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The Standard Model of particle physics currently stands as our most complete theory
of fundamental particles and interactions. It is a well tested physics theory but ten-
sions have been found between theoretical predictions and experimental results. These
discrepancies can be either a sign of New Physics or the result of insufficient control
over theoretical and experimental uncertainties. In order to detect/rule-out new physics
effects in the flavour sector it is important to improve our understanding of flavour

changing processes which occur at tree and loop level in the Standard Model.

Semileptonic B decays provide promising channels to test the Standard Model and search
for signs of New Physics. While the B-factories and LHCb carry out measurements
of B-meson observables, theoretical determinations of form factors are necessary for
the extraction of Cabibbo-Kobayashi-Maskawa matrix elements, the determination of

differential branching fractions and angular distributions amongst other quantities.

In this work we present the calculation of B, — K/lv, By — Dylv and By, — G040~
form factors using the Columbia interpretation of the relativistic heavy quark action for
the b-quark and the domain wall fermion action for light, charm and strange quarks.
In conjunction with future experimental data, our form factor results for By — K/lv
and Bs; — Dsflv decays will provide a new method to extract the CKM matrix elements
|Vis| and |Vp], test the forward backward asymmetry and measure the ratios R(K) and
R(Dy). Similarly, Bs — ¢¢T¢~ form factors will allow for the reconstruction of many

observables that offer important tests of the Standard Model and New Physics scenarios.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is a relativistic quantum field theory which
describes all known interactions between fundamental particles. In the development of
the SM quark flavour physics has played a central role: the Glashow-Iliopoulos-Maiani
(GIM) mechanism [21] predicted the charm quark, CP violation in K Ure predicted the
third generation of quarks [22], and the Cabibbo-Kobayashi-Maskawa (CKM) matrix [22,
23] provides a single source for information on CP violation in the quark sector. Although
the SM is a well tested model whose latest success was given by the discovery of the

Higgs boson [24, 25] it has its shortcomings, for example:

e The observed Higgs mass can only be justified within the SM by the fine tuning

cancellation between quadratic radiative corrections and the bare Higgs mass.

e The amount of CP violation in the SM is to small to produce the observed matter-

antimatter asymmetry [26-29].

e It doesn’t explain the origin of dark matter.

New Physics (NP) extensions of the SM have been proposed to address this issues by

including heavier particles related to higher energy phenomena.

In the search for NP signals weak decays of hadrons containing a bottom quark provide
an ideal testing ground. Tree-level decays such as B; — K/fv and By — Dy lv can be
used to extract the CKM matrix elements |V, and |Ve|, respectively, and hence to
test the unitarity of the CKM matrix. Whilst processes mediated by flavour changing
neutral currents, such as the decay By, — ¢¢*¢~, which are highly suppressed in the
SM, provide an opportunity to discover and probe NP effects.

Any possible deviations between experimental measurements and theoretical predictions
can only be confirmed as signs of NP when both theoretical and experimental uncer-

tainties are under control. The quantity and quality of experimental measurements for

1
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exclusive b — u, b — ¢ and b — s decays has increased greatly over the years reducing
the sources of experimental uncertainty. Theoretical understanding of strong and weak
interactions of quarks has also significantly increased both through the development of

effective theories and by improvements on lattice simulations.

The running coupling of the strong force as a function of energy is such that the tools
needed to study hadronic decays are energy regime dependent. At short distances, or
equivalently high energies perturbation theory can be safely applied, whilst for large
distances the phenomenon of quark confinement calls for a non-perturbative approach,

namely Lattice Quantum Chromodynamics (LQCD).

In LQCD continuum space-time is replaced by a four dimensional finite Euclidean space-
time grid [30] and the path integral is computed numerically. The use of a finite size
lattice introduces finite-volume effects which are minimized by requiring that the mass of
the lightest propagating particle in the theory, namely the pion, is such that m,L > 1
where L is the side length of the lattice. Moreover, the discretization of space-time

introduces discretization errors which should vanish as the lattice spacing goes to zero.

