of particles relate to different health impacts and can be classified into three groups: 1) particles larger than 10 micrometres, 2) particle with diameters from 2.5 to 10 micrometres (PM_{10-2.5}), and 3) particle with diameters 2.5 micrometres and smaller (PM_{2.5}). Particles larger than 10 micrometres do not usually reach the lungs, but can irritate the eyes, nose, and throat while PM_{10-2.5} can get deep into lungs and PM_{2.5} can affect the lungs and heart. The results of many studies provided information of associations between short-term PM_{2.5} exposure and mortality, medication use, cardiovascular and respiratory symptoms but only little evidence showed the relation between PM_{10-2.5} and mortality, cardiovascular and respiratory health effects (US EPA, 2009). At present, most air quality monitoring systems generate data based on the measurement of PM₁₀. PM₁₀ is a particle with diameters less than or equal to 10 micrometres and it includes both PM_{2.5} and PM_{10-2.5}. The ratio of 0.5 between PM_{2.5} and PM₁₀ is found in developing country urban areas and the range ratio of 0.5–0.8 in developed country urban areas (WHO, 2006). PM₁₀ impacts people's health, causing respiratory symptoms, transient reductions in lung function, and pulmonary inflammation (Ammann et al., 2008) and mortality (US EPA, 2009).

Since 1997 there also have been serious regional episodes of forest fires in the ASEAN region in 2002, 2006, 2009, 2013, 2014 and 2015 (Page and Hooijer, 2016). The forest fire occurrence in Indonesia year 2013 was widely reported by the global news media from fires adversely affected people's health and the air quality of neighbouring countries, including Malaysia and Singapore (BBC, 2013). This event led to the Pollutant Standards Index (PSI, pollution levels for the major air pollutants) of Singapore reaching 401 (a PSI reading above 300 is defined as "hazardous"). In southern Malaysia, around 300 schools were closed. Severe forest fires in Indonesia also happened in 1997. Relevant studies of health impacts from forest fires of Indonesia and other countries are summarized in Table 2.9.

Table 2.9 Key studies of health impacts caused by forest fires

Reference	Study description	Health outcome
Kunii et al. (2002).	In the 1997 forest fire disaster in Indonesia, concentrations of carbon monoxide and PM ₁₀ reached "very unhealthy" and "hazardous" levels as defined by the Pollution Standards Index.	More than 90% of the respondents had respiratory symptoms, and elderly individuals suffered a serious deterioration of overall health (respiratory system)
Emmanuel (2000)	In Indonesia, PM_{10} levels caused by forest fires had increased from $50~\mu g/m^3$ to $150~\mu g/m^3$.	There were increases of 12% of upper respiratory tract illness, 19% asthma and 26% rhinitis. (upper respiratory system)
Lee et al. (2009)	In California, forest fires released PM_{10} , reaching hazardous level. This study used stratified multivariate logistic regression models to find the relationship between patients seeking care and PM_{10} exposure.	PM ₁₀ concentrations were significant predictors for patients seeking care for circulatory illness among residents of nearby communities and new patients, and for respiratory illness. (circulatory system)
Chen et al. (2006)	PM_{10} ranged 4.90-60.60 $\mu g/m^3$ appeared during forest fire event in Brisbane, Australia.	PM ₁₀ was statistically significantly associated with an increased risk of respiratory hospital admissions (respiratory system)
Johnston et al. (2006)	In Australia, PM_{10} generated by forest fire event ranged 2.6-43.3 $\mu g/m^3$.	The lower level of PM_{10} (2.6-43.3 $\mu g/m^3$) also was significantly associated with onset of asthma symptoms, commencing oral steroid medication but no associations were found with the more severe outcomes of asthma attacks, increased health care attendances or missed school/work days (asthma)
Wiwatanadate and Liwsrisakun (2011)	A study ran from August 2005 to June 2006 in Chiang Mai, Thailand. PM_{10} concentrations were 16-237 $\mu g/m^3$.	No pollutants were related to asthma symptoms in Chiang Mai, Thailand. More studies are needed, particularly at low dose in adult asthmatics, to validate findings (asthma)

2.7 Environmental Impacts

2.7.1 Effects of fires on the ambient air quality

Emissions from forest fires affect the environment both directly and indirectly. Greenhouse gases and aerosols emitted directly elevate the concentration of pollutants in ambient air, and indirectly they are causes of secondary effects on atmospheric chemistry such as ozone

formation. In 2001, the 7-day Chisholm (Canada) fire burned 116,000 ha of land and increased the PM concentration of Edmonton city located 160 km away from a daily average concentration of 12 μg/m³ to an hourly high of 261 μg/m³ (Rittmaster et al., 2006). Some pollutants not only affect the local area, but also affect the regional area. For example, PM released can be transported for thousands of kilometres in the atmosphere (Sapkota et al., 2005) and impact other regions. Vegetation fires in Indonesia year 2015 have released the emissions loading (in Gg) of greenhouse gases at around 806,406 CO₂, 8,002 CH₄, and pollutants of about 259 BC, 1,957 OC, 4,118 PM_{2.5} and 5,468 PM₁₀ (Jongudomsuk et al., 2015). This affected neighbouring country by raising the 24-hour PM_{2.5} concentrations in Singapore from <50 μg/m³ to >100 μg/m³ in September 2015 (Shannon et al., 2016). As previously reported, poor ambient air quality is a cause of adverse health and environmental effects, as discussed below.

2.7.2 Effects of fires on the forest ecosystem

A forest fire is an important factor in many ecosystems and destroys some ecosystems. Fires impact ecosystem processes such as in vegetation dynamics, nutrient cycling, soil and below ground process and water systems (Chen, 2006). A low severity from the fire regime that leaves >80% of the above-ground dominant vegetation to survive will allow forests to be the fire-resistant because trees will adapt themselves to have thick bark and ability to heal fire scars. Furthermore, the vegetation structures of forest will substantially change if >80% of the above-ground vegetation dies in fires (Neary et al., 2005, Nasi et al., 2002). The removal of species by fires can change forest to grassland (Chen, 2006). The forest ecosystem responses can be roughly estimated by fire intensity and fire severity (Keeley, 2009). Keeley (2009) studied the correlation between fire intensity or fire severity metrics and ecosystem responses including vegetative regeneration, recolonization by plants and animals, and watershed hydrology processes. However, these correlations may be positive, negative or neutral responses from fire intensity and severity (Keeley, 2009).

Fire intensity is a measure of the rate of energy release from the organic matter combustion process. There were studies which showed a relationship between fire intensity or flame length and impacts of fires (Keeley, 2009). Studies (Dickinson and Johnson, 2001, Keeley and McGinnis, 2007) have shown that tree mortality patterns and seed survivals after fires were related to flame length and plume heat from fire intensity and these relations can be generated by using mathematic models. The fire intensity was related to soil heating and survival of seed banks or rhizomes. There also was a significant relationship between flame length and fire intensity in forest and shrubland ecosystems by empirical studies but this was not reliable for grasslands and savanna (Keeley, 2009). Fire severity has been used to describe fire effects on ecosystems (Neary et al., 2005). A common measure of fire severity is measuring the loss of

above-ground (i.e. canopy tree, surface litter) and below-ground (i.e. soil organic layer) organic matter without considering re-sprouting after fires (Keeley, 2009). There are many benefits of low to moderately intense fires, such as maintenance of some types of forest (i.e. deciduous and mixed deciduous forests) (Nasi et al., 2002) and an increase in soil's nutrients (Kennard and Gholz, 2001); at the same time, forest fires can cause ecosystem damage. A forest that is sensitive to fire, such as an evergreen forest, may transfer from evergreen forest to deciduous forest and savanna with a consequent significant loss of biodiversity (Cochrane, 2009). Generally, the impacts of fires to ecosystem responds include plant species, wildlife, water, soil, and carbon consequences as shown below.

2.7.2.1 Effects of fires on plant species

In an area where fires often occur, tree species show adaptive characteristics such as thick bark, ability to heal fire scars, re-sprouting capability and seed adaptation. For example, some North American and European pines have thick bark, great crown base and height (Nasi et al., 2002). In North America, after a fire, *Pinus banksiana* (Jack pine) and *Pinus contorta* (Lodgepole pine) have cones that will open and release the seed into the ash bed. Some plants, such as Eucalypts in Australia, require burning for regeneration to occur (Rowell and Moore, 2000)

After a fire in Thailand, for three forest types (deciduous dipterocarp, mixed deciduous, and dry evergreen), seedling mortality was >90% in all forest types. Sapling mortality varied from 27% to 63%. Trees and poles showed mortality rate ranging 0-7% and 0-21%, respectively (Baker and Bunyavejchewin, 2009). For deciduous dipterocarp forests, saplings such as *Arundinaria* are adapted by re-sprouting within 14 days after a fire. Six deciduous species of dipterocarp, namely *Dipterocarpus intricatus Dyer, Dipterocarpus obtusifolius Tei- jsm., Dipterocarpus tuberculatus Roxb., Shorea obtusa Wall., Shorea roxburghii G. Don and Shorea siamensis Miq.* appeared to adapt themselves to fires by their characteristics, including thick, hard and rough bark, tap roots and lateral roots which are similarly protected, root collars with numerous dormant buds, leading to re-sprouting often within 1 month after fire, or coppicing and seed production and dispersal after the fire has passed through (Stott, 1986).

2.7.2.2 Effects of fires on wildlife

Fires affect wildlife by killing them directly, and also lead to longer-term indirect effects such as stress and loss of habitat, territories, shelter and food (Nasi et al., 2002). Fires can cause the displacement of territorial birds and mammals, which may upset the local balance and ultimately result in the loss of wildlife. The severe fires of 1998 in the Russian Federation led to increased water temperatures and high carbon dioxide concentrations in lakes and waterways,

which adversely affected salmon spawning (Shvidenko and Goldammer, 2001). However, fires also give benefits to some species. For instance, grass-layer beetle species in Australia's savannahs show significant resilience to fire, although fires affect abundance, species and family richness (JÉrôme and Andersen, 2001).

2.7.2.3 Effects of fires on water and soil

Fires destroy vegetation that cover forest ground and change soil characteristics such as soil water holding (Neary et al., 2005). For severe fires, Johansen et al. (2001) showed that runoff from burned plots was about 45% of the total 120 mm of applied precipitation. An erosion threshold is reached when the amount of soil exposed by fire increases to 60–70%. Burned plots generated 25 times more sediment than unburned plots (Johansen et al., 2001).

2.7.2.4 Effects of fires on carbon consequences

Generally, fires destroy vegetation and change soil characteristics such as soil water holding capacity and surface evaporation, which—in a complex way - affects the climate system. Forests are a key sink of carbon. The occurrences of fires release a large amount of carbon to the atmosphere. Aerosol particles (e.g. PM, black carbon, and organic carbon) from fires can create direct and indirect changes of solar irradiation by scattering and absorbing solar radiation (Langmann et al., 2009). Early studies showed that the net effect of aerosol particles would be cooling the atmosphere, but recent studies have suggested that climate change by aerosol impacts are complex and still uncertain (Ellicott, 2009). This complexity was also shown by Shindell (2015) who reported that black carbon tends to warm the global mean surface temperature whereas the organic carbon is likely to be the cooling effect. Beside this, the gases including carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O) and carbon monoxide (CO) are global warming gases while nitrogen oxide (NO_x) and sulphur dioxide (SO₂) are the cooling via nitrate and sulphate aerosol formation respectively.

2.8 Socio-Economic evaluation

Bonniex and Rainelli (1999) summarized the use of valuation for project or policy decisions into two stages. First, the translation of environmental changes into monetary values. Second, monetary benefit estimates can influence particular decisions by employing a cost-benefit analysis. Cost-Benefit Analysis is a socio-economic tool that compares the gains with the losses in an investment project or a policy (Pearce, 1998). CBA is used for policy decisions in many countries such as the United States and the United Kingdom. The goals of this tool are typically to evaluate the positive and negative changes associated with proposed policy changes, and to achieve requirements with the condition that the change in benefits must exceed the

change in costs (Pearce, 1998, Department of the Interior, 2012). According to Atkinson and Mourato (2008), the important process in environmental CBA is the estimation of monetary values for environmental changes. The estimation of the total economic value of ecosystem changes should be distinguished from the value of all ecosystems i.e. it is what happens at the margins that is important. The total economic value of a forest can be divided into use and non-use values, as shown in Table 2.10.

Table 2.10 Total economic value of forest [adapted from Lette and de Boo (2002), Adger et al. (1994) and SCBD (2001b)].

		Descriptions
1. Use values		
1.1 Direct use value	Products that can be directly consumed	Timber and other wood products, hunting, a source of food, medicine plants, recreation/tourism, research/education
1.2 Indirect use value	Natural forest functions	Soil stabilization and erosion, water regulation, climate regulation and carbon sequestration, flood/landslides/avalanche prevention, biological diversity
1.3 Option value	Future direct and indirect uses	Biodiversity, conserved habitats, unknown future medicinal benefits
2. Non-use value		
2.1 Existence value	Value from knowledge of continued existence, based	Biodiversity, culture/ heritage
2.2 Bequest values	on e.g. moral conviction Value of leaving use and non-use values for offspring	Habitats, irreversible changes

2.8.1 Environmental valuation methods

The occurrences of forest fires have changed forest ecosystems and ambient air quality. These changes could be translated into economic values. There are various methods (see Figure 2.2) to valuing the environment, including: (Chiabai et al., 2010, Lette and de Boo, 2002, Bishop, 1999, DEFRA, 2007)

- Revealed preference (RP) based on actual behaviour associated with the market either directly (e.g. averting behaviour) or indirectly (e.g. hedonic pricing);
- Stated preference (SP) based on hypothetical market surveys of either willingness to pay

(WTP); and willingness to accept compensation and

 Production function approaches or dose-response methods, which involve an attempt to relate human well-being or quantity of a marketed good or service to a measurable change in the quality or quantity of a natural resource.

However, economic welfare approaches based on market prices may be not effectively represent prices for some elements. Risk approaches based on shadow prices are considered for adjustment to take into account the precautionary principle for the environmental valuation process (DEFRA, 2007).

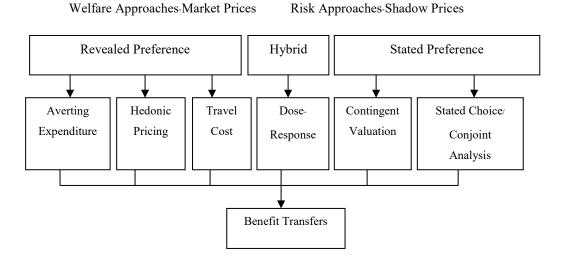


Figure 2.2 Techniques of monetary valuation for environmental valuation

RP approaches can be processed by using hedonic pricing and travel cost methods. The hedonic pricing method is where the price of a marketed good is related to its characteristics without confounding or correlated factors and transaction costs. In Colorado, the United States, Loomis (2004) applied a hedonic pricing method for property values when their characteristics change. The study showed that forest fires adversely affected house prices near a forest fire area, decreasing them by 15%.

The travel cost method can be used to estimate the value of forest recreation. It is based on measuring travel costs to visit a natural area and the time spent travelling. It is an estimation of the value of time and assumes that there is a single purpose for a particular trip. Hesseln et al. (2003) used the travel cost model to test the effects of prescribed fires on demand for hikers and mountain bikers in New Mexico. Prescribed burns led to a decrease in net benefits for the both of hikers and mountain bikers.

Generally, SP approaches consist of two main methods; contingent valuation and choice experiments. In contingent valuation method (CVM) surveys, a sample of the relevant population

provides answers on their willingness-to-pay for the use or conservation of natural goods. However, CVM does not produce valid measurements when it concerns goods that people are not familiar with. Individuals express different preferences when adopting a consumer and a citizen viewpoint, and the latter viewpoint gives more weight to attributes with less direct and obvious visual appeal (van Rensburg et al., 2002). In a choice experiment, the respondent has to choose a preferred alternative for paying for the use or conservation of natural goods or receiving compensation from the losses of natural goods. The difference between choice experiment and contingent valuation is that choice experiment does not directly ask people to state their values in monetary units (e.g. dollars). Moreover, Hanley et al. (2001) showed that choice experiments can provide a cognitive burden to a respondent which may solve some biases associated with standard contingent valuation.

The production function or dose-response approach is often used in studies that aim to estimate the monetary damages of environmental degradation. This method consists of two steps: first, the relation between a dose of pollution/pressure and an effect on production or a response is determined. Secondly, the changes are valued by certain monetary measures including market price. However, DEFRA (2007) suggested that the dose response/production function approach is not a valuation technique. It tends to be an element of several valuation approaches such as dose response functions linking air pollution to various health effects. It provides values either by assuming market prices e.g. an impact of pollution on agricultural productivity or using surrogate prices e.g. the value of a life from a combination of stated and revealed preference valuation methods.

An imbalanced incentive structure frequently occurs in fire management. Costs do not necessarily equal the benefits of environmental improvements or the damage by degradation when costs are not actually incurred, such as for the shadow project technique, where there is a risk of under- or over-estimating the value of the environmental asset. According to DEFRA (2007), the shadow project method refers to the costs of providing an equal alternative good or service elsewhere. These may be the asset reconstruction, asset transplantation or asset restoration. The cost of the chosen option is added to the basic cost of the proposed development project in order to estimate the full cost. The development project will be accepted if the benefits are at least equal to the development project costs plus the shadow project costs.

2.8.2 Benefit transfer of forest values

Over the past two decades, there has been an increase in environmental benefit transfer use as an approach for estimating the value of environmental goods and services. Benefits transfer is the process of taking information about economic values from studies already

completed and applying it to the target study. Plummer (2009) suggested that the first step is to consider the type of land cover, biome, or some other set of an ecological landscape. The next step is to take the study's estimated value for a particular ecosystem service and divide this by the area of the relevant landscape type, producing a constant value for that ecosystem service—landscape type combination per unit of area. Wilson and Hoehn (2006) studied the relevant papers of benefit transfer and showed that besides geographic location and environmental attitudes, three factors including the ecosystem commodity, the market context, and the formulated welfare measure of the original study and targeted study need to be similar or adjustments are needed if there are differences. Moreover, the study showed that benefit transfer errors consisted of the difference between the original study and target study site, the judgments and methods used in the original study, and publication bias.

2.8.3 Socio-economic impact valuation in the United States

According to Dale (2010), forest fire costs are measured as direct costs, rehabilitation costs, indirect costs and additional costs. Firstly, direct costs that appear during or immediately following the fires can be broken down into expenditures on engines, fire fighting crews, property losses, damage of recreation facilities, loss of timber resources, and aid to evacuated residents. Secondly, rehabilitation costs, especially longer-term, are harder to measure. For example, watersheds damaged by fire, in particular, can take many years to recover and require significant restoration activities. Thirdly, indirect wildfire costs include lost tax revenues in a number of categories such as sales and county taxes, as well as business revenue and property losses that accumulate over the longer term. Finally, additional costs or special costs are calculated by assuming a proxy for the cost of lost life, loss of civilian life, ongoing health problems for the young, old, and those with weak respiratory or immune systems, and mental health needs. Additionally, the extensive loss of ecosystem services, some of which are inherently difficult to quantify (e.g. aesthetic and scenic beauty, wildlife existence value), and others are taken into account.

2.8.4 Socio-economic impact valuation in Europe

Mavsar et al. (2011) showed that the Europe Forest Fire Information System (EFFIS) has improved a standardized Analytical Assessment Model (AAM) for the assessment of economic impacts. The AAM was developed to estimate fire damage costs of special cases or areas burned that are larger than 500 ha. The economic analysis is based on the missed flow of forest goods and services, aggregated in an additive function. The AAM algorithm is:

$$D_{TOTi} = D_{Wi} + D_{Ci} + D_{NWFPi} + D_{Si} + D_{Bi} + D_{EXi}$$
(2.2)

Where D_{TOTi} is the total damage for pixel i (\in);

 D_{Wi} is the damage related to wood production losses for pixel i (ϵ) ;

 D_{Ci} is the damage related to carbon sequestration for pixel i (ϵ);

D_{NWFPi} is the damage related to Non-Wood Forest Products and Services (NWFP)

for pixel i (€);

 D_{Si} is damage related to soil losses (erosion) for pixel i (ϵ);

 D_{Bi} is damage related to biodiversity losses for pixel i (\in);

 D_{EXi} is the extraordinary cost for pixel i (ϵ).

Each damage value of the above forest goods and services was estimated by using area damaged (ha), value of forest goods and services (ϵ), damage level (level 1,2,3) restoration period (year, \sim 1 to 6 years) and discount rate (%). The details are shown as follows:

$$D_{Wi} = A_i * NAI_i * (P_{wi} - C_{wi}) * DL_{wi} * [(n_i * (1-d) - d + d^{ni+1}) / (n_i * (1-d)^2)]; d = 1 + r (2.3)$$

$$D_{Ci} = A_i *0.5*NAI_i *BEF*P_c *DL_{Ci} *[(n_i *(1-d)-d+d^{ni+1})/(n_i *(1-d)^2)]; d = 1+r (2.4)$$

$$D_{NWFPi} \ = A_i * NWFP_i * P_{NWFPi} \ * DL_{NWFPi} * [(n_i * (1 - d) - d + d^{ni + 1}) / (n_i * (1 - d)^2)]; \ d = 1 + r \ (2.5)$$

$$D_{Si} = A_i * S_i * P_{Si} * DL_{Si} * [(n_i * (1-d) - d + d^{ni+1}) / (n_i * (1-d)^2)]; d = 1+r$$
 (2.6)

$$D_{Bi} = A_i * S_i * P_{Bi} * DL_{Bi} * [(n_i * (1-d) - d + d^{ni+1}) / (n_i * (1-d)^2)]; d = 1+r$$
 (2.7)

$$D_{EXi} = A_i * S_i * P_{EXi} * DL_{EXi} * [(n_i * (1-d)-d+d^{ni+1}) / (n_i * (1-d)^2)]; d = 1+r$$
 (2.8)

Where A_i is the area of pixel i (ha);

NAI_i is the net annual increment for pixel i (m³ ha⁻¹ yr⁻¹);

 P_{wi} is the market price of wood in pixel i (ϵ/m^3);

 C_{wi} is the harvesting costs in pixel i (ϵ /m3);

DL_{wi} is the damage level for wood production capacity in pixel i;

BEF is the biomass expansion factor;

 P_C is the market price of carbon (\notin tC-1);

DL_{Ci} is the damage level for carbon sequestration capacity of forest in pixel i;

NWFPi is the annual quantity of NWFP produced in pixel i (unit1 ha-1 year-1);

 P_{NWFPi} is the price of NWFP in pixel i (\in unit-1);

DL_{NWFPi} is the damage level of production potential for NWFP in pixel i;

S_i is the increased soil loss (t ha-1 yr-1);

 P_{si} is the price of soil (\in t-1);

DL_{Si} is the damage level of soil erosion prevention of forests in pixel i;

 P_{Bi} is the value of biodiversity in pixel i (\in ha-1);

DL_{Bi} is the level of damage to biodiversity of forests in pixel i;

 P_{EXi} is the value of extraordinary cost in pixel i (\in ha-1);

DL_{EXi} is the damage level of extraordinary cost in pixel i;

ni is the restoration period for pixel i (years);

r is the discount rate.

Barreto et al. (1998) explained that wood production losses may be calculated with these variables; the net annual increment, market wood price and harvest costs. For the estimation of losses related to the decreased carbon sequestration, the net annual increment, carbon price, Biomass Expansion Factors (BEF) and the damage levels are needed. Sources of carbon price and BEF may be taken from the voluntary market data and the relevant Intergovernmental Panel on Climate Change (IPCC) report. Non-wood forest product losses such as cork, chestnut, resin, mushrooms and truffles, forage, recreational services may be calculated using market prices. The value of forest fire related soil loses may be estimated by considering the increased soil loss, soil price and damage level. The biodiversity loss may be estimated in relation to the biodiversity value, level of naturalness of the damaged forest and the damage level, which depends on the fire severity. Finally, extraordinary losses such as health impacts, property damages and agricultural losses may be calculated with these data; quantity, value and damage level. However, an error of double counting may occur in calculating a value of intermediate and final products because the intermediate services are by default included in the value of the final service (Fisher et al., 2008).

2.8.5 Vulnerability

The concept of vulnerability is important for the human dimension and global environmental change studies (Janssen and Ostrom, 2006). Generally vulnerability is a function of exposure and sensitivity to environmental, economic and social change, and the ability to adapt to the effects of hazards (Adger, 2006). This concept can be a tool for linking ecosystem services (e.g.: food production, wildlife habitat) related to different stakeholders and assessing the vulnerability to land use change and its consequence for ecosystem services (Schröter, 2005).

Luers et al. (2003) suggested that vulnerability should shift away from critical areas or vulnerable places and can be applied at any scale. They developed generic metrics for the relationship between a wide range of stressors and the outcome variables:

Vulnerability = (sensitivity to stress / state relative to threshold) x Prob. of exposure to stress (2.9)

Luers (2005) defined sensitivity as the degree to which a system will respond to an external disturbing force. It includes the ability to resist change and the ability to return to a previous condition after a stress has been removed. Exposure refers to the characteristics of forces that could stress the system (e.g. temperature) such as magnitude and frequency. Threshold means reference point which the system may be damaged if above or below.

The vulnerability of each vegetation type affected by forest fires is different. For example, in tropical humid forest, the regeneration rate of plants may be very slow. Too frequent fires can destroy the survival chances of new seedlings (Eva and Lambin, 2000). However, other research argues that the key to understanding vulnerability lies in the interaction between social dynamics within a social-ecological system and that these dynamics are important for resilience (Adger, 2006).

In this context, social vulnerability describes the pre-existing characteristics of groups or conditions within communities that make them more susceptible to the impacts of hazards. It helps to understand segments of society or sections of the community that are more susceptible to disaster impacts than others (Cutter, 2010).

2.8.5.1 High income and Low income / Rural and Urban

The poorest households typically rely on forest products (Baikuntha, 2002). In Sub-Saharan Africa, rural households rely heavily on forest products for subsistence (food, fuel and materials) and to supplement their incomes (European Forest Institute, 2002). Destroying forests by fires directly affects poor and rural people. In Alaska, people living in rural villages rely on land areas for hunting, fishing and gathering wild foods. The nutritional needs of local people are closely linked to ecosystem characteristics. Wild fires directly affect their foods (Trainor et al., 2009). A study by Gaither et al. (2011) showed that low socio-economic status of residents can have the effect of exacerbating community risk to wildfire occurrence and devastation because socially vulnerable populations are generally less able to either mitigate wildfire risk or recover from such events.

People in poverty use fires on vegetative land for reasons such as clearing the forest for cultivation, hunting, maintaining pasture, controlling pests, and managing crops (Eva and Lambin, 2000). In places like Amazonia, there are few technologies available to poor indigenous populations and consequently they use fires as a primary agricultural technology. Simmons et al. (2004) have discussed the complex links between poverty, social conditions and causes of wildfires.

2.8.5.2 Indigenous and non-indigenous communities

The impacts of forest fires on a settlement have generally been limited to short-term

displacement, with no documented cases of permanent abandonment of large areas due to wildfire during the past 200 years or so (Handmer and Reale, 2011). However, this may change in the future. Increased wildfire risk is probably occurring as a result of climate change (Fried et al., 2008) and increased human exposure to the threat of fires.

In a term of disaster management, Mercer et al. (2010) suggested that indigenous and scientific knowledge should be involved to identify a viable strategy that reduces vulnerability to environmental hazards. Indigenous knowledge is considered to be a body of knowledge existing within populations or acquired by local people over a period of time through accumulation of experiences, society-nature relationships, community practices and institutions, and by passing it down through generations (Fernando, 2003).

2.8.5.3 Nomadic and Sedentary Communities

According to Nkem et al. (2012), in the Congo Basin, the contrasting livelihood strategies of two groups (nomadic and sedentary hunter-gatherers) seem to structure their preferences in forest settlement locations. Hunting and gathering of forest products by nomads occurs nearly exclusively in the forest area. This is in contrast to sedentary peoples, who mostly exploit the secondary forest. These differences may be gradually fading with the increasing scarcity of valued forest products. In another major study, Wisner and Luce (1993) reported that all persons at the same level of income do not suffer equally in disaster situations. For instance in the Sahel famine, nomads who may have been less poor than sedentary farmers, actually suffered more as measured by death and dislocation. Watts and Bohle (1993) showed that entitlement approaches have primarily addressed the conditions of starvation because a person must necessarily starve if his/her entitlement set does not include a commodity bundle with enough food. This study showed that, besides income, there are other factors that co-determine whether an individual will go hungry.

2.8.6 The integration of ecosystem services and economic approach to the policy

According to Fisher et al. (2008), integrating economics and ecology into a decision support system for policy should consider three key issues including marginal changes in landscapes, insurance for ecosystem service provision, and the ability to capture non-market ecosystem services through some institutional arrangement. The marginality may refer to the price paid to prevent losing one unit. Trade-off decisions and beneficiaries are used to evaluate the monetary value. The insurance value is important because it indicates the minimum level of ecosystem structure needed to provide a continual flow of services. An example of insurance value is the study of the suitable densities for vegetation on hill slopes to supply the soil retention and water regulation during storm events. The third key issue is the benefit capture of ecosystem

services that is used to motivate or invests for the payment of nonmarket ecosystem services. This mechanism is regulatory and is generated by using market-based mechanism. Examples of instruments are taxes, user fees and quotas that emphasize on setting taxes and user fees than determine the fixed level of emissions. For a quota-based system, this may set the quantity or scale of activity through the market by issuing permits or credits such as carbon emission permits, carbon credits and wetland banks. In countries in which regulatory and taxation systems are not strong enough, payments for ecosystem services (PES) tend to be popular. In this type of scheme, landowners will be compensated by the government for providing services that conserve the ecosystem.

2.9 Means of preventing impacts of forest fires

Fire suppression is a method to relieve the impacts of forest fires when fire occurs. An effective approach is to immediately locate fire occurrences for suppression (Tishkov, 2004). Fire forecasts are applied to specify fire locations for setting plans. Techniques for suppression include building fire barriers, restriction of forest visiting in fire seasons and distribution of information. In addition, fire monitoring is used to discover fire events. The monitoring of fires can be launched via space and aircraft monitoring, car, walking survey, and observation from towers and satellites. The data can be used to evaluate fire severity and the size of an affected area.

2.9.1 The use of air quality models

Modelling is considered as a tool for policy makers to develop abatement strategies to reduce pollutant emissions by predicting pollutant concentrations as a result of changes in emissions and related conditions. Furthermore, it provides an improved understanding of the sources, causes and processes that determine air quality. Source apportionment, including the assessment of transboundary and natural contributions, is an important application of models if sufficient knowledge is to be acquired for the effective implementation of such plans.

An important use of models is the evaluation of different emission reduction scenarios in terms of their efficiency in improving regional and local air pollution levels, by taking into account distant pollutant emission sources (Denby et al., 2010). A relevant study uses a simple model to predict the dispersion of primary particulate material to PM_{10} concentrations across Europe (Denby et al., 2010). The resulting population exposure is compared with that of secondary particulates, and it is found that both primary and secondary contributions will be significantly reduced with the implementation of new protocols under the Convention on Long-Range Transboundary Air Pollution (CLRTAP).

2.9.2 Forest fires management in the United States and Australia.

The forest fire management system in the USA is a centralised whilst Canada, Australia and New Zealand operate decentralised systems. The financing, resourcing and coordination of wildfire management in the USA is mainly the responsibility of central government. In Canada and Australia, forest fire management was decentralized to provincial/states, territorial agencies and other stakeholders whereas forestry companies and private land owners are the primary actors in New Zealand (Pierard and Jarvis, 2010).

In the USA, the costs of forest fire management by the Office of Wildland Fire (OWF) in 2011 were spent on 4 main categories, including: 1) preparedness (fire prevention, detection, equipment, training, and baseline personnel), 2) suppression (wildland fire fighting operations), 3) burned area rehabilitation, and 4) hazardous fuel reduction (treatment to protect lands and resources from wildfire damages) (Department of the Interior, 2012). In the past, the forest fire policy of the United States emphasized fire suppression without considering the accumulation of combustible matters (fuels) in forests. After fire suppressions, the accumulation of fuels tended to increase the risk of damage, high-intensity forest fires (Busenberg, 2004).

In 1995, the Federal Wildland Fire Policy included the reduction of fuels for fire management and recognized that fire is a natural part of many ecosystems and the beneficial ecological role of fire (Department of the Interior, 2012). Dale (2006) suggested that the use of fire to manage fuel loads may improve watershed conditions, enhanced wildlife habitat, and more resilient forested ecosystems. Moreover, reduction of fuel loads is appropriate for cost benefits including reduced suppression and fuel treatment costs over the long-term. The reduction of hazardous fuel accumulation appeared in many of the national fire plan's recommendations, especially on lands at the wildland-urban interface (WUI) (Cook and O'Laughlin, 2014). According to the Department of the Interior (2012), WUI - the area where houses meet or intermingle with the undeveloped wildland vegetation - was emphasized when estimating the cost of fire management in the USA in 2001. After that, the WUI fuel treatment funding has continued to increase, and reached 90% of fuel management funds in 2011. Fuel management is a major goal of National Strategy as the vision is to: "safely and effectively extinguish fire when needed; use fire where allowable; manage our natural resources; and as a nation, live with fire" (Cook and O'Laughlin, 2014). Australia has the same patterns of fuel reduction as the USA but Australia may lack fire-fighting resources compared with the USA (Adams, 2013)

2.10 Summary

A vegetation fire is an important problem that occurs regularly throughout the world, especially in Africa and Australia. Trends of global fires decreased between 2000 and 2012 but fires in Southeast Asia have tended to increase. Many studies showed that factors that promote

the frequency of fires include hot and dry weather, and human activities. These conditions occur in the study area in the north of Thailand. The study area is fire-prone in which fires have been caused by humans and the weather. Forest fires have become a significant problem because they are causes of adverse environmental and human impacts. Emissions from fires include greenhouse gases that contribute to climate change and particulate matter that directly affects people's health. However, there are rarely studies of economic losses from forest fires, especially in developing countries such as Thailand. In addition, there were some studies of the air pollution from forest fires but only Chiang Mai province was studied. The study of people's health and environmental impacts, and economic losses caused by vegetation fires events in the north of Thailand including 8 provinces are needed to investigate for mitigating problems and being the information of Thailand vegetation fires for the future study.

From literature reviews of vegetation fires, people's health and environmental impacts, and economic losses can be estimated by fire emissions and numbers of forest area damaged by fires. The amount of fire emissions can be calculated by using values for areas burned, fuel consumed and emission factors. Many studies have provided these data for calculation of emissions as shown in the literature review. Area burned can be evaluated by using satellite images. A satellite plays an important role for monitoring forest fires throughout the world. It can used to estimate locations and area burned of forest fires for large areas. There are studies of forest fires in some areas in the Southeast Asia. They include the number of areas burned and a wide range of strategies for fire management. Generally, effective solutions for solving problems in each area/country/region are different depending on their geography. There is no study indicating specific solutions for the north of Thailand forest fires. A specific policy to mitigate the problem is needed based on the exactly quantity of impacts from fires and area controlled to meet the air quality standard of Thailand.

An air quality model is a tool to help estimate the pollutant emissions to reduce and can help to provide an improved understanding of the sources, causes and processes that determine air quality. Source apportionment, including the assessment of transboundary and natural contributions, is an important application of models if sufficient knowledge is to be acquired for the effective implementation of such plans. Effective solutions for solving fire emissions can be developed into policies with the economic approaches. Costs-Benefit analysis (CBA) is an effective method for analysing the net benefit to society by comparing the gains with the losses for specific policy decisions. The development of air pollution policy for vegetation fire management is not only mitigating the problem effectively, but it should be also worthy in a term

of the maximum net-value of the benefit. Then, the integrated tool from the air quality model and CBA is a selected tool for generating forest fire policies in the north of Thailand in this study. This tool can develop the realistic and practical policy because the exactly of air quality targets, the amount of area-source sizes and possible budgets are set for managing Thailand air pollution caused by vegetation fires

Chapter 3

The Simulation of Air Pollution Scenarios

The CALifornia Puff (CALPUFF) is the model selected for air quality evaluation in this study. The CALPUFF model has been approved by the U.S. Environmental Protection Agency that it is suitable for regulatory use for long-range transport and on a case-by-case basis for shortrange applications involving complex and non-steady-state flows such as in complex terrain, coastal situations, and where flow stagnation and flow reversals are important (Environmental Protection Agency (US EPA), 2003). The topography of north of Thailand is the complex terrain with mountains, forests and agricultural areas. The study area size is large with the area of about 425,000 km². This model simulates chemical transformation and removal processes of pollutants along a transportation route. The processes of the model's systems include CALifornia METeorological model (CALMET), pollutant dispersion program named CALPUFF, and a postprocessing program named CALPOST (see Figure 3.1). The pollutant simulated in this study is PM₁₀ from vegetation fires in the north of Thailand and neighbouring countries. PM₁₀ is focused on in this study because it exceeds the daily Thai standard every year. Moreover, PM₁₀ measurements in Thailand are more common than PM_{2.5} measurements (Thai Meteorological Department, 2016)Pollution Control department, 2012), and PM₁₀ does include the contribution from PM_{2.5}. In terms of transboundary pollution, it will be the PM_{2.5} that contributes most to this, so PM₁₀ modelling may underestimate this component. In addition, PM₁₀ also contains more natural particles than man-made. The air quality model is applied for simulating the pollutant concentrations in the study area from actual fires events and scenarios of fires controlled in target areas.

In this chapter, the meteorological data and the amounts of emissions from each land-use source will be fed to the models. Before starting air quality simulation, the models have to be validated for adjusting to minimize error and to demonstrate that they are working properly. Results from the model simulation can determine the processes that influence fires emissions affecting the ambient air quality of the north of Thailand to exceed the Thai air quality standards. The various scenarios of vegetation fires controlled will be simulated to find the optimal pollution reduction targets from selected areas. This can identify the main pollutant sources and the numbers of areas needed to control atmospheric emissions from fires in order to meet the air

quality standards. The policy options will focus on area sources and area size of the scenario that meet the air quality standards.

3.1 Dispersion models for air pollution

The air quality model will be applied for evaluating air pollutants concentrations generated from vegetation fires that may affect people's health. The area size, meteorological and terrain conditions are needed to be considered in order to determine the appropriate model for the study. There are three main types of air quality models to simulate the dispersion of the pollutants: Gaussian, Lagrangian and Eulerian. The Gaussian model computes the dispersion of air pollutants by a Gaussian distribution of the plume in the vertical and horizontal directions under steady-state conditions (Scire et al., 2002). This model can process for results almost immediately on common computers, but it is not capable to apply for continental scale dispersion. The examples of Gaussian models are CTDM (Complex Terrain Dispersion Model), AERMOD (American Meteorological Society (AMS)/EPA Regulatory Model), and British ADMS (Atmospheric Dispersion Modelling System) (Leelőssy et al., 2014). For the Lagrangian model, it processes the air dispersion based on the concept that pollutant particles in the atmosphere move along trajectories determined by the wind field, the buoyancy and the turbulence effects (Scire et al., 2002). Finally, the Eulerian model, it is similar to a Lagrangian model, but the Eulerian model uses a fixed grid as a frame of the reference while Lagrangian model uses a moving frame of reference (Oliveri Conti et al., 2017). The details of Lagrangian and Eulerian dispersion model were shown in Table 3.1.

To select models for the study area, European Environment Agency (2011) has suggested that Gaussian and non-Gaussian parameterised models can processes for scale sizes from 1 m to 300 km. For the regional and continental scale, Eulerian chemical transport and Lagrangian chemical models can process for the area size of 25 to 10,000 km. The models with the capacity for the large-scale processing are considered for this study. The large scales of the study area with the diameter at around 735 km would be processed for air pollution concentrations. The considered models are listed in Table 3.1 with details of types, meteorological models and operation systems for the atmospheric study of large scale areas.

Table 3.1 The details including types, meteorological models and operation systems for dispersion models on the atmospheric study of large scale areas

Air quality Models	Details	Meteorological models	Operating system
CALPUFF	- CALPUFF is a non-steady-state Lagrangian Gaussian puff model with chemical removal, wet and dry deposition, building downwash, and complex terrain effects (Scire et al., 2000). - It is preferred model by US EPA for long-range transport of emissions from 50 to several hundred kilometers (US EPA, 2017) - It is free software - It is not suitable for very large distances (>1,000 km)	Meteorological models such as CALMET, WRF, MM5 and RAMS	Windows
CAMx	 CAMx (Comprehensive Air Quality Model with extensions) is an Eulerian photochemical dispersion model that assess tropospheric air pollution (Ramboll Environ, 2017) It can simulate primarily pollutants and secondarily formed pollutants such as O₃ and PM_{2.5} (US EPA, 2017) It can be used for over area scales ranging from neighbourhoods to continents (Ramboll Environ, 2017). It is an open-source system and a free software 	Meteorological models such as WRF, MM5 and RAMS	Linux/ Unix
WRF-Chem	 - WRF-Chem (Weather Research & Forecasting Model with Chemistry) is the Eulerian model of the chemistry and meteorology over a wide range of scales. - It can simulate primarily pollutants and secondarily formed pollutants such as O₃ and PM_{2.5} (US EPA, 2017) in an urban and regional context (Leelőssy et al., 2017). - It is free software 	Weather prediction models: WRF	Linux/ Unix
HYSPLIT	- HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) is Lagrangian dispersion models, which can process simple air parcel trajectories, complex transport, chemical transformation, and deposition simulations. - It can simulate primarily pollutants and secondarily formed pollutants and forecast the radioactive material, volcanic ash, wildfire smoke, and hazardous chemicals (National Oceanic and Atmospheric Administration, 2017). - It is free software	Meteorological data from National Oceanic and Atmospheric Administration (NOAA)	Windows/ Linux
CMAQ	 CMAQ (CommunityMulti-scale Air Quality) is Eulerian model, which can simulate various chemical and physical processes. (Leelőssy et al., 2014) It can simulate primarily pollutants and secondarily formed pollutants such as O₃ and PM_{2.5} (US EPA, 2017) CMAQ can be used for either urban or regional scale air quality modelling (Leelőssy et al., 2014) It is an open-source system and a free software 	Meteorological models such as WRF	Linux/ Unix

All of models in Table 3.1 are free programs for downloading, installing and computing the dispersion of air pollutants. HYSPLIT has been used in many studies to understand consequences of pollutants released and sources of regional pollution (Leelőssy et al., 2014). CMAQ and CAMx also have been applied to evaluate the regional air pollution problems and assess strategies for reducing regional air pollution issues. Moreover, these models have been used extensively to study on ozone and PM_{2.5} (Oliveri Conti et al., 2017, US EPA, 2017). WRF-Chem model has the advantages to integrate the meteorological, atmosphreric chemistry module and forecasting platforms for accessing air pollution dispersion (Oliveri Conti et al., 2017). However, this study has selected CALPUFF for the north of Thaialand with the reasons that it is suitable for the study area size, public health studies and easily operated by running on Windows operating system. The US EPA offers the CALPUFF system as a preferred model for environmental protection and public health studies. This model also has been used worldwide for scientific and regulatory purposes (Environmental Protection Agency (US EPA), 2003).

3.1.1 The CALPUFF model

The air pollutant concentrations as a result of forest fires of the north of Thailand were investigated by the air quality model, CALifornia Puff (CALPUFF). CALPUFF is a non-steady-state Lagrangian Gaussian puff model with chemical removal, wet and dry deposition, building downwash, and complex terrain effects. Lagrangian models are based on the concept that pollutant particles in the atmosphere move along trajectories determined by the wind field, the buoyancy and the turbulence effects. Gaussian models are based on a Gaussian distribution of the plume in the vertical and horizontal directions under steady-state conditions. The basic equation for the contribution of the pollutant at a receptor is (Scire et al., 2000):

$$C = \frac{Q}{2\pi\sigma_x\sigma_y} g \exp\left[-d_a^2/\left(2\sigma_x^2\right)\right] \exp\left[-d_c^2/\left(2\sigma_y^2\right)\right]$$

$$g = \frac{2}{(2\pi)^{1/2}\sigma_z} \sum_{n=-\infty}^{\infty} \exp\left[-(H_e + 2nh)^2/(2\sigma_z^2)\right]$$

Where,

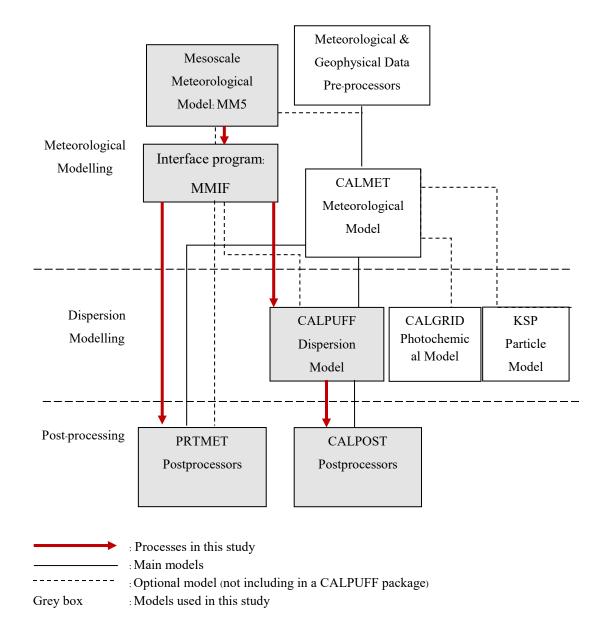
C is the ground-level concentration (g/m^3) ,

Q is the pollutant mass (g) in the puff,

 σ_X is the standard deviation (m) of the Gaussian distribution in the along-wind direction,

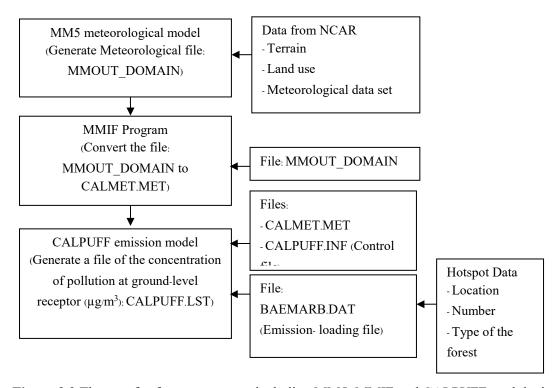
 σ_y is the standard deviation (m) of the Gaussian distribution in the cross-wind direction,

 σ_z is the standard deviation (m) of the Gaussian distribution in the vertical direction,


d_a is the distance (m) from the puff centre to the receptor in the along-wind direction,

d_c is the distance (m) from the puff centre to the receptor in the cross-wind direction,

- g is the vertical term (m) of the Gaussian equation,
- H is the effective height (m) above the ground of the puff centre, and
- h is the mixed-layer height (m).


The CALPUFF model was used to simulate various scenarios of forest fire emissions. It includes three main components: CALifornia METeorological model (CALMET), CALPUFF, and a post-processing program named CALPOST as shown in Figure 3.1. CALMET is a diagnostic meteorological model that produces three-dimensional wind fields. CALMET can be driven either by observations or by three-dimensional data from prognostic models (MM5, WRF, CSUMM etc.) or a combination of both. CALPOST is a post-processing program with options for the computation of time-averaged concentrations and deposition fluxes predicted by the CALPUFF model.

In the first part of running the CALPUFF model, a meteorological model is needed to generate meteorological data for the dispersion model (see Figure 3.1). There are two possible approaches, using raw data or a mesoscale meteorological model for generating the CALMET model file format. In this study, the meteorological file: CAMET. DAT generated by MM5 and MMIF is applied replacing the CALMAT.DAT file from the CALMET model. A meteorological model, Fifth-Generation Penn State/NCAR Mesoscale Model (known as MM5), was used for generating meteorological data including terrain, land use, roughness, wind speed, wind direction, mixing height, precipitation rate and temperature for meteorological modelling.

Figure 3.1 Overview of the main programs for running CALPUFF modelling system [adapted from Scire et al. (2000)]

The input data for running MM5; terrain, land use and meteorology, can be taken from the National Centre for Atmospheric Research (NCAR). However, an output file from the MM5 program had to be changed into compatible file (CALMET file format) for the dispersion model. The Mesoscale Model Interface Program (MMIF) was used to convert this file (see Figure 3.2). The meteorological data was used in the dispersion model to calculate the concentration of pollutants from forest fires at ground-level receptors. The CALPUFF dispersion model was applied for evaluating pollutant concentrations by simulating various scenarios of forest fires emissions. To read the output from the CALPUFF and MMIF models, postprocessors; CALPOST and PRTMET were used to read the output data.

Figure 3.2 The set of software programs including MM5, MMIF and CALPUFF, and the input data for programs processing.

3.2 Gathering data about vegetation fires

Details and numbers of forest fires are important for generating input data (emissions) to run the model. Various sensors installed on satellites can observe vegetation fire occurrences. Areas burned in the north of Thailand were estimated by using hotspot data from the Aqua and Terra satellites which had installed a Moderate Resolution Imaging Spectroradiometer (MODIS) (National Aeronautics and Space Administration (NASA), 2014, Department of National Parks Wildlife and Plant Conservation, 2012). The MODIS instrument provides high radiometric sensitivity in 36 spectral bands ranging in wavelength from 0.4 µm to 14.4 µm. Each spectral band is sensitive to the differences in temperature value and spatial resolution for observing clouds, land, aerosols, water vapour, ocean or fire. The MODIS fire products use sensors for 500 m resolution at 1.65 and 2.13µm band channels, and 1 km resolution at 3.96 and 11 µm band channels. For 1 km resolution, MODIS active fire products can detect flaming fires (~1,000 Kelvin, K) as small as 100 m² under ideal conditions with a 50% detection probability, or a 1,000–2,000 m² smouldering fire (~600K) (Giglio et al., 2003; Hawbaker et al., 2008; Kaufman et al., 1998).

The hotspot data was provided by the National Aeronautics and Space Administration (NASA) and the National Park, Wildlife and Plant Conservation Department of Thailand (DNP).

The DNP used the same dataset from NASA but audited it before distribution. This study used the data from both DNP and NASA for Thailand and neighbouring country areas. Hotspot data can be downloaded from the websites:

http://www.dnp.go.th/forestfire/hotspot/hotspotmap_Past.htm and https://earthdata.nasa.gov/data/near-real-time-data/firms/active-fire-data

3.3 The study periods

The number of hotspots in the north of Thailand provided by NASA from 2011 to 2012 indicated that the most frequent hotspots in Thailand occurred between February to April (see Figure 3.3). In this study, 26 February to 1 March 2012 was chosen to be a study period because higher concentrations of PM_{10} caused by forest fires occurred during this period (see Figure 3.3). Daily PM_{10} concentrations were likely higher than the national ambient standard of Thailand of 120 $\mu g/m^3$ from February to March considering the monthly data in Figure 3.3. In a term of air quality management, after simulating the optimum option for solving the problem in the peak period, it can assume that PM_{10} concentrations in rest periods were less than simulating results and met the air quality standard after fire controlled throughout the year. Moreover, the data from air quality monitoring stations were more complete than in previous years.

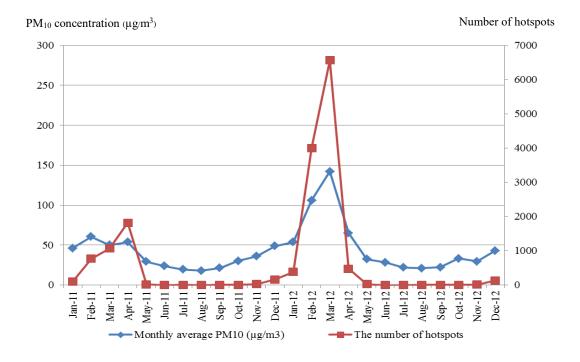


Figure 3.3 The number of hotspots and the monthly average concentration of PM_{10} in the north of Thailand during January 2011 until December 2012 analysed from the monitored PM_{10} data

by Thai Meteorological Department (2016) and the hotspot data by National Aeronautics and Space Administration (NASA) (2014).

