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B PHYSICS FROM LATTICE QCD: A STUDY OF BS → K`ν, BS → DS`ν AND

BS → φ`+`− FORM FACTORS

by Edwin Lizarazo

The Standard Model of particle physics currently stands as our most complete theory

of fundamental particles and interactions. It is a well tested physics theory but ten-

sions have been found between theoretical predictions and experimental results. These

discrepancies can be either a sign of New Physics or the result of insufficient control

over theoretical and experimental uncertainties. In order to detect/rule-out new physics

effects in the flavour sector it is important to improve our understanding of flavour

changing processes which occur at tree and loop level in the Standard Model.

Semileptonic B decays provide promising channels to test the Standard Model and search

for signs of New Physics. While the B-factories and LHCb carry out measurements

of B-meson observables, theoretical determinations of form factors are necessary for

the extraction of Cabibbo-Kobayashi-Maskawa matrix elements, the determination of

differential branching fractions and angular distributions amongst other quantities.

In this work we present the calculation of Bs → K`ν, Bs → Ds`ν and Bs → φ`+`−

form factors using the Columbia interpretation of the relativistic heavy quark action for

the b-quark and the domain wall fermion action for light, charm and strange quarks.

In conjunction with future experimental data, our form factor results for Bs → K`ν

and Bs → Ds`ν decays will provide a new method to extract the CKM matrix elements

|Vub| and |Vcb|, test the forward backward asymmetry and measure the ratios R(K) and

R(Ds). Similarly, Bs → φ`+`− form factors will allow for the reconstruction of many

observables that offer important tests of the Standard Model and New Physics scenarios.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is a relativistic quantum field theory which

describes all known interactions between fundamental particles. In the development of

the SM quark flavour physics has played a central role: the Glashow-Iliopoulos-Maiani

(GIM) mechanism [21] predicted the charm quark, CP violation in K0K
0

predicted the

third generation of quarks [22], and the Cabibbo-Kobayashi-Maskawa (CKM) matrix [22,

23] provides a single source for information on CP violation in the quark sector. Although

the SM is a well tested model whose latest success was given by the discovery of the

Higgs boson [24, 25] it has its shortcomings, for example:

• The observed Higgs mass can only be justified within the SM by the fine tuning

cancellation between quadratic radiative corrections and the bare Higgs mass.

• The amount of CP violation in the SM is to small to produce the observed matter-

antimatter asymmetry [26–29].

• It doesn’t explain the origin of dark matter.

New Physics (NP) extensions of the SM have been proposed to address this issues by

including heavier particles related to higher energy phenomena.

In the search for NP signals weak decays of hadrons containing a bottom quark provide

an ideal testing ground. Tree-level decays such as Bs → K`ν and Bs → Ds`ν can be

used to extract the CKM matrix elements |Vub| and |Vcb|, respectively, and hence to

test the unitarity of the CKM matrix. Whilst processes mediated by flavour changing

neutral currents, such as the decay Bs → φ`+`−, which are highly suppressed in the

SM, provide an opportunity to discover and probe NP effects.

Any possible deviations between experimental measurements and theoretical predictions

can only be confirmed as signs of NP when both theoretical and experimental uncer-

tainties are under control. The quantity and quality of experimental measurements for

1
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exclusive b → u, b → c and b → s decays has increased greatly over the years reducing

the sources of experimental uncertainty. Theoretical understanding of strong and weak

interactions of quarks has also significantly increased both through the development of

effective theories and by improvements on lattice simulations.

The running coupling of the strong force as a function of energy is such that the tools

needed to study hadronic decays are energy regime dependent. At short distances, or

equivalently high energies perturbation theory can be safely applied, whilst for large

distances the phenomenon of quark confinement calls for a non-perturbative approach,

namely Lattice Quantum Chromodynamics (LQCD).

In LQCD continuum space-time is replaced by a four dimensional finite Euclidean space-

time grid [30] and the path integral is computed numerically. The use of a finite size

lattice introduces finite-volume effects which are minimized by requiring that the mass of

the lightest propagating particle in the theory, namely the pion, is such that mπL� 1

where L is the side length of the lattice. Moreover, the discretization of space-time

introduces discretization errors which should vanish as the lattice spacing goes to zero.

Currently available lattice QCD gauge ensembles are generated with an inverse lattice

spacing around or below 3 GeV whilst the mass of the b quark is mb = 4.18+0.04
−0.03 GeV [6]

meaning that mba > 1 and hence proper control of discretization errors is not possible

using conventional lattice calculations. For this reason, simulations of b quarks are

performed using effective theories such as heavy quark effective theory (HQET) [31–36],

non-relativistic QCD (NRQCD) [37–39] or the relativistic heavy quark action (RHQ)

[40–42].

In this work we present our determination of the form factors which parametrize the

hadronic matrix elements for the tree-level decays Bs → K`ν and Bs → Ds`ν, and for

the rare decay Bs → φ`+`−. Our simulations are based on RBC-UKQCD’s set of 2+1

flavour gauge field configurations [7, 10–12] generated with the Iwasaki gauge action [43]

and the domain-wall fermion action [13, 14, 44]. In the valence sector we generate light,

strange and charm propagators using the domain-wall fermion action and we simulate

the heavy b-quarks using the RHQ action [40–42].

This dissertation is organized as follows. In Chapter 2, we give an introduction to the

SM, starting from its Lagrangian formulation we then discuss the spontaneous symmetry

breaking of SU(2)W × U(1)Y to U(1)EM , electroweak interactions of quarks, chiral

symmetry and effective Lagrangians, we then introduce the continuum phenomenology

which justifies and will be benefited by the results obtained from this dissertation. We

finalize this chapter by introducing the form factors which are the main quantities of

interest in this work. In Chapter 3 we give an introduction to the theoretical foundations

of LQCD including an overview of gauge and fermionic actions, Euclidean correlators

and discrete symmetries. In Chapter 4 we discuss the process to extract form factors

from lattice simulations from ratios of two-point and three-point functions. We then
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discuss operator renormalization and improvement, that is, the process by which lattice

results are identified with the continuum theory. We complete this chapter by our

independent calculation of the O(a) improvement terms for tensor and pseudotensor

currents. In Chapter 5 we discuss the setup of our calculations, the methods used to

improve the signal obtained from our simulations and the statistical tools that we used for

our data analysis. In Chapter 6 we present our results, we begin by determining effective

masses and extracting the form factors at finite lattice spacing, we then renormalise and

improve to O(a) our results and perform the chiral-continuum extrapolation so that all

lattice dependence is removed from our results, and finally we perform a z-expansion to

extrapolate our results to q2 = 0. We present our conclusions in Chapter 7.

My personal contribution to the results presented in this dissertation is:

1. In section 4.3.2 I independently derived the O(a) improvement terms for tensor

and pseudotensor currents Eqs (4.81) to (4.90).

2. In section 5.4.2 I determined the optimal width for the Gaussian smeared sources

used for the smearing of charm-strange two point functions.

3. In section 5.4.1 I performed the tests necessary to determine the optimal source

sink separation that was to be used for the extraction of form factors.

4. I performed all mass fits of sections 6.2.

5. In section 6.3.1 I determined the non-perturbative coefficient ZbbV of Table 6.4.

6. In section 6.3.1 I performed the perturbative determination of the renormaliza-

tion coefficient ρ of Table 6.4 and the matching coefficients for vector currents of

Table 6.5.

7. In section 6.3.2.1 I performed the charm mass extrapolation.

8. In sections 6.3.2 and 6.4.3 I analysed all the lattice data necessary to extract the

form factors for all the decays studied in this dissertation.

9. In sections 6.3.3, 6.3.4 and 6.4.4 I performed the heavy meson chiral continuum

extrapolation for all the decays studied in this dissertation.

10. In sections 6.3.6 and 6.4.6 I calculated all statistical and systematic errors presented

in our error budget.

11. In sections 6.3.8 and 6.4.7 I performed the z-expansion to extrapolate all results

from the region where the simulations were performed to q2 = 0.





Chapter 2

The Standard Model

2.1 Introduction

The Standard Model (SM) of particle physics is a summary of our understanding of the

interactions between fundamental particles, that is, the building blocks of the universe

and three of the four fundamental forces of nature, namely the electromagnetic, weak

and strong interactions. The SM has been successfully tested against experimental

results and has predicted the existence of the top quark [45], the tau neutrino [46], and

the Higgs boson [24, 25]. The SM however does not include the gravitational force nor

does it explain the matter-antimatter asymmetry or the origin of dark matter amongst

other phenomena. The shortcomings of the SM have given rise to new models such as

supersymmetry [47] and string theory [48].

In this chapter we will introduce the Lagrangian formulation of the SM in section 2.2,

followed by a brief description of electroweak interactions of quarks — section 2.4 —,

approximate flavour symmetries — section 2.5 — and effective Hamiltonians for weak

decays — section 2.6 —. Finally, in sections 2.7 and 2.8 we will discuss the continuum

phenomenology and make a brief introduction to form factors.

2.2 Lagrangian Formulation

The Standard Model of particle physics is a gauge theory that describes electromagnetic,

weak and strong interactions in terms of the gauge group

SU(3)C × SU(2)W × U(1)Y , (2.1)

with field content summarized in Table 2.1 and the Lagrangian

L = Lgauge + Lfermion + LYukawa + LHiggs (2.2)

5
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Lgauge = −1

4

8∑
c=1

GcµνG
cµν − 1

4

3∑
a=1

W a
µνW

aµν − 1

4
BµνB

µν (2.3)

LHiggs = Dµφ†Dµφ−
h

2
(φ†φ)2 + µ2φ†φ (2.4)

Lfermions =
∑
n,i,α

iQ̄niα /DQ
iα
n +

∑
n,i

iŪ in /DUni +
∑
n,i

iD̄i
n /DDni

+
∑
n,α

iL̄nα /DL
α
n +

∑
n

iĒn /DEn (2.5)

LYukawa = −
∑
n,n′

Y E
n,n′H

†
αL̄

α
nEn′ −

∑
n,n′

Y D
n,n′H

†
αQ̄

iα
n Dn′i

−
∑
n,n′

Y U
n,n′H

αQiαn Un′i + Hermitian Conjugates (2.6)

where n, i and α are family, color and SU(2) indices, respectively, and the covariant

derivatives have the form

Dµφ
α = ∂µφ

α +
igw
2
τaαb W a

µφ
β +

ig1

2
Bµφ

α (2.7)

DµQ
iα
n (x) = ∂µQ

iα
n (x) +

igs
2

8∑
c=1

Gcµλ
ci
j Q

jα
n (x) +

igw
2

3∑
a=1

W a
µ (x)τaαβ Qiβn (x)

+
ig1

6
Bµ(x)Qiαn (x), (2.8)

DµUni(x) = ∂µUni(x)− igs
2

8∑
c=1

Gcµλ
cj
i Unj(x)− ig1

3
Bµ(x)Uni(x), (2.9)

DµDni(x) = ∂µDni(x)− igs
2

8∑
c=1

Gcµλ
cj
i Dnj(x)− ig1

3
Bµ(x)Dni(x), (2.10)

DµL
α
n(x) = ∂µL

α
n(x) +

igw
2

3∑
a=1

W a
µ (x)τaαβ Lβn(x)− ig1

3
Bµ(x)Uαn (x), (2.11)

DµEn(x) = ∂µEn(x) + ig1Bµ(x)En(x), (2.12)

where gs, gw and g1 denote the SU(3), SU(2)W and U(1)Y couplings, respectively. In

equation (2.6) we denote Yukawa couplings by Yn,n′ and define the field strength tensors

for color, weak isospin and weak hypercharge as

Gcµν = ∂µG
c
ν − ∂νGcµ − gsf cdeGdµGeν , (2.13)

W c
µν = ∂µW

a
ν − ∂νW a

µ − gwεabcW b
µW

c
ν , (2.14)

Bµν = ∂µBν − ∂νBµ, (2.15)

where εabc and fabc denote the structure constants of SU(2)W and SU(3), respectively.

In the continuum the Standard Model Lagrangian (2.2) requires the addition of gauge

fixing terms.
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SU(3) SU(2) U(1)

G (gluon) 8 1 0
W (W, Z and photon) 1 3 0
B (Z and photon) 1 1 0
φ (Higgs) 1 2 −1/2

Qn (left-handed quarks) 3 2 +1/6
Un (right-handed up-type quarks) 3 1 2/3
Dn (right handed down-type quarks) 3 1 −1/3
Ln (left handed leptons) 1 2 −1/2
En (right handed leptons) 1 1 −1

Table 2.1: SU(3)C × SU(2)W × U(1)Y representations for the Standard Model
fields

2.3 Spontaneous symmetry breaking of SU(2)W × U(1)Y

The potential of the Higgs Lagrangian (2.4) has an infinite set of degenerate states with

minimum energy satisfying

|〈0|φ(0)|0〉| =
√
−µ2

2h
≡ v√

2
. (2.16)

Once a particular ground state is chosen the SU(2)W × U(1)Y symmetry of the Higgs

Lagrangian is spontaneously broken to the electromagnetic subgroup U(1)EM . This

process rotates the original W 3 and B vector boson plane by an angle θW , the weak

mixing angle, producing as a result the Z boson and the photon A[
A

Z0

]
=

[
cos θW sin θW

− sin θW cos θW

][
B

W 3

]
. (2.17)

Moreover, it follows from Goldstone’s theorem [49–51] that this symmetry breaking gives

rise to three massless states — Goldstone bosons —, one for each broken generator, these

Goldstone bosons can nonetheless be removed from the Lagrangian using SU(2)W local

gauge invariance. This can be readily seen by parametrizing the scalar doublet as

φ(x) ≡

[
φ(+)(x)

φ(0)(x)

]
= exp

{
i
σi
2
θi(x)

} 1√
2

[
0

v +H(x)

]
, (2.18)

and setting the parameter θi(x) which denotes the three Goldstone bosons to zero, that

is, working in the unitary gauge. In equation (2.18) H(x) denotes the physical Higgs

and v = (
√

2GF )1/2 ≈ 246 GeV is the Higgs vacuum expectation value. We can now use

equation (2.18) together with the covariant derivative (2.7) to write the kinetic piece of

the Higgs Lagrangian (2.4) as

(Dµφ)†Dµφ→ 1

2
∂µH∂

µH + (v +H)2

{
g2
w

4
W+
µ W

−µ +
g2
w

8 cos2 θW
ZµZ

µ

}
(2.19)
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W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
(2.20)

Zµ = cos θWW
3
µ − sin θWBµ (2.21)

where the quadratic term for the W± and the Z boson indicate that the gauge bosons

have acquired masses:

MZ cos θW = MW =
1

2
vg. (2.22)

The photon on the other hand remains massless because U(1)EM is an unbroken sym-

metry.

2.4 Electroweak interactions of quarks

Fermionic masses are also generated through the spontaneous symmetry breaking of

SU(2)W × U(1)Y to U(1)EM . In the case of quarks their masses are given by

L = −
∑

n,n′=d,s,b

MD
n,n′Q̄

i2
nDn′i −

∑
n,n′=u,c,t

MU
n,n′Q̄

i1
n σ2Un′i + hermitian conjugate

where Qi1n and Qi2n are left handed quarks of electric charge q = 2/3 and q = −1/3,

respectively, and

MU
n,n′ =

v√
2
Y U
n,n′ (2.23)

MD
n,n′ =

v√
2
Y D
n,n′ (2.24)

their corresponding mass matrices. We can now use the unitary field redefinitions[
Q1
n,n′

Q2
n,n′

]
→ AU

[
Q1
n,n′

Q2
n,n′

]
(2.25)

U → BUU (2.26)

D → BDD (2.27)

to write the diagonal mass matrices

MU → (AU )†MUBU =

mu 0 0

0 mc 0

0 0 mt

 (2.28)

MD → (AUV )†MDBD =

md 0 0

0 ms 0

0 0 mb

 , (2.29)
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where

V =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (2.30)

is known as the Cabibbo-Kobayashi-Maskawa matrix [22, 23]. In the Standard Model the

CKM matrix is a 3×3 unitary matrix, it contains 9 real parameters of which only four are

independent, this can be seen by introducing the six field phases αi, i = {1, 2, 3, 4, 5, 6},
redefining the CKM matrix as

Ṽ =

e
iα1 0 0

0 eiα2 0

0 0 eiα3

V
e
−iα4 0 0

0 e−iα5 0

0 0 e−iα6

 (2.31)

and noticing that an overall phase change, αi → αi + ω, leaves Ṽ unchanged. From

these we can conclude that five out of the nine real parameters that constitute the CKM

matrix can be absorbed into quark field phases and the remaining four parameters

are independent. These parameters can be expressed in terms of three mixing angles

θ1, θ2, θ3 and the CP violating phase δ. Having introduced the CKM matrix we will

now discuss charged and neutral currents. We begin by writing in terms of quark mass

eigenstate fields Ψ the kinetic and mass terms of the quark Lagrangian

Lquarks =
∑

f=u,c,t,d,s,b

∑
l

Ψ̄f,l(i /D −mf )Ψl
f (2.32)

=
∑

f=u,c,t,d,s,b

∑
l

Ψ̄f,l(i /̂D −mf )Ψl
f

− gw√
2

(W+
µ T
−µ +W−µ T

+µ)− g̃Z0
µT

µ
Z (2.33)

where l indicates color indices, the currents are given by

TµZ =
∑

f=u,c,t

Ψ̄f,iγ
µ

(
1− γ5

4
− 2

3
sin2 θW

)
Ψi
f

∑
f=b,s,d

Ψ̄f,iγ
µ

(
−1− γ5

4
−+

1

3
sin2 θW

)
Ψi
f , (2.34)

T+µ =
∑

f=u,c,t

∑
f ′=d,s,b

Vf ′,f Ψ̄f ′,iγ
µ 1− γ5

2
Ψi
f , (2.35)

T−µ =
∑

f=u,c,t

∑
f ′=d,s,b

V ∗f ′,f Ψ̄f,iγ
µ 1− γ5

2
Ψi
f ′ , (2.36)

and the derivatives

D̂µΨi
f = ∂µ + igs

8∑
c=1

∑
j

Gcµ(x)(
1

2
λc)ijΨ

j
f +

2

3
ieAµ(x)Ψi

f for f = u,c,t, (2.37)
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D̂µΨi
f = ∂µ + igs

8∑
c=1

∑
j

Gcµ(x)(
1

2
λc)ijΨ

j
f −

1

3
ieAµ(x)Ψi

f for f = d,s,b. (2.38)

where θW is the weak mixing angle, G and A are the gluon and photon fields, respectively,

λC are the Gell-Mann matrices —c.f Appendix A — and e is the electric charge of the

particle in question. It can be seen from (2.34)-(2.36) that in contrast with charged

currents where the CKM matrix which couples up-type and down-type quarks is present,

there is no term mediating the mixing of quarks in the case of neutral currents.

2.5 Approximate flavour symmetries: chiral symmetry

The up, down and strange quark masses in the MS scheme at a renormalization scale

µ = 2 GeV are mu = 2.2+0.6
−0.4 MeV, md = 4.7+0.5

−0.4 MeV and ms = 96+8
−4 MeV [6]. These

masses are small compared with the scale ΛQCD ∼ 0.3 GeV of non perturbative strong

interaction physics. It is then convenient to set mq = md = mu = ms = 0 and do

perturbation theory about this limit [52]. In this chiral limit the light quark Lagrangian

Lquarks = Ψ̄q(iγ
µDµ)Ψq = Ψ̄L

q (iγµDµ)ΨL
q + Ψ̄R

q (iγµDµ)ΨR
q (2.39)

has an SU(3)L×SU(3)R symmetry under which right and left handed quarks transform

as

ΨL
q → LΨL

q L ∈ SU(3)L, (2.40)

ΨR
q → RΨR

q R ∈ SU(3)R, (2.41)

and a baryon number U(1) symmetry under which right and left handed quarks trans-

form by a common phase. There is also an axial U(1) transformation which leaves

(2.39) invariant but which changes the measure in the path integral — c.f Eq. (3.11)—

and hence it is not a symmetry of QCD [53]. The eight generators of the chiral

SU(3)L × SU(3)R symmetry are spontaneously broken to SU(3)V by the vacuum ex-

pectation value of quark bilinears giving rise to eight Goldstone bosons, namely, π±, π0,

K±, K0, K̄0 and η which can be described by the SU(3) matrix

Σ = exp

(
2iΠ

f

)
(2.42)

where f is a constant with dimensions of mass and

Π =

π
0/
√

2 + η/
√

6 π+ K+

π− π0/
√

2 + η/
√

6 K0

K− K̄0 −2η/
√

6

 . (2.43)
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Restoring the Lagrangian masses of the u, d and s quarks turns pions, kaons and the

eta meson into pseudo-Goldstone bosons. It’s possible to write an effective field theory

for these Goldstone bosons, which respects the same chiral symmetry as QCD: this

is chiral perturbation theory (ChiPT) expressed in terms of the field Σ, expressed as

an exponential of the pion matrix. Σ transforms in a simple way under SU(3)L ×
SU(3)R, which leads to nonlinear transformations of the Goldstone fields. The non-zero

(Lagrangian) masses of the quarks can be introduced in ChiPT. This gives an effective

theory which can be used to give expressions for chiral extrapolations and which suggests

forms to use for chiral-continuum extrapolations, — c.f Section 6.3.3 —.

2.6 Effective Hamiltonians for Weak Decays

For energy scales that are much lower than the W boson mass, the full theory of weak

decays can be replaced by an effective one in which the W and Z bosons, together with

the top quark are integrated out, that is, we remove the degrees of freedom which in

particular, don’t appear as initial or final physical states at the scale under consideration.

At lowest order the Hamiltonian that describes this effective theory can be written as

Heff =
GF√

2

∑
n

VnCn(µ)On (2.44)

where GF is Fermi’s constant, V n are Cabibbo-Kobayashi-Maskawa factors, On are local

operators which govern the process in question, and Cn(µ) summarize the contributions

from scales higher than µ. The Wilson coefficients Cn(µ) [54, 55] are independent of the

particular decay considered and have been calculated in perturbation theory [56–58].

2.7 Continuum Phenomenology

Decays of bottom quarks into up or charm quarks are mediated by a charged W bo-

son and occur at tree-level in the Standard Model (SM). By means of experimental

measurements of the branching fraction of Bs → K`ν and Bs → Ds`ν decays and a

theoretical calculation of the form factors f0 and f+ (2.68) the CKM matrix elements

|Vub| and |Vcb| can be extracted. The precise determination of |Vub| and |Vcb| are central

to testing the CKM sector of the Standard Model, test for unitarity of the CKM matrix

and complement the measurements of CP asymmetries in B decays [6]. Decays of bot-

tom quarks to down or strange quarks may occur in the SM only at loop level and the

corresponding flavour changing neutral currents (FCNC) are further suppressed due to

the Glashow-Iliopoulos-Maiani (GIM) mechanism [21]. As such, the decay Bs → φ`+`−

in which a bottom quark decays into a strange quark provides an ideal testing ground in

the search for non-standard contributions to physical observables. Anomalies have been
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Figure 2.1: Differential branching fraction of the decay B0
s → φν+ν−, overlaid

with SM predictions [1, 2] indicated by blue boxes. The vetoes excluding the
charmonium resonances are indicated by grey areas. Taken from [3]

reported between SM predictions and experimental results, such as angular observables

[59, 60], branching fractions [3, 61, 62], and the ratio RK [63], but are also observed in

charged tree-level b→ c transitions see e.g. [64–67]. The main difficulty to conclusively

establish that these anomalies are due to NP effects lies in our inability to exclude large

hadronic effects as their actual cause [68–73]. In this section we will discuss some of

the phenomenological applications that can be made of the form factors extracted from

semileptonic B decays which can be used in the search for NP contributions and to

exclude NP scenarios.

2.7.1 The |Vub| and |Vcb| CKM matrix elements

These matrix elements can be obtained from the differential decay rate [8]

dΓ(Bs → P`ν)

dq2
=

G2
F |Vqb|2

24π3M2
B(s)

(
1−

m2
`

2q2

)
|k|
[(

1 +
m2
`

2q2

)
M2
B(s)

k2|f+(q2)|2

+
3m2

`

8q2
(M2

B(s)
−M2

P )2|f0(q2)|2
]
, (2.45)

where P is the pseudoscalar meson to which the Bs meson decays, namely, a Kaon or

Ds meson, Vqb indicates the corresponding CKM matrix element, the emitted lepton is

denoted by `, k is the three momentum of the final state meson, q = p − k where p is

the momentum of the Bs meson, and f+ and f0 are the vector and scalar form factors

—c.f. Section 2.8—.