Currently available lattice QCD gauge ensembles are generated with an inverse lattice
spacing around or below 3 GeV whilst the mass of the b quark is m;, = 4.18f8:8§ GeV [6]
meaning that mpa > 1 and hence proper control of discretization errors is not possible
using conventional lattice calculations. For this reason, simulations of b quarks are
performed using effective theories such as heavy quark effective theory (HQET) [31-36],
non-relativistic QCD (NRQCD) [37-39] or the relativistic heavy quark action (RHQ)
[40-42].

In this work we present our determination of the form factors which parametrize the
hadronic matrix elements for the tree-level decays By — Kfv and B; — D4 /v, and for
the rare decay By — ¢¢T¢~. Our simulations are based on RBC-UKQCD’s set of 2+1
flavour gauge field configurations [7, 10-12] generated with the Iwasaki gauge action [43]
and the domain-wall fermion action [13, 14, 44]. In the valence sector we generate light,
strange and charm propagators using the domain-wall fermion action and we simulate
the heavy b-quarks using the RHQ action [40-42].

This dissertation is organized as follows. In Chapter 2, we give an introduction to the
SM, starting from its Lagrangian formulation we then discuss the spontaneous symmetry
breaking of SU(2)w x U(1)y to U(1)rm, electroweak interactions of quarks, chiral
symmetry and effective Lagrangians, we then introduce the continuum phenomenology
which justifies and will be benefited by the results obtained from this dissertation. We
finalize this chapter by introducing the form factors which are the main quantities of
interest in this work. In Chapter 3 we give an introduction to the theoretical foundations
of LQCD including an overview of gauge and fermionic actions, Euclidean correlators
and discrete symmetries. In Chapter 4 we discuss the process to extract form factors

from lattice simulations from ratios of two-point and three-point functions. We then
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discuss operator renormalization and improvement, that is, the process by which lattice
results are identified with the continuum theory. We complete this chapter by our
independent calculation of the O(a) improvement terms for tensor and pseudotensor
currents. In Chapter 5 we discuss the setup of our calculations, the methods used to
improve the signal obtained from our simulations and the statistical tools that we used for
our data analysis. In Chapter 6 we present our results, we begin by determining effective
masses and extracting the form factors at finite lattice spacing, we then renormalise and
improve to O(a) our results and perform the chiral-continuum extrapolation so that all
lattice dependence is removed from our results, and finally we perform a z-expansion to

extrapolate our results to ¢> = 0. We present our conclusions in Chapter 7.
My personal contribution to the results presented in this dissertation is:
1. In section 4.3.2 I independently derived the O(a) improvement terms for tensor
and pseudotensor currents Eqs (4.81) to (4.90).

2. In section 5.4.2 I determined the optimal width for the Gaussian smeared sources

used for the smearing of charm-strange two point functions.

3. In section 5.4.1 I performed the tests necessary to determine the optimal source

sink separation that was to be used for the extraction of form factors.
4. I performed all mass fits of sections 6.2.
5. In section 6.3.1 I determined the non-perturbative coefficient Z%’/b of Table 6.4.

6. In section 6.3.1 I performed the perturbative determination of the renormaliza-
tion coefficient p of Table 6.4 and the matching coefficients for vector currents of
Table 6.5.

7. In section 6.3.2.1 I performed the charm mass extrapolation.

8. In sections 6.3.2 and 6.4.3 I analysed all the lattice data necessary to extract the

form factors for all the decays studied in this dissertation.

9. In sections 6.3.3, 6.3.4 and 6.4.4 I performed the heavy meson chiral continuum

extrapolation for all the decays studied in this dissertation.

10. In sections 6.3.6 and 6.4.6 I calculated all statistical and systematic errors presented

in our error budget.

11. In sections 6.3.8 and 6.4.7 I performed the z-expansion to extrapolate all results

from the region where the simulations were performed to ¢ = 0.






Chapter 2

The Standard Model

2.1 Introduction

The Standard Model (SM) of particle physics is a summary of our understanding of the
interactions between fundamental particles, that is, the building blocks of the universe
and three of the four fundamental forces of nature, namely the electromagnetic, weak
and strong interactions. The SM has been successfully tested against experimental
results and has predicted the existence of the top quark [45], the tau neutrino [46], and
the Higgs boson [24, 25]. The SM however does not include the gravitational force nor
does it explain the matter-antimatter asymmetry or the origin of dark matter amongst
other phenomena. The shortcomings of the SM have given rise to new models such as

supersymmetry [47] and string theory [48].