The hotspot data from DNP was analysed for the location of fires, vegetation types and landuse by using a geographic information system (GIS). The GIS database was prepared by the Asian Institute of Technology (AIT), Thailand, with the database collected by the Royal Forest Department of Thailand. Previous studies showed that the major cause of forest fires in Thailand (about 88%) was human activities, with around 12% being unidentified causes. Gathering forest products was a major cause of fire at 37% of all causes, followed by hunting, burning agricultural residue, pasture, tourist's activities, conflict between people and government, and neglect as shown in Figure 1.3 of Chapter 1 (Department of National Parks Wildlife and Plant Conservation, 2012). Human activities, which may be a cause of fires events in the National Reserved Forest and National Park, were evaluated by considering the distance between forest fire events and the agricultural area in the forest. The GIS software named ArcGIS 10.1 is used for calculating distance between every hotspots and agricultural area by the "Analysis toolbox" function in the program.

Emissions from vegetation burning consist of many pollutants. However, only PM₁₀ exceeded the ambient air quality standard of Thailand and WHO guidelines, which can affect people's health both short-term and long-term exposures (WHO, 2006). For other pollutants, the maximum monitored and mean values of SO₂ and NO₂ were not exceeded the standard of Thailand (see Figure 3.4). Tools to simulate the problem are needed to find the solution. As result, PM₁₀was evaluated by software programs of mathematical models; MM5 and CALPUFF.

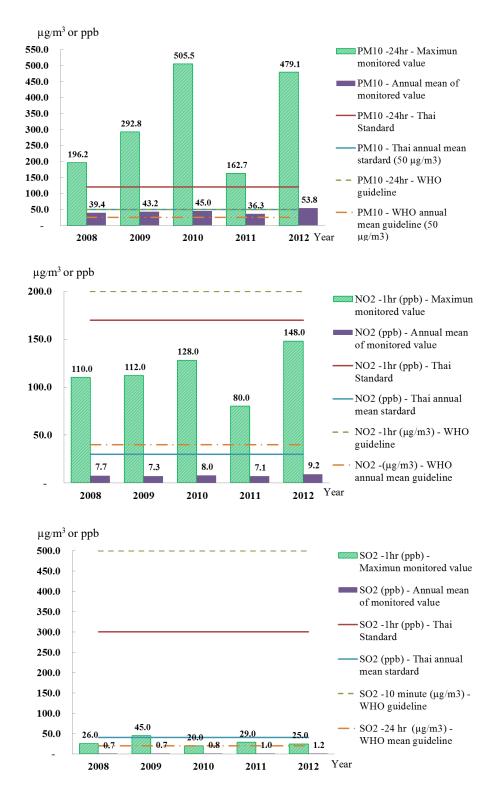


Figure 3.4 The maximum and average concentration values of PM₁₀, SO₂ and NO₂ monitored by Thai Meteorological Department (2016) during 2008 to 2012 in the north of Thailand compared with the ambient air quality standard of Thailand and WHO guidelines (WHO, 2006)

3.4 Software selected for the meteorology evaluation

3.4.1 MM5 meteorological model

The Fifth-Generation Penn State/NCAR Mesoscale Model (MM5) software is mostly written in FORTRAN, and was developed at Penn State University and National Centre for Atmospheric Research (NCAR) as and a community mesoscale model with contributions from users worldwide. MM5 is the open source (or free software). Version 3 of MM5 was used in this study and it can be downloaded from the website:

http://www.mmm.ucar.edu/mm5/mm5v3/wherev3ftp.html. It executable runs on a Linux PC requiring the FORTRAN compiler to run and the Intel complier (ifort) uncommercial version was used. A scope of domain with 27 km grid resolution was set for MM5 modelling (see Figure 3.5). This covered the area of 3,321 km x 3,348 km including Thailand and neighbouring countries, and the centre of domain was the north of Thailand.

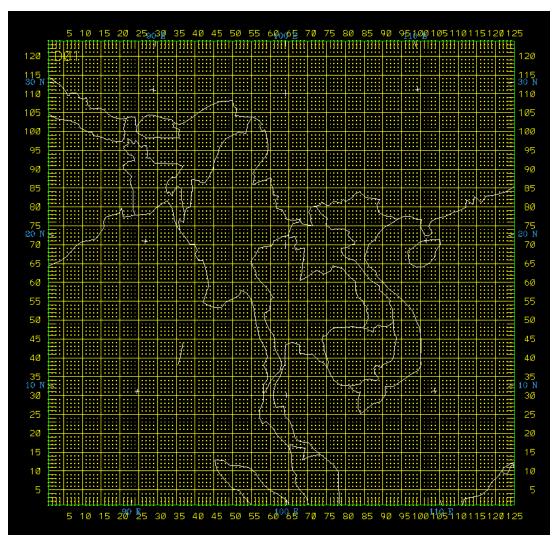


Figure 3.5 The area of the domain in MM5 covered Thailand and neighbouring countries.

The MM5 model system consists of several programs. This study applied TERRAIN, REGRID, INTERPF and MM5 programs to create a metrological file for the CALPUFF as shown in Figure 3.6. There are two main sets of data for running models. A data set of terrain elevation, landuse, vegetation type, and soil data prepared by the National Centre for Atmospheric Research (NCAR) were used in TERRAIN program. These data were downloaded from the website: ftp://ftp.ucar.edu/mesouser/MM5V3/TERRAIN_DATA/.

The set of meteorological data including precipitation, temperature, relative humidity and wind supported by NCAR were applied in the REGRID Program. These meteorological data were prepared for every six hours during 1999 to present. The website that supplies these data is http://rda.ucar.edu/datasets/ds083.2/.

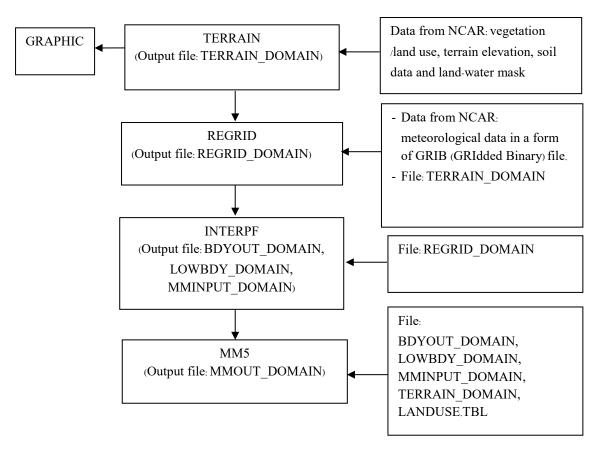


Figure 3.6 The system flow chart of MM5 programs and data sets that were used in this study.

The TERRAIN program analyses the data (vegetation/land use, terrain elevation, soil data and land-water area) onto the chosen domain area. The output from this program is the mesoscale grid (see Figure 3.6) of the input data in MM5 format. The summary setting for this program is shown in Table 3.2.

Table 3.2 Description of parameter setting for TERRAIN program.

Parameter	TERRAIN program	Description
	setting	
Central Latitude and Longitude	PHIC = 18.1,	The centre of the domain (the
	XLONC = 99.7	north of Thailand)
Number of domains to process	MAXNES = 1	Building one domain to process
Grid dimension in Y direction	NESTIX = 124	Number of grids = 124 in Y
		direction
Grid dimension in X direction	NESTJX = 125	Number of grids = 125 in X
		direction
Grid distance	DIS = 27	Dimension of each grid = 27 km
Input data resolution	NTYPE = 2	2: ~56 km resolution of global
		terrain and land use to input

The REGRID program reads meteorological data in a form of a GRIB (GRIdded Binary) file. The fields of temperature, horizontal wind components, relative humidity, and height of pressure levels, sea-level pressure, sea-surface temperature, and snow-cover data were interpolated to the grid and map projection as defined by the MM5 pre-processor program TERRAIN. The vertical interpolation of meteorological data is processed by the INTERPF program by generating an input file on sigma levels which are vertical coordinates showing the ratio of the pressure at a coordinate point in the atmosphere and the actual surface pressure of the earth. The output data contains the time-dependent 3D and 2D fields, such as wind, temperature, moisture, and pressure, the lateral and lower boundaries, and surface air temperature. The summary settings of REGRID and INTERPF are shown in Table 3.3.

Table 3.3 Description of parameter setting for REGRID and INTERPF program.

Parameter	REGRID and INTERPF setting	Description
The starting date	START_YEAR_MONTH_DAY_	The starting time which the time
	HOUR = 2012, 02, 25, 00	zone is GMT+00
The ending date	END_YEAR_MONTH_DAY_H	The ending time which the time
	OUR = 2012, 03, 01, 00	zone is GMT+00
Time interval	INTERVAL = 21600	Time interval in seconds. (GRIB
		files contain the meteorological
		data for every six hours, 21,600
		sec)
Sigma levels	24 sigma levels	Coarse sigma level setting.

Finally, the MM5 program applied the output files: BDYOUT_DOMAIN, LOWBDY_DOMAIN, MMINPUT_DOMAIN, TERRAIN_DOMAIN, which were generated from the INTERPF and TERRAIN programs to predict the weather. For each time period, the outputs of MM5 including U, V, W-wind (m/s), temperature (K), water vapour mixing ratio (kg/kg), cloud water mixing ratio (kg/kg), rain water mixing ratio (kg/kg), turbulent kinetic energy (J/kg), atmospheric radiation tendency (K/day), ground temperature (K), rainfall (cm), surface sensible heat flux (W/m²), surface latent heat flux (W/m²), frictional velocity (m/s), shortwave and longwave radiation (W/m²), surface moisture availability, soil temperature in a few layers (K), mixing ratio (kg/kg), terrain elevation (m), land-use category, sea surface temperature (K). Wind components are usually expressed in terms of U, V, and W. The U and V are defined as the horizontal wind speed (along and across wind) and W was the vertical component of the wind speed. Parameters to consider when setting up the MM5 program are summarized inTable 3.4.

Table 3.4 Description of parameter setting for MM5 program.

Parameter	MM5 setting	Description
Forecast length in minutes	TIMAX= 7200	Running period time starting
		25/02/2012 00.00 am to
		01/03/2012 00.00 am
The frequency of output	TAPFRQ = 60	Output results for every hour
model results (in minutes)		
Soil moisture initialization	ISMRD = 0	= 0, use moisture available from
		LANDUSE.TBL

3.4.2 The MMIF Program

The output file from MM5 was fed to the Mesoscale Model Interface program (MMIF) for converting prognostic meteorological model output fields to the parameters and formats required for direct input into dispersion modes, CALPUFF. The MMIF program was developed by the ENVIRON International Corporation. This study used the MMIF version 3.0, meeting the request of EPA to support multiple outputs from a single run and bug fixes. The program processes data directly from the MM5 (file: MMOUT_DOMAIN), into a CALPUFF-ready form (file: CALMET.MET) without additional modification or additional performance evaluation. However, the time zone of the study area (GMT +07) was set in this program because the time zone of output file from MM5 was GMT +00.

3.5 Source and emission data inputs

There are three main groups of input files for running CALPUFF, including hourly meteorological data (CALMET.MET), CALPUFF control file (CALPUFF.INP) and optional files. Only CALMET. MET and CALPUFF. INP can complete running CALPUFF model. Emissions that are emitted constantly can be set in the CALPUFF. INF file. However, this study used an optional file, time-varying area source emission (BAEMARB.DAT) for generating the input of forest fire emissions.

3.5.1 The forest fire emissions calculation

The emissions (E) of each vegetative type can be estimated using the equation from Seiler and Crutzen (1980) as shown in section 2.4.1 of Chapter 2. The burned area, fuel load or biomass density, combustion completeness or burning efficiency and emission factor will be used for estimating each hotspot and total area burned.

3.5.2 The estimation of the area burned

The area burned in the north of Thailand will be estimated by using the hotspot data from the satellite, the MODIS Active Fire Product. The detection probability of active fires depends on a number of factors, including fire temperature and satellite viewing angle. MODIS active fires at 1 km resolution can detect flaming fires (~1000 Kelvin, K) as small as 100 m² under ideal conditions with a 50% detection probability, or a 1,000–2,000 m² smouldering fire (~600K) (Giglio et al., 2003; Hawbaker et al., 2008; Kaufman et al., 1998). This study used hotspot data from the NASA and National Park, Wildlife and Plant Conservation Department of Thailand (DNP). The DNP has validated the numbers of hotspots with actual fires events in 2013. Its accuracy was 97.50% (National Park Wildlife and Plant Conservation Department of Thailand, 2014b). The approximate area burned of each hotspot was calculated by using the average value of the forest fire frequency and the total area burned in year 2012 from (Jongudomsuk et al., 2015). There were 2,686 fire occurrences in the National parks in the north of Thailand that destroyed 34.24 km². Therefore, as an averaged approximation it can be said that one fire event can burn forest areas of around 12,750 m² (or 1.275 ha).

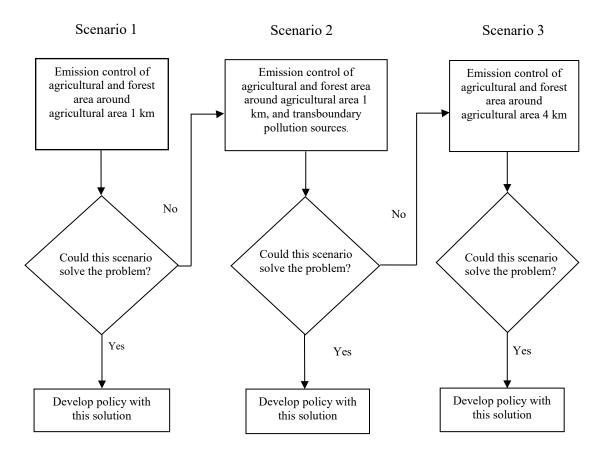
3.5.3 The use of the fuel load, combustion completeness and emission factor

Six parameters (NO, NO_x, NO₂, SO₂, O₃ and PM₁₀) were recorded by an air quality monitoring station in the north of Thailand. This study will focus on PM₁₀ because PM₁₀ was the main air pollution problem and NO was an important pollutant caused by combustion. In the part of the fuel load, combustion completeness and emission factor, there were studies classifying vegetation type in the different ways. However, grouping the type of vegetation was processed

Chapter 3

for calculating fire emissions as shown in Table 3.5. This study used the maximum range of $PM_{2.5}$ value in Table 3.5 and the ratio of 0.5 between $PM_{2.5}$ and PM_{10} , which is found in developing country to estimating PM_{10} values (WHO, 2006). Moreover, studies with the maximum values of combustion completeness and fuel load as shown in Table 2.3 and Table 2.5 of Chapter 2 are selected for running models. These selections are results from model calibration part in section 3.7.1. The use of the minimum range value of PM_{10} , combustion completeness and fuel load values have influenced simulated values much less than observed values.

Table 3.5 The fuel load, combustion completeness and emission factors that were used for calculating forest fire emissions.


							EF	(Emission I	Factor) (g/kg	dry matter)					Combustion Completeness	Fuel Load
				CO			NOx			SO_2			PM_{10}			p	
	Forest Type		Andreae and Merlet (2001)	Akagi et al. (2011	Used in this study	Andreae and Merlet (2001)	Akagi et al. (2011)	Used in this study	Andreae and Merlet (2001)	Akagi et al. (2011)	Used in this study	PM _{2.5} Andreae and Merlet (2001)	PM _{2.5} Akagi et al. (2011)	Used PM _{2.5} to estimate PM ₁₀ in this study	Used PM_{10} in his study from $PM_{2.5}$ and PM_{10} ratio = 0.5	IPCC (2003) &Michel et al. (2005) & Heil (2007)	Michel et al. (2005)& Wiedinmyer et al (2011) (kg/m²)
Pine Forest	Evergreen needle leaf forest	Boreal Forest		127 ± 45	172		0.9 ± 0.69	1.59		0.52 ± 0.15	0.67		15.3 ± 5.9	21.2	42.4	0.34	36.70
Hill Evergreen Forest	Evergreen broadleaf forest	Tropical Forest	104 ± 20		124	1.6 ± 0.7		2.3	0.57 ± 0.23		0.80	9.1 ± 3.5		12.6	35.2	0.39	27.97
Tropical Evergreen Forest	Evergreen broadleaf forest	Tropical Forest	104 ± 20		124	1.6 ± 0.7		2.3	0.57 ± 0.23		0.80	9.1 ± 3.5		12.6	35.2	0.39	27.97
Dry Evergreen Forest	Evergreen broadleaf forest	Tropical Forest	104 ± 20		124	1.6 ± 0.7		2.3	$\begin{array}{c} 0.57 \pm \\ 0.23 \end{array}$		0.80	9.1 ± 3.5		12.6	35.2	0.55	27.97
Dry Dipterocarp Forest	Deciduous broadleaf forest	Extratropical Forest	107 ± 37		137	3.0 ± 1.4		4.4	1		1	13.0 ± 7.0		20	40.0	0.55	27.97
Mixed Deciduous Forest	Mixed forest	Extratropical Forest	107 ± 37		137	3.0 ± 1.4		4.4	1		1	13.0 ± 7.0		20	40.0	0.55	27.97
Plantation	Mixed forest	Extratropical Forest	107 ± 37		137	3.0 ± 1.4		4.4	1		1	13.0 ± 7.0		20	40.0	0.55	27.97
Eucalyptus Plantation	Mixed forest	Extratropical Forest	107 ± 37		137	3.0 ± 1.4		4.4	1		1	13.0 ± 7.0		20	40.0	0.63	23.35
Bamboo Forest	Mixed forest	Extratropical Forest	107 ± 37		137	3.0 ± 1.4		4.4	1		1	13.0 ± 7.0		20	40.0	0.250	23.35
Savannah and Grassland	Wooded grassland	Savanna and Grassland	65 ± 20		85	3.9 ± 2.4		6.3	$\begin{array}{c} 0.35 \pm \\ 0.16 \end{array}$		0.51	5.4 ± 1.5		6.9	13.8	0.55	11.01
Secondary Forest	Mixed forest	Savanna and Grassland	65 ± 20		85	3.9 ± 2.4		6.3	0.35 ± 0.16		0.51	5.4 ± 1.5		6.9	13.8	0.55	22.25
Old Clearing, Encroachment and active Shifting Cultivation	Wooded grassland	Savanna and Grassland	65 ± 20		85	3.9 ± 2.4		6.3	0.35 ± 0.16		0.51	5.4 ± 1.5		6.9	13.8	0.74	3.30
Agricultural Area	Cropland	Crop Residue	92 ± 84		176		2.5 ± 1.0	3.5	0.4	$\begin{array}{c} 0.32 \pm \\ 0.14 \end{array}$	0.4	3.9	6.26 ± 2.36	8.62	17.24	0.93	5.10

3.6 Model validation

A file of wind speed generated by MM5 and MMIF was validated against surface observations. These files were extracted using the PRTMET program. Results were shown in the pattern of wind speeds and their location coordination. The wind speeds with the same location of the observation station were collected for validating the model. Results from the CALPUFF were extracted by the CALPOST program and shown with the same pattern of the PRTMET program. Both simulated and observed data from meteorological and air quality models were compared using the correlation and bias/error statistics. Details are given in Section 3.7.

3.7 Simulation of fire scenarios

After the results from the air quality model were validated, scenarios to find the optimal pollution reductions from forest fires by reducing biomass-burning emissions from each type of land use were simulated as shown in Figure 3.7. The simulation focused on controlling emissions from fires that occurred near agricultural areas because previous studies showed that most of the fires were caused by human activities. A study by Dontree et al. (2011) showed that the most fires in Chiang Mai province between 2000 and 2010 occurred near villages within 1 km and were in the area that agricultural areas expanded to the forests, and 89.4% of fire events were located less than 4 km from villages. The fire locations near agricultural areas within 1 km were selected for control in terms of fires from agricultural activities and burning for expanding agricultural areas to forest areas. The fire locations near agricultural areas 1-4 km were selected in terms of activities for gathering forest goods. Transboundary haze pollution was the option used to control fire emissions with the local fire controlled. However, the local fire controlled is the main option of the fire policy in a term of the national procedure that can be achieved by Thai people.

Figure 3.7 Outline of the simulation scenarios by focusing on fires caused by humans as the most significant for the policy developing.

3.8 Results of Air Quality Evaluation

The results from the meteorological and air quality models are presented and discussed in this chapter. The validations of the model results were processed at the first step to check the accuracy of the model by comparing predicted results with the real data from observation stations. After that, simulation was processed by simulating various scenarios (see Figure 3.7) of concentrations after reducing the emission from the target area.

3.8.1 Model validation

The validation is used to adjust the model to minimum errors. Simulation results of the meteorological data from the MM5 and the pollution concentration from the CALPUFF were validated by comparing with the observation data from the Pollution Control Department's monitoring stations in seven provinces: Chiang Mai, Lamphun, Lampang, Mae Hong Son, Phayao, Phrae and Nan. The locations of the stations are shown in Figure 3.8.

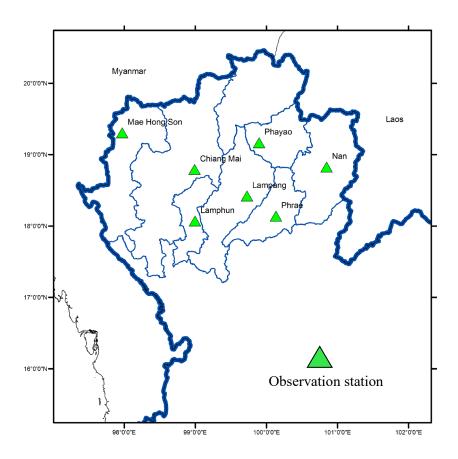
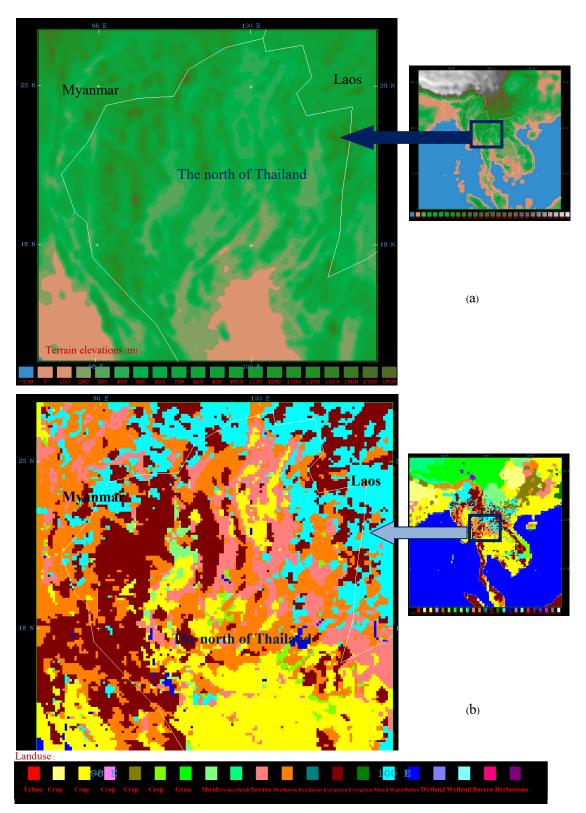


Figure 3.8 The location of observation stations in the north of Thailand for model validations

Evaluating performance of models can be assessed by using statistics. There are statistical approaches to compare model predictions to observation data. The coefficient of determination (R^2), normalised mean bias (NMB), normalised mean error (NME), mean normalized bias (MNB), mean normalized absolute error (MNAE), and root mean square error (RMSE) were used to evaluate between model simulations (M) with observations (O). An acceptable value of model performance for NMB should lie within the range between -0.2 and +0.2 (Derwent et al., 2010), for MNB and MNAE were ± 0.05 -0.15 and 0.35 respectively (Vivanco et al., 2009). Relative measures including NMB, MNB, MNAE and NME are particularly useful when model performance for one pollutant is compared with that for another pollutant for which concentrations are generally quite different. The equations for these statistics are shown in Table 3.6.


Table 3.6 The statistics for evaluating performance of models

Metrics	Equation	Reference
Coefficient of determination (R ²)	$ \frac{\sum_{i=1}^{N} (M_{i} - \overline{M})(O_{i} - \overline{O})}{\sqrt{\sum_{i=1}^{N} (M_{i} - \overline{M})^{2} \sum_{i=1}^{N} (O_{i} - \overline{O})^{2}}} $	Microsoft Corporation (2016) and Yu et al. (2006)
Mean normalized bias (MNB)	$\frac{1}{N} \sum_{i=1}^{N} \left(\frac{M_i - O_i}{O_i} \right)$	Yu et al. (2006)
Mean normalized absolute error (MNAE)	$\frac{1}{N} \sum_{i=1}^{N} \left(\frac{ M_i - O_i }{O_i} \right)$	Yu et al. (2006)
Normalised mean bias (NMB)	$\frac{\sum\limits_{i=1}^{N}\left(\mathbf{M_{i}}-\mathbf{O_{i}}\right)}{\sum\limits_{i=1}^{N}\mathbf{O_{i}}}$	Yu et al. (2006)
Normalised mean error (NME) or Normalized mean absolute error (NMAE)	$\frac{\sum\limits_{i=1}^{N}\left(\left \mathbf{M_{i}}-\mathbf{O_{i}}\right \right)}{\sum\limits_{i=1}^{N}\mathbf{O_{i}}}$	Yu et al. (2006)
Root mean square error (RMSE)	$\sqrt{\frac{1}{N}} \sum_{i=1}^{N} (O_i - M_i)^2$	Yu et al. (2006)

M = Modelled value, O = Observed value, N = pairs of modelled and observed values.

3.8.2 The results of the MM5 Model

The simulated area was about 3,078 x 3,240 km² with 27 km resolution. This area covers Thailand and neighbouring countries; Myanmar, Laos, Cambodia, China and Vietnam. This model provided the input data including terrain elevation, land use and meteorological data for the air quality model. The graphic outputs from the TERRAIN program of the MM5 model are shown in Figure 3.9. Thailand was in the South-East Asian peninsula closed to the Gulf of Thailand and the Andaman Sea in the central and the south part of Thailand. In the north of Thailand part, the terrain elevation is more than 300 meters above sea level. There are a number of valleys formed by mountains that were parallel from north to south direction and the type of land use is mostly the forest.

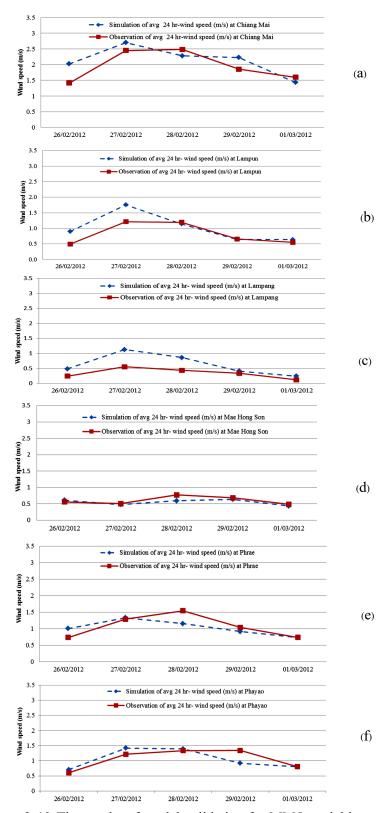


Figure 3.9 The terrain elevations (a) and land use types (b) generated by TERRAIN program in the MM5 model

The meteorological input files from NCAR were fed to the MM5 model and were processed with the file of the land use and the terrain elevation to simulate the metrological data for study area. The output file from the MM5/MMIF was translated by the PRTMET program to report in a form of the meteorological data with its coordination. Simulation results of the meteorology were validated by compared to the observation data from the Pollution Control Department's monitoring stations in six provinces: Chiang Mai, Lamphun, Lampang, Mae Hong Son, Phrae and Phayao. The simulations started from 26 February to 1 March 2012. Wind speeds and statistics results are shown in Table 3.7 and Figure 3.10.

Table 3.7 Summary of the statistical results of coefficient of determination (R²), mean normalized bias (MNB), mean normalized absolute error (MNAE), normalised mean bias (NMB), normalised mean error (NME) or normalized mean absolute error (NMAE), and root mean square error (m/s) (RMSE) by comparing modelled and simulated wind speeds in the north of Thailand during 26 February to 1 March 2012.

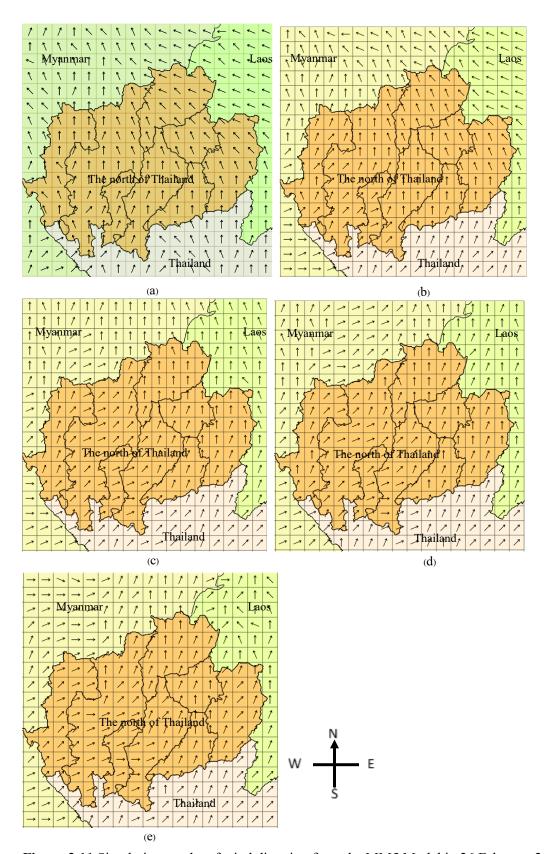
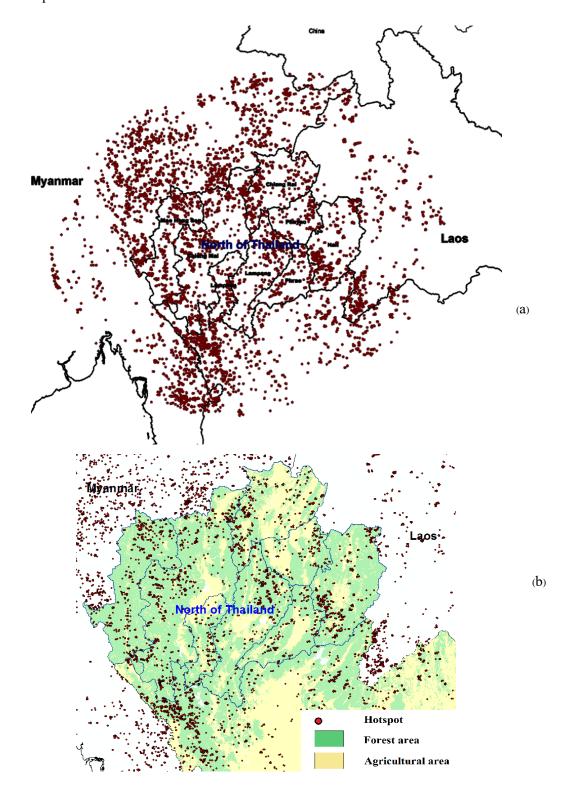

	\mathbb{R}^2	MNB	MNAE	NMB	NME	RMSE (m/s)
Chiang Mai	0.52	0.11	0.18	0.09	0.16	0.36
Lamphun	0.67	0.27	0.30	0.23	0.27	0.31
Lampang	0.89	0.85	0.85	0.85	0.85	0.34
Mae Hong son	0.56	-0.07	0.10	-0.08	0.11	0.09
Phrae	0.54	0.01	0.16	-0.04	0.16	0.22
Phayao	0.56	0.01	0.14	-0.01	0.15	0.21

Figure 3.10 The results of model validation for MM5 model between 26 February to 1 March 2012 in Chiang Mai (a), Lamphun (b), Lampang (c), Mae Hong Son (d), Phrae (e) and Phayao (f) provinces.

These validation results may be acceptable for model accuracy. The R² values of all station are more than 0.5. Most error and bias values compared with monitoring stations are in the guideline. However, the MNB, MNAE, NMB and values in Lampang provinces are more than the suggestion values. These errors may be caused by errors in monitoring because the observed values from another organization were different. The Thai Meteorological Department has shown the wind speeds during 26 February to 1 March 2012 in Lampang area as 0.58, 1.08, 1.08, 0.61 and 0.53 m/s. These values will change the R², MNB, MNAE, NMB and NME to 0.90, -0.24, 0.25, -0.19 and 0.22 which are closer to the acceptable values. Moreover, the resolution of model area (27 x 27 km or 729 km²) is an important factor that affects the accuracy of wind speed results because the observation data from only one station cannot represent for the wind speed of the large area of the model domain.

The wind directions from the MM5 of each day was analysed by the PRTMET program and plotted by the ArcMap program as shown in Figure 3.11. The most common of wind directions in the north of Thailand were the south and the southwest directions.


Figure 3.11 Simulation results of wind direction from the MM5 Model in 26 February 2012 (a), 27 February 2012 (b), 28 February 2012 (c), 29 February 2012 (d), and 1 March 2012 (e)

3.8.3 The distribution of fire events in the north of Thailand

Forest fire events in the north of Thailand and neighbouring countries are evaluated by a GIS program and air quality models. The results from these programs are shown in this chapter. In the first part, the GIS program is used to analyse the locations and land use types of each fire. Results from plotting hotspots in the geographic information system (GIS), ArcMap program, shows that there were 2,406 out of 4,320 hotspots in Thailand which existed in the north of Thailand; Chiang Mai, Chiang Rai, Nan, Phrae, Lampang, Lamphun, Phayao and Mae Hong Son, during 26 February to 1 March 2012. These hotspots appeared in the forest and agricultural area approximately 1,969 and 437 hotspots (see Figure 3.12). The details of hotspots are shown in Table 3.8. Mixed deciduous forests had the greatest frequency of fire events followed by agricultural areas for every province.

Table 3.8 The type of landuse of the hotspot in Chiang Mai, Chiang Rai, Nan, Phrae, Lampang, Lamphun, Phayao and Mae Hong Son provinces.

					The number	of hotspo	ot		
Landuse type	Chiang Mai	Mae Hong Son	Nan	Chiang Rai	Lampang	Phrae	Phayao	Lamphun	Total (%)
Mixed deciduous									
forest	321	287	260	207	197	77	58	74	1,481 (61.55)
Agricultural area	93	31	72	104	44	30	35	28	437 (18.16)
Hill evergreen forest	71	25	7	2	6	3	18	1	133 (5.53)
Dry evergreen forest	65	8	0	14	18	4	3	0	112 (4.66)
Dry dipterocarp forest	41	9	16	1	8	13	8	16	112 (4.66)
Old Clearing, Encroachment and active Shifting Cultivation	17	12	14	6	4	3	2	0	58 (2.41)
									, ,
Forest plantation	1	1	3	1	17	6	0	0	29 (1.21)
Pine forest	5	3	0	11	0	0	0	0	19 (0.79)
Secondary forest	0	1	0	6	5	3	1	0	16 (0.67)
Savannah and Grassland	4	0	0	0	0	0	3	1	8 (0.33)
Bamboo forest	0	0	0	0	0	0	1	0	1 (0.04)
Total	618	377	372	352	299	139	129	120	2,406 (100)

Figure 3.12 The locations of all hotspots in the north of Thailand and the surrounding area within 200 km (a), and hotspots in forest and agricultural areas of the north of Thailand (b) during 26^{th} February and 1^{st} March 2012

The distance between fire events and the agricultural areas were classified by the GIS program. The details of the distance are shown in Table 3.9. Results indicated that most fire occurrences were related to human activities in terms of the location of fires that occurred in the agricultural area with 437 hotspots and distance between fire events and the agricultural area were less than 1 km with 1,259 hotspots out of 2,406 hotspots. The simulation scenarios for fires controls in agricultural areas and nearby forests during 26 February to 1 March 2012 were set as follows.

- 1) The simulation of actual fires events, the 6,679 hotspots in the north of Thailand and the around area within 200 km (see Figure 3.11) including central Thailand, Myanmar, Laos and China were used for this simulation.
- 2) The simulation of scenario 1, fires in agricultural areas and forest areas range 1 km are controlled. The 437 and 1,259 hotspots of agricultural and forest area range 1 km were taken off from the input data. The input data in this scenario are from 4,983 hotspots in the north of Thailand (excepting agricultural areas and forest areas range 1 km) and the around area within 200 km including central Thailand, Myanmar, Laos and China.
- 3) The simulation of scenario 2, fires in neighbouring countries and agricultural areas and forest areas range 1 km are controlled. The 2,359, 437 and 1,259 hotspots of neighbouring countries, agricultural and forest area range 1 km were taken off from the input data. The input data in this scenario are from 2,624 hotspots in the north of Thailand (excepting agricultural areas and forest areas range 1 km) and central Thailand.
- 4) The simulation of scenario 3, fires in agricultural areas and forest areas range 4 km are controlled. The 437 and 1,872 hotspots of agricultural and forest area range 4 km were taken off from the input data. The input data in this scenario are from 2,415 hotspots in the north of Thailand (excepting agricultural areas and forest areas range 4 km) and the around area within 200 km including central Thailand, Myanmar, Laos and China.

Table 3.9 The distance between fire events and the agricultural area in Chiang Mai, Chiang Rai, Phrae, Mae Hong Son, Nan, Phayao, Lampang and Lamphun.

Distance between fire events and the agricultural area	Chiang Mai	Mae Hong Son	Nan	Chiang Rai	Lampang	Phrae	Phayao	Lamphun	Total (%)
In agricultural area	93	31	72	104	44	30	35	28	437 (18.16)
< 1 km	382	174	199	194	146	56	61	47	1,259 (52.33)
1-2 km	83	73	68	41	60	21	19	13	378 (15.71)
2-3 km	34	41	22	12	22	19	11	6	167 (6.94)
3-4 km	13	23	5	1	15	3	2	6	68 (2.83)
4-5 km	4	10	4	0	9	4	1	9	41 (1.70)
>5 km	9	25	2	0	3	6	0	11	56 (2.33)
Total	618	377	372	352	299	139	129	120	2,406 (100)

The emissions from each fire are evaluated by meteorological and air quality models. Before applying results from these models to simulate various scenarios, the model validations are needed to adjust model's accuracy.

3.8.4 Results from the CALPUFF model

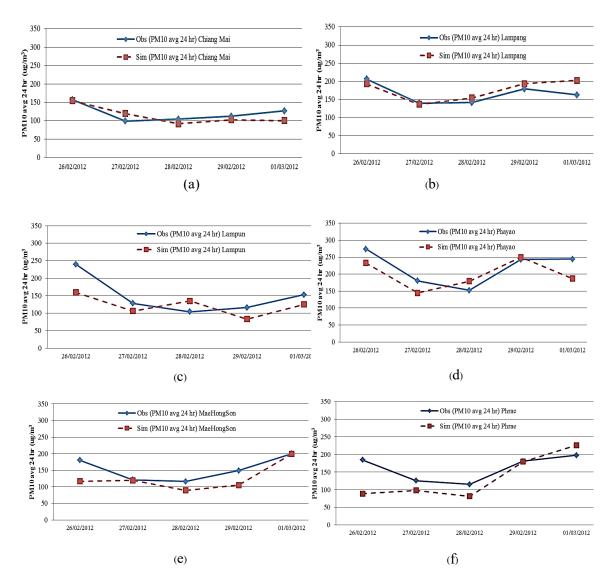

The input data of fire emissions were calculated from 6,679 hotspots from fires in the north of Thailand and the surrounding area within 200 km (see Figure 3.12) including Myanmar, Laos and China, from 26 February to 1 March 2012. PM₁₀ and NO results from simulating 6,679 hotspots are validated by comparing with six observation stations for PM₁₀ and four stations for NO and NO₂ are shown in Figure 3.13 and Figure 3.14.

Table 3.10 Statistic results of PM₁₀ validation between simulated and observed values in Chiang Mai, Lampang, Lamphun, Phayao, Mae Hong Son, and Phrae during 24 February to 1 March 2012.

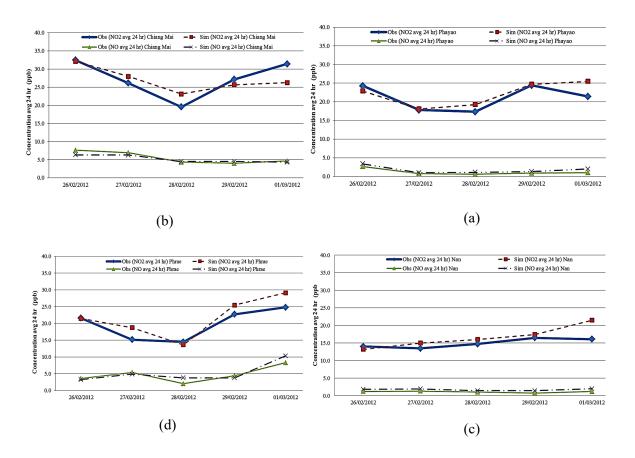
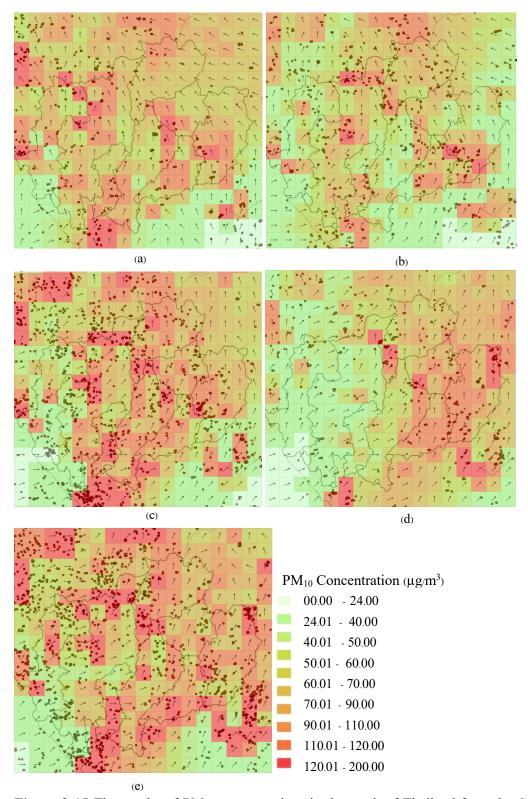

PM ₁₀	\mathbb{R}^2	MNB	MNAE	NMB	NME	RMSE (μg/m³)
Chiang Mai	0.55	-0.05	0.13	-0.05	0.12	16.66
Lampang Lamphun	0.55 0.50	0.06 -0.13	0.10 0.25	0.06 -0.18	0.10 0.26	20.75 44.23
Phayao	0.53	-0.13	0.16	-0.16	0.15	37.29
Mae Hong son	0.61	-0.18	0.18	-0.18	0.18	36.50
Phrae	0.51	-0.18	0.24	-0.16	0.23	48.83

Table 3.11 Statistic results of NO₂ and NO validation between simulated and observed values in Chiang Mai, Phayao, Phrae, and Nan during 24 February to 1 March 2012.

NO ₂	\mathbb{R}^2	MNB	MNAE	NMB	NME	RMSE (ppb)
Chiang Mai	0.59	0.004	0.10	-0.01	0.09	3.01
Phayao	0.66	0.05	0.08	0.05	0.07	2.10
Phrae	0.88	0.09	0.12	0.10	0.12	2.80
Nan	0.59	0.11	0.13	0.11	0.13	2.60
NO	\mathbb{R}^2	MNB	MNAE	NMB	NME	RMSE (ppb)
NO Chiang Mai	R ²	-0.04	MNAE 0.09	NMB -0.06	NME 0.10	RMSE (ppb)
_						
Chiang Mai	0.94	-0.04	0.09	-0.06	0.10	0.68
Chiang Mai Phayao	0.94 0.91	-0.04 0.58	0.09 0.58	-0.06 0.48	0.10 0.48	0.68 0.63

Figure 3.13 The results of PM₁₀ validation for the CALPUFF model between 26 February to 1 March 2012 in Chiang Mai (a), Lampang (b), Lamphun (c), Phayao (d), Mae Hong Son (e), and Phrae (f) provinces.

Figure 3.14 The results of NO and NO₂ validation for the CALPUFF model between 26 February to 1 March 2012 in Chiang Mai (a), Phayao (b), Phrae (c), and Nan (d) provinces.


The PM₁₀ and NO validation from the CALPUFF model could be acceptable with the R² values >0.5 for all station. This indicates that simulated results of PM₁₀ and NO from models are fitted with the observed data. The model can explain >50% of the variability of the response data around its mean. In addition, other statistics values of NMB, MNB and MNAE which are proposed to quantify the relative difference between modelled and observed values of PM₁₀, are met the suggestion values by Derwent et al. (2010) and Vivanco et al. (2009). This shows that model performance is acceptable. However, the NMB values of NO in Phayao and Nan provinces are more than the suggestion values of 0.2. The low concentrations of NO in Phayao and Nan tend to be a cause for calculating the NMB value.

In addition, the concentrations of the background pollution also are causes of the errors of the CALPUFF model. The main emissions for inputting into the model were from the forest fires while monitoring stations were located in the city, which also represent to pollutants from the traffic. Therefore, background concentrations were added in the model results. The background values for PM_{10} in the urban areas are about $50 \mu g/m^3$ estimated by using values of

Chapter 3

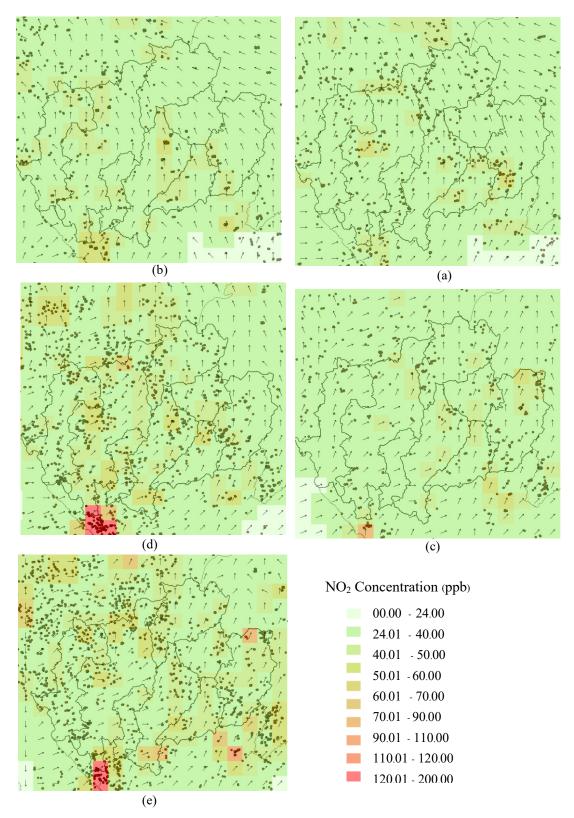
PM₁₀ in days without fire occurrences (~33-73 μg/m³) and 20 μg/m³ estimated by using values of PM₁₀ in days without fire occurrences (~10-33 μg/m³) in rural areas between February to April. For the background values of NO, background values for NO in the urban areas are 3.0 ppb (from 0.8-7.9 ppb) in Chiang Mai, 2.0 ppb (from 0.8-5.0 ppb) in Lampang, 0.5 ppb (from 0.2-0.9 ppb) in Phayao, 0.4 ppb (from 0.1-0.9 ppb) in Nan, 3.0 ppb (from 1.8-4.8 ppb) in Phrae, and 0.1 ppb for all rural area. However, the large range of the background concentration in each day may be a cause of the errors.

The PM_{10} concentrations in the north of Thailand and neighbouring countries from the CALPUFF model are shown in Figure 3.15. These values already added the background values. The results show that the wind direction is an important factor that influences the PM_{10} transporting from the sources to other areas. Considering the wind direction, this may indicate that in this study period, pollutants were transported by wind from the lower part of Thailand and some parts of Myanmar and Laos to the north of Thailand.

Figure 3.15 The results of PM₁₀ concentrations in the north of Thailand from the CALPUFF model in 26 February 2012 (a), 27 February 2012 (b), 28 February 2012 (c), 29 February 2012 (d), and 1 March 2012 (e)

Figure 3.16 Maps show provinces (below) and districts in each province (above) in the study area

From Figure 3.15, ranges of estimated PM_{10} of 5 days in the district scale ($\mu g/m^3$) of Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae were 31 to 312, 56 to 23, 30 to 305, 38 to 285, 27 to 240, 31 to 309, 43 to 275 and 34 to 294. The PM_{10} concentration >150 $\mu g/m^3$ were found in many districts for more than 3 days. The pollutant in their areas and nearby area and country caused this impact. Districts that had $PM_{10} > 150 \mu g/m^3$ because of fires in their area were:


- Wiang Haeng, Omkoi, Chiang Dao and Samoeng districts in Chiang Mai,
- Wiang Pa Pao and Mae Suai districts in Chiang Rai,
- Chae Hom and Ngao districts in Lampang,
- Wiang Sa district in Nan,
- Rong Kwan, Song, Long and Muang districts in Phrae,
- Pai, Muang, Khunyuam, Mae Sariang and Pang Ma Pha district in Mae Hong Son

In addition, PM_{10} from neighbouring country and nearby provinces also affected some districts to have $PM_{10}>150~\mu g/m^3$ including:

- Omkoi and Chiang Dao districts in Chiang Mai affected by PM₁₀ from neighbouring provinces,
- Pai, Muang, Khunyuam, Mae Sariang and Pang Ma Pha district in Mae Hong Son affected by PM₁₀ from neighbouring country,
- Muang Nan district in Nan affected by PM₁₀ from Weing Sa district,
- Muang Phayao district in Phayao affected by PM₁₀ from Ngao district in Lampang.

The average 5-days PM_{10} in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae were 102, 100, 111, 95, 86, 102, 97 and 119 μ g/m³. The ranges of estimated PM_{10} of 5 days in the province scale (μ g/m³) of Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae were 86 to 132, 82 to 122, 64 to 142, 54 to 144, 40 to 112, 69 to 150, 70 to 120 and 100 to 146. Most provinces had the PM_{10} exceeding Thai daily air quality standard at 120 μ g/m³.

For the results of NO_2 concentrations in the north of Thailand were in the standard (see Figure 3.17). The scenario for NO_2 mitigation may be not needed for the policy development. Then scenarios were simulated for only PM_{10} concentration.

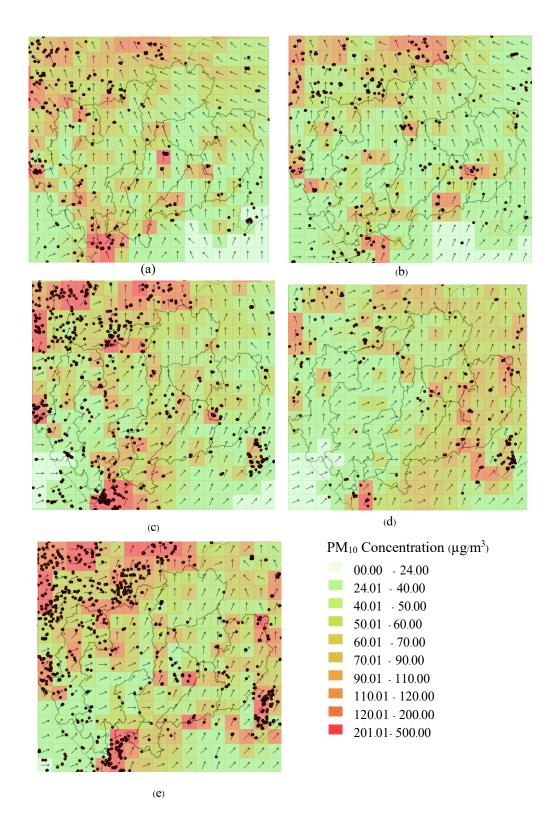
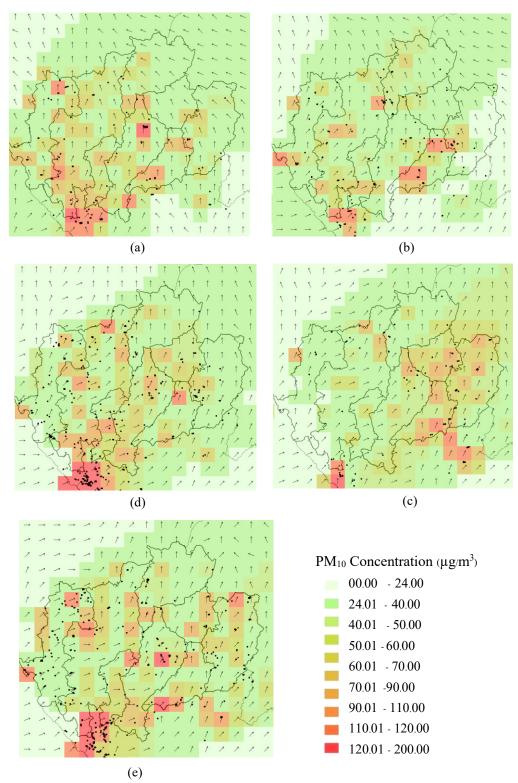


Figure 3.17 The results of NO₂ concentrations in the north of Thailand from the CALPUFF model in 26 February 2012 (a), 27 February 2012 (b), 28 February 2012 (c), 29 February 2012 (d), and 1 March 2012 (e)


3.8.5 Simulation of fire scenarios

The simulation focused on controlling emissions from fires occurring near agricultural areas within 1 km. The fire locations are selected in terms of fires from agricultural activities, burning for expanding agricultural areas to forest areas, and activities for gathering forest goods. From actual fires with 6,679 hotspots, the emissions from 2,460 hotspots in the agricultural area and forest area range 1 km were taken off from the input data for the simulation of air quality model. There were only emissions from 4,219 hotspots from forests that were located far from agricultural area more than 2 km feeding to the CALPUFF model.