2.7.2 Forward-backward asymmetry

If we neglect final state electromagnetic interactions the angular dependence of the

differential decay rate for Bs decays to pseudoscalar final states P = {K,Ds} is given
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by [8]

d2Γ(Bs → P`ν)

dq2d cos θl
=

G2
F |Vqb|2

128π3M2
Bs

(
1−

m2
`

q2

)2

|k|
[
4M2

Bs |k|
2

(
sin2 θl +

m2
`

q2
cos2 θ`

)
f2

+(q2)

+
m2
`

q2
(M2

Bs −M
2
P )MBs |k| cos θ`f0(q2)f+(q2)

+
m`

q2
(M2

Bs −M
2
P )2f2

0 (q2)

]
(2.46)

where m` is the lepton mass and θ` is the angle between the charged-lepton and the Bs

meson momenta in the q2 rest frame, that is, in the frame where the sum of the three

momenta of the lepton and the neutrino is zero. From this angular dependency we can

extract the forward-backward asymmetry

ABs→P`νFB (q2) ≡
[∫ 1

0
−
∫ 0

−1

]
d cos θ`

d2Γ(Bs → P`ν)

dq2d cos θ`
(2.47)

which in the Standard Model (SM) is given by [74]

ABs→P`νFB (q2) =
G2
F |Vqb|2

32π3MBs

(
1−

m2
`

q2

)2

|k|2
m2
`

q2
(M2

Bs −M
2
P )f+(q2)f0(q2) .

Deviation from SM predictions of the value of AFB are a clear sign of NP contribu-

tions [75–77] and could be used to constrain NP models [78–81].

2.7.3 The ratios R(K) and R(Ds)

As discussed in the introduction to this section it is necessary to rule out hadronic effects

as the cause of the apparent discrepancies between theoretical predictions and exper-

imental measurements. This makes observables which are practically free of hadronic

uncertainties of particular interest. One such observable is the lepton flavour universality

ratio, that is, the ratio of branching ratios involving different flavours such as [74, 82–84]

Rτ/µP (q2)≡
dΓ(B(s) → Pτν)/dq2

dΓ(B(s) → Pµν)/dq2
(2.48)

Rµ/eP (q2)≡
dΓ(B(s) → Pµµ)/dq2

dΓ(B(s) → Pee)/dq2
(2.49)

where (2.48) and (2.49) are the ratios for tree level and rare decays, respectively, and

P is a Kaon or Ds meson. These ratios provide precise tests of the Standard Model

predictions which are independent of the CKM matrix elements involved. Moreover,

tree-level decays to τ leptons may be particularly sensitive to additional amplitudes,

such as those involving an intermediate charged Higgs boson [85, 86]. The currently
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experimentally measured ratios are [63, 87, 88]:

R
[1,6]
K = 0.745+0.090

−0.074 ± 0.036 (2.50)

R
∗[0.045,1.1]
K = 0.660+0.110

−0.070 ± 0.024 (2.51)

R
∗[1,1.6]
K = 0.685+0.113

−0.069 ± 0.047 (2.52)

R
[3.5,8]
D = 0.375± 0.064± 0.026 (2.53)

R
∗[3.5,8]
D = 0.293± 0.038± 0.015 (2.54)

where the values inside the square brackets indicate the integrated q2 region where the

measurement was done, and the errors are due to statistics and systematics, respectively.

2.7.4 Differential decay rates and angular observables for Bs → φ`+`−

Figure 2.2: Measured values of P
′
5 (black points) compared with SM predictions

from [4] (blue bands). Taken from [5]

The general form of the decay distribution of Bs → φ`+`− is given by [58]

d4Γ

dq2d cos θ`d cos θφdφ
=

9

32π

[
Is1 sin2 θφ + Ic1 cos2 θφ + (Is2 sin2 θφ + Ic2 cos2 θφ) cos(2θ`)

+ I3 sin2 θφ sin2 θ` cos(2φ) + I4 sin(2θφ) sin(2θ`) cosφ

+ I5 sin(2θφ) sin θ` cosφ+ (Is6 sin2 θφ + Ic6 cos2 θφ) cos(θ`)

+ I7 sin(2θφ) sin θ` sinφ+ I8 sin(2θφ) sin(2θ`) sinφ

+ I9 sin2 θφ sin2 θ` sin(2φ)

(2.55)

where the angular coefficients Ii are functions of the seven form factors for vector final

states (2.71) to (2.74) which have been analytically determined in Section 3.3 of reference

[58], and the angles φ, θφ and θ` are defined in Appendix A of reference [58]. Integrating

(2.55) over the angles we obtain the differential decay rate

dΓ

dq2
=

3

4
(2Is1 + Ic1)− 1

4
(2Is2 + Ic2). (2.56)
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The angular coefficients Ii are also used to obtain the twelve CP averaged angular

coefficients

S
(a)
i =

(
I

(a)
i + Ī

(a)
i

)/d(Γ + Γ̄)

dq2
(2.57)

and the twelve CP asymmetries

A
(a)
i =

(
I

(a)
i − Ī

(a)
i

)/d(Γ + Γ̄)

dq2
(2.58)

which can be used to express previously studied observables such as the forward-backward

asymmetry, AFB, with reduced experimental and theoretical uncertainties —due to the

normalization factor d(Γ + Γ̄)/dq2—. Moreover, the CP averaged angular coefficients

(2.57) offer cleaner observables in which CP violating effects are washed out, whilst

the CP asymmetries (2.58) offer a window into non-standard CP violation [58]. In fig-

ure 2.1 we present the LHCb result [3] for the differential branching fraction of the decay

B0
s → φν+ν− where a ∼ 2σ discrepancy can be seen between experiment and theory.

Similarly in figure 2.2 we present the LHCb result [5] of the measurement of the angular

observable

〈P ′5〉 =
〈S5〉

2
√
−〈Sc2〉〈Ss2〉

(2.59)

for the decay B0 → K∗0µ+µ− where a similar discrepancy has been observed. It has been

suggested [89] that these discrepancies can be explained by a negative NP contribution

to the Wilson coefficient C9 which can arise in models with flavour-changing neutral

gauge bosons [89–91].

2.8 Form factors

The matrix elements for decays of Bs mesons to pseudoscalar, P ∈ {K,Ds}, or vector

φ mesons are:

〈P (k)|Hb→q|Bs(p)〉 =
GF√

2
Vqb〈P (k)|q̄γµb|Bs〉(νγµ`), (2.60)

〈φ(k, ε)|Hb→seff |Bs(p)〉 =
GF√

2
VtbV

∗
ts

{[
Ceff

9 〈φ(k, ε)|s̄γµ(1− γ5)b|Bs〉

− 2mb

q2
Ceff

7 〈φ(k, ε)|s̄iσµνqν(1− γ5)b|Bs〉
]

(¯̀γµ`)

+ Ceff
10 〈φ|s̄γµb|Bs〉(¯̀γµγ5`)

}
(2.61)

where q = {u, c}, ε is the polarization vector of the vector meson, the 4-momenta of the

Bs and final state meson are given by p and k, respectively, and the Wilson coefficients

are to next-to-next-leading logarithmic (NNLL) accuracy, which requires the calculation

on the matching conditions at µ = mW to two-loop accuracy, Ceff
7 = −0.304, Ceff

9 = 4.211

and Ceff
10 = −4.103 [58]. The matrix elements in equations (2.60) and (2.61) can be
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written as a linear combination of Lorentz vectors and functions of the Lorentz scalar

q2 = (p − k)2 known as form factors. In the following we will show the steps followed

to parametrize the matrix elements in terms of form factors. We start by noticing that

the matrix elements for decays to pseudoscalar final states (2.60) contain two Lorentz

vectors, namely p and k, these can be combined to obtain the basis vectors p+ ≡ p+ k

and q ≡ p− k. Matrix elements for decays to vector mesons (2.61) involve an additional

basis vector —i.e. the polarization vector—. It is possible then to parametrize (2.61)

using combinations of the basis vectors p+, q, (ε
∗), the totally antisymmetric tensor εµνρσ

and form factors. The parametrized matrix elements have the form

〈P (k)|q̄γµb̄|Bs(p)〉 = pµ+f+(q2) + qµf−(q2), (2.62)

〈φ(k, ε)|s̄γµb|Bs(p)〉 = ig(q2)εµνρσε∗νpρ+q
σ, (2.63)

〈φ(k, ε)|s̄γµγ5b|Bs(p)〉 = h(q2)ε∗µ + a+(q2)(ε∗ · p)pµ+ + a−(q2)(ε∗ · p)qµ, (2.64)

〈φ(k, ε)|s̄σµν b̄|Bs(p)〉 = fT+(q2)εµνρσε∗ρpσ+ + fT−(q2)εµνρσε∗ρqσ

+ gT (q2)(ε∗ · p)εµνρσqρpσ+, (2.65)

〈φ(k, ε)|s̄σµνγ5b̄|Bs(p)〉 = ifT+(q2)
[
ε∗νpµ+ − ε∗µpν+

]
− ifT−(q2) [ε∗νqµ − ε∗νqµ]

+ igT (q2)(ε∗ · p) [pµqν − pνqµ] qρpσ+. (2.66)

where f+, f−, g, h, a+, fT+, fT− and gT are the aforementioned form factors. Having

obtained the basic parametrization of the matrix elements for decays of a Bs meson to

a pseudoscalar or vector mesons, we will now show how these form factors are related

to the basis that is most commonly used in recent phenomenological analysis, namely,

f0, f+, fV , fA0 , fA1 , fA2 , fT1 , fT2 and fT3 . We start by introducing the form factor f0,

associated with scalar exchange and given by:

f0(q2) = f+(q2) +
q2

M2
Bs
−M2

P

f−(q2) (2.67)

to rewrite equation (2.62) as

〈P (k)|q̄γµb̄|Bs(p)〉 = f+(q2)

(
pµ + kµ −

M2
Bs
−M2

P

q2
qµ

)
+ f0(q2)

M2
Bs
−M2

P

q2
. (2.68)

Next we contract the matrix elements of equations (2.65) and (2.66) with the momentum

transfer vector q

qµ〈φ(k, ε)|sσµν b̄|Bs(p)〉 = 2fT+(q2)εµνρσε∗ρpµkσ (2.69)

qµ〈φ(k, ε)|sσµνγ5b̄|Bs(p)〉 = ifT+(q2)
[
ε∗ν(M2

Bs −M
2
φ)− (ε∗ · q)(p+ k)ν

]
− ifT−(q2)

[
ε∗νq2 − (ε∗ · q)qν

]
+ gT (q2)(ε∗ · p)

[
q2(p+ k)ν − (M2

Bs −M
2
φ)qν

]
(2.70)
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and then we use equations (2.64), (2.69), (2.70) and follow Refs. [58, 92, 93] to obtain

the final expressions for the matrix elements for Bs → φ decays

〈φ(k, ε)|s̄γib|Bs(p)〉 = ifV (q2)
2mBsε

0ijkε∗j (k, ε)kk

mBs +mφ
, (2.71)

〈φ(k, ε)|s̄γµγ5b|Bs(p)〉 = fA0(q2)2mφq
µ ε
∗(k, ε) · q
q2

+ fA1(q2)(mBs +mφ)

[
εµ∗(k, ε)− ε∗(k, ε) · q

q2
qµ
]

− fA2(q2)
ε∗(k, ε) · q
mBs +mφ

[
kµ + pµ −

m2
Bs
−m2

φ

q2
qµ

]
, (2.72)

qν〈φ(k, ε)|s̄σνµb|Bs(p)〉 = 2fT1(q2)εµρτσε∗ρ(k, ε)kτpσ, (2.73)

qν〈φ(k, ε)|s̄σνµγ5b|Bs(p)〉 = ifT2(q2)
[
εµ∗(k, ε)(m2

Bs −m
2
φ)

− (ε∗(k, ε) · q)(p+ k)µ]

+ ifT3(q2)(ε∗(k, ε) · q)

[
qµ − q2

m2
Bs
−m2

φ

(p+ k)µ

]
(2.74)

where the relation between the form factors of interest fV , fA0 , fA1 , fA2 , fT1 , fT2 and

fT3 to the original form factors g, h, a+, a−, fT+, fT− and gT is given by

fV (q2) = (MBs +Mφ)g(q2), (2.75)

fA0(q2) =
1

2Mφ

[
h(q2) + (M2

Bs −M
2
φ)a+(q2) + q2a−(q2)

]
, (2.76)

fA1(q2) =
h(q2)

MBs +Mφ
, (2.77)

fA2(q2) = −(MBs +Mφ)a+(q2), (2.78)

fT1(q2) = −1

2
fT+(q2), (2.79)

fT2(q2) = −1

2

[
fT+(q2) +

q2

M2
Bs
−M2

φ

fT−(q2)

]
, (2.80)

fT3(q2) =
1

2

[
fT−(q2) + (M2

Bs −M
2
φ)gT (q2)

]
. (2.81)

2.9 Conclusion

In this chapter we have given a brief introduction to the Standard Model of particle

physics, effective Hamiltonians for weak decays and form factors, these are the ba-

sic building blocks of the rest of this dissertation. We also discussed the continuum

phenomenology which justifies the study of form factors for the decays Bs → K`ν,

Bs → Ds`ν and Bs → φ`` which will be the final outcome of this dissertation.





Chapter 3

Quantum Chromodynamics

3.1 Introduction

Quantum Chromodynamics (QCD) is the theory of the strong nuclear force, it is for-

mulated in terms of quarks and gluons which are believed to be the basic constituents

of hadronic matter. The behaviour of the QCD coupling gs(µ) which sets the strength

of the interactions involving quarks and gluons is such that although at large momen-

tum transfer perturbation theory is reliable, at hadronic scales µ . 1 GeV the coupling

constant is O(1) and perturbative methods fail. In this low energy regime lattice QCD

offers the only first principles method for computing QCD observables. In this chapter

we provide an overview of the formulation and basic features of lattice QCD. We begin

by introducing the QCD action in the continuum in section 3.2. This is followed by

an outline of the steps necessary for its discretization in sections 3.4 to 3.7. Finally in

sections 3.8 to 3.12 the general methods used in lattice computations are discussed.

This chapter is based mainly on references [94–97], additional references will be given

where appropriate.

3.2 The QCD action in the continuum

The continuum action of QCD in Euclidean space time can be written as1,2

SE =

Nf∑
f=1

∫
d4xψ̄(f)(x)

(
γµ(∂µ + igsGµ(x)) +M (f)

)
ψ(f)(x) +

1

2g2
s

∫
d4xGµν(x)Gµν(x)

(3.1)

1where I have used matrix/vector notation for the color and Dirac indices.
2I use M for the mass to avoid confusion once m is introduced to label lattice sites.

19
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Figure 3.1: Running behaviour of the strong coupling as a function of energy
scale. Taken from [6].

where the number of quark fields ψ with flavour f is denoted by Nf and the coupling

strength, the gluon field and the field strength tensor are labelled by gs, Gµ and Gµν ,

respectively, and we have written all indices down as we are using the Euclidean metric.

The first term on the right hand side of Eq. (3.1) is known as the fermionic part of

the action, denoted SF , it deals with quark fields and quark-gluon interactions. The

term that includes the field strength tensor in Eq. (3.1) is known as the gluonic part

of the action, it is denoted SG and deals exclusively with gluons, their propagation and

interaction.

3.2.1 Gauge invariance

The physical content of QCD is invariant under local gauge transformations, that is,

given Ω(x) ∈ SU(3) the quark and gluon fields must transform as

ψ(x)→ ψ′(x) = Ω(x)ψ(x), ψ̄(x)→ ψ̄′(x) = ψ̄(x)Ω(x)† (3.2)

Gµ(x)→ G′µ(x) = Ω(x)Gµ(x)Ω(x)† + i(∂µΩ(x))Ω(x)† (3.3)

so that SE [ψ′, ψ̄′, G′] = SE [ψ, ψ̄,G].

3.3 Asymptotic freedom and quark confinement

Nonabelian gauge theories in 4D display asymptotic freedom, where the coupling con-

stant decreases as the energy scale at which it’s measured or defined increases. In

dimensional regularisation we introduce a mass scale µ, and we find that the coupling
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depends on µ such that gs(µ) decreases as µ increases — c.f Figure 3.1 —. In other

regularisation schemes some other mass parameter would enter but asymptotic freedom

would still be present. This means that different tools must be employed for the study

of QCD at different energy scales. Asymptotic freedom [98, 99] at short distances means

that because the coupling constant tends to zero perturbation theory can successfully

be applied to study QCD at high energies. Conversely, at long distance the coupling

constant increases, quarks become confined [100] and a non-perturbative approach such

as Lattice QCD must be applied to study the interactions between quarks and gluons.

In this work we are interested in the study of hadronic matrix elements and hence will

use Lattice QCD as our tool of choice.

3.4 Discretization of QCD

We now introduce a 4D lattice Λ with L points in each spatial direction and NT points

in the temporal direction,

Λ = {n = (n1, n2, n3, n4) | n1, n2, n3 = 0, 1, · · · , L− 1;n4 = 0, 1, · · · , NT − 1}. (3.4)

These points are separated by a lattice constant a and are populated by spinors ψ(n)

that carry the same color, Dirac, and flavour indices as in the continuum. With this

setup the continuum action of Eq. (3.1) is discretized by replacing the path integral over

fields by ordinary integrals over the field values at the points in Λ — c.f section 3.5 —

and derivatives by finite differences of the form

∂µψ(x)→ 1

2a
(Uµ(n)ψ(n+ µ̂) + U−µ(n)ψ(n− µ̂)), (3.5)

where µ are directional indices and the gauge field Uµ(n) —which is located on the link

that connects the sites n and n + µ̂— has been introduced to preserve SU(3) gauge

invariance and U−µ(n) = Uµ(n− µ̂)†. It transforms under the local rotation of the color

indices of the gauge fields given by an element Ω(n) of SU(3) as

Uµ(n)→ U
′
µ(n) = Ω(n)Uµ(n)Ω(n+ µ̂)†. (3.6)

If we now introduce the algebra valued lattice gauge field Aµ(n) and the link variable is

written as

Uµ(n) = exp (iaAµ) (3.7)

then we can interpret the link variable Uµ(n) as a lattice version of the continuum gauge

transporter

G(x, y) ∝ exp

(
i

∫
Cxy

A · ds

)
(3.8)
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connecting the points n and n+ µ. Equation (3.8) is a path-ordered exponential where

Cxy is a curve connecting the points x and y.

3.5 The Lattice path integral

Lattice QCD calculations are a non perturbative implementation of field theory using the

Feynman path integral approach. By discretising and using a finite volume, the path

integral is turned into an ordinary multiple integral, though with an extremely high

dimension, and hence best evaluated by a stochastic Monte Carlo sampling technique.

The expectation value of an operator O in terms of the Lattice path integral is given by

〈O[ψ, ψ̄, U ]〉 =
1

Z

∫
[dψ][dψ̄][dU ]O[ψ, ψ̄, U ]e−SQCD (3.9)

Z =

∫
[dψ][dψ̄][dU ]e−SQCD (3.10)

where

[dψ][dψ̄][dU ] =
∏
n∈Λ

Nf∏
i=1

4∏
µ=1

dψ(n)idψ̄(n)idU(n)µ (3.11)

with Nf the number of fermion fields. Given that the fermionic part of the QCD action

(3.15) is quadratic in the fermionic fields these can be integrated out using the Matthews-

Salam formula [101, 102] with the result

〈O[ψ, ψ̄, U ]〉 =

∫
[dU ] detD[U ]O[U ]e−SG[U ]∫

[dU ] detD[U ]e−SG
. (3.12)

3.6 The Wilson gauge action SG

The Wilson gauge action is given by

SG[U ] =
2

g2

∑
n∈Λ

∑
µ<ν

Re Tr[1− Uµν(n)] (3.13)

where the factor of 2/g2 with g the bare quark-gluon coupling has been introduced to

get the correct continuum limit and

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂) (3.14)

is the plaquette. Other choices of gauge actions, involving more complex Wilson loops

than the plaquette can be, and are, used (e.g. Iwasaki [43], DBW2 [103, 104], Luscher-

Weisz [105]) they allow to improve the action by reducing discretisation effects.
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3.7 Fermionic actions SF

3.7.1 The naive fermionic action

In the absence of interactions the lattice formulation of the fermionic QCD action for a

single flavour can be written as

SF [ψ, ψ̄, U ] = a4
∑
n,m∈Λ

ψ̄(n)D(n|m)ψ(m), (3.15)

where the Dirac operator is given by

D(n|m) =
4∑

µ=1

γµ
Uµ(n)ψ(n+ µ)− U−µ(n)ψ(n− µ)

2a
+M. (3.16)

The quark propagator is given by the inverse of Eq. (3.16) and reads

D−1(n|m) =
1

|Λ|
∑
p∈Λ̃

D̃(p)−1 exp (ip(n−m)a), (3.17)

where |Λ| = L3×NT is the total number of lattice points, Λ̃ is the set of discrete lattice

momenta

Λ̃ =

{
p; apµ =

2πk

L
; k ∈ Z;−L

2
≤ k < L

2

}
, (3.18)

and the momentum space propagator is given by

D̃−1(p) =
M − ia−1

∑
µ γµ sin(pµa)

M2 + a−2
∑

µ sin(pµa)2
. (3.19)

3.7.2 The doubler problem

Equation (3.19) has one physical pole at p = (0, 0, 0, 0) and 15 unphysical ones for p ∈ P
when set M = 0, where

P = {(π/a, 0, 0, 0), (0, π/a, 0, 0), · · · , (π/a, π/a, π/a, π/a)}. (3.20)

These unphysical poles are called doublers and can be removed by inserting an extra

term in the momentum space Dirac operator

D̃(p) = M +
1

a

4∑
µ=1

γµ sin(pµa) +
1

a

4∑
µ=1

(1− cos(pµa))︸ ︷︷ ︸
Wilson term

=

M, p = 0

M + 2l/a, p ∈ P.
(3.21)
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where l labels the number of momentum components with pµ = π/a. The introduction

of the Wilson term changes the dispersion relation so that there is only one lowest energy

solution, all other solutions become heavy in the continuum limit and hence decouple

from the theory. Unfortunately, even in the massless limit the Wilson term does not

anticommute with γ5 and hence the Wilson fermionic action 3 which in position space

reads

SWilson[ψ, ψ̄, U,M ] = a4
∑
n,m∈Λ

ψ
(f)

(n)

[(
M (f) +

4

a

)
δαβδabδn,m

− 1

2a

±4∑
µ=±1

(1− γµ)αβUµ(n)abδn+µ̂,m

ψ(f)(m)

(3.22)

explicitly breaks chiral symmetry.

3.7.3 The Sheikholeslami-Wohlert (Clover) action

The “Sheikholeslami-Wohlert” or “clover” action [106]

S[ψ, ψ̄, U,M, csw] = SWilson[ψ, ψ̄, U,M ] + cswa
5
∑
n∈Λ

ψ(n)
∑
µ<ν

i

4
σµνF̂µνψ(n) (3.23)

is an improved Wilson fermionic action Eq. (3.22) in which discretization errors have

been reduced from O(a) to O(a2) by introducing the dimension-5 operator

SSW [ψ, ψ̄, U ] = ψ̄σµνF̂µνψ. (3.24)

In Equations (3.23) and (3.24) csw is a real coefficient which has to be tuned nonper-

turbatively to remove O(a) errors in physical results, σµν = (−i/2)[γµ, γν ] and the field

strength tensor has the form

F̂µν = − 1

8a2
(Uµν(n) + Uν−µ(n) + U−µ−ν(n) + U−νµ(n))− (µ↔ ν). (3.25)

where Uµν is the plaquette –c.f Equation (3.14)—. In this work we use an anisotropic

version of the clover action to generate b quark propagators, this action is known as the

Relativistic Heavy Quark action and will be introduced in section 3.7.5.

3.7.4 The Domain Wall Fermion (DWF) action

The construction of lattice actions is heavily constrained by the Nielsen-Ninomiya the-

orem [107], which states that no local action on an even number of dimensions can be

constructed such that it does not contain doublers and which preserves chiral symmetry.

3γ−µ ≡ γµ
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In the statement of the Nielsen-Ninomiya theorem it is assumed that the Dirac oper-

ator anticommutes with γ5, it was then shown by Ginsparg and Wilson [108] that the

conclusion of the Nielsen-Ninomiya theorem can be avoided by changing the definition

of chiral symmetry in the lattice to the following relation

γ5D(n|m) +D(n|m)γ5 = aD(n|s)γ5D(s|m). (3.26)

This equation know as the Ginsparg-Wilson relation allows for a definition of chiral

symmetry on the lattice which corresponds to continuum chiral symmetry when the

lattice spacing vanishes. It was shown in [13, 14, 109] that by introducing an unphysical

fifth dimension an action can be constructed which solves the Ginsparg-Wilson relation

in the limit of infinite fifth dimensional extent. This action is known as the Domain

Wall Fermion action (DWF) and reads

S[Ψ, Ψ̄, U ] =
∑
n,m∈Λ

Ls−1∑
s,r=0

Ψ̄(n, s)Ddw(n, s|m, r)Ψ(m, r), (3.27)

where the extent of the fifth dimension is denoted by Ls, Ψ are 5D fermionic fields, the

gauge fields U are copied on each value of the 5-coordinate s, and

Ddw(n, s|m, r) = δs,rD(n|m) + δn,mD
dw
5 (s|r). (3.28)

The two operators on the right hand side of Eq. (3.28) are given by

D(n|m) = (4−M5)δn,m −
1

2

±4∑
µ=±1

(1− γµ)Uµ(n)δn+µ̂,m, (3.29)

Ddw
5 (s|r) = δs,r − (1− δs,N5−1)P−δs+1,r − (1− δs,0)P+δs−1,r

+M(P−δs,N5−1δ0,r + P+δs,0δN5−1,r) (3.30)

with chiral projectors P± = (1± γ5)/2, quark mass M , and a 5D mass term M5 whose

domain is chosen so that doublers are removed and the positivity of the transfer matrix

is guaranteed. Physical observables can then be constructed from the physical fields ψ

and ψ̄ which live on the 4D boundary of Λ5,

ψ(n) = P−Ψ(n, 0) + P+Ψ(n,N5 − 1), (3.31)

ψ̄(n) = Ψ̄(n,N5 − 1)P− + Ψ̄(n, 0)P+. (3.32)

This mixing of left and right chiral modes is exponentially suppressed in Ls, meaning

that exact chiral symmetry is recovered in the limit Ls → ∞, but given that in the

lattice Ls is finite there is a residual chiral symmetry breaking which can be measured

by a residual mass of the quarks.
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We end this section by noting that an alternative solution to the Ginsparg-Wilson rela-

tion is given by the overlap fermion action [110, 111] this action satisfies the Ginsparg-

Wilson relation exactly but is computationally more expensive than the DWF action.