In this chapter we will introduce the Lagrangian formulation of the SM in section 2.2,
followed by a brief description of electroweak interactions of quarks — section 2.4 —,
approximate flavour symmetries — section 2.5 — and effective Hamiltonians for weak
decays — section 2.6 —. Finally, in sections 2.7 and 2.8 we will discuss the continuum

phenomenology and make a brief introduction to form factors.

2.2 Lagrangian Formulation

The Standard Model of particle physics is a gauge theory that describes electromagnetic,

weak and strong interactions in terms of the gauge group
SU(B)C X SU(2)W X U(l)y, (2.1)
with field content summarized in Table 2.1 and the Lagrangian

L= /-:gauge + Efermion + EYukawa + £Higgs (2'2)
5
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gauge = Z GC GC‘LW Z Wa Waerv — *B B‘uy (23)
h
Lttiggs = D"¢' Dy — *(Gﬁqﬁ)? +pPele (2.4)
Leermions = Z 'LinalDQ + Z iU, EUnz + Z ZDz lDDnz
+ Z iLno DL + Z zEnzﬁE (2.5)

Lyukawa = Z V.l H LY E,, — Z Y,D HI QW Dy

- Z Yn JH*Q'*U,y; + Hermitian Conjugates (2.6)

n,n’

where n,i and « are family, color and SU(2) indices, respectively, and the covariant

derivatives have the form
Dugba _ ‘uqsoc g'w aawaqsﬁ ’Lgl ﬂqs()é (27)

] Z S c \Cl a Z w a aa 7
D,Qi% (x) = Qi (x) + 2 ZG QI () + ZW QY (2)

+ B, (1)Qin (2), (28)
DpUni(x) = 8,Uni(x —@QSE:(rﬁ(UU Zng”@ﬂU@xxL (2.9)
D, Dyi(x) = 0y Dyi(x —193§:cr A9 D, ’ngu@ngxxy (2.10)
D, L%(z) = 0,L%(x %Q]W mﬁ)f%mww@, (2.11)
DyEn(z) = 0pEn(z) + ig1 By () En (), (2.12)

where g5, g, and g1 denote the SU(3), SU(2)w and U(1)y couplings, respectively. In
equation (2.6) we denote Yukawa couplings by Y,, ,» and define the field strength tensors

for color, weak isospin and weak hypercharge as

G;:%%—@%—%ﬂww; (2.13)
We, =0,W —9,Ws — gwe“bcwgwg, (2.14)
B, = 8,B, — 8,B,, (2.15)

where ¢2¢ and f2¢ denote the structure constants of SU(2)y and SU(3), respectively.
In the continuum the Standard Model Lagrangian (2.2) requires the addition of gauge

fixing terms.
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SU@3) | SU(2) | U(1)
G (gluon) 8 1 0
W (W, Z and photon) 1 3 0
B (Z and photon) 1 1 0
¢ (Higgs) 1 2 -1/2
Qr (left-handed quarks) 3 2 +1/6
U, (right-handed up-type quarks) 3 1 2/3
D,, (right handed down-type quarks) 3 1 -1/3
L,, (left handed leptons) 1 2 —1/2
E,, (right handed leptons) 1 1 -1

Table 2.1: SU(3)c x SU(2)w x U(1)y representations for the Standard Model
fields

2.3 Spontaneous symmetry breaking of SU(2)y x U(1)y

The potential of the Higgs Lagrangian (2.4) has an infinite set of degenerate states with

minimum energy satisfying
) i

0 0)| =14/ —=—. 2.16

016210} = \/ 5 = 5 (216)

Once a particular ground state is chosen the SU(2)w x U(1)y symmetry of the Higgs

Lagrangian is spontaneously broken to the electromagnetic subgroup U(1)gp;. This

process rotates the original W3 and B vector boson plane by an angle 6y, the weak

mixing angle, producing as a result the Z boson and the photon A

A
ZO

B

- (2.17)

cosby  sinfy
—sinfy cos Oy

Moreover, it follows from Goldstone’s theorem [49-51] that this symmetry breaking gives
rise to three massless states — Goldstone bosons —, one for each broken generator, these
Goldstone bosons can nonetheless be removed from the Lagrangian using SU(2)w local

gauge invariance. This can be readily seen by parametrizing the scalar doublet as