The results of PM_{10} concentration after controlling fires in the agricultural area and forest area range 1 km in the north of Thailand are shown in Figure 3.18. Results showed that there were areas with PM_{10} concentration >120 µg/m³ at around 4.06% of all area in the north of Thailand. Therefore, the emissions from neighbouring countries also were removed from the simulation for find the scenario mitigating PM_{10} problems. The results of PM_{10} concentration after controlling fires in the agricultural area and forest area range 1 km in the north of Thailand and hotspots in the neighbouring countries are shown in Figure 3.19. This also showed the results same as the previous simulation with PM_{10} concentration >120 µg/m³ in many areas.

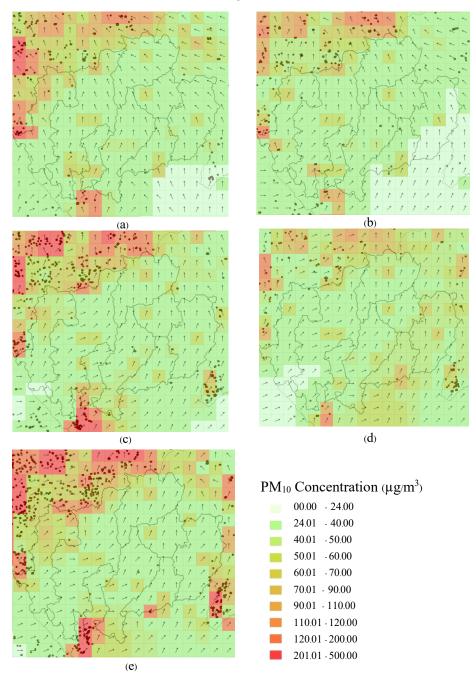

Figure 3.18 The results of PM₁₀ concentrations in the north of Thailand from the CALPUFF model by fires controlled in agricultural and forest area ranging 1 km in 26 February 2012 (a), 27 February 2012 (b), 28 February 2012 (c), 29 February 2012 (d), and 1 March 2012 (e)

Figure 3.19 The results of PM₁₀ concentrations in the north of Thailand from the CALPUFF model by fires controlled in agriculture and area around 1 km, and neighbouring countries in 26 February 2012 (a), 27 February 2012 (b), 28 February 2012 (c), 29 February 2012 (d), and 1 March 2012 (e)

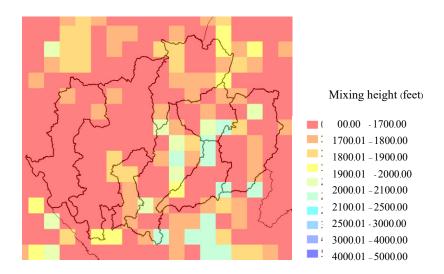
Chapter 3

The last simulation, the simulation focused on controlling emissions from fires occurred in agricultural area and near agricultural areas within 4 km. The fire locations are selected in terms of fires from agricultural activities, burning for expanding agricultural areas to forest areas, and activities for gathering forest goods. The remaining 3,238 hotspots after removal of ones within 4 km were fed to the CALPUFF model. The results of PM₁₀ concentration after controlling fires in the north of Thailand are shown in Figure 3.20.

Figure 3.20 The results of PM₁₀ concentrations in the north of Thailand after fires controlled in agricultural area and forest around agricultural area within 4 km in 26 February 2012 (a), 27 February 2012 (b), 28 February 2012 (c), 29 February 2012 (d), and 1 March 2012 (e)

The results of PM_{10} concentrations from various scenarios simulation are shown in Table 3.12. Before fire controlled, the high level of PM_{10} in some district areas which more than 200 $\mu g/m^3$ occurred in every province. Moreover, the averaged PM_{10} throughout the province exceeded the Thai daily standard at $120~\mu g/m^3$ occurred in six provinces. After fires controls both agricultural and forest around agricultural area 1 km, PM_{10} in most district areas have decreased until below $200~\mu g/m^3$. PM_{10} throughout the province meet the Thai daily standard at $120~\mu g/m^3$ in every province with the value 33 to $79~\mu g/m^3$. Lastly, fires controls both agricultural and forest around agricultural area 4 km, PM_{10} have decreased until below $120~\mu g/m^3$ in every district area except three districts which close to nearby provinces or neighbouring countries. PM_{10} throughout the province meet the Thai daily standard at $120~\mu g/m^3$ in every province with values ranging from 28 to $63~\mu g/m^3$.

To mitigate PM_{10} pollution from fires, above results show that after controlling fires in agricultural and surrounding area within 4 km in Thailand, most areas have PM_{10} concentration not more than 120 $\mu g/m^3$ excepting areas closed to nearby provinces or neighbouring countries and in Mae Hong Son, Lamphun and Phrae.


Table 3.12 Summary of PM₁₀ concentrations from three scenarios; 1) actual fires, 2) fires controls both agricultural and forest around agricultural area ranging 1 km, and 3) fire controls both agricultural and forest around agricultural area ranging 4 km areas, in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao, and Phrae during 26 February to 1 March 2012

	Chiang Mai	Chiang Rai	Mae Hong Son	Lampang	Lamphun	Nan	Phayao	Phrae
PM ₁₀ concentration from act	ual fires							
- Ranges of estimated PM_{10} during 5 days in the district scale $(\mu g/m^3)$	31 to 312	56 to 231	30 to 305	38 to 285	27 to 240	31 to 309	43 to 275	34 to 294
- Ranges of estimated PM_{10} during 5 days in the province scale $(\mu g/m^3)$	86 to 132	82 to 122	64 to 142	54 to 144	40 to 112	69 to 150	70 to 120	100 to 146
- Estimated average 5-days PM_{10} of the province area ($\mu g/m^3$)	102	100	111	95	86	102	97	119
PM ₁₀ concentration after fire	es controlled b	ooth agricultu	ral and forest	around agric	cultural area 1	km to be n	o fire areas	
- Ranges of estimated PM_{10} during 5 days in the district scale ($\mu g/m^3$),	26 to 138	30 to 109	26 to 141	27 to 188	27 to 234	27 to 143	30 to100	27 to214
- Ranges of estimated PM_{10} during 5 days in the province scale $(\mu g/m^3)$	40 to 63	43 to 59	40 to 64	47 to 79	43 to 74	33 to 75	36 to 54	37 to 73
- Estimated average 5-days PM_{10} of the province area ($\mu g/m^3$)	51	49	58	52	60	47	41	57
PM ₁₀ concentration after fire	s controlled b	oth agricultur	al and forest	around agric	ultural area 4	km to be no	fire areas	
- Ranges of estimated PM_{10} during 5 days in the district scale $(\mu g/m^3)$	26 to 96	30 to 72	26 to 170	27 to 59	27 to 152	26 to 68	27 to 59	26 to 129
- Ranges of estimated PM_{10} during 5 days in the province scale $(\mu g/m^3)$	35 to 43	36 to 43	32 to 41	35 to 63	32 to 57	28 to 46	31 to 41	33 to 50
- Estimated average 5-days PM_{10} of the province area ($\mu g/m^3$)	39	40	45	37	46	37	35	40

3.9 Conclusion and discussion

Scenarios for fire management indicated that open burning in the study heavily affected the PM₁₀ pollution. The PM₁₀ distribution in the most study areas can meet the Thai air-quality standard by controlling fires in agricultural and around area within 4 km. This is almost zero burning for the north of Thailand area. However, PM₁₀ concentrations still exceed the standard in some districts of Mae Hong Son, Lamphun and Phrae provinces (see Table 3.12). The haze from neighbouring countries and the central part of Thailand could transport to those districts, as shown in Figure 3.11. The south-west wind, generated from the ocean, distributed pollutants from Myanmar to Thailand while the southeast wind induced pollutants from Laos to the north of Thailand. Beside southwest and southeast winds, pollutants from the central part of Thailand also transported to the north part by the south wind. Therefore, fire controls in neighbouring countries and the central part of Thailand should be carried out with fire control in agricultural and around area within 4 km for managing air pollution in all districts to meet Thai air quality standard. For fire control in the agricultural area and forest area range of 1 km, this option can achieve the target of averaged PM₁₀ concentrations of whole province area meeting Thai air-quality standard. However, air pollution problems still occur in many districts for this option. This could be the first option when the limitation of the government budget is the first priority of the government. For the target of all districts achieving the air quality meeting standards, fire control in agricultural and surrounding area within 4 km and no transboundary haze from neighbouring countries may be the best option for the Thai government.

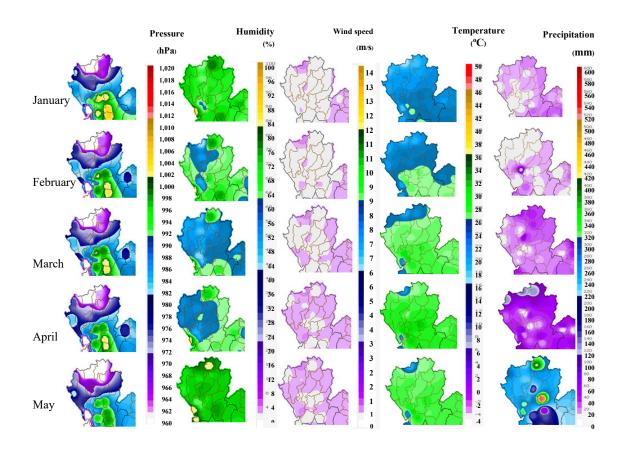

Fire management in the north of Thailand need more effort to achieve the target of good air quality for all area than other areas. This is because other factors also affected the PM₁₀ concentration (Yensong et al., 2016). The high PM₁₀ concentration not only was caused by the PM₁₀ released from fires sources, but also was a result from the meteorology as mixing height. Mixing height is the height which rapid vertical mixing occurs. High mixing heights are good for the dispersion of pollutants whereas low mixing heights tend to be stagnant and pollutants usually are trapped near the ground surface (Hardy et al., 2001). The mixing height at which may lead to smoke problem near the ground level is less than 1,700 feet or 500 meters (NWS and NOAA, 2015). With this weather condition, the prescribe burning (or controlled burning) are not allowed in many states in the United States. Results from models showed that most of the study area had the averaged values of mixing height during 26 February to 1 March 2012 less than 1,700 feet (see Figure 3.21). From Pollution Control Department (2017), the range of monthly-averaged mixing heights in February 2017were from 1,920 feet (in Chiang Mai) to 2,440 feet (in Phrae).

Figure 3.21 Averaged mixing height (feet) in the study area during 26 February 2012 to 1 March 2012

Kim Oanh and Leelasakultum (2011) showed the meteorology which influences pollutants become high concentration level in Chiang Mai is the weather with all condition of low pressure in the north and north-east of Thailand and some part of south China, dry weather, clear sky, low wind speed and low mixing height. This weather condition occurred at around 50% during February and April 2001 to 2008. In addition, the topography of many areas in the north of Thailand is surrounded by mountains (see Figure 3.9) which affect the pollutant ventilation. These values may lead to stable conditions that induce the pollutants to become trapped near the ground surface in the north of Thailand area. All weather conditions of low pressure, dry weather, and low wind speed also occurred in February to April 2012. Meteorological information from the Thai Meteorological Department (2016) (see Figure 3.22) showed that more than 95% of all wind speed values in the north of Thailand were less than 1 m/s. The pressure values both the north and north-east area were low (purple and dark blue colour) during February to April. The low humidity (light blue colour) occurred only from February until the end of April 2012.

Beside the meteorological conditions, the number of hotspots was the important factor for PM₁₀ concentrations. From section 2.2 in Chapter 2, high temperatures and low air humidity and fuel moisture tend to induce fire occurrences (Pinol et al., 1998, Daniau et al., 2012). Rain is the most influential meteorological variable with a negative effect followed by temperature with positive influence on fire ignition (Vasilakos et al., 2009). In Figure 3.3, the high frequencies of fires were starts from the middle of February to the middle of April, which low air humidity, high temperature, and low precipitation occurred in this period (see Figure 3.22).

Figure 3.22 Contour maps of monthly meteorological data of pressure (hPa), humidity (%), wind speed (m/s), temperature (°C) and precipitation (mm) in the north of Thailand in January, February, March, April and May year 2012 [adapted from Thai Meteorological Department (2016)]

In the north of Thailand, hotspots had occurred from December 2011 until 4 May 2012. In January and April, averaged daily of hotspot numbers were 12 and 16 and averaged daily of PM_{10} concentration were 53 and 65 μ g/m³ (background $PM_{10} \sim 50 \mu$ g/m³) in the urban area. The high frequency fires (average >150 hotspots per day) occurred from 9 February to 31 March 2012 with averaged daily of PM_{10} concentration around 135 μ g/m³ in the urban area. PM_{10} concentrations have started to reach the unhealthy level (>75 μ g/m³ by Daily Air Quality Index of United Kingdom) in 29 January 2012 with 53 hotspots and reached 90 μ g/m³ in 8 February 2012 with only 13 hotspots. Therefore, the significant factors for fires impacts, weather conditions and fire numbers, should be in the period of February to April 2012. The mitigation of vegetation fire impacts need to focus in this period for the short-term management plan.

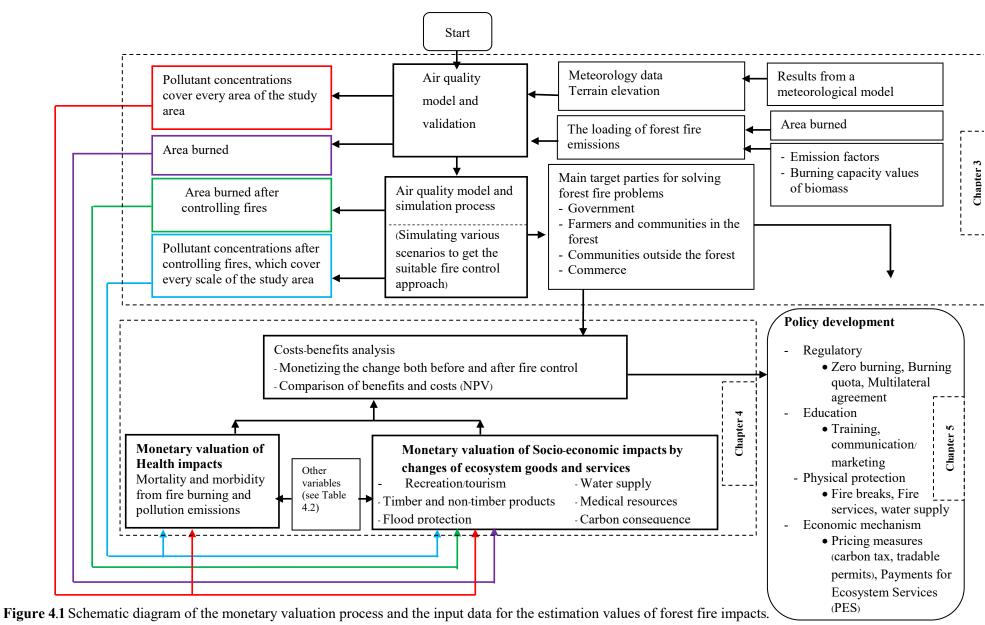
However, the error of air-quality model results may occur because the error of input data including the area burned size and the number of hotspots. The actual area burned of each hotspot is not the same size. It vary from 1,600 to 454,400 m² (0.16 to 45.44 ha) (Department of National

Chapter 3

Parks Wildlife and Plant Conservation, 2012). This study selects 12,750 m² (1.275 ha) which is the averaged approximation of areas burned for each hotspot size because of lacking the area size of all hotspots. This approximation may influence PM_{10} concentrations from the model simulation being higher or lower than the observed data as shown in the model validation part (see section 3.7.1).

Chapter 4

Cost Benefit Analysis


Cost Benefit Analysis (CBA) is used in this study to evaluate the potential gains and losses arising from policy options for the fire management of vegetation. Monetary values were estimated on a range of benefits from forest fire mitigation that has not to date been valued previously in northern Thailand. The method will utilize valuation of impacts from fires alongside comparison of policy options. Generally, vegetation fires affect the socio-economy via two main paths, namely air pollution and the depletion of ecosystem goods and services. The health impacts from air pollution at a "large area" scale is a primary problem for policy setting in Thailand. Therefore, the process of the policy development has started from air pollution control. An air quality model (CALPUFF) was used to find a solution for achieving the relevant Thai air quality standards by evaluating the size and location of vegetation areas to be managed (see Chapter 3). For the monetary assessment of forest fire impacts, the health and socio-economic impacts and the changes in ecosystem services value are estimated by comparing values before and after government intervention. The health impacts and ecosystem baseline from actual forest fire events was valued, and then the health impacts and ecosystem changes after the policy options were estimated. Health impacts and ecosystem goods/services valuations after government intervention and the area burned after fire control (estimated via CALPUFF) were fed to these valuation processes. The locations that showed a high level of air pollution and land use types to be controlled from the model were used to indicate stakeholders from fire occurrences. These stakeholders were then considered for their costs and benefits from the government intervention. These led to the development the policy options.

4.1 The integration of air quality models and cost benefit analysis

The purpose of integrating outputs from air quality models and cost benefit analysis in this study is to develop policy options for practical air quality management based on people's health as the main target and ecosystem goods and services to demonstrate the additional benefits of taking action. For air pollution impacts, the different levels of air pollutant concentration are associated with numbers of illness and death incidents. The higher the pollutant concentrations, the greater the increase of these incidents. Consequently, air pollutant concentrations are the

important variable for valuing health impacts. A limitation of air quality monitoring stations is that they cannot cover the entirety of the affected areas, so an air quality model was used to estimate the concentrations of air pollutants in the north of Thailand. Air pollution concentration results from the air quality model are subsequently fed to the monetary part of the health impact valuation. Generally, air pollutants also affect human welfare in terms of ecosystem, climate, material and visibility (US EPA, 2009). The climate impact is estimated via ecosystem services valuations whilst materials (e.g. paint, metal and stone) impacts were not estimated because of a lack of previous studies to draw upon.

The results from air quality models are linked to ecosystem goods and services valuation during estimation for ecosystem values after the Thai government interventions. The ecosystem losses from fires are computed by estimating the total economic value of ecosystem goods and services changes (see Table 4.1). The forest areas burned including forest types and sizes are needed to estimate the socio-economic value of ecosystem. These values are calculated both before and after area fire controls scenarios. The integration between air models and cost benefit analysis is shown as Figure 4.1.

-Page 103 -

In continental South and Southeast Asia in the year 2001, tropical forest was the main forest type with an area of 1,363,200 km² or around 89% of all forest type, and 47% of tropical forest were deciduous and semi-deciduous broadleaf followed by moist hardwood (~22%) of all vegetation type (SCBD, 2001b). Thailand is located in continental Southeast Asia and the deciduous forest is the main forest with a proportion of ~60% (Chien et al., 2011). Deciduous forests were also the main forest fires in Thailand (Chien et al., 2011, Wiriya, 2010). In the north part of Thailand during 24 February to 1 March, fires at 61.55% of all vegetation type occurred in mixed deciduous forests as shown in Table 3.7.

To avoid double counting, only some ecosystem services are collected to feed into the monetary part of health, socio-economic and ecological impacts. The values of pollution concentrations, area burned, benefit transfer and other variables for calculation of impact values are listed in Table 4.2.

Table 4.1 Summary of economic value of goods and services from semi-deciduous forests and plantations [adapted from Secretariat of the Convention on Biological Diversity (SCBD, 2001a) and Millennium Ecosystem Assessment (MEA, 2005)]

Total economic value of	Ecosystem good	Economic	value
forest	and service	Deciduous	Plantation
DIDECT LICE VALUE C			
DIRECT USE VALUES ¹ Timber	Provision - wood and fibre	Benefit ²	Benefit
Fuel wood / charcoal	Provision - fuel	Benefit	Depend on vegetation type
Non-timber forest products	Provision – food, fuel and raw material	Benefit	No Effect ³
Genetic information:	material		
• Pharmaceutical	Provision -medical resources	Benefit	No Effect
Recreation / tourism	Cultural service	Benefit	No Effect
Research / education	Cultural service	Benefit	No Effect
Cultural / religious	Cultural service	Benefit	No Effect
INDIRECT USE VALUES Watershed functions:			
• Water supply	Provision – fresh water	Benefit	No Effect
• Water quality	Regulation services – water purification	Benefit	No Effect
• Flood/storm protection	Regulation – natural hazard prevention	No Effect (SCBD,2001a) Benefit (MEA,2005)	No Effect
• Fisheries protection	Provision – being a food in a term of a final product	Benefit	No Effect
Global climate:	mar product		
• Carbon storage	Regulation – climate regulation	Benefit	No Effect
Biodiversity	Provision – genetic resource	Benefit	No Effect
OPTION VALUES		Benefit	No Effect
EXISTENCE VALUES		Benefit	No Effect

See Table 2.10 for explanation of terms
 Benefit = Positive economic value, Cost = Negative economic value

³ No Effect = Economic value approximately zero

Table 4.2 The health, socio-economic and ecological impacts from vegetation fires in the north of Thailand and variables for calculating in the monetary processes.

Forest fire impacts	Input data		Output data	Economic calculation/	Remark
	Variables	Sources of the input data		Methods/ Equations	
1. Health impact					
1.1 Mortality and morbidity from air pollution	 Numbers of the population in a study area Health impact incident rate in study area Pollution concentration (PM₁₀) in a study area before and 	- Government records: - Numbers of the population in study area from Department of Provincial Administration (2015) - The actual rate of the death and illness from National Statistical Office (2015) and Bureau of Policy and Strategy (2015) Results of pollutant concentration from an air quality model	Numbers and economic values of mortality and morbidity people before and after fire controls	Numbers of mortality and morbidity x the unit cost of mortality and morbidity (US\$)	Estimated in this study
	after fire controls The percent of mortality and illness from the increase of PM ₁₀ concentration The unit cost of mortality	Previous studies (see Table 4.3) Previous studies (see Table 4.17)			
	and morbidity (US\$)				
1.2 Mortality and morbidity from fire burning	- Numbers of mortality and morbidity from fire burning in a study area	Thai agency/ government records	Numbers of and economic values mortality and morbidity people before and after fire controls	Numbers of mortality and morbidity x the unit cost of mortality and morbidity (US\$)	Nobody was killed by fires (Department of National Parks Wildlife and Plant Conservation, 2012)

Forest fire impacts	Input data		Output data	Economic calculation/	Remark	
	Variables	Sources of the input data		Methods/ Equations		
2 Socio-economic in	mpact					
2.1 Transportation						
2.1.1 Flights cancelled	- The relation between the minimum visibility (km) for flying and PM ₁₀ concentration in the atmosphere	Previous studies	Numbers of flights cancelled before and after fire controls	Numbers of flights cancelled x the income of each flight	Estimated in this study	
	- Numbers of flights cancelled	Airport and airline records or news				
	- Pollution concentration (PM ₁₀) in a study area before and after fire controls	Results from an air quality model				
2.2 Forest tourism	- Income from forest tourism (US\$/ha per annum)	Previous studies (see Table 4.25)	The value of the forest tourism before and after fire controls (US\$)	Area burned x the value of forest tourism (US\$/ha per annum) (benefit transfer	Estimated in this study	
	- Area burned before and after fire controls	Results from an air quality model		approach)		
2.3 Water supply						
2.3.1 Water supply	- The value of water supply by forests (US\$/ha per annum)	Previous studies (see Table 4.25)	The value of water supply before and after fire controls (US\$)	Area burned x the value of water supply by forests (US\$/ha per annum) (benefit transfer approach)	Estimated in this study	
	- Area burned before and after fire controls	Results from an air quality model				

Forest fire impacts	Input data		Output data	Economic calculation/	Remark	
	Variables	Sources of the input data		Methods/ Equations		
2.3.2 Water quality	- The value of water purifying by forests to domestic (US\$/ha per annum)	Previous studies (see Table 4.25)	The value of water quality by forests before and after fire controls (US\$)	Area burned x the value of water quality by forests to domestic (US\$/ha per annum) (benefit transfer approach)	Estimated in this study	
	- Area burned before and after fire controls	Results from an air quality model		аруголог)		
2.3.3 Flood protection	- The value of flood prevention by forests to domestic (US\$/ha per annum)	Previous studies (see Table 4.25)	The value of flood prevention by forests before and after fire controls (US\$)	Area burned x the value of flood protection by forests to domestic (US\$/ha per annum) (benefit transfer approach)	Estimated in this study	
	- Area burned before and after fire controls	Results from an air quality model		арргоасп)		
2.4 Forest goods						
2.4.1 Timber product	- The value of timber product (US\$/ha per annum)	Previous studies (see Table 4.25)	The value of timber product from forest before and after fire controls (US\$)	Area burned x the value of timber product (US\$/ha per annum) (benefit transfer approach)	Estimated in this study for evergreen forests	
	- Area burned before and after fire controls	Results from an air quality model		арргоасп)		
2.4.2 Non-timber products	- The value of non-timber products (US\$/ha per annum)	Previous studies (see Table 4.25)	The value of non-timber product from forest before and after fire controls (US\$)	Area burned x the value of non-timber products (US\$/ha per annum) (benefit transfer approach)	Estimated in this study	
	- Area burned before and after fire controls	Results from an air quality model				

Forest fire impacts	Input data		Output data	Economic calculation/	Remark
	Variables	Sources of the input data		Methods/ Equations	
2.5 Job opportunities	- The number of staff employed for forest fire management	Agency/ government records	The value of the employment from fire events		Estimated in this study
2.6 Property loss from fire burning	- The number of property burned from forest fires in a study area	Agency/ government records	The value of property losses from fire burning		There was no property loss from directly burnt by fire (Department of National Parks Wildlife and Plant Conservation, 2012)
2.7 Cultural, research and education from forests	 The value of cultural, research and education (US\$/ha per annum) Area burned before and after fire controls 	Previous studies	The value of cultural, research and education from forest before and after fire controls (US\$)	Area burned x the value of cultural, research and education (US\$/ha per annum) (benefit transfer approach)	Lacking previous study data
2.8 Fisheries protection	 The value of fishery products (US\$/ha per annum) Area burned before and after fire controls 	Previous studies	The value of fishery products from forest before and after fire controls (US\$)	Area burned x the value of fishery products (US\$/ha per annum) (benefit transfer approach)	This value was included in the Non- timber products
2.9 Medical resources	 The value of medical resources (US\$/ha per annum) Area burned before and after fire controls 	Previous studies (see Table 4.25)	The value of medical resources from forest before and after fire controls (US\$)	Area burned x the value of medical resources (US\$/ha per annum) (benefit transfer approach)	Estimated in this study
2.10 Hydro- electricity	- The value of electricity supply from water flow (US\$/ha per annum)	Previous studies	The value of hydro-electricity from water generated by the forest before and after fire controls (US\$)		There is no hydro- electricity power plant in the study area

Forest fire impacts	Inpu	Input data		Economic calculation/	Remark
	Variables	Sources of the input data		Methods/ Equations	
3. Ecology impact					
3.1 Carbon storage	- The value of carbon storage (US\$/ha per annum	Previous studies (see Table 4.25)	The value of carbon storage before and after fire controls (US\$)	Area burned x the value of Carbon storage (US\$/ha per annum) (benefit transfer approach)	Estimated in this study
	- Area burned before and after fire controls	Results from an air quality model			
3.2 Biodiversity	 The value of biodiversity (US\$/ha per annum Area burned before and after fire controls 	Previous studies (see Table 4.25) Results from an air quality model	The value of biodiversity before and after fire controls (US\$)	Area burned x the value of biodiversity (US\$/ha per annum) (benefit transfer approach)	Estimated in this study for evergreen forests

4.2 Health impact valuation

The forest fires in the study area started between February to April 2012 and affected people's health via short-term exposure. PM₁₀ can affect the cardiovascular and respiratory systems, and increased mortality is a typical short-term effect (US EPA, 2009). Older adults (age >65 years old) tend to respond to cardiovascular morbidity and the children (age 1-14 years old) are at risk from respiratory symptoms from PM. The time frame for health evaluation is as follows: set for specific health outcomes. The time between air pollutant measurement and health endpoint, the lag time for short-term PM exposure is 0 to 5 days, 0-2 days for cardiovascular and 2-5 days for respiratory effects (2 days for older adults and 3-5 days for children).

4.2.1 Health effects of short-term PM₁₀ exposure

The number of the people affected from fire events in the study area was accounted by using the percent increase of illness by PM_{10} increment from previous studies. The relation between the numbers of mortality, cardiovascular and respiratory hospital admissions, respiratory symptoms and PM_{10} levels by previous studies are shown in Table 4.3. Considering the threshold for respiratory mortality, Samoli et al. (2005) suggested a value of around 20 μ g/m³ because it was indicated by the pooled spline graph curves of the mortality increase whereas Daniels et al.

(2000) suggested that a value of about 50 μg/m³ was the significant initial-value of the mortality increase. Therefore, threshold levels of $20\mu g/m^3$ and $50\mu g/m^3$ were selected for calculating the high and low baseline of mortality numbers. From Table 4.3, Sakulniyomporn et al. (2011) showed that the mortality rate values from the vegetation fires were higher than the free fire days by the percent increase of the mortality at around 1.78% with the range of daily PM₁₀ in the reference area between 1 to >65 μg/m³. The study in Thailand by Vichit-Vadakan et al. (2008) showed a similar value at 1.3% but this value was a result from deaths in the Bangkok area. Transportation is the major source of PM₁₀ in Bangkok, which is different from the north of Thailand. However, particles generated by vegetation fires and by urban sources are similar in size distribution but may be different in chemical constituents (Hime et al., 2015). Diesel emissions from vehicles may cause more health and toxicity-effects than other PM emission sources (Hime et al., 2015). However, wood smoke also contains toxic pollutants (dioxin and semi-volatile organic compounds (SVOCs) such as polycyclic aromatic hydrocarbons (PAHs)) that have shown to be carcinogenic (Afshar-Mohajer et al., 2016). Emissions from both transportation and vegetation fires also contain toxic substances. A range of studies have shown that more toxic PM arises from vehicles than other sources (Hime et al., 2015). Many studies have shown that PM₁₀-related mortality was higher on smoky days from fires than PM₁₀ mortality in other days in urban area (Faustini et al., 2015, Sakulniyomporn et al., 2011). In addition, the value of 1.3% from Vichit-Vadakan et al. (2008) and Sakulniyomporn et al. (2011) at 1.78% is a similar value. These values can be applied for calculating the number of deaths from PM₁₀ in the north of Thailand. However, the study by Vichit-Vadakan et al. (2008) is more suitable than another study because the study incorporated similar circumstances (e.g. climate, temperature and population). Thus the value of 1.3% by Vichit-Vadakan et al. (2008) was selected for this study.

With the lack of Thai study related with health impacts from vegetation fires, studies from various countries were used to quantitatively estimate illness caused by fires in the north of Thailand. Thailand is classified as a developing country, but the Thai health care service is a good standard. The self-reliance in health-care workforce production of Thailand is high quality standards with density per 1,000 populations, which is slightly above the 2.28 indicative of WHO benchmark of doctors, nurses and midwives. Moreover, by 2002, the entire population was covered by three public health insurance schemes including civil servants and their dependents by the Civil Servant Medical Benefit Scheme (CSMBS), private sector employees by the Social Health Insurance Scheme (SHI) and the rest of the population by the Universal Coverage Scheme (UCS) (Jongudomsuk et al., 2015). Generally, there is no payment needed by patients for each visit for illness treatments in cases of CSMBS and SHI, but the low cost of 30 Baht (~0.9 US\$) is need for UCS (Damrongplasit and Melnick, 2015). Thai people both poor and rich, and in rural

and urban can receive treatments equally with less expenses and sufficient medical staff provided. This led the actual number of Thai illness relevant the hospital admissions and visits. Therefore, the number of hospital admissions and visits from developed countries can be applied for Thailand.

The increased risk of the morbidity was estimated by considering hospital admissions for respiratory and cardiovascular illness and outpatient for all respiratory symptoms (see Table 4.3). The percent increment for all respiratory hospital admission of 1.24 from the study of Morgan et al. (2010) and cardiovascular hospital admission of 0.91 by Ballester et al. (2006) were used because the PM₁₀ concentrations in the reference study area had high PM₁₀ concentrations. The percent increment for respiratory outpatient of 1.3% by Peel et al. (2005) is used in this study. Peel et al., (2005) had collected the large number of respiratory outpatients between 1993 and 2000 around 484,800 cases from emergency department (ED) visits. With the long period and large amount of illness visits, this may be a good study.

Table 4.3 The percent increase of mortality, cardiovascular and respiratory illness from PM_{10} increase of $10~\mu g/m^3$

Health effect	Study area	PM_{10} concentration in the study area $(\mu g/m^3)$	Percent increase of Health- effect from PM ₁₀ by an increasing of 10 µg/m ³	Relative risk (RR), Odds ratio (OR) of health effect	References	Age
Mortalit	y Europe (29 cities)	14-166 (average of 2 consecutive days)	0.6		Katsouyanni et al. (2001)	All
	United Stated (110 cities)	15.3-53.2	0.5 (for in all- natural-cause of mortality)		Samet et al. (2000)	All
	Mexico City, Toluca, Monterrey (3 cities in Mexico)	Avg.=57.3, Max.= 101.9 Avg.=66.7, Max.= 136.4 Avg.=71.5, Max.= 130.9	1.02 (0.87-1.17) 1.26 (0.85-1.66) 1.01 (0.83-1.20) (for in all-natural-cause of mortality)		Linares et al. (2015)	All
	Madrid, Barcelona in Spain; Marseille in France; Turin, Milan, Bologna, Parma, Modena, Reggio Emilia, Rome and Palermo in Italy; Thessaloniki and Athens in Greece; year 2003-2010	1 to >64 by vegetation fires	1.78 (-0.91-4.53), for vegetation-fire days 0.53 (0.30 to 0.76), for free vegetation-fire days (both mortality values for in all-natural-cause of mortality)		Sakulniyomporn et al. (2011)	All
	Madrid, Spain (year 2004-2009)	0-149 by vegetation fires		1.035 (1.011– 1.060), RR	Linares et al. (2015)	All
	Bangkok, Thailand	5 th percentile=29.6 95 th percentile=93.2 Min. = 21.3 Avg. = 52 Max. =169.2	1.3 (0.8-1.7), ERR (%) for non-accidental mortality (RR=1.013)		Vichit-Vadakan et al. (2008)	All

Health effect	Study area	PM ₁₀ concentration in	Percent increase of Health- effect from	Relative risk (RR),	References	Age
		the study area	PM ₁₀ by an	Odds ratio		
		$(\mu g/m^3)$	increasing of 10	(OR) of health		
			$\mu g/m^3$	effect		
Cardiov	ascular hospital adm	issions	0.85 (0.7-1.0)			
	Spain (5 cities)	10 th percentile=17.3 90 th percentile=62.6	0.91 (0.35-1.47)		Ballester et al. (2006)	All
	France (8 urban area)	21.0-28.9	0.7 (0.1-1.2)		Larrieu et al. (2007)	All
All respi	iratory hospital admi	ssion	1.48 (1.24-1.71)			
	Sydney, Australia	>42 (at 90 th percentile) by vegetation fires	1.24 (0.22-2.27)		Morgan et al. (2010)	All
	Darwin, Australia	6.4-70.0 by vegetation fires		1.08 (0.98- 1.18), OR	Johnston et al. (2007)	All
	Literature reviews	N/A	1.71 (1.19-2.23)		Walton et al. (2014)	All
Asthma	hospital admission					
	Darwin, Australia	6.4-70.0 by		1.14 (0.90-	Johnston et al.	All
		vegetation fires		1.44), OR	(2007)	
	Literature reviews	N/A	1.69 (0.5-2.96)		Walton et al. (2014)	Children
Asthma	in all age (Emergenc	y-Departments (ED)	visits)	1.009, RR		All
	Atlanta (31	19.2		1.009 (0.996-	Peel et al.	All
	hospitals)			1.022), RR	(2005)	
Asthma	in children (asthma s	symptoms)				
	North American	21.0		1.13 (1.04-	Slaughter et al.	133
	(8 cities)			1.22), OR	(2003)	Children
Respirat	tory illness and symp	` .	atients) 1.05 (0.8-1.3)			
	Atlanta (31	10 th percentile =13.2	1.3 (0.4-2.1)	1.013 (1.004-	Peel et al.	All
	hospitals)	90 th percentile =44.7		1.021), RR	(2005)	
	Kermanshah City, Iran	50-100	0.8 (0.5-1.1)		Zallaghi et al. (2014)	All

Excess relative risk (ERR) is an epidemiological risk measure that quantifies how much the level of risk among persons with a given level of exposure exceeds the risk of non-exposed persons:

ERR =
$$(RR - 1) \times 100$$
,
RR = $(ERR/100) + 1$ (4.1)

The studies of the health impacts arising from increases in PM_{10} (see Table 4.3) were generated basing on Poisson regression. The predicted mean of the Poisson distribution can be calculated as the equation (4.2):

$$E(Y|X) = e^{\beta X} \tag{4.2}$$

where E(Y|x) is the expected value of the event Y given x (the relative risk (RR) value of a respiratory hospital admission/a death in this study), x is the value of the concentration (PM₁₀), and β is the concentration-response coefficient.

Then a 1.3% death increase, (ERR= 1.3 equals RR= 1.013 (from equation (4.1)) per 10 μ g/m³ (x=10) of PM₁₀ concentration can be calculated for β value (concentration-response coefficient) as the equation (4.3).

$$β$$
 = $(\ln RR)/x$ (4.3)
= $(\ln 1.013)/10$
 $β$ = 0.00129 (per 1 μg/m³)

New β of new concentration change = 0.00129 x new concentration change (Δ C) (4.4)

From equation (4.1), (4.3) and (4.4), the new β can be converted to an equation as:

New
$$\beta$$
 of new concentration change = $((\ln(ERR/100) + 1)/10) \times (\Delta C)$ (4.5)

If the value of PM_{10} concentration is 72 $\mu g/m^3$, then PM_{10} change (ΔC or x=52) from base line value of 20 $\mu g/m^3$ is 52 $\mu g/m^3$, the new RR will also increase.

From equation (4.2), RR
$$= e^{\beta x}$$
 New % increase or new ERR
$$= (RR - 1) \times 100$$

$$= (e^{((\ln(ERR/100) + 1)/10] \times (\Delta C))} - 1) \times 100 \qquad (4.6)$$

$$= 6.95 \%$$

The numbers of deaths and patients were calculated by using the average value of the PM₁₀ concentration during the study period (5 days) and the high and low baseline levels at 20 μ g/m³ and 50 μ g/m³. The baseline levels are the threshold values of the death risk. Then PM₁₀ concentration values below the baseline levels may be assumed not to affect the premature death risk. Moreover, the minimum variable value of PM₁₀ in the referenced study by Vichit-Vadakan et al. (2008) was >20 μ g/m³ and other references for respiratory and cardiovascular illnesses were >10 μ g/m³. For the other health impacts, the PM₁₀ value of 20 μ g/m³ for annual air quality guideline and 50 μ g/m³ for daily guideline suggested by WHO (2005) are applied to be the baseline values for other illnesses. The resulting numbers of deaths and patients will show the range of low and high numbers from the concentration changes (Δ C) from the baseline values of

20 μ g/m³ and 50 μ g/m³, ΔC = simulated PM₁₀ concentration - PM₁₀ baseline. The numbers of people relating to mortality, respiratory and cardiovascular hospital admissions, and respiratory illness were estimated by the equation adapted from Vichit-Vadakan et al. (2004) and Walton et al. (2014) ((New % increase of mortality or the health effect from the PM₁₀ concentration change) x (% of total death by all natural causes or % of health impacts in the study area) x (number of population in the study area)) which is shown below.

The number of mortality =
$$(\text{New \% increase of mortality})$$
 (4.7)
by PM_{10} change x (Number of all natural deaths in study area)

Where

New % increase of mortality $= e^{((\ln(ERR/100) + 1)/10] \times (\Delta C)} - 1$

Number of all-natural death in study area = (% of total actual deaths by all-natural causes

in the study area) x (number of population in

the study area)

The number of the (New % increase of hospital (4.8)

hospital admissions admissions or outpatients)

or outpatients by = x (Number of all respiratory or by PM_{10} change cardiovascular admissions or

number of outpatients in the study

area in study area)

Where

New % increase of the hospital admissions or outpatients $= e^{(\ln(ERR/100) + 1)/10] \times (\Delta C)} - 1$

Number of all natural deaths in study area = (% actual hospital admissions of total

respiratory or cardiovascular diseases or number of outpatients in the study area) x (number of population in the study area)

Population statistics were derived from the Department of Provincial Administration (2015) and the actual mortality by all natural causes in 2012 was taken from National Statistical Office (2015). The actual natural mortality was selected by all causes of death but exclude the death code number V01-Y89, which was classified following the International Statistical

Classification of Diseases and Related Health Problems 10th Revision (ICD-10) code. The V01-Y89 code includes death caused by accidents, intentional self-harm, assault, event of undetermined intent, legal intervention and operations of war, complications of medical and surgical care, and sequelae of external causes of morbidity and mortality. The numbers of actual respiratory and cardiovascular patients (both inpatients and outpatients) in Thailand were from the recorded data from Bureau of Policy and Strategy (2015). The population and health impacts baseline are summarized in the Table 4.4.

Table 4.4 Population, actual cardiovascular, respiratory illness and death rate from the government records in year 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae.

Province	Number of	Natural	Cardiovascular	All	All
	population	mortality	hospital	respiratory	respiratory
		rate per	admission rate	hospital	outpatient
		1,000 people	per 1,000	admission	visit rate per
		per year	people per year	rate per 1,000	1,000 people
				people per	per year
				year	
Chiang Mai	1,655,642	7.5	35.8	31.2	543.1
Chiang Rai	1,200,423	6.7	28.1	25.3	524.9
Mae Hong Son	244,356	4.5	16.1	26.7	710.5
Lampang	756,811	8.1	38.4	29.6	486.1
Lamphun	404,673	8.2	27.6	25.4	623.6
Nan	447,193	6.0	44.3	33.7	258.1
Phayao	488,120	7.4	33.2	28.0	535.9
Phrae	457,607	8.4	36.4	25.6	472.9

A 10 μ g/m³ increment of PM₁₀ causes an increase of mortality of about 1.3% or 0.013. From Table 4.4, in Chiang Mai in 2012, all-natural cause of mortality was ~7.5 per 1,000 persons (or 0.75 per 100 persons or 0.75% or 0.0075) and the population was around 1,655,640 persons. Then the number of all-natural deaths in year 2012 was (7.5/1000) x 1,655,640 = 12,417.3 persons. Therefore, the estimated mortality from the 10 μ g/m³ increase of PM₁₀ can be calculated using equation (4.7) as follows:

The number of mortality by PM₁₀ change

```
= (e^{((\ln(ERR/100)+1)/10] \times (\Delta C))} - 1) \times (\% \text{ of total actual deaths by all natural} causes in the study area) x (number of population in the study area) = (e^{((\ln(1.3/100)+1)/10] \times (10))} - 1) \times (7.5/1,000) \times 1,655,640 = 0.013 \times 0.0075 \times 1,655,640 = 0.013 \times 12,417.3 = 161 persons
```

If the concentration of PM_{10} increases from the baseline value (50 $\mu g/m^3$) to 102 $\mu g/m^3$ (PM_{10} concentration change is 52 $\mu g/m^3$) the new percent increase of the estimated death number will be 6.95% (see equation (4.6)). It leads to an estimated mortality (see equation (4.7))

```
=(e ((\ln(1.3/100)+1)/10] \times (102-50))-1) x (7.5/1,000) x 1,655,640
= 0.0695 x 0.0075 x 1,655,640
= 863 persons
```

Considering morbidity, a 10 μ g/m³ increment of PM₁₀ affected the percent increase of all respiratory hospital admissions of 1.24 (see Table 4.3), and actual respiratory hospital admissions rate in Chiang Mai year 2012 was 31.2 per 1,000 persons (see Table 4.4). Then the estimated number of the respiratory hospital admissions caused by 10 μ g/m³ PM₁₀ increment can be calculated using equation (4.8) as (0.0124) x (31.2/1,000) x 1,655,640 = 640 admissions.

If the concentrations of PM_{10} increase from the baseline value (50 μ g/m³) to 102 μ g/m³ (PM_{10} concentration change is 52 μ g/m³), the new percent increase for respiratory admissions will be (e ((ln (1.24/100) +1)/10] x (102-50))-1) = 0.0662 or 6.62% (see equation (4.6)). It leads to an estimated number of admissions of (0.0662) x (31.2/1,000) x 1,655,640 = 3,419 admissions (see equation (4.7)).

For estimating the number of cardiovascular hospital admissions and outpatients from respiratory illness, the percent increase values for the $10~\mu g/m^3$ increment of PM_{10} at 0.91% and 1.3% are used. If the PM_{10} concentration change is $52~\mu g/m^3$, the new percent increase for cardiovascular admissions will be (e $((\ln (0.91/100) + 1)/10] \times (102-50)) - 1) = 0.0482$ or 4.82% and outpatients from respiratory illness will be (e $((\ln (1.3/100) + 1)/10] \times (102-50)) - 1) = 0.0695$ or 6.95%. The actual cardiovascular hospital admissions rate in Chiang Mai year 2012 was 35.8 per 1,000 persons. The estimated number of admissions will be $(0.0482) \times (35.8/1,000) \times 1,655,640 = 2,857$ admissions and $(0.0695) \times (543/1,000) \times 1,655,640 = 62,481$ outpatients.

However, these mortality and morbidity values were estimated using the whole year rate in 2012. The estimated number of daily cases can be calculated by dividing by 365.25 days (1 year). Then the estimated number of mortality, respiratory hospital admissions, cardiovascular

hospital admissions, and respiratory outpatients during the study period (5 days) with averaged PM_{10} change by 52 $\mu g/m^3$ in Chiang Mai province (increasing from the baseline value 50 $\mu g/m^3$ to 102 $\mu g/m^3$) as follows:

- Mortality = $(863/365.25) \times 5 = 12 \text{ persons},$
- Respiratory hospital admissions = (3,419/365.25) x 5 = 47 admissions,
- Cardiovascular hospital admissions = (2,857/365.25) x 5 = 39 admissions and
- Respiratory outpatients = $(62,481/365.25) \times 5 = 855$ outpatient visits

If the concentration of PM_{10} increases from the baseline value (20 μ g/m³) to 102 μ g/m³ (PM_{10} concentration change is 82 μ g/m³). The estimated number of mortality, respiratory and cardiovascular hospital admissions and respiratory outpatients from 5 days impact in Chiang Mai will be as follows:

- Mortality = $[[(e^{((\ln(1.3/100)+1)/10] \times (102-20))}-1) \times (7.5/1,000) \times 1,655,640] / 365.25] \times 5=19$ persons,
- Respiratory hospital admissions = $[[(e^{((\ln(1.24/100)+1)/10] \times (102-20))}-1) \times (31.2/1,000) \times 1,655,640] / 365.25] \times 5=75$ admissions,
- Cardiovascular hospital admissions = $[[(e^{((\ln(0.91/100)+1)/10] \times (102-20))}-1) \times (35.8/1,000) \times 1,655,640] / 365.25] \times 5=63$ admissions,
- Respiratory outpatients = $[[(e^{((\ln(1.3/100)+1)/10] \times (102-20))}-1) \times (543/1,000) \times 1,655,640] / 365.25] \times 5 = 1,375$ outpatient visits.

The average 5-days PM_{10} caused by fires in the rest of study areas including Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae were estimated by air quality models as same as Chiang Mai. The PM_{10} concentration in every grid, 27 x 27 km per grid, which cover every district in each province was used to estimate the average 5-days PM_{10} in these provinces. Results of PM_{10} concentration of these provinces are 100, 111, 95, 86, 102, 97 and 119 $\mu g/m^3$, respectively. The total estimated number of mortality, respiratory and cardiovascular hospital admissions and respiratory outpatients from 5 days impact in the study area are 38 persons, 123 and 142 admissions, and 2,767 outpatient visits for comparing with baseline value at 50 $\mu g/m^3$ and 62 persons, 198 and 233 admissions, and 4,815 outpatient visits for comparing with baseline value at 20 $\mu g/m^3$ (see Table 4.5).

Health impacts after fire controls in target areas including agricultural area and near agricultural areas within 1 km and 4 km that were simulated as no fire areas by government measures were calculated for the numbers of illness cases. The average 5-days PM₁₀ concentration results from the air quality models after reducing emissions through fires controlled in agricultural areas and near agricultural areas within 1 km and 4 km, in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae have decreased for all areas. PM₁₀

concentration of these provinces are 51, 49, 58, 52, 60, 47, 41 and 57 μ g/m³ after controlled fires, both agricultural and forest around agricultural area 1 km, and 39, 40, 45, 37, 46, 37, 35 and 40 μ g/m³ after controlled fires both agricultural and forest around agricultural area 4 km. The total estimated number of mortality, respiratory and cardiovascular hospital admissions and respiratory outpatients from 5 days impact in the study area after controlled fire are shown in Table 4.6 and Table 4.7. These numbers of these cases are also used to estimate the economic value of health impacts and are compared with health impact values before employing the government measures.