Moreover, the DWF action becomes equivalent to the overlap fermion action as Ls →∞
[112].

3.7.5 The Relativistic Heavy Quark (RHQ) action

The fermionic actions discussed in the previous sections can be used to study hadrons

containing light, strange and charm quarks for which discretization errors can be con-

trolled with the currently accessible lattice spacings. This, however, is not the case for

bottom quarks for which mba � 1. The study of hadrons containing b quarks requires

the use of effective theories, such as heavy quark effective theory (HQET) [31–36], non-

relativistic QCD (NRQCD) [37–39] or the relativistic heavy quark action (RHQ) [40–42].

In HQET the limit of infinite mass, i.e the static approximation, is discretized and 1/mb

corrections are treated as operator insertions. Because HQET relies on the static ap-

proximation it does not apply for heavy-heavy states. NRQCD is a discretization of a

non-relativistic effective Lagrangian for heavy quarks in the continuum, it requires that

the quarks have low velocities and its Lagrangian contains power-law divergences that

blow up in the limit mba → 0. The RHQ action can be used when the heavy quark

states are at rest or have small spatial momenta and can be used to describe both heavy-

light and heavy-heavy systems. It is based on the Fermilab method [40] which uses an

anisotropic clover action (3.23) and extends Symanzik effective field theory [113, 114] to

the regime mba 6� 1. In the Columbia formulation [42] the RHQ action takes the form

S[ψ, ψ̄, U,M, csw, ζ] = a4
∑
n,m

ψ̄(n)
[
M + γ0D0 + ζ~γ · ~D − a

2
(D0)2 − a

2
( ~D)2

+ cp
∑
µ>ν

ia

4
σµνFµν

]
ψ(m)

(3.33)

where

Dµψ(n) =
1

2a

[
Uµ(n)ψ(n+ µ)− U †µ(n− µ)ψ(n− µ)

]
, (3.34)

D2
µψ(n) =

1

a2

[
Uµ(n)ψ(n+ µ) + U †µ(n− µ)ψ(n− µ)− ψ(n)

]
, (3.35)

Fµν is defined in equation (3.25), and the three parameters, bare quark mass M ,

anisotropy parameter ζ and clover coefficient cp are tuned non-perturbatively — c.f.

Sec. 5.3.3.1 — so that all errors of O(|~p|a), O([Ma]n) and O(|~pa|[Ma]n) are removed

from on-shell Green’s functions.
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3.8 Euclidean Correlators

In Euclidean space, the correlation function of two gauge invariant operators O1(~0, 0)

and O2(~x, t) is given by

〈O2(~x, t)O1(~0, 0)〉 =
∑
n

1

ZT
〈m|e−(T−t)ĤÔ2(~x, 0)e−tĤÔ1(~0, 0)|m〉 (3.36)

where Ô1 and Ô2 are operators that create and annihilate states, T denotes the extension

of the lattice in the time direction, m are energy eigenstates and the normalization factor

ZT is given by

ZT = Tr
[
e−TĤ

]
=
∑
m

〈m|e−TĤ |m〉. (3.37)

The Euclidean correlator can be evaluated by inserting the unit operator4

1 =
1

2En

∑
n

|n〉〈n| (3.38)

into (3.36) which then becomes

〈O2(~x, t)O1(~0, 0)〉 =
∑
m,n

1

2EnZT
〈m|e−(T−t)ĤÔ2(~x, 0)|n〉〈n|e−tĤÔ1(~0, 0)|m〉

=
∑
m,n

1

2EnZT
e−(T−t)Em〈m|Ô2(~x, 0)|n〉e−tEn〈n|Ô1(~0, 0)|m〉

=
∑
m,n

1

2En

〈m|Ô2(~x, 0)|n〉〈n|Ô1(~0, 0)|m〉e−(T−t)∆Eme−t∆En

1 + e−T∆E1 + e−T∆E2 + · · ·

(3.39)

where |n〉 are energy eigenstates and we defined

∆En = En − E0. (3.40)

where E0 is the vacuum energy. In the limit T →∞

lim
T→∞

〈O2(~x, t)O1(~0, 0)〉 =
∑
n

1

2En
〈0|Ô2(~x, 0)|n〉〈n|Ô1(~0, 0)|0〉e−t∆En (3.41)

each of the exponentials corresponds to an energy level. These energies can be calculated

by for instance choosing operators Ô1 = Ô†X and Ô2 = ÔX which create and annihilate a

given state X from the vacuum, these states are described by a set of quantum numbers

and hence the only matrix elements 〈n|Ô1|0〉 that will contribute are those for which 〈n|
has the same quantum numbers as X. If we now write 〈n| = 〈x(0)| for the ground state

4where we use the relativistic normalization of states
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of X and 〈x(1)|, 〈x(2)|, · · · for subsequent excited states then we obtain from (3.41)

lim
T→∞

〈OX(~x, t)OX(~0, 0)†〉 =
∑
n

1

2En
|〈x(n)|Ô†X |0〉|

2e−t∆En−i~x·~pn . (3.42)

It follows that for sufficiently large t the sub-leading terms are strongly suppressed and

so we can extract ∆E1 from the exponential decay of the correlator. In this case we

speak of single state dominance.

3.9 Discrete Symmetries

An understanding of discrete symmetries is necessary to construct meson interpolators

that have the desired quantum numbers of physical states and to construct improved

current operators. In the following we will discuss the discrete symmetries of charge

conjugation, parity and time reversal, for quark bilinears involving a bottom quark b

and a light or strange quark ψ.

3.9.1 Parity P

The parity operator P performs a spatial inversion. Let xP = (x0,−~x) then quark and

gauge fields transform as

P : ψ̄(x)→ ψ̄(xP )γ0 (3.43)

b(x)→ γ0b(xP ) (3.44)

P : U0(x)→ U0(xP ) (3.45)

Uj(x)→ U−j(xP ) (3.46)

From which follows that derivatives acting on the heavy quark

−→
Dµb(x) =

1

2
[Uµ(x)b(x+ µ̂)− U−µ(x)b(x− µ)] (3.47)

will transform as:

P :
−→
D0b(x)→ 1

2

[
U0(xP )γ0b(xP + 0̂)− U−0(xP )γ0b(xP − 0̂)

]
= γ0

−→
D0b(xP )

−→
D jb(x)→ 1

2

[
U−j(xP )γ0b(xP + ĵ)− Uj(xP )γ0b(xP − ĵ)

]
= −γ0

−→
D jb(xP )

(3.48)

and similarly derivatives acting on the light/strange/charm quark

ψ
←−
D(x) =

1

2

[
ψ̄(x+ µ̂)U †µ(x)− ψ(x− µ)U †−µ

]
(3.49)
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will transform as

ψ̄D0(x)→ ψ̄
←−
D0(xP )γ0 and ψ̄

←−
D j(x)→ −ψ̄

←−
D j(xP )γ0 (3.50)

3.9.2 Time reversal T

The time reversal operator T reverses the direction of the time axis. Let xT = (−x0, ~x)

then quark and gauge fields transform as

T : ψ̄(x)→ ψ̄(xT )γ5γ0 (3.51)

b(x)→ γ0γ
5b(xT ) (3.52)

T : U0(x)→ U−0(xT ) (3.53)

Uj(x)→ Uj(xT ) (3.54)

from which follows that derivatives acting on the heavy quark will transform as:

T :
−→
D0b(x)→ 1

2

[
U0(xT )γ0γ

5b(xT + 0̂)− U−0(xT )γ0γ
5b(xT − 0̂)

]
= −γ0γ

5−→D0b(xT ) (3.55)

−→
D jb(x)→ 1

2

[
Uj(xT )γ0γ

5b(xT + ĵ)− U−j(xT )γ0γ
5b(xT − ĵ)

]
= γ0γ

5−→D0b(xT ) (3.56)

and similarly derivatives acting on the light/strange/charm quark will transform as:

ψ̄(x)
←−
D0 → −ψ̄(xT )

←−
D0γ

5γ0 and ψ̄(x)
←−
D j → ψ̄(xT )

←−
D jγ

5γ0 (3.57)

3.9.3 Charge conjugation C

The charge conjugation operator C transforms particles into antiparticles. Let C be the

charge conjugation matrix with C−1γµC = −(γµ)T = −(γµ)∗ and C−1γ5C = (γ5)T =

(γ5)∗ then quark and gauge fields transform as

C : ψ̄(x)→ −ψT (x)C−1 (3.58)

b(x)→ Cb̄T (x) (3.59)

C : U0(x)→ U−0(x) (3.60)

Uj(x)→ U∗j (x) (3.61)

from which follows that derivatives acting on the heavy quark will transform as:

C :
−→
Dµb(x)→ 1

2

[
U∗µ(x)Cb̄T (x+ µ̂)− U∗−µ(x)Cb̄T (x− µ̂)

]
=

1

2
C
[
U †Tµ (x)b̄T (x+ µ̂)− U †T−µ(x)b̄T (x− µ̂)

]
=

1

2
C
[
b̄(x+ µ̂)U †µ(x)− b̄(x− µ̂)U †−µ(x)

]T
= C

[
b̄(x)
←−
Dµ

]T
(3.62)
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and similarly derivatives acting on the light/strange/charm quark will transform as:

ψ̄(x)
←−
Dµ → −

[−→
Dµψ(x)

]T
C−1 (3.63)

3.10 Two-point functions

Meson interpolators are constructed out of quark fields such that they have the desired

quantum numbers of the physical state, their general form is

O(n) = ψ̄(f1)(n)Γψ(f2)(n) (3.64)

where Γ is a product of Gamma matrices — c.f Appendix A — and fi are flavour

indices. We can now define the fermionic part of the correlation function of two meson

interpolators of the form O = d̄(n)Γu(n) as [96]

〈O(n)Ō(m)〉 = 〈d̄(n)Γu(n)ū(m)Γd(m)〉F

= Γα1β1Γα2β2

〈
d̄(n)α1

c1
u(n)β1

c1
d(m)α2

c2
ū(m)β2

c2

〉
F

= −Γα1β1Γα2β2

〈
u(n)β1

c1
ū(m)α2

c2

〉
u

〈
d̄(n)α1

c1
d(m)β2

c2

〉
d

= −Γα1β1Γα2β2D
−1
u (n|m)β1α2

c1c2
D−1
d (n|m)β2α1

c2c1

= −Tr[ΓD−1
u (n|m)ΓD−1

d (m|n)]

(3.65)

In the third line of equation (3.65) Grassmann variables have been reordered and expec-

tation values of the fermionic fields were factorized with respect to the flavours. This

was followed by a Wick contraction [115] for each of the two flavours which results in the

inverse Dirac operator D−1
ψ(f1)

(n|m) which propagates a quark of flavour f1 from space-

time point n to the point m. We can now use (3.65) and the momentum projection of

(3.41) to write two-point functions for pseudoscalar (P ) and vector mesons (V ) as

CPP (t, k) =
∑
~x

〈OP (~0, 0)OP (~x, t)†〉e−i~k·~x

t→∞−−−→ |ZP |
2

2EP
e−EP t, (3.66)

CµνV V (t, k) =
∑
~x

〈OµV (~0, 0)OνV (~x, t)†〉e−i~k·~x

t→∞−−−→
∑
λ

εµ(k, λ)εν∗(k, λ)
|ZV |2

2EV
e−EV t, (3.67)

where ZP ≡ 〈P (~k)|ψ̄(f1)γ5ψ(f2)|0〉, ZV εµ∗(~k, λ) ≡ 〈V (~k, λ)|ψ̄(f1)γµψ(f2)|0〉 and ε(~k, λ)

is the polarization vector of the vector meson with helicity λ. In (3.66) and (3.67)
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ψ(f1) b

ψ(f2)

ψ̄(f1)(t)Γb(t)

tsink

Figure 3.2: Three-point function with point source and smeared sink

we assume single state dominance — c.f section 3.8 — and we drop the ’around the

world’ contribution — i.e self interactions between particles at lattice site n and their

counterpart across the boundary of the system —.

3.11 Quark Sources

3.11.1 Point Source

The lattice Dirac operator acts on the tensor product of the spin, color and lattice

vector spaces making the computation of the complete propagator matrix, known as an

all-to-all propagator, very expensive in terms of computer memory. The solution to this

problem is given by a point-to-all propagator which corresponds to a single column of

the inverse Dirac operator,

D−1(n|m0)βα0
ba0

=
∑
m,α,a

D−1(n|m0)βα
ba
S

(m0,α0,a0)
0 (m)α

a
(3.68)

which is obtained by multiplying the full Dirac propagator by the point-source matrix

S
(m0,α0,a0)
0 (m)α

a
= δ(m−m0)δαα0δaa0 . (3.69)

3.11.2 Smeared Source

Point sources put the quark and anti-quark on the same lattice site making the overlap

with the physical state small. To increase this overlap an extended source is used,

meaning that the two quarks are placed on different spatial points but on the same time

slice. A Gaussian smeared source [116–119] is obtained by multiplying the point source
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(3.69) by the smearing operator M

S(n) = M(n,m)S0(m) (3.70)

where

M =

(
1 +

σ2

4N
H

)
(3.71)

H(~n, ~m) =
3∑
j=1

(
Uj(~n)δ(~n+ ĵ, ~m) + Uj(~n− ĵ)†δ(~n− ĵ, ~m)− 2δ(~n, ~m)

)N
(3.72)

here ~n and ~m are vectors containing the spatial coordinates of the lattice site. The

number of smearing steps N and the smearing width σ are chosen to get the best possible

overlap with the physical state. The Gaussian smeared source connects different sites of

the time slice to the central site resulting on a more realistic wave function which can

help to extract clear and strong correlation signals.

3.12 Three-point functions

So far we have discussed the propagation of two quarks of flavours f1 and f2 from space-

time point m to point n, we also need to consider processes in which one of the quarks

interacts with a flavour changing current

J Γ = ψ̄(f1)Γψ(f3). (3.73)

When this is the case we talk about three-point functions schematically given in Fig-

ure 3.2. The three-point function for the decay of a Bs meson at rest into a pseudoscalar

or vector meson is given by

CΓ
Bs→P (t, tsink,~k) =

∑
~x~y

〈OP (~0, 0)J Γ(~y, t)O†Bs(~x, tsink)〉e−i~k·~x

t,tsink→∞−−−−−−→ κ 〈P (p)|J Γ(~y, t)|Bs(p))〉e−EP t−mBs (tsink−t), (3.74)

CµΓ
Bs→V (t, tsink,~k) =

∑
~x~y

〈OµV (~0, 0)J Γ(~y, t)O†Bs(~x, tsink)〉e−i~k·~x

t,tsink→∞−−−−−−→ κ
∑
λ

εµ(k, λ)〈V (k, λ)|J Γ(~y, t)|Bs(p)〉e−EV t−mBs (tsink−t), (3.75)

where single state dominance is assumed — c.f section 3.8 —, OBs , OP and OV are

annihilation operators for the Bs, pseudoscalar (P ) and vector meson (V ) respectively,

κ ≡ (Z∗P/V ZBs)/(4EP/VmBs) with Z∗P/V and ZBs as defined in section 3.10 and

OP (x) ≡ ψ̄(f1)(x)γ5ψ(f2)(x), (3.76)

OµV (x) ≡ ψ̄(f1)(x)γµψ(f2)(x), (3.77)
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OBs(x) ≡ ψ̄(x)γ5b(x), (3.78)

J Γ(x) ≡ ψ̄(x)Γb(x). (3.79)

3.13 Conclusion

In this chapter we have introduced the steps necessary to discretize QCD, we have dis-

cussed briefly different gauge and fermionic actions with particular emphasis on the

actions that were used in our simulations, namely, Domain Wall fermion and the Rela-

tivistic Heavy quark action. We have introduced the discrete symmetries of time rever-

sal, charge conjugation and parity which are necessary to obtain the O(a) improvement

coefficients for the currents in section 4.3. Finally, we have discussed how to generate

different quark sources, and how to construct two and three-point functions which are

necessary for the extraction of form factors which is the subject of the next chapter.





Chapter 4

Lattice QCD for B-physics

4.1 Introduction

As discussed in section 2.8 the matrix elements for Bs decays to pseudoscalar or vector

states can be expressed in terms of ten form factors which depend on the momentum

transfer q2 between the initial Bs meson and the final state meson. The matrix elements

on Eqns. (2.68), (2.71)-(2.74) are isolated from lattice simulations by carefully choosing

and computing ratios of 3-pt and 2-pt functions. These ratios are given in the Bs meson

rest frame by [120]

RΓ
Bs→P (t, tsink, k) =

CΓ
Bs→P (t, tsink,~k)√

CPP (t,~k)CBsBs(tsink − t)

√
4EPmBs

e−EP te−mBs (tsink−t)

t,tsink→∞−−−−−−→ 〈P (k)|J Γ|Bs(p)〉, (4.1)

RαΓ
Bs→φ(t, tsink, k) =

CαΓ
Bs→φ(t, tsink,~k)√

1
3

∑
iC

ii
φ (t,~k)CBs(tsink − t)

√
f(k, λ)EφMBs

e−Eφte−MBs (tsink−t)

t,tsink→∞−−−−−−→
∑
λ

εα(k, λ)〈φ(k, λ)|J Γ|Bs(p)〉, (4.2)

where two-point CXX and three-point functions CXBs→Y are described in sections 3.10

and 3.12, α and Γ are the required combinations of Gamma matrices for the vector final

state and the current, the polarization vector satisfies the relation

∑
λ

εµ(k, λ)εν∗(k, λ) =
kµkν

m2
V

− gµν , (4.3)

and f(k, λ) ≡ 4
3

∑
i

∑
λ ε

i(k, λ)εi∗(k, λ).

35
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4.2 Form factor extraction

In this section we will show the algebraic manipulations required to extract the full set of

form factors f0, f+, fV , fA0, fA1, fA2, fT1, fT2 and fT3 from equations (2.68)-(2.74) using

equations (4.1) and (4.2)

4.2.1 f0 and f+

The numerical analysis of the form factors f+ and f0 is performed by means of an

alternative parametrization of (2.68) where the matrix element is written as:

〈P (k)|iψ̄γµb|Bs(p)〉 =
√

2mBs

[
vµf‖(q

2) + pµ⊥f⊥(q2)
]

(4.4)

where vµ ≡ pµ/mBs is the four-velocity of the Bs meson, pµ⊥ ≡ k
µ − (k · v)vµ, and

f‖(q
2) ≡ 〈P (k)|ψ̄γ0b|Bs(p)〉√

2mBs

=
Rγ

0

Bs→P (t, tsink, k)
√

2mBs

, (4.5)

f⊥(q2) ≡ 〈P (k)|ψ̄γib|Bs(p)〉
ki
√

2mBs

=
Rγ

i

Bs→P (t, tsink, k)

ki
√

2mBs

(no i sum). (4.6)

The form factor f‖ and f⊥ emerge directly from the lattice calculation, have a simple

description in heavy-quark effective theory (HQET) [121] and also in heavy meson chi-

ral perturbation theory (HMχPT) [122] making f‖ and f⊥ an ideal choice for lattice

simulations. The form factors f0 and f+ can then be obtained from

f0(q2) =

√
2mBs

m2
Bs
−m2

P

[
(mBs − EP )f‖(q

2) + (E2
P −m2

P )f⊥(q2)
]
, (4.7)

f+(q2) =
1√

2mBs

[
f‖(q

2) + (mBs − EP )f⊥(q2)
]
. (4.8)

4.2.2 fV

Working in the Bs meson rest frame (2.71) simplifies to

〈V (k, λ)|ψ̄γib|Bs(p)〉 = −ifV (q2)
2mBsε

0ijkε∗j (k, λ)kk

mBs +mV
. (4.9)

Contracting with the polarization vector εm(k, λ) and summing over polarization states

it follows that

∑
λ

εm(k, λ)〈V (k, λ)|ψ̄γib|Bs(p)〉 = −ifV (q2)
2mBsε

0ijkkk
mBs +mV

∑
λ

εm(k, λ)ε∗j (k, λ)

= −ifV (q2)
2mBsε

0ijkkk
mBs +mV

(
kmkj
m2
V

− gmj
)
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= ifV (q2)
2mBsε

0imkkk
mBs +mV

(4.10)

which can then be evaluated using (4.2)

fV (q2) = −iRγ
mγi

Bs→V (t, tsink, k)
(mBs +mV )

2mBsε0ijkk
k

(no i, j sum). (4.11)

4.2.3 fA0

Terms containing the form factors fA1 and fA2 can be removed from (2.72) by contracting

with the momentum transfer vector q. The resulting equation reads:

qµ
∑
λ

εi(k, λ)〈V (k, λ)|ψ̄γµγ5b|Bs(p)〉 = 2fA0(q2)

(
k · q
m2
v

ki − qi
)

= 2fA0(q2)
kiEVmBs

mV
. (4.12)

Equation (4.12) can then be used together with (4.2) to obtain the form factor fA0

fA0(q2) =
mV

2kiEVmBs

qµR
γiγµ5

Bs→V (t, tsink, k) (no i sum) (4.13)

where γµ5 ≡ γµγ5.