_ ¢(+)($) .05 4 1
¢<m>=[ (]—exp{z2e<x>}ﬁ

0
v+ H(m)] 7 (2.18)

and setting the parameter 6°(z) which denotes the three Goldstone bosons to zero, that
is, working in the unitary gauge. In equation (2.18) H(x) denotes the physical Higgs
and v = (V2GF)Y/? ~ 246 GeV is the Higgs vacuum expectation value. We can now use
equation (2.18) together with the covariant derivative (2.7) to write the kinetic piece of

the Higgs Lagrangian (2.4) as

1 g2 3 g2
D. &) D 0 HO*H H)2 ! 2wt By Jw oz ou 21
(Dpg) ¢ — 28u O'H + (v+ H) {4WMW +8COSQHW j (2.19)
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1
+ 1 172
Zy = cos Oy W — sin by B, (2.21)

where the quadratic term for the W* and the Z boson indicate that the gauge bosons
have acquired masses:
1
MZ COS HW = MW = §’Ug. (2.22)
The photon on the other hand remains massless because U(1)gy is an unbroken sym-

metry.

2.4 Electroweak interactions of quarks

Fermionic masses are also generated through the spontaneous symmetry breaking of

SU2)w x U(1)y to U(1)gpr. In the case of quarks their masses are given by

L=— Z an,QfDn/i — Z Mgn,QﬁagUn/i + hermitian conjugate

n,n’'=d,s,b n,n’'=u,c,t

where Q¥ and Q2 are left handed quarks of electric charge ¢ = 2/3 and ¢ = —1/3,

respectively, and
v
V2

MP, = Y yD, 9.24
77/771 \/i n,n ( )

their corresponding mass matrices. We can now use the unitary field redefinitions

MY =—=Y0, (2.23)

1 1
[QZ’"' - A" QS’”'] (2.25)
Qn,n’ n,n’
U — BYU (2.26)
D — BPD (2.27)
to write the diagonal mass matrices

m, O 0
MY 5 (ADYTMYBY =0 m. 0 (2.28)

0 0 me

mq 0 0
MP — (A" VY MPBP =10 m, 0], (2.29)

0 0 my



Chapter 2 The Standard Model 9

where
Vud Vus Vub
Vi=1Vea Ves Va (2.30)
Via Vis Vi

is known as the Cabibbo-Kobayashi-Maskawa matrix [22, 23]. In the Standard Model the
CKM matrix is a 3 x 3 unitary matrix, it contains 9 real parameters of which only four are
independent, this can be seen by introducing the six field phases o, i = {1, 2, 3,4, 5,6},
redefining the CKM matrix as

el 0 Lo | 0
V=10 € 0 |V] 0 e 0 (2.31)
0 0 eos 0 0 e ias

and noticing that an overall phase change, o; — @; + w, leaves V unchanged. From
these we can conclude that five out of the nine real parameters that constitute the CKM
matrix can be absorbed into quark field phases and the remaining four parameters
are independent. These parameters can be expressed in terms of three mixing angles
01,602,053 and the CP violating phase §. Having introduced the CKM matrix we will
now discuss charged and neutral currents. We begin by writing in terms of quark mass

eigenstate fields ¥ the kinetic and mass terms of the quark Lagrangian

ﬁquarks = Z Z @f,l (ZE - mf)\lllf (232)

f=u,cit,d,sb 1
= D D Vulh—my)¥;
f=u,ct,d,s,b 1
— e W W T - 20T (2.33)

V2

where [ indicates color indices, the currents are given by

7 = f,Z’Y 4 3511’1 w f

f=u,ct
- 1—7° 1. .
Z Uiyt <— 47 - —|—§ sin? 9W> ¥ (2.34)
f=b,s,d
+p T nl— Y i
f=u,c,t f'=d,s,b
- * 0T m 1— ,75 i

f:u7c7t f/:d7s’b
and the derivatives

2

3ieA#(x)\I/} for f = u,c,t, (2.37)

8

a i . c 1 c\iyyJ

D, :8#—1—295226’”(38)(5)\ )50 +
c=1 j
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8
L . 1 .. . 1 .
D Wy =0 +ige Y > G;(x)(ix);«y; = giedu(@)Wy  forf=dsb.  (238)
c=1 j

where Oy is the weak mixing angle, G and A are the gluon and photon fields, respectively,
¢ are the Gell-Mann matrices —c.f Appendix A — and e is the electric charge of the
particle in question. It can be seen from (2.34)-(2.36) that in contrast with charged
currents where the CKM matrix which couples up-type and down-type quarks is present,

there is no term mediating the mixing of quarks in the case of neutral currents.