Table 4.5 Summary of estimated deaths, hospital admissions for respiratory and cardiovascular illness, and respiratory outpatient visits caused by average 5-days PM₁₀ increase from actual fires during 26 February to 1 March 2012 in Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae provinces

	Chiang Mai	Chiang Rai	Mae Hong Son	Lampang	Lamphun	Nan	Phayao	Phrae	Total
Number of population (persons)	1,655,640	1,200,423	244,356	756,811	404,673	447,193	488,120	457,607	5,654,823
Ranges of estimated PM_{10} during 5 days in the district scale ($\mu g/m^3$), results from air quality models	31 to 312	56 to 231	30 to 305	38 to 285	27 to 240	31 to 309	43 to 275	34 to 294	
Ranges of estimated PM_{10} during 5 days in the province scale ($\mu g/m3$), results from air quality models	86 to 132	82 to 122	64 to 142	54 to 144	40 to 112	69 to 150	70 to 120	100 to 146	
Estimated average 5-days PM_{10} of the province area ($\mu g/m^3$), results from air quality models	102	100	111	95	86	102	97	119	
PM_{10} change between estimated average 5-days PM_{10} and baseline value at 50 $\mu g/m^3$ ($\mu g/m^3$)	52	50	61	45	36	52	47	69	
PM_{10} change between estimated average 5-days PM_{10} and baseline value at $20~\mu g/m^3~(\mu g/m^3)$	82	80	91	75	66	82	77	99	
Estimated deaths from PM ₁₀ change									
Actually natural mortality rate (per 1,000 persons per year)	7.5	6.7	4.5	8.1	8.2	6.0	7.4	8.4	
% increased risk from estimated $PM_{10}\text{change}$ and baseline value at 50 $\mu\text{g/m}^3$	6.95	6.67	8.20	5.98	4.76	6.95	6.26	9.32	
% increased risk from estimated $PM_{10}\text{change}$ and baseline value at 20 $\mu\text{g/m}^3$	11.17	10.89	12.47	10.17	8.90	11.17	10.46	13.64	
Estimated deaths from 5-days impacts of PM_{10} change (baseline value 50 $\mu g/m^3$) (persons)	12	7	1	5	2	3	3	5	38
Estimated deaths from 5-days impacts of PM_{10} change (baseline value $20~\mu g/m^3$) (persons)	19	12	2	9	4	4	5	7	62
Estimated hospital admissions of cardiovascular illness from PM ₁₀ change									
Actually cardiovascular hospital admission rate (per 1,000 persons per year)	36.0	28.0	16.0	38.4	27.6	44.3	33.2	36.4	
% increased risk from estimated $PM_{10}\text{change}$ and baseline value at 50 $\mu\text{g}/\text{m}^3$	4.82	4.63	5.63	4.16	3.31	4.82	4.35	6.45	
% increased risk from estimated $PM_{10}\text{change}$ and baseline value at 20 $\mu\text{g/m}^3$	7.71	7.52	8.59	7.03	6.16	7.71	7.22	9.38	
Estimated admissions from 5-days impacts of PM_{10} change (baseline value 50 $\mu g/m^3$) (admissions)	39	21	3	17	5	13	10	15	123
Estimated admissions from 5-days impacts of PM_{10} change (baseline value $20~\mu g/m^3$) (admissions)	63	35	5	28	9	21	16	21	198
Estimated hospital admissions of respiratory illness from PM ₁₀ change									
Actually all respiratory hospital admission rate (per 1,000 persons per year)	31.2	25.3	26.7	29.6	25.4	33.7	28.0	25.6	
% increased risk from estimated $PM_{10}\text{change}$ and baseline value at 50 $\mu\text{g}/\text{m}^3$	6.62	6.36	7.81	5.70	4.54	6.62	5.96	8.88	
% increased risk from estimated $PM_{10}\text{change}$ and baseline value at 20 $\mu\text{g/m}^3$	10.63	10.36	11.87	9.68	8.47	10.63	9.95	12.98	
Estimated admissions from 5-days impacts of PM_{10} change (baseline value 50 $\mu g/m^3$) (admissions)	47	26	7	17	6	14	11	14	142
Estimated admissions from 5-days impacts of PM_{10} change (baseline value $20~\mu g/m^3$) (admissions)	75	43	11	30	12	22	19	21	233
Estimated outpatient visits of respiratory illness from PM ₁₀ change									
Actually all respiratory outpatient visit rate (per 1,000 persons per year)	543.1	524.9	710.5	486.1	623.6	258.1	535.9	472.9	
% increased risk from estimated $PM_{10}\text{change}$ and baseline value at 50 $\mu\text{g}/\text{m}^3$	6.95	6.67	8.20	5.98	4.76	6.95	6.26	9.32	
% increased risk from estimated $PM_{10}\text{change}$ and baseline value at 20 $\mu\text{g/m}^3$	11.17	10.89	12.47	10.17	8.90	11.17	10.46	13.64	
Estimated visits from 5-days impacts of PM_{10} change (baseline value 50 $\mu g/m^3$) (visits)	855	575	195	301	164	177	224	276	2,767
Estimated visits from 5-days impacts of PM ₁₀ change (baseline value 20 μg/m³) (visits)	1,375	939	296	512	307	177	374	404	4,384

Table 4.6 Summary of estimated deaths, hospital admissions for respiratory and cardiovascular illness, and respiratory outpatient visits caused by average 5-days PM₁₀ increase after fires controlled both agricultural and forest around agricultural area 1 km to be no fire areas during 26 February to 1 March 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang,

Lamphun, Nan, Phayao and Phrae provinces

Zumprierry 1 (em) 2 miles pro 1 meets	Chiang Mai	Chiang Rai	Mae Hong Son	Lampang	Lamphun	Nan	Phayao	Phrae	Total
Number of population (persons)	1,655,640	1,200,423	244,356	756,811	404,673	447,193	488,120	457,607	5,654,823
Ranges of estimated PM_{10} during 5 days in the district scale ($\mu g/m^3$), results from air quality models	26 to 138	30 to 109	26 to 141	27 to 188	27 to 234	27 to 143	30 to 100	27 to214	
Ranges of estimated PM_{10} during 5 days in the province scale ($\mu g/m3$), results from air quality models	40 to 63	43 to 59	40 to 64	47 to 79	43 to 74	33 to 75	36 to 54	37 to 73	
Estimated average 5-days PM_{10} of the province area ($\mu g/m^3$), results from air quality models	51	49	58	52	60	47	41	57	
PM_{10} change between estimated average 5-days PM_{10} and baseline value at 50 $\mu g/m^3$ ($\mu g/m^3$)	1	-1	8	2	10	-3	-9	7	
PM_{10} change between estimated average 5-days PM_{10} and baseline value at $20~\mu g/m^3~(\mu g/m^3)$	31	29	38	32	40	27	21	37	
Estimated deaths from PM ₁₀ change									
Actually natural mortality rate (per 1,000 persons per year)	7.5	6.7	4.5	8.1	8.2	6.0	7.4	8.4	
% increased risk from estimated PM_{10} change and baseline value at $50~\mu\text{g/m}^3$	0.13	0	1.04	0.26	1.3	0	0	0.91	
% increased risk from estimated $PM_{10}change$ and baseline value at 20 $\mu g/m^3$	4.09	3.82	5.03	4.22	5.3	3.55	2.75	4.9	
Estimated deaths from 5-days impacts of PM_{10} change (baseline value 50 $\mu g/m^3$) (persons)	0	0	0	0	1	0	0	0	1
Estimated deaths from 5-days impacts of PM_{10} change (baseline value $20~\mu g/m^3$) (persons)	7	4	1	4	2	1	1	3	23
Estimated hospital admissions of cardiovascular illness from PM ₁₀ change									
Actually cardiovascular hospital admission rate (per 1,000 persons per year)	36.0	28.0	16.0	38.4	27.6	44.3	33.2	36.4	
% increased risk from estimated $PM_{10} change$ and baseline value at 50 $\mu g/m^3$	0.09	0.73	0.18	0.18	0.91	0	0	0.64	
% increased risk from estimated PM_{10} change and baseline value at $20~\mu\text{g/m}^3$	2.85	2.66	3.50	2.94	3.69	2.48	1.92	3.41	
Estimated admissions from 5-days impacts of PM ₁₀ change (baseline value 50 µg/m³) (admissions)	1	0	0	1	1	0	0	1	4
Estimated admissions from 5-days impacts of PM ₁₀ change (baseline value 20 µg/m³) (admissions)	23	12	2	12	6	7	4	8	74
Estimated hospital admissions of respiratory illness from PM ₁₀ change									
Actually all respiratory hospital admission rate (per 1,000 persons per year)	31.2	25.3	26.7	29.6	25.4	33.7	28.0	25.6	
% increased risk from estimated PM_{10} change and baseline value at $50~\mu g/m^3$	0.12	0	0.99	0.25	1.24	0	0	0.87	
% increased risk from estimated $PM_{10}change$ and baseline value at $20~\mu g/m^3$	3.89	3.64	4.79	4.02	5.05	3.38	2.62	4.67	
Estimated admissions from 5-days impacts of PM ₁₀ change (baseline value 50 µg/m³) (admissions)	1	-	1	1	2	-	-	1	6
Estimated admissions from 5-days impacts of PM_{10} change (baseline value $20~\mu g/m^3$) (admissions)	28	15	4	12	7	7	5	7	85
Estimated outpatient visits of respiratory illness from PM ₁₀ change									
Actually all respiratory outpatient visit rate (per 1,000 persons per year)	543.1	524.9	710.5	486.1	623.6	258.1	535.9	472.9	
% increased risk from estimated $PM_{10} change$ and baseline value at 50 $\mu g/m^3$	0.13	0	1.04	0.26	1.3	0	0	0.91	
% increased risk from estimated $PM_{10} change$ and baseline value at $20~\mu g/m^3$	4.09	3.82	5.03	4.22	5.3	3.55	2.75	4.9	
Estimated visits from 5-days impacts of PM_{10} change (baseline value 50 $\mu g/m^3$) (visits)	16	-	25	13	45	56	-	27	182
Estimated visits from 5-days impacts of PM_{10} change (baseline value 20 $\mu g/m^3$) (visits)	503	329	120	213	183	56	98	145	1,647

Table 4.7 Summary of estimated deaths, hospital admissions for respiratory and cardiovascular illness, and respiratory outpatient visits caused by average 5-days PM₁₀ increase after fires controlled both agricultural and forest around agricultural area 4 km to be no fire areas during 26 February to 1 March 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang,

Lamphun, Nan, Phayao and Phrae provinces

Lamphan, I van, I nayao and I mae provinces	Chiang Mai	Chiang Rai	Mae Hong Son	Lampang	Lamphun	Nan	Phayao	Phrae	Total
Number of population (persons)	1,655,640	1,200,423	244,356	756,811	404,673	447,193	488,120	457,607	5,654,823
Ranges of estimated PM_{10} during 5 days in the district scale ($\mu g/m^3$), results from air quality models	26 to 96	30 to 72	26 to 170	27 to 59	27 to 152	26 to 68	27 to 59	26 to 129	
Ranges of estimated PM_{10} during 5 days in the province scale ($\mu g/m3$), results from air quality models	35 to 43	36 to 43	32 to 41	35 to 63	32 to 57	28 to 46	31 to 41	33 to 50	
Estimated average 5-days PM_{10} of the province area ($\mu g/m^3$), results from air quality models	39	40	45	37	46	37	35	40	
PM_{10} change between estimated average 5-days PM_{10} and baseline value at 50 $\mu g/m^3$ ($\mu g/m^3$)	-11	-10	-5	-13	-4	-13	-15	-10	
PM_{10} change between estimated average 5-days PM_{10} and baseline value at $20~\mu g/m^3~(\mu g/m^3)$	19	20	25	17	26	17	15	20	
Estimated deaths from PM ₁₀ change									
Actually natural mortality rate (per 1,000 persons per year)	7.5	6.7	4.5	8.1	8.2	6.0	7.4	8.4	
% increased risk from estimated PM_{10} change and baseline value at $50~\mu g/m^3$	0	0	0	0	0	0	0	0	
% increased risk from estimated $PM_{10}change$ and baseline value at $20~\mu g/m^3$	2.48	2.62	3.28	2.22	3.42	2.22	1.96	2.62	
Estimated deaths from 5-days impacts of PM_{10} change (baseline value 50 $\mu g/m^3$) (persons)	0	0	0	0	0	0	0	0	0
Estimated deaths from 5-days impacts of PM_{10} change (baseline value $20~\mu g/m^3$) (persons)	4	3	-	2	2	1	1	1	14
Estimated hospital admissions of cardiovascular illness from PM ₁₀ change									
Actually cardiovascular hospital admission rate (per 1,000 persons per year)	36.0	28.0	16.0	38.4	27.6	44.3	33.2	36.4	
% increased risk from estimated $PM_{10}change$ and baseline value at $50~\mu g/m^3$	0	0	0	0	0	0	0	0	
% increased risk from estimated $PM_{10} change$ and baseline value at $20~\mu g/m^3$	1.74	1.83	2.29	1.55	2.38	1.55	2.37	1.83	
Estimated admissions from 5-days impacts of PM_{10} change (baseline value $50~\mu g/m^3$) (admissions)	0	0	0	0	0	0	0	0	0
Estimated admissions from 5-days impacts of PM_{10} change (baseline value $20~\mu g/m^3$) (admissions)	14	8	1	6	4	4	3	4	44
Estimated hospital admissions of respiratory illness from PM ₁₀ change									
Actually all respiratory hospital admission rate (per 1,000 persons per year)	31.2	25.3	26.7	29.6	25.4	33.7	28.0	25.6	
% increased risk from estimated $PM_{10} change$ and baseline value at $50~\mu g/m^3$	0	0	0	0	0	0	0	0	
% increased risk from estimated $PM_{10} change$ and baseline value at $20~\mu g/m^3$	2.37	2.5	3.13	2.12	3.26	2.12	1.87	2.5	
Estimated admissions from 5-days impacts of PM_{10} change (baseline value $50~\mu g/m^3$) (admissions)	0	0	0	0	0	0	0	0	0
Estimated admissions from 5-days impacts of PM_{10} change (baseline value $20~\mu g/m^3$) (admissions)	17	10	3	6	5	4	3	4	52
Estimated outpatient visits of respiratory illness from PM ₁₀ change									
Actually all respiratory outpatient visit rate (per 1,000 persons per year)	543.1	524.9	710.5	486.1	623.6	258.1	535.9	472.9	
% increased risk from estimated $PM_{10}change$ and baseline value at $50~\mu g/m^3$	0	0	0	0	0	0	0	0	
% increased risk from estimated $PM_{10}\text{change}$ and baseline value at $20~\mu\text{g}/\text{m}^3$	2.48	2.62	3.28	2.22	3.42	2.22	1.96	2.62	
Estimated visits from 5-days impacts of PM_{10} change (baseline value 50 $\mu g/m^3$) (visits)	0	0	0	0	0	35	0	0	35
Estimated visits from 5-days impacts of PM_{10} change (baseline value $20~\mu\text{g/m}^3$) (visits)	306	226	78	112	118	35	70	78	1,023

Generally, PM₁₀ from fires affected people's health through the fire season, February to April. Then death and illness numbers from fire impacts were estimated through this period. However, with the limitation of schedule of study time, regression line equations as shown in equation 4.9 and 4.10 (Wilks, 2006) were used to calculate the averaged PM₁₀ of every grid area in each province in the north of Thailand from 1 February to 30 April 2012. Equations were generated by using the relationship between 2 variables including hotspot numbers and simulated PM₁₀ concentrations during 26 February and 1 March 2012 which PM₁₀ concentration values were varied by X or numbers of hotspots.

$$y = a + bx, (4.9)$$

Where X is the independent variable (or numbers of hotspots) and Y is the dependent variable (or PM_{10} concentration), b is the slope of the line, and a is the intercept (see equation 4.10).

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}, \quad a = \overline{y} - b\overline{x}$$
 (4.10)

Data of hotspot numbers and PM_{10} concentrations for high, medium and low number of hotspots condition were taken from input data of hotspot numbers and output data of PM_{10} concentrations from three scenarios; actual fire events; fires controlled in agricultural area and forest areas within a range of 1 and fires controlled in agricultural area and forest areas within a range of 4 kilometres in the air quality model. Background PM_{10} (around 25 μ g/m³ for rural and 50 μ g/m³ for urban area) and nearby pollutants from other countries and provinces were included in PM_{10} concentrations for all scenarios and hotspot conditions. These values also were taken into account for PM_{10} concentration for fire events from 1 February to 30 April 2012. Results of regression line equations for each province are shown in Table 4.8 and Table 4.2.

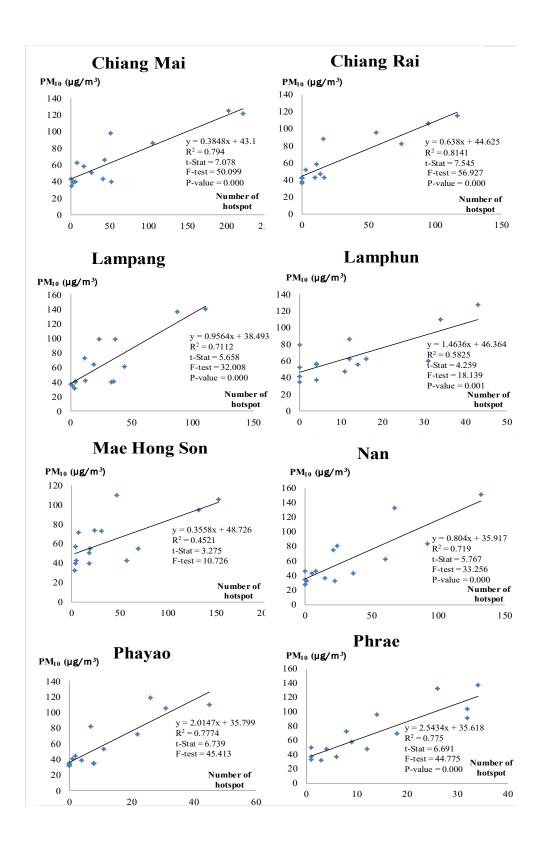

The coefficient of determination (R^2) is a parameter for testing the goodness of fit of the regression linier. R^2 results of hotspots and PM_{10} concentration of all provinces are more than 0.5 except Mae Hon Son province. This is acceptable for the strength of the relationship between PM_{10} concentrations and hotspots numbers that were more than 50%. In addition, the significance of the model can be determined by F-test. The model is significant when P-value in F-test is smaller than an alpha value(or the common significance F) at 0.05 (University of Tennessee Knoxville, 2016). The P-value less than 0.05 means the difference of hotspots numbers (x variable) influencing PM_{10} concentration values (y variable) with the linear relationship. Results of every regression analysis in this study (see Table 4.8) had the P-value less than 0.05.

Table 4.8 Regression line equations for estimating PM_{10} concentration for fire events from 1 February to 30 April 2012 generated by using 2 variables including hotspot numbers and simulated PM_{10} concentrations during 26 February and 1 March 2012

Province	Date	Number of hotspots grid area by air qua	 Averaged PM₁₀ concentred lity model 	ration (µg/m³) from all	Regression line equation		Regress	ion analysis	s
		High numbers of hotspots condition	Medium numbers of hotspots condition	Low numbers of hotspots condition	(y = PM ₁₀ concentration (μ g/m ³), x = number of hotspots)	Coefficient of determination (R ²)	t-Stat	F-test	Significance F (P –value)
Chiang Mai	26/02/2012	51/98.29	17/ 58.61	3/39.73	y = 0.3848x + 43.1	0.7940	7.078	50.099	0.000
	27/02/2012	105/85.94	26/50.31	3/38.91					
	28/02/2012	202/ 124.92	52/39.76	6/39.76					
	29/02/2012	43/65.85	8/62.74	1/34.86					
	01/03/2012	220/ 121.54	41/42.93	0/42.93					
Chiang Rai	26/02/2012 27/02/2012	16/ 88.31 75/ 82.12	3/ 52.13 14/ 47.19	0/ 37.62 0/ 36.34	y = 0.638x + 44.625	0.8141	7.545	56.927	0.000
	28/02/2012	95/ 106.36	10/43.1	0/ 43.1					
	29/02/2012	56/ 95.77	11/ 58.53	0/41.81					
	01/03/2012	117/ 115.53	17/ 42.81	0/ 42.81					
Lampang	26/02/2012	36/98.98	19/ 64.33	1/35.04	y = 0.9564x + 38.493	0.7112	5.658	32.008	0.000
	27/02/2012	44/61.55	12/41.98	3/31.55	•				
	28/02/2012	110/ 139.8	33/40.44	4/ 40.44					
	29/02/2012	23/99.16	11/72.59	0/ 37.45					
	01/03/2012	87/ 135.99	35/40.85	4/40.85					
Lamphun	26/02/2012	12/85.78	4/ 56.56	0/41.4	y = 1.4636x + 46.364	0.5825	4.259	18.139	0.001
	27/02/2012	31/59.68	11/46.86	4/ 36.92					
	28/02/2012	43/127.53	14/ 55.29	4/ 55.29					
	29/02/2012	0/ 52.35	0/79.35	0/34.8					
	01/03/2012	34/ 109.14	16/62.63	12/62.63					

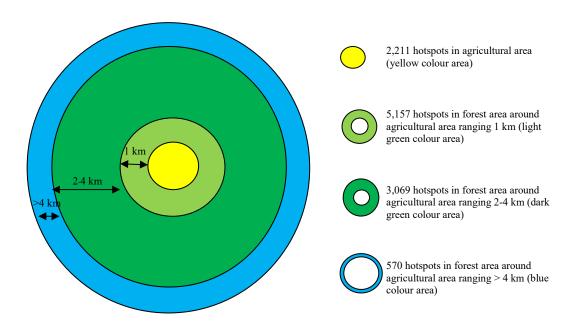
Chapter 4

Province	Date	Number of hotspots grid area by air qua	Averaged PM ₁₀ concentral Averaged PM ₁₀ concentrated with the second PM ₁₀ concentrated PM ₁₀ concent	ration (μg/m³) from all	Regression line equation $(y = PM_{10} \text{ concentration})$		Regress	ion analysi	s
		High numbers of hotspots condition	Medium numbers of hotspots condition	Low numbers of hotspots condition	$(\mu g/m^3)$, $x =$ number of hotspots)	Coefficient of determination (R ²)	t-Stat	F-test	Significance F (P –value)
Mae Hong Son	26/02/2012 27/02/2012	47/ 109.91 31/ 72.8	24/ 73.53 18/ 50.37	4/ 56.61 4/ 39.8	y = 0.3558x + 48.726	0.4521	3.275	10.726	0.006
	28/02/2012	132/ 94.65	57/ 42.64	5/ 42.64					
	29/02/2012	18/39.56	7/ 71.14	3/ 32.36					
	01/03/2012	152/ 105.34	69/ 54.74	19/ 54.74					
Nan	26/02/2012 27/02/2012	24/ 80.53 60/ 62.49	8/ 45.81 15/ 36.42	0/ 34.3 0/ 28.15	y = 0.804x + 35.917	0.7190	5.767	33.256	0.000
	28/02/2012	92/83.89	22/32.71	1/32.71					
	29/02/2012	67/ 132.35	21/75.34	0/46.09					
	01/03/2012	132/ 150.75	36/42.77	5/ 42.77					
Phayao	26/02/2012 27/02/2012	7/ 82.17 22/ 72.1	2/ 44.4 4/ 38.45	0/ 32.36 0/ 31.43	y = 2.0147x + 35.799	0.7774	6.739	45.413	0.000
	28/02/2012	45/ 109.75	8/ 35.67	0/35.67					
	29/02/2012	26/ 119.07	11/53.6	1/40.63					
	01/03/2012	31/105.62	8/ 34.26	0/34.26					
Phrae	26/02/2012 27/02/2012	14/ 96.03 32/ 104.4	9/ 58.09 18/ 69.46	1/ 33.17 3/ 32.51	y = 2.5434x + 35.618	0.7750	6.691	44.775	0.000
	28/02/2012	32/90.95	6/ 36.85	1/36.85					
	29/02/2012	26/ 132.08	8/72.98	1/50.12					
	01/03/2012	34/ 137.17	12/47.42	4/ 47.42					

Figure 4.2 Scatterplot graphs with trend line showing the relationship between hotspot numbers and simulated PM₁₀ concentrations during 26 February and 1 March 2012 and the square of the coefficient of determination (R²), t-stat, F-test, and P-value

To estimate health impacts from fires, all PM_{10} concentration values of provinces during 1 February to 30 April 2012 generated from regression equations were catalogued to the different range of pollutant levels; low, moderate, and very high by using Air Quality Index (AQI) (see Table 4.9). Generally, PM_{10} concentrations of AQI related the health impacts and activity suggestions as follows.

- Low and good: enjoy your usual outdoor activities,
- Moderate: enjoy your usual outdoor activities but some sensitive groups should consider not to do outdoor activities,
- High, very high and unhealthy: some groups should consider reducing activity, particularly outdoors


Table 4.9 The list of PM₁₀ concentrations range of Daily Air Quality Index (AQI) from Thailand, United Kingdom and United States including low, moderate, high and very high concentrations and people's health impacts (Pollution Control Department, 2016, Department for Environment Food & Rural Affairs, 2016, US EPA, 2016).

Level of Air Quality Index	Thailand PM ₁₀ (μg/m ³)	United Kingdom PM ₁₀ (μg/m ³)	United States PM ₁₀ (µg/m ³)	This study PM ₁₀ (μg/m³)
Low/ good	0-40	0-50	0-54	0-20 and 0-50
Moderate	41-120	51-75	55-154	21-75 and 51-75
High/ unhealthy	121-350	76-100	155-254	76-100
Very high/ unhealthy		>101	255-354	101-120 and >121
Very unhealthy	351-420		305-604	
Hazardous	>421		>605	


The ranges of pollutant levels for this study are shown in Table 4.9 by considering threshold values at 20 and 50 μ g/m³ for health impacts. The numbers of illness cases were estimated from the change of PM₁₀ concentration from base line value at 20 and 50 μ g/m³ to the average values of each range. The hotspots numbers were used to estimate the average values of PM₁₀ concentration during 1 February to 31 April 2016 via linear equations in Table 4.8. The actual hotspots in this period were taken from National Aeronautics and Space Administration (NASA) (2014). The numbers of hotspots in agricultural area and forest areas within a range of 1 and 4 kilometres were identified by the GIS program. There were 11,007 hotspots during 1 February to 30 April 2012. This includes hotspots in agricultural area at around 2,211 hotspots,

forest area around agricultural area ranging 1 km of about 5,157 hotspots, forest area around agricultural area ranging 2-4 km of about 3,069 hotspots, and forest area around agricultural area ranging > 4 km of about 570 hotspots (see Figure 4.3). The example of GIS results in Samoeng and Maewang districts of Chiang Mai are shown in Figure 4.4.

The average values of PM₁₀ concentration and the numbers of days for daily PM₁₀ average concentrations were calculated for three situations; actual fire events, fires controlled in agricultural and forest areas within a range of 1 and 4 kilometres as shown in Table 4.10, Table 4.11 and Table 4.12. The PM₁₀ from actual-fire situation was used all 11,007 hotspots for calculating the concentration. For the second situation, hot spot numbers of 3,069 and 570 in the forest area around agricultural area ranging 2-4 km and >4 km will be used as sources of PM₁₀ concentrations after fires controlled in agricultural and forest area within a range of 1 kilometre. The last situation, the hotspots number of 570 in the forest area around agricultural area ranging >4 km will be used as sources of PM₁₀ concentrations after fires controlled in agricultural and forest areas within a range of 4 kilometre.

Figure 4.3 The distribution of hotspots numbers in agricultural area, forest area around agricultural area ranging 1 km, 2-4 km and >4 km during 1 February to 30 April 2012.

Figure 4.4 The example of GIS results of hotspot-locations after fires controlled in agricultural area and forest areas within a range of 1 and 4 kilometres in Chiang Mai province during 1 February to 30 April 2012.

Table 4.10 The average values of PM₁₀ concentration from actual fire events and number of days for daily PM₁₀ average concentrations in Chiang Mai, Chiang Rai, Lampang, Lamphun, Mae Hong Son, Nan, Phayao and Phrae during 1 February to 30 April 2012.

Ranges of PM ₁₀ concentratio	Averageo	d daily PM ₁₀		n for each ran average conc	ge (µg/m³) / Nentrations	Number of	days for dai	ly PM ₁₀
n (μg/m³)	Chiang Mai	Chiang Rai	Lampang	Lamphun	Mae Hong Son	Nan	Phayao	Phrae
0-20	0	0	0	0	0	0	0	0
21-50	44/61	46/56	40/71	47/67	49/36	39/60	39/66	39/60
51-75	57/17	57/24	63/12	57/ 15	57/43	60/ 12	59/ 14	62/17
76-100	83/8	89/8	84/4	87/5	86/7	86/8	88/8	87/6
101-120	105/ 1	112/1	116/1	111/2	105/4	110/3	106/ 1	112/5
>121	123/3	0/0	133/2	146/ 1	0/0	146/7	126/ 1	134/ 2
Averaged PM ₁₀ / Total (days)	54/90	55/90	48/90	53/90	58/90	56/90	48/90	53/90

Table 4.11 The average values of PM₁₀ concentration after fires controlled in agricultural and forest areas within a range of 1 kilometre and number of days for daily PM₁₀ average concentrations in Chiang Mai, Chiang Rai, Lampang, Lamphun, Mae Hong Son, Nan, Phayao and Phrae during 1 February to 30 April 2012.

Ranges of PM ₁₀ concentration	11.01.05		10 concentration	average con	C (1 C)	. (41110 41 01	<i>aays 101 aa11</i>	<i>j</i> 11110
$(\mu g/m^3)$	Chiang Mai	Chiang Rai	Lampang	Lamphun	Mae Hong Son	Nan	Phayao	Phrae
0-20	0	0	0	0	0	0	0	0
21-50	44/ 74	45/78	40/78	47/72	49/48	38/74	38/80	38/72
51-75	58/ 16	55/ 12	58/9	59/ 16	56/39	62/14	61/10	59/ 17
76-100	0/0	0/0	83/3	91/2	78/3	83/2	0/0	84/ 1
101-120	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
>121	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
Averaged PM ₁₀ / Total (days)	46/90	46/90	43/90	50/90	53/90	43/90	41/90	43/90

Table 4.12 The average values of PM₁₀ concentration after fires controlled in agricultural and forest areas within a range of 4 kilometres and number of days for daily PM₁₀ average concentrations in Chiang Mai, Chiang Rai, Lampang, Lamphun, Mae Hong Son, Nan, Phayao and Phrae during 1 February to 30 April 2012.

Ranges of PM ₁₀ concentration	Averaged	l daily PM ₁₀ co		for each range erage concer	e (μg/m³) / Nu atrations	mber of c	lays for dail	y PM ₁₀
(μg/m³)	Chiang Mai	Chiang Rai	Lampang	Lamphun	Mae Hong Son	Nan	Phayao	Phrae
0-20	0	0	0	0	0	0	0	0
21-50	43/90	45/90	39/90	47/82	49/68	36/90	37/90	37/90
51-75	0/0	0/0	0/0	56/8	52/22	0/0	0/0	0/0
76-100	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
101-120	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
>121	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
Averaged PM ₁₀ / Total (days)	43/90	45/90	39/90	47/90	50/90	36/90	37/90	37/90

The average values of PM_{10} concentration and number of days for daily PM_{10} average from Table 4.10, Table 4.11 and Table 4.12 concentrations were used to estimate the mortality and illness cases. The actual fires during 1 February to 30 April 2012 may be causes of the mortality, respiratory and cardiovascular hospital admissions and respiratory outpatients as 100 persons, 331 and 382 admissions, and 7,689 outpatient visits for comparing with baseline value at 50 $\mu g/m^3$ and 435 persons, 1,401 and 1,645 admissions, and 31,039 outpatient visits for comparing with baseline value at 20 $\mu g/m^3$. The number of deaths and illnesses for each province are shown in Table 4.13. The total estimated number of mortality, respiratory and cardiovascular hospital admissions and respiratory outpatients before and after fire controlled are shown in Table 4.14 and Table 4.15.

After fire controlled in target areas including agricultural area and near agricultural areas within 1 km and 4 km, which were simulated as no fire areas by government measures, were calculated for the numbers of illness cases. The total estimated number of mortality, respiratory and cardiovascular hospital admissions and respiratory outpatients for 1 km fire controlled are 21 persons, 70 and 81 admissions, and 2,267 outpatient visits for comparing with baseline value at 50 μg/m³ and 337 persons, 1,074 and 1,265 admissions, and 24,306 outpatient visits for comparing with baseline value at 20 μg/m³. In addition, the total estimated number of mortality, respiratory and cardiovascular hospital admissions and respiratory outpatients for 4 km fire controlled are 1 persons, 2 and 3 admissions, and 664 outpatient visits for comparing with baseline

value at 50 μ g/m³ and 290 persons, 916 and 1,086 admissions, and 21,185 outpatient visits for comparing with baseline value at 20 μ g/m³. Results showed that Chiang Mai province had the greatest mortality and illness numbers following by Chiang Rai province both before and after fire controlled. These are related to population numbers in each province, of which Chiang Mai had the greater.

However, in the situation without a fire (hotspot number = 0) in the north of Thailand, the number of deaths and illnesses still occur comparing with baseline value at $20 \,\mu\text{g/m}^3$ as shown in Table 4.16. The background PM_{10} (average value for all area ~21 $\,\mu\text{g/m}^3$), transboundary PM_{10} from neighbouring countries and the lower part of Thailand are sources of PM_{10} as the variable 'a' value at 35.618 to 48.726 in the regression line equation y = a + bx (see Table 4.8).

 $\textbf{Table 4.13} \ \text{Summary of estimated deaths, hospital admissions for respiratory and cardiovascular illness, and respiratory outpatient visits caused by PM_{10} \ concentration increase from$

actual fires during 1 February to 30 April 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae provinces

Province	Number	Averaged PM ₁₀ in study area for each range (µg/m³)	PM ₁₀ increase (μg/m³) from baseline	Number of days for daily PM ₁₀ average concentrations	Actually natural mortality rate per 1,000 cases/year	New % increased risk from PM ₁₀ change	Estimated death numbers from PM ₁₀ change	Cardiovascular hospital admission rate per 1,000cases/ year	New % increased risk from PM ₁₀ change	Estimated cardiovascular hospital admissions from PM ₁₀ change	Respiratory hospital admission rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated respiratory hospital admissions from PM ₁₀ change	Respiratory outpatient visit rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated outpatient visits from PM ₁₀ change
				PM ₁₀ increase	from baseline	at 20 μg/m ³										
Chiang Mai	1,655,640	44	24	61	7.5	3.15	65	35.8	2.20	217	31.2	3.00	259	543.1	3.15	4,728
		57	37	17		4.90	28		3.41	94		4.67	112		4.90	2,049
		83	63	8		8.48	23		5.87	76		8.07	91		8.48	1,669
		105	85	1		11.60	4		8.00	13		11.04	16		11.60	286
		123	103	3		14.23	15		9.78	48		13.53	58		14.23	1,051
					Total		135			448			536			9,783
				PM ₁₀ increase	from baseline	at 50 μ g/m ³										
		57	7	17		0.91	5		0.64	18		0.87	21		0.91	380
		83	33	8		4.35	12		3.03	40		4.15	47		4.35	858
		105	55	1		7.36	3		5.11	8		7.01	10		7.36	181
		123	73	3		9.89	10		6.84	33		9.41	40		9.89	730
					Total		30			99			118			2,149
				PM ₁₀ increase												
Chiang Rai	1,200,423	46	26	56	6.7	3.42	42	28.1	2.38	123	25.3	3.26	152	524.9	3.42	3,2949
		57	37	24		4.90	26		3.41	75		4.67	93		4.90	2,027
		89	69	8		9.32	16		6.45	48		8.88	59		9.32	1,286
		112	92	1		12.62	3		8.69	8		12.01	10		12.62	218
					Total		87			254			314			6,830
				PM ₁₀ increase	from baseline	at 50 μ g/m ³										
		57	7	24		0.91	5		0.64	14		0.87	17		0.91	376
		89	39	8		5.17	9		3.60	27		4.92	33		5.17	713
		112	62	1		8.34	2		5.78	5		7.94	7		8.34	144
					Total		16			46			57			1,233

	Number of population	Averaged PM ₁₀ in study area for each range (µg/m³)	PM ₁₀ increase (μg/m³) from baseline	Number of days for daily PM ₁₀ average concentrations	Actually natural mortality rate per 1,000 cases/year	New % increased risk from PM ₁₀ change	Estimated death numbers from PM ₁₀ change	Cardiovascular hospital admission rate per 1,000cases/ year	New % increased risk from PM ₁₀ change	Estimated cardiovascular hospital admissions from PM ₁₀ change	Respiratory hospital admission rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated respiratory hospital admissions from PM ₁₀ change	Respiratory outpatient visit rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated outpatient visits from PM ₁₀ change
			PM ₁₀ inci	ease from baselin	e at 20 μg/m ³											
Lampang	756,811	40	20	71	8.1	2.62	31	38.4	1.83	104	29.6	2.50	109	486.1	2.62	1,871
		63	43	12		5.71	12		3.97	38		5.44	40		5.71	690
		84	64	4		8.62	6		5.97	19		8.21	20		8.62	347
		116	96	1		13.20	2		9.09	7		12.56	8		13.20	133
		133	113	2		15.71	5		10.78	17		14.94	18		15.71	317
					Total		56			185			195			3,358
			PM ₁₀ incr	ease from baselin	e at $50 \mu g/m^3$											
		63	13	12		1.69	3		1.18	11		1.61	12		1.69	205
		84	34	4		4.49	3		3.13	10		4.28	11		4.49	181
		116	66	1		8.90	2		6.16	5		8.47	5		8.90	89
		133	83	2		11.32	4		7.81	13		10.77	13		11.32	228
					Total		12			39			41			703
			PM ₁₀ inci	ease from baselin	e at 20 μg/m ³											
Lamphun	404,673	47	27	67	8.2	3.55	21	27.6	2.48	51	25.4	3.38	64	623.6	3.55	1,643
		57	37	15		4.90	7		3.41	16		4.67	20		4.90	507
		87	67	5		9.04	4		6.26	9		8.61	12		9.04	312
		111	91	2		12.47	2		8.59	5		11.87	6		12.47	173
		146	126	1		17.67	2		12.09	4		16.80	5		17.67	122
					Total		36			85			107			2,757
			PM ₁₀ incr	ease from baseling	e at 50 μg/m ³											
		57	7	15		0.91	1		0.64	3		0.87	4		0.91	94
		87	37	5		4.90	2		3.41	5		4.67	7		4.90	169
		111	61	2		8.20	2		5.68	3		7.81	4		8.20	114
		146	96	1		13.20	1		9.09	3		12.56	3		13.20	91
					Total		6			14			18			468

Province	Number of population	Averaged PM ₁₀ in study area for each range (µg/m³)	PM ₁₀ increase (μg/m³) from baseline	Number of days for daily PM ₁₀ average concentrations	Actually natural mortality rate per 1,000 cases/year	New % increased risk from PM ₁₀ change	Estimated death numbers from PM ₁₀ change	Cardiovascular hospital admission rate per 1,000cases/ year	New % increased risk from PM ₁₀ change	Estimated cardiovascular hospital admissions from PM ₁₀ change	Respiratory hospital admission rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated respiratory hospital admissions from PM ₁₀ change	Respiratory outpatient visit rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated outpatient visits from PM ₁₀ change
			PM ₁₀ incr	ease from baseline	at $20 \mu g/m^3$											
Mae Hong Son	244,356	49	29	36	4.5	3.82	4	16.1	2.66	10	26.7	3.64	23	710.5	3.82	653
		57	37	43		4.90	6		3.41	16		4.67	36		4.90	1,000
		86	66	7		8.90	2		6.16	5		8.47	11		8.90	296
		105	85	4		11.60	2		8.00	3		11.04	8		11.60	221
					Total		14			34			78			2,170
			PM ₁₀ incr	ease from baseline	e at 50 μg/m ³											
		57	7	43		0.91	1		0.64	3		0.87	6		0.91	186
		86	36	7		4.76	1		3.31	3		4.54	6		4.76	158
		105	55	4		7.36	1		5.11	2		7.01	5		7.36	140
					Total		3			8			17			484
			PM ₁₀ incr	ease from baseline	at 20 $\mu g/m^3$											
Nan	447,193	39	19	60	6.0	2.48	11	44.3	1.74	56	33.7	2.37	59	258.1	2.48	471
		60	40	12		5.30	5		3.69	24		5.05	25		5.30	201
		86	66	8		8.90	5		6.16	27		8.47	28		8.90	225
		110	90	3		12.33	3		8.49	14		11.73	15		12.33	117
		146	126	7		17.67	9		12.09	46		16.80	48		17.67	391
					Total		33			167			175			1,405
			PM ₁₀ incr	ease from baseline	e at $50 \mu g/m^3$											
		60	10	12		1.30	1		0.91	6		1.24	6		1.30	49
		86	36	8		4.76	3		3.31	14		4.54	15		4.76	120
		110	60	3		8.06	2		5.59	9		7.67	10		8.06	77
		146	96	7		13.20	7		9.09	35		12.56	36		13.20	292
					Total		13			64			67			538

Provinc e	Number of populatio n	Averaged PM ₁₀ in study area for each range (µg/m³)	PM ₁₀ increase (μg/m³) from baseline	Number of days for daily PM ₁₀ average concentrations	Actually natural mortality rate per 1,000 cases/year	New % increased risk from PM ₁₀ change	Estimated death numbers from PM ₁₀ change	Cardiovascula r hospital admission rate per 1,000cases/ year	New % increased risk from PM ₁₀ change	Estimated cardiovascula r hospital admissions from PM ₁₀ change	Respirator y hospital admission rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated respiratory hospital admissions from PM ₁₀ change	Respirator y outpatient visit rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated outpatient visits from PM ₁₀ change
		-	PM ₁₀ incr	ease from baseline	e at 20 μg/m ³											
Phayao	488,120	39	19	66	7.4	2.48	16	33.2	1.74	51	28	2.37	59	535.9	2.48	1,175
		59	39	14		5.17	7		3.60	22		4.92	26		5.17	518
		88	68	8		9.18	7		6.35	23		8.74	26		9.18	526
		106	86	1		11.75	1		8.10	4		11.18	4		11.75	84
		126	106	1		14.67	1		10.08	4		13.95	5		14.67	105
			PM ₁₀ incr	ease from baseline	Total		33			104			120			2,408
		59	9	14	at 50 µg m	1.17	1		0.82	5		1.12	6		1.17	117
		88	38	8		5.03	4		3.50	13		4.79	14		5.03	288
		106	56	1		7.50	1		5.20	2		7.15	3		7.50	54
		126	76	1		10.31			7.13	3		9.82	4		10.31	74
					Total		7			23			27			533
			PM ₁₀ incr	ease from baseline	e at 20 μg/m ³											
Phrae	457,607	39	19	60	8.4	2.48	15	36.4	1.74	47	25.6	2.37	46	472.9	2.48	883
		62	42	17		5.57	10		3.88	30		5.31	29		5.57	562
		87	67	6		9.04	6		6.26	17		8.61	16		9.04	321
		112	92	5		12.62	7		8.69	20		12.01	19		12.62	374
		134	114	2		15.86	3		10.88	10		15.08	10		15.86	188
			PM ₁₀ incr	ease from baseline	Total e at 50 µg/m ³		41			124			120			2,328
		62	12	17		1.56	3		1.09	9		1.49	8		1.56	157
		87	37	6		4.90	3		3.41	9		4.67	9		4.90	174
		112	62	5		8.34	4		5.78	13		7.94	13		8.34	247
		134	84	2		11.46	3		7.91	7		10.91	7		11.46	136
					Total		13			38			37			714

Table 4.14 Summary of estimated deaths, hospital admissions for respiratory and cardiovascular illness, and respiratory outpatient visits caused by PM₁₀ concentration increase after government intervention by fires controlled in agricultural and forest areas within a range of 1 km during 1 February to 30 April 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae provinces

Province	Number of population	Averaged PM ₁₀ in study area for each range (µg/m³)	PM ₁₀ increase (μg/m³) from baseline	Number of days for daily PM ₁₀ average concentrations	Actually natural mortality rate per 1,000 cases/year	New % increased risk from PM ₁₀ change	Estimated death numbers from PM ₁₀ change	Cardiovascular hospital admission rate per 1,000cases/ year	New % increased risk from PM ₁₀ change	Estimated cardiovascular hospital admissions from PM ₁₀ change	Respiratory hospital admission rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated respiratory hospital admissions from PM ₁₀ change	Respiratory outpatient visit rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated outpatient visits from PM ₁₀ change
			PM ₁₀ incr	ease from baseline	e at 20 μg/m ³											
Chiang Mai	1,655,640	44	24	74	7.5	3.15	79	35.8	2.20	264	31.2	3.00	314	543.1	3.15	5,736
Iviai		58	38	16		5.03	28		3.50	91		4.79	109		5.03	1,981
					Total		107			355			423			7,717
			PM ₁₀ incr	ease from baseline	e at 50 μg/m ³											
		58	8	16		1.04	6		0.73	19		0.99	22		1.04	409
					Total		6			19			22			409
			PM ₁₀ incr	ease from baseline	e at 20 μg/m ³											
Chiang Rai	1,200,423	45	25	78	6.7	3.28	57	28.1	2.29	165	25.3	3.13	203	524.9	3.28	4,416
Kai		55	35	12		4.62	12		3.22	36		4.41	44		4.62	9567
					Total		69			201			247			5,373
			PM ₁₀ incr	ease from baseline	e at $50 \mu g/m^3$											
		55	5	12		0.65	2		0.45	5		0.62	6		0.65	134
					Total		2			5			6			134
			PM ₁₀ incr	ease from baseline	e at $20 \mu g/m^3$											
Lampang	756,811	40	20	78	8.1	2.62	34	38.4	1.83	114	29.6	2.50	119	486.1	2.62	2,056
		58	38	9		5.03	8		3.50	25		4.79	27		5.03	456
		83	63	3		8.48	4		5.87	14		8.07	15		8.48	256
					Total		46			153			161			2,768
			PM ₁₀ incr	ease from baseline	e at $50 \mu g/m^3$											
		58	8	9		1.04	2		0.73	5		0.99	5		1.04	94
		83	33	3		4.35	2		3.03	7		4.15	8		4.35	132
					Total		4			12			13			226

Province	Number of population	Averaged PM ₁₀ in study area for each range (µg/m³)	PM ₁₀ increase (µg/m³) from baseline	Number of days for daily PM ₁₀ average concentrations	Actually natural mortality rate per 1,000 cases/year	New % increased risk from PM ₁₀ change	Estimated death numbers from PM ₁₀ change	Cardiovascular hospital admission rate per 1,000cases/ year	New % increased risk from PM ₁₀ change	Estimated cardiovascular hospital admissions from PM ₁₀ change	Respiratory hospital admission rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated respiratory hospital admissions from PM ₁₀ change	Respiratory outpatient visit rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated outpatient visits from PM ₁₀ change
			PM ₁₀ incr	ease from baseline	e at 20 μg/m ³											
Lamphun	404,673	47	27	72	8.2	3.55	23	27.6	2.48	54	25.4	3.38	69	623.6	3.55	1,765
		59	39	16		5.17	7		3.60	18		4.92	22		5.17	571
		91	71	2		9.60	2		6.64	4		9.14	5		9.60	133
					Total		32			76			36			2,469
				ease from baseline	e at $50 \mu g/m^3$											
		59	9	16		1.17	2		0.82	4		1.12	5		1.17	129
		91	41	2		5.44	1		3.78	2		5.18	3		5.44	75
			D) ('	0 1 1	Total		3			6			8			204
Mae		49	PM ₁₀ incr 29	rease from baseline 48	e at 20 μg/m ³ 4.5	3.82	5	16.1	2.66	13	26.7	3.64	31	710.5	3.82	871
Mae Hong Son	244,356	56	36	39	4.5	4.76	6	10.1	3.31	14	20.7	4.54	32	710.5		882
		78	58	3		7.78	1		5.39	2		7.41	4		4.76 7.78	111
		76	30	3	Total	7.76			5.59	29		7.41			7.76	1,814
			PM ₁₀ incr	ease from baseline			12			29			67			1,814
		56	6	39		0.78	1		0.55	0		0.74	5		0.78	144
		78	28	3		3.68	0		2.57	0		3.51	2		3.68	53
					Total		1			0			7			197
				ease from baseline												
Nan	447,193	38	18	74	6.0	2.35	13	44.3	1.64	66	33.7	2.24	68	258.1	2.35	550
		62	42	14		5.57	6		3.88	30		5.31	31		5.57	247
		83	63	2		8.48	1		5.87	6		8.07	7		8.48	53
			D) ('	C 1 1	Total		20			102			106			850
		62	PM ₁₀ incr 12	rease from baseline	at 50 μg/m ³	1.56	1		1.09	9		1.49	9		1.56	69
		83	33	2		4.35	1		3.03	3		4.15	3		4.35	28
		0.5	33	<u>~</u>		7.33			5.05			7.13			4.55	
					Total		2			12			12			97

Province	Number of population	Averaged PM ₁₀ in study area for each range (µg/m³)	PM ₁₀ increase (μg/m³) from baseline	Number of days for daily PM ₁₀ average concentrations	Actually natural mortality rate per 1,000 cases/year	New % increased risk from PM ₁₀ change	Estimated death numbers from PM ₁₀ change	Cardiovascular hospital admission rate per 1,000cases/ year	New % increased risk from PM ₁₀ change	Estimated cardiovascular hospital admissions from PM ₁₀ change	Respiratory hospital admission rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated respiratory hospital admissions from PM ₁₀ change	Respiratory outpatient visit rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated outpatient visits from PM ₁₀ change
				ease from baseline												
Phayao	488,120	38	18	80	7.4	2.35	19	33.2	1.64	58	28.0	2.24	67	535.9	2.35	1,348
		61	41	10		5.44	5		3.78	17		5.18	20		5.44	389
					Total		24			75			87			1,737
			PM ₁₀ incr	ease from baseline	e at 50 μg/m ³											
		61	11	10		1.43	1		1.00	4		1.36	5		1.43	102
					Total		1			4			5			102
			PM ₁₀ incr	ease from baseline	e at 20 μg/m ³											
Phrae	457,607	38	18	72	8.4	2.35	18	36.4	1.64	54	25.6	2.24	52	472.9	2.35	1,004
		59	39	17		5.17	9		3.60	28		4.92	27		5.17	520
		84	64	1		8.62	1		5.97	3		8.21	2		8.62	51
					Total		28			85			81			1,575
			PM ₁₀ incr	ease from baseline	e at 50 μg/m ³											
		59	9	17		1.17	2		0.82	6		1.12	6		1.17	118
		84	34	1		4.49	1		3.13	2		4.28	1		4.49	26
					Total		3			8			7			144

Table 4.15 Summary of estimated deaths, hospital admissions for respiratory and cardiovascular illness, and respiratory outpatient visits caused by PM₁₀ concentration increase after government intervention by fires controlled in agricultural and forest areas within a range of 4 km from actual fires during 1 February to 30 April 2012 in Chiang Mai, Chiang Rai, Mae

Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae provinces

Province	Number of population	Averaged PM ₁₀ in study area for each range (µg/m³)	PM ₁₀ increase (μg/m³) from baseline	Number of days for daily PM ₁₀ average concentrations	Actually natural mortality rate per 1,000 cases/year	New % increased risk from PM ₁₀ change	Estimated death numbers from PM ₁₀ change	Cardiovascular hospital admission rate per 1,000cases/ year	New % increased risk from PM ₁₀ change	Estimated cardiovascular hospital admissions from PM ₁₀ change	Respiratory hospital admission rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated respiratory hospital admissions from PM ₁₀ change	Respiratory outpatient visit rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated outpatient visits from PM ₁₀ change
			PM ₁₀ incr	ease from baseline												
Chiang Mai	1,655,640	43	23	90	7.5	3.02	92	35.8	2.11	307	31.2	2.88	366	543.1	3.02	6,681
			PM ₁₀ incr	ease from baseline												
Chiang Rai	1,200,423	45	25	90	6.7	3.28	65	28.1	2.29	190	25.3	3.13	234	524.9	3.28	5,095
				ease from baseline												
Lampang	756,811	39	19	90	8.1	2.48	38	38.4	1.74	124	29.6	2.37	131	486.1	2.48	2,252
				rease from baselin												
Lamphun	404,673	47	27	82	8.2	3.55	26	27.6	2.48	62	25.4	3.38	78	623.6	3.55	2,011
		56	36	8	Total	4.76	4 30		3.31	8 70		4.54	10 88		4.76	263 2,274
			PM ₁₀ inc	rease from baselin			30			70			00			2,274
		56	6	8		0.78	1		0.55	1		0.74	2		0.78	43
			PM ₁₀ inc	rease from baselin	e at 20 μg/m ³											
Mae Hong	244,356	49	29	68	4.5	3.82	8	16.1	2.66	19	26.7	3.64	44	710.5	3.82	1,234
Son		52	32	22		4.22	3		2.94	7		4.02	16		4.22	441
			D) ('		Total		11			26			60			1,675
				rease from baselin	e at 50 μg/m ³				0.40							
		52	2	22		0.26	0		0.18	0		0.25	1		0.26	27
N	447.102	26		rease from baselin		2.00	1.4	44.2	1.46	71	22.7	1.00	7.4	250.1	2.00	504
Nan	447,193	36	16	90	6.0	2.09	14	44.3	1.46	71	33.7	1.99	74	258.1	2.09	594
DI	400 100	27	10	rease from baselin		2.22	20	22.2	1.55	(2)	20.0	2.12	71	525.0	2.22	1 421
Phayao	488,120	37	17	90		2.22	20	33.2	1.55	62	28.0	2.12	71	535.9	2.22	1,431
			PM ₁₀ inc	rease from baselin	e at 20 μg/m ³											
Phrae	457,607	37	17	90	8.4	2.22	21	36.4	1.55	64	25.6	2.12	61	472.9	2.22	1,184

Table 4.16 Summary of estimated deaths, hospital admissions for respiratory and cardiovascular illness, and respiratory outpatient visits caused by PM₁₀ concentration increase for the no-fire situation during 1 February to 30 April 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae provinces

Province	Number of population	Averaged PM ₁₀ in study area for each range (µg/m³)	PM ₁₀ increase (μg/m³) from baseline	Number of days for daily PM ₁₀ average concentrations	Actually natural mortality rate per 1,000 cases/year	New % increased risk from PM ₁₀ change	Estimated death numbers from PM ₁₀ change	Cardiovascular hospital admission rate per 1,000cases/ year	New % increased risk from PM ₁₀ change	Estimated cardiovascular hospital admissions from PM ₁₀ change	Respiratory hospital admission rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated respiratory hospital admissions from PM ₁₀ change	Respiratory outpatient visit rate per 1,000 cases/ year	New % increased risk from PM ₁₀ change	Estimated outpatient visits from PM ₁₀ change
			PM ₁₀ incr	ease from baseline	e at 20 μg/m ³											
Chiang Mai	1,655,640	43.1	23.1	90	7.5	3.02	92	35.8	2.11	307	31.2	2.88	366	543.1	3.02	6,681
Chiang Rai	1,200,423	44.6	24.6	90	6.7	3.23	64	28.1	2.25	187	25.3	3.08	230	524.9	3.23	5,012
Lampang	756,811	38.5	18.5	90	8.1	2.42	37	38.4	1.69	121	29.6	2.31	127	486.1	2.42	2,192
Lamphun	404,673	46.4	26.4	90	8.2	3.47	26	27.6	2.42	61	25.4	3.31	76	623.6	3.47	1,965
Mae Hong	244,356	48.7	28.7	90	4.5	3.78	8	16.1	2.63	19	26.7	3.60	44	710.5	3.78	1,221
Son Nan	447,193	35.9	15.9	90	6.0	2.07	14	44.3	1.45	71	33.7	1.98	73	258.1	2.07	590
Phayao	488,120	35.8	15.8	90	7.4	2.06	18	33.2	1.44	58	28.0	1.97	66	535.9	2.06	1,329
Phrae	457,607	35.6	15.6	90	8.4	2.04	19	36.4	1.42	58	25.6	1.94	56	472.9	2.04	1,085

4.2.2 The values of health effects from PM₁₀

Economic valuation methods for health impacts from fires can be estimated in terms of mortality and morbidity. The most practical method for the valuation of mortality is the Value of Statistical Life (VSL). VSL is based on willingness-to-pay (WTP) to reduce the risk of mortality. The benefit transfer value from other countries could be applied for Thailand study area by an equation (Reinhardt et al., 2010). The different year of the reference country was adjusted by the PPP increased per year.