4.2.4 fA1

Contracting (2.72) with the vector η = (0, δ1j , δ2j , δ3j) and setting kj = 0 (qj = 0) we

obtain: ∑
λ

εi(k, λ)〈V (k, λ)|ψ̄γµγ5b|Bs(p)〉 = −fA1(q2)(mBs +mV )giµ. (4.14)

which can then be used together with (4.2) to obtain the form factor fA1

fA1(q2) = Rγ
jγi5

Bs→V (t, tsink, k)
1

mBs +mV
(ki = 0) (no i sum). (4.15)

4.2.5 fA2

The contraction of (2.72) with a vector η such that η ·q = 0 yields a simplified expression

from which the form factor fA2 can be extracted:

ηµ
∑
λ

εi(k, λ)〈V (k, λ)|ψ̄γµγ5b|Bs(p)〉 = fA1(q2)(mBs +mV )

(
k · η
m2
V

ki − ηi
)

− fA2(q2)
η · (k + p)

mBs +mV

(
k · q
m2
V

ki − qi
)
. (4.16)
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Given that q = (mBs − Ev,−~k) a possible choice of η is given by η = (k1/(mBs −
Ev),−1, 0, 0). With this choice (4.16) yields

ηµ
∑
λ

εi(k, λ)〈V (k, λ)|ψ̄γµγ5b|Bs(p)〉 = fA1(q2)(mBs +mV )

(
k1mBs

m2
V

ki − δ1i

)

− fA2(q2)
2m2

Bs
EV

m2
V (mBs − EV )

k1k
i

= fA1(q2)(mBs +mV )

(
mBs

m2
V

− δ1i

k1ki

)
k1k

i

− fA2(q2)
2m2

Bs
EV

m2
V (mBs − EV )

k1k
i (4.17)

together with (4.2) and using ki = −ki results in:

−
Rγ

iγ05

Bs→V (t, tsink, k)

ki(mBs − EV )
−
Rγ

iγ15

Bs→V (t, tsink, k)

k1ki
= fA1(q2)(mBs +mV )

(
mBs

m2
V

+
δ1i

k1ki

)
− fA2(q2)

2m2
Bs
EV

m2
V (mBs − EV )

. (4.18)

4.2.6 fT1

In the Bs meson rest frame (2.73) simplifies to

qν〈V (k, λ)|ψ̄σνib|Bs(p)〉 = −fT1(q2)2mBsε
0ijkε∗j (k, λ)kk (4.19)

which can be contracted with the polarization vector εm(k, λ) and summed over polar-

ization states

qν
∑
λ

εm〈V (k, λ)|ψ̄σνib|Bs(p)〉 = −2mBsfT1(q2)ε0ijk
∑
λ

εm(k, λ)ε∗j (k, λ)kk

= −2mBsfT1(q2)ε0ijk
(
kmkj
m2
V

− gmj
)
kk

= 2mBsfT1(q2)ε0imkkk. (4.20)

This expression can then be evaluated using (4.2)

fT1(q2) = Rγ
mσνi

Bs→V (t, tsink, k)
qν

4mBsε
0imkkk

=
1

2mBsε
0imkkk

(
(mBs − EV )Rγ

mσ0i

Bs→V (t, tsink, k)

+ klR
γmσli

Bs→V (t, tsink, k)
)

(no i,m sum). (4.21)
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4.2.7 fT2 and fT3

Contracting (2.74) with the polarization vector εm(k, λ) and summing over polarization

states we obtain

qν
∑
λ

εi(k, λ)〈V (k, λ)|ψ̄σνµγ5b|B(p)〉

= ifT2(q2)

[∑
λ

εi(k, λ)εµ∗(k, λ)(m2
Bs −m

2
V )−

∑
λ

εi(k, λ)ερ∗(k, λ)qρ(p+ k)µ

]

+ ifT3(q2)
∑
λ

εi(k, λ)ερ∗(k, λ)qρ

[
qµ − q2

m2
Bs
−m2

V

(p+ k)µ

]

= ifT2(q2)

[(
kikµ

m2
V

− giµ
)

(m2
Bs −m

2
V )−

(
kikρ

m2
V

− giρ
)
qρ(p+ k)µ

]
+ ifT3(q2)

(
kikρ

m2
V

− giρ
)
qρ

[
qµ − q2

m2
Bs
−m2

V

(p+ k)µ

]

= ifT2(q2)

[(
kikµ

m2
V

− giµ
)

(m2
Bs −m

2
V )−

(
k · q
m2
V

ki − qi
)

(p+ k)µ
]

+ ifT3(q2)

(
k · q
m2
V

ki − qi
)[

qµ − q2

m2
Bs
−m2

V

(p+ k)µ

]
. (4.22)

Terms including ε·q can be removed from (4.22) by setting ki = 0 (qi = 0). The resulting

expression can then be evaluated with (4.2) from which follows

fT2(q2) =
−i

(m2
Bs
−m2

V )
qν(k)Rγ

iσ[νi]5

Bs→V (t, tsink, k)

=
−i

(m2
Bs
−m2

V )

[
(mBs − EV )Rγ

iσ[0i]5

Bs→V (t, tsink, k)

+ kjR
γiσ[ji]5

Bs→V (t, tsink, k)
]

(4.23)

where σ[µν]5 ≡ σµνγ5. The form factor fT3 can then be obtained from (4.22) by setting

µ = 0:

qν
∑
λ

εi(k, λ)〈V (k, λ)|ψ̄σν0γ5b|B(p)〉

= ifT2(q2)

[
EV
m2
V

(m2
Bs −m

2
V )−

(
k · q
m2
V

+ 1

)
(mBs + EV )

]
ki

+ ifT3(q2)

(
k · q
m2
V

+ 1

)[
(mBs − EV )− q2

m2
Bs
−m2

V

(mBs + EV )

]
ki. (4.24)
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4.3 Operator renormalization and improvement

In lattice QCD, the lattice spacing a provides an ultraviolet cut-off, making Lattice QCD

a regularized field theory. To complete the renormalization process lattice results must

be identified to the continuum theory. In the case of matrix elements this identification

can be achieved by multiplying lattice results with the vector current renormalization

constant Zhl

〈P/φ|J |Bs〉continuum = Zhlγµ〈P/φ|J |Bs〉lattice (4.25)

where continuum and lattice currents are denoted by J and J , respectively, and P =

{K,Ds}. The uncertainty in the determination of Zhlγµ due to one-loop corrections can

be reduced by writing [123–125]

Zhlγµ = ργµ

√
ZhhγµZ

ll
γµ (4.26)

where the heavy light renormalization factor ZhlΓ has been decomposed into the prod-

uct of the coefficient ρΓ and the flavour conserving nonperturbative renormalization

constants of the heavy-heavy and light-light vector currents

Zhhγ0 =

∑
~x〈Bs(~x, t

′
)Bs(~0, 0)〉∑

~x,~y〈Bs(~x, t
′)J0(~y, t)Bs(~0, 0)〉

(4.27)

Z llγi =

∑
~x

∑3
i=1〈Vi(~x, t)Vi(~0, 0)〉∑

~x

∑3
i=1〈Vi(~x, t)Vi(~0, 0)〉

, (4.28)

where Bs = s̄γ5b, J0 = b̄γ0b, and the local (V ) and conserved (V) vector currents are

defined for Domain Wall Fermions as [14]

Vi(n) = q̄(n)γiq(n) (4.29)

Vµ(n) =

Ls−1∑
s=0

1

2

[
q̄(n+ µ̂, s)(1 + γµ)U †nµq(n, s)

−q̄(n, s)(1− γµ)Unµq(n+ µ̂, s)] . (4.30)

Here, Ls is the extent of the unphysical fifth dimension, n are lattice sites, µ̂ is a unit

vector in the µ direction, s is the value of the coordinate in the fifth dimension, and

Unµ are link variables. The bulk of the renormalization of Zhlγµ is contained in the

flavour conserving factors Z llγµ and Zbbγµ , resulting in a much improved convergence of

perturbation theory for the residual matching factor ργµ . This perturbative factor is

expected to be close to unity because most of the radiative corrections cancel in the

ratio Zhlγµ/
√
ZhhγµZ

ll
γµ [126].

The heavy-light current can be improved toO(a) by adding to it terms containing a single

covariant derivative (that is, of one higher mass dimension) with appropriate coefficients.
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These improvement terms must satisfy symmetry and dimensional considerations and

for vector and axial vector currents are given by [126]:

V 1
µ = ψ̄

−→
Dµb, (4.31)

V 2
µ = ψ̄

←−
Dµb, (4.32)

V 3
µ = ψ̄γµγi

−→
D ib, (4.33)

V 4
µ = ψ̄γµγi

←−
D ib, (4.34)

A1
µ = ψ̄γ5

−→
Dµb, (4.35)

A2
µ = ψ̄γ5

←−
Dµb, (4.36)

A3
µ = ψ̄γ5γµγi

−→
D ib, (4.37)

A4
µ = ψ̄γ5γµγi

←−
D ib. (4.38)

These improvement terms can then be used together with temporal (cnγ0 , cnγ5γ0) and

spatial matching factors (cnγi , c
n
γ5γi) calculated to one loop in lattice perturbation theory

to obtain the O(αsa) renormalized currents [127]

V0(x) = ργ0

√
Z llV Z

hh
V

[
V 0

0 (x) + c3
γ0V

3
0 (x) + c4

γ0V
4

0 (x)
]
, (4.39)

Vi(x) = ργi

√
Z llV Z

hh
V

[
V 0
i (x) + c1

γiV
1
i (x) + c2

γiV
2
i (x) + c3

γiV
3
i (x) + c4

γiV
4
i (x)

]
. (4.40)

A0(x) = ργ5γ0

√
Z llAZ

hh
A

[
A0

0(x) + c3
γ5γ0A

3
0(x) + c4

γ5γ0A
4
0(x)

]
, (4.41)

Ai(x) = ργ5γi

√
Z llAZ

hh
A

[
A0
i (x) + c1

γ5γiA
1
i (x) + c2

γ5γiA
2
i (x)

+c3
γ5γiA

3
i (x) + c4

γ5γiA
4
i (x)

]
. (4.42)

In Section 6.3.1 we will present our results for the matching coefficients. In the case of

tensor and pseudotensor currents the operators needed for O(a) improvement have not

been published [128], but they can be obtained by studying how tensors and pseudoten-

sors transform under discrete symmetries. In the next sections we present the steps we

followed for our independent calculation of the O(a) improvement terms for tensor and

pseudotensor currents.

4.3.1 Transformation of unimproved Tensor and Pseudotensor cur-

rents

Having introduced the discrete symmetries of parity, charge conjugation and time rever-

sal in section 3.9, we can now see how tensorial currents, that is, how operators of the

form J = ψ̄σµνb transform under these symmetries

P : J j0 → ψ̄(xP )γ0σj0γ0b(xP )

= −J j0(xP )

J jk → ψ̄(xP )γ0σjkγ0b(xP )

= J jk(xP ) (4.43)

T : J j0 → ψ̄(xT )γ5γ0σj0γ0γ5b(xT )

= −J j0(xT )
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J jk → ψ̄(xT )γ5γ0σjkγ0γ5b(xT )

= J jk(xT ) (4.44)

C : Jµν → −ψT (x)C−1σµνCb̄T (xT )

= −ψT (x)(σνµ)T b̄T (xT )

= ψT (x)(σµν)T b̄T (xT )

= −
[
b̄(x)(σµν)ψ(x)

]T
= − [Jµν(x)]Tb↔ψ (4.45)

Similarly, we can study how pseudotensors, that is, how operators of the form J =

ψ̄γ5σµνb transform under discrete symmetries

P : J j0 → J j0(xP )

J jk → −J jk(xP )

T : J j0 → ψ̄(xT )γ5γ0γ5σj0γ0γ5b(xT )

= J j0(xT )

J jk → −J jk(xT )

C : J µν → [J µν(x)]Tb↔ψ . (4.46)

4.3.2 O(a) improvement terms for tensor and pseudotensor currents

Having introduced the transformation properties of tensor and pseudotensor currents

under discrete symmetries, we can now work out the O(a) improvement terms. We start

by writing down all possible combinations of gamma matrices and a single covariant

derivative which have two antisymmetric free indices. Furthermore, because we are

interested in the RHQ action (3.33) which is anisotropic we write separately terms that

have only spatial indices and those that involve a temporal index. We arrive at the

following preliminary list of improvement terms

Oµν1,Rt
= ψ̄(x)g0µγ0−→Dνb(x)− (µ↔ ν) (4.47)

Oµν1,Rx
= ψ̄(x)giµγi

−→
Dνb(x)− (µ↔ ν) (4.48)

Oµν2,Rt
= ψ̄(x)σµνγ0−→D0b(x) (4.49)

Oµν2,Rx
= ψ̄(x)σµνγi

−→
D ib(x) (4.50)

Oµν3,Rt
= ψ̄(x)ε0iµνγ0−→D ib(x) (4.51)

Oµν3,Rx
= ψ̄(x)εi0µνγi

−→
D0b(x) (4.52)

Oµν4,Rt
= ψ̄(x)ε0iµνγ0γiγρ

−→
Dρb(x) (4.53)

Oµν4,Rx
= ψ̄(x)εi0µνγiγ0γρ

−→
Dρb(x) (4.54)

Oµν5,Rt
= ψ̄(x)g0µγ0γ5−→Dνb(x)− (µ↔ ν) (4.55)
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Oµν5,Rx
= ψ̄(x)giµγiγ5−→Dνb(x)− (µ↔ ν) (4.56)

Oµν6,Rt
= ψ̄(x)σµνγ0γ5−→D0b(x) (4.57)

Oµν6,Rx
= ψ̄(x)σµνγiγ5−→D ib(x) (4.58)

Oµν7,Rt
= ψ̄(x)ε0iµνγiγ5−→D0b(x) (4.59)

Oµν7,Rx
= ψ̄(x)εi0µνγ0γ5−→D ib(x) (4.60)

Oµν8,Rt
= ψ̄(x)ε0iµνγ0γiγργ5−→Dρb(x) (4.61)

Oµν8,Rx
= ψ̄(x)εi0µνγiγ0γργ5−→Dρb(x) (4.62)

Oµν9,Rt
= ψ̄(x)g0µ−→Dνb(x)− (µ↔ ν) (4.63)

Oµν9,Rx
= ψ̄(x)giµ

−→
Dνb(x)− (µ↔ ν) (4.64)

Oµν10,Rt
= ψ̄(x)σ0µ−→Dνb(x)− (µ↔ ν) (4.65)

Oµν10,Rx
= ψ̄(x)σiµ

−→
Dνb(x)− (µ↔ ν) (4.66)

Oµν11,Rt
= ψ̄(x)g0µσνλ

−→
Dλb(x)− (µ↔ ν) (4.67)

Oµν11,Rx
= ψ̄(x)giµσνλ

−→
Dλb(x)− (µ↔ ν) (4.68)

Oµν12,Rt
= ψ̄(x)g0µγ5−→Dνb(x)− (µ↔ ν) (4.69)

Oµν12,Rx
= ψ̄(x)giµγ5−→Dνb(x)− (µ↔ ν) (4.70)

Oµν13,Rt
= ψ̄(x)σ0µγ5−→Dνb(x)− (µ↔ ν) (4.71)

Oµν13,Rx
= ψ̄(x)σiµγ5−→Dνb(x)− (µ↔ ν) (4.72)

Oµν14,Rt
= ψ̄(x)g0µσνλγ5−→Dλb(x)− (µ↔ ν) (4.73)

Oµν14,Rx
= ψ̄(x)giµσνλγ5−→Dλb(x)− (µ↔ ν) (4.74)

This list can be reduced by noticing that some terms are identical up to a sign —e.g.

(4.61) and (4.62)—, others have uncontracted Latin indices and hence violate rotational

symmetry —e.g (4.72)— and others do not transform under discrete symmetries as

tensors nor as pseudotensors -e.g (4.73). The list can also be reduced by means of the

equations of motion, which for on-shell states read[
m

(b)
0 + γ0−→D0 + ζγ ·

−→
D +O(a)

]
b = 0 (4.75)

ψ̄
[
m

(q)
0 − γ

0←−D0 −
←−
D · γ +O(a2)

]
= 0 (4.76)

and hence

−→
D0b = −m(b)

0 γ0b− ζγ0γ ·
−→
Db+O(a) (4.77)

ψ̄
←−
D = m

(q)
0 ψ̄γ0 − ψ̄

←−
D · γγ0 +O(a2) (4.78)
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Equations (4.77) and (4.78) can then be used to show that terms involving temporal

derivatives are redundant, e.g

Oµν2,Rt
= ψ̄(x)σµνγ0−→D0b(x)

= ψ̄σµν
[
−m(b)

0 b(x)− ζγ ·Db(x)
]

= −m(b)
0 Jµν − ζOµν2,Rx

Ojk7,Rt = ψ̄(x)ε0ijkγiγ5−→D0b(x)

= ψ̄(x)ε0ijkγiγ5
[
−m(b)

0 γ0b(x)− ζγ0γ ·Db(x)
]

=
i

4
ψ̄(x)ε0ijkγiεµναβγ

µγνγαγβ
[
−m(b)

0 γ0b(x)− ζγ0γ ·
−→
Db(x)

]
=
i

4
ψ̄(x)γiδ0ijk

µναβγ
µγνγαγβ

[
−m(b)

0 γ0b(x)− ζγ0γ ·
−→
Db(x)

]
= ± i

4
ψ̄(x)γiγ0γiγjγk

[
−m(b)

0 γ0b(x)− ζγ0γ ·
−→
Db(x)

]
= ± i

4
ψ̄(x)σjk

[
−m(b)

0 b(x)− ζγ ·
−→
Db(x)

]
= ± i

4
ψ̄(x)

[
m

(b)
0

1

2
J jk + ζOjk2,Rx

]
b(x)

(4.79)

Finally, given that γαγβγρ = gαβγρ − gαργβ + gβργα − iεµαβργµγ5 we have that

Ojk8,Rt = ψ̄(x)ε0ijkγ0γiγmγ5−→Dmb(x)

= −iψ̄(x)ε0ijkεµ0imγµγ5γ5−→Dmb(x)

= −iδ0ijk
µ0imO

µm
1,Rx

(4.80)

and similarly Ojk4,Rt = −iδ0ijk
µ0imO

µm
5,Rx

. It can be concluded that the full list of O(a)

improvement terms classified in terms of operators which transform just like the unim-

proved tensor and pseudotensor currents is given by1:

1. Tensor

O0j
1,Rt

+O0j
1,Lt

= [ψ̄(x)γ0−→D jb(x) + ψ̄(x)
←−
D jγ0b(x)]− (0↔ j) (4.81)

Oij1,Rx +Oij1,Lx = [ψ̄(x)γi
−→
D jb(x) + ψ̄(x)

←−
D jγib(x)]− (i↔ j) (4.82)

Oij2,Rx −O
ij
2,Lx

= ψ̄(x)σijγ ·
−→
Db(x)− ψ̄(x)

←−
D · γσijb(x) (4.83)

Oi02,Rt −O
i0
2,Lt = ψ̄(x)σi0γ ·

−→
Db(x)− ψ̄(x)

←−
D · γσi0b(x) (4.84)

Oij7,Rx +Oij7,Lx = ψ̄(x)ε0lijγ0γ5−→D lb(x) + ψ̄(x)
←−
D lγ5γ0ε0lijb(x) (4.85)

2. Pseudotensor

Oij3,Rx +Oij3,Lx = ψ̄(x)εl0ijγ0−→D lb(x) + ψ̄(x)
←−
D lγ0εl0ijb(x) (4.86)

1where OL denotes operators in which the derivative acts on the left, that is it acts on the ligth

quark, e.g if O0j
1,Rt

= [ψ̄(x)γ0−→D jb(x)− (0↔ j)] then O0j
1,Lt

= [ψ̄(x)
←−
D jγ0b(x)− (0↔ j)]
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O0j
5,Rt

+O0j
5,Lt

= ψ̄(x)γ0γ5−→D jb(x) + ψ̄(x)
←−
D jγ5γ0b(x) (4.87)

Oij5,Rx +Oij5,Lx = [ψ̄(x)γiγ5−→D jb(x) + ψ̄(x)
←−
D jγ5γib(x)]− (i↔ j) (4.88)

Oi06,Rt −O
i0
6,Lt = ψ̄(x)σi0γ5γ ·

−→
Db(x)− ψ̄(x)

←−
D · γγ5σi0b(x) (4.89)

Oij6,Rx −O
i0
6,Lt = ψ̄(x)σijγ5γ ·

−→
Db(x)− ψ̄(x)

←−
D · γγ5σijb(x) (4.90)

These operators are in agreements with those obtained in [128].

4.4 Conclusion

In this chapter we have discussed the steps necessary to extract the form factors involved

in the decays of pseudoscalar mesons to pseudoscalar or vector meson final states, namely,

f‖, f⊥, fV , fA0 , fA1 , fA12 , fT1 , fT2 and fT23 from lattice simulations. We followed this

with a brief discussion on operator renormalization and improvement. We performed

an independent calculation of the O(a) improvement terms for tensor and pseudotensor

currents which provides a check on the results obtained in [128]. Once perturbative

calculations of the matching coefficients for the improvement operators of tensor and

pseudotensor currents become available a full calculation to O(αsa) will become possible.





Chapter 5

Data generation and processing

5.1 Introduction

In this chapter we discuss the setup used on our simulations and the statistical methods

used to study our results. In Section 5.2 we give an overview of the gauge field ensembles

we used as the starting point of our numerical simulations, this is followed in Section 5.3

by the technicalities involved in the generation of the quark propagators and the RHQ

action tuning. We then discuss in Section 5.4 the steps followed to obtain the best

possible signal from our two-point and three-point functions. Finally in Section 5.5 we

discuss the jackknife and super-jackknife methods which will be used to determine the

statistical errors from our results.

5.2 Gauge Fields

Our simulations are based on RBC-UKQCD’s set of 2+1 flavour gauge field configura-

tions [7, 10–12] generated with the Iwasaki gauge action [43]

SG[U ] = − 2

g2

(1− 8c1)
∑
n∈Λ

∑
µ<ν

Re Tr[Uµν(n)] + c1

∑
n∈Λ

∑
µ 6=ν

Re Tr[URµν(n)]

 (5.1)

where Uµν(n) is the plaquette Eq.(3.14) and URµν(n) is the path ordered product of link

variables around the 1× 2 rectangle in the µ, ν plane at the point n,

URµν(n) = Uµ(n)Uν(n+ 2µ̂)U−µ(n+ 2µ̂+ ν̂)U−ν(n+ ν̂). (5.2)

We use the Iwasaki gauge action since it produces smoother gauge fields which reduce

the residual chiral symmetry breaking for Domain Wall Fermions (DWF) at finite Ls —

c.f Section 3.7.4 —. We use the DWF action [13, 14, 44] for the light quarks and work

47
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a−1 Mπ # time

L3 × T Ls [GeV] amsea
l amsea

h amphys
s [MeV] # configs sources

243 × 64 16 1.785(5) 0.005 0.040 0.03224(18) 337(1) 1636 1
243 × 64 16 1.785(5) 0.010 0.040 0.03224(18) 356(1) 1419 1

323 × 64 16 2.383(9) 0.004 0.030 0.02477(18) 302(2) 628 2
323 × 64 16 2.383(9) 0.006 0.030 0.02477(18) 363(2) 889 2
323 × 64 16 2.383(9) 0.008 0.030 0.02477(18) 411(2) 544 2

Table 5.1: Overview of the gauge field ensembles. The ensembles were generated
by the RBC and UKQCD collaborations [7, 10–12] using 2+1 flavour domain-
wall fermions and Iwasaki gauge actions. The domain-wall height for light and
strange quarks is M5 = 1.8. The 243 and 323 ensembles are generated using
the Shamir domain-wall kernel [13, 14]. Values for the inverse lattice spacing
and the quark and meson masses are taken from the refined analysis [11] and
updated to include the finer a−1 = 2.77 GeV ensemble [12]. The light sea-quark

mass is labelled aml, the heavy sea-quark mass amh, and amphys
s is the mass of

the physical strange quark mass. The valence strange quark masses used in our
simulations on 243 and 323 ensembles are amsim

s = 0.03224 and amsim
s = 0.025,

respectively.

on five ensembles featuring unitary pion masses down to ∼300 MeV, at inverse lattice

spacings of 1.785(5) and 2.383(9) GeV. These lattice spacings were determined from a

global fit that included the ensembles of Table 5.1 and the physical point ensembles with

lattice sizes 483×96 and 643×128 [7, 10–12] by adjusting the masses of light and strange

quarks until the ratios Mπ/MΩ and MK/MΩ had their physical values and taking ratios

such as

a−1 = (MΩ)phys/(aMΩ)lat. (5.3)

On all our ensembles Mπ L is greater than 3.8 and the spatial box sizes are at least 2.6 fm,

meaning that finite volume corrections which are O(exp (−MπL)) [129] are therefore ≈
2%. Details of the configurations as well as the number of gauge field configurations and

sources per configuration are summarized in Tab. 5.1. In order to reduce autocorrelations

between ensembles, we perform a random 4-vector shift of the gauge field prior to starting

the generation of quark propagators.

5.3 Quark propagators

5.3.1 Light and strange quark propagators

We generate light and strange quark domain-wall propagators with periodic boundary

conditions in space and antiperiodic in time, using a point source —c.f Section 3.11.1—,

domain-wall height M5 = 1.8 and fifth dimension extent Ls = 16.
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L3 × T a−1[GeV] aml amh amsim
c M sim

Ds
[GeV]

243 × 64 1.785(5) 0.005 0.040 0.30, 0.35, 0.40 1.5654(8), 1.6981(9), 1.8244(10)
243 × 64 1.785(5) 0.010 0.040 0.30, 0.35, 0.40 1.5707(9), 1.7037(10), 1.8304(11)

323 × 64 2.383(9) 0.004 0.030 0.28, 0.34 1.8300(12), 2.0367(14)
323 × 64 2.383(9) 0.006 0.030 0.28, 0.34 1.8340(10), 2.0406(11) 3.059(11)
323 × 64 2.383(9) 0.008 0.030 0.28, 0.34 1.8351(13), 2.0420(15)

Table 5.2: Simulated charm-like bare input quark masses amsim
c and the corre-

sponding values of the Dsim
s meson masses in GeV for our 243 and 323 ensembles.

The physical Ds mass is MDs = 1.969(14) GeV [6].

5.3.2 Charm quark propagators

Given that the mass of the charm quark (mMS
c (µ = mc) = 1.28 ± 0.03 GeV [6]) is less

than our smallest cut-off (a−1 = 1.785(5) GeV), the simulation of charm quarks can

proceed either by means of the RHQ action or through a fully relativistic formulation

based on the DWF action. While the RHQ action is numerically cheaper, simulating

charm quarks using the DWF action has the advantage that we match the action used

for light and strange quarks, and there is no need to tune the three parameters of the

RHQ action for the charm quark. We therefore simulate charm quarks based on the

recent work featuring the optimized Möbius DWF action [12, 130–132] with domain-

wall height M5 = 1.6, extent of the fifth dimension Ls = 12 and Möbius parameters

b = 1.5 and c = 0.5. With this set-up and the use of bare quark masses below amq . 0.4

discretization errors have been shown to remain small for physical quantities such as

decay constants and meson masses [131]. Thus on our coarse ensembles (a−1 = 1.785(5)

GeV), we cannot directly simulate charm quarks but expect a linear extrapolation to

be benign [12, 132]. We simulate 2—3 charm-like quark masses and subsequently extra-

/interpolate to the physical charm quark mass. The bare charm quark masses used in

our simulations as well as the Ds masses relevant for the extra-/interpolation are listed

in Table 5.2.

5.3.3 Bottom quark propagators

We simulate the heavy b-quarks using the RHQ action [42, 133] discussed in Section 3.7.5

with Gaussian smeared sources [119] to reduce excited state contamination — c.f Sec-

tion 3.11.2 —, the smearing parameters for the a−1 = 1.785(5) GeV ensemble are

σ = 7.86 and N = 100, and for the a−1 = 2.383(9) GeV ensemble σ = 10.36 and

N = 170.