2.5 Approximate flavour symmetries: chiral symmetry

The up, down and strange quark masses in the MS scheme at a renormalization scale
1 =2 GeV are m, = 2.270% MeV, mg = 4.7153 MeV and my = 9675 MeV [6]. These
masses are small compared with the scale Aqop ~ 0.3 GeV of non perturbative strong
interaction physics. It is then convenient to set my = mg = m, = ms; = 0 and do

perturbation theory about this limit [52]. In this chiral limit the light quark Lagrangian
S PR _ aLiiop L TR (A R
Leuarks = V(v D)Wy = W (iy" D)V, + W (iv" D) ¥, (2.39)

has an SU(3)r x SU(3) g symmetry under which right and left handed quarks transform

as

Ul LVl LeSU®), (2.40)
vl — RUF  ReSUB)R, (2.41)

and a baryon number U(1) symmetry under which right and left handed quarks trans-
form by a common phase. There is also an axial U(1) transformation which leaves
(2.39) invariant but which changes the measure in the path integral — c.f Eq. (3.11)—
and hence it is not a symmetry of QCD [53]. The eight generators of the chiral
SU(3)r x SU(3)g symmetry are spontaneously broken to SU(3)y by the vacuum ex-
pectation value of quark bilinears giving rise to eight Goldstone bosons, namely, 7+, 70,

K*, K° K° and 5 which can be described by the SU(3) matrix

S = exp (2}H> (2.42)

where f is a constant with dimensions of mass and

/2 +n/V6 wt Kt
= T ™/V2+n/vV6  K° |. (2.43)
K~ K° —2n//6
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Restoring the Lagrangian masses of the u, d and s quarks turns pions, kaons and the
eta meson into pseudo-Goldstone bosons. It’s possible to write an effective field theory
for these Goldstone bosons, which respects the same chiral symmetry as QCD: this
is chiral perturbation theory (ChiPT) expressed in terms of the field X, expressed as
an exponential of the pion matrix. X transforms in a simple way under SU(3) x
SU(3) g, which leads to nonlinear transformations of the Goldstone fields. The non-zero
(Lagrangian) masses of the quarks can be introduced in ChiPT. This gives an effective
theory which can be used to give expressions for chiral extrapolations and which suggests

forms to use for chiral-continuum extrapolations, — c.f Section 6.3.3 —.

2.6 Effective Hamiltonians for Weak Decays

For energy scales that are much lower than the W boson mass, the full theory of weak
decays can be replaced by an effective one in which the W and Z bosons, together with
the top quark are integrated out, that is, we remove the degrees of freedom which in
particular, don’t appear as initial or final physical states at the scale under consideration.

At lowest order the Hamiltonian that describes this effective theory can be written as
HHZ@ZVC(M)O (2.44)
€ \/i - n-n n

where G is Fermi’s constant, V™ are Cabibbo-Kobayashi-Maskawa factors, O,, are local
operators which govern the process in question, and C), () summarize the contributions
from scales higher than p. The Wilson coefficients C, (1) [54, 55] are independent of the

particular decay considered and have been calculated in perturbation theory [56-58].