Value (Thailand) = Value (Reference country)
$$x$$
 ((PPP Thailand/PPP Reference country) γ) (4.11)

Where PPP is the gross national income (GNI) per capita adjusted for purchasing power parity, and γ is the income elasticity, = 1.0 for the central and low estimation.

Vassanadumrongdee and Matsuoka (2005) have shown the average value of WTP to reduce mortality risk arising from air pollution by contingent valuation (CV) surveys in Bangkok at \$1.03 million (\$0.74 to \$1.32 million) in year 2003. This value can be adjusted for year 2012 at around \$2.55 million by using Thai GDP. The value is similar to that estimated by Kochi (2010) of \$2.21 million. Therefore, the cost of mortality and morbidity as shown in Table 4.17, adjusted from US EPA study by Kochi (2010), were used to estimate the health impact costs. All cost values by Kochi (2010) were based on WTP. The per-unit cost of premature mortality by US EPA is measured by VSL, which based on willingness to pay to save lives. For the estimated per-unit cost of morbidity, the US EPA used the contingent valuation (CV) or conventional cost of illness (COI) method. The CV method is based on WTP to prevent an adverse health outcome while the individual COI was converted to WTP using a WTP/COI ratio. However, these values were based on the United States economy. The Gross Domestic Product (GDP) per capita and GDP per capita based on purchasing power parity (PPP) are used to convert the value from the reference country for Thai study area. The PPP GDP per capita of Thai people in year 2012 are 13,983.4 US\$ whereas the United States is 51,495.9 The ratio value, 0.2715 is used to estimate for the base year costs including the value 1.56 of the averaged inflation per year between 2007 to 2012 (World Bank, 2015).

Table 4.17 The per-unit cost of mortality and morbidity by the US EPA (1999) adjusted to year 2007 level by Kochi et al. (2010) and applied to Thai people values by using GDP.

	US EPA value (US\$ 2007)	US EPA value (US\$ 2012)	Thai value in US\$ 2012 (by PPP GDP and inflation, 2007 prices)	Thai value (by GDP PPP) (US\$ 2012)
Mortality	\$7,600,000	\$ 8,143,400	\$2,046,134	\$2,210,933
Hospital admissions				
All respiratory	\$10,971	\$ 11,755	\$2,954	\$3,192
All cardiovascular	\$15,105	\$ 16,185	\$4,066	\$4,394
Emergency department visits for asthma Respiratory illness and symptoms (outpatients)	\$308	\$330	\$83	\$90
Acute bronchitis	\$71	\$76	\$19	\$21
Asthma attack or moderate or worse asthma day	\$50	\$54	\$14	\$15
Acute respiratory symptoms	\$28	\$30	\$7	\$8
Upper respiratory symptoms	\$30	\$32	\$8	\$9
Lower respiratory symptoms	\$19	\$20	\$5.6	\$6
Shortness of breath, chest tightness or wheeze	\$8	\$9	\$2.1	\$2.3
The average of Respiratory illness	\$34	\$37	\$9	\$10
and symptoms cost Work days loss	\$131	\$140	\$35	\$38
Mild restricted-activity days	\$60	\$64	\$16	\$17

4.2.3 The economic losses of health effects from PM₁₀

The mortality and hospital admissions of all respiratory and cardiovascular diseases, respiratory outpatients, and loss of work days were taken into account for health impact values in this study. Respiratory outpatients including acute bronchitis, asthma attack, acute respiratory symptoms, upper and lower respiratory symptoms, shortness of breath, and chest tightness or wheeze were accounted by using the values from the emergency department (ED) and the average cost for respiratory illness and symptoms. The health impact costs by PM₁₀ change in each area were calculated as follows:

Value of health impact from PM₁₀ change = (Number of mortalities x \$2,210,933) + (Number of respiratory hospital admissions x \$3,192) + (Number of cardiovascular hospital admissions x \$4,394) + (Number of respiratory outpatient visits x \$10) + (Number of respiratory and cardiovascular hospital admissions, and outpatient visits x \$38)

If the PM₁₀ concentration average in Chiang Mai reached 102 μ g/m³ during 26th February to 1st March 2012, health impacts caused by PM₁₀ increase from base line at 50 μ g/m³ including mortalities, respiratory and cardiovascular hospital admissions, and respiratory outpatient visits will be 12 persons, 39 and 47 admissions, and 855 visits (see Table 4.5). The value of health impacts with PM₁₀ base line at 50 μ g/m³ are estimated from equation (4.12) as (12 x \$2,210,933) + (47 x \$3,192) + (39 x \$4,394) + (855 x \$10) + ((39+47+855) x 38)) = \$26,896,894 for 5-days impact value or \$26,896,894/5 = \$5,379,379 for averaged 1-day value in Chiang Mai province. For PM₁₀ base line at 20 μ g/m³, the values of health impacts are estimated as (19 x \$2,210,933) + (75 x \$3,192) + (63 x \$4,394) + (1,375 x \$10) + ((19 + 75 + 1,375) x 38)) = \$42,595,193 for 5-days impact value or \$42,595,193/5 = \$8,519,038 for averaged 1-day value. In summary, the total estimated cost of mortality, respiratory and cardiovascular hospital admissions and respiratory outpatients from 5-days impact in the study area are \$85,152,104 by the baseline value at 50 μ g/m³ and \$138,918,404 by the baseline value at 20 μ g/m³ (see Table 4.18).

The economic losses from health impacts of 5-days fire impacts were \$85,152,104 by the baseline value at 50 μ g/m³ and \$138,918,404 by the baseline value 20 μ g/m³. The values of health impact after controlling fires both agricultural and forests around agricultural area were calculated (see Table 4.19 and Table 4.20). After controlling fires both agricultural and forests around agricultural area 1 km, the total estimated cost of mortality, respiratory and cardiovascular hospital admissions and respiratory outpatients from 5-days impact in the study area were \$2,256,815 by the baseline value at 50 μ g/m³ and \$51,533,109 by the baseline value at 20 μ g/m³. For 4-km fire-controlled area, the value of 5-days impacts in the study area were \$1,681 by the baseline value at 50 μ g/m³ and \$31,365,210 by the baseline value at 20 μ g/m³.

Table 4.18 Summary of costs for deaths, hospital admissions for respiratory and cardiovascular illness, and respiratory outpatient visits caused by average 5-days PM₁₀ increase from fires during 26 February to 1 March 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae provinces

	Chiang Mai	Chiang Rai	Mae Hong Son	Lampang	Lamphun	Nan	Phayao	Phrae	Total
Cost from PM_{10} change compared with PM_{10} base line at 50 $\mu g/m^3$									
- Estimated deaths from 5-days impacts of PM ₁₀ change (persons)	12	7	1	5	2	3	3	5	38
Statistic value of life (per person = US\$ 2,210,933) (US\$)	26,531,196	15,476,531	2,210,933	11,054,665	4,421,866	6,632,799	6,632,799	11,054,665	84,015,454
- Estimated cardiovascular hospital admissions from 5-days impacts of PM_{10} change (admissions)	39	21	3	17	5	13	10	15	123
Cost of cardiovascular hospital admission (per admission = US\$ 4,394) (US\$)	171,366	92,274	13,182	74,698	21,970	57,122	43,940	65,910	540,462
- Estimated respiratory hospital admissions from 5-days impacts of PM_{10} change (admissions)	47	26	7	17	6	14	11	14	142
Cost of respiratory hospital admission (per admission = US\$ 3,192) (US\$)	150,024	82,992	22,344	54,264	19,152	44,688	35,112	44,688	453,264
- Estimated outpatient visits from 5-days impacts of PM ₁₀ change (visits)	855	575	195	301	164	177	224	276	2,767
Cost of outpatient visits for respiratory illness (per visit = US\$ 10) (US\$)	8,550	5,750	1,950	3,010	1,640	1,770	2,240	2,760	27,670
- Estimated number of respiratory and cardiovascular hospital admission, and outpatient visits	941	623	205	335	176	203	245	305	3,033
Cost of work days loss (per illness case = US\$ 38) (US\$)	35,758	23,674	7,790	12,730	6,688	7,714	9,310	11,590	115,254
Total cost (US\$)	26,896,894	15,681,221	2,256,199	11,199,367	4,471,316	6,744,093	6,723,401	11,179,613	85,152,104
Cost PM_{10} change compared with PM_{10} base line at 20 $\mu g/m^3$									
- Estimated deaths from 5-days impacts of PM ₁₀ change (persons)	19	12	2	9	4	4	5	7	62
Statistic value of life (per person = US\$ 2,210,933) (US\$)	42,007,727	26,531,196	4,421,866	19,898,397	8,843,732	8,843,732	11,054,665	15,476,531	137,077,846
- Estimated cardiovascular hospital admissions from 5-days impacts of PM_{10} change (admissions)	63	35	5	28	9	21	16	21	198
Cost of cardiovascular hospital admission (per admission = US\$ 4,394) (US\$)	276,822	153,790	21,970	123,032	39,546	92,274	70,304	92,274	870,012
- Estimated respiratory hospital admissions from 5-days impacts of PM_{10} change (admissions)	75	43	11	30	12	22	19	21	233
Cost of respiratory hospital admission (per admission = US\$ 3,192) (US\$)	239,400	137,256	35,112	95,760	38,304	70,224	60,648	67,032	743,736
- Estimated outpatient visits from 5-days impacts of PM ₁₀ change (visits)	1,375	939	296	512	307	177	374	404	4,384
Cost of outpatient visits for respiratory illness (per visit = US\$ 10) (US\$)	13,750	9,390	2,960	5,120	3,070	1,770	3,740	4,040	43,840
- Estimated number of respiratory and cardiovascular hospital admission, and outpatient visits	1,513	1,017	312	570	329	219	409	446	4,815
Cost of work days loss (per illness case = US\$ 38) (US\$)	57,494	38,646	11,856	21,660	12,502	8,322	15,542	16,948	182,970
Total cost (US\$)	42,595,193	26,870,278	4,493,764	20,143,969	8,937,154	9,016,322	11,204,899	15,656,825	138,918,404

Table 4.19 Summary of costs for deaths, hospital admissions for respiratory and cardiovascular illness, and respiratory outpatient visits caused by average 5-days PM10 increase from after fires controlled both agricultural and forest around agricultural area 1 km to be no fire areas during 26 February to 1 March 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae provinces

	Chiang Mai	Chiang Rai	Mae Hong Son	Lampang	Lamphun	Nan	Phayao	Phrae	Total
Cost from PM_{10} change compared with PM_{10} base line at 50 $\mu g/m^3$									
- Estimated deaths from 5-days impacts of PM_{10} change (persons)	0	0	0	0	1	0	0	0	1
Statistic value of life (per person = US\$ 2,210,933) (US\$)	0	0	0	0	2,210,933	0	0	0	2,210,933
- Estimated cardiovascular hospital admissions from 50 days impacts of PM_{10} change (admissions)	1	0	0	1	1	0	0	1	4
Cost of cardiovascular hospital admission (per admission = US\$ 4,394) (US\$)	4,394	0	0	4,394	4,394	0	0	4,394	17,576
- Estimated respiratory hospital admissions from 50 days impacts of PM_{10} change (admissions)	1	0	1	1	2	0	0	1	6
Cost of respiratory hospital admission (per admission = US\$ 3,192) (US\$)	3,192	0	3,192	3,192	6,384	0	0	3,192	19,152
- Estimated outpatient visits from 50days impacts of PM_{10} change (visits)	16	0	25	13	45	56	0	27	182
Cost of outpatient visits for respiratory illness (per visit = US\$ 10) (US\$)	160	0	250	130	450	560	0	270	1,820
- Estimated number of respiratory and cardiovascular hospital admission, and outpatient visits	18	0	26	15	48	56	0	30	193
Cost of work days loss (per illness case = US\$ 38) (US\$)	684	0	988	570	1,824	2,128	0	1,140	7,334
Total cost (US\$)	8,430	0	4,430	8,286	2,223,985	2,688	0	8,996	2,256,815
Cost PM_{10} change compared with PM_{10} base line at 20 $\mu g/m^3$									
- Estimated deaths from 50days impacts of PM ₁₀ change (persons)	7	4	1	4	2	1	1	3	23
Statistic value of life (per person = US\$ 2,210,933) (US\$)	15,476,531	8,843,732	2,210,933	8,843,732	4,421,866	2,210,933	2,210,933	6,632,799	50,851,459
- Estimated cardiovascular hospital admissions from 50 days impacts of PM_{10} change (admissions)	23	12	2	12	6	7	4	8	74
Cost of cardiovascular hospital admission (per admission = US\$ 4,394) (US\$)	101,062	52,728	8,788	52,728	26,364	30,758	17,576	35,152	325,156
- Estimated respiratory hospital admissions from 50 days impacts of PM_{10} change (admissions)	28	15	4	12	7	7	5	7	85
Cost of respiratory hospital admission (per admission = US\$ 3,192) (US\$)	89,376	47,880	12,768	38,304	22,344	22,344	15,960	22,344	271,320
- Estimated outpatient visits from 50days impacts of PM_{10} change (visits)	503	329	120	213	183	56	98	145	1,647
Cost of outpatient visits for respiratory illness (per visit = US\$ 10) (US\$)	5,030	3,290	1,200	2,130	1,830	560	980	1,450	16,470
- Estimated number of respiratory and cardiovascular hospital admission, and outpatient visits	554	357	126	237	196	70	108	160	1,808
Cost of work days loss (per illness case = US\$ 38) (US\$)	21,052	13,566	4,788	9,006	7,448	2,660	4,104	6,080	68,704
Total cost (US\$)	15,693,051	8,961,196	2,238,477	8,945,900	4,479,852	2,267,255	2,249,553	6,697,825	51,533,109

Table 4.20 Summary of costs for hospital admissions for respiratory and cardiovascular illness, and respiratory outpatient visits caused by average 5-days PM₁₀ increase from after fires controlled both agricultural and forest around agricultural area 4 km to be no fire areas during 26 February to 1 March 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae provinces

	Chiang Mai	Chiang Rai	Mae Hong Son	Lampang	Lamphun	Nan	Phayao	Phrae	Total
Cost from PM_{10} change compared with PM_{10} base line at 50 $\mu g/m^3$									
- Estimated deaths from 50days impacts of PM ₁₀ change (persons)	0	0	0	0	0	0	0	0	0
Statistic value of life (per person = US\$ 2,210,933) (US\$)	0	0	0	0	0	0	0	0	0
- Estimated cardiovascular hospital admissions from 50 days impacts of PM_{10} change (admissions)	0	0	0	0	0	0	0	0	0
Cost of cardiovascular hospital admission (per admission = US\$ 4,394) (US\$)	0	0	0	0	0	0	0	0	0
- Estimated respiratory hospital admissions from 50days impacts of PM_{10} change (admissions)	0	0	0	0	0	0	0	0	0
Cost of respiratory hospital admission (per admission = US\$ 3,192) (US\$)	0	0	0	0	0	0	0	0	0
- Estimated outpatient visits from 50days impacts of PM_{10} change (visits)	0	0	0	0	0	35	0	0	35
Cost of outpatient visits for respiratory illness (per visit = US\$ 10) (US\$)	0	0	0	0	0	350	0	0	350
- Estimated number of respiratory and cardiovascular hospital admission, and outpatient visits	0	0	0	0	0	35	0	0	35
Cost of work days loss (per illness case = US\$ 38) (US\$)	0	0	0	0	0	1,330	0	0	1,330
Total cost (US\$)	0	0	0	0	0	1,680	0	0	1,680
Cost PM_{10} change compared with PM_{10} base line at 20 $\mu g/m^3$									
- Estimated deaths from 50days impacts of PM ₁₀ change (persons)	4	3	0	2	2	1	1	1	14
Statistic value of life (per person = US\$ 2,210,933) (US\$)	8,843,732	6,632,799	0	4,421,866	4,421,866	2,210,933	2,210,933	2,210,933	30,953,062
- Estimated cardiovascular hospital admissions from 50 days impacts of PM_{10} change (admissions)	14	8	1	6	4	4	3	4	44
Cost of cardiovascular hospital admission (per admission = US\$ 4,394) (US\$)	61,516	35,152	4,394	26,364	17,576	17,576	13,182	17,576	193,336
- Estimated respiratory hospital admissions from 50 days impacts of PM_{10} change (admissions)	17	10	3	6	5	4	3	4	52
Cost of respiratory hospital admission (per admission = US\$ 3,192) (US\$)	54,264	31,920	9,576	19,152	15,960	12,768	9,576	12,768	165,984
- Estimated outpatient visits from 50days impacts of PM_{10} change (visits)	306	226	78	112	118	35	70	78	1,023
Cost of outpatient visits for respiratory illness (per visit = US\$ 10) (US\$)	3,060	2,260	780	1,120	1,180	350	700	780	10,230
- Estimated number of respiratory and cardiovascular hospital admission, and outpatient visits	337	245	82	124	126	44	77	86	1,121
Cost of work days loss (per illness case = US\$ 38) (US\$)	12,806	9,310	3,116	4,712	4,788	1,672	2,926	3,268	42,598
Total cost (US\$)	8,975,378	6,711,441	17,866	4,473,214	4,461,370	2,243,299	2,237,317	2,245,325	31,365,210

The economic losses from health impacts through the fire season from 1 February to 30 April 2012 were \$224,163,186 by the baseline value at 50 μ g/m³ and \$974,768,271 by the baseline value 20 μ g/m³. After fires controlled both agricultural and forest around agricultural area 1 km, the economic losses have decreased to \$49,313,616 by the baseline value at 50 μ g/m³ and \$755,108,997 by the baseline value 20 μ g/m³. Moreover, these have more decreased to \$2,261,321 by the baseline value at 50 μ g/m³ and \$651,953,867 by the baseline value at 20 μ g/m³ when fires were controlled both agricultural and forest around agricultural area 4 km. The values of health impact before and after fire controlled through fire season are shown in Table 4.21, Table 4.22 and Table 4.23. Chiang Mai was more affected from PM₁₀ than other provinces due to the greater number of population at 1.66 million persons following by Chiang Rai and Lampang at 1.20 and 0.76 million, respectively.

At the base line $50 \,\mu\text{g/m}^3$, the economic losses of health impacts decreased by \$174,849,570 or 78.00% from \$224,163,186 to \$49,313,616 from fire controlled ranged 1 km and decreased by \$221,901,865 or 98.99% from \$224,163,186 to \$2,261,321 from fire controlled ranged 4 km. However, percentage decrease of the economic loss of health impacts at the base line $20 \,\mu\text{g/m}^3$ was less than the base line $50 \,\mu\text{g/m}^3$. At the base line $20 \,\mu\text{g/m}^3$, the economic losses of health impacts decreased by \$219,659,274 or 22.53% from \$974,768,271 to \$755,108,997 from fire controlled ranged 1 km and decreased by \$322,814,404 or 33.12% from \$974,768,271 to \$651,953,867 from fire controlled ranged 4 km. The economic loss from the mortality was more than 90% of the total value of health impacts.

Table 4.21 Summary of costs for hospital admissions for respiratory and cardiovascular illness, and respiratory outpatient visits from actual fires during 1 February to 30 April 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae provinces

	Chiang Mai	Chiang Rai	Mae Hong Son	Lampang	Lamphun	Nan	Phayao	Phrae	Total
Cost from PM_{10} change compared with PM_{10} base line at $50~\mu g/m^3$									
- Estimated deaths from PM ₁₀ change (persons)	30	16	3	12	6	13	7	13	100
Statistic value of life (per person = US\$ 2,210,933) (US\$)	66,327,990	35,374,928	6,632,799	26,531,196	13,265,598	28,742,129	15,476,531	28,742,129	221,093,300
- Estimated cardiovascular hospital admissions from PM ₁₀ change (admissions)	99	46	8	39	14	64	23	38	331
Cost of cardiovascular hospital admission (per admission = US\$ 4,394) (US\$)	435,006	202,124	35,152	171,366	61,516	281,216	101,062	166,972	1,454,414
- Estimated respiratory hospital admissions from PM ₁₀ change (admissions)	118	57	17	41	18	67	27	37	382
Cost of respiratory hospital admission (per admission = US\$ 3,192) (US\$)	376,656	181,944	54,264	130,872	57,456	213,864	86,184	118,104	1,219,344
- Estimated outpatient visits from PM ₁₀ change (visits)	2,149	1,233	484	703	468	1,405	533	714	7,689
Cost of outpatient visits for respiratory illness (per visit = US\$ 10) (US\$)	21,490	12,330	4,840	7,030	4,680	14,050	5,330	7,140	76,890
- Estimated number of respiratory and cardiovascular hospital admission, and outpatient visits	2,365	1,336	509	783	500	1,536	583	789	8,401
Cost of work days loss (per illness case = US\$ 38) (US\$)	89,870	50,768	19,342	29,754	19,000	58,368	22,154	29,982	319,238
Total cost (US\$)	67,251,012	35,822,094	6,746,397	26,870,218	13,408,250	29,309,627	15,691,261	29,064,327	224,163,186
Cost PM_{10} change compared with PM_{10} base line at $20~\mu\text{g/m}^3$									
- Estimated deaths from PM ₁₀ change (persons)	135	87	14	56	36	33	33	41	435
Statistic value of life (per person = US\$ 2,210,933) (US\$)	298,475,955	192,351,171	30,953,062	123,812,248	79,593,588	72,960,789	72,960,789	90,648,253	961,755,855
- Estimated cardiovascular hospital admissions from $$ PM $_{10}$ change (admissions)	448	254	34	185	85	167	104	124	1,401
Cost of cardiovascular hospital admission (per admission = US\$ 4,394) (US\$)	1,968,512	1,116,076	149,396	812,890	373,490	733,798	456,976	544,856	6,155,994
- Estimated respiratory hospital admissions from PM ₁₀ change (admissions)	536	314	78	195	107	175	120	120	1,645
Cost of respiratory hospital admission (per admission = US\$ 3,192) (US\$)	1,710,912	1,002,288	248,976	622,440	341,544	558,600	383,040	383,040	5,250,840
- Estimated outpatient visits from PM ₁₀ change (visits)	9,783	6,830	2,170	3,358	2,757	1,405	2,408	2,328	31,039
Cost of outpatient visits for respiratory illness (per visit = US\$ 10) (US\$)	97,830	68,300	21,700	33,580	27,570	14,050	24,080	23,280	310,390
- Estimated number of respiratory and cardiovascular hospital admission, and outpatient visits	10,767	7,398	2,282	3,738	2,949	1,747	2,631	2,572	34,084
Cost of work days loss (per illness case = US\$ 38) (US\$)	409,146	281,124	86,716	142,044	112,062	66,386	99,978	97,736	1,295,192
Total cost (US\$)	302,662,355	194,818,959	31,459,850	125,423,202	80,448,254	74,333,623	73,924,863	91,697,165	974,768,271

Table 4.22 Summary of costs for deaths, hospital admissions for respiratory and cardiovascular illness, and respiratory outpatient visits after fires controlled both agricultural and forest around agricultural area 1 km to be no fire areas during 1 February to 30 April 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae provinces

	Chiang Mai	Chiang Rai	Mae Hong Son	Lampang	Lamphun	Nan	Phayao	Phrae	Total
Cost from PM_{10} change compared with PM_{10} base line at $50~\mu\text{g/m}^3$									
- Estimated deaths from PM ₁₀ change (persons)	6	2	1	4	3	2	1	3	21
Statistic value of life (per person = US\$ 2,210,933) (US\$)	13,265,598	4,421,866	2,210,933	8,843,732	6,632,799	4,421,866	2,210,933	6,632,799	48,640,526
- Estimated cardiovascular hospital admissions from $\ PM_{10}$ change (admissions)	19	5	3	12	6	12	4	8	70
Cost of cardiovascular hospital admission (per admission = US\$ 4,394) (US\$)	83,486	21,970	13,182	52,728	26,364	52,728	17,576	35,152	303,186
- Estimated respiratory hospital admissions from 2 PM $_{10}$ change (admissions)	22	6	7	13	8	12	5	7	81
Cost of respiratory hospital admission (per admission = US\$ 3,192) (US\$)	70,224	19,152	22,344	41,496	25,536	38,304	15,960	22,344	255,360
- Estimated outpatient visits from PM ₁₀ change (visits)	409	134	197	226	204	850	102	144	2,267
Cost of outpatient visits for respiratory illness (per visit = US\$ 10) (US\$)	4,090	1,340	1,970	2,260	2,040	8,500	1,020	1,440	22,660
- Estimated number of respiratory and cardiovascular hospital admission, and outpatient visits	450	145	207	251	219	874	112	160	2,418
Cost of work days loss (per illness case = US\$ 38) (US\$)	17,100	5,510	7,866	9,538	8,322	33,212	4,256	6,080	91,884
Total cost (US\$)	13,440,498	4,469,838	2,256,295	8,949,754	6,695,061	4,554,610	2,249,745	6,697,815	49,313,616
Cost PM_{10} change compared with PM_{10} base line at 20 $\mu g/m^3$									
- Estimated deaths from PM ₁₀ change (persons)	107	69	11	46	32	20	24	28	337
Statistic value of life (per person = US\$ 2,210,933) (US\$)	236,569,831	152,554,377	24,320,263	101,702,918	70,749,856	44,218,660	53,062,392	61,906,124	745,084,421
- Estimated cardiovascular hospital admissions from PM ₁₀ change (admissions)	355	201	29	153	76	102	75	85	1,074
Cost of cardiovascular hospital admission (per admission = US\$ 4,394) (US\$)	1,559,870	883,194	127,426	672,282	333,944	448,188	329,550	373,490	4,727,944
- Estimated respiratory hospital admissions from PM ₁₀ change (admissions)	423	247	65	161	96	106	87	81	1,265
Cost of respiratory hospital admission (per admission = US\$ 3,192) (US\$)	1,350,216	788,424	207,480	513,912	306,432	338,352	277,704	258,552	4,041,072
- Estimated outpatient visits from PM ₁₀ change (visits)	7,717	5,373	1,816	2,768	2,469	850	1,737	1,575	24,306
Cost of outpatient visits for respiratory illness (per visit = US\$ 10) (US\$)	77,170	53,730	18,160	27,680	24,690	8,500	17,370	15,750	243,050
- Estimated number of respiratory and cardiovascular hospital admission, and outpatient visits	8,495	5,821	1,909	3,081	2,641	1,058	1,899	1,741	26,645
Cost of work days loss (per illness case = US\$ 38) (US\$)	322,810	221,198	72,542	117,078	100,358	40,204	72,162	66,158	1,012,510
Total cost (US\$)	239,879,897	154,500,923	24,745,871	103,033,870	71,515,280	45,053,904	53,759,178	62,620,074	755,108,997

Table 4.23 Summary of costs for deaths, hospital admissions for respiratory and cardiovascular illness, and respiratory outpatient visits after fires controlled both agricultural and forest around agricultural area 4 km to be no fire areas during 1 February to 30 April 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae provinces

	Chiang Mai	Chiang Rai	Mae Hong Son	Lampang	Lamphun	Nan	Phayao	Phrae	Total
Cost from PM ₁₀ change compared with PM ₁₀ base line at 50 μg/m ³									
- Estimated deaths from PM ₁₀ change (persons)		0	0	0	1	0	0	0	1
Statistic value of life (per person = US\$ 2,210,933) (US\$)	0	0	0	0	2,210,933	0	0	0	2,210,933
- Estimated cardiovascular hospital admissions from PM ₁₀ change (admissions)	0	0	1	0	1	0	0	0	2
Cost of cardiovascular hospital admission (per admission = US\$ 4,394) (US\$)	0	0	4,394	0	4,394	0	0	0	8,788
- Estimated respiratory hospital admissions from PM ₁₀ change (admissions)	0	0	1	0	2	0	0	0	3
Cost of respiratory hospital admission (per admission = US\$ 3,192) (US\$)	0	0	3,192	0	6,384	0	0	0	9,576
- Estimated outpatient visits from PM ₁₀ change (visits)	0	0	27	0	43	594	0	0	664
Cost of outpatient visits for respiratory illness (per visit = US\$ 10) (US\$)	0	0	270	0	430	5,940	0	0	6,640
- Estimated number of respiratory and cardiovascular hospital admission, and outpatient visits	0	0	28	0	46	594	0	0	668
Cost of work days loss (per illness case = US\$ 38) (US\$)	0	0	1,064	0	1,748	22,572	0	0	25,384
Total cost (US\$)	0	0	8,920	0	2,223,889	28,512	0	0	2,261,321
Cost PM_{10} change compared with PM_{10} base line at $20~\mu\text{g/m}^3$									
- Estimated deaths from PM ₁₀ change (persons)	92	65	11	38	30	14	20	21	290
Statistic value of life (per person = US\$ 2,210,933) (US\$)	203,405,836	143,710,645	24,320,263	84,015,454	66,327,990	30,953,062	44,218,660	46,429,593	643,381,503
- Estimated cardiovascular hospital admissions from PM ₁₀ change (admissions)	307	190	26	124	70	71	62	64	916
Cost of cardiovascular hospital admission (per admission = US\$ 4,394) (US\$)	1,348,958	834,860	114,244	544,856	307,580	311,974	272,428	281,216	4,016,116
- Estimated respiratory hospital admissions from PM ₁₀ change (admissions)	366	234	60	131	88	74	71	61	1,086
Cost of respiratory hospital admission (per admission = US\$ 3,192) (US\$)		746,928	191,520	418,152	280,896	236,208	226,632	194,712	3,463,320
- Estimated outpatient visits from PM ₁₀ change (visits)		5,095	1,675	2,252	2,274	594	1,431	1,184	21,185
Cost of outpatient visits for respiratory illness (per visit = US\$ 10) (US\$)	66,810	50,950	16,750	22,520	22,740	5,940	14,310	11,840	211,860
- Estimated number of respiratory and cardiovascular hospital admission, and outpatient visits	7,354	5,520	1,761	2,507	2,432	739	1,564	1,309	23,187
Cost of work days loss (per illness case = US\$ 38) (US\$)	279,452	209,760	66,918	95,266	92,416	28,082	59,432	49,742	881,068
Total cost (US\$)	206,269,328	145,553,143	24,709,695	85,096,248	67,031,622	31,535,266	44,791,462	46,967,103	651,953,867

Table 4.24 Summary of costs for deaths, hospital admissions for respiratory and cardiovascular illness, and respiratory outpatient visits for the no-fire situation during 1 February to 30 April 2012 in Chiang Mai, Chiang Rai, Mae Hong Son, Lampang, Lamphun, Nan, Phayao and Phrae provinces

	Chiang Mai	Chiang Rai	Mae Hong Son	Lampang	Lamphun	Nan	Phayao	Phrae	Total
Cost from PM ₁₀ change compared with PM ₁₀ base line at 50 μg/m ³									
- Estimated deaths from PM ₁₀ change (persons)	0	0	0	0	0	0	0	0	0
Statistic value of life (per person = US\$ 2,210,933) (US\$)	0	0	0	0	0	0	0	0	0
- Estimated cardiovascular hospital admissions from PM ₁₀ change (admissions)	0	0	0	0	0	0	0	0	0
Cost of cardiovascular hospital admission (per admission = US\$ 4,394) (US\$)	0	0	0	0	0	0	0	0	0
- Estimated respiratory hospital admissions from PM ₁₀ change (admissions)	0	0	0	0	0	0	0	0	0
Cost of respiratory hospital admission (per admission = US\$ 3,192) (US\$)	0	0	0	0	0	0	0	0	0
- Estimated outpatient visits from PM ₁₀ change (visits)	0	0	0	0	0	0	0	0	0
Cost of outpatient visits for respiratory illness (per visit = US\$ 10) (US\$)	0	0	0	0	0	0	0	0	0
- Estimated number of respiratory and cardiovascular hospital admission, and outpatient visits	0	0	0	0	0	0	0	0	0
Cost of work days loss (per illness case = US\$ 38) (US\$)	0	0	0	0	0	0	0	0	0
Total cost (US\$)	0	0	0	0	0	0	0	0	0
Cost PM_{10} change compared with PM_{10} base line at $20~\mu g/m^3$									
- Estimated deaths from PM ₁₀ change (persons)	93	64	7.7	37	26	14	18	19	278
Statistic value of life (per person = US\$ 2,210,933) (US\$)	205,616,769	141,499,712	17,024,184.1	81,804,521	57,484,258	30,953,062	39,796,794	42,007,727	616,187,027
- Estimated cardiovascular hospital admissions from PM ₁₀ change (admissions)	309	187	19.3	121	61	71	58	58	884
Cost of cardiovascular hospital admission (per admission = US\$ 4,394) (US\$)	1,357,746	821,678	84,804.2	531,674	268,034	311,974	254,852	254,852	3,885,614
- Estimated respiratory hospital admissions from PM ₁₀ change (admissions)	368	230	43.7	127	76	73	66	56	1,041
Cost of respiratory hospital admission (per admission = US\$ 3,192) (US\$)	1,174,656	734,160	139,490.4	405,384	242,592	233,016	210,672	178,752	3,318,722
- Estimated outpatient visits from PM ₁₀ change (visits)	6,710	5,012	1,220.7	2,192	1,965	590	1,329	1,085	20,105
Cost of outpatient visits for respiratory illness (per visit = US\$ 10) (US\$)	67,100	50,120	12,207.0	21,920	19,650	5,900	13,290	10,850	201,037
- Estimated number of respiratory and cardiovascular hospital admission, and outpatient visits	7,387	5,430	1,283.7	2,440	2,102	734	1,453	1,200	22,030
Cost of work days loss (per illness case = US\$ 38) (US\$)	280,706	206,340	48,780.6	92,720	79,876	27,892	55,214	45,600	837,129
Total cost (US\$)	208,496,977	143,312,010	17,309,466.3	82,856,219	58,094,410	31,531,844	40,330,822	42,497,781	624,429,529

4.3 Socio-economic impact valuation.

Forest fires deplete forest areas which are important sources of goods and services for human well-being including foods, water supply, raw materials and recreation. The values of forested areas can be estimated by accounting forest goods and services (see Table 4.25). These consist of provisioning services such as food, fresh water, medical, wood and other raw materials; regulating services that affect climate, disease, floods, storm and water purification; cultural services that provide recreational, aesthetic, and spiritual benefits; and supporting services such as nutrient cycling, soil formation, and photosynthesis. To estimate the ecosystem values, Fisher et al. (2008) have suggested that supporting and regulating services provide the same services. In addition, the supporting services are also crucial ecosystem functions underpinning the other services. In addition, for a cost-benefit analysis, counting all ecosystem services may lead to double counting because some ecosystem final services have included intermediate service processes. For example, food provision is a final service as a result from a pollination service that is an intermediate. The final services include water regulation, clean-water and food provision. Generally, final services are direct benefits to humans and should be accounted. Then, intermediate services, including soil formation, nutrient cycling and pollination, were not included in the forest valuation part. It is because this may lead to the double counting and these services are weak linkages to socioeconomic factors and human well-being. This is different from provision and regulating service which have strong linkages in terms of socioeconomic factors and human well-being while the others have the weak ones (MEA, 2005).

4.3.1 The benefit transfer values of ecosystem goods and services

The criteria for selecting transfer values are the ecosystem and economic status of the reference study; these should be similar to the studied area. The tropical forest is the most common vegetation type in the study area as shown in section 4.1 and developing country with the upper-middle income economy is the economic status of Thailand as defined by the World Bank (2016). More than 50% of the north of Thailand area are forests and are important sources of water flow to both the north and central areas of Thailand. The total economic value of the north is small compared with other regions and industrial and agriculture are the main sectors contributing to the country's gross domestic product (Office of the National Economic and Social Development Board, 2011). However, there are limitations such as the lack of some forest goods and services values from a similar reference area or they may be from a similar area but

have very high values compared with the global value. Hence, reference values from different countries were used. The transfer values from different studies and periods were converted to the monetary values for year 2012 same as this study period by the equation (4.13).

$$P_{2012} = Pi(1+r)^{n} (4.13)$$

Where P_{2012} = the value of goods or services in year 2012, Pi = the value of goods or services from the reference study in year i, r = the average inflation rate per year, and n = number of years (2012 - i)

Table 4.25 The economic transfer values per hectare of each ecosystem goods and services in tropical forests from various studies.

Service/ Product	Source	Study area	Values (US Dollar)	Method	Reference	Remark
Provision services 1. Timber						
	Rosales et al. (2005)	Laos in year 2003	\$10.5 /ha/yr	Using direct market pricing method	van der Ploeg et al. (2010)	Used in this study, the value in year 2012 = 12.75 /ha/yr
	CBD (2001)	World in year 2001	\$148-\$230 /ha/yr	Using benefit transfer method	van der Ploeg et al. (2010)	
Non-timber products Food and raw materials	Subanaseree et al. (1992)	Thailand in year 2005	76.1/ha/yr	306,750 Baht/km ² = 3,067.5 Baht/ha/yr (avg. rate in year 2005 THB1 =	Chulalongkorn University (2010)	Used in this study, the value in year 2012 = 87 /ha/yr
Fuel wood and charcoal	Lescuyer (2007)	Cameroon in year 2001	\$61 /ha/yr	USD0.0248) Using benefit transfer method	van der Ploeg et al. (2010)	
– Food only	Rosales et al. (2005)	Laos in year 2003	•	Using direct market pricing method for \$9.3 and group valuation method for \$12.8	van der Ploeg et al. (2010)	
3. Water						
- Water supply	Estimated from various studies	Tropical forests, year 2007	\$ 200 /ha/yr	Adjusted by using GDP PPP and inflation to standardize to 2007 monetary year value, average value from previous studies.	de Groot et al. (2012)	Used in this study, the value in year 2012 = 216 /ha/yr

Service/ Product	Source	Study area	Values (US Dollar)	Method	Reference	Remark
– Water for irrigation	Lele et al. (2008)	India	\$107 /household /yr	Using change in productivity method by estimating expected annual income related with reduction of changes in forest cover	Ferraro et al. (2011)	
– Water supply	Li et al. (2008)	China in yea 2004	r \$374.5 /ha/yı	r Using benefit transfer method, CNY3,097.90 per hectare per year (avg. rate in year 2004 CNY1 = USD0.1209)	van der Ploeg et al. (2010)	
4. Medical resources						
- Biochemical	Rosales et al. (2005)	Laos in year 2003	\$0.33 /ha/yr	Using benefit transfer method	van der Ploeg et al. (2010)	Used in this study, the value in year 2012 = 0.38 /ha/yr
Cultural services						
5. Recreation and tourism						
	Sombat et al. (1998)	Northern Thailand in year 2005	\$9.92/ha/yr	Using travel cost method, 40,000 Baht/km ² = 400 Baht/ha/yr (avg. rate in year 2005 THB1 = USD0.0248)	Chulalongkorn University (2010)	Used in this study, the value in year 2012 = 11.35 /ha/yr
	Li et al. (2008)	China in yea 2004	r\$150 /ha/yr	Using benefit transfer method, CNY1,239.20 per hectare per year (avg. rate in year 2004 CNY1 =	van der Ploeg et al. (2010)	
	Verweij et al. (2009)	Ecuador in year 2007	\$6.65 /ha/yr	USD0.1209) Using benefit transfer method for estimating ecotourism value	van der Ploeg et al. (2010)	
Regulating services						
6. Climate regulation						
	Nauleurai (2005)	Thailand in year 2005	\$769/ha/yr	3,100,790 Baht/km ² = 31,007.9 Baht/ha/yr (avg. rate in year 2005 THB1 = USD0.0248)	Chulalongkorn University (2010)	Used in this study, the value in year 2012 = 880 /ha/yr

Service/ Product	Source	Study area	Values (US Dollar)	Method	Reference	Remark
	Rosales et al. (2005)	Laos in year 2003	\$1,284 /ha/yı	Using benefit transfer method for estimating carbon sequestration value	van der Ploeg et al. (2010)	
7. Water quality	Curtis (2004)	Australia in year 2002	\$ 7.54/ha/yr	Using direct market pricing method, AUS 13.61 per hectare per year (avg. rate in year 2004 AUD1= USD0.5440)	van der Ploeg et al. (2010)	Used in this study, the value in year 2012 = 9.33 /ha/yr
8. Flood	Li et al. (2008)	China in year 2004	:\$153.33 /ha/yr	Using benefit transfer method, CNY1,268.20 per hectare per year (avg. rate in year 2004 CNY1 = USD0.1209)	van der Ploeg et al. (2010)	
prevention						
	Rosales et al. (2005)	Laos in year 2003	\$92.3 /ha/yr	Using avoided Cost method for estimating carbon sequestration value	van der Ploeg et al. (2010)	Used in this study, the value in year 2012 = 105.6 /ha/yr
9. Biodiversity protection						
	Curtis (2004)	Australia in year 2002	\$12.64 /ha/yı	rUsing direct market pricing method, AUS 23.24 per hectare per year (avg. rate in year 2004 AUD1 = USD0.5440)	van der Ploeg et al. (2010)	Used in this study, the value in year 2012 = 13.13 /ha/yr
	Verma (2000)	India in year 2000	\$435 /ha/yr	Using benefit transfer method	van der Ploeg et al. (2010)	
	Verweij et al. (2009)	Brazil in year 2007	r\$18 /ha/yr	Using benefit transfer method	van der Ploeg et al. (2010)	

4.3.2 The economic losses of ecosystem goods and services from forest fires

Forest fire can be a natural process to maintain or damage forest ecosystems or cause deforestation depending on fire intensity and frequency. Generally, most of

the fires in Thailand were low to moderate intensity levels. Fire intensity in the mixed deciduous forest is low level with flame length 0.84 m and dry deciduous forest have low to moderate fires with flame length 0.5 - 8 m (Wiriya, 2010). Baker et al. (2008) also showed that tropical forests are often low-intensity surface fires with flame lengths ranging from 5 to 50 cm and appeared to affect only trees <2m tall. Smaller trees are more vulnerable to death from fires, but are also more likely to quickly resprout, within months of a fire. Moreover, this study also suggested that fires in the forest mosaic of continental South-east Asia may not be particularly disastrous for tree species and biodiversity effects. However, some studies showed that the dominant tree might die months or years after low-intensity surface fires. This could affect the forest type which is sensitive to fires such as an evergreen forest, and may lead to the transformation of evergreen forest to deciduous forest and savanna and consequently to a significant loss of biodiversity (Cochrane, 2009). The Global Fire Monitoring Center (2002) showed that fires can cause very severe damage to evergreen forests by killing more than 50% of mature trees, completely destroying all saplings and undergrowth, and destroying food and habitat for wildlife.

Forest fires in the north of Thailand tend to occur in the same area every 1-3 years (Dontee et al., 2011, Department of National Parks Wildlife and Plant Conservation, 2016). The main types of vegetation burned have been mixed deciduous forest, hill evergreen forest, dry evergreen forest, and dry dipterocarp forest. The natural fire regime for the deciduous dipterocarp was 1-3 years whereas there were no data for other types (Kodandapani et al., 2008). However, deciduous forests in the north of Thailand have faced annual burn by surface fire and become relatively fire-resistant. Therefore mature trees did not die from fires (Global Fire Monitoring Center, 2002). Consequently, the values for timber products and biodiversity impacts have not been estimated for fire impact losses of deciduous forests but will be calculated for evergreen forests with 50% losses of mature trees for timber products. For the biodiversity losses, Global Fire Monitoring Center (2006) showed fire protection had more tree density and contained more individual trees than burnt area by around 25%. Hence a value of 25% was used to estimate the change of biodiversity for evergreen forests.

The fire season in the north of Thailand occurs annually in the dry season and ends in April; after that, the monsoon rain season goes from May to October. Fires have changed the soil characteristics and destroyed aboveground small trees. This affects the ecosystem by increasing soil erosion and surface runoff in every type of

forest but is more intensive in evergreen forests. Most tree species in evergreen forest are sensitive to fire (Cochrane, 2009) and fires can cause very severe damage by completely destroying all sapling and killing 50% of mature trees (Global Fire Monitoring Center, 2002). These caused an increase of water supply (Scott, 1993, White et al., 2006) and increase the chance of flood events. However, fires will decrease water yield in the long term (White et al., 2006). As most mature and dominant trees in deciduous and evergreen forests were still alive after fires, only small trees were destroyed. Thus, the value of water supply and water quality were not estimated, but the flood prevention was accounted.

Fires have burnt only small trees in every forest type and killed some dominant trees in evergreen forests. Then the carbon consequence value will include the combustion completeness value 0.25 for deciduous forest value (Michel et al., 2005) and 50% of mature tree deaths or 0.50 for evergreen forests value (Global Fire Monitoring Center, 2002) in the estimation of the impact value.

In Thailand, collecting forest products for a living is permitted without asking for permission in all types of the forest including the national park and the national reserved forest, provided it does not destroy the forest ecosystem. However, any activities that may damage a forest area such as mining, livestock and agricultural activities can be operated in the national reserved forest but has to have legal permission for the specific time period from a competent officer of each national reserved forest. Therefore, the people could get benefits from the non-timber forest products for every forest type.

To estimate the value of the forest damage, not only was the value of goods and services per hectare used, but the sizes of areas burned were also taken into account. The estimation of the values of the ecosystem goods and services can use equation 4.14:

Total value of goods
or services per year
(US\$) =

Timber products value + Non-timber products

value + Medical resources value + Recreation and
tourism value + Climate regulation value + Flood
prevention value + Biodiversity protection value

Where each value of good or service can be calculated by equation 4.15

Value of goods or = Value in year 2012 of goods or services per ha per Services per year (US\$) year (\$) x area burned (ha) x damage (%) (4.15) As outlined in Chapter 3, the estimated area burned of one hotspot was 12,750 m² or 1.275 ha. There were 498 hotspots in mixed deciduous forest, hill evergreen forest, dry evergreen forest, and dry dipterocarp forest during 26th February to 1st March 2012 in Chiang Mai. The forest goods and services losses by fire events were calculated by using the value from Table 4.25. However, fire intensities in different types of forest cause the different impacts of ecosystem goods and services. The percent damages of different forest types were considered to estimate the total value of ecosystem goods and services as equation (4.14). The value of the impacts to mixed deciduous forest, hill evergreen forest, dry evergreen forest, and dry dipterocarp forest are shown in Table 4.26.

Table 4.26 The impact values of forest fires to ecosystem goods and services of mixed deciduous forest, hill evergreen forest, dry evergreen forest, and dry dipterocarp forest in Chiang Mai during 26th February to 1st March 2012.

Details	Mixed deciduous forest	Dry dipterocarp forest	Hill evergreen forest	Dry evergreen forest	Total
Numbers of hotspots	321	41	71	65	498 hotspots
Area burned (ha)	321x1.275 = 409.3	41x1.275 = 52.3	71x1.275 = 90	65x1.275 = 83	635.1 ha
Value of timber (\$12.75/ha)	No effect	No effect	No effect to $90 \times 12.75 \times 0.5 = 577	No effect to $83 \times 12.75 \times 0.5 = 529	\$0 to \$1,106
Non-timber products (\$87/ha)	409.3 x 87= \$35,609	52.3 x 87= \$4,550	90 x 87 = \$7,830	83 x 87 = \$7,221	\$55,210
Medical resources (\$0.33/ha)	409.3 x 0.33= \$135.1	52.3 x 0.33= \$17.3	90 x 0.33= \$29.7	83 x 0.33= \$27.4	\$209.5
Recreation and tourism (\$11.35/ha)	409.3 x 11.35= \$4,645.6	52.3 x 11.35= \$593.6	90 x 11.35= \$1,021.5	83 x 11.35= \$942.1	\$7,202.8
Climate regulation (\$880/ha)	409.3 x 880 x 0.25= \$90,046	52.3 x 880 x 0.25= \$11,506	90 x 880 x 0.5= \$39,600	83 x 880 x 0.5= \$36,520	\$177,672
Flood prevention (\$105.6/ha)	409.3 x 105.6= \$43,222	52.3 x 105.6= \$5,523	90 x 105.6= \$9,504	83 x 105.6= \$8,765	\$67,014
Biodiversity protection (\$13.13/ha)	No effect	No effect	No effect to 90 x 13.13 x 0.25= \$295.4	No effect to 83 x 13.13 x 0.25= \$272.4	\$0 to \$567.8
		Total			\$307,308 to \$308,982

The estimated total value of forest losses from 5-day fires in Chiang Mai province will be \$307,308 to \$308,982, or \$307,308 / 5 and \$308,982 / 5 = \$61,461.6 to \$61,796.4 for averaged 1-day value. This loss is a small amount compared with the health impact value at \$4,519,326 for 5-days impact value or \$903,865.2 for averaged 1-day value. The estimated total value of ecosystem goods and services losses in the study, 8 provinces were \$1,063,001.47 to \$1,066,018.23. Details of the rest of the areas' values are shown in Table 4.27. After fire controlled, the estimated total value of ecosystem goods and services losses were \$440,359. 44 to \$441,713. 91 for controlled fires both agricultural and forest around agricultural area 1 km, and \$36,644.87 to \$36,804.95 for controlled fires both agricultural and forest around agricultural area 4 km (see Table 4.28 and Table 4.29).