50 Chapter 5 Data generation and processing

5.3.3.1 RHQ action tuning

We performed the non-perturbative tuning of the three RHQ parameters m0a, cp and

ζ following the prescription of Ref. [134]. In this prescription the RHQ parameters are

determined by requiring that the Bs meson lattice dispersion relation

(aE(~p))2 =

(
M1

M2

)
(a~p)2 + (aM1)2 +O([a~p]4)

M1 = E(~p 2 = 0)

M2 = M1 ×
(
∂E2

∂p2
i

)−1

~p=0

(5.4)

is equivalent to the continuum one to O([a~p]4), that is, we require M1 = M2. We also

require that the calculation of the spin-averaged Bs meson mass

M̄Bs =
1

4

(
MBs + 3MB∗s

)
, (5.5)

and the hyperfine splitting

∆MBs = MB∗s −MBs (5.6)

obtained with the RHQ action correctly reproduce the experimentally measured results

∆MBs = 49.0(1.6) MeV and M̄Bs = 5.404(1) GeV [6]. The bottom strange system is

chosen since discretization and chiral perturbation errors are expected to be small. The

tuning is carried out in a region of parameter space close enough to the true parameters

such that the linear relation  MBs

∆MBs
M1
M2

 = J

m0a

cp

ζ

+A (5.7)

holds. In Eq. (5.7) J is a 3 × 3 matrix of coefficients and A is a 3-element constant

column vector. We determine seven sets of parameters {m0a, cp, ζ}, {m0a±σm0a, cp, ζ},
{m0a, cp±σcp , ζ} and {m0a, cp, ζ±σζ} where σX is a chosen uncertainty of the parameter

X, and check whether the region bounded by them is in the region for which Eq. (5.7)

holds. If this is the case then the matrix J and the vector A are computed

J =

[
Y3 − Y2

2σm0a
,
Y5 − Y4

2σcp
,
Y7 − Y6

2σζ

]
, (5.8)

A = Y1 − J × [m0a, cp, ζ]T , (5.9)

Yi =
[
M bs ,∆MBs ,M1/M2

]T
i

(5.10)
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a−1 [GeV] m0a cP ζ

1.785(5) 7.471(51)(75)(82)(45) 4.92(13)(28)(07)(24) 2.929(63)(100)(15)(03)
2.383(9) 3.485(25)(38)(45)(31) 3.06(07)(18)(05)(15) 1.760(30)(58)(07)(02)

Table 5.3: Tuned RHQ parameters on the 243 and 323 ensembles. Errors listed
for m0a, cP , and ζ are, from left to right: statistics, heavy-quark discretization
errors, the lattice scale uncertainty, and the uncertainty due to the experimental
measurement of the Bs meson hyperfine splitting, respectively.

0 5 10 15 20 25
time slice [lattice units]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

f A
1 tsink = 18

tsink = 20
tsink = 22
tsink = 24

Figure 5.1: Unimproved form factor fA1 for the Bs → φ`+`− decay at zero
momentum for four different source-sink separations on the coarse a−1 =
1.785(5) GeV ensemble with aml = 0.005.

where i denotes the ith parameter set. The RHQ parameters are then determined from

m0a

cp

ζ


RHQ

= J−1 ×


 MBs

∆MBs
M1
M2

−A
 (5.11)

The RHQ parameters are considered tuned when the values obtained from Eq. (5.11)

are within the box defined by the seven sets of parameters. If this is not the case the

box is re-centered at the result of Eq. (5.11) and another iteration is performed. The

results of the tuning are presented in Table 5.3.

5.4 Two point and three point functions

As discussed in Section 4.1 the extraction of matrix elements requires the calculation

of two-point and three-point functions. In this Section we discuss the steps that we

followed to obtain the best possible signal.

5.4.1 Source-sink separation

In order to optimise the signal obtained from 3-point correlators, we study four different

source-sink separations seeking the choice which results in the longest plateau and small
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statistical errors. We compare the results obtained for a given decay at zero momentum

using ∆t ≡ tsink − tsource = 18, 20, 22, 24, we present an example of the resulting plot

in figure 5.1. Within statistical uncertainties, all choices for tsink agree. We found that

for all 3-point correlators the best signal is obtained for tsink − tsource = 20 confirming

the choice made in reference [135] for semileptonic charged currents. Scaling with the

lattice spacing we obtain tsink − tsource = 26 as the optimal source sink separation for

the ensembles with a−1 = 2.383(9) GeV.

5.4.2 Smearing of Charm-strange 2-point functions

We investigated Gaussian smeared sources for the charm quarks with different widths

σ following a similar procedure to the one presented in [134]. We generate c-quark

propagators with a gauge invariant Gaussian source for the spatial wave function (3.70)

where we use the criterion N > 3σ2/2 for the number of iterations N so that the source

is spatially smooth and a good approximation to a Gaussian [134]. We study the ef-

fect that combinations of (σ,N) = {(1.39, 5),(1.97, 10), (2.78, 15), (3.93, 30), (7.86, 100),

(11.79, 215)} have on the effective mass of the Ds and D∗s mesons. We show the results

of our study on the coarse ensemble 243 with aml = 0.005 in Figure 5.2. As can be seen

in the plots, the green data corresponding to a width σ = 7.86 and N = 100 smearing

iterations result in the earliest onset of the plateau which also extends over many time

slices. This is the same outcome as found in the study of bottom quarks in reference

[134].

5.5 Statistical Analysis

The data presented in the following chapter was analyzed using single elimination jack-

knife re-sampling after first averaging correlators computed with different sources on

the same gauge field configuration. For functions of several observables computed on

different ensembles we use the super jackknife method introduced in [136] and discussed

in more detail in [137]. The jackknife and super jackknife methods can be used to study

both simple averages and quantities that are obtained from a fit [96, 138, 139], hence

we will use these two methods to determine the errors for fitted quantities in a simple

straightforward way.

5.5.1 Jackknife method

The single elimination jackknife method [140] estimates the bias of an estimator θ̂ for

the parameter θ of a data set of size N , by removing the nth entry of the original data set

(n = 1, · · · , N) and recalculating the estimator based on the rest of the data. Let θ̂ be
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Figure 5.2: Exploring different widths σ of the Gaussian source used to generate
charm quarks by comparing effective masses for the Ds-like meson on the top
and theD∗s -like meson on the bottom. Strange quarks are generated with a point
source and both propagators are contracted with a point sink. The data are
obtained on the coarse 243 ensemble with aml = 0.005 using amsim

s = 0.03224
and amsim

c = 0.400.

the estimator of the unknown parameter θ obtained using all available observations X =

{X1, X2, · · · , XN}, let θi be the given statistic but based on the subset of observations

{X1, · · · , Xi−1, Xi+1, · · · , XN} then the jackknife bias estimator is given by

bjack = (N − 1)

(
1

N

N∑
i=1

θi − θ̂

)
(5.12)

which leads to the bias reduced jackknife estimator of θ

θ̃jack = θ̂ − bjack = Nθ̂ − N − 1

N

N∑
i=1

θi =
1

N

N∑
i=1

(
Nθ̂ − (N − 1)θi

)
=

1

N

N∑
i=1

θ̃i (5.13)

which defines θ̃i. Tukey [141] conjectured that θ̃i, i = 1, · · · , N may be treated as though

they were independently and identically distributed and that their variance can be used

to estimate the variance of the original estimator. The jackknife variance estimator is
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then given by

σ2 ≡ N − 1

N

N∑
i=1

θi − 1

N

N∑
j=1

θj

2

(5.14)

The results presented in the following chapter are quoted using 〈θ〉 = θ̂ ± σ

5.5.2 Super Jackknife method

The Super Jackknife method [137, 142] starts with M distinct uncorrelated ensembles,

we denote by θ̂k the central value and by θkn with n = 1, · · · , Nk the jackknife samples

of the observable θ on the kth ensemble of size Nk. We now construct N =
∑M

k=1Nk

super jackknife samples of which the first N1 are given by the columns of the following

matrix: 

θ̂1 θ1
1 θ1

2 · · · θ1
N1−1 θ1

N1

θ̂2 θ̂2 θ̂2 · · · · · · θ̂2

θ̂3 θ̂3 θ̂3 · · · · · · θ̂3

...
...

...
...

. . .
...

θ̂M−1 θ̂M−1 θ̂M−1 · · · · · · θ̂M−1

θ̂M θ̂M θ̂M · · · · · · θ̂M


, (5.15)

the next N2 are the columns of

θ̂1 θ̂1 θ̂1 · · · · · · θ̂1

θ̂2 θ2
1 θ2

2 · · · θ2
N2−1 θ2

N2

θ̂3 θ̂3 θ̂3 · · · · · · θ̂3

...
...

...
...

. . .
...

θ̂M−1 θ̂M−1 θ̂M−1 · · · · · · θ̂M−1

θ̂M θ̂M θ̂M · · · · · · θ̂M


, (5.16)

and in general we will get the kth set of super jackknife samples from the columns of

θ̂1 θ̂1 θ̂1 · · · · · · θ̂1

θ̂2 θ̂2 θ̂2 · · · · · · θ̂2

...
...

...
...

. . .
...

θ̂k−1 θ̂k−1 θ̂k−1 · · · · · · θ̂k−1

θ̂k θk1 θk2 · · · θkNk−1 θkNk
θ̂k+1 θ̂k+1 θ̂k+1 · · · · · · θ̂k+1

...
...

...
...

. . .
...

θ̂M−1 θ̂M−1 θ̂M−1 · · · · · · θ̂M−1

θ̂M θ̂M θ̂M · · · · · · θ̂M



. (5.17)
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That is, if there are two ensembles A and B of size NA = 100 and NB = 20, respectively,

then the jth superjackknife block for j < 100 is built using the jth sample of ensemble

A and the central value of B, if j > 100 then the super jackknife block is constructed

using the central value of A and the jackknife sample j-100 of ensemble B. If the super

jackknife blocks, ã, are used for a fitting procedure then one minimizes the function

χ2
j =

NA∑
α=1

NA∑
β=1

(y({x}A)α − ãAα,j)(y({x}A)β − ãAβ,j)(CA)−1
αβ

+

NB∑
α=1

NB∑
β=1

(y({x}B)α − ãBα,j)(y({x}B)β − ãBβ,j)(CB)−1
αβ

(5.18)

where y({x}) is a model function with parameters {x} which might be ensemble depen-

dent, the index j denotes the number of the super jackknife block and the covariance

matrix is defined as

CAαβ =
1

NA − 1
〈(ãAα,j − 〈ãAα 〉)(ãAβ,j − 〈ãAβ 〉)〉. (5.19)

The super jackknife method takes the correlations within each ensemble correctly into

account, and implicitly sets correlations amongst different ensembles to zero. In the

limit case in which M = 1 it reduces to the regular jackknife method discussed in the

previous section.

5.6 Conclusion

In this chapter we have introduced the setup that we used for the generation of two-

and three-point functions necessary for the extraction of form factors using the ratio

method discussed in Section 4.1. We have also discussed the statistical methods that

will be central for our data analysis and the extraction of results on Chapter 6.





Chapter 6

Results

6.1 Introduction

In this chapter we present our final results. We begin in section 6.2 by determining

the effective masses of the Bs, Ds, K and φ mesons. We then divide the rest of this

chapter into two main sections which discuss our results for the Standard Model tree-

level decays Bs → K`ν and Bs → Ds`ν, section 6.3, and the rare decay Bs → φ`+`−,

section 6.4. These two sections have the same structure, we begin by determining the

flavour conserving renormalization factor ZbbV , we then use this result to renormalise

our improved vector and tensor currents. Then we discuss the process to perform the

chiral-continuum extrapolation of our results and finally we introduce the z-expansion

which we use to extrapolate our continuum results to q2 = 0.

6.2 Effective Mass fits

In section 4.1 we have shown that in order to extract the form factors f0, f+, fV , fA0 ,

fA1 , fA2 , fT1 , fT2 and fT3 we need to compute ratios of two point and three point

functions (4.1) and (4.2). Given that these ratios involve meson masses and energies,

we will start by computing these values for all the mesons involved in the decays we

are interested in, namely, Bs → K`ν, Bs → Ds`ν and Bs → φ`+`−. At sufficiently

large lattice times the effective mass (~p = 0) and energies (~p 6= 0) for meson X can be

extracted from its two-point function CXX (3.65) using the formula

E(t, ~p) = cosh−1

[
CXX(t, ~p) + CXX(t+ 2, ~p)

2CXX(t+ 1, ~p)

]
. (6.1)

57
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The result of applying (6.1) yields a value for the effective mass/energy for each time

slice, we then perform correlated, constant in time fits minimizing

χ2 = (E(∆t, ~p)α − Efit)C
−1
αβ (E(∆t, ~p)β − Efit). (6.2)

where E(∆t, ~p) means that we are summing terms E(t, ~p) in the range ∆t. The fitting

range ∆t is chosen so that there is no visible excited state contamination and where

we obtain acceptable χ2 per degree of freedom and p values, the exceptions are the Bs

and φ meson masses on the aml = 0.004 where p values of 6% and 1.06% were obtained

respectively. We keep these values since we impose the same fit ranges for all ensembles

with the same lattice spacing. Fitting ranges for the 323 ensembles are obtained by

scaling our choices on 243 using the ratio of the lattice spacings. In Figure 6.1 we show

results for effective mass fits on the a−1 = 1.785(5) GeV ensemble with aml = 0.005

together with the dependence of the effective mass on the starting time slice used for

the fit. Numerical results for all other ensembles are given in Tables 6.1—6.3. Where

available our results fully agree with previous published RBC/UKQCD results [135]. In

lattice simulations the quality of the signal is reduced as the momentum of the meson

is increased, it is convenient then to use either the continuum dispersion relation

E2 = m2 + |~p|2 (6.3)

or the lattice dispersion relation

E = 2a−1 sinh−1

√√√√sinh2
(am

2

)
+

3∑
i=1

sin2
(api

2

)
(6.4)

together with the effective mass obtained from (6.1) and (6.2) to extract effective ener-

gies. In figure 6.2 we show a comparison of the pion, kaon, φ and Ds meson energies

with continuum-limit expectations, we see deviations from continuum-limit expectations

for the Ds meson, but the lattice dispersion relation gives a good description of all the

meson energies studied. Residual cutoff effects will vanish once we extrapolate to the

continuum limit.

Kaon φ meson
aml [tmin, tmax] aMK χ2/dof p [tmin, tmax] aMφ χ2/dof p

0.005 [12, 23] 0.30576(45) 1.35 19% [12, 22] 0.5914(28) 1.27 24%
0.010 [12, 23] 0.32670(43) 0.80 63% [12, 22] 0.6079(29) 0.36 97%
0.004 [16, 29] 0.22419(45) 1.22 25% [16, 29] 0.4412(24) 2.11 1%
0.006 [16, 29] 0.23412(34) 0.58 89% [16, 29] 0.4508(22) 0.40 97%
0.008 [16, 29] 0.24089(42) 1.13 32% [16, 29] 0.4486(27) 0.84 62%

Table 6.1: Kaon and φ meson masses on all ensembles
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Figure 6.1: From top to bottom: (left) effective mass plots for the kaon, φ
meson , Ds meson (with unphysical amc = 0.350) and Bs meson on the a−1 =
1.785GeV ensemble with aml = 0.005, (right) dependence of the effective mass
on the starting time slice with a fixed final time, the shaded band indicates the
preferred fit, red diamonds indicate p-value.

6.3 Semileptonic decays Bs → Ds`ν and Bs → K`ν

6.3.1 Operator renormalization and improvement

As discussed in Section 4.3 operator renormalization requires the determination of the

perturbative coefficient ρ (4.26), and the flavour-conserving renormalization factors Z ll

(4.28) and Zbb (4.27). The flavour conserving renormalization factor Z ll is taken from

[11] and we determine Zbb from the matrix element of the b→ b vector current between

two Bs mesons following [143]. We reduce discretization errors in the heavy-light/charm

vector current by improving it through O(αsa). The temporal and spatial O(a) vector
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Figure 6.2: From top to bottom: Comparison of the kaon, φ and Ds amc = 0.280
meson energies with continuum-limit and lattice dispersion relation expectations
on the a−1 = 2.383(9) GeV ensemble with aml = 0.004. E indicates energy from
fit to (6.2) and E indicates energy using the dispersion relation. Blue points are
obtained using the continuum dispersion relation (6.3) and red points using the
lattice dispersion relation (6.4). The dashed lines show a power counting esti-
mate of the leading order O((a~p)2) momentum dependent discretization errors.

current operators needed are given by the following sums [135]

V imp
0 (x) = V 0

0 (x) + c3
tV

3
0 (x) + c4

tV
4

0 (x), (6.5)

V imp
i (x) = V 0

i (x) + c1
sV

1
i (x) + c2

sV
2
i (x) + c3

sV
3
i (x) + c4

sV
4
i (x). (6.6)

We obtain the values of the coefficients cnt and cns at one loop using mean-field improved

lattice perturbation theory [15] evaluated at the MS coupling αMS
s (a−1). Results for op-

erator renormalization factors and the improvement coefficients are shown in Tables 6.5,

6.4, respectively.
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Figure 6.3: Determination of Zbb from correlated constant in time fits to the
ratio (4.27).
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a−1[GeV] aml amc [tmin, tmax] aMDs χ2/dof p

1.785 0.005 0.30 [11, 19] 0.87681(44) 1.07 38%
0.35 [11, 19] 0.95105(50) 1.01 42%
0.40 [11, 19] 1.02188(54) 0.92 49%

1.785 0.010 0.30 [11, 19] 0.87957(51) 0.34 95%
0.35 [11, 19] 0.95407(55) 0.28 97%
0.40 [11, 19] 1.02505(60) 0.26 97%

2.383 0.004 0.28 [15, 25] 0.76789(51) 1.24 25%
0.34 [15, 25] 0.85462(57) 1.25 25%

2.383 0.006 0.28 [15, 25] 0.76941(41) 1.00 43%
0.34 [15, 25] 0.85611(46) 0.90 53%

2.383 0.008 0.28 [15, 25] 0.77010(57) 0.44 93%
0.34 [15, 25] 0.85689(64) 0.48 90%

Table 6.2: Ds meson masses on all ensembles

Bs
aml [tmin, tmax] aMBs χ2/dof p

0.005 [10, 29] 3.0062(12) 0.45 98%
0.010 [10, 29] 3.0072(14) 1.11 33%
0.004 [13, 29] 2.2515(11) 1.58 6%
0.006 [13, 29] 2.25274(95) 0.55 92%
0.008 [13, 29] 2.2541(13) 0.95 51%

Table 6.3: Bs meson masses on all ensembles

Table 6.4: Operator renormalization factors. The flavour conserving factor Z llV
was obtained non-perturbatively in [11]. We determine ZbbV from a weighted
average of the result of correlated fits to (4.27) on our ensembles —c.f Fig-
ure 6.3—. We compute the ρ factor at one loop in mean-field improved lattice
perturbation theory using αMS

s (a−1) [15].

a−1 [GeV] Z llV ZbbV αMS
s (a−1) ρV0 ρVi

1.785(5) 0.71273(26) 9.130(21) 0.23 1.02518 0.99653
2.383(9) 0.74404(181) 4.768(11) 0.22 1.01535 0.99358

Table 6.5: Improvement coefficients. We compute the matching coefficients cni
at one loop in mean-field improved lattice perturbation theory using αMS

s (a−1)
[15].

a−1 [GeV] αMS
s (a−1) c3

t c4
t c1

s c2
s c3

s c4
s

1.785(5) 0.23 0.0562 −0.010 −0.00088 0.0017 0.0489 −0.0031
2.383(9) 0.22 0.0545 −0.0094 −0.0013 0.00031 0.0479 −0.0019

6.3.2 The form factors f‖ and f⊥ at finite lattice spacing

Having extracted the effective masses and energies of the Kaon, Ds and Bs mesons,

we can now use (4.5) and (4.6) to obtain the form factors f‖ and f⊥, respectively. We
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Figure 6.4: From top to bottom Bs → Ds`ν form factors f‖ and f⊥, (left)
form factors as a function of time on the a−1 = 1.785(5) GeV ensemble with
aml = 0.005 and amc = 0.300. (right) dependence of the form factor on the
starting time slice with a fixed final time t = 13 at the smallest momentum
f‖ : n = 0, f⊥ : n = 1. The shaded band indicates the preferred fit with error,
red diamonds indicate p-value.

present the results of performing correlated, constant in time fits to (4.5) and (4.6) in

Figure 6.4, and Tables B.1—B.3. We choose our fitting range for a given form factor

on the a−1 = 1.785(5) GeV ensembles using the following procedure: for the smallest

allowed momentum we pick the right most time slice we consider unaffected by excited

state contamination and then we analyse how the p-value is affected by varying the

initial time slice included in the fit. Our goal is to choose the largest possible plateau

with a sensible p-value. Having determined the best fitting range for a given form factor

at the smallest momentum we apply this same range for all momenta removing the

bias that will rise if the fitting range for each momentum is found by visual inspection.

Within our fitting ranges contamination from excited states is not visible. Fitting ranges

for the 323 ensembles are obtained by scaling our choices on 243 using the ratio of the

lattice spacings. These procedure returns p values in the range [20%, 100%] on 80% of

the fitted quantities.

6.3.2.1 Charm mass extrapolation

As discussed in section 5.3.2 the results of our simulation of Bs → Ds`ν decays are two-

point and three-point functions obtained with unphysical charm like quark masses —c.f.

Table 5.2 for the details—, meaning that we must extra-/interpolate the form factors
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Table 6.6: Fits to the non-perturbative flavour-conserving factor ZbbV on all
ensembles

a−1[GeV] ml Zbbv χ2/dof p

1.785(5) 0.005 9.152(29) 1.72 10.9%
1.785(5) 0.010 9.135(32) 1.06 38.3%

2.383(9) 0.004 4.782(12) 1.55 13.1%
2.383(9) 0.006 4.751(11) 0.36 93.9%
2.383(9) 0.008 4.779(14) 1.17 30.9%

obtained in the previous section to the physical charm mass MDs = 1.969(14) GeV. We

begin by plotting the form factors as a function of the corresponding unphysical Ds mass

and units of momentum squared n2 = (~pL/(2π))2 —c.f Fig. 6.5— The points look close

to being on a plane; hence we try a first order expansion in the Ds mass and momentum

f(q2(MDs + δMDs , |~p|2 + δ|~p|2);MDs + δMDs) = f(q2(MDs + |~p|2),MDs)

+
∂f

∂q2

(
∂q2

∂MDs

δMDs +
∂q2

∂|~p|2
δ|~p|2

)
+

∂f

∂MDs

δMDs

(6.7)

where |~p| = 2πn/L, L is the lattice size and n are units of momentum. From the above

discussion our first fit ansatz is given by the function:

f(MDs , n
2) = c0 + c1MDs + c2n

2 Type I (6.8)

where we have absorbed a factor of (2π/L)2 in c2. We also perform the following fits to

study systematic effects due to our choice of expansion

f(MDs , n
2) = c0 + c1MDs + c2n

2 + c3MDsn
2 Type II (6.9)

f(MDs , n
2) = c0 + c1MDs + c2n

2 + c3(n2)2 Type III (6.10)

f(MDs , n
2) = c0 + c1MDs + c2n

2 + c3MDsn
2 + c4(n2)2 Type IV (6.11)

The results for fits of Type I, II, III and IV for improved form factors are shown in

Tables B.7 and B.8 , given that the smallest χ2/dof is obtained for type IV (6.11) fits

we extrapolate to physical charm using this fit and use types I, II and III to estimate

the systematics due to the charm extrapolation.

6.3.3 Bs → K`ν form factors chiral-continuum extrapolation

As discussed in section 2.5 chiral symmetry undergoes an explicit breaking due to the

nonzero mass of light and strange quarks giving rise to the pseudo-Goldstone bosons
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Figure 6.5: Form factors f‖ and f⊥ as a function of the mass of the Ds meson and
units of momentum squared n2, the top two plots are for the a−1 = 1.785(5) GeV
ensemble with aml = 0.005 and the bottom two plots are for the a−1 = 2.383(9)
GeV ensemble with aml = 0.006. The shaded surface indicates our chosen fit
function (6.11)
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π±, π0, K±, K0, K̄0 and η. The low-momentum strong interactions of these pseudo-

Goldstone bosons are described by the effective Lagrangian [52]

L =
f2
π

8
Tr
[
∂µΣ∂µΣ†

]
+ vTr

[
Σ†M+M†Σ

]
(6.12)

where v is an independent coefficient

M = diag(mu,md,ms), (6.13)

Σ is given in (2.42) and fπ is the pion decay constant. The inclusion of heavy-light mesons

in chiral perturbation theory requires the inclusion of heavy quark spin symmetry. This

is achieved by introducing the field [144–146]

Ha(v) =
1 + /v

2

[
B∗aµ (v)γµ −Ba(v)γ5

]
, (6.14)

where Ba and B∗aµ are pseudoscalar and vector heavy-light mesons, a indicates the

flavour of the light quark and the factor (1+/v)/2 projects out the particle component of

the heavy quark only. The heavy meson superfield (6.14) transforms as Ha → SHa and

Ha → HbU
†
ba under SU(2) spin transformations S and SU(3) flavour transformations

U . We can now write the HMχPT Lagrangian to lowest order in the chiral and 1/MB

expansion as [144–146]

L = −iTr
(
H̄avµ∂

µHa

)
+
i

2
Tr
(
H̄avµ[ξ†∂µξ + ξ∂µξ†]abHb

)
+
ig

2
Tr
(
H̄aγµγ5[ξ†∂µξ − ξ∂µξ†]abHb

) (6.15)

where the traces are on Dirac space, ξ =
√

Σ, v is the four velocity of the heavy meson,

H̄a(v) = γ0H
†
a(v)γ0, and g is the coupling of the heavy meson to the Goldstone boson.