2.7 Continuum Phenomenology

Decays of bottom quarks into up or charm quarks are mediated by a charged W bo-
son and occur at tree-level in the Standard Model (SM). By means of experimental
measurements of the branching fraction of By — Kfv and By — D /v decays and a
theoretical calculation of the form factors fy and fi (2.68) the CKM matrix elements
|Vius| and |Vip| can be extracted. The precise determination of |V,,;| and |Vg| are central
to testing the CKM sector of the Standard Model, test for unitarity of the CKM matrix
and complement the measurements of CP asymmetries in B decays [6]. Decays of bot-
tom quarks to down or strange quarks may occur in the SM only at loop level and the
corresponding flavour changing neutral currents (FCNC) are further suppressed due to
the Glashow-Iliopoulos-Maiani (GIM) mechanism [21]. As such, the decay Bs — ¢£+(~
in which a bottom quark decays into a strange quark provides an ideal testing ground in

the search for non-standard contributions to physical observables. Anomalies have been
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dB(B?—>guu)dg? [105GeV2c4]

Figure 2.1: Differential branching fraction of the decay BS — ¢ovTv, overlaid
with SM predictions [1, 2] indicated by blue boxes. The vetoes excluding the
charmonium resonances are indicated by grey areas. Taken from [3]

reported between SM predictions and experimental results, such as angular observables
[59, 60], branching fractions [3, 61, 62], and the ratio Rx [63], but are also observed in
charged tree-level b — ¢ transitions see e.g. [64—67]. The main difficulty to conclusively
establish that these anomalies are due to NP effects lies in our inability to exclude large
hadronic effects as their actual cause [68-73]. In this section we will discuss some of
the phenomenological applications that can be made of the form factors extracted from
semileptonic B decays which can be used in the search for NP contributions and to

exclude NP scenarios.

2.7.1 The |V,| and |V, CKM matrix elements

These matrix elements can be obtained from the differential decay rate [8]

2 2 2 2
B S P SR (L 2 ] (1 5 ) g R

dq? - UmSME 2¢2 22
3m?
+ St 003 MBI (2.45)

where P is the pseudoscalar meson to which the By meson decays, namely, a Kaon or
D, meson, Vg, indicates the corresponding CKM matrix element, the emitted lepton is
denoted by £, k is the three momentum of the final state meson, ¢ = p — k where p is
the momentum of the Bs; meson, and fi and fy are the vector and scalar form factors
—c.f. Section 2.8—.

2.7.2 Forward-backward asymmetry

If we neglect final state electromagnetic interactions the angular dependence of the

differential decay rate for B, decays to pseudoscalar final states P = {K, D;} is given
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by [8]

d*L(B, — Plv) _ G%|Vg|* m; 2 m;
= 1— — k| |4M3 |k 0 20
dPdcos b, 1287903, < e ) k| [ B. K| (sm z—i- L cos e) £

2
m
+7;(M%_s — M3) Mg, |k| cos 0p fo(q?) f+(q?)
my
(03, - M%)?f&(f)] (2.46)

where my is the lepton mass and 6, is the angle between the charged-lepton and the B,
meson momenta in the ¢ rest frame, that is, in the frame where the sum of the three
momenta of the lepton and the neutrino is zero. From this angular dependency we can

extract the forward-backward asymmetry

d’T'(Bs; — Plv)

BﬁPEu

; dcosf 2.4
Ar [/ / } T g2 d cos b (2.47)

which in the Standard Model (SM) is given by [74]

G2 Vs |2 m?2 m?2
Bs— Pty FlYagb 13 2 e ¢ 2
rB 1— k M% — M3 .
Deviation from SM predictions of the value of App are a clear sign of NP contribu-
tions [75-77] and could be used to constrain NP models [78-81].

2.7.3 The ratios R(K) and R(D;)

As discussed in the introduction to this section it is necessary to rule out hadronic effects
as the cause of the apparent discrepancies between theoretical predictions and exper-
imental measurements. This makes observables which are practically free of hadronic
uncertainties of particular interest. One such observable is the lepton flavour universality

ratio, that is, the ratio of branching ratios involving different flavours such as [74, 82—-84]

dl' (B Prv)/dg?
Ry ()= drg B ): Puvi? dZQ (2.48)
7-\)//,]Lg/e(q )= dF(B( - PHM)/dQQ (2.49)

dT'(B(s) — Pee)/dq?

where (2.48) and (2.49) are the ratios for tree level and rare decays, respectively, and
P is a Kaon or Ds; meson. These ratios provide precise tests of the Standard Model
predictions which are independent of the CKM matrix elements involved. Moreover,
tree-level decays to 7 leptons may be particularly sensitive to additional amplitudes,

such as those involving an intermediate charged Higgs boson [85, 86]. The currently
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experimentally measured ratios are [63, 87, 88|

RIS = 07457009 1 036 (2.50)
R0 — 0 66070110 4 0.024 (2.51)
RO — 068579013 +0.047 (2.52)
RE58 = 0,375 £ 0.064 + 0.026 (2.53)
RiB58 — 0,293 4 0.038 £ 0.015 (2.54)

where the values inside the square brackets indicate the integrated ¢? region where the

measurement was done, and the errors are due to statistics and systematics, respectively.