Table 4.27 Summary of impact values from forest fires to ecosystem goods and services of mixed deciduous forest, hill evergreen forest, dry evergreen forest, and dry dipterocarp forest in Chiang Mai, Mae Hong Son, Nan, Chiang Rai, Lampang, Phrae, Phayao and Lamphun during 26 February to 1 March 2012.

Land use type	Chiang Mai	Mae Hong Son	Nan	Chiang Rai	Lampang	Phrae	Phayao	Lamphun	Total
Number of hotspots in mixed deciduous forest / area burned (ha)	321/409.275	287/ 365.925	260/ 331.5	207/ 263.925	197/ 251.175	77/ 98.175	58/ 73.95	74/ 94.35	1,481/ 1,888.275
Number of hotspots in dry dipterocarp forest / area burned (ha)	41/ 52.275	9/ 11.475	16/20.4	1/ 1.275	8/ 10.2	13/ 16.575	8/ 10.2	16/20.4	112/ 142.8
Number of hotspots in hill evergreen forest / area burned (ha)	71/90.525	25/31.875	7/ 8.925	2/2.55	6/7.65	3/3.825	18/22.95	1/ 1.275	133/ 169.575
Number of hotspots in dry evergreen forest / area burned (ha)	65/ 82.875	8/ 10.2	0/0	14/ 17.85	18/ 22.95	4/ 5.1	3/3.825	0/0	112/ 142.8
Value of timber (US\$12.75/ha) (US\$)	0 to1,105.43	0 to 268.23	0 to 56.90	0 to 130.05	0 to 195.08	0 to 56.90	0 to 170.69	0 to 8.13	0 to 1,991.39
Non-timber products (US\$87/ha) (US\$)	55,240.65	36,494.33	31,391.78	24,847.20	25,401.83	10,759.73	9,650.48	10,094.18	203,880.15
Medical resources (US\$0.33/ha) (US\$)	209.53	138.43	119.07	94.25	96.35	40.81	36.61	38.29	773.34
Recreation and tourism (US\$11.35/ha) (US\$)	7,206.68	4,761.04	4,095.36	3,241.56	3,313.92	1,403.71	1,259.00	1,316.88	26,598.16
Climate regulation (US\$880/ha) (US\$)	177,837.00	101,541.00	81,345.00	67,320.00	70,966.50	29,172.00	30,294.00	25,806.00	584,281.50
Flood prevention (US\$105.6/ha) (US\$)	67,050.72	44,296.56	38,103.12	30,159.36	30,832.56	13,060.08	11,713.68	12,252.24	247,468.32
Biodiversity protection (US\$13.13/ha) (US\$)	0 to 569.19	0 to 138.11	0 to 29.30	0 to 66.96	0 to 100.44	0 to 29.30	0 to 87.89	0 to 4.19	0 to 1,025.37
Total value US\$	307,544.59 to 309,219.20	187,231.35 to 187,637.69	155,054.33 to 155,140.52	125,662.37 to 125,859.38	130,611.15 to 130,906.67	54,436.33 to 54,522.52	52,953.76 to 53,212.34	49,507.59 to 49,519.90	1,063,001.47 to 1,066,018.23

Table 4.28 Summary of impact values from forest fires to ecosystem goods and services after fires controlled both agricultural and forest around agricultural area 1 km for mixed deciduous forest, hill evergreen forest, dry evergreen forest, and dry dipterocarp forest in Chiang Mai, Mae Hong Son, Nan, Chiang Rai, Lampang, Phrae, Phayao and Lamphun during 26 February to 1 March 2012

Land use type	Chiang Mai	Mae Hong Son	Nan	Chiang Rai	Lampang	Phrae	Phayao	Lamphun	Total
Number of hotspots in mixed deciduous forest / area burned (ha)	113/ 144.075	151/ 192.525	101/ 128.775	42/ 53.55	91/116.025	37/ 47.175	15/ 19.125	50/ 63.75	600/ 765
Number of hotspots in dry dipterocarp forest / area burned (ha)	25/31.875	10/ 12.75	3/3.825	0	1/ 1.275	5/ 6.375	0	3/3.825	47/ 59.925
Number of hotspots in hill evergreen forest / area burned (ha)	11/14.025	4/ 5.1	0	7/ 8.925	10/ 12.75	5/ 6.375	3/3.825	0	40/51
Number of hotspots in dry evergreen forest / area burned (ha)	25/ 31.875	15/ 19.125	7/ 8.925	2/ 2.55	4/ 5.1	1/ 1.275	15/ 19.125	1/ 1.275	70/ 89.25
Value of timber (US\$ 12.75/ha) (US\$)	0 to 292.61	0 to 154.43	0 to 56.90	0 to 73.15	0 to 113.79	0 to 48.77	0 to 146.31	0 to 8.13	0 to 894.09
Non-timber products (US\$ 87/ha) (US\$)	19,300.95	19,966.50	12,312.68	5,657.18	11,758.05	5,324.40	3,660.53	5,989.95	83,970.23
Medical resources (US\$ 0.33/ha) (US\$)	73.21	75.74	46.70	21.46	44.60	20.20	13.88	22.72	318.51
Recreation and tourism (US\$ 11.35/ha) (US\$)	2,518.00	2,604.83	1,606.31	738.03	1,533.95	694.62	477.55	781.45	10,954.74
Climate regulation (US\$ 880/ha) (US\$)	58,905.00	55,819.50	33,099.00	16,830.00	33,660.00	15,147.00	14,305.50	15,427.50	243,193.50
Flood prevention (US\$ 105.6/ha) (US\$)	23,427.36	24,235.20	14,945.04	6,866.64	14,271.84	6,462.72	4,443.12	7,270.56	101,922.48
Biodiversity protection (US\$ 13.13/ha) (US\$)	0 to 150.67	0 to 79.52	0 to 29.30	0 to 37.67	0 to 58.59	0 to 25.11	0 to 75.33	0 to 4.19	0 to 460.37
Total value US\$	104,224.51 to 104,667.80	102,701.76 to 102,935.71	62,009.72 to 62,095.92	30,113.30 to 30,224.12	61,268.44 to 61,440.82	27,648.93 to 27,722.81	22,900.58 to 23,122.22	29,492.17 to 29,504.49	440,359.44 to 441,713.91

Table 4.29 Summary of impact values from forest fires to ecosystem goods and services after fires controlled both agricultural and forest around agricultural area 4 km for mixed deciduous forest, hill evergreen forest, dry evergreen forest, and dry dipterocarp forest in Chiang Mai, Mae Hong Son, Nan, Chiang Rai, Lampang, Phrae, Phayao and Lamphun during 26 February to 1 March 2012

Land use type	Chiang Mai	Mae Hong Son	Nan	Chiang Rai	Lampang	Phrae	Phayao	Lamphun	Total
Number of hotspots in mixed deciduous forest / area burned (ha)	6/ 7.65	14/ 17.85	3/3.825	0	1/ 1.275	1/ 1.275	0	12/ 15.3	37/ 47.175
Number of hotspots in dry dipterocarp forest / area burned (ha)	4/5.1	4/ 5.1	0	0	1/ 1.275	2/ 2.55	0	0	11/ 14.025
Number of hotspots in hill evergreen forest / area burned (ha)	1/ 1.275	5/ 6.375	1/ 1.275	0	0	0	0	1/ 1.275	8/ 10.2
Number of hotspots in dry evergreen forest / area burned (ha)	0	0	0	0	1/1.275	4/ 5.1	0	0	5/ 6.375
Value of timber (US\$ 12.75/ha) (US\$)	0 to 8.13	0 to 40.64	0 to 8.13	0	0 to 8.13	0 to 32.51	0	0 to 8.13	0 to 105.67
Non-timber products (US\$ 87/ha) (US\$)	1,220.18	2,551.28	443.70	0	332.78	776.48	0	1,442.03	6,766.43
Medical resources (US\$ 0.33/ha) (US\$)	4.63	9.68	1.68	0	1.26	2.95	0	5.47	25.67
Recreation and tourism (US\$ 11.35/ha) (US\$)	159.18	332.84	57.89	0	43.41	101.30	0	188.13	882.75
Climate regulation (US\$ 880/ha) (US\$)	3,366.00	7,854.00	1,402.50	0	1,122.00	3,085.50	0	3,927.00	20,757.00
Flood prevention (US\$ 105.6/ha) (US\$)	1,481.04	3,096.72	538.56	0	403.92	942.48	0	1,750.32	8,213.04
Biodiversity protection (US\$ 13.13/ha) (US\$)	0 to 4.19	0 to 20.93	0 to 4.19	0	0 to 4.19	0 to 16.74	0	0 to 4.19	0 to 54.41
Total value US\$	6,231.02 to 6,243.34	13,844.51 to 13,906.07	2,444.32 to 2,456.64	0	1,903.37 to 1,915.68	4,908.69 to 4,957.95	0	7,312.94 to 7,325.25	36,644.87 to 36,804.95

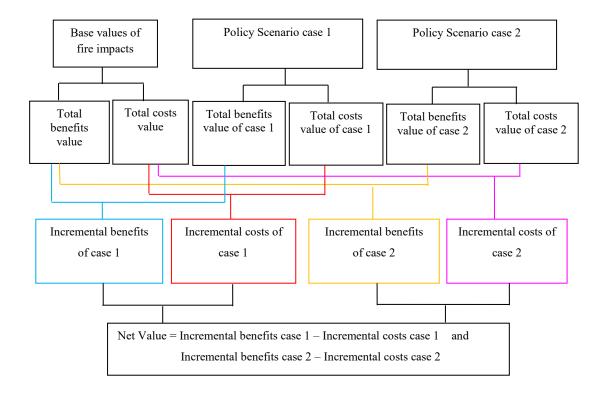
Table 4.30 Summary of impact values from forest fires to ecosystem goods and services of mixed deciduous forest, hill evergreen forest, dry evergreen forest, and dry dipterocarp forest in Chiang Mai, Mae Hong Son, Nan, Chiang Rai, Lampang, Phrae, Phayao and Lamphun during 1 February to 30 April 2012.

Land use type	Chiang Mai	Mae Hong Son	Nan	Chiang Rai	Lampang	Phrae	Phayao	Lamphun	Total
Number of hotspots in mixed deciduous forest / area burned (ha)	1,077/ 1,373	1,580/ 2,015	1,514/ 1,930	787/ 1,003	506/ 645	321/409	198/ 252	251/320	6,234/ 7,948
Number of hotspots in dry dipterocarp forest / area burned (ha)	214/273	77/ 98	77/ 98	6/8	42/ 54	38/48	30/38	72/92	556/709
Number of hotspots in hill evergreen forest / area burned (ha)	413/527	388/495	75/96	2/3	11/ 14	11/ 14	135/ 172	5/6	1,040/ 1,326
Number of hotspots in dry evergreen forest / area burned (ha)	206/263	60/77	13/17	37/47	49/62	29/ 37	5/6	0/0	399/ 509
Value of timber (US\$ 12.75/ha) (US\$)	0 to 5,031	0 to 3,641	0 to 715	0 to 317	0 to 488	0 to 325	0 to 1,138	0 to 41	0 to 11,696
Non-timber products (US\$ 87/ha) (US\$)	211,867	233,497	186,243	92,290	67,442	44,259	40,820	36,383	912,802
Medical resources (US\$ 0.33/ha) (US\$)	804	886	706	350	256	168	155	138	3,462
Recreation and tourism (US\$ 11.35/ha) (US\$)	27,640	30,462	24,297	12,040	8,799	5,774	5,325	4,747	119,084
Climate regulation (US\$ 880/ha) (US\$)	709,385	716,117	495,644	244,316	187,374	123,140	142,494	93,407	2,711,874
Flood prevention (US\$ 105.6/ha) (US\$)	257,162	283,417	226,061	112,020	81,861	53,721	49,548	44,162	1,107,953
Biodiversity protection (US\$ 13.13/ha) (US\$)	0 to 2,591	0 to 1,875	0 to 368	0 to 163	0 to 251	0 to 167	0 to 586	0 to 21	0 to 6,022
Total value US\$	1,206,857 to 1,214,479	1,264,378 to 1,269,895	932,951 to 934,034	461,016 to 461,496	345,732 to 346,471	227,062 to 227,554	238342 to 240066	178,836 to 178,898	4,855,175 to 4,872,894

Table 4.31 Summary of impact values from forest fires to ecosystem goods and services after fires controlled both agricultural and forest around agricultural area 1 km for mixed deciduous forest, hill evergreen forest, dry evergreen forest, and dry dipterocarp forest in Chiang Mai, Mae Hong Son, Nan, Chiang Rai, Lampang, Phrae, Phayao and Lamphun during 1 February to 30 April 2012.

Land use type	Chiang Mai	Mae Hong Son	Nan	Chiang Rai	Lampang	Phrae	Phayao	Lamphun	Total
Number of hotspots in mixed deciduous forest / area burned (ha)	381/486	823/ 1,049	599/ 764	192/ 245	285/363	165/210	81/103	169/ 215	2,695/3,436
Number of hotspots in dry dipterocarp forest / area burned (ha)	140/ 179	52/66	54/69	3/4	26/33	15/ 19	21/27	36/46	347/ 442
Number of hotspots in hill evergreen forest / area burned (ha)	143/ 182	149/ 190	36/46	2/3	8/ 10	5/6	100/ 128	5/6	448/ 571
Number of hotspots in dry evergreen forest / area burned (ha)	39/ 50	21/27	4/5	17/22	35/45	29/ 37	4/5	0/0	149/ 190
Value of timber (US\$ 12.75/ha) (US\$)	0 to 1,479	0 to 1,382	0 to 325	0 to 154	0 to 350	0 to 276	0 to 845	0 to 41	0 to 4,852
Non-timber products (US\$ 87/ha) (US\$)	77,980	115,917	76,871	23,738	39,267	23,738	22,851	23,294	403,656
Medical resources (US\$ 0.33/ha) (US\$)	296	440	292	90	149	90	87	88	1,531
Recreation and tourism (US\$ 11.35/ha) (US\$)	10,173	15,122	10,029	3,097	5,123	3,097	2,981	3,039	52,661
Climate regulation (US\$ 880/ha) (US\$)	248,243	340,808	205,607	65,357	111,359	69,564	86,955	60,308	1,188,198
Flood prevention (US\$ 105.6/ha) (US\$)	94,652	140,699	93,306	28,813	47,663	28,813	27,736	28,274	489,955
Biodiversity protection (US\$ 13.13/ha) (US\$)	0 to 762	0 to 711	0 to 167	0 to 80	0 to 180	0 to 142	0 to 435	0 to 21	0 to 2,499
	431,344 to	612,985 to	386,103 to	121,094 to	203,560 to	125,302 to	140,609 to	115,003 to	2,136,001 to
Total value US\$	433,585	615,078	386,596	121,328	204,090	125,720	141,890	115,065	2,143,352

Table 4.32 Summary of impact values from forest fires to ecosystem goods and services after fires controlled both agricultural and forest around agricultural area 4 km for mixed deciduous forest, hill evergreen forest, dry evergreen forest, and dry dipterocarp forest in Chiang Mai, Mae Hong Son, Nan, Chiang Rai, Lampang, Phrae, Phayao and Lamphun during 1 February to 30 April 2012.


Land use type	Chiang Mai	Mae Hong Son	Nan	Chiang Rai	Lampang	Phrae	Phayao	Lamphun	Total
Number of hotspots in mixed deciduous forest / area burned (ha)	24/ 31	193/ 246	48/61	1/1	56/71	21/27	4/ 5	58/ 74	405/516
Number of hotspots in dry dipterocarp forest / area burned (ha)	27/ 34	17/ 22	0/0	0/0	3/4	5/6	4/5	4/5	60/77
Number of hotspots in hill evergreen forest / area burned (ha)	9/ 11	19/ 24	11/14	1/1	1/1	0/0	31/40	2/3	74/94
Number of hotspots in dry evergreen forest / area burned (ha)	0/0	0/0	0/0	0/0	12/ 15	19/ 24	0/0	0/0	31/40
Value of timber (US\$ 12.75/ha) (US\$)	0 to 73	0 to 154	0 to 89	0 to 8	0 to 106	0 to 154	0 to 252	0 to 16	0 to 853
Non-timber products (US\$ 87/ha) (US\$)	6,656	25,402	6,545	222	7,987	4,992	4,326	7,099	63,227
Medical resources (US\$ 0.33/ha) (US\$)	25	96	25	1	30	19	16	27	240
Recreation and tourism (US\$ 11.35/ha) (US\$)	868	3,314	854	29	1,042	651	564	926	8,249
Climate regulation (US\$ 880/ha) (US\$)	19,355	69,564	19,635	842	23,843	17,952	19,635	18,513	189,338
Flood prevention (US\$ 105.6/ha) (US\$)	8,078	30,833	7,944	269	9,694	6,059	5,251	8,617	76,745
Biodiversity protection (US\$ 13.13/ha) (US\$)	0 to 38	0 to 80	0 to 46	0 to 4	0 to 54	0 to 80	0 to 130	0 to 8	0 to 439
Total value US\$	34,982 to 35,093	129,209 to 129,443	35,002 to 35,137	1,362 to 1,375	42,595 to 42,755	29,673 to 29,907	29,793 to 30,175	35,182 to 35,207	337,798 to 339,091

The estimated total value of ecosystem goods and services losses in Chiang Mai, Mae Hong Son, Nan, Chiang Rai, Lampang, Phrae, Phayao and Lamphun during 1 February to 30 April 2012 were \$4,855,175 to \$4,872,894 (see Table 4.30). After fire controlled, the estimated total value of ecosystem goods and services losses were \$2,136,001 to \$2,143,352 for controlled fires both agricultural and forest around agricultural area 1 km, and \$337,798 to \$339,091 for controlled fires both agricultural and forest around agricultural area 4 km (see Table 4.31 and Table 4.32). However, the total ecosystem goods and services loss is a small amount compared with the health impact value at \$224,163,186 and \$974,768,271 through fire season.

The economic losses decreased by \$2,729,541 or 56% from \$4,872,894 to \$2,143,352 from fire controlled ranged 1 km and decreased by \$4,533,803 or 93% from \$2,729,541 to \$339,091 from fire controlled ranged 4 km. The economic loss from climate regulation was more than 50% of the total value of ecosystem goods and services.

4.4 Cost-benefit analysis module

To evaluate the government budget for fire management, cost-benefit analysis was used to find suitable policies for solving the forest fire problems. The value of the impacts(s) of vegetation fires both health and ecosystems were set as the benefits from fires managements and the government budgets were set as costs. The comparison costs and benefits are shown in Figure 4.5. The net values of each case are compared to choose the most suitable budget.

Figure 4.5 A schematic of comparing costs and benefits from policy scenarios in a cost-benefit analysis

The economic valuation of forest management by the government would cover all main stakeholders. Variables for weighting costs and benefits of policy interventions are listed in Table 4.33.

Table 4.33 Summary of costs and benefits from forest fires interventions by the government.

Costs Benefits Sources of data /value of forest good and services
Cost for vegetation (Royal forest department, Department of national parks, wildlife and plant conservation, and Pollution control department) and study reports - Prescribe burning cost = 25.38 US\$/ha/day (5,000 Bath/rai/day) (Dontee et al., 2011) 1 Bath= US\$0.03173 (in year 2011) - Building fire buffer cost = 108 US\$/km (Dontee et al., 2011) - Promoting and giving knowledge about vegetation fire impacts and control to northern people in 8 provinces = US\$ 4.94 million
- Income from tourism - Decreased cancellations of flights - Tourism and recreation value - Tourism and recreation value - 1 flight = 3,630 US\$ (66 seats, price ~55 US\$/seat) cancelled due to visibility at runway area less than 1,500 m. http://www2.manager.co.th/Daily/ViewNews.aspx?NewsID=955000002786
ealth e, life impact value caused by air pollution from fires treatment cost - Reduced damage to property property le/ -Forest goods and services - Value of human -The estimation of morbidity, mortality impact value caused by air pollution from fires - There was no property damaged from forest fires (Department of National Parks Wildlife and Plant Conservation 2012) Timber and non-timber products value - Water supply value
d - Water regulation - Flood prevention value - Flood protection - Climate regulation by considering carbon sequestration value - Biodiversity value
- Flood protection - Clim - Carbon credits carbo

Land-use types in study area include national parks at around 3,392,670 ha, forest parks (excluding agricultural area) of about 2,682,170 ha, and agricultural area at around 1,690,045 ha (Ministry of Nataural Resources and Environment, 2015, OFFICE OF NATURAL RESOURCES AND ENVIRONMENTAL POLICY AND PLANNING (ONEP), 2009). The differences between national parks and forest parks relate to people's rights to use and manage forests. The people are not allowed to live permanently in national parks, while in forest parks people can settle including managing forest areas (Royal Forest Department, 2016a). Most areas burned were in forest parks in every province except Mae Hong Son, which were dominant in national parks. Generally, national parks have fewer disturbances from fires and timber harvest compared with forest parks. Forest parks consist of many secondary forests where trees have been lost by timber harvest, shifting cultivation systems of agriculture and fires. The main government organizations for fire management in agricultural, national parks and national forests area are Ministry of Natural Resources and Environment: Department of National Parks, Wildlife and Plant Conservation (DNP) and Royal Forest Department (RFD), and Ministry of Agriculture and Cooperatives. To compare the net value of government options for fire management (see Figure 4.5), incremental costs are the additional costs from the current budget for controlling fires in the target area including agricultural and forest nearby 1-4 km to have no fire. The government measures for each land-use type are considered.

In the agricultural area, fires are used in processes of agricultural residue management and field preparation. The use of fires in this area not only is the cause of fire events in agricultural area, but also is the cause of fires spreading to forest areas by 15% of all cause of forest fires (Department of National Parks Wildlife and Plant Conservation, 2012). Most of farmers in the north of Thailand are poor and cannot get technologies and machines for these processes. The government may support technologies and machines for fires controlled in these agricultural areas. To prevent fires spreading to forest areas, building fire buffer between agricultural areas and forests is also considered for the budget. The costs for these areas are shown in Table 4.34.

For fires in forest areas nearby agricultural areas ranged 1 to 4 km, forest goods collecting is the main cause at around 51% of all cause of forest fires (Department of National Parks Wildlife and Plant Conservation, 2012). The measures, which the government can use for fire control in this area, are hiring more officers to keep guarding the forest area nearby agricultural areas ranged 1km and 4 km in the fire season during February to April every year.

The government budget for fire control and fire impact values were identified and shown in Table 4.34. There are two main landuse types for fire managements: agricultural and forest areas. Generally, there are agricultural areas both inside and outside forests areas. There are 1,601

villages in forest parks (Royal Forest Department, 2016a) and 418 villages close to national parks (Ministry of Nataural Resources and Environment, 2015) which have agricultural activities and use forest goods and services. A budget of 3,218 US\$ per village (Ministry of Nataural Resources and Environment, 2015) was set for fire management in agricultural area and forest area nearby the village. There are around 1,690,045 ha of agricultural areas outside forest area (Ministry of Nataural Resources and Environment, 2015). Ministry of Agriculture and Cooperatives has set the budget in a 10-year plan for supporting knowledge, technology and building motivation to farmers to manage agriculture areas without fire use by spending at around 18,252,486 US\$ for all agricultural areas in the study area (or at around 10.80 US\$/ha) (Ministry of Nataural Resources and Environment, 2015).

Forest area size per one forest guard was estimated from (Ministry of Nataural Resources and Environment, 2015). This plan required 25 volunteers from each village for protecting forests area around their villages. FromRoyal Forest Department (2016a), there were 1,601 villages covering area 172,700 ha in the national forest, then 1 village cover area 108 ha or 1.08 km². The estimated area of forest around village ranging 1 to 1.5 km from village was around 4.16 to 6.3 km² (420 to 630 ha) per village. The total area for all villages is around 670,000 ha. Therefore, 25 volunteers respond the forest area 416 to 630 ha or 1 volunteer per 17 to 25 ha. This study chose 1 forest guard per a corresponding forest area of 25 ha.

Table 4.34 The cost of fire management for agricultural area, forest areas nearby agricultural ranging 1 to 4 km and all forest area by government measures

	Number of target units	Cost per unit (US\$)	Total costs (US\$)	Annual budget (US\$)	Main government organization
Agricultural area:					
Agricultural area (outside n	national park ar	eas)			
- Supporting knowledge, technology and building motivation to farmers in 8 provinces for managing agriculture area without fire use	1,690,045 ha	10.80 US\$ per ha	18,252,486	18,252,486	Ministry of Agriculture and Cooperatives
Agricultural area and villag	ges near forest p	oarks			
- Supporting knowledge, technology and building motivation to farmers in 8 provinces for managing agriculture area without fire use - Supporting fund for preventing and suppressing forest fires	1,601 villages (~172,700 ha)	3,218 US\$ per village	4,733,678	4,733,678	Ministry of Natural Resources and Environment

	Number of target units	Cost per unit (US\$)	Total costs (US\$)	Annual budget (US\$)	Main government organization
Border between agricultu	ıral area and f	orests:			
Building Fire buffer (National Park 5,700 km, Forest Park 6,700 km)	12,400 km	108 US\$ per km	1,339,200	1,339,200 (December to February)	Ministry of Natural Resources and Environment
Forest areas:					
Forest areas nearby agricul	tural ranging 1	km covering are	ea 670,000 ha fo	or forest parks	
- Number of	26,800	10 US\$ per	268,000	24,120,000	Ministry of
guard/firefighter officers (1 officers per 25 ha)	officers	day	(per day)	(90 days)	Natural Resources and Environment
Forest areas nearby agricul	tural ranging 1	km covering are	ea 570,000 ha fo	or national parks	
- Number of	28,500	10 US\$ per	228,000	20,520,000	Ministry of
guard/firefighter officers (1 officers per 25 ha)	officers	day	(per day)	(90 days)	Natural Resources and Environment
Forest areas nearby agricul	tural ranging 4	km covering are	ea 2,660,000 ha	for forest parks	
- Number of guard/	133,000	10 US\$ per	1,064,000	95,760,000	Ministry of
firefighter officers (1 officer per 25 ha)	officers	day	(per day)	(90 days)	Natural Resources and Environment
Forest areas nearby agricul	tural ranging 4	km covering are	ea 2,280,000 ha	for national parks	
- Number of guard/ firefighter officers (1 officer per 25 ha)	114,000 officers	10 US\$ per day	912,000 (per day)	82,080,000 (90 days)	Ministry of Natural Resources and Environment
Forest areas nearby agricul	tural ranging 20	04 km covering	area 1,990,000 l	ha for forest parks	211 111 011111 01111
- Number of guard/ firefighter officers (1 officer per 25 ha)	99,500 officers	10 US\$ per day	796,000 (per day)	71,640,000 (90 days)	Ministry of Natural Resources and Environment
All forest areas covering an		-			
- Number of guard/ firefighter officers (1 officer per 25 ha)	134,109 officers	10 US\$ per day	10,728,680(per day)	965,581,200 (90 days)	Ministry of Natural Resources and Environment
All forest areas covering an	rea 3,392,670 h	a for national pa	rks		
- Number of guard/	169,634	10 US\$ per	13,570,680	1,221,361,200	Ministry of
firefighter officers (1 officer per 25 ha)	officers	day	(per day)	(90 days)	Natural Resources and Environment
Prescribe burning					
- For dipterocarp forest area 136,400 ha in National parks	136,400 ha	25.4 US\$ per ha	3,464,560	3,464,560	Ministry of Natural Resources and Environment

From the health impacts and ecosystem goods and services valuation part, the estimated total losses in eight provinces in the north of Thailand during 1 February to 30 April 2012 from vegetation fires were \$229 million to \$980 million. These values consist of ecosystem goods and services at around \$4.9 million and health impact value of about \$224 million to \$975 million. The economic losses decreased by \$178 million or 77.5% from \$229 million to 51 million by the

baseline value at $50~\mu g/m^3$, and by \$223 million or 22.8% from \$980 million to \$757 million by the baseline value at $20~\mu g/m^3$ from fire controlled ranged 1 km. After from fire controlled ranged 4 km, economic losses decreased by \$227 million or 98.9~% from \$229million to 2.5 million by the baseline value at $50~\mu g/m^3$, and by \$328 million or 33.5~% from \$980 million to \$652 million by the baseline value at $20~\mu g/m^3$. However, the government budget for fire management has to be considered for the worthwhile investment. The detail of the cost of government option budgets and fire impacts values are shown in Table 4.35.

The government budget for short-term fire management of the main ministries; Ministry of Agriculture and Cooperatives and Ministry of Natural Resources and Environment, in year 2012 was about 12,659,562 US\$ (Miriam et al., 2015, Pollution Control Department, 2008, Bureau of the Budget, 2012). This budget excluded the public communication cost for giving awareness and community engagement from other organizations such as Office of Prime Minister, Government Public Relations, Department and Ministry of Education and controlling burning of weed along the road by Ministry of Transportation. The budget allocation for fire management did not cover for all fire areas. The budget for Ministry of Agriculture and Cooperatives for fire management in agricultural areas was 1,532,847 US\$ for the target area at 800 ha (Bureau of the Budget, 2012). The budget of Ministry of Natural Resources and Environment was focused on giving knowledge to people, building fire buffers, prescribe burning and fire suppression but it was less emphasized on hiring fire guards (Bureau of the Budget, 2012, Department of National Parks Wildlife and Plant Conservation, 2012). There were about 2,500 officers (consist of 1,500 firefighters and other duties) responding to forest fires in national park areas 3,392,670 ha (Department of National Parks Wildlife and Plant Conservation, 2012). This number was not covering all forest area for preventing and detecting fire occurrences from the local people and cannot suppress fires efficiently in the fire season with fire frequencies more than 300 events per day (hotspots) in the peak period. According to the Food and Agriculture Organization (FAO) of the United Nations (2007), the limited fund for fire management in Southeast Asia affects the fire management to be ineffective. In Russia and many countries in South America, have laws for fire management but lack enforcement. These problems also occur in Thailand. A fund for enforcing laws should be considered for Thailand. Then hiring more employees such as forest guards in the fire season is focused in this study.

Compared with actual fire events, additional costs of fire controlled at 1 and 4 km are budgets for employing fireguards and firefighters. From Table 4.35, the estimation of the government budget costs of fire controlled 1 km for forest and national parks area are different in terms of the people's right to use and manage forests. People can settle including managing forest areas in forest parks. The government budget for villages in forest parks to manage their agricultural and forest area ranging 1 km was 4,733,678 US\$. This budget was supported to people

in villages to manage their agriculture areas without the use of fire, do prescribe burning in forests, prevent and fight forest fires occurred close to villages (Royal Forest Department, 2016a). For national park, the people are not allowed to live permanently in this forest type. Budgets for managing the national park were spent by the government. Fire controlled by hiring guards/firefighters for the national park in the range of 1 km was 20,520,000 US\$. For building fire buffer between villages and forests, the government was the main party both forest and national parks with the budget at around 1,339,200 US\$. The summary of the total cost for agricultural and forest area ranging 1 km was 48,309,924 US\$. In addition, the government budget costs of fire controlled both agricultural and forest around agricultural area 4 km was 216,475,364 US\$ which includes the fire control in agricultural area inside and outside forest area, building fire buffer, hiring guards/ firefighters for forest park areas nearby agricultural ranging 204 km and national park areas nearby agricultural ranging 4 km.

Table 4.35 Lists of costs and benefits of fire impacts and government budgets for fire management in agricultural and forest area ranging 1 and 4 km (US\$ millions)

Base	value from a	etual fire e	vents (US\$ millions)		Estimated valu			oth agricultural and fore n (US\$ millions)	est around	Estimated val			both agricultural and forest cm (US\$ millions)	around
Impact value	Lower value	Higher value	Fires controlled areas/ measures	Budget cost value	Impact value	Lower value	Higher value	Fires controlled areas/ measures	Budget cost value	Impact value	Lower value	Higher value	Fires controlled areas/ measures	Budget cost value
- Health values	224.16	974.77	- Agricultural area (outside forest area)	1.53	- Health values	49.31	755.11	- Agricultural area (outside forest area)	18.25	- Health values	2.26	651.95	- Agricultural area (outside forest area)	18.25
- Ecosystem goods and services values	4.86	4.87	-Agricultural area and in forest park areas and -Forest parks areas	2.16	- Ecosystem goods and services values	2.14	2.14	- Agricultural area and villages in forest areas	4.73	- Ecosystem goods and services values	0.34	0.34	- Agricultural area and villages in forest areas	4.73
			-National parks areas	8.97				- Building Fire buffer (National Park 5,700 km, Forest Park 6,700 km)	1.34				- Building Fire buffer (National Park 5,700 km, Forest Park 6,700 km)	1.34
								- Hiring guard/ fire- fighters for national park areas nearby agricultural ranging 1 km (570,000 ha)	25.65				- Hiring guards/ fire- fighters for forest park areas nearby agricultural ranging 204 km (1,990,000 ha)	89.55
								- Prescribe burning in national parks	3.46				- Hiring guard/ fire- fighters for national park areas nearby agricultural ranging 4 km (570,000 ha)	102.60
													- Prescribe burning in national parks	3.46
Tota Midpoint betwe		979.64 604.33	Total	12.66	Total Midpoint betwe	51.45 en low and high value	757.25 404.35	Total	48.31	Total Midpoint between		652.29 327.45	Total	216.8

Table 4.36 Summary of cost-benefit analysis including cost and benefit values, incremental cost and benefit values, and net values for fire management in agricultural and forest around agricultural area with the range of 1 and 4 km

Impact value and government's budget (US\$	millions)	Increment of benefit (or decreased value of impacts) and cost (or government's budget) (US\$ millions)			Net value (US\$ millions)			
- Impact value of health and ecosystem goods and services from fires controls both agricultural and forest around agricultural area 1 km		Comparing between fires controls with the range of 1 km and actual fires Incremental benefit			- Net value of fires controls ranging1 km			
Lower value	51.45	At lower value	= 229.02 - 51.45=	177.57	At lower value	= 177.57 - 35.65 =	141.92	
Higher value	757.25	At higher value	= 979.64 - 757.25 =	222.39	At higher value	= 222.39 - 35.65 =	186.74	
Midpoint between low and high value	404.35	At midpoint value	= 604.33 - 404.35 =	199.98	At midpoint value	= 199.98 - 35.65 =	164.33	
Government's budget cost value	48.31	• Incremental budget cost	= 48.31 - 12.66 =	35.65				
- Impact value of health and ecosystem goods and services from fires controls both agricultural and forest around agricultural area 4 km		 Comparing between fires controls with the range of 4 km and actual fires Incremental benefit 			- Net value of fires controls ranging 4 km			
Lower value	2.60	At lower value	= 229.02 - 2.6 =	226.42	At lower value	= 226.42 - 204.14 =	22.28	
Higher value	652.29	At higher value	= 979.64 - 652.29 =	327.35	At higher value	= 327.35 - 204.14 =	123.21	
Midpoint between low and high value	327.45	At midpoint value	= 604.33 - 327.45 =	276.88	At midpoint value	= 276.88 - 204.14 =	72.74	
Government's budget value	216.8	 Incremental budget cost 	= 216.8 –12.66 =	204.14				
- Impact value of health and ecosystem goods and services from actual fire events (or base values) Lower value 229.02		 Comparing between no-fire situation in the north of Thailand and actual fires, fires controls with the range of 1 km and 4 km Actual value of impacts from fire generated in the north of 			Comparing between net value of fires controls with the range of 4 km and 1 km Incremental net value			
Higher value Midpoint between low and high value Government's budget cost value	979.64 604.33 12.66		d other sources or costs from t		=164.33-72.74 =	91.59		
- Impact value of health and ecosystem good services from no-fire situation in the north of Higher value (at baseline 20 $\mu g/m^3)$		Incremental benefit • For fires controls with t Actual value of impacts fi	from only fires generated it ols fire ranging 4 km, at baselin = 652.29 -624.43 = = 355.21-27.86 =	27.86 327.35 e north of				

The net values of government options were shown in Table 4.36. These values were calculated from Figure 4.5 and Table 4.35. The actual government budget for fire controls in year 2012 and the impacts values of actual fire event were set as base values. The impact value of health and ecosystem goods and services after fire-controls options in the area both agricultural and forest around agricultural area 1 km and 4 km from results of air quality models which were estimated in the part of economic losses of health effects, ecosystem goods and services, were also shown in Table 4.35. The amount costs of the government budget for each fire-controls option were calculated based on the budget required by ministries for mitigation fire problems. From the Table 4.36, the midpoint value of incremental benefit of the fires controls 1 km from the base value is \$199.98 million and the incremental cost is \$35.65 million. Then the net value at the midpoint is \$164.33 million. For the fires controls 4 km, the midpoint value of incremental benefit of is \$276.88 million and the incremental cost is \$204.14 million. The net value at the midpoint is \$72.74 million.

4.5 Conclusion and discussion

Five-days vegetation fires from 26th February to 1st March 2012 impacted socio-economic losses at around \$86.22 million to \$139.98 million, or around \$17.24 million to \$27.99 million per day. The value of health impacts from PM₁₀ was 99.24% of the total loss, which was greater than ecosystem goods and services losses by around 129 times. However, the comparison between costs and benefits of fire impacts and management need the whole year estimation. The estimated total losses in the north of Thailand during 1 February to 30 April 2012 from vegetation fires were \$229.02 million to \$979.64 million, which consist of ecosystem goods and services at around \$4.86 million to \$4.87 million and health impact value of about \$224.16 million to \$974.77 million. The value of health impacts from PM₁₀ was 97.88 to 99.50% of the total loss, which was greater than ecosystem goods and services losses by around 45 to 199 times.

This significant value of health impacts is important information for the government to emphasize on air pollutant by setting the air quality goal for the fire management. Health effects are more easily understood by policy-makers than values associated with many ecosystem services. The reason of health impacts was greater value than the ecosystem good and services value because it affected the large area and large amount of people whereas the depletion of ecosystem goods and services from fires occurred in the smaller area, only the value of climate regulation may affect the global area. From the air quality model, PM₁₀ could transport more than 1,000 km from source areas, although the relative contribution to global climate regulation may not be large. However, the value of health is calculated for people in the north of Thailand, not

including other areas for this study. The large amount of health impact value will increase for calculating all area affected.

Results from air quality focus on simulating scenarios of all study to meet the Thai air quality standard by controlling fires both agricultural and forest around agricultural area 1 and 4 km. For fire controls in agricultural and forest around agricultural area 1 km, this scenario could not solve the air quality in all area grids, size 27x27 km, in the north of Thailand to meet Thai PM₁₀- daily standard compared with controlling fires in agricultural area and forest around agricultural area within 4 km, which it could. This scenario almost is the zero burning which may be difficult in reality. However, in air quality part, the peak period of hotspots and PM₁₀ concentrations from 26 February to 1 March 2012 were selected for simulating the optimum option for solving the problem (see for example the Chiang Mai situation in Figure 4.4). Then it may be assumed that PM₁₀ concentrations of each grid in rest periods were less than simulating results and the most concentrations met the air quality standard after fire controls ranged 1 km. For the whole area of every single province, there was no daily PM₁₀ value exceeding Thai daily standard after fire controls ranged 1 km.

Considering all year estimating value (see Table 4.36), the economic losses at the midpoint value from fire controls ranged 1 km decreased by \$199.98 million or 33.09% from \$604.33 million to \$404.35 million and decreased by \$276.88 million or 45.82% from \$604.33 million to \$327.45 million from fire controls ranged 4 km. The economic losses decreased, or incremental benefit of 4-km fire controls is more than 1-km fire controls (\$276.88 million >\$199.98 million). The hotspot numbers controls in the 4-km option, which is more than the 1-km option (10,437 > 7,368 hotspots), is the factor of the higher incremental benefit of the 4-km option. For the budget cost, the highest cost is from the fireguard employment due to the focus on regulation enforcement. Costs will increase by area based on an area equation of π r². This should be a factor of 16 from the base cost value at \$12.66 million to \$216.8 million for the cost of 4-km fire controls. The cost of 1-km fire controls is \$48.31 million. This cost is less than 4-km fire controls (\$48.31 million < \$216.8 million) while the incremental benefit of 4-km fire controls is higher the 1-km option. Then the net value is used for weighting the fire-control options between 1 and 4 km.

The government budget for fire management was considered as a worthwhile investment by cost-benefit analysis. The net value result of the fires controls 1 km at the midpoint is \$164.33 million and \$72.74 million for the fires controls 4 km. The net value of the 1-km fire controls is more than 4-km fire controls. The 1-km fire controls should be more considered in a term of the worthwhile. However, the net value of the 4-km fire controls is also the positive value. Then, the

focus of the fire controlled in agricultural area and forest around agricultural area ranging both 1 km and 4 km are the suggested options for the short-term plan. In addition, the rest of budgets of \$72.74 million and \$164.33 million after employing the short-term plan can be used for a long-term plan. The long-term plan of the fire management is necessary for the sustainable policy. This was discussed in the next chapter.

Considering the study's possible limitations, the measurement error in the input data sets and the lack of representativeness of the available data for study can be a cause of uncertainty (WHO, 2008). A further limitation of this study is assessment based on inconsistent, fragmented and partial data from different studies from various countries due to the lack of mortality and morbidity studies caused by vegetation fires in Thailand. The chosen increased risks of morbidity from difference general background issues and different countries may cause uncertainty in the estimation of death and illness from vegetation fires in the north of Thailand. To provide the best match, this study chose mortality caused by PM₁₀ from vehicles emissions in Thailand and used the morbidity risks of PM₁₀ from the developed countries as shown in the section 4.2.1.

Beside the uncertainty of health impacts, there are uncertainties related to fire management costs in agricultural and forest areas with the range of 1-4 km as shown in Table 4.35 and 4.36. The sizes of all landuses including agricultural areas, Forest and National Parks were estimated using formulars. The formulars were also applied for area-burned sizes and government budgets. The fire impacts were estimated based on the assumptions that each fire event (or hotspot) has the same size of area burned and the same health impacts. These criteria could not reveal actual-impact values in affected areas. For ecosystem goods and services values, types of vegetations are the important variables to estimate impacts values of each fire event. However, it was also based on the assumption that every area burned was the same size. Therefore, there were uncertainties in all costs and benefits as shown Table 4.35, because these values were calculated by formulas generated with area sizes of landuse and area burned. However, the uncertainty also occurs from the use of benefit transfer method for valuing ecosystem goods and services which may be not good representatives in the study area.

In this study, the area burned size per 1 hotspot was low compared to other studies. This study used 12,750 m² (or 1.275 ha) per 1 hotspot, while other studies applied up to 1-1.8 km² (or 100-180 ha) as shown in Section 2.4.2 (Areas burned). The large amount of ecosystem goods and services losses will occur when the higher values of area burned size are used. For the health impacts, the economic losses may be not very different due to the validation process in air quality models. The modelled results have been adjusted to the mornitoring values.

Vegetation Fire Policy

The work presented shows that vegetation fires in the north of Thailand are mainly caused by human activities (see section 3.2). There was a relationship between the forest fire locations that occurred near human communities, especially agricultural and nearby areas. The Government measures can control fires in the short period but need a large budget. Then the middle and long-term fire management is needed for fire management. The strategy options such as fire regulatory, education, physical protection and economic mechanisms are the widespread policy instruments throughout the world. Then these options also should be applied and set to the action plan for Thailand.

In the United States 2012, Wildland Fire Leadership Council (WiFLC) showed quantitative models which each region used for risk analysis and prioritizing landscapes for fuel treatment or prescribed burning (Cook and O'Laughlin, 2014). This study also applied the air quality models to investigate the factors of high pollution levels in the fire season and the suitable number of areas burned to maintain air quality. Results showed that the weather condition is the most important factor for the air pollution occurrences. A few hotspot events affected the air quality and exceeded the air quality standard. Then the zero burning is the main policy option for the fire season. Fires are needed for some vegetation ecosystems and are used to decrease the severity of forest fires in Thailand as in other countries. The reduction of hazardous fuel accumulations appeared in many of the United States' national fire plan's recommendations, especially on lands at the wildland-urban interface (WUI) - the area where houses meet or intermingle with the undeveloped wildland vegetation (Cook and O'Laughlin, 2014). Similarly, Australia has had the same patterns of fuel reduction as the United States (Adams, 2013). However, forest fires in Thailand are low to moderate fires. Prescribed burning is necessary for some forest types.

The integration between zero and quota burning is the suitable policy pattern for the north of Thailand. The policy is divided into two plans; during and outside the fire season. Policy options are shown in the schematic diagram in Figure 5.1. If zero burning can mitigate the air pollution problem, then it is set to the main policy. However, fire controls in agricultural and

forest area ranging 1 km is also the suitable action plan to solve the problem effectively in a term of an economic return for the investment. Then, all agricultural area and villages in forest areas are the main target parties. In addition, important supported measures for all processes in this diagram are regulation and enforcement, awareness and engagement of the population, and knowledge and technology.

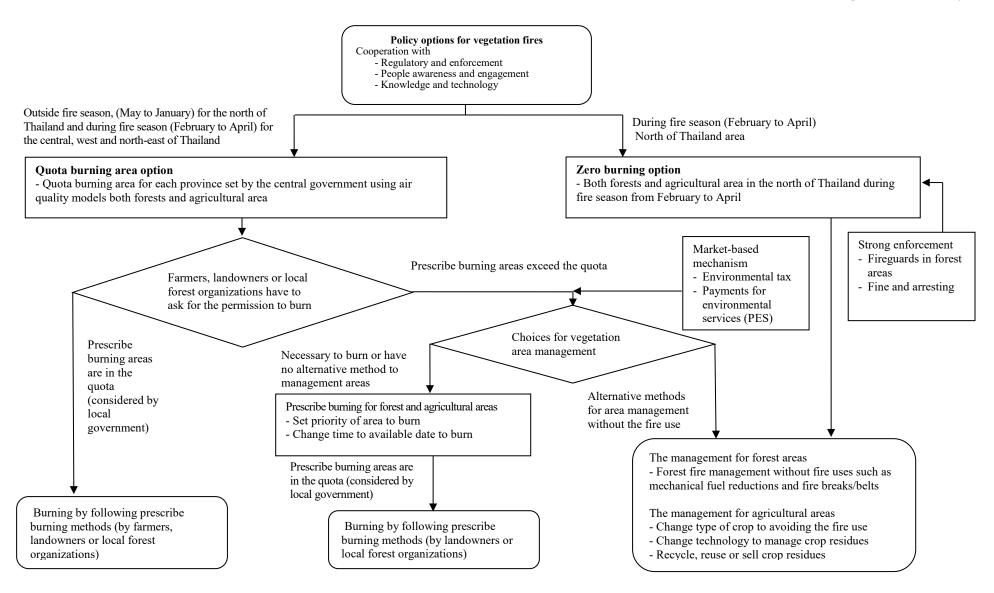


Figure 5.1 Schematic diagram of policy options to control areas of vegetation burning generated from results of previous chapters; air quality simulations and CBA.

5.1 Regulatory measures for burning control

Generally, air pollution problems from fires can be managed by reducing the area burned, decreasing pollutant emissions by using the burning technique, and avoiding fire uses in the unsuitable weather conditions. The fire uses in the unsuitable weather conditions need the government regulatory measures to enforce the people to avoid this. A government regulation of setting the zero burning periods is an option for the policy in the fire season. The burning quota for all vegetation fire type and following the burning technique are the options for the rest of the period.

5.1.1 Zero burning in the fire season

The results from chapter 3 on air quality evaluation showed that meteorological condition from February until April 2012 may influence the accumulation of pollutant concentrations reaching the high level. Therefore, open burning should be not allowed in this condition. The main target areas are agricultural and forest area ranging 1 km and the main target people are farmers and local people living near forests.

In the agricultural area, the use of fires appeared in processes of removing agricultural residues and preparing fields for agriculture or pasture. Fires are used for removing crop residues, controlling pests, weeds and disease, improving goods yield (Pollution Control Department, 2009). However, many studies showed that leaving crop residues in fields after harvesting could increase soil quality and the crop yield more than removing agricultural residue from fields (Romero-Perezgrovas et al., 2014, Turmel et al., 2015, Pollution Control Department, 2009). For controlling weed, pest and disease, Williams et al. (2013) showed that burning was a more effective tool than retaining residues in fields. The crop residue can be managed by selling to supplement for producing animal feed or biofuel. In some areas, farmers use fires to remove crop residue because there is no market for supporting its use (Turmel et al., 2015). Beside these, fields without residue are easy to prepare for the next cultivation. These problems should be solved by the government employing a zero-burning policy in the fire season.

The zero-burning policy should include plans for before and during the fire season. Before fire season, fires are needed in the forest area. Fires are used for building fire resilience to forests by prescribed burning to remove fuel load on the forest ground. This not only builds the fire resilience to forests but also prevents the occurrence of forest fires in the fire season. In agricultural areas, the management of agricultural residue is the main issue to be focused for the zero-burning policy. Generally, the harvesting periods for the main crops; rice and corn, in the north of Thailand are November to December for rice and May to July or August to October and February to March for corn (Pollution Control Department, 2009, Land Development

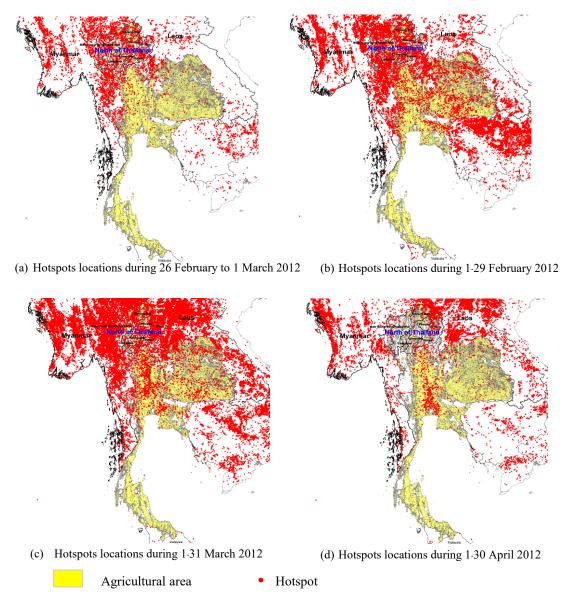
Department, 2016). The burning activity started to prepare the new crop in the beginning of the monsoon season in May. Then the suitable time for the crop residue management is November to the beginning of January because farmers who need fires for managing their field can ask for the permission to use fires in this period. For the harvesting of corn in February to March, the crop residue should be not allowed to burn but be managed by other ways. Generally, agricultural residues can be managed by leaving in the field as the fertilizer, producing animal feed or other products. Government can give knowledge and technology and support the market systems for crop residues. The report by Pollution Control Department (2009) showed that most farmers required the government supporting the market for buying residues and higher prices of zero-burning crop products, followed by giving technology and knowledge.

For agricultural areas, a certain time for each year is needed to be set for farmers preparing their residue management. The strong enforcement by paying fine for being illegal should be concentrated by local administration. For the zero burning in the forest area, more officers to survey and arrest persons who break the law at least up to 1 km are needed for the first stage of the zero-burning policy. Results from the cost-benefit analysis showed that the net benefit of the agricultural area management by giving knowledge and technology and hiring forest guards is a positive value and should be considered by the government.

5.1.2 Prescribe burning in the rest period

Fires are necessary for some agricultural processes and fire-dependent ecosystem. Zero burning through the year may lead to severe fires due to the accumulation of fuel loads and severe damages to the ecosystem lacking fire resilience. The use of fires should be allowed outside the burning season period. The Pollution Control Department studied the approach of prescribed burning or controlled burning by setting the quota burning area for each province (Pollution Control Department, 2009). It is possible to set the quota burning regulation and the government should support the agricultural residues markets, technology and higher prices of fire free crops to farmers. The objective of this study was the mitigation of health impacts from high concentrations of PM₁₀ from fire emissions due to meteorological conditions and high burning activities in the crop-harvesting season. This approach showed that the farmer has to ask for permission for burning. It also appeared in the United States, England, Canada and Brazil that farmers have to ask for a permission to burn their agricultural residue from the government (Ministry of Nataural Resources and Environment, 2015).