The HMχPT Lagrangian (6.15) contains both heavy meson superfields and pseudo-

Goldstone bosons, coupled together in an SU(3)L × SU(3)R invariant way [147]. This

Lagrangian can then be used to determine the one loop chiral correction for Bs → K`ν

form factors which take the form

δf = −3

4
M2
π log

(
M2
π

Λ2

)
(6.16)

while this chiral logarithm is dominant in the limit of very small light quark masses it

is unlikely that for physical Kaons this is the case, it may however give an indication of

the magnitude of SU(3) violation [147]. The NLO SU(2) hard-kaon HMχPT expression

that we will use to extrapolate the renormalized lattice form factors to the physical light
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Table 6.7: Coefficients for the chiral-continuum extrapolation of the form factors
f‖ and f⊥ for the Bs → K`ν decay obtained from correlated fits to (6.17).

c0 c1 c2 c3 c4 χ2/dof p

M
−1/2
Bs

f‖ 0.929(62) 0.692(251) 0.587(224) -0.331(161) -0.007(3) 1.19 25%

M
1/2
Bs

f⊥ 0.941(140) 0.181(199) -0.358(318) 0.011(220) -0.0020(28) 0.72 77%

quark mass and interpolate in the Kaon energy is given by [148, 149]

fBs→Ki (Mπ, EK , a
2) =

1

EK + ∆i
c0

[
1 +

(
δf

(4πf)2
+ c1

M2
π

Λ2
+ c2

EK
Λ

+c3
E2
K

Λ2
+ c4

a2

Λ2a4
32

)] (6.17)

where i = {‖,⊥} and the effects of resonances below the BsK production threshold

are accounted for by the inclusion of the poles ∆‖ = MBs − MB∗(0
+) and ∆⊥ =

MBs −MB∗(1
−) where the B∗(JP ) resonance corresponds to a state with flavour bū

and quantum numbers JP = 0+ and 1− for f‖ and f⊥, respectively. ∆‖ = 263 MeV

from the model estimate in [150] and ∆⊥ = −41.6 MeV from experiment [151]. The pion

decay constant has the value fπ = 130.4 MeV [151], Λ = 1 GeV is the scale associated

with chiral symmetry breaking and the term proportional to a2 in 6.17 accounts for

the dominant lattice spacing dependence. Cut-off effects from Domain Wall Fermions

and the Iwasaki action are O(aΛQCD)2 using ΛQCD = 500 MeV we estimate this to be

∼ 5%. The results of the chiral-continuum extrapolation are shown in Figure 6.6 and

the fitting coefficients are given in Table 6.7. We also show in Figure 6.8 and discuss

in section 6.3.5.1 the effect that different fits have on the central value of the chiral

continuum extrapolation.
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Figure 6.6: Chiral-continuum extrapolation of the Bs → K`ν form factors —
f‖ (left) and f⊥ (right)— from correlated fits using NLO SU(2) hard-Kaon
HMχPT. The shaded band indicates statistical errors, the vertical dashed line
on the left-hand side of each plot indicates where EKs = MKs .
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Table 6.8: Coefficients for the continuum extrapolation of the form factors f‖
and f⊥ for the Bs → Ds`ν decay obtained from an uncorrelated fit to (6.18).

c0 c1 c2 c3 χ2/dof

M
−1/2
Bs

f‖ 0.516(81) 1.22(1.31) 1.48(34) -8(5) 0.354

M
1/2
Bs

f⊥ 0.694(91) 0.31(1.46) 1.77(27) -6(4) 0.539

6.3.4 Bs → Ds`ν form factors chiral continuum extrapolation

Having performed the extra-/interpolation to the physical charm individually on each

ensemble, we now proceed to obtain the form factor shape using pole dominance, our

ansatz is

fi(q, a) =
c0 + c1(ΛQCDa)2

1−
(
c2 + c3Λ2

QCDa
2
)
q2/M2

B
(∗)
c

(6.18)

where ΛQCD = 500 MeV, M∗Bc = 6.330(9) GeV [152] and MBc = 6.42(10) GeV [9].

Although the data obtained from the extra-/interpolation on a given ensemble is highly

correlated, the correlation matrices have large condition numbers preventing their use in

correlated fits. As a result we perform uncorrelated fits for the continuum extrapolation

of the form factors f‖ and f⊥. Moreover, to improve the quality of the fit we have

removed the ensemble with aml = 0.004 from the fits of Bs → Ds`ν form factors as this

ensemble has shown behaviour which is not in line with that of the other two ensembles

with a−1 = 2.384(9) GeV. The resulting plots are shown in Figure 6.7 and the fitting

coefficients are given in Table 6.8, we see a > 6% lattice spacing dependence at lowest

momentum. Variation to our fitting ansatz are explained in section 6.3.5.1 and their

effect on the central value of the fit are shown in Figure 6.9

6.3.5 Systematics

In this section we present the sources of systematic errors on the determination of the

form factors of the Bs → K`ν and Bs → Ds`ν decays.

6.3.5.1 Chiral-continuum extrapolation

The systematic uncertainty due to the chiral-continuum extrapolation of the Bs → K

form factors is obtained by applying the following changes to the chiral-continuum fit

ansatz (6.17)

1. omitting the term proportional to a2

2. omitting the term proportional to M2
π

3. omitting terms proportional to a2 and M2
π
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Figure 6.7: Continuum extrapolation using (6.18) and the main diagonal of the
covariance matrix for the form factors f‖ and f⊥ of the Bs → Ds`ν decay. The
shaded band indicates statistical errors, the vertical dashed line on the left-hand
side of each plot indicates where EDs = MDs .

4. analytic fits omitting the chiral logarithms

5. analytic fits omitting the chiral logarithms and the term proportional to a2

6. varying the value of fπ in the coefficients of the chiral logarithms from f0=

112 MeV [7] in the chiral limit to fK = 155.5 MeV [151]

7. varying the scalar pole mass MB∗(0
+) = 5.63 GeV in fBsK0 by plus/minus 100 MeV

8. omitting the data point at zero momentum

9. omitting the data point at the highest momentum ~p = 2π/L(2, 0, 0)

10. excluding ensembles with pion masses Mπ & 400 MeV.

For the Bs → Ds form factors we apply the following changes to (6.18)

1. replacing type IV charm extrapolation by types I, II and III (6.9)

2. omitting the data point at zero momentum

3. omitting the data point at the highest momentum ~p = 2π/L(2, 0, 0)

4. including a term proportional to M2
π in the numerator of (6.18)
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Figures 6.8 and 6.9 shows the relative changes of the form-factor central values under

each fit variation
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Figure 6.8: Relative change of the form-factor central value under the considered
fit variations for Bs → K`ν. In each plot, the shaded band shows the statistical
uncertainty of the preferred fit. The three vertical lines show the location of the
synthetic data points used in the subsequent extrapolation to q2 = 0.

∆fi = |fpref.
i − falt.

i |/f
pref.
i , (6.19)

where i = {0,+}. For Bs → K decays the largest difference between our preferred

fit and the alternative fits is obtained when the term proportional to M2
π is removed

to (6.17) it accounts for a ∼ 5% change for f0 and ∼ 3% for f+. Omitting the chiral

logarithms has an effect ∼ 2% and ∼ 3% for f0 and f+, respectively. Removing the a2

term from (6.17) changes the central value of the f0 and f+ fits by ∼ 3% and ∼ 2%. For

Bs → Ds`ν decays the largest difference between our preferred fit and alternative fits is

obtained when the term proportional to M2
π is added to (6.18) and when we use as input

for our fits Type III charm extrapolation (6.10). Given that there is no light valence

quark content variation in the decay Bs → Ds`ν it is not clear why adding a term

proportional to M2
π would result in the largest systematic for this decay. Whether the

observed change is due to a real effect such as a one-loop vertex correction, simulation

noise, or a combination of these two factors requires further study and is beyond the

scope of this work. We take the largest difference between our preferred fits (6.17) and
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Figure 6.9: Relative change of the form-factor central value under the considered
fit variations for Bs → Ds`ν. In each plot, the shaded band shows the statistical
uncertainty of the preferred fit. The three vertical lines show the location of the
synthetic data points used in the subsequent extrapolation to q2 = 0.

{m0a, cp, ζ} {7.420, 4.860, 2.920}
{m0a± σm0a, cp, ζ} {7.420± 0.180, 4.860, 2.920}
{m0a, cp ± σcp , ζ} {7.420, 4.860± 0.420, 2.920}
{m0a, cp, ζ ± σζ} {7.420, 4.860, 2.920± 0.210}

Table 6.9: Seven sets of parameters used to estimate the systematic errors due
to the implicit dependence of the RHQ parameters on the lattice spacing

(6.18) and any of the alternate fits as systematic uncertainty due to the chiral-continuum

extrapolation.

6.3.5.2 Lattice-scale uncertainty

The implicit dependence on the lattice spacing through the parameters of the RHQ

action m0a, cp, ζ is estimated by computing the form factors f‖ and f⊥ for the seven sets

of parameters shown in Table 6.9. We then perform uncorrelated two parameter fits to

obtain the slopes ∆f/∆m0a, ∆f/∆cp,∆f/∆ζ. These slopes are then multiplied by the

uncertainty in the corresponding RHQ parameter due to the lattice spacing in Table 5.3.

We add the individual contributions from the three RHQ parameters in quadrature to

obtain the total systematic error due to the lattice spacing. We obtain that the error
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Table 6.10: Systematic error results due to the valence strange-quark mass
dependence of the Bs → K`ν and Bs → Ds`ν form factors f‖ and f⊥ on the
a−1 = 1.785(5) GeV ensemble with aml = 0.005, m̃s = ms + mres. Results are
shown for final meson momenta ~p2 = (2π~n/L)2.

Bs → K`ν Bs → Ds`ν
n2 f‖ f⊥ f‖ f⊥
0 0.00% 0.01%
1 0.00% 0.05% 0.00% 0.00%
2 0.01% 0.04% 0.00% 0.00%
3 0.02% 0.04% 0.00% 0.00%
4 0.01% 0.03% 0.00% 0.01%

due to the lattice spacing for the Bs → K`ν form factors is 1% both for f‖ and f⊥, and

for the Bs → Ds`ν form factor is 0.8% and 1.6% for f‖ and f⊥, respectively.

6.3.5.3 u/d - quark mass uncertainty

We estimate the error in the Bs → K`ν form factors due to the u/d-quark mass uncer-

tainty by varying amu/d by plus/minus one sigma. We observe a central value shift for

f0 and f+ of 0.1%. For Bs → Ds`ν form factors we estimate that the error due to the

mass uncertainty of u/d-quark is negligible.

6.3.5.4 Valence strange-quark mass dependence

The strange quark masses employed in our simulations correspond to a mass at or near its

physical value. To study the valence strange-quark mass dependence, we calculated the

Bs → K`ν, Bs → Ds`ν form factors on the a−1 = 1.785(5) GeV, aml = 0.005 ensemble

with two additional spectator-quark masses of ams = 0.03 and 0.04. Figure 6.10 shows

the valence-quark mass dependence of the Bs → K`ν and Bs → Ds`ν form factors. We

observe that all errors are below percent level —c.f Table 6.10— and hence negligible.

6.3.5.5 Heavy-quark discretization errors

In the region m0a ∼ 1, the RHQ action leads to a nontrivial lattice-spacing depen-

dence of physical quantities. We estimate the discretization errors of the heavy sector

using HQET power counting. The O(a2) errors from the action are obtained from

the mismatch coefficients — i.e. coefficients needed so that lattice matrix element

match their continuum counterpart — of the dimension 6 bilinears b̄{γ ·D, α ·E}b and

b̄γ4(D ·E−E ·D)b [143, 153]:

fE(m0, cp, ζ) =
1

8m2
Ea

2
− 1

8m2
2a

2
, (6.20)
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Figure 6.10: Valence strange-quark mass dependence of the Bs → K (top two
panels) and Bs → Ds (bottom two panels) form factors f‖ and f⊥ on the
a−1 = 1.785(5) GeV ensemble with aml = 0.005. The slopes are normalized by
the form factors obtained with the strange-quark mass used in our production
simulations. The colored lines show the results of a linear fit to the three
data points at each momentum. The black vertical line with error band shows
the total (statistical plus systematic) uncertainty in the physical strange-quark
mass [7]. For clarity, data points at equal strange-quark masses are plotted with
a slight horizontal off-set.
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where

1

m2a
=

2ζ2

m0a(2 +m0a)
+

ζ

1 +m0a
, (6.21)

1

4m2
Ea

=
ζ2

[m0a(2 +m0a)]2
+

ζcP
m0a(2 +m0a)

. (6.22)

(6.23)

The tree-level coefficients for the O(a2) improved heavy-light electroweak operators

b̄ΓD2q, q̄ΓiΣ · Bb and q̄Γα · Eb, are given in [40], and are used in [143] to obtain

the mismatch functions

fX1(m0a, cp, ζ) = −1

2

[
d2

1 −
ζ

2(1 +m0a)

]
, (6.24)

fX2(m0a, cp, ζ) = −1

2

[
d2

1 −
cp

2(1 +m0a)

]
, (6.25)

fY (m0a, cp, ζ) = −1

2

[
(ζ − cp)(1 +m0a)

m0a(2 +m0a)
− d1

m2a

]
, (6.26)

d1 =
ζ(1 +m0a)

m0a(2 +m0a)
− 1

2m2a
. (6.27)

We estimate the O(α2
sa, a

2) error from the current using the function [143]

f3(m0a, cp, ζ) = α2
sζ

2

(2 +m0a)
(6.28)

and obtain the size of the relative error from fE , fX1 , fX2 , fY and f3 using

errorn ∼ fn(m0a, cP , ζ)(aΛQCD)k, (6.29)

where n = {E,X1, X2, Y, 3} and k = 2 for all functions except for f3 for which it takes

the value k = 1. We present in Table 6.11 the estimates of heavy-quark discretization

errors from the five different operators in the action and the current. We take the size

of the heavy-quark discretization errors to be the estimate on our finer a−1 = 2.383(9)

GeV lattices, which is 1.55% for f‖ and 1.81% for f⊥.

6.3.5.6 RHQ parameter uncertainties

As discussed in section 5.3.3 our b-quark propagators are obtained using the non-

perturbatively tuned RHQ action (3.33). The tuned parameters m0a, cp and ζ given

in Table 5.3 have four significant sources of uncertainty: lattice-scale, statistics, heavy-

quark discretization errors and experimental inputs. We present in Figures 6.11 and 6.12

the RHQ parameter dependence of the Bs → K`ν and Bs → Ds`ν form factors f‖ and

f⊥. We estimate the systematics due to the RHQ parameter uncertainties by multi-

plying the slopes shown in this plots ∆f/∆m0a, ∆f/∆cp, ∆f/∆ζ by the uncertainty
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Figure 6.11: RHQ parameter dependence of the Bs → K form factors f‖ (left)
and f⊥ (right) on the 243 ensembles with aml = 0.005 using the unimproved
heavy-light vector current in Eq. (4.4). The slopes are normalized using the form
factors obtained at the central set of RHQ parameters. From top to bottom,
the plots show the dependence on m0a, cP , and ζ. The colored lines show the
results of a linear fit to the three data points at each momentum. The black
vertical lines indicate the tuned values of the RHQ parameters. The shaded
vertical bands indicate the systematic errors in the RHQ parameters due to
the lattice-scale uncertainty. For clarity, data points at equal RHQ parameter
values are plotted with a slight horizontal off-set.
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Figure 6.12: RHQ parameter dependence of the Bs → Ds form factors f‖ (left)
and f⊥ (right) on the 243 ensembles with aml = 0.005 using the unimproved
heavy-light vector current in Eq. (4.4). The slopes are normalized using the form
factors obtained at the central set of RHQ parameters. From top to bottom,
the plots show the dependence on m0a, cP , and ζ. The colored lines show the
results of a linear fit to the three data points at each momentum. The black
vertical lines indicate the tuned values of the RHQ parameters. The shaded
vertical bands indicate the systematic errors in the RHQ parameters due to
the lattice-scale uncertainty. For clarity, data points at equal RHQ parameter
values are plotted with a slight horizontal off-set.
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Table 6.11: Percentage errors from mismatches in the action and current for the
bottom quark on the 243 and 323 ensembles. For this estimate, we calculate the
mismatch functions for the non-perturbatively-tuned parameters of the RHQ
action from Table 5.3. We estimate the size of operators using HQET power
counting with ΛQCD = 500 MeV and the coupling constant αM̄S

s (1/a) = 1/3 on
the 243 ensemble and 0.22 on the 323 ensembles. To obtain the total, we add
the individual errors in quadrature, including each contribution the number of
times that operator occurs. Contribution E is counted twice, and 3 is counted
twice for f‖ and four times for f⊥.

O(a2) error O(a2) errors O(α2
sa) error

from action from current from current Total (%)
E X1 X2 Y 3 f‖ f⊥

a−1 = 1.785(5) GeV 0.47 0.67 1.13 1.07 1.93 3.27 4.26
a−1 = 2.383(9) GeV 0.36 0.43 0.75 0.76 0.65 1.55 1.81

in the corresponding RHQ parameter due to heavy quark discretization errors and ex-

perimental inputs — c.f. Table 5.3—, and adding the individual contributions from the

three RHQ parameters and the two uncertainty sources in quadrature. We obtain that

the error due to the lattice spacing for the Bs → K`ν form factors is 1% both for f‖ and

f⊥, and for the Bs → Ds`ν form factor is 0.8% and 1.6% for f‖ and f⊥, respectively.

6.3.5.7 Light/charm-quark discretization errors

The action and the heavy-light/charm vector currents are the dominant sources of dis-

cretization errors from the light/charm quark and gluon sector. These discretization er-

rors are O((aΛQCD)2) from the action and O(αsam̃q, (am̃q)
2, α2

saΛQCD, (ap)
2) from the

heavy-light vector currents, where am̃q = amq + amres = {am̃ud = 0.00102(5), am̃c =

0.540(13)} [6, 7, 10] is the bare quark mass. We do not observe any evidence of sizeable

momentum dependent discretization errors in our data. As shown in Figure 6.2 the Kaon

and Ds meson energies are consistent with continuum expectations, and smaller than

power-counting estimates of O((ap)2). Hence we do not include momentum dependent

discretization errors in our systematics. We remove the dominant error coming from the

action by the inclusion of a term proportional to a2 in the chiral-continuum extrapola-

tion (6.17), and give estimates of the discretization errors from the heavy-light/charm

vector currents on the a−1 = 2.384 GeV ensembles on Table 6.12

6.3.5.8 Renormalization factor

We have presented in section 4.3 our renormalization procedure. We will now consider

the uncertainties from the three parameters entering (4.26) separately and then add

them in quadrature to obtain the total error. The statistical uncertainty of the flavour
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Table 6.12: Heavy-light/charm vector current discretization errors for the Bs →
K`ν and Bs → Ds`ν decays with ΛQCD = 500 MeV and αs = 0.22. As shown
in Figure 6.2 the Kaon and Ds meson energies are consistent with continuum
expectations, and smaller than power-counting estimates of O((ap)2). Hence
momentum dependent discretization errors in our systematics are taken to be
0%.

Bs → K`ν Bs → Ds`ν

O(αsam̃q) ∼ 0.7% ∼ 12%
O((am̃q)

2) > 0.1% ∼ 29%
O(α2

saΛQCD) ∼ 1% ∼ 1%
O((ap)2) 0% 0%

conserving factors Z ll (4.28) and Zbb (4.27) is in both cases 0.2% —c.f. Table (6.4)—.

We estimate the perturbative truncation error to be the full size of the 1-loop correction

in the a−1 = 2.384 GeV ensemble, this leads to an error for ρV 0 and ρVi to be 1.6% and

0.6%, respectively. Errors of O(αsam̃q) and O((am̃q)
2) due to quark mass dependent

errors in ρV µ have already been accounted for in the previous section, so we don’t count

them again. Our final estimate for the systematic uncertainty due to the renormalization

factor is 1.7% for f‖ and 0.7% for f⊥.

6.3.5.9 Electromagnetic and Isospin breaking

The leading quark-mass contribution to the isospin breaking from the valence quark

masses is of O((md − mu)/ΛQCD) ∼ 0.5%, which is obtained using the light quark

masses mu = 2.40(23) MeV and md = 4.80(23) MeV from [154] and ΛQCD = 500 MeV.

The electromagnetic contribution to the isospin breaking is expected to be O(αs) ∼
1/137 ∼ 0.7% which is the typical size of 1-loop QED corrections.

6.3.6 Error budget

We present in Tables 6.13 and 6.14 our complete error budget on the determination of

Bs → K`ν and Bs → Ds`ν form factors at three representative q2 values within the

range of simulated lattice momenta — c.f Section 6.3.7 —. We find that the largest

source of uncertainty for Bs → K`ν form factors comes from statistical errors, followed

closely by the systematic errors due to the chiral continuum extrapolation. We calculate

a total uncertainty of ∼ 5% for fBs→K+ and ∼ 6% for fBs→K0 . This values indicate a

reduction in the total uncertainty ∼ 1% compared with [135]. The largest source of

uncertainty for Bs → Ds`ν form factors comes from light quark and gluon discretization

errors and calculate a total uncertainty of ∼ 16% for both the fBs→Ds+ and fBs→Ds0 form

factors.
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fBs→K+ fBs→K0

EP [GeV] 0.85 0.50 0.27 0.85 0.50 0.27
q2 [GeV2] 17.6 20.8 23.4 17.6 20.8 23.4

f(q2) 0.99 1.64 2.77 0.99 1.64 2.77

Statistics 3.9 3.3 3.3 3.2 2.6 2.6
Chiral-continuum extrapolation 3.1 2.8 2.5 4.6 4.5 4.7
Light-quark mass mud 0.1 0.1 0.1 0.1 0.1 0.1
Strange-quark mass ms 0.1 0.1 0.1 0.0 0.0 0.0
Lattice-scale uncertainty 1.6 1.6 1.6 1.5 1.5 1.5
RHQ parameter tuning 1.0 1.0 1.0 1.0 1.0 1.0
Renormalization factor 1.0 0.9 0.9 1.6 1.6 1.7
Heavy-quark discretization errors 1.8 1.8 1.8 1.6 1.6 1.6
Light-quark & gluon discretization errors 1.2 1.2 1.2 1.2 1.2 1.2
Isospin breaking 0.7 0.7 0.7 0.7 0.7 0.7

Total (%) 5.2 4.6 4.7 6.5 6.1 6.3

Table 6.13: Error budget for the Bs → K`ν form factors at three representative
q2 values in the range of simulated lattice momenta. For convenience, we also
show the corresponding Kaon and Ds meson energy, EP . Errors are given in %.
The total error is obtained by adding the individual errors in quadrature.

6.3.7 Synthetic data points

The continuum physical quark-mass f+(q2) and f0(q2) form factors are obtained from

the chiral-continuum extrapolation of the form factors f‖ and f⊥, equations (6.17) and

(6.18), by performing the linear combinations

f+(q2) =
1√

2MBs

[f‖(EDs) + (MBs − EDs)f⊥(EDs)] (6.30)

f0(q2) =

√
2MBs

M2
Bs
−M2

Ds

[(MBs − EDs)f‖(EDs) + (E2
Ds −M

2
Ds)f⊥(EDs)] (6.31)

Now that we have taken into account lattice effects, we generate three synthetic data

points in the q2 region in which our lattice simulations were performed. These synthetic

data points are given in Table 6.13 and are used to extrapolate to q2 = 0 using the

z-expansion [155, 156].