2.7.4 Differential decay rates and angular observables for B, — ¢/T(~

1—r— T T T T T T T T
! ! L I

< T TRGE :

SM Predictions

0.6 -1
0.4+ —+—Dala -
0.2~

04 —
06 _+_ —
0.8 —— —}—

"o 5 10 15

20
q? [GeV¥cY]

Figure 2.2: Measured values of PE/) (black points) compared with SM predictions
from [4] (blue bands). Taken from [5]

The general form of the decay distribution of Bs — ¢¢*¢~ is given by [58]

d‘T 9 : :
I dcos 6rdcos 0,0 = 35~ I} sin? g + I7 cos® O + (I3 sin® 0, + IS cos® 0) cos(26;)

+ I3 sin? 0, sin” 0 cos(26) + Iy sin(26,) sin(26;) cos ¢

+ I5sin(20,) sin 6 cos ¢ + (1§ sin® O + I cos® ) cos(6;)
+ I7sin(26,) sin 6, sin ¢ + Ig sin(26,) sin(26,) sin ¢

+ Iy sin? 05 sin? 0 sin(26)

(2.55)
where the angular coefficients I; are functions of the seven form factors for vector final
states (2.71) to (2.74) which have been analytically determined in Section 3.3 of reference
[58], and the angles ¢, 84 and 6y are defined in Appendix A of reference [58]. Integrating
(2.55) over the angles we obtain the differential decay rate

ar- 3

1
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The angular coeflicients I; are also used to obtain the twelve CP averaged angular

a @) . =a dIT +T
Sl = (If )4 T )) /( d; ) (2.57)

coefficients

and the twelve CP asymmetries

A = (1 - 1) / d(rd;;r) (2.58)
which can be used to express previously studied observables such as the forward-backward
asymmetry, Arp, with reduced experimental and theoretical uncertainties —due to the
normalization factor d(I' + I')/dg®>—. Moreover, the CP averaged angular coefficients
(2.57) offer cleaner observables in which CP violating effects are washed out, whilst
the CP asymmetries (2.58) offer a window into non-standard CP violation [58]. In fig-
ure 2.1 we present the LHCb result [3] for the differential branching fraction of the decay
BY — ¢vty~ where a ~ 20 discrepancy can be seen between experiment and theory.
Similarly in figure 2.2 we present the LHCD result [5] of the measurement of the angular
observable
/ (S5)

(Ps) = m (2.59)

for the decay B® — K*u* i~ where a similar discrepancy has been observed. It has been
suggested [89] that these discrepancies can be explained by a negative NP contribution
to the Wilson coefficient Cy which can arise in models with flavour-changing neutral

gauge bosons [89-91].

2.8 Form factors

The matrix elements for decays of Bs mesons to pseudoscalar, P € {K, Ds}, or vector

¢ mesons are:

(PR IBp) = =V PR ,b1 B 3.0) (2.60)
(Ol ). 0)) = TV {50k )71 = )bl )
- O (k. sio a1 —75>b|Bs>] ()
+ O 157D By) (Prut) } (2.61)

where ¢ = {u, c}, € is the polarization vector of the vector meson, the 4-momenta of the
B; and final state meson are given by p and k, respectively, and the Wilson coefficients
are to next-to-next-leading logarithmic (NNLL) accuracy, which requires the calculation
on the matching conditions at ;4 = myy to two-loop accuracy, C?H = —0.304, CSH =4.211
and C$F = —4.103 [58]. The matrix elements in equations (2.60) and (2.61) can be
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written as a linear combination of Lorentz vectors and functions of the Lorentz scalar
¢®> = (p — k)? known as form factors. In the following we will show the steps followed
to parametrize the matrix elements in terms of form factors. We start by noticing that
the matrix elements for decays to pseudoscalar final states (2.60) contain two Lorentz
vectors, namely p and k, these can be combined to obtain the basis vectors p, =p+ k
and ¢ = p — k. Matrix elements for decays to vector mesons (2.61) involve an additional
basis vector —i.e. the polarization vector—. It is possible then to parametrize (2.61)
using combinations of the basis vectors p4, ¢, (€*), the totally antisymmetric tensor e#**?