Results from the air quality part show that the hotspot numbers after fire controlled in agricultural and forest area ranging 1 and 4 km can be used to estimate area sizes to be allowed burning during the unsuitable weather condition influencing the accumulation of high


concentrations of pollutants. With the target of PM_{10} concentrations meeting Thai air quality standard (< $120~\mu g/m^3$) for all district area or every small area, the daily quota of area burned for each province is not more than 3 hotspots (= 3.825~ha) (results from fire controlled ranging 4 km scenario). For average PM_{10} of entire province area or large-scale area, the daily quota is not more than 16 hotspots (= 20.4~ha) (results from fire controlled ranging 1 km scenario). However, results from fire controls ranging to 1 km scenario showed that PM_{10} concentrations exceeded Thai air quality standard in some districts. Thai national standard of PM_{10} is higher than the WHO guidelines but it is accepted by Thai people and easier to achieve as the first step of air quality management by Thai government. The health impact valuation has shown high morbidity and mortality, and the associated economic losses from PM_{10} concentrations more than the WHO guideline at $20~and~50~\mu g/m^3$ but the government needs to balance costs and level of protection. Therefore, a methodology as CBA was applied to determine areas to control that bring about maximum benefits for least cost.

The use of fires should be applied for only necessary cases such as some agricultural processes and fire-dependent ecosystem. The government should consider alternative technology replacing fire use such as mechanical fuel reductions and wet fire breaks for the forest fire management and promoting farmers to change a type of crop depending on fire use in the fire season, and supporting harvesting mechanics and residue markets to manage crop residues in the agricultural area.

For the prescribed burning in agricultural areas, the burning quota process can be set as a regulatory framework by the local administration. The policy in Thailand was decentralized to the local level. All districts can set their own regulations for communities by being based on the main country law. According to Pollution Control Department (2009), the prescribed burning in agricultural areas should include two mains parts; quota for burning and burning methods. The central government sets the burning quota for each province by using air quality models. After that, each province will allocate the area burned to communities. The people have to apply for the permission from their local administration before burning crop residues. In a part of burning methods, it includes burning in day time, using dry residue, small size of burning areas or stacks, reducing danger to road users, not causing a nuisance to nearby populated areas such as school and private or government offices, preparing equipment for fire-spread prevention, wearing selfprotection equipment during open burning and building fire buffer line before burning. These regulatory measures were applied in some areas in Thailand. However, the number of burning quota areas for each year and province is still not set and legislated by the central government. It should be processed and set for all communities in the north of Thailand to solve the air pollution problem as the long-term policy.

5.1.3 Quota burning for the area outside the north of Thailand in the fires season

From the air quality model part, the pollutants in the north of Thailand also were generated from the central part of Thailand. Moreover, fires in the central part of Thailand have occurred through fire season during February to April in year 2012 as shown in Figure 5.2. The fire controlled area should be included the central part of Thailand. However, the air quality model was not run for the central part in this study. Then the number of area controlled should be calculated by the government for the future policy.

Figure 5.2 Hotspots location during 26 February to 1 March 2012 (a) and through fire season in February (b), March (c) and April (d) year 2012

5.2 Building fire resilience landscapes

Vegetation fires are the natural process for some fire dependent ecosystems. Then living with fire occurrences is needed for fire management in the fire risk area. To decrease the severity of damages and impacts on people from fire events, building fire resilience to vegetation area is the method that can process by prescribed burning, and building fire breaks.

5.2.1 Fuel reduction by prescribed burning in forest areas

Fuel reductions widely used to manage forests include prescribed fire and mechanical treatment. The mechanical ways use machinery to thin or remove vegetation in the forest. Mechanical fuel treatments may need many labourers, and hence not be economically attractive (Cook and O'Laughlin, 2014). Prescribed burning is one of the techniques used for forest management. The type of forests for prescribed burning are fire-dependent forests such as dipterocarp forests (Ministry of Nataural Resources and Environment, 2015). Generally, forest fires can severely damage forests, whereas for prescribed fires, there are neutral or positive effects on soils and biodiversity (Fernandes et al., 2013, Dale, 2006). In addition, emissions from prescribed burning are generated from herbaceous, fine, and coarse fuels burning which are less than the general forest fires that also consume small trees and some standing trees (Wiedinmyer and Hurteau, 2010, Fernandes et al., 2013). Wiedinmyer and Hurteau (2010) have compared CO₂ emissions from prescribe burning with normal fires in Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming from year 2001 to 2008. They found that the percent reduction of CO₂ from prescribed burning is around 1 to 26 depending on forest types compared to normal fires.

The management of prescribed burning includes the burning frequency and method. Less frequent fire such as 5-years fire return interval (FRI) emit more pollutants than 2 years FRI per each fire but total emission will be less than for the long term period calculation (Tian et al., 2008). In terms of the reduction of severe fires, the study of the suitable fire-return interval for prescribed burning is rarely found for the forests in Thailand. For the size of prescribed burning to reduce wildfire severity, it is less clear about the size of the landscape to be treated. The United States' policies suggest that the large size is better than the small area (Cook and O'Laughlin, 2014). For the plant structure, too frequent fires in dry dipterocarp forests in Thailand reduce the sprouting capacity of seedlings and saplings and inhibited regeneration (Wanthongchai, 2014). This study suggested that the suitable FRI is 6-7 years for the regeneration of young trees in dry dipterocarp forests. State of Queensland (2007) suggested the suitable FRI as following: every 3–7 years for timber production areas, two years to create fires buffers and two years for prescribed burning for forests with fuel quickly accumulating. However, where annual burning can cause

soil erosion, then it is not recommended. The United States Department of Agriculture (2009) suggested FRI at around 3 to >7 years for the prescribed burning.

There are 136,600 ha of dipterocarp forest areas that the Thai government plans to burn every year in the study area (see Table 4.34). Annual budget for prescribed fires is 3,464,560 US\$ for every year. The budget will decrease to 1,732,280 or 577,426 US\$ per year if the FRI are 2 or 6 years. Beside the budget, total pollutant emissions from 2 and 6 years FRI also are lower than the annual burning in the same forest area.

Generally, prescribed burning method is processed by using low intensity fires, in moderate to high relative humidity weather (30% - 60%), low wind Speed 5–15 mph (= 1.206.7 m/s) and cooler temperatures (1.4 - 21°C) (United States Department of Agriculture, 2009, State of Queensland, 2007). Various techniques of burning (e.g. backing fire, head fire ignition etc.) depend on weather and fuel factors such as wind direction and speed, temperature, fuel moisture, fuel load and vegetation size. Other preparations also are needed such as firebreaks, sensitive areas, (i.e. avoid sending smoke into residential areas, neighbours, airports, hospitals, etc.), safety equipment for controlling fire, and personal protection equipment (United States Department of Agriculture, 2009). Firebreaks are important to control a fire spread. It must be at least 15 feet in width or 4 times the fuel height. Firebreaks include streams, bare soils, roads, burned areas, and mow0wet lined vegetation. Moreover, burning should be conducted in the daytime because temperature inversions frequently hold in the night time that traps the smoke near the ground level.

5.2.2 Fires belts and fire breaks

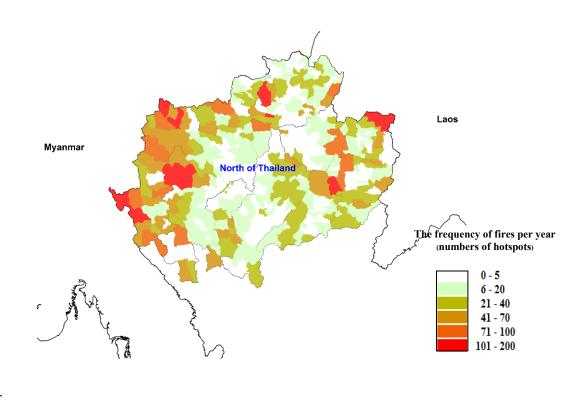
Forests in the north of Thailand are the mosaic forests with 2 main types of plants, evergreen (dry and hill evergreen) and seasonal forests (deciduous and dipterocarp). With the forest mosaic of continental South-east Asia, fires may not be particularly disastrous for tree species and biodiversity effects (Baker et al., 2008). The maintenance of the mosaic plant in Thailand tends to be the fire belt method. The fire belt is a line of vegetation with fire0resistant types and keeping the forest floor clean (Department of Agriculture and Rural Development, 2014). It prevents or decreases the spread of fires. However, evergreen is difficult to ignite but is sensitive to fires. Fires may lead to the transform of evergreen forest to deciduous forest and savanna and consequence to a significant loss of biodiversity for the long-term effects from high frequent fires (Cochrane, 2009).

Due to the limitation of prescribed fire implementation by air quality policy in Thailand, the fuel treatment may not be accessed for all planned areas. In addition, prescribed burning is suitable for dipterocarp and deciduous forests. Mechanical fuel treatments and firebreaks are

needed for other forest types for forest resilience and are needed in dipterocarp and deciduous forests for forest resilience to break the fire spread. The evergreen forest is another main type of the forest in the study area that needs management for forest resilience. Generally, the evergreen forest is difficult to ignite but fires can destroy forest ecosystem because of being sensitive to fires. Firebreaks are necessary for this forest type particularly in the drought year in which dry and hot weather is a suitable condition to fire occurrences and spread. The El Niño—Southern Oscillation (ENSO) forecasting can be used as a tool for the preparation. Cochrane (2009) showed that ENSO caused the drought and increased fires in Southeast Asia.

The building of firebreaks may also divide into wet and dry firebreaks. The dry firebreaks include bare soils, roads, and burned areas while the wet firebreak is the various types of streams. Wet fire breaks are the options of Royal Development Project for forest fires management without the fire use for Thailand (Royal Forest Department, 2016b). Check dams are sustainability options for the fire break type and water supply for fire management in Thailand. Building check dams and canals in forests are the wet fire breaks in some forest areas (Royal Forest Department, 2016b). Firebreaks are built between forests and villages in the current plan. The increase of firebreaks inside the forest area should be more focussed for the future plan.

5.2.3 Fireguard officers


Australian strategies to respond to wildfires include the policy of 'stay and defend or leave early' when fires come and education programs like 'Community Fireguard'. The Country Fire Authority (CFA) is one of the biggest volunteer-based disaster response organizations in the world with almost 60,000 volunteer fire fighters. In an average year, CFA volunteers attend around 5,000 fires (Cook and O'Laughlin, 2014).

In Thailand, the volunteer system also appears in the action plan every year (Ministry of Nataural Resources and Environment, 2015) but did not cover all target of forest ranging 1 km. To enforce the zero-burning policy, the government has to hire the fireguards. There are 28,500 persons covering the target area 570,000 ha for national parks. For 670,000 ha in forest parks, the fireguards are around 26,800 persons for fire control in forest areas ranging 1 km from agricultural areas who will be the volunteers from the community forest project in the future plan.

5.3 The priority of area burned

The management of vegetation fires in the north of Thailand needs a large amount of budget and human resources. The prone fire areas with the most fire frequencies are areas as the first priority to be employed in the plan. All hotspots for years 2009 to 2012 acquired from NASA have been analysed for fire frequencies by using GIS. There are 569 sub-districts in the north of

Thailand but only 465 sub-districts appeared the hotspots. The ranking of top 30 fire frequencies from 465 sub-districts were shown in Table 5.1 and the map of averaged annual fire frequencies during 2009 to 2012 were shown in Figure 5.3.

Figure 5.3 The map showed averaged annual fire frequencies during 2009 to 2012 in 465 sub-district areas in the north of Thailand.

Table 5.1 The ranking of top 30 fire frequencies in the districts in the north of Thailand during year 2009 to 2012

				Averaged Fire Frequency per year					
Rank	Province	District	Sub district	Total Fire Frequency from 2009 to 2012	Fire Frequency per year	Fire events in agricultural area and forest nearby 1km	Fire events in forest far from agricultural ranging 1 to 4 km	Fire events in forest far from agricultural ranging 4 km	
1	Nan	Chalermphrakiet	Pon	784	196	144	47	5	
2	Mae Hong Son	Mae Sariang	Mae Khong	768	192	39	65	89	
3	Chiang Mai	Mae Chaem	Mae Suek	547	137	107	30	0	
4	Chiang Rai	Mae Suai	Wawi	511	128	117	11	0	
5	Mae Hong Son	Pang Ma Pha	Soppong	509	127	113	14	0	
6	Nan	Wiang Sa	Yap Hua Na	439	110	49	43	18	
7	Chiang Mai	Mae Chaem	Mae Na Chon	423	106	80	26	0	
8	Phayao	Pong	Pha Chang Noi	388	97	62	33	3	
9	Mae Hong Son	Mae La Noi	Mae Na Chang	378	95	19	11	0	
10	Chiang Mai	Chiang Dao	Mueang Na	359	90	78	12	0	
11	Nan	Muang Nan	Saniang	345	86	71	15	1	
12	Mae Hong Son	Muang Mae Hong Son	Huai Pong	333	83	52	25	4	
13	Mae Hong Son	Mae Sariang	Sao Hin	331	83	28	40	15	
14	Mae Hong Son	Muang Mae Hong Son	Huai Pha	319	80	52	25	4	
15	Chiang Rai	Wieng Kaen	Po	317	79	71	9	0	
16	Mae Hong Son	Muang Mae Hong Son	Pha Bong	309	77	45	27	5	
17	Mae Hong Son	Sop Moei	Mae Suat	307	77	45	32	0	
18	Phayao	Pong	Khuan	295	74	33	35	6	
19	Nan	Wiang Sa	Mae Khaning	293	73	40	33	0	
20	Chiang Rai	Wiang Pa Pao	San Sali	289	72	66	7	0	
21	Mae Hong Son	Sop Moei	Sop Moei	287	72	38	29	5	
22	Chiang Mai	Omkoi	Omkoi	286	72	56	16	0	
23	Lamphun	Li	Ko	264	66	10	19	38	
24	Chiang Mai	Mae Chaem	Ban Thap	260	65	29	34	2	
25	Mae Hong Son	Pang Ma Pha	Pang Mapha	253	63	57	6	0	
26	Chiang Mai	Omkoi	Mae Tuen	252	63	46	17	0	
27	Nan	Pua	Phu Kha	244	61	38	22	1	
28	Mae Hong Son	Pai	Mae Na Toeng	240	60	28	26	7	
29	Chiang Mai	Mae Chaem	Ban Chan	239	60	47	13	0	
30	Mae Hong Son	Khun Yuam	Khun Yuam	235	59	32	25	2	

This table shows the importance of tackling the hotspots within 1km of agricultural areas. The areas with high fire frequencies are close to human communities. This information combined with modelling approach in Chapter 3 could form the basis of a strategic management plan.

Tackling areas with highest incidence of fires may be more effective to mitigate air pollutions caused by vegetation fires vigorously in terms of using less times and smaller budgets.

5.4 People education, awareness and engagement

The Thai government has focused on public relations via multimedia such as news on television and province announcements for many years. Many people who live close to fire-prone areas built their firebreaks to protect their properties. Generally, indigenous knowledge is considered to be a body of knowledge existing within populations or acquired by local people over a period of time through accumulation of experiences, society- nature relationships, community practices and institutions, and by passing it down through generations (Fernando, 2003). The communities in the Thai forests have also used fire to manage their forests for a long time. Therefore, forest fires often occur behind the firebreak line and rarely spread to villages. Forest fire events caused by people across the fires break line spread to forests and burn the forest areas.

According to the Department of National Parks Wildlife and Plant Conservation (2012), for forest fires in the year 2012 problems were caused by local people by gathering forest goods at 66.3%, agricultural activities at 16.6%, other activities 6.2% and unidentified causes at 10.9%. Local people should respond to maintain public forest areas. The right for forest management by local people is the policy option for building people's awareness. This may be operated by extending forest areas for local people managing their forest into the secondary forests and forests near villages.

From the chapter CBA (see Table 4.34), a budget of around \$4.73 million per year for all villages near forests to manage their forest areas around the village ranging 1 km is worthwhile for fire management compared with employing government officers (fireguards) by the government, which need the budget of around \$24.12 million per year for the fireguard cost. Cook and O'Laughlin (2014) described the collaborative engagement between people and government identified by the National Strategy in Australia "which includes governance, shared information and resources, communications, and monitoring and accountability by the collaboration in fuels management both for public and private lands".

5.5 Market-based mechanism

5.5.1 Environmental Taxes Measures

The market mechanism for environmental goods and services in Thailand has been applied over the last decade but is not popular. Therefore, the regulation measure as an environmental tax is suitable for enforcing and achieving the environmental management based on market in Thailand (Kokachaporn, 2013). The environmental tax in Thailand is currently in the process of regulations drafting. The higher price of agricultural goods from fire-free production was the farmer's suggestions for pushing on avoiding the fire use in their fields (Pollution Control Department, 2009). The tax rate for the factory may be a tool to support the use of fire-free agricultural materials. However, the tax rate should be effectively reducing the price of fire-free crops compared to the crops.

5.5.2 Payments for Ecosystem Services (PES)

Payments for ecosystem services or payments for environmental services (PES) are market-based mechanisms that buyers pay for improving environmental services (e.g. reduced flood risk, clean water etc.) or buy improved services from providers (Department for Environment Food & Rural Affairs (DEFRA), 2013). The buyers include private organisations or individuals, Non-Governmental Organisations (NGOs), and the government and the sellers or providers include farmers, landowner, and environmental organisations. For the vegetation fires management in this study, the main buyer is the government and the sellers are farmers and forest-dwelling communities.

There are vegetation areas in the north of Thailand at 7,764,885 ha including national parks, forest parks and agricultural areas at around 3,392,670 ha, 2,682,170 ha, and 1,690,045 ha, respectively. In February to April 2012, there were 11,007 hotspots (~14,034 ha) in vegetation areas. This affected people's health and ecosystem goods and services in a term of the economic value around \$355.21 million (from Table 4.36). Generally, the estimated PES value for the loss of vegetation fires impacts in the north of Thailand should be \$355.21 million / 14,034 ha = \$25,311per ha per fire season. During the rest period; May to January, fires occurrences rarely appeared in the north of Thailand and had less of an impact on heath. Then impacts value in the fire season may be represented as the annual value.

However, this value is higher than PES values for the forest plantation in many countries such as Costa Rica, Indonesia, Australia, United States, Brazil, and France, which are around 45-230 US\$ per ha per year (Smith et al., 2006). This is because the health impact values are more than the ecosystem goods and services values caused by vegetation fires by 45-199 times. From Table 4.34, fire controls ranging 1 km covering area = 172,700 + 1,690,045 + 670,000 + 570,000

= 3,102,745 ha, and fire controls ranging 4 km covering area = 172,700 + 1,690,045 + 2,660,000 + 2,280,000 = 6,802,745 ha are the selected options for fire management in the north of Thailand. The estimated PES value for vegetation fires management in the north of Thailand, the government budget for fire controls 1 km will be \$48.31 million / 3,102,745 ha = \$15.57 per ha per year and for fire controls 4 km will be \$216.80 million / 6,802,745 ha = \$31.87per ha per year.

Instruments such as taxes and payments for ecosystem services (PES) are options for market-based mechanism for this study. The taxes are methods to encourage environmentally positive behaviour changes by generating the relation of paying more cost for the more polluting practices. However, in countries in which regulatory and taxation systems are not strong enough, payments for ecosystem services (PES) tend to be popular (Fisher et al., 2008).

5.6 International cooperation on transboundary haze pollution

The Agreement on Transboundary Haze Pollution of Association of Southeast Asian Nations (ASEAN) came into force in 2013. All member countries including Brunei Darussalam, Cambodia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, and Vietnam had ratified the Agreement in 2015. The objective of the agreement is to prevent and monitor transboundary haze pollution caused by land and/or forest fires. The development of "Roadmap on ASEAN Cooperation towards Transboundary Haze Pollution Control with Means of Implementation" was started in 2015. This roadmap aims to set measures to improve the situation of regional transboundary haze pollution from vegetation fires through quantitative indicators and targets by 2020. The indicators include increasing numbers of days having good or moderate air quality, reducing hotspot numbers, and decreasing of transboundary haze pollution area (Association of Southeast Asian Nations, 2017).

There are five member-countries in the northern ASEAN; Thailand, Myanmar, Laos, Vietnam and Cambodia. Most countries in this region are classified as the lower middle income economies byWorld Bank (2017). Thailand and Vietnam can be indicated by air quality while other countries need other indicators due to the limitation of air monitoring systems (World Air Quality, 2017). Therefore, the hotspot numbers for each country are set for the northern ASEAN's roadmap target. The cooperation between these member countries to mitigate fire management is carried out via bilateral agreement, which is run by their own money. With limited resources, the transboundary haze pollution needs more efforts, time and resources (e.g. technology and funds or budgets) for achieving the target.

5.7 Conclusion and discussion

The severity of fire problems in the north of Thailand affected the people's health and the socio-economic losses. The annual air pollution caused by vegetation fires has trigged the people to become more aware about the haze problem. However, the specific regulations for the vegetation burning in Thailand are not currently sufficiently legislated for. The air quality models are effective tools to investigate the causes and the solutions for controlling fire to meet the air quality standard. Results from the air quality models indicated that a few hotspots in each province can cause the PM₁₀to exceed the daily Thai air quality standard because of the weather condition. This can lead to the regulations of the zero burning in the fire season and the quota burning outside the fire season for Thailand.

The costs-benefits analysis is the tool to evaluate the worthwhileness of the selected solutions in terms of a monetary value. This study has integrated these tools for generating optimal policies. The north of Thailand covered with the forest areas is around 6,074,840 ha and agricultural area of about 1,690,045 ha. The government has to spend the budget \$216.80 million (see Table 4.36) per year to control fires efficiently. Results from air quality model and CBA showed that fire controlled in agricultural area and forest ranging 1 km (cover area 3,102,745 ha) is more worthwhile solution for the budget and the mitigation of the air pollution problem with the budget \$48.31 million per year. Beside the smaller area for fire controls, the significant decrease of the budgets is the replacement budget of government officers by the budget for people engagement in forest park. However, the net value of the 1 and 4 km fire controls are the positive value. Then, the focus of the fire controlled in agricultural area and forest around agricultural area ranging both 1 km and 4 km are worthwhile for the short-term plan.

The problem of fire management in Thailand is the lack of action within the territorial jurisdictions of each organization. In the last decade, all forest areas are the government's responsibility, but it lacks the budget and human resources for forest management. Then over recent years, the decentralization to the local government responsibilities is considered to be the major plan for Thai policy. The provinces directly respond to the policy from the Prime Minister and are set as the main centre for action plans (Ministry of Nataural Resources and Environment, 2015). The plans include before, during and after fire seasons. Before fire season from November to January, firebreaks creating, fuel reducing, and prescribed burning were included in the plans. Plans during fire seasons are the law enforcement and fire fighting, and after fire season are forest restorations and public awareness building. The next step of the fires policy is that the local community can legislate their own fire control and manage fires problem by themselves.

Most vegetation fires in Thailand are caused by humans. The most important factor for fire management is people's awareness. The regulatory measures such as zero burning in the fire season, prescribed burning in the rest period and quota burning for the area outside the north of Thailand are tools to enforce people avoiding the use of fires and decrease vegetation fire occurrences. The technology measures such as supporting guidelines and machines to managing agricultural residues are tools to build people's abilities to mitigate fire problems. However, it is difficult to control every person. Therefore, building fire resilience landscapes is need for the government policy. This can limit fires to spread in the small size area and less damage to forest and people's health and community. The fire fighters from volunteers and government officers will be the last step to control fires. Not only vegetation fires in Thailand need to mitigate for national air quality but transboundary haze between countries also need to be emphasised for the both of national and international air qualities. With transboundary haze pollutions from neighbouring countries, the achievement of meeting Thai air-quality standards for all districts in the north of Thailand may be not accomplished.

This study was successful in terms of producing a framework to enhance policy development that is based on i) air quality meeting standards and ii) the budget of the government intervention being appropriate for the north of Thailand. There are many studies of forest fire emissions but there is no study for the north of Thailand. This study has applied air quality models investigated forest fires emissions in eight provinces in the north region of Thailand and neighbouring countries. The integrated framework between the use of air quality models to reduce emissions to meet the air quality standard and the cost-benefit of the government intervention has created the framework of policies. This study results will be a practical case study of effective integrated air quality management in a rapidly developing country.

However, with the limitation of time and resources, the air quality simulation was taken only 5 days during 26 February to 1 March 2012 and simulating for the whole year are not processed. In addition, the central part of Thailand was not simulated in this study and neighbouring countries were not evaluated throughout the fire season. Therefore, the exactly time periods and area sizes for prescribed and quota burning in the north and other parts of Thailand throughout the year could not be set in the policy. Moreover, the north of Thailand may be more affected by PM₁₀ from neighbouring countries and other parts of Thailand during other periods. Focusing more on other area sources for the air pollution policy in the north may be considered for the future research.

Chapter 6

Conclusion and Recommendations for Future Work

6.1 Conclusion

The aim of this study was to investigate an air pollution problem caused by forest fires in the northern region of Thailand and develop an integrated framework to enhance policy development for this problem. The development will be based on the both the air quality standards that are to be met and the budget of the government intervention that is appropriate. This will be a practical case study of effective integrated air quality management in a rapidly developing country. The objectives of this study were achieved as follows:

6.1.1 The causes of forest fires, their emissions, and their impacts including health, environmental, social and ecological impacts, from a global view

Vegetation fires tend to be more frequent in hot and dry weather conditions, and human activities are the major cause of fires. Their impacts are from trace gases and aerosols that are released from fires and adversely affect the environment and human health. Air pollution was estimated to cause 7 million global premature deaths in 2012. However, fires also were used to manage fuel loads that may improve watershed conditions, enhanced wildlife habitat, and more resilient forested ecosystems, Fires also reduce fire suppression and fuel treatment costs for forest fire management over the long-term.

6.1.2 The amount of emissions from each source and the processes that influence fires emissions affecting the ambient air quality of the north of Thailand to exceed the Thai air quality standards

The major source of emissions for air pollution caused by vegetation fires in the north of Thailand was from mixed deciduous forests (61.55% of all area), followed by agricultural areas (18.16% of all area). The processes that influence fires emissions affecting the ambient air quality of the north of Thailand to exceed the Thai air quality standards are hotspot numbers and weather conditions. The number of hotspots was the most important factor in the north of Thailand. Hotspots had occurred from December 2011 until 4 May 2012. In January and April, averaged daily of hotspot numbers were 12 and 16 and averaged daily of PM_{10} concentration were 53 and PM_{10} in the urban area. The high frequency fires (average > 150 hotspots per day) occurred

from 9 February to 31 March 2012 with an average daily of PM_{10} concentration of around 135 $\mu g/m^3$ in the urban areas. Moreover, the wind direction is an important factor that influences the PM_{10} transporting from the sources to other areas. Pollutants were transported by wind from the lower part of Thailand and some parts of Myanmar and Laos to the north of Thailand. Beside these, mixing height is a factor of the air pollution in the study area. The mixing height, which may lead to smoke problem near the ground level, is less than 1,700 feet or 500 metres. Most of the study area had averaged values of mixing height during 26 February to 1 March 2012 of less than 1,700 feet.

6.1.3 Scenarios for potential fire controls to find the optimal pollution reduction targets from selected areas

Scenarios to find the optimal pollution reductions from forest fires by reducing biomass-burning emissions from each type of land use were simulated for finding PM_{10} concentrations after controlling fires in neighbouring countries, the agricultural area and forest area in the range 1 and 4 km. Before fires were controlled, the high level of PM_{10} in some district areas of more than $200 \,\mu\text{g/m}^3$ occurred in every province. Moreover, the averaged PM_{10} throughout the province exceeded the Thai daily standard at $120 \,\mu\text{g/m}^3$ occurred in six provinces.

6.1.4 The main pollutant sources and the numbers of areas needed to control atmospheric emissions from fires in order to meet the air quality standards

After fires controlled in both agricultural areas and forests around agricultural areas within 1 km, PM_{10} in most district areas have decreased below 200 $\mu g/m^3$ and PM_{10} throughout the province averaged met the Thai daily standard at 120 $\mu g/m^3$ in every province with values of 33 to 79 $\mu g/m^3$. After fire controls in agricultural areas and forest areas within a range of 1 km of agricultural areas in the north of Thailand and hotspots taken off in the neighbouring areas, PM_{10} concentrations were greater than 120 $\mu g/m^3$ in many areas. PM_{10} concentrations of inner districts the north of Thailand were the same as the previous scenario but this scenarios could mitigate PM_{10} concentrations of districts closed to neighbouring countries. Lastly, fires controlled in both agricultural and forest around agricultural areas up to 4 km, PM_{10} has decreased below 120 $\mu g/m^3$ in every district area, except three districts that are close to nearby provinces or neighbouring countries. PM_{10} throughout the province met the Thai daily standard at 120 $\mu g/m^3$ in every province with values of 28 to 63 $\mu g/m^3$.

6.1.5 The effects of forest fires and the value losses of each party affected

The parties affected from fires include the Thai government, people's health and people's livelihoods affected by impacts on ecosystem goods and services in the north of Thailand area. The economic losses from health impacts through the fire season from 1 February to 30 April

2012 were \$224.16 million by the baseline value at $50 \,\mu\text{g/m}^3$ and \$974.77 million by the baseline value $20 \,\mu\text{g/m}^3$. The estimated total value of ecosystem goods and services losses were around \$4.86 million. The government budget for short-term fire management in year 2012 was about \$12.66 million.

6.1.6 Costs and benefits to the main parties affected from government interventions after controlling the different main causes of fires

The fire controlled in agricultural area and forest around agricultural area ranging both 1 km and 4 km are the suggested options for the short-term plan. The evaluation of the government interventions includes before and after fire controls in eight provinces in the north of Thailand during 1 February to 30 April 2012. The impacts value from actual vegetation fires were estimated as being between \$229 million to \$980 million based on the baseline value at $50 \mu g/m^3$ and $20 \mu g/m^3$, respectively. The economic losses decreased by \$178 million or 77.5% from \$229million to \$1million by the baseline value at $50 \mu g/m^3$, and by \$223 million or 22.8% from \$980 million to \$757 million by the baseline value at $20 \mu g/m^3$ from fire controlled ranged 1 km. After fires were controlled in the 4-km range, economic losses decreased by \$227 million or 98.9% from \$229million to \$2.5 million by the baseline value at $50 \mu g/m^3$, and by \$328 million or 33.5% from \$980 million to \$652 million by the baseline value at $20 \mu g/m^3$.

6.1.7 Comparison between costs and benefits of the government interventions before and after controlling the different main causes of fire emissions, and select the interventions that are the worthwhile for the government, society and ecosystems

The government budget for fire management suggested by this studywas shown to be a potential worthwhile investment by cost-benefit analysis. The cost of 1-km fire controls is \$48.31 million and \$216.8 million for 4-km fire controls. The net value result of the fires controls in the 1 km range at the midpoint is \$164.33 million and \$72.74 million for the fires controls in the 4-km range. The net value of the 1-km fire controls is more than the 4-km fire controls. The 1-km fire controls should be considered more worthwhile by \$91.59 million compared with 4-km fire controls (at the midpoint value, net value of 1-km fire controls =\$164.33 million, 4-km fire control =\$72.74 million). However, the net value of the 4-km fire controls is also a positive value. Then, the focus of the fire controlled in agricultural area and forest around agricultural area in the range of both 1 km and 4 km are the suggested options for the short-term plan. The fire controlled in agricultural areas and forests ranging 1 km cover an area of 3,102,745 ha and fire controls ranging 4 km cover an area of 6,802,745 ha. For fire control in the 1 km range, the budget cost is \$15.57 per ha (=\$48.31 million/ 3,102,745 ha), and for fire control in the 4 km range is \$31.87 per ha (=\$48.8 million/6,802,745 ha). The net value for fire control in the 1 km range is \$52.96 per ha

(=\$164.33 million/ 3,102,745 ha), and \$10.69 per ha (\$72.74 million/ 6,802,745) for fire control in the 4-km range.

6.1.8 The government interventions

The integration between zero and quota burning is the suitable policy pattern for the north of Thailand. The policy is divided into two plans; during and outside the fire season. If the zero-burning policy can mitigate the air pollution problem, then it is set to the main policy. Other measures for fire management also include building fire resilience to vegetation areas, supporting the fireguards volunteer system, and market-based mechanism such as environmental taxes and payments for ecosystem services or payments for environmental services (PES).

For theinternational cooperation on transboundary haze pollution, this cooperation needs more effort to mitigate the problem because the most countries in this region are classified as the lower middle-income economies. The resources (e.g. technology and funds or budgets) from the international sources are needed for achieving the target.

6.2 Recommendations for Future Work

Due to the limitation of studies of health and ecosystem goods and services impacts values in the north of Thailand, the monetary valuation process may not determine the 'true' values because of the use of the benefit transfer approach from various studies the values of which may be completely different in northern Thailand. Moreover, the values of ecosystem impacts were estimated using the ecosystem goods and services values which were based on the productions from the whole-tree mass or the whole forest area whereas forest fires destroy only some parts of trees or forests. The actual damage values caused by fires being the natural process of forests rarely appeared in the previous studies. Moreover, fires also have some benefits for the ecology. The benefit values of the fire use are needed for a future study.

Results from the air quality model indicate that PM_{10} could be transported more than 1,000 km from source areas. The impact from vegetation fires affects people's health in terms of large amount of deaths and illnesses and economic losses in the north of Thailand. The large amount of the health impact value will increase by calculating all the areas affected. Further study might estimate the transboundary pollutant effects and their value in terms of health impacts.

In recent years, vegetation fire management has been more focussed on the use of fires. This may be an effective method for the forest fire management and some ecosystems, but it heavily affects atmospheric conditions and people's health. The future study may focus on effective methods for forest fire management without the use of fire and weighting costs and benefits between use and non-use fire management.

Glossary of Terms

Aerosols Small particles or liquid droplets in the atmosphere that can absorb or

reflect sunlight depending on their composition

Benefit transfer The process of taking information about economic values from studies

already completed and applying it to the target study.

Biomass Organic material both aboveground and belowground, and both living

and dead, e.g., trees, crops, grasses, tree litter, roots etc. Biomass includes the pool definition for above and below ground biomass

Black carbon

(BC)

The most strongly light0absorbing component of particulate matter (PM), and is formed by the incomplete combustion of fossil fuels, biofuels, and biomass. It is emitted directly into the atmosphere in the

form of fine particles (PM_{2.5})

Broadleaf forests The general description of forests composed principally of trees and

shrubs of the botanical group of flowering species which is in contrast

to conifers or pines.

CALPUFF A non-steady-state Lagrangian Gaussian puff model with chemical

removal, wet and dry deposition, building downwash, and complex terrain effects. Lagrangian models are based on the concept that pollutant particles in the atmosphere move along trajectories determined by the wind field, the buoyancy and the turbulence effects.

Carbon sequestration

The removal and storage of carbon from the atmosphere into natural

or man-made reservoirs, including forests and wood products.

Combustion efficiency

The fraction of the combusted carbon that is released in the form of

CO₂.

Deciduous Trees with broad, flat leaves which are shed annually

Deforestation Clearing of forested areas

Dipterocarp forest Deciduous dipterocarp or dry deciduous forests are also called for this

type of forest in the north of Thailand. Their characteristics are open canopy and abundant grassland, supporting high mammalian biomass, including important herbivores and grazers such as rhinos, elephants,

gaur, banteng and deer.

Dry matter (DM) Dry matter refers to biomass that has been dried to an oven-dry state,

often at 70°C.

Ecosystem goods and services

The benefits people obtain from ecosystems. These include provisioning services such as food and water; regulating services such

as flood and disease control; cultural services such as spiritual,

recreational, and cultural benefits; and supporting services such as nutrient cycling that maintain the conditions for life on Earth

El Niño-Southern Oscillation (ENSO) A warm water current that periodically flows along the coast of Ecuador and Peru, disrupting the local fishery. This oceanic event is associated with a fluctuation of the intertropical surface pressure pattern and circulation in the Indian and Pacific Oceans, called the Southern Oscillation. This coupled atmosphere0ocean phenomenon is collectively known as El Niño-Southern Oscillation. During an El Niño-event, the prevailing trade winds weaken, and the equatorial counter current strengthens, causing warm surface waters in the Indonesian area to flow eastward to overlie the cold waters of the Peru current. This event has great impact on the wind, sea surface temperature, and precipitation patterns in the tropical Pacific. It has climatic effects throughout the Pacific region and in many other parts of the world.

Emission factor

Inventory definition: A coefficient that relates the activity data to the amount of chemical compound, which is the source of later emissions. Emission factors are often based on a sample of measurement data, averaged to develop a representative rate of emission for a given activity level under a given set of operating conditions.

Evergreen

A group of trees that do not lose all of their leaves every year but go through a gradual replacement by dropping only their oldest leaves each year. Instead of being bare in winter, these trees have leaves all year

Fire controls in agricultural and forest area ranging 1 km, or fires controls in the 1 km range A fire control in agricultural areas and forest areas within a range of 1 km of agricultural areas is a scenario with the condition that there is no fire in agricultural areas and forest areas (within a range of 1 km of agricultural areas). Results of PM_{10} concentrations in these areas were PM_{10} of fires generating from other areas

Fire controls in agricultural and forest area ranging 4 km, or fires controls in the 4 km range

A fire control in agricultural areas and forest areas within a range of 4 km of agricultural areas is a scenario with the condition that there is no fire in agricultural areas and forest areas (within a range of 4 km of agricultural areas). Results of PM_{10} concentrations in these areas were PM_{10} of fires generating from other areas

Fire intensity

A measure of the rate of energy release from the organic matter combustion process as kilowatts per metre (kW/m) or kilojoules per meter per second (kJ/m/s)

Fire regime

The pattern of fire occurrence, fire frequency, fire seasons, fire size, fire intensity, and fire type that is characteristic of a particular geographical area and/or vegetation type.

Fire resistant species

Species which has morphological or seasonal growth characteristics that give it a high probability of surviving a wildfire.

Fire return (or "fire free interval"," fire interval") The number of years between interval two successive fires documented in a designated area (i.e., the length

of time between two successive fire occurrences) (units = years).

Fire sensitive species

Species with a relatively high probability of being killed or scarred if a wildfire occurs. Specific examples include trees with thin bark or highly flammable foliage, or animal species that are unable to evade the heat of a wildfire

Fire severity A measure of the loss of aboveground organic matter (i.e. canopy tree,

surface litter) and belowground (i.e. soil organic layer)

Firebreak An area on the landscape where there is a discontinuity in fuel which

will reduce the fire spread.

Forest fires/ Wildfires

An unplanned, unwanted wildland fire including unauthorized humancaused fires, escaped wildland fire use events, escaped prescribed fire projects, and all other wildland fires where the objective is to put the fire out

Fuel load The mass of combustible materials available for a fire by combustion

Grassland An area predominantly covered in one or more species of grass.

Hazard reduction burning

Burning of accumulated fuels to reduce fire fuel & thereby reduce the risk and impact of wildfire

Haze Fine dry or wet particles of dust, salt, or other impurities that can

concentrate in a layer next to the Earth when air is stable

Micrograms per cubic meter $(\mu g/m^3)$

A unit that expresses the concentration of a substance in air. A microgram per cubic meter is one one-millionth of a gram of substance per cubic meter of air

Mixing height The height to which a parcel of air, or a column of smoke, will rise, mix or disperse. A column of smoke will remain trapped below this

height.

National parks Public forests under management of the federal government where

harvesting is excluded. Recreation and biodiversity conservation are

the primary goals

Net Present value The current value of net benefits (benefits minus costs) that occur over

time. A discount rate is used to reduce future benefits and costs to their

present time equivalent

Particulate matter (PM)

Very small pieces of solid or liquid matter such as particles of soot, dust, fumes, mists or aerosols. The physical characteristics of particles, and how they combine with other particles, are part of the feedback

mechanisms of the atmosphere

Parts per billion (ppb)

Number of parts of a chemical found in one billion parts of a particular

gas, liquid, or solid mixture.

Premature death

Deaths that occur before a person reaches an expected

Prescribed burn

A planned and supervised burn carried out under specified environmental conditions to remove fuel from a predetermined area of land and at the time, intensity and rate of spread required to meet land

management objectives.

Primary forest

Naturally regenerated forest of native species, where there are no clearly visible indications of human activities and the ecological processes are not significantly disturbed

Purchasing power parities (PPP)

The rates of currency conversion that equalize the purchasing power of different currencies by eliminating the differences in price levels between countries. In their simplest form, PPPs are simply price relatives that show the ratio of the prices in national currencies of the same good or service in different countries. PPPs are also calculated for product groups and for each of the various levels of aggregation up

to and including GDP

Puff

The puffs in a model are assumed to have Gaussian or bell0shaped concentration profiles in their vertical and horizontal planes

Reforestation

Replanting of a forest on cleared, degraded or destroyed forest areas

Resilience

A capability to anticipate, prepare for, respond to, and recover from significant multi0hazard threats with minimum damage to social well0being, the economy, and the environment

Savanna

A grassland with scattered individual trees

Secondary Forest

Regenerate on native forests, which have been cleared by natural or man0made causes, such as agriculture or ranching. They display a major difference in forest structure and/or species composition with respect to primary forests. Secondary vegetation is generally unstable, and represents successional stages

Smoke

The atmospheric suspension of small particles of solids and liquids produced by the combustion process

Stakeholder

An individual that has a specific stake in a given set of resources, and can be affected by decisions of others

Suppression

All work involved in controlling and extinguishing a wildfire.

Surface fire

A fire that burns within the surface fuel layer

Threshold

The lowest dose of a substance at which a specified measurable effect is observed and below which it is not observed.

Total economic value

The sum of all types of use and non-use values for a good or service. Use value - value derived from actual use of a good or service. Non0use values, also referred to as "passive use" values - values that are not associated with actual use, or even the option to use a good or service

Trace gases

Gases such as carbon dioxide, water vapour, methane, oxides of nitrogen, ozone, and ammonia.

Tropical Forest

A type of forest found in areas with high regular rainfall and no more than two months of low rainfall, and consisting of a completely closed canopy of trees that prevents penetration of sunlight to the ground and

discourages ground-cover growth

Vegetation fires

All plant type fires, in this study means agricultural and forest fires

List of References

- ADAMS, M. A. 2013. Mega-fires, tipping points and ecosystem services: Managing forests and woodlands in an uncertain future. *Forest Ecology and Management*, 294, 250-261.
- ADGER, N., BROWN, K., CERVIGNI, R. & MORAN, D. 1994. TOWARDS ESTIMATING TOTAL ECONOMIC VALUE OF FORESTS IN MEXICO The Centre for Social and Economic Research on the Global Environment (CSERGE).
- ADGER, W. N. 2006. Vulnerability. *Global Environmental Change*, 16, 268-281. AFSHAR-MOHAJER, N., WILSON, C., WU, C.-Y. & STORMER, J. E. 2016. Source apportionment of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Palm Beach County, Florida. *Journal of the Air & Waste Management Association*, 66, 377-386.
- AKAGI, S. K., YOKELSON, R. J., WIEDINMYER, C., ALVARADO, M. J., REID, J. S., KARL, T., CROUNSE, J. D. & WENNBERG, P. O. 2011. Emission factors for open and domestic biomass burning for use in atmospheric models. *Atmospheric Chemistry and Physics*, 11, 4039-4072.
- AL-SAADI, J., SOJA, A. J., PIERCE, R. B., SZYKMAN, J., WIEDINMYER, C., EMMONS, L., KONDRAGUNTA, S., ZHANG, X., KITTAKA, C., SCHAACK, T. & BOWMAN, K. 2008. Intercomparison of near-real-time biomass burning emissions estimates constrained by satellite fire data. *Journal of Applied Remote Sensing*, 2, 021504-021504-24.
- AMMANN, H., BLAISDELL, R., LIPSETT, M., STONE LYON, S. T., HERRIAULT, S., JENKINS, P. & LYNCH, K. 2008. Wildfire Smoke A Guide for Public Health Officials.
- AMNAUYLAWJARURN, T., KREASUWUN, J., TOWTA, S. & SIRIWITAYAKORN, K. 2010. Dispersion of Particulate Matter (PM10) from Forest Fires in Chiang Mai Province, Thailand. *Chiang Mai Journal of Science*, 37, 39-47.
- AMNUAYLOJAROEN, T. & KREASUWUN, J. 2012. Investigation of Fine and Coarse Particulate Matter from Burning Areas in Chiang Mai, Thailand using the WRF/CALPUFF. *Chiang Mai J. Sci*, 39, 311-326.
- ANDREAE, M. O. & MERLET, P. 2001. Emission of trace gases and aerosols from biomass burning. *Global Biogeochemical Cycles*, 15, 955-966.
- ARAÚJO, T. M., CARVALHO JR, J. A., HIGUCHI, N., BRASIL JR, A. C. P. & MESQUITA, A. L. A. 1999. A tropical rainforest clearing experiment by biomass burning in the state of Pará, Brazil. *Atmospheric Environment*, 33, 1991-1998.
- ASSOCIATION OF SOUTHEAST ASIAN NATIONS. 2017. ROADMAP ON ASEAN COOPERATION TOWARDS TRANSBOUNDARY HAZE POLLUTION CONTROL WITH MEANS OF IMPLEMENTATION [Online]. Available: http://environment.asean.org/wp-content/uploads/2016/11/Roadmap-ASEAN-Haze-free adoptedbyCOP12.pdf [Accessed 14/04/2017].
- ATKINSON, G. & MOURATO, S. 2008. Environmental Cost-Benefit Analysis. *Annual Review of Environment and Resources*, 33, 317-44.
- BAIKUNTHA, A. 2002. Are Trees for the Poor? A Study from Budongo Forest, Uganda., Department of Economics and Social Sciences, Agricultural University of Norway.
- BAKER, P. & BUNYAVEJCHEWIN, S. 2009. Fire behavior and fire effects across the forest landscape of continental Southeast Asia, Germany, Springer Berlin Heidelberg.

- BAKER, P. J., BUNYAVEJCHEWIN, S. & ROBINSON, A. P. 2008. The impacts of large-scale, low-intensity fires on the forests of continental South-east Asia. *International Journal of Wildland Fire*, 17, 782-792.
- BALLESTER, F., RODRIGUEZ, P., INIGUEZ, C., SAEZ, M., DAPONTE, A., GALAN, I., TARACIDO, M., ARRIBAS, F., BELLIDO, J., CIRARDA, F. B., CANADA, A., GUILLEN, J. J., GUILLEN-GRIMA, F., LOPEZ, E., PEREZ-HOYOS, S., LERTXUNDI, A. & TORO, S. 2006. Air pollution and cardiovascular admissions association in Spain: results within the EMECAS project. *J Epidemiol Community Health*, 60, 328-36.
- BALLHORN, U., SIEGERT, F., MASON, M. & LIMIN, S. 2009. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. *Proceedings of the National Academy of Sciences*, 106, 21213-21218.
- BARMPADIMOS, I., HUEGLIN, C., KELLER, J., HENNE, S. & PREVOT, A. S. H. 2011. Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008. *Atmospheric Chemistry and Physics*, 11, 1813-1835.
- BARRETO, P., AMARAL, P., VIDAL, E. & UHL, C. 1998. Costs and benefits of forest management for timber production in eastern Amazonia. *Forest Ecology and Management*, 108, 9-26.
- BBC. 2013. Singapore haze hits record high from Indonesia fires [Online]. Available: http://www.bbc.co.uk/news/world-asia-22998592 [Accessed 7 July 2013].
- BISHOP, J. T. 1999. Valuing Forests: A Review of Methods and Applications in Developing Countries. . London: International Institute for Environment and Development.
- BONNIEX, F. & RAINELLI, P. 1999. Valuing Environmental Preferences: Theory and Practice of the Contingent Valuation Method in the US, EU, and developing Countries, New York, Oxford University Press.
- BUREAU OF POLICY AND STRATEGY. 2015. *Patient database* [Online]. Bureau of Policy and Strategy, Ministry of Health. Available: http://bps2.moph.go.th/ [Accessed 5/12/2015 2015].
- BUREAU OF THE BUDGET 2012. Annual budget year 2012 (in Thai). Office of the Prime Minister.
- BUSENBERG, G. 2004. Wildfire Management in the United States: The Evolution of a Policy Failure. *Review of Policy Research*, 21, 145-156.
- CARDILLE, J. A., VENTURA, S. J. & TURNER, M. G. 2001. Environmental and Social Factors Influencing Wildfires in the Upper Midwest, United States. *Ecological Applications*, 11, 111-127.
- CARVALHO, J. A., COSTA, F. S., GURGEL VERAS, C. A., SANDBERG, D. V., ALVARADO, E. C., GIELOW, R., SERRA, A. M. & SANTOS, J. C. 2001. Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil. *Journal of Geophysical Research: Atmospheres*, 106, 17877-17887.
- CHEN, L., VERRALL, K. & TONG, S. 2006. Air particulate pollution due to bushfires and respiratory hospital admissions in Brisbane, Australia. *International Journal of Environmental Health Research*, 16, 181-191.
- CHEN, Z. 2006. Effects of fire on major forest ecosystem processes: An overview. *Chinese Journal of Applied Ecology*, 17, 1726-1732.
- CHIABAI, A., TRAVISI, C., MARKANDYA, A., DING, H. & NUNES, P. 2010. Economic Assessment of Forest Ecosystem Services Losses: Cost of Policy Inaction. Basque Centre for Climate Change (BC3).
- CHIEN, S., DOUBLEDAY, J., MCLAREN, D., DAVIES, A., TRAN, D., TANPIPAT, V., AKAAKARA, S., RATANASUWAN, A. & MANDL, D. Space-based Sensorweb monitoring of wildfires in Thailand. Geoscience

- and Remote Sensing Symposium (IGARSS), 2011 IEEE International, 24-29 July 2011 2011. 1906-1909.
- CHOI, Y.-J. & FERNANDO, H. J. S. 2007. Simulation of smoke plumes from agricultural burns: Application to the San Luis/Rio Colorado airshed along the U.S./Mexico border. *Science of The Total Environment*, 388, 270-289.
- CHULALONGKORN UNIVERSITY 2010. National accounts for the cost of natural resources and environment (in Thai). Chula Unisearch, Chulalongkorn University, Bangkok, Thailand.
- COCHRANE, M. A. 2009. *Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics*, Chichester, UK, Praxis Publishing.
- COOK, P. S. & O'LAUGHLIN, J. 2014. Fuel Treatments in Idaho's Forests: Effectiveness, Constraints, and Opportunities. Policy Analysis Group, College of Natural Resources, University of Idaho.
- CUTTER, S. 2010. Social Science Perspectives on Hazards and Vulnerability Science, Netherlands, Springer
- DALE, L. 2006. Wildfire Policy and Fire Use on Public Lands in the United States. *Society & Natural Resources*, 19, 275-284.
- DALE, L. 2010. The True Cost of Wildfire in the Western U.S.: Western Forestry Leadership Coalition.
- DAMRONGPLASIT, K. & MELNICK, G. 2015. Funding, Coverage, and Access Under Thailand's Universal Health Insurance Program: An Update After Ten Years. *Applied Health Economics and Health Policy*, 13, 157-166.
- DANIAU, A. L., BARTLEIN, P. J., HARRISON, S. P., PRENTICE, I. C., BREWER, S., FRIEDLINGSTEIN, P., HARRISON-PRENTICE, T. I., INOUE, J., IZUMI, K., MARLON, J. R., MOONEY, S., POWER, M. J., STEVENSON, J., TINNER, W., ANDRIČ, M., ATANASSOVA, J., BEHLING, H., BLACK, M., BLARQUEZ, O., BROWN, K. J., CARCAILLET, C., COLHOUN, E. A., COLOMBAROLI, D., DAVIS, B. A. S., D'COSTA, D., DODSON, J., DUPONT, L., ESHETU, Z., GAVIN, D. G., GENRIES, A., HABERLE, S., HALLETT, D. J., HOPE, G., HORN, S. P., KASSA, T. G., KATAMURA, F., KENNEDY, L. M., KERSHAW, P., KRIVONOGOV, S., LONG, C., MAGRI, D., MARINOVA, E., MCKENZIE, G. M., MORENO, P. I., MOSS, P., NEUMANN, F. H., NORSTRÖM, E., PAITRE, C., RIUS, D., ROBERTS, N., ROBINSON, G. S., SASAKI, N., SCOTT, L., TAKAHARA, H., TERWILLIGER, V., THEVENON, F., TURNER, R., VALSECCHI, V. G., VANNIÈRE, B., WALSH, M., WILLIAMS, N. & ZHANG, Y. 2012. Predictability of biomass burning in response to climate changes. Global Biogeochemical Cvcles. 26, n/a-n/a.
- DANIELS, M. J., DOMINICI, F., SAMET, J. M. & ZEGER, S. L. 2000. Estimating Particulate Matter-Mortality Dose-Response Curves and Threshold Levels: An Analysis of Daily Time-Series for the 20 Largest US Cities. *American Journal of Epidemiology*, 152, 397-406.
- DE GROOT, R., BRANDER, L., VAN DER PLOEG, S., COSTANZA, R., BERNARD, F., BRAAT, L., CHRISTIE, M., CROSSMAN, N., GHERMANDI, A., HEIN, L., HUSSAIN, S., KUMAR, P., MCVITTIE, A., PORTELA, R., RODRIGUEZ, L. C., TEN BRINK, P. & VAN BEUKERING, P. 2012. Global estimates of the value of ecosystems and their services in monetary units. *Ecosystem Services*, 1, 50-61.
- DEFRA 2007. An introductory guide to valuing ecosystem services. Department for Environment, Food and Rural Affairs, London.
- DENBY, B., GEORGIEVA, E., LARSSEN, S., GUERREIRO, C., LI, L., DOUROS, J., MOUSSIOPOULOS, N., FRAGKOU, L., GAUSS, M., OLESEN, H., MIRANDA ISABEL, A., DILARA, P., THUNIS, P., LAPPI, S., ROUIL, L.,

- LüKEWILLE, A., QUEROL, X., MARTIN, F., SCHAAP, M., HOUT VAN DEN, D., KOBE, A., SILIBELLO, C., KEITH, S., JOHN, G., MARÍA, P., GUIDO, V., LUISA, P., ADDO VAN, O., ALBERTO, G., ROBERTS, P., OETTL, D. & JERICEVIC, A. 2010. Guidance on the use of models for the European Air Quality Directive.
- DEPARTMENT FOR ENVIRONMENT FOOD & RURAL AFFAIRS. 2016. *Daily Air Quality Index* [Online]. Available: https://uk-air.defra.gov.uk/air-pollution/daqi [Accessed 2016].
- DEPARTMENT FOR ENVIRONMENT FOOD & RURAL AFFAIRS (DEFRA) 2013. Payments for Ecosystem Services: A Best Practice Guide. *In:* DEPARTMENT FOR ENVIRONMENT FOOD & RURAL AFFAIRS (DEFRA) (ed.).
- DEPARTMENT OF AGRICULTURE AND RURAL DEVELOPMENT 2014. Building wildfire resilience into forest management planning. *In:* DEPARTMENT OF AGRICULTURE AND RURAL DEVELOPMENT (ed.). Forestry Commission, Edinburgh.
- DEPARTMENT OF NATIONAL PARKS WILDLIFE AND PLANT CONSERVATION 2012. Anual Report 2012 of Forest Fire Control Division (in Thai).
- DEPARTMENT OF NATIONAL PARKS WILDLIFE AND PLANT CONSERVATION. 2016. *The risk map of forest fires* [Online]. Available: http://www.dnp.go.th/forestfire/risk_map/fire_risk.htm [Accessed 21/02/2012].
- DEPARTMENT OF PROVINCIAL ADMINISTRATION. 2015. *The number of population* [Online]. Department of Provincial Administration, Ministry of Interior. Available:

 http://stat.bora.dopa.go.th/new_stat/webPage/statByYear.php [Accessed 5/12/2015 2015].
- DEPARTMENT OF THE INTERIOR, U. S. 2012. Wildland Fire Management Program Benefit-Cost Analysis; A Review of Relevant Literture.
- DERWENT, D., FRASER, A., ABBOTT, J., JENKIN, M., WILLIS, P. & MURRELLS, T. 2010. Evaluating the Performance of Air Quality Models. DEFRA
- DICKINSON, M. B. & JOHNSON, E. A. 2001. Chapter 14 Fire Effects on Trees. *Forest Fires.* San Diego: Academic Press.
- DONTEE, S., THUMTAKHOP, S. & CHAMNIWIKAIYAPONG, P., NOISUYA, S. 2011. Prioritizing of Burned Areas Using Multi-source Spatial Data for Open Field Burning Surveillance and Prevention in Chiang Mai Province (in Thai). Chiang Mai University, Thai Health Promotion Foundation.
- DONTREE, S., THUMTAKHOP, S., CHAMNIWIKAIYAPONG, P. & NOISUYA, S. 2011. Prioritizing of Burned Areas Using Multi-source Spatial Data for Open Field Burning Surveillance and Prevention in Chiang Mai Province (in Thai). Chiang Mai University, Thai Health Promotion Foundation.
- DUNCAN, B. N., MARTIN, R. V., STAUDT, A. C., YEVICH, R. & LOGAN, J. A. 2003. Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. *Journal of Geophysical Research: Atmospheres*, 108, 4100.
- EMMANUEL, S. C. 2000. Impact to lung health of haze from forest fires: the Singapore experience. *Respirology*, 5, 175-82.
- ENVIRONMENTAL PROTECTION AGENCY (US EPA) 2003. Federal Register: Revision to the Guideline on Air Quality Models: Adoption of a Preferred Long Range Transport Model and Other Revisions; Final Rule.
- EUROPEAN COMMISSION. 2016. *Air Quality Standards* [Online]. Available: http://ec.europa.eu/environment/air/quality/standards.htm [Accessed 2016].
- EUROPEAN ENVIRONMENT AGENCY 2011. The application of models under the European Union's Air Quality Directive: A technical reference guide.