6.3.8 z-expansion

To obtain results over the full kinematical range we use our synthetic data points together

with their correlations, and rely on the analyticity of the form factors as a function of

the momentum transfer q2 and the z-variable [155, 156]

z(q2, t0) =

√
1− q2/t+ −

√
1− t0/t+√

1− q2/t+ +
√

1− t0/t+
. (6.32)



80 Chapter 6 Results

fBs→Ds+ fBs→Ds0

EP [GeV] 2.2 2.1 2.0 2.2 2.1 2.0
q2 [GeV2] 8.8 9.9 10.9 8.8 9.9 10.9

f(q2) 1.01 1.10 1.21 0.80 0.85 0.90

Statistics 3.7 2.3 1.9 4.6 3.0 1.7
Chiral-continuum extrapolation 4.3 1.7 4.2 5.3 2.8 1.7
Light-quark mass mud 0.0 0.0 0.0 0.0 0.0 0.0
Strange-quark mass ms 0.0 0.0 0.0 0.0 0.0 0.0
Lattice-scale uncertainty 1.2 1.2 1.2 1.5 1.5 1.5
RHQ parameter tuning 1.2 1.2 1.2 0.9 0.8 0.8
Renormalization factor 1.2 1.2 1.2 1.6 1.7 1.7
Heavy-quark discretization errors 2.5 2.5 2.5 1.8 1.8 1.8
Light-quark & gluon discretization errors 13.9 13.9 13.9 13.9 13.9 13.9
Isospin breaking 0.7 0.7 0.7 0.7 0.7 0.7

Total (%) 15.0 14.9 14.9 15.6 15.7 15.9

Table 6.14: Error budget for the Bs → Ds`ν form factors at three representative
q2 values in the range of simulated lattice momenta. For convenience, we also
show the corresponding Kaon and Ds meson energy, EP . Errors are given in %.
The total error is obtained by adding the individual errors in quadrature.

where t+ ≡ MBs +MP with P = {K,Ds} and t0 is a free parameter which determines

the range of |z| in the semileptonic region. The z-variable maps the complex q2 plane

onto the unit disk |z(q2, t0)| < 1 such that z(t+, t0) = −1 and z(∞, t0) = 1 and allows

for the form factors to be expressed as a convergent power series whose coefficients are

constrained to be small by unitarity and heavy-quark symmetry [155–160]. This conver-

gent power series provides a better description of semileptonic form factors compared to

other functional forms [161, 162] and hence it has been adopted as the preferred method

to determine CKM matrix elements by experimentalists on Babar and Belle, the Heavy

Flavor Averaging Group, and the Particle Data Group [6, 163–167]. With this reasons

in mind we extrapolate our lattice results to q2 = 0 using the simplified series expansion

[160, 168]

f0(q2) =
1

1− q2/M2
B∗

(c)

K∑
k=0

b
(k)
0 z(q2, t0)k, (6.33)

f+(q2) =
1

1− q2/M2
B∗

(c)

K−1∑
k=0

b
(k)
+

[
z(q2, t0)k − (−1)k−K

k

K
z(q2, t0)K

]
. (6.34)

whereM∗B(0+) = 5.63(4) GeV [150], M∗B(1−) = 5.3252(4) GeV [151] andM∗Bc = 6.330(9)

GeV [152]. Equation (6.34) has one degree of freedom less that (6.33) because the

derivative of the form factor f+ at q2 = t+(z = −1) must satisfy

[
df+

dz

] ∣∣∣∣∣
z=−1

= 0 (6.35)
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so that the asymptotic behavior Im f+(q2) ∼ (q2 − t+)3/2 near the Bπ production

threshold is preserved [160] and no analogous constraint exists for (6.33). We choose

t0 = (MBs +MP )(
√
MBs −

√
MP ) where P = {K,Ds}, so that the full kinematic range

is centered around the origin z = 0 and the magnitude of |z| is minimized so that there

is rapid convergence of the expansion minimizing the errors which arise due to the trun-

cation of the z-expansion. We also implement the unitarity constraint of the coefficients

bi following [160]

K∑
j,k=0

Bjk(t0)b
(j)
i (t0)b

(k)
i (t0) . 1 , (6.36)

Bjk(t0) =
∞∑
n=0

ηn(t0)ηn+|j−k|(t0), (6.37)

where

bK = −(−1)K

K

K−1∑
k=0

(−1)kkbk (6.38)

and ηi are the Taylor coefficients in the expansion of

Ψ(z) =
M2
B∗

(c)

4(t+ − t0)
φi(q

2(z), t0)
(1− z)2(1− z∗)2

(1− zz∗)2
, z∗ = z(M2

Bs , t0), (6.39)

around z = 0. In equation (6.39) we use the outer functions [159, 160, 169]

φBs→Ki (q2, t0) =

√
3

2Kχ(JP )

(
√
t+ − q2 +

√
t+ − t0)

× (t+ − q2)(a+1)/4

(t+ − t0)1/4
(
√
t+ − q2 +

√
t+)−(b+3)

× (
√
t+ − q2 +

√
t+ − (MBs −MP ))(a/2) (6.40)

φBs→Ds+ = 1.1213(1 + z)2(1− z)1/2[(1 + r)(1− z) + 2
√
r(1 + z)]−5 (6.41)

φBs→Ds0 = 0.5299(1 + z)2(1− z)3/2[(1 + r)(1− z) + 2
√
r(1 + z)]−4 (6.42)

where for Bs → K we have [159, 160] f+: (K = 48π, χ0+ = 5.03×10−4, a = 3, b = 2) and

for f0: (K = 16π/(t+(MBs −MP )), χ1− = 1.46× 10−2, a = 1, b = 1), and r = MBs/MDs

in equations (6.41) and (6.42). The values of Bjk for the Bs → K`ν and Bs → Ds`ν

form factors are given in Table 6.15.

6.3.9 Extrapolation of lattice form factors to q2 = 0

We present the results of the fits to our synthetic data points for the Bs → K`ν and

Bs → Ds`ν form factors in Appendix B —c.f. Tables B.9 and B.10 —. These tables are

divided into four sections:
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Table 6.15: Matrix elements Bjk(t0) that enter the unitarity bound (6.36). The
remaining coefficients can be obtained from the relations Bj(j+k) = B0k and the
symmetry property Bjk = Bkj .

B00 B01 B02 B03 B04 B05

fBs→K+ 0.0115 0.0004 -0.0076 -0.0007 0.0018 0.0004

fBs→K0 0.0926 0.0137 -0.0484 -0.0174 -0.0003 0.0024

fBs→Ds+ 9.66× 10−5 −1.82× 10−5 −5.95× 10−5 2.50× 10−5 8.75× 10−6 −5.65× 10−6

fBs→Ds0 3.29× 10−4 −1.08× 10−4 −1.78× 10−4 1.48× 10−4 −5.87× 10−6 −3.24× 10−5

• The top two panels show the results of separate fits of f0 and f+ without any

constraints on the coefficients of the z-expansion.

• In the third panel we use the equality [170]

f0(q2) =
M2
Bs
− q2

M2
Bs

f+(q2) (6.43)

which holds at large recoil to impose the kinematic constraint f+(0) = f0(0).

• In the fourth panel we present the results of fits obtained by applying both the

kinematic constraint and the constraint on the sum of the coefficients of the vector

form factor [171]
N∑
k=0

(
b
(k)
+

)2
∼
(

Λ

mb

)3

. (6.44)

through Bayesian priors. Taking Λ = 1000(500) MeV we obtain for the central

value of the prior B̄ = 0.01 and Gaussian width σB = 0.03. We implement the

Bayesian fit by minimizing the augmented χ2
aug [172]

χ2
aug = χ2 +

(B̄ −
∑
Bjkbjbk)

2

σ2
B

(6.45)

6.3.10 Conclusion

In Appendix B — c.f Tables B.9 and B.10 — we see that the results obtained using

the kinematic constraint f+(0) = f0(0) on its own and those obtained by also including

the heavy quark constraint (6.44) are in agreement. The normalization coefficients b(0),

slopes b(1)/b(0) and curvatures b(2)/b(0) are well determined by the lattice data, with

central values that are stable within errors for the good quality fits —i.e. p values

larger than 10% for Bs → K (constrained fits), and for all fits with K ≥ 2 for Bs →
Ds (unconstrained fits) which satisfy the unitarity constraint (6.36)—. Given that we

performed correlated fits for the Bs → K form factors we may use the χ2/dof and

p-values to guide us on our choice of preferred fit for this decay. We therefore choose the

kinematic and heavy quark constrained fit with truncations K = 2/3 for the z expansion
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Figure 6.13: Preferred K = 3 fit of the Bs → K`ν (left) and Bs → Ds`ν (right)
lattice form factors to the z-expansion (6.33)—(6.34) including the kinematic
and heavy-quark constraints versus q2. The solid curves with error bands show
the fit results for f+(q2) and f0(q2). The vertical dashed line on the right-hand
side of each plot shows q2 = (MBs −MP )2 where P = {MK ,MDs}.

Figure 6.14: Chiral and continuum extrapolated form factors, f0(q2) and f+(q2)
as a function of the momentum transfer. Left Bs → K`ν taken from [8], right
Bs → Ds`ν taken from [9].

of the form factors f+/f0 of the Bs → K decay as our preferred fit. For uncorrelated

fits the χ2/dof and p-values are not objective measures of the quality of the fit, as such

we make our choice of preferred fit for the form factors f0 and f+ of Bs → Ds decays by

studying the effect that the number of term in the z expansion has on the error of the

slopes b(1)/b(0) and curvatures b(2)/b(0). We therefore choose the kinematic and heavy

quark constrained fit with truncations K = 3 for the z expansion of both form factors

f+/f0 of the Bs → Ds decay as our preferred fit. The results obtained for our preferred

fit are shown in Figure 6.13. In the q2 region where our simulation took place —i.e.

15 < q2 ≤ q2
maxBs→K`ν

and 8 < q2 ≤ q2
maxBs→Ds`ν

— our fit results for the form factors f0

and f+ are within statistical errors to the fits obtained by HPQCD —c.f Figure 6.14—.

Extrapolating our results to q2 = 0 we obtain the values fBs→K0/+ (0) = 0.179(26) and

fBs→Ds0/+ (0) = 0.43(14). These results are in tension with those reported by HPQCD

using non relativistic lattice QCD (NRQCD) [8, 9] and those obtained using Light Cone

Sum Rules (LCSR) [173, 174] — c.f Table 6.16—. Our results for the form factors for
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Form factor HPQCD LCSR RBC/UKQCD Our result
[8, 9] [173, 174] [135]

fBs→K+ (0) = fBs→K0 (0) 0.323(63) 0.30+0.04
−0.03 0.153(33) 0.179(26)

fBs→Ds+ (0) = fBs→Ds0 (0) 0.656(31) 0.86+0.17
−0.13 0.43(14)

Table 6.16: Values for Bs → K`ν, Bs → Ds`ν form factors in the physical limit
at q2 = 0.

the Bs → K`ν decay are within statistical errors with those obtained in our previous

work [135].
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6.4 Rare B decays: b→ s`+`−

In this section we present our results of Bs → φ`+`− form factors.

6.4.1 Operator renormalization and improvement

The perturbative coefficient ρ (4.26), and the flavour-conserving renormalization factors

Z ll (4.28) and Zbb (4.27) are given in tables 6.4. We improve the heavy-strange vector

and axial vector currents through O(αsa) and present the necessary matching coeffi-

cients in table 6.5. Temporal and spatial O(a) vector and axial-vector current operators

are obtained using equations 6.5 and (6.6), where we replace V i
µ (4.31)—(4.34) by Aiµ

(4.35)—(4.38) for axial vectors. For the tensor current we do not have one-loop results

for the perturbative coefficient ρ nor for the O(a) improvement coefficients, as such we

set the residual matching factors and O(a) coefficients to their mean field improved

tree-level values [175],

Tµν =
√
ZbbZ ll

s̄σµνb+ ad1

3∑
j=1

s̄σµνγj
−→
∇jb

 (6.46)

where at tree-level d1 = 0.07293 on the a−1 = 1.785 GeV ensemble and d1 = 0.069948

on the a−1 = 2.384 GeV ensemble.

6.4.2 The form factors fA12 and fT23

In section 4.2 we have seen that to extract the form factor fA2 from equation (4.18) it

is necessary to use as an input parameter the form factor fA1 . Similarly, the extraction

of the form factor fT3 from equation (4.24) requires the use of the form factor fT2 . This

means that although possible, the extraction of the form factors fA2 and fT3 is a two

step process which results in a signal of lower quality than the one obtained for all other

form factors. As a consequence we choose to extract the form factors fA12 and fT23 [16]

fA12(q2) =

√
q2|~k|

8MBsEφkm
ε∗0,µR

mγµγ5

Bs→φ (6.47)

=
(MBs +Mφ)2(M2

Bs
−M2

φ − q2)fA1(q2)− λfA2

16MBsM
2
φ(MBs +Mφ)

, (6.48)

fT23(q2) = i
|~k|(MBs +Mφ)

4Eφkm
√
q2MBs

ε∗0,µqνR
mσµνγ5

Bs→φ (6.49)

=
MBs +Mφ

8MBsM
2
φ

[
(M2

Bs + 3M2
φ − q2)fT2(q2)− λfT3(q2)

M2
Bs
−M2

φ

]
, (6.50)
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Form factor ∆m

fA0 0
fV , fT1 45

fA1 , fA12, fT2 , fT23 440

Table 6.17: Mass differences (in MeV), between the initial state Bs meson and
the pertinent resonance, used in the z-expansion (6.56) of the Bs → φ`+`− form
factors. Taken from [16].

where

ε∗0,µ =
1√
q2

(
|~k|, (Eφ −MBs)

~k

|~k|

)
. (6.51)

which together with fA0 and

V±(q2) =
1

2

[(
1 +

Mφ

MBs

)
fA1(q2)∓

√
λ

MBs(Mφ +MBs)
fV (q2)

]
(6.52)

T±(q2) =
1

2M2
Bs

[
(M2

Bs −M
2
φ)fT2(q2)∓

√
λfT1(q2)

]
(6.53)

form the helicity basis. In equations (6.52) and (6.53) λ = 4M2
Bs
|~k|2.

6.4.3 The form factors fV , fA0, fA1, fA12, fT1, fT2 and fT23 at finite lattice

spacing

Having extracted the effective masses and energies of the φ and Bs mesons in section 6.2,

we perform correlated, constant in time fits to (4.11) to (4.23), (6.48) and (6.50) to

extract the form factors fV , fA0 , fA1 , fA12 , fT1 , fT2 and fT23 . We now present the

results of such fits in figure 6.15—6.16 and Tables B.4—B.6. Within our fitting ranges

contamination from excited states is not visible and we use the same fitting ranges for all

momenta and ensembles at the same lattice spacing. Fitting ranges for the 323 ensembles

are obtained by scaling our choices on 243 using the ratio of the lattice spacings.

6.4.4 Bs → φ`+`− form factors chiral continuum extrapolation

We now proceed to obtain the form factor shape using pole dominance, our ansatz is

fi(q, a) =
c0 + c1(ΛQCDa)2

1−
(
c2 + c3Λ2

QCDa
2
)
q2/(MBs + ∆m)2

(6.54)

where i = {V,A0, A1, A12, T1, T2, T12}, ΛQCD = 500 MeV and ∆m is the mass difference

between the initial state and the pertinent resonance —c.f Table 6.17 —. The resulting
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Figure 6.15: From top to bottom Bs → φ`+`− form factors fV , fA0 ,fA1 , and
fA12 , (left) form factors as a function of time on the a−1 = 1.785(5) GeV en-
semble with aml = 0.005. (right) dependence of the form factor on the starting
time slice with a fixed final time t = 15 at the smallest momenta n = 0 for fA1 ,
n = 1 otherwise. The shaded band indicates the preferred fit with error, red
diamonds indicate p-value.
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c0 c1 c2 c3 χ2/dof p

fV 0.435(86) 0.2216(1.4465) 1.244(91) -0.6284(1.5393) 0.64 79 %
fA0 0.428(77) -0.4106(1.2166) 1.130(94) 0.7593(1.4779) 0.95 49 %
fA1 0.200(47) 0.96(80) 1.24(14) -3(2) 1.07 38 %
fA12 0.127(31) 0.24278(0.50744) 1.21(17) -1.31777(2.87626) 1.23 26 %
fT1 0.315(51) 0.0742(0.8565) 1.255(70) -0.2740(1.1764) 0.62 81 %
fT2 0.210(48) 1.08(82) 1.16(15) -4(2) 8.70 1 %
fT23 0.308(94) 1(1) 1.28(18) -2.8420(3.1817) 1.03 42 %

Table 6.18: Coefficients for the continuum extrapolation of the form factors of
the Bs → φ`+`− decay obtained from correlated fits to (6.54).

plots are shown in Figure 6.17 and the fitting coefficients are given in Table 6.18. Vari-

ation to our fitting ansatz are explained in section 6.4.5.1 and their effect on the central

value of the fit are shown in Figure 6.18

6.4.5 Systematics

A full error budget including all the sources of systematic errors for the form factors of

Bs → φ`+`− decays has not been finalized. We present in this section the sources of

systematic errors for which a preliminary calculation has been completed.

6.4.5.1 Chiral-continuum extrapolation

The systematic uncertainty due to the chiral-continuum extrapolation of the Bs → φ

form factors is obtained by applying the following changes to the chiral-continuum fit

ansatz (6.54)

1. omitting the data point at zero momentum

2. omitting the data point at the highest momentum ~p = 2π/L(2, 0, 0)

3. including a term proportional to M2
π in the numerator of (6.18)

Figure 6.18 shows the relative changes of the form-factor central values under each fit

variation

∆fi = |fpref.
i − falt.

i |/f
pref.
i , (6.55)

where i = {V,A0, A1, A12, T1, T2, T23}. We take the largest difference between our

preferred fit and any of the alternate fits as systematic uncertainty due to the chiral-

continuum extrapolation.



Chapter 6 Results 89

fBs→φV fBs→φA0

EP [GeV] 1.32 1.23 1.14 1.32 1.23 1.14
q2 [GeV2] 15.6 16.6 17.6 15.6 16.6 17.6

f(q2) 1.29 1.47 1.71 1.38 1.23 1.11

Statistics 7.2 5.8 6.2 6.4 5.2 5.1
Chiral-continuum extrapolation 1.3 1.8 6.3 2.5 1.1 3.7
Renormalization factor 2.0 2.0 2.0 2.0 2.0 2.0

Total (%) 7.6 6.4 9.1 7.2 5.7 6.6

Table 6.19: Error budget for the Bs → φ`+`− form factors fV and fA0 at
three representative q2 values in the range of simulated lattice momenta. For
convenience, we also show the corresponding φ meson energy, EP . Errors are
given in %. The total error is obtained by adding the individual errors in
quadrature.

fBs→φA1
fBs→φA12

EP [GeV] 1.23 1.14 1.05 1.32 1.23 1.14
q2 [GeV2] 16.6 17.6 18.6 15.6 16.6 17.6

f(q2) 0.52 0.58 0.65 0.29 0.32 0.35

Statistics 7.1 5.3 5.5 7.0 5.3 4.8
Chiral-continuum extrapolation 6.3 2.5 1.7 3.3 2.1 1.6
Renormalization factor 2.0 2.0 2.0 2.0 2.0 2.0

Total (%) 9.7 6.2 6.1 8.0 6.0 5.4

Table 6.20: Error budget for the Bs → φ`+`− form factors fA1 and fA12 at
three representative q2 values in the range of simulated lattice momenta. For
convenience, we also show the corresponding φ meson energy, EP . Errors are
given in %. The total error is obtained by adding the individual errors in
quadrature.

6.4.5.2 Renormalization factor

We have shown in sections 4.3 and 6.4.1 our renormalization procedure for vector and

tensor currents, respectively. Following the procedure described in section 6.3.5.8 we

estimate the systematic uncertainty arising from the renormalization factor of vector and

axial vector currents to be ∼ 1.6%. The leading systematic error in the determination

of the renormalization factor of tensor and pseudotensor currents is given by the use of

the tree-level value ρTµν = 1, this error has been estimated in [175] to be equal to two

times the maximum value of |ρVµ − 1| which using the values from Table 6.4 is ∼ 5%.

6.4.6 Error budget

We present in Tables 6.19 to 6.22 our preliminary error budget on the determination of

Bs → φ`+`− form factors at three representative q2 values within the range of simulated
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fBs→φT1
fBs→φT2

EP [GeV] 1.32 1.23 1.14 1.23 1.14 1.05
q2 [GeV2] 15.6 16.6 17.6 16.6 17.6 18.6

f(q2) 0.95 1.09 1.27 0.49 0.54 0.59

Statistics 6.4 5.2 5.2 6.9 5.4 5.4
Chiral-continuum extrapolation 2.7 0.9 9.9 6.0 4.0 10.0
Renormalization factor 5.0 5.0 5.0 5.0 5.0 5.0

Total (%) 8.6 7.3 12.2 8.4 12.4

Table 6.21: Error budget for the Bs → φ`+`− form factors fT1 and fT2 at
three representative q2 values in the range of simulated lattice momenta. For
convenience, we also show the corresponding φ meson energy, EP . Errors are
given in %. The total error is obtained by adding the individual errors in
quadrature.

fBs→φT23
EP [GeV] 1.32 1.23 1.14
q2 [GeV2] 15.6 16.6 17.6

f(q2) 0.77 0.84 0.94

Statistics 10.1 7.4 5.8
Chiral-continuum extrapolation 6.6 3.8 0.5
Renormalization factor 5.0 5.0 5.0

Total (%) 13.1 9.7 7.7

Table 6.22: Error budget for the Bs → φ`+`− form factors fT23 at three repre-
sentative q2 values in the range of simulated lattice momenta. For convenience,
we also show the corresponding φ meson energy, EP . Errors are given in %.
The total error is obtained by adding the individual errors in quadrature.

lattice momenta — c.f section 6.3.7 —. The total uncertainties range from ∼ 5% to

∼ 13% for all form factors.

6.4.7 Extrapolation of lattice form factors to q2 = 0

We extrapolate our form factors from the rare B decay Bs → φ`+`− to q2 = 0 following

the same procedure used for the tree level decays Bs → K`ν and Bs → Ds`ν, that

is, we remove lattice discretization effects by means of the chiral continuum extrapola-

tion (6.54) and choose three synthetic data points in the q2 region in which our lattice

simulations where performed. We then use these synthetic data points together with

their correlations to perform a z-expansion — c.f section 6.3.8 — using

fi(q
2) =

1

1− q2/(MBs + ∆m)2

K∑
k=0

b
(k)
0 z(q2, t0)k, (6.56)
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Form factor NRQCD [16] Our result

fV 1.74(10) 2.20(20)
fA0 1.85(10) 1.67(12)
fA1 0.62(3) 0.67(4)
fA12 0.41(2) 0.39(4)
fT1 1.36(8) 1.63(12)
fT2 0.62(3) 0.61(3)
fT23 1.10(6) 1.02(20)

Table 6.23: Values for Bs → φ`+`− form factors in the physical limit at q2
max.

First numerical column results from Table XXXI of [16], second column: our
results.

where i = {V,A0, A1, A12, T1, T2, T12} and ∆m is the mass difference between the initial

state and the pertinent resonance —c.f Table 6.17 — We present the results of the fit to

(6.56) of our synthetic data points for the Bs → φ`+`− form factors in figure 6.19 and

table B.11.

6.4.8 Conclusion

The absence of kinematic constraints on the Bs → φ`+`− form factors, such as fi(0) =

fj(0) for i 6= T1 and j 6= T2 gives a limited choice of truncations K that can be studied.

Given that we have three synthetic data points we must take K ≤ 3 so that we have

less than or equal points as fit parameters. We use as guidance our study of the z-

expansion of Bs → K`ν and Bs → Ds`ν form factors, and the result obtained for the

Bs → φ`+`− form factors fT1 and fT2 with the kinematic constraint fT1(0) = fT2(0)

to choose our preferred fit. We conclude that the most sensible fit we can obtain with

the available data is given by truncating the z expansion at K = 3. We use this

truncation to extract our final result for the Bs → φ`+`− form factors. Comparing

our results at q2
max = (MBs − Mφ)2 with those obtained in lattice simulations using

non relativistic QCD (NRQCD) —c.f Table 6.23— we see that within statistical errors

there is agreement for all form factors except fV and fT1 which agree within ∼ 1.3σ.

We compare in Table 6.24 our final results with those obtained in lattice simulations

that make use of NRQCD [16], we see that there is agreement within statistical errors

for the form factors fA1 , fT1 , fT2 and fT23 but there is a tension for fV , fA0 and fA12 .

Comparing our results with those obtained using Light Cone Sum Rules (LCSR) [17]

we see agreement in all form factors except fV .
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Form factor NRQCD [16] LCSR [17] Our result

fV 0.24(7) 0.434(35) 0.97(42)
fA0 0.38(6) 0.474(37) 0.56(10)
fA1 0.29(3) 0.311(29) 0.294(84)
fA12 0.25(3) N/A 0.154(18)
fT1 0.31(2) 0.349(33) 0.378(75)
fT2 0.31(2) 0.349(33) 0.378(75)
fT23 0.56(5) N/A 0.45(14)

Table 6.24: Values for Bs → φ`+`− form factors in the physical limit at q2 = 0.
First numerical column results from Table XXXI of [16], second column: results
from LCSR Table VII of [17], third column: our results. N/A entries indicate
that this form factors were not directly calculated, but instead the alternative
form factors fA2 and fT3 were extracted.
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Figure 6.16: From top to bottom Bs → φ`+`− form factors fT1 , fT2 and fT23 ,
(left) form factors as a function of time on the a−1 = 1.785(5) GeV ensemble
with aml = 0.005. (right) dependence of the form factor on the starting time
slice with a fixed final time t = 15 at the smallest momenta n = 0 for fT2 , n = 1
otherwise. The shaded band indicates the preferred fit with error, red diamonds
indicate p-value.
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Figure 6.17: Continuum extrapolation using (6.18) for the Bs → φ`+`− form
factors fV , fA0 ,fA1 , fA12 , fT1 , fT2 and fT23 . The shaded band indicates statisti-
cal errors, the vertical dashed line on the left-hand side of each plot shows the
physical φ meson mass.



Chapter 6 Results 95

15 16 17 18
q2 [GeV2 ]

0
2
4
6
8

10
12
14

Δf
B s

→
ϕ

V
[%

]

15 16 17 18
q2 [GeV2 ]

0
2
4
6
8

10
12
14

Δf
B s

→
ϕ

A 0
[%

]

15 16 17 18
q2 [GeV2 ]

0
2
4
6
8

10
12
14

Δf
B s

→
ϕ

A 1
[%

]

15 16 17 18
q2 [GeV2 ]

0
2
4
6
8

10
12
14

Δf
B s

→
ϕ

A 1
2

[%
]

15 16 17 18
q2 [GeV2 ]

0
2
4
6
8

10
12
14

Δf
B s

→
ϕ

T 1
[%

]

15 16 17 18
q2 [GeV2 ]

0
2
4
6
8

10
12
14

Δf
B s

→
ϕ

T 2
[%

]

15 16 17 18
q2 [GeV2 ]

0
2
4
6
8

10
12
14

Δf
B s

→
ϕ

T 2
3

[%
]

omitting c3 a2 Λ2 term
including a term proportional to M 2

π

omitting smallest momentum
omitting largest momentum

Figure 6.18: Relative change of the form-factors central value under the con-
sidered fit variations for Bs → φ`ν. In each plot, the shaded band shows the
statistical uncertainty of the preferred fit. The three vertical lines show the
location of the synthetic data points used in the subsequent extrapolation to
q2 = 0.
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Figure 6.19: Preferred K = 3 fit of the Bs → K`+`− form factors fV , fA0 ,fA1 ,
fA12 , fT1 , fT2 and fT23 to the z-expansion (6.56). We have hard coded the
kinematic constraint fT1(0) = fT2(0). The solid curves with error bands show
the fit results. The vertical dashed line on the right-hand side of each plot shows
q2 = (MBs −Mφ)2.
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Conclusions

In this work we have carried out the first calculation of Bs → Ds`ν form factors using

RHQ b quarks and heavy DWF c quarks. We also performed an update on the calcula-

tion of Bs → K`ν form factors of reference [135] with RHQ b quarks. We independently

determined the flavor conserving factor ZbbV and the perturbative coefficient ρ, which to-

gether with Z llV are necessary for the renormalization of vector and axial vector currents.

We have also calculated the one loop matching coefficients necessary to improve vector

and axial vector currents to O(αsa).

We determined the O(a) improvement terms for tensor and pseudotensor currents, which

together with a future determination of matching coefficients at one-loop can be used

to reduce discretization errors in the heavy-strange tensor and pseudotensor currents by

improving them through O(αsa). Working at tree-level, we performed the first calcula-

tion of Bs → φ`+`− form factors with RHQ b quarks and DWF s quarks. Rare B decays

are particularly challenging due to long-distance effects and the limited number of q2

values than can be simulated.

In the region of parameter space on which our simulations were performed our fit results

for the form factors f+ and f0 for the tree level decays Bs → K`ν and Bs → Ds`ν are

in agreement with those obtained by the HPQCD collaboration using NRQCD [8, 9].

However, there is significant tension between our extrapolated results at q2 = 0 and

those obtained from LCSR [173, 174].

Our results for the rare B decay Bs → φ`+`− are of particular importance as this

decay, being mediated by FCNC proceeds only through box and penguin diagrams.

This suppression results in a strong sensitivity to New Physics making it an ideal testing

ground in the search for new particles.

Our final results for the rare B decay Bs → φ`+`− form factors in the region q2
max =

(MBs −Mφ)2 are mostly in agreement within statistical errors with those obtained by

the Cambridge group using NRQCD [16, 176, 177], the two exceptions being the form

97
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factors fV and fT1 . Once our results were extrapolated to q2 = 0 all of our form factors

except fV were in agreement with those obtained using LCSR [17].

The calculations performed in this dissertation provide important, independent checks

to existing calculations by the Cambridge group [16, 176, 177], HPQCD [9, 178], and

the Fermilab/MILC [179, 180] collaborations which are all based on overlapping sets of

MILC’s staggered gauge field configurations, and which use NRQCD b quarks together

with highly improved staggered (HISQ) and/or AsqTad light and s quarks in the valence

sector.



Appendix A

Conventions

A.1 Notation

• Throughout this work in units in which c = ~ = 1

• Space time coordinates:

• Minkowski metric is gµν = diag(1,−1,−1,−1)

• Space time indices are denoted by Greek letters, latin indices indicate space com-

ponents only.

• Pauli matrices:

σ1 =

[
0 1

1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0

0 −1

]
(A.1)

• Gell-Mann matrices

λ1 =

0 1 0

1 0 0

0 0 0

 λ2 =

0 −i 0

i 0 0

0 0 0

 λ3 =

1 0 0

0 −1 0

0 0 0

 (A.2)

λ4 =

0 0 1

0 0 0

1 0 0

 λ5 =

0 0 −i
0 0 0

i 0 0

 λ6 =

0 0 0

0 0 1

0 1 0

 (A.3)

λ7 =

0 0 0

0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 (A.4)
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• Gamma matrices in Minkowski space:

γ0 =

[
σ0 0

0 −σ0

]
γj =

[
0 σj

−σj 0

]
γ5 = iγ0γ1γ2γ3 =

[
0 σ0

−σ0 0

]
(A.5)

• Gamma matrices in Euclidean space:

γ0 =

[
σ0 0

0 −σ0

]
γj =

[
0 −iσj
iσj 0

]
γ5 = iγ0γ1γ2γ3 =

[
0 σ0

σ0 0

]
(A.6)
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Numerical results

a−1[GeV] ml n2 [tmin, tmax] M
1/2
Bs

f⊥ χ2/dof p [tmin, tmax] M
−1/2
Bs

f‖ χ2/dof p

1.785 0.005 0 [6, 10] 0.6465(73) 1.01 40 %
1 [6, 10] 2.609(42) 2.16 7 % [6, 10] 0.5489(75) 0.60 66 %
2 [6, 10] 2.016(42) 2.54 4 % [6, 10] 0.4820(99) 0.44 77 %
3 [6, 10] 1.645(59) 1.51 19 % [6, 10] 0.432(15) 0.54 70 %
4 [6, 10] 1.433(83) 0.88 47 % [6, 10] 0.420(24) 0.65 62 %

1.785 0.010 0 [6, 10] 0.6542(76) 2.44 4 %
1 [6, 10] 2.555(38) 0.98 42 % [6, 10] 0.5553(80) 1.06 37 %
2 [6, 10] 1.978(41) 0.12 97 % [6, 10] 0.497(10) 0.20 94 %
3 [6, 10] 1.676(57) 0.38 82 % [6, 10] 0.468(16) 0.12 97 %
4 [6, 10] 1.502(80) 0.34 85 % [6, 10] 0.448(22) 0.15 96 %

2.383 0.004 0 [8, 13] 0.6485(79) 0.62 73 %
1 [8, 13] 2.582(43) 0.66 70 % [8, 13] 0.5569(94) 0.40 90 %
2 [8, 13] 2.046(52) 0.94 47 % [8, 13] 0.496(13) 0.70 67 %
3 [8, 13] 1.608(79) 1.69 10 % [8, 13] 0.443(20) 0.99 43 %
4 [8, 13] 1.34(14) 1.32 23 % [8, 13] 0.394(34) 1.40 20 %

2.383 0.006 0 [8, 13] 0.6408(54) 3.57 0 %
1 [8, 13] 2.514(32) 2.76 1 % [8, 13] 0.5462(61) 0.91 50 %
2 [8, 13] 2.084(39) 0.62 74 % [8, 13] 0.4858(92) 0.56 79 %
3 [8, 13] 1.738(56) 0.54 80 % [8, 13] 0.439(15) 0.24 97 %
4 [8, 13] 1.482(85) 0.69 68 % [8, 13] 0.398(25) 0.88 52 %

2.383 0.008 0 [8, 13] 0.6537(79) 2.05 4 %
1 [8, 13] 2.521(39) 2.34 2 % [8, 13] 0.5666(84) 0.72 65 %
2 [8, 13] 2.056(42) 0.49 84% [8, 13] 0.495(11) 0.83 55 %
3 [8, 13] 1.705(66) 1.01 42% [8, 13] 0.453(19) 1.35 22 %
4 [8, 13] 1.40(10) 0.26 97 % [8, 13] 0.412(34) 1.06 38 %

Table B.1: Form factors f‖ and f⊥ on all ensembles. Results are shown for K
meson momenta ~p2 = (2π~n/L)2
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ml mc n2 [tmin, tmax] M
1/2
Bs

f⊥ χ2/dof p [tmin, tmax] M
−1/2
Bs

f‖ χ2/dof p

0.005 0.300 0 [9, 13] 0.7637(51) 0.03 100 %
1 [7, 13] 1.313(13) 0.74 61 % [9, 13] 0.7380(57) 0.17 95 %
2 [7, 13] 1.234(14) 0.73 62 % [9, 13] 0.7144(74) 0.61 65 %
3 [7, 13] 1.162(17) 0.95 45 % [9, 13] 0.690(10) 1.12 34 %
4 [7, 13] 1.111(23) 0.29 94 % [9, 13] 0.666(14) 3.65 1 %

0.005 0.350 0 [9, 13] 0.7812(56) 0.03 100 %
1 [7, 13] 1.239(13) 0.80 57 % [9, 13] 0.7602(62) 0.22 92 %
2 [7, 13] 1.175(14) 0.80 57 % [9, 13] 0.7406(80) 0.85 49 %
3 [7, 13] 1.115(17) 1.05 39 % [9, 13] 0.720(11) 1.56 18 %
4 [7, 13] 1.074(22) 0.40 88 % [9, 13] 0.697(15) 4.40 0 %

0.005 0.400 0 [9, 13] 0.7946(61) 0.04 100 %
1 [7, 13] 1.172(14) 0.85 53 % [9, 13] 0.7781(69) 0.29 88 %
2 [7, 13] 1.120(15) 0.87 51 % [9, 13] 0.7625(88) 1.12 34 %
3 [7, 13] 1.070(18) 1.18 31 % [9, 13] 0.744(12) 2.07 8 %
4 [7, 13] 1.036(22) 0.52 79 % [9, 13] 0.723(16) 5.19 0 %

0.010 0.300 0 [9, 13] 0.7534(54) 0.36 83 %
1 [7, 13] 1.315(13) 1.73 11 % [9, 13] 0.7249(60) 0.34 84 %
2 [7, 13] 1.226(15) 1.59 14 % [9, 13] 0.7007(77) 0.34 85 %
3 [7, 13] 1.140(18) 1.27 27 % [9, 13] 0.680(11) 0.30 87 %
4 [7, 13] 1.102(23) 2.35 3 % [9, 13] 0.663(15) 0.35 84 %

0.010 0.350 0 [9, 13] 0.7692(59) 0.40 81 %
1 [7, 13] 1.238(14) 1.85 8 % [9, 13] 0.7451(66) 0.37 83 %
2 [7, 13] 1.165(15) 1.66 12 % [9, 13] 0.7250(84) 0.34 84 %
3 [7, 13] 1.093(18) 1.50 17 % [9, 13] 0.708(11) 0.34 85 %
4 [7, 13] 1.068(23) 2.55 2 % [9, 13] 0.695(16) 0.40 81 %

0.010 0.400 0 [9, 13] 0.7807(65) 0.44 78 %
1 [7, 13] 1.169(14) 1.87 8 % [9, 13] 0.7609(72) 0.40 80 %
2 [7, 13] 1.108(16) 1.67 12 % [9, 13] 0.7451(92) 0.37 83 %
3 [7, 13] 1.046(19) 1.69 12 % [9, 13] 0.732(12) 0.41 80 %
4 [7, 13] 1.032(23) 2.66 1 % [9, 13] 0.724(17) 0.49 74 %

Table B.2: Form factors f‖ and f⊥ on all ensembles with a−1 = 1.785 GeV.
Results are shown for Ds meson momenta ~p2 = (2π~n/L)2
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ml mc n2 [tmin, tmax] M
1/2
Bs

f⊥ χ2/dof p [tmin, tmax] M
−1/2
Bs

f‖ χ2/dof p

0.004 0.280 0 [12, 17] 0.8286(69) 0.47 80 %
1 [9, 17] 1.247(15) 1.70 9 % [12, 17] 0.8037(78) 0.45 81 %
2 [9, 17] 1.189(17) 1.75 8 % [12, 17] 0.776(10) 0.41 84 %
3 [9, 17] 1.134(20) 1.72 9 % [12, 17] 0.747(14) 0.45 81 %
4 [9, 17] 1.067(24) 2.21 2 % [12, 17] 0.707(19) 0.39 86 %

0.004 0.340 0 [12, 17] 0.8515(79) 0.52 76 %
1 [9, 17] 1.147(15) 1.86 6 % [12, 17] 0.8310(90) 0.43 82 %
2 [9, 17] 1.102(17) 1.98 4 % [12, 17] 0.807(11) 0.43 83 %
3 [9, 17] 1.059(20) 2.02 4 % [12, 17] 0.780(15) 0.57 72 %
4 [9, 17] 1.008(24) 2.47 1 % [12, 17] 0.742(21) 0.47 79 %

0.006 0.280 0 [12, 17] 0.8214(56) 0.74 59 %
1 [9, 17] 1.261(13) 1.66 10 % [12, 17] 0.7993(64) 0.48 79 %
2 [9, 17] 1.213(14) 2.05 4 % [12, 17] 0.7778(83) 0.38 86 %
3 [9, 17] 1.171(17) 2.04 4 % [12, 17] 0.754(11) 0.32 90 %
4 [9, 17] 1.088(21) 1.80 7 % [12, 17] 0.742(16) 0.47 80 %

0.006 0.340 0 [12, 17] 0.8429(64) 0.83 53 %
1 [9, 17] 1.161(13) 1.56 13 % [12, 17] 0.8259(73) 0.47 79 %
2 [9, 17] 1.128(15) 2.00 4 % [12, 17] 0.8087(94) 0.33 89 %
3 [9, 17] 1.097(17) 2.06 4 % [12, 17] 0.788(12) 0.26 93 %
4 [9, 17] 1.028(21) 1.91 5 % [12, 17] 0.781(18) 0.47 80 %

0.008 0.280 0 [12, 17] 0.8301(73) 0.50 78 %
1 [9, 17] 1.230(18) 1.45 17 % [12, 17] 0.8099(84) 0.42 83 %
2 [9, 17] 1.179(19) 1.40 19 % [12, 17] 0.790(10) 0.63 67 %
3 [9, 17] 1.127(22) 1.17 31 % [12, 17] 0.771(15) 0.84 52 %
4 [9, 17] 1.047(30) 1.67 10 % [12, 17] 0.746(21) 1.53 17 %

0.008 0.340 0 [12, 17] 0.8550(84) 0.65 66 %
1 [9, 17] 1.134(18) 1.57 13 % [12, 17] 0.8400(96) 0.56 73 %
2 [9, 17] 1.098(20) 1.52 14 % [12, 17] 0.824(12) 0.83 52 %
3 [9, 17] 1.059(22) 1.27 25 % [12, 17] 0.808(16) 1.11 35 %
4 [9, 17] 0.992(29) 1.68 10 % [12, 17] 0.785(22) 1.76 12 %

Table B.3: Form factors f‖ and f⊥ on all ensembles with a−1 = 2.383 GeV.
Results are shown for Ds meson momenta ~p2 = (2π~n/L)2

a−1[GeV] ml n2 [tmin, tmax] fV χ2/dof p [tmin, tmax] fA0 χ2/dof p

1.785 0.005 0
1 [8, 15] 1.568(45) 0.44 88% [8, 15] 1.417(40) 1.59 13%
2 [8, 15] 1.397(45) 0.21 98% [8, 15] 1.239(37) 1.53 15%
3 [8, 15] 1.244(56) 0.18 99% [8, 15] 1.069(42) 1.32 24%

1.785 0.010 0 %
1 [8, 15] 1.559(63) 1.55 15% [8, 15] 1.412(53) 0.37 92%
2 [8, 15] 1.346(60) 2.34 2 % [8, 15] 1.258(48) 0.50 83%
3 [8, 15] 1.222(68) 0.59 76% [8, 15] 1.133(53) 0.46 87%

2.383 0.004 0
1 [10, 20] 1.626(54) 1.49 14% [10, 20] 1.356(44) 1.49 13%
2 [10, 20] 1.393(48) 1.22 27% [10, 20] 1.207(40) 1.44 15%
3 [10, 20] 1.220(54) 0.51 88% [10, 20] 1.091(45) 1.01 44%

2.383 0.006 0
1 [10, 20] 1.636(59) 0.56 85% [10, 20] 1.480(53) 0.82 61%
2 [10, 20] 1.435(58) 0.77 66% [10, 20] 1.265(48) 0.93 51%
3 [10, 20] 1.300(72) 0.76 67% [10, 20] 1.106(54) 1.37 19%

2.383 0.008 0
1 [10, 20] 1.609(60) 0.62 80% [10, 20] 1.384(49) 1.55 12%
2 [10, 20] 1.451(59) 1.20 29% [10, 20] 1.225(47) 0.80 63%
3 [10, 20] 1.261(69) 0.76 67% [10, 20] 1.139(53) 0.48 90%

Table B.4: Form factors fV and fA0 on all ensembles. Results are shown for φ
meson momenta ~p2 = (2π~n/L)2
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a−1[GeV] ml n2 [tmin, tmax] fV χ2/dof p [tmin, tmax] fA12 χ2/dof p

1.785 0.005 0 [8, 15] 0.588(11) 0.78 60% [8, 15]
1 [8, 15] 0.551(12) 1.21 29% [8, 15] 0.3455(75) 1.13 34%
2 [8, 15] 0.511(15) 0.85 55% [8, 15] 0.3151(81) 0.96 46%
3 [8, 15] [8, 15] 0.284(10) 0.33 94%

1.785 0.010 0 [8, 15] 0.598(18) 0.81 58% [8, 15]
1 [8, 15] 0.566(17) 0.92 49% [8, 15] 0.3402(98) 0.59 77%
2 [8, 15] 0.545(20) 1.23 28% [8, 15] 0.328(10) 1.40 20%
3 [8, 15] [8, 15] 0.315(12) 2.09 4%

2.383 0.004 0 [10, 20] 0.598(14) 1.81 5% [10, 20]
1 [10, 20] 0.554(15) 1.42 16% [10, 20] 0.3364(88) 1.72 7%
2 [10, 20] 0.505(17) 1.70 7% [10, 20] 0.3082(88) 1.54 12%
3 [10, 20] [10, 20] 0.287(11) 1.19 29%

2.383 0.006 0 [10, 20] 0.596(16) 1.55 12% [10, 20]
1 [10, 20] 0.547(16) 1.01 43% [10, 20] 0.341(10) 1.52 13%
2 [10, 20] 0.506(20) 2.04 3% [10, 20] 0.320(10) 1.11 35%
3 [10, 20] [10, 20] 0.292(13) 1.19 29%

2.383 0.008 0 [10, 20] 0.634(16) 0.77 66% [10, 20]
1 [10, 20] 0.585(17) 1.13 34% [10, 20] 0.359(10) 0.41 94%
2 [10, 20] 0.554(20) 1.81 5% [10, 20] 0.331(11) 0.73 70%
3 [10, 20] [10, 20] 0.312(13) 0.45 92%

Table B.5: Form factors fA1 and fA12 on all ensembles. Results are shown for
φ meson momenta ~p2 = (2π~n/L)2
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q2 fBs→K+ fBs→K0

[GeV2] 1.07 0.77 0.53 1.07 0.77 0.53

1.07 1.6139e-03 2.0018e-03 2.9658e-03 5.2035e-04 5.1376e-04 6.0122e-04
f+ 0.77 2.0018e-03 3.0997e-03 3.9310e-03 6.2021e-04 7.4453e-04 8.9291e-04

0.53 2.9658e-03 3.9310e-03 8.5804e-03 9.0353e-04 1.0595e-03 1.3423e-03

1.07 5.2035e-04 6.2021e-04 9.0353e-04 2.5828e-04 2.2629e-04 2.6213e-04
f0 0.77 5.1376e-04 7.4453e-04 1.0595e-03 2.2629e-04 2.8290e-04 3.4583e-04

0.53 6.0122e-04 8.9291e-04 1.3423e-03 2.6213e-04 3.4583e-04 4.4509e-04

Table B.12: Variance-covariance matrix for the Bs → K`ν form factors at three
representative q2 values

q2 fBs→Ds+ fBs→Ds0

[GeV2] 2.2 2.1 2.0 2.2 2.1 2.0

2.2 1.3687e-03 8.7742e-04 1.2447e-04 1.2463e-03 8.4080e-04 2.6153e-04
f+ 2.1 8.7742e-04 6.4369e-04 2.8231e-04 7.6535e-04 5.6025e-04 2.6533e-04

2.0 1.2447e-04 2.8231e-04 5.1792e-04 4.6244e-05 1.3981e-04 2.6689e-04

2.2 1.2463e-03 7.6535e-04 4.6244e-05 1.3654e-03 9.0960e-04 2.3755e-04
f0 2.1 8.4080e-04 5.6025e-04 1.3981e-04 9.0960e-04 6.3880e-04 2.3756e-04

2.0 2.6153e-04 2.6533e-04 2.6689e-04 2.3751e-04 2.3756e-04 2.3487e-04

Table B.13: Variance-covariance matrix for the Bs → Ds`ν form factors at three
representative q2 values

q2 fBs→φV fBs→φA0

[GeV2] 15.6 16.6 17.6 15.6 16.6 17.6

15.6 1.7062e-06 1.4360e-06 8.9286e-07
fV 16.6 1.4360e-06 1.4436e-06 1.3833e-06

17.6 8.9286e-07 1.3833e-06 2.1661e-06

15.6 9.8533e-07 8.3852e-07 5.8806e-07
fA0 16.6 8.3852e-07 8.0977e-07 7.4194e-07

17.6 5.8806e-07 7.4194e-07 9.5731e-07

Table B.14: Variance-covariance matrix for the Bs → φ`+`− form factors fV and
fA0 at three representative q2 values. We present the block diagonal covariance
matrix for the form factors fV and fA0 as the correlation between these two
form factors does not enter in our fits.
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q2 fBs→φA1
fBs→φA12

[GeV2] 16.6 17.6 18.6 15.6 16.6 17.6

16.6 2.6149e-07 1.9648e-07 9.4682e-08
fA1 17.6 1.9648e-07 1.8275e-07 1.5719e-07

18.6 9.4682e-08 1.5719e-07 2.4511e-07

15.6 8.2016e-08 6.2420e-08 3.3725e-08
fA12 16.6 6.2420e-08 5.4681e-08 4.2821e-08

17.6 3.3725e-08 4.2821e-08 5.4881e-08

Table B.15: Variance-covariance matrix for the Bs → φ`` form factors fA1 and
fA12 at three representative q2 values. We present the block diagonal covariance
matrix for the form factors fA1 and fA12 as the correlation between these two
form factors does not enter in our fits.

q2 fBs→φT1
fBs→φT2

[GeV2] 15.6 16.6 17.6 16.6 17.6 18.6

15.6 7.4206e-07 6.4486e-07 4.3749e-07 2.3406e-07 2.0420e-07 1.5920e-07
fT1 16.6 6.4486e-07 6.4011e-07 5.9672e-07 2.3959e-07 2.2090e-07 1.9094e-07

17.6 4.3749e-07 5.9672e-07 8.4603e-07 2.3627e-07 2.3838e-07 2.3669e-07

16.6 2.3406e-07 2.3959e-07 2.3627e-07 2.2153e-07 1.7567e-07 1.0922e-07
fT2 17.6 2.0420e-07 2.2090e-07 2.3838e-07 1.7567e-07 1.6576e-07 1.4893e-07

18.6 1.5920e-07 1.9094e-07 2.3669e-07 1.0922e-07 1.4893e-07 2.0069e-07

Table B.16: Variance-covariance matrix for the Bs → φ`` form factors fT1 and
fT2 at three representative q2 values. We present the full covariance matrix as
we made use of it for the extrapolation of the form factors to q2 = 0 with the
contraint fT1(0) = fT2(0).

q2 fBs→φT23
[GeV2] 15.6 16.6 17.6

15.6 1.1589e-06 8.9954e-07 4.9062e-07
fT23 16.6 8.9954e-07 7.5988e-07 5.3286e-07

17.6 4.9062e-07 5.3286e-07 5.8275e-07

Table B.17: Variance-covariance matrix for the Bs → φ`+`− form factor fT23 at
three representative q2 values.
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