- Copenhagen, Denmark: Institute for Environment and Sustainability Transport and Air Quality Unit.
- EUROPEAN FOREST INSTITUTE 2002. Forests in Poverty Reduction Strategies: Capturing the Potential. *In:* OKSANEN, T., PAJARI, B. & TUOMASJUKKA, T. (eds.). European Forest Institute
- EVA, H. & LAMBIN, E. F. 2000. Fires and land-cover change in the tropics:a remote sensing analysis at the landscape scale. *Journal of Biogeography*, 27, 765-776.
- FAUSTINI, A., ALESSANDRINI, E. R., PEY, J., PEREZ, N., SAMOLI, E., QUEROL, X., CADUM, E., PERRINO, C., OSTRO, B., RANZI, A., SUNYER, J., STAFOGGIA, M. & FORASTIERE, F. 2015. Short-term effects of particulate matter on mortality during forest fires in Southern Europe: results of the MED-PARTICLES Project. *Occup Environ Med*, 72, 323-9.
- FEARNSIDE, P. M., GRAÇA, P. M. C. L. D. A. & RODRIGUES, F. J. A. 2001. Burning of Amazonian rainforests: burning efficiency and charcoal formation in forest cleared for cattle pasture near Manaus, Brazil. *Forest Ecology and Management*, 146, 115-128.
- FERNANDES, P. M., DAVIES, G., ASCOLI, D., FERNANDEZ, C., MOREIRA, F., RIGOLOT, E., STOOF, C. R., VEGA, J. A. & MOLINA, D. 2013. Prescribed burning in southern Europe: developing fire management in a dynamic landscape. *Frontiers in Ecology and the Environment*, 11, e4-e14.
- FERNANDO, J. L. 2003. NGOs and Production of Indigenous Knowledge Under the Condition of Postmodernity. *The ANNALS of the American Academy of Political and Social Science*, 590, 54-72.
- FISHER, B., TURNER, K., ZYLSTRA, M., BROUWER, R., GROOT, R. D., FARBER, S., FERRARO, P., GREEN, R., HADLEY, D., HARLOW, J., JEFFERISS, P., KIRKBY, C., MORLING, P., MOWATT, S., NAIDOO, R., PAAVOLA, J., STRASSBURG, B., YU, D. & BALMFORD, A. 2008. ECOSYSTEM SERVICES AND ECONOMIC THEORY: INTEGRATION FOR POLICY-RELEVANT RESEARCH. *Ecological Applications*, 18, 2050-2067.
- FOOD AND AGRICULTURE ORGANIZATION (FAO) OF THE UNITED NATIONS 2007. Fire management global assessment 2006. Forest Management Division, FAO.
- FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS 2007. Fire management global assessment 2006. Forest Management Division, FAO.
- FORSYTH, T. 2014. Public concerns about transboundary haze: A comparison of Indonesia, Singapore, and Malaysia. *Global Environmental Change*, 25, 76-86.
- FRIED, J., GILLESS, J. K., RILEY, W., MOODY, T., SIMON DE BLAS, C., HAYHOE, K., MORITZ, M., STEPHENS, S. & TORN, M. 2008. Predicting the effect of climate change on wildfire behavior and initial attack success. *Climatic Change*, 87, 251-264.
- GAITHER, C. J., POUDYAL, N. C., GOODRICK, S., BOWKER, J. M., MALONE, S. & GAN, J. 2011. Wildland fire risk and social vulnerability in the Southeastern United States: An exploratory spatial data analysis approach. *Forest Policy and Economics*, 13, 24-36.
- GIGLIO, L., DESCLOITRESA, J., JUSTICEC, C. O. & KAUFMAN, Y. J. 2003. An Enhanced Contextual Fire Detection Algorithm for MODIS. *Remote Sensing of Environment*, 87 (2003) 273 282.
- GIGLIO, L., RANDERSON, J. T. & VAN DER WERF, G. R. 2013. Analysis of daily, monthly, and annual burned area using the fourth-generation global

- fire emissions database (GFED4). *Journal of Geophysical Research: Biogeosciences*, 118, 317-328.
- GIGLIO, L., RANDERSON, J. T., VAN DER WERF, G. R., KASIBHATLA, P. S., COLLATZ, G. J., MORTON, D. C. & DEFRIES, R. S. 2009. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. *Biogeosciences*, 6, 11577-11622.
- GLOBAL FIRE MONITORING CENTER. 2002. Special Report on Forest Fire [Online]. [Accessed].
- GLOBAL FIRE MONITORING CENTER. 2006. Effects of Forest Fire Protection on Plant Diversity in a Tropical Deciduous Dipterocarp Oak Forest, Thailand [Online]. Available: http://www.fire.uni-freiburg.de/iffn/iffn 34/08-IFFN-34-Thailand.pdf [Accessed].
- GONZáLEZ-CABáN, A. 2008. Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View. United States Department of Agriculture.
- GUILD, L. S., KAUFFMAN, J. B., ELLINGSON, L. J., CUMMINGS, D. L., CASTRO, E. A., BABBITT, R. E. & WARD, D. E. 1998. Dynamics associated with total aboveground biomass, C, nutrient pools, and biomass burning of primary forest and pasture in Rondônia, Brazil during SCAR-B. *Journal of Geophysical Research: Atmospheres*, 103, 32091-32100.
- HANDMER, J. & REALE, A. 2011. Migration and Global Environmental Change. RMIT University, Melbourne, VIC, Australia.
- HANLEY, N., MOURATO, S. & WRIGHT, R. E. 2001. Choice Modelling Approaches: A Superior Alternative for Environmental Valuatioin? *Journal of Economic Surveys*, 15, 435-462.
- HARDY, C. C., OTTMAR, R. D., PETERSON, J. L., CORE, J. E. & SEAMON, P. 2001. SMOKE MANAGEMENT GUIDE FOR PRESCRIBED AND WILDLAND FIRE 2001 Edition National Wildfire Coordinating Group, Fire Use Working Team.
- HAWBAKER, T. J., RADELOFF, V. C., SYPHARD, A. D., ZHU, Z. & STEWART, S. I. 2008. Detection rates of the MODIS active fire product in the United States. *Remote Sensing of Environment*, 112, 2656-2664.
- HEIL, A. 2007. *Indonesian Forest and Peat Fires: Emissions, Air Quality, and Human Health.* PhD, International Max Planck Research School on Earth System Modelling.
- HENDERSON, S. B., BURKHOLDER, B., JACKSON, P. L., BRAUER, M. & ICHOKU, C. 2008. Use of MODIS products to simplify and evaluate a forest fire plume dispersion model for PM10 exposure assessment. *Atmospheric Environment*, 42, 8524-8532.
- HESSELN, H., LOOMIS, J. B., GONZáLEZ-CABáN, A. & ALEXANDER, S. 2003. Wildfire effects on hiking and biking demand in New Mexico: a travel cost study. *Journal of Environmental Management*, 69, 359-368.
- HIME, N., COWIE, C. & MARKS, G. 2015. Review of the health impacts of emission sources, types and levels of particulate matter air pollution in ambient air in NSW. Woolcock Institute of Medical Research, Centre for Air Quality and Health Research and Evaluation (CAR).
- HOELZEMANN, J. J., SCHULTZ, M. G., BRASSEUR, G. P., GRANIER, C. & SIMON, M. 2004. Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data. *Journal of Geophysical Research: Atmospheres*, 109, D14S04.
- INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC) 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. *In:* EGGLESTON, H. S., BUENDIA, L., MIWA, K., NGARA, T. & TANABE, K. (eds.).
- IPCC 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry. *In:* PENMAN, J., GYTARSKY, M., HIRAISHI, T., KRUG, T., KRUGER,

- D., PIPATTI, R., BUENDIA, L., MIWA, K., NGARA, T., TANABE, K. & WAGNER, F. (eds.). Japan: Institute for Global Environmental Strategies (IGES) for the IPCC.
- ITO, A. & PENNER, J. E. 2004. Global estimates of biomass burning emissions based on satellite imagery for the year 2000. *Journal of Geophysical Research: Atmospheres*, 109, D14S05.
- JACOBSON, M. Z. 2004. The Short-Term Cooling but Long-Term Global Warming Due to Biomass Burning. *Journal of Climate*, 17, 2909-2926.
- JANSSEN, M. A. & OSTROM, E. 2006. Resilience, vulnerability, and adaptation: A cross-cutting theme of the International Human Dimensions Programme on Global Environmental Change. *Global Environmental Change*, 16, 237-239.
- JÉRôME, O. & ANDERSEN, A. N. 2001. Fire and biodiversity: responses of grass-layer beetles to experimental fire regimes in an Australian tropical savanna. *Journal of Applied Ecology*, 38, 49-62.
- JIAN, L. 2001. Development and Tribal Agricultural Economy in a Yao Mountain Village in Northern Thailand. *Human Organization*, 60, 80-94.
- JOHANSEN, M. P., HAKONSON, T. E. & BRESHEARS, D. D. 2001. Post-fire runoff and erosion from rainfall simulation: contrasting forests with shrublands and grasslands. *Hydrological Processes*, 15, 2953-2965.
- JOHNSTON, F., BAILIE, R., PILOTTO, L. & HANIGAN, I. 2007. Ambient biomass smoke and cardio-respiratory hospital admissions in Darwin, Australia. *BMC Public Health*, 7, 240.
- JOHNSTON, F. H., HENDERSON, S. B., CHEN, Y., RANDERSON, J. T., MARLIER, M., DEFRIES, R. S., KINNEY, P., BOWMAN, D. M. J. S. & BRAUER, M. 2012. Estimated global mortality attributable to smoke from landscape fires. *Environ. Health Perspect*, 120, 695-701.
- JOHNSTON, F. H., WEBBY, R. J., PILOTTO, L. S., BAILIE, R. S., PARRY, D. L. & HALPIN, S. J. 2006. Vegetation fires, particulate air pollution and asthma: A panel study in the Australian monsoon tropics. *International Journal of Environmental Health Research*, 16, 391-404.
- JONGUDOMSUK, P., SRITHAMRONGSAWAT, S., PATCHARANARUMOL, W., LIMWATTANANON, S., PANNARUNOTHAI, S., VAPATANAVONG, P., SAWAENGDEE, K. & FAHAMNUAYPOL, P. 2015. The Kingdom of Thailand Health System Review. Health Systems in Transition, Vol. 5 No. 5 2015 ed.: Asia Pacific Observatory on Health Systems and Policies, World Health Organization.
- JUSTICE, C., GIGLIO, L., ROY, D., BOSCHETTI, L., CSISZAR, I., DAVIES, D., KORONTZI, S., SCHROEDER, W., O'NEAL, K. & MORISETTE, J. 2011. MODIS-Derived Global Fire Products. *In:* RAMACHANDRAN, B., JUSTICE, C. O. & ABRAMS, M. J. (eds.) *Land Remote Sensing and Global Environmental Change.* Springer New York.
- KAISER, J. W., HEIL, A., ANDREAE, M. O., BENEDETTI, A., CHUBAROVA, N., JONES, L., MORCRETTE, J. J., RAZINGER, M., SCHULTZ, M. G., SUTTIE, M. & VAN DER WERF, G. R. 2012. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. *Biogeosciences*, 9, 527-554.
- KAISER, J. W., SCHULTZ, M. G., GREGOIRE, J. M., TEXTOR, C., SOFIEV, M., BARTHOLOME, E., LEROY, M., ENGELEN, R. J. & HOLLINGSWORTH, A. 2006. Observation Requirements for Global Biomass Burning Emission Monitoring. EUMETSAT Meteorological Satellite Conference, 2006.
- KATSOUYANNI, K., TOULOUMI, G., SAMOLI, E., GRYPARIS, A., LE TERTRE, A., MONOPOLIS, Y., ROSSI, G., ZMIROU, D., BALLESTER, F., BOUMGHAR, A., ANDERSON, H. R., WOJTYNIAK, B., PALDY, A.,

- BRAUNSTEIN, R., PEKKANEN, J., SCHINDLER, C. & SCHWARTZ, J. 2001. Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. *Epidemiology*, 12, 521-31.
- KEELEY, J. E. 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. *International Journal of Wildland Fire*, 18, 116-126.
- KEELEY, J. E. & MCGINNIS, T. W. 2007. Impact of prescribed fire and other factors on cheatgrass persistence in a Sierra Nevada ponderosa pine forest<xref ref-type="fn" rid="fn1"/>. *International Journal of Wildland Fire*, 16, 96-106.
- KENNARD, D. K. & GHOLZ, H. L. 2001. Effects of high- and low-intensity fires on soil properties and plant growth in a Bolivian dry forest. *Plant and Soil*, 234, 119-129.
- KIM OANH, N. T. & LEELASAKULTUM, K. 2011. Analysis of meteorology and emission in haze episode prevalence over mountain-bounded region for early warning. *Science of The Total Environment*, 409, 2261-2271.
- KOCHI, I., DONOVAN, G. H., CHAMP, P. A. & LOOMIS, J. B. 2010. The economic cost of adverse health effects from wildfire-smoke exposure: a review. *International Journal of Wildland Fire*, 19, 803-817.
- KODANDAPANI, N., COCHRANE, M. A. & SUKUMAR, R. 2008. A comparative analysis of spatial, temporal, and ecological characteristics of forest fires in seasonally dry tropical ecosystems in the Western Ghats, India. *Forest Ecology and Management*, 256, 607-617.
- KOKACHAPORN, P. 2013. Environmental Tax. The Secretariat of the Senate, Thailand.
- KUNII, O., KANAGAWA, S., YAJIMA, I., HISAMATSU, Y., YAMAMURA, S., AMAGAI, T. & ISMAIL, I. T. 2002. The 1997 haze disaster in Indonesia: its air quality and health effects. *Archives of Environmental Health*, 57, 16-22.
- LAND DEVELOPMENT DEPARTMENT 2016. The management of agricultural burning areas for Mae Hong Son province (in Thai). Land Development Department.
- LANGMANN, B., DUNCAN, B., TEXTOR, C., TRENTMANN, J. & VAN DER WERF, G. R. 2009. Vegetation fire emissions and their impact on air pollution and climate. *Atmospheric Environment*, 43, 107-116.
- LARRIEU, S., JUSOT, J.-F., BLANCHARD, M., PROUVOST, H., DECLERCQ, C., FABRE, P., PASCAL, L., TERTRE, A. L., WAGNER, V., RIVIÈRE, S., CHARDON, B., BORRELLI, D., CASSADOU, S., EILSTEIN, D. & LEFRANC, A. 2007. Short term effects of air pollution on hospitalizations for cardiovascular diseases in eight French cities: The PSAS program. *Science of The Total Environment*, 387, 105-112.
- LEE, T.-S., FALTER, K., MEYER, P., MOTT, J. & GWYNN, C. 2009. Risk factors associated with clinic visits during the 1999 forest fires near the Hoopa Valley Indian Reservation, California, USA. *International Journal of Environmental Health Research*, 19, 315-327.
- LEELŐSSY, Á., MéSZáROS, R., KOVáCS, A., LAGZI, I. & KOVáCS, T. 2017. Numerical simulations of atmospheric dispersion of iodine-131 by different models. *PLOS ONE*, 12, e0172312.
- LEELŐSSY, Á., MOLNáR, F., IZSáK, F., HAVASI, Á., LAGZI, I. & MéSZáROS, R. 2014. Dispersion modeling of air pollutants in the atmosphere: a review. *Open Geosciences*.
- LETTE, H. & DE BOO, H. 2002. *Economic valuation of forests and nature : a support tool for effective decision making*, Wageningen [etc.], International Agricultural Centre [etc.].
- LINARES, C., CARMONA, R., TOBÍAS, A., MIRÓN, I. J. & DÍAZ, J. 2015. Influence of advections of particulate matter from biomass combustion on

- specific-cause mortality in Madrid in the period 2004–2009. *Environmental Science and Pollution Research*, 22, 7012-7019.
- LOHMANN, U. & FEICHTER, J. 2005. Global indirect aerosol effects: a review. *Atmospheric Chemistry and Physics*, 5, 715-737.
- LOOMIS, J. 2004. Do nearby forest fires cause a reduction in residential property values? *Journal of Forest Economics*, 10, 149-157.
- LUERS, A. L. 2005. The surface of vulnerability: An analytical framework for examining environmental change. *Global Environmental Change*, 15, 214-223.
- LUERS, A. L., LOBELL, D. B., SKLAR, L. S., ADDAMS, C. L. & MATSON, P. A. 2003. A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. *Global Environmental Change*, 13, 255-267.
- MANYANGADZE, T. 2009. Forest fire detection for near real-time monitoring using geostationary satellites. International Institute for Geo-Information Science and Earth Observation Enschede, Netherlands
- MAVSAR, R., PETTENELLA, D., SAN-MIGUEL, J. & CAMIA, A. 2011.

 Development of a methodology for the analysis of socio-economic impact of forest fires in Europe. *The 5th International Wildland Fire Conference* Sun City, South Africa.
- MEA 2005. Ecosystems and Human Well-being: Synthesis, A report of Millennium Ecosystem Assessment. Island Press, Washington, DC.
- MERCER, J., KELMAN, I., TARANIS, L. & SUCHET-PEARSON, S. 2010. Framework for integrating indigenous and scientific knowledge for disaster risk reduction. *Disasters*, 34, 214-239.
- MICHAUD, J. 1997. Economic transformation in a Hmong village of Thailand *Human Organization*, 56, 2.
- MICHEL, C., LIOUSSE, C., GRÉGOIRE, J. M., TANSEY, K., CARMICHAEL, G. R. & WOO, J. H. 2005. Biomass burning emission inventory from burnt area data given by the SPOT-VEGETATION system in the frame of TRACE-P and ACE-Asia campaigns. *Journal of Geophysical Research: Atmospheres*, 110, D09304.
- MICROSOFT CORPORATION. 2016. *Excel help* [Online]. Microsoft Corporation,. Available: https://support.office.com/en-us/excel [Accessed 2016].
- MINISTRY OF NATAURAL RESOURCES AND ENVIRONMENT 2015. Plan for mitigating the haze problem in the north of Thailand (in Thai).
- MIRIAM, E. M., RUTH, S. D., PATRICK, S. K., DAVID, L. A. G., SHANNON, N. K., DANIEL, J. J., LORETTA, J. M., BELINDA, A. M. & SAMUEL, S. M. 2015. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan. *Environmental Research Letters*, 10, 054010.
- MORGAN, G., SHEPPEARD, V., KHALAJ, B., AYYAR, A., LINCOLN, D., JALALUDIN, B., BEARD, J., CORBETT, S. & LUMLEY, T. 2010. Effects of bushfire smoke on daily mortality and hospital admissions in Sydney, Australia. *Epidemiology*, 21, 47-55.
- MURDIYARSO, D., LEBEL, L., GINTINGS, A. N., TAMPUBOLON, S. M. H., HEIL, A. & WASSON, M. Policy responses to complex environmental problems: Insights from a science-policy activity on transboundary haze from vegetation fires in Southeast Asia. 2004. Elsevier, 47-56.
- NASI, R., DENNIS, R., MEIJAARD, E., APPLEGATE, G. & MOORE, P. 2002. Forest fire and biological diversity. *Food and Agriculture Organization of the United Nations*, 53, 36-40.
- NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA). 2014. NASA Near Real-Time and MCD14DL MODIS Active Fire Detections

- [Online]. Available: https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/c6-mcd14dl
- https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data [Accessed 2014].
- NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION. 2017. *HYSPLIT* [Online]. Available: https://www.arl.noaa.gov/hysplit/hysplit/ [Accessed 2017].
- NATIONAL STATISTICAL OFFICE. 2015. The number of patients / causes of the death. [Online]. National Statistical Office, Ministry of Information and Communication Technology. Available:

 http://service.nso.go.th/nso/web/statseries/statseries09.html [Accessed 26/11/2015 2015].
- NATIONAL WILDFIRE COORDINATING GROUP, N. 2012. Glossary of Wildland Fire Terminology. Available: http://www.nwcg.gov/pms/pubs/glossary/pms205.pdf [Accessed 6 February 2013].
- NEARY, D. G., RYAN, K. C. & DEBANO, L. F. 2005. Wildland fire in ecosystems: effects of fire on soils and water. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
- NKEM, J., SOMORIN, O., JUM, C., IDINOBA, M., BELE, Y. & SONWA, D. 2012. Profiling climate change vulnerability of forest indigenous communities in the Congo Basin. *Mitigation and Adaptation Strategies for Global Change*, 18, 1-21.
- NWS & NOAA 2015. 2015 Fire Weather Operating Plan for Kentucky, Parts of Southern Illinois, and Southeast Missouri. National Weather Service and NOAA National Weather Service Forecast Offices
- OFFICE OF NATURAL RESOURCES AND ENVIRONMENTAL POLICY AND PLANNING (ONEP). 2009. Forest information [Online]. Available: http://chm-thai.onep.go.th/chm/ForestBio/Complexes-forest-area-provin.html [Accessed 01/07/2016].
- OFFICE OF THE NATIONAL ECONOMIC AND SOCIAL DEVELOPMENT BOARD 2011. The strategy of region development in Thailand (in Thai).
- OLIVERI CONTI, G., HEIBATI, B., KLOOG, I., FIORE, M. & FERRANTE, M. 2017. A review of AirQ Models and their applications for forecasting the air pollution health outcomes. *Environmental Science and Pollution Research*, 24, 6426-6445.
- PAGE, S. E. & HOOIJER, A. 2016. In the line of fire: the peatlands of Southeast Asia. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 371.
- PEACHEY, L., MCBAIN, K. & ARMSTRONG, R. 2006. Indigenous health: burden or opportunity? *Med J Aust*, 184, 483 484.
- PEARCE, D. 1998. Cost benefit analysis and environmental policy. *Oxford Review of Economic Policy*, 14, 84-100.
- PEEL, J. L., TOLBERT, P. E., KLEIN, M., METZGER, K. B., FLANDERS, W. D., TODD, K., MULHOLLAND, J. A., RYAN, P. B. & FRUMKIN, H. 2005. Ambient air pollution and respiratory emergency department visits. *Epidemiology*, 16, 164-74.
- PENGCHAI, P., CHANTARA, S., SOPAJAREE, K., WANGKARN, S., TENGCHAROENKUL, U. & RAYANAKORN, M. 2009. Seasonal variation, risk assessment and source estimation of PM 10 and PM10-bound PAHs in the ambient air of Chiang Mai and Lamphun, Thailand. *Environmental Monitoring and Assessment*, 154, 197-218.

- PIERARD, G. & JARVIS, A. 2010. Study on wild fire fighting resources sharing models: Final report. European Policy Evaluation Consortium (EPEC).
- PINOL, J., TERRADAS, J. & LLORET, F. 1998. Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. *Climate Change*, 38, 345-357.
- PLUMMER, M. L. 2009. Assessing benefit transfer for the valuation of ecosystem services. *Frontiers in Ecology and the Environment*, 7, 38-45.
- POLLUTION CONTROL DEPARTMENT 2008. Plan for open burning management year 2008-2011 (in Thai). Pollution Control Department.
- POLLUTION CONTROL DEPARTMENT 2009. The mitigation of haze problems caused by open biomass burning: The study of the possible approach to regulate a law for controlling fire in agricultural lands (in Thai). Pollution Control Department.
- POLLUTION CONTROL DEPARTMENT 2009, 2012. Thailand State of Pollution Report 2007. Pollution Control Department.
- POLLUTION CONTROL DEPARTMENT 2010. Thailand State of Pollution Report 2008. Pollution Control Department.
- POLLUTION CONTROL DEPARTMENT 2011. Thailand State of Pollution Report 2009. Bangkok: BTS Press: Pollution Control Department
- POLLUTION CONTROL DEPARTMENT 2012. Thailand State of Pollution Report 2010. Bangkok: BTS Press: Pollution Control Department.
- POLLUTION CONTROL DEPARTMENT. 2016. *Air Quality Index* [Online]. Available: http://aqmthai.com/aqi info.php?lang=en [Accessed].
- POLLUTION CONTROL DEPARTMENT. 2017. *Haze Forecasting* [Online]. Available: http://air4thai.pcd.go.th/report/HazeForecastN_2017-04-29.pdf [Accessed 2017].
- RAMANATHAN, V., CRUTZEN, P. J., KIEHL, J. T. & ROSENFELD, D. 2001. Aerosols, Climate, and the Hydrological Cycle. *Science*, 294, 2119-2124.
- RAMBOLL ENVIRON. 2017. *CAMx Overview* [Online]. Available: http://www.camx.com/about/default.aspx [Accessed 2017].
- REID, J. S., HYER, E. J., JOHNSON, R. S., HOLBEN, B. N., YOKELSON, R. J., ZHANG, J., CAMPBELL, J. R., CHRISTOPHER, S. A., DI GIROLAMO, L., GIGLIO, L., HOLZ, R. E., KEARNEY, C., MIETTINEN, J., REID, E. A., TURK, F. J., WANG, J., XIAN, P., ZHAO, G., BALASUBRAMANIAN, R., CHEW, B. N., JANJAI, S., LAGROSAS, N., LESTARI, P., LIN, N.-H., MAHMUD, M., NGUYEN, A. X., NORRIS, B., OANH, N. T. K., OO, M., SALINAS, S. V., WELTON, E. J. & LIEW, S. C. 2013. Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. *Atmospheric Research*, 122, 403-468.
- REINHARDT, E. D., DICKINSON, M. B. & FIRE ECOLOGY 6 2010. First-order fire effects models for land management: overview and issues. *Fire Ecology*, 6, 131–142.
- RITTMASTER, R., ADAMOWICZ, W. L., AMIRO, B. & PELLETIER, R. T. 2006. Economic analysis of health effects from forest fires. *Canadian Journal of Forest Research*, 36, 868-877.
- ROMERO-PEREZGROVAS, R., VERHULST, N., DE LA ROSA, D., HERNÁNDEZ, V., MAERTENS, M., DECKERS, J. & GOVAERTS, B. 2014. Effects of Tillage and Crop Residue Management on Maize Yields and Net Returns in the Central Mexican Highlands Under Drought Conditions. *Pedosphere*, 24, 476-486.
- ROWELL, A. & MOORE, P. F. 2000. Global Review of Forest Fires. Switzerland: International Union for the Conservation of Nature World Conservation Union (IUCN) and World Wide Fund for Nature (WWF).

- ROY, D. P. 1999. Multi-temporal active-fire based burn scar detection algorithm. *International Journal of Remote Sensing*, 20, 1031-1038.
- ROYAL FOREST DEPARTMENT. 2016a. *Information of National forest* [Online]. Available: http://forestinfo.forest.go.th/55/National_Forest.aspx [Accessed 20/04/2016].
- ROYAL FOREST DEPARTMENT. 2016b. *Wet Fire Break* [Online]. Available: http://www.forest.go.th/wildfire/images/stories/wet%20fire%20break.pdf [Accessed 2016].
- ROYAL FOREST DEPARTMENT, R. F. D. 2008. Forest Map of Thailand in 2008 (in Thai).
- SAHANI, M., ZAINON, N. A., WAN MAHIYUDDIN, W. R., LATIF, M. T., HOD, R., KHAN, M. F., TAHIR, N. M. & CHAN, C.-C. 2014. A case-crossover analysis of forest fire haze events and mortality in Malaysia. *Atmospheric Environment*, 96, 257-265.
- SAKULNIYOMPORN, S., KUBAHA, K. & CHULLABODHI, C. 2011. External costs of fossil electricity generation: Health-based assessment in Thailand. *Renewable and Sustainable Energy Reviews*, 15, 3470-3479.
- SALAM, M. A., NOGUCHI, T. & POTHITAN, R. 2006. Community Forest Management in Thailand: Current Situation and Dynamics in the Context of Sustainable Development. *New Forests*, 31, 273-291.
- SAMET, J. M., ZEGER, S. L., DOMINICI, F., CURRIERO, F., COURSAC, I., DOCKERY, D. W., SCHWARTZ, J. & ZANOBETTI, A. 2000. The National Morbidity, Mortality, and Air Pollution Study. Part II: Morbidity and mortality from air pollution in the United States. *Res Rep Health Eff Inst*, 94, 5-70; discussion 71-9.
- SAMOLI, E., ANALITIS, A., TOULOUMI, G., SCHWARTZ, J., ANDERSON, H. R., SUNYER, J., BISANTI, L., ZMIROU, D., VONK, J. M., PEKKANEN, J., GOODMAN, P., PALDY, A., SCHINDLER, C. & KATSOUYANNI, K. 2005. Estimating the Exposure–Response Relationships between Particulate Matter and Mortality within the APHEA Multicity Project. *Environmental Health Perspectives*, 113, 88-95.
- SAN-MIGUEL-AYANZ, J. & RAVAIL, N. 2005. Active Fire Detection for Fire Emergency Management: Potential and Limitations for the Operational Use of Remote Sensing. *Natural Hazards*, 35, 361-376.
- SAPKOTA, A., SYMONS, J. M., KLEISSL, J., WANG, L., PARLANGE, M. B., ONDOV, J., BREYSSE, P. N., DIETTE, G. B., EGGLESTON, P. A. & BUCKLEY, T. J. 2005. Impact of the 2002 Canadian forest fires on particulate matter air quality in Baltimore City. *Environmental Science and Technology*, 39, 24-32.
- SCBD 2001a. Impacts of human-caused fires on biodiversity and ecosystem functioning, and their causes in tropical, temperate and boreal forest biomes, A report of Secretariat of the Convention on Biological Diversity Montreal.
- SCBD 2001b. The Value of Forest Ecosystems, A report of Secretariat of the Convention on Biological Diversity. Montreal.
- SCHRöTER, D. 2005. Vulnerability to Changes in Ecosystem Services. CID Graduate Student and Postdoctoral Fellow Working Paper No. 10. Cambridge, MA: Science, Environment and Development Group, Center for International Development, Harvard University.: CID Graduate Student and Postdoctoral Fellow Working Paper No. 10. Cambridge, MA: Science, Environment and Development Group, Center for International Development, Harvard University.
- SCHULTZ, M. G., HEIL, A., HOELZEMANN, J. J., SPESSA, A., THONICKE, K., GOLDAMMER, J. G., HELD, A. C., PEREIRA, J. M. C. & VAN HET BOLSCHER, M. 2008. Global wildland fire emissions from 1960 to 2000. *Global Biogeochemical Cycles*, 22, GB2002.

- SCHWARZE, P., OVREVIK, J., HETLAND, R., BECHER, R., CASSEE, F., LAG, M., LOVIK, M., DYBING, E. & REFSNES, M. 2007. Importance of size and composition of particles for effects on cells in vitro. *Inhal Toxicol*, 19, 17 22.
- SCIRE, J. S., STRIMAITIS, D. G., YAMARTINO, R. J. & ZHANG, X. 2000. *A User's Guide for the CALPUFF Dispersion Model (Version 5)*, Concord, MA, Earth Tech Inc.
- SCOTT, D. F. 1993. The hydrological effects of fire in South African mountain catchments. *Journal of Hydrology*, 150, 409-432.
- SEILER, W. & CRUTZEN, P. 1980. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. *Climatic Change*, 2, 207-247.
- SHANNON, N. K., LORETTA, J. M., MIRIAM, E. M., JONATHAN, J. B., PATRICK, S. K., TIANJIA, L., MELISSA, P. S., RUTH, S. D., DANIEL, J. J., JOEL, S., MONTIRA, P. & SAMUEL, S. M. 2016. Public health impacts of the severe haze in Equatorial Asia in September—October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. *Environmental Research Letters*, 11, 094023.
- SHINDELL, D. 2015. The social cost of atmospheric release. *Climatic Change*, 130, 313-326.
- SHINDELL, D., KUYLENSTIERNA, J. C. I., VIGNATI, E., VAN DINGENEN, R., AMANN, M., KLIMONT, Z., ANENBERG, S. C., MULLER, N., JANSSENS-MAENHOUT, G., RAES, F., SCHWARTZ, J., FALUVEGI, G., POZZOLI, L., KUPIAINEN, K., HöGLUND-ISAKSSON, L., EMBERSON, L., STREETS, D., RAMANATHAN, V., HICKS, K., OANH, N. T. K., MILLY, G., WILLIAMS, M., DEMKINE, V. & FOWLER, D. 2012. Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security. *Science*, 335, 183.
- SHVIDENKO, A. & GOLDAMMER, J. G. 2001. Fire Situation in Russia. *International Forest Fire News*, 24, 41-59.
- SIGLER, J. M., LEE, X. & MUNGER, W. 2003. Emission and Long-Range Transport of Gaseous Mercury from a Large-Scale Canadian Boreal Forest Fire. *Environmental Science & Technology*, 37, 4343-4347.
- SIMMONS, C. S., WALKER, R. T., WOOD, C. H., ARIMA, E. & COCHRANE, M. 2004. Wildfires in Amazonia: A pilot study examining the role of farming systems, social capital, and fire contagion. *Latin American Geography*, 3, 81-96.
- SLAUGHTER, J. C., LUMLEY, T., SHEPPARD, L., KOENIG, J. Q. & SHAPIRO, G. G. 2003. Effects of ambient air pollution on symptom severity and medication use in children with asthma. *Ann Allergy Asthma Immunol*, 91, 346-53.
- SMITH, M., DE GROOT, D., PERROT-MAîTE, D. & BERGKAMP, G. 2006. Pay Establishing payments for watershed services. International Union for Conservation of Nature (IUCN), Gland, Switzerland.
- SOTO, M. E. C., MOLINA-MARTÍNEZ, J. R., RODRÍGUEZ Y SILVA, F. & ALVEAR, G. H. J. 2013. A territorial fire vulnerability model for Mediterranean ecosystems in South America. *Ecological Informatics*, 13, 106-113.
- STATE OF QUEENSLAND 2007. Using fire in spotted gum ironbark forests for production and biodiversity outcomes: Guidelines for landholders *In*: DEPARTMENT OF PRIMARY INDUSTRIES AND FISHERIES (ed.).

- STOLLE, F., CHOMITZ, K. M., LAMBIN, E. F. & TOMICH, T. P. 2003. Land use and vegetation fires in Jambi Province, Sumatra, Indonesia. *Forest Ecology and Management*, 179, 277-292.
- STOTT, P. 1986. The Spatial Pattern of Dry Season Fires in the Savanna Forests of Thailand. *Journal of Biogeography*, 13, 345-358.
- STREETS, D. G., YARBER, K. F., WOO, J. H. & CARMICHAEL, G. R. 2003. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. *Global Biogeochemical Cycles*, 17, n/a-n/a.
- TANPIPAT, V., HONDA, K. & NUCHAIYA, P. 2009. MODIS Hotspot Validation over Thailand. *Remote Sensing*, 1, 1043-1054.
- TANSEY, K., BESTON, J., HOSCILO, A., PAGE, S. E. & PAREDES HERNáNDEZ, C. U. 2008. Relationship between MODIS fire hot spot count and burned area in a degraded tropical peat swamp forest in Central Kalimantan, Indonesia. *Journal of Geophysical Research: Atmospheres*, 113, D23112.
- THAI ENVIRONMENT FOUNDATION 2010. The feasibility study of regulation to control open burning in agricultural lands.
- THAI METEOROLOGICAL DEPARTMENT. 2016. *Thai Meteorological Department Automatic System* [Online]. Available: http://www.aws-observation.tmd.go.th/web/aws/aws-distributionmap.asp [Accessed 2016].
- THE SECRETARIAT OF THE SENATE 2009. Smoke Haze and Particulate Matter Problem in the Upper North of Thailand (in Thai). Bangkok, Thailand.
- TIAN, D., WANG, Y., BERGIN, M., HU, Y., LIU, Y. & RUSSELL, A. G. 2008. Air Quality Impacts from Prescribed Forest Fires under Different Management Practices. *Environmental Science & Technology*, 42, 2767-2772.
- TISHKOV, A. A. 2004. FOREST FIRES AND DYNAMICS OF FOREST COVER. *Natural Diasters*, [Ed. Vladimir Mikhailovich Kotlyakov], in Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK.
- TIYAPAIRAT, Y. 2012. Public Sector Responses to Sustainable Haze Management in Upper Northern Thailand. *EnvironmentAsia* 5(2), 1-10.
- TRAINOR, S. F., CALEF, M., NATCHER, D., CHAPIN, F. S., MCGUIRE, A. D., HUNTINGTON, O., DUFFY, P., RUPP, T. S., DEWILDE, L. O., KWART, M., FRESCO, N. & LOVECRAFT, A. L. 2009. Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska. *Polar Research*, 28, 100-118.
- TURMEL, M.-S., SPERATTI, A., BAUDRON, F., VERHULST, N. & GOVAERTS, B. 2015. Crop residue management and soil health: A systems analysis. *Agricultural Systems*, 134, 6-16.
- UNITED STATES DEPARTMENT OF AGRICULTURE 2009. Prescribed Burning. Iowa Job Sheet, Conservation Practice 338 ed.: United States Department of Agriculture, Natural Resource Conservation Service,.
- UNIVERSITY OF TENNESSEE KNOXVILLE. 2016. Regression Analysis [Online]. Available: http://web.utk.edu/~whwang/Regression.pdf [Accessed 2016].
- US EPA 2002. Development of Emissions Inventory Methods for Wildland Fire. U.S. Environmental Protection Agency.
- US EPA 2009. Integrated Science Assessment for Particulate Matter (Final Report). Washington, DC: U.S. Environmental Protection Agency.
- US EPA. 2016. *Air Quality Index (AQI) Basics* [Online]. Available: https://cfpub.epa.gov/airnow/index.cfm?action=aqibasics.aqi [Accessed 2016].
- US EPA 2017. Guideline on Air Quality Models. *In:* ENVIRONMENTAL PROTECTION AGENCY (EPA) (ed.).

- VAHLSING, C. & SMITH, K. 2012. Global review of national ambient air quality standards for PM10 and SO2 (24 h). *Air Quality, Atmosphere & Health*, 5, 393-399.
- VAN DER PLOEG, S., DE GROOT, D. & WANG, Y. 2010. The TEEB Valuation Database: overview of structure, data and results. Foundation for Sustainable Development, Wageningen, the Netherlands.
- VAN DER WERF, G. R., RANDERSON, J. T., COLLATZ, G. J. & GIGLIO, L. 2003. Carbon emissions from fires in tropical and subtropical ecosystems. *Global Change Biology*, 9, 547--562.
- VAN DER WERF, G. R., RANDERSON, J. T., GIGLIO, L., COLLATZ, G. J., KASIBHATLA, P. S. & ARELLANO JR, A. F. 2006. Interannual variability in global biomass burning emissions from 1997 to 2004. *Atmospheric Chemistry and Physics*, 6, 3423-3441.
- VAN RENSBURG, T. M., MILL, G. A., COMMON, M. & LOVETT, J. 2002. Preferences and multiple use forest management. *Ecological Economics*, 43, 231-244.
- VASILAKOS, C., KALABOKIDIS, K., HATZOPOULOS, J. & MATSINOS, I. 2009. Identifying wildland fire ignition factors through sensitivity analysis of a neural network. *Natural Hazards*, 50, 125-143.
- VASSANADUMRONGDEE, S. & MATSUOKA, S. 2005. Risk Perceptions and Value of a Statistical Life for Air Pollution and Traffic Accidents: Evidence from Bangkok, Thailand. *Journal of Risk and Uncertainty*, 30, 261-287.
- VICHIT-VADAKAN, N., AEKPLAKORN, W., VAJANAPOOM, N., WONGTIM, S., PHITTAYANON, P., WANGWONGWATANA, S., OSTRO, B. & PLUNGSUCHON, S. 2004. Economic evaluation of the illness from air pollution in Bangkok. Thailand Research Fund.
- VICHIT-VADAKAN, N., VAJANAPOOM, N. & OSTRO, B. 2008. The Public Health and Air Pollution in Asia (PAPA) Project: Estimating the Mortality Effects of Particulate Matter in Bangkok, Thailand. *Environmental Health Perspectives*, 116, 1179-1182.
- VIVANCO, M., PALOMINO, I., MARTÍN, F., PALACIOS, M., JORBA, O., JIMÉNEZ, P., BALDASANO, J. & AZULA, O. 2009. An Evaluation of the Performance of the CHIMERE Model over Spain Using Meteorology from MM5 and WRF Models. *In:* GERVASI, O., TANIAR, D., MURGANTE, B., LAGANà, A., MUN, Y. & GAVRILOVA, M. (eds.) *Computational Science and Its Applications ICCSA 2009.* Springer Berlin Heidelberg.
- WALTON, H. A., BAKER, T., FULLER, G. W. & ATKINSON, R. W. 2014. AIR POLLUTION ALERT SERVICES EVIDENCE DEVELOPMENT STRATEGY –PREDICTION OF POSSIBLE EFFECTIVENESS AND ASSESSMENT OF INTERVENTION STUDY FEASIBILITY. King's College London Environmental Research Group, MRC-PHE Centre for Environment and Health.
- WANG, Y., HUANG, J., ZANANSKI, T. J., HOPKE, P. K. & HOLSEN, T. M. 2010. Impacts of the Canadian Forest Fires on Atmospheric Mercury and Carbonaceous Particles in Northern New York. *Environmental Science & Technology*, 44, 8435-8440.
- WANTHONGCHAI, K. 2014. Effects of Past Burning Frequency on Woody Plant Structure and Composition in Dry Dipterocarp Forest. *Thai Journal of Forestry*, 33, 109-130.
- WATTS, M. & BOHLE, H. 1993. Hunger, famine and the space of vulnerability. *GeoJournal*, 30, 117-125.
- WHITE, I., WADE, A., WORTHY, M., MUELLER, N., DANIELL, T. & WASSON, R. 2006. The vulnerability of water supply catchments to

- bushfires: impacts of the January 2003 wildfires on the Australian Capital Territory. *Australian Journal of Water Resources*, 10, 179-194.
- WHO 2005. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: Global update 2005.
- WHO 2006. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: Global update 2005. World Health Organization.
- WHO 2008. The global burden of disease: 2004 update. Switzerland: World Health Organization.
- WHO. 2014. 7 million premature deaths annually linked to air pollution [Online]. World Health Organization. Available: http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/ [Accessed 2016].
- WHO & OECD 2015. Economic cost of the health impact of air pollution in Europe: Clean air, health and wealth. Organisation for Economic Co-operation and Development, and WHO Regional Office for Europe,.
- WIEDINMYER, C., AKAGI, S. K., YOKELSON, R. J., EMMONS, L. K., AL-SAADI, J. A., ORLANDO, J. J. & SOJA, A. J. 2011. The Fire Inventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. *Geosci. Model Dev.*, 4, 625-641.
- WIEDINMYER, C. & HÜRTEAU, M. D. 2010. Prescribed Fire As a Means of Reducing Forest Carbon Emissions in the Western United States. *Environmental Science & Technology*, 44, 1926-1932.
- WIEDINMYER, C., QUAYLE, B., GERON, C., BELOTE, A., MCKENZIE, D., ZHANG, X., O'NEILL, S. & WYNNE, K. K. 2006. Estimating emissions from fires in North America for air quality modeling. *Atmospheric Environment*, 40, 3419-3432.
- WILKS, D. S. 2006. *Statistical Methods in the Atmospheric Sciences, 2nd Edition*, Elsevier, Amsterdam, Netherlands.
- WILLIAMS, R., POOLE, N., FRASER, T., GRANT, D., HANSON, N., ORSON, J., ROLSTON, P. & SIM, J. 2013. Review of the role and practices of stubble burning in New Zealand, including alternative options and possible improvements. Canterbury Regional Council, New Zealand
- WILSON, M. A. & HOEHN, J. P. 2006. Valuing environmental goods and services using benefit transfer: The state-of-the art and science. *Ecological Economics*, 60, 335-342.
- WIRIYA, K. 2010. Forest Fire in Thailand. Forest Fires: Management and International Cooperation in Preventing Forest Fires in APEC Region. Khabarovsk, Russia.
- WISNER, B. & LUCE, H. 1993. Disaster vulnerability: Scale, power and daily life. *GeoJournal*, 30, 127-140.
- WIWATANADATE, P. & LIWSRISAKUN, C. 2011. Acute effects of air pollution on peak expiratory flow rates and symptoms among asthmatic patients in Chiang Mai, Thailand. *International Journal of Hygiene and Environmental Health*, 214, 251-257.
- WIWATANADATE, P. & TRAKULTIVAKORN, M. 2010. Air pollution-related peak expiratory flow rates among asthmatic children in Chiang Mai, Thailand. *Inhalation Toxicology*, 22, 301-308.
- WORLD AIR QUALITY. 2017. *Air Pollution in Asia: Real-time Air Quality Index Visual Map* [Online]. Available: http://aqicn.org/map/#@g/16.3424/114.6094/3z [Accessed 15/05/2017].
- WORLD BANK. 2015. *GDP per capita based on purchasing power parity (PPP)* [Online]. Available: http://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD [Accessed].

- WORLD BANK. 2016. *Thailand Economy* [Online]. Available: http://data.worldbank.org/country/thailand [Accessed].
- WORLD BANK. 2017. World Bank Country and Lending Groups [Online]. Available: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups [Accessed 14/04/2017].
- WOTAWA, G., DE GEER, L. E., BECKER, A., D'AMOURS, R., JEAN, M., SERVRANCKX, R. & UNGAR, K. 2006. Inter- and intra-continental transport of radioactive cesium released by boreal forest fires. *Geophysical Research Letters*, 33, L12806.
- YENSONG, S., WILLIAMS, I. D. & PRESTON, J. 2016. Mitigation of Particulate Matter Problem Caused by Vegetation Fires in Thailand. 2016 NOAA ESRL GLOBAL MONITORING ANNUAL CONFERENCE. Boulder, Colorado, USA: National Oceanic and Atmospheric Administration
- YU, S., EDER, B., DENNIS, R., CHU, S.-H. & SCHWARTZ, S. E. 2006. New unbiased symmetric metrics for evaluation of air quality models. *Atmospheric Science Letters*, 7, 26-34.
- ZALLAGHI, E., SHIRMARDI, M., SOLEIMANI, Z., GOUDARZI, G., HEIDARI-FARSANI, M., AL-KHAMIS, G. & SAMERI, A. 2014. Assessment of health impacts attributed to PM 10 exposure during 2011 in Kermanshah City, Iran. *Journal of Advances in Environmental Health Research*, 2(4), 242-250.
- ZHANG, X., KONDRAGUNTA, S., SCHMIDT, C. & KOGAN, F. 2008. Near real time monitoring of biomass burning particulate emissions (PM2.5) across contiguous United States using multiple satellite instruments. *Atmospheric Environment*, 42, 6959-6972.