and form factors. The parametrized matrix elements have the form

P f(@®) + ¢ f-(dP), (2.62)
ig(¢*) e P el g, (2.63)
M) e  +ar (@) (€ - ppt + a— ()€ - p)g*,  (2.64)

fre (@)™ PP p + fr_(q®)e" P e Pq”

(P(k)|gy"0| Bs(p)
¢(k,€)[57"| Bs(p)
(p)
(p)

(
(p(k,e)|57"v5b| Bs(p
(¢(k,€)|50"b| Bs(p

)
)
)
)

+ g7(q®) (" - p)e" P ¢ 7, (2.65)
(p(k,e)|50" v5b|Bs(p)) = ifre(a®) €8 — eip't] — ifr—(a®) [ q" — "]
+igr(q®)(e* - p) P"qd” — " "] ¢ D5 (2.66)

where fy, f—, g, h, ay, fre+, fr— and gr are the aforementioned form factors. Having
obtained the basic parametrization of the matrix elements for decays of a Bs meson to
a pseudoscalar or vector mesons, we will now show how these form factors are related
to the basis that is most commonly used in recent phenomenological analysis, namely,

an f+7 fVa ona fAla fAQ’ lea fTQ and fTS' We start by introducing the form factor f07
associated with scalar exchange and given by:

2
fold®) = f+(d) + M%Sq_MI%f—(qg) (2.67)

to rewrite equation (2.62) as

_ M2 — M2 M2 — M2
(P(k)|gv"b|Bs(p)) = f+(q*) (p“ + k* — BSqQPq“> + fo(ﬁ%- (2.68)

Next we contract the matrix elements of equations (2.65) and (2.66) with the momentum

transfer vector ¢

=
~
+
Q
no
~—

" (p(k, €)|so""b| Bs(p)) = PTe Pl KT (2.69)
((k, &) 50" 75b| Bs(p)) = i fri(¢*) [ (Mp, — M3) — (- q)(p + k)"]

—ifr () [E*uqz — (" 9)¢"]

+9r(¢) (- p) [ (p+ k)" — (MB, — M3)¢"]  (2.70)

q#
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and then we use equations (2.64), (2.69), (2.70) and follow Refs. [58, 92, 93] to obtain

the final expressions for the matrix elements for By — ¢ decays

2mp, eOijkej (k,e)kx

(¢(k,€)|57'b| Bs(p)) = ifv(q%) : (2.71)
mp, + Mgy
(¢(k,€)|57"+°b| Bs(p)) = on(q2)2m¢q“6(li;§)'q
 ha (), + ) [e () - TR
_f @%M M 4 ph — mp, — mz’qu (2.72)
Az mp, + My q2 ’ ’
¢’ (¢(k,€)|50"*b| Bs(p)) = 2fr, (¢*)e" ™ €5(k, €)krpo, (2.73)
¢’ (¢(k,)|50"*7°b| Bs(p)) = ifr,(¢*) [¢"* (k,e)(mp, — m3)
— (€"(k,e) - q)(p + k)]
2
il () (e ) [qﬂ e (RN IR CE2)
B, ~ Mg

where the relation between the form factors of interest fv, fa,, fa,, fa,, fr,, fr, and

fry to the original form factors g, h,a4,a—, fry, fr— and gr is given by

fv(@®) = (Mp, + My)g(q®), (2.75)
Fao(d®) = o, [h(a®) + (MB, — M3)at(¢*) + ¢*a—(g%)], (2.76)
__h()
fa (@) = My, + M, (2.77)
fas(q®) = —(Mp, + Mg)ay(q°), (2.78)
(e = —5 o+ (a?), (279
2
fr,(d) = —% fre(d) + ]V%Sq_]\/[dg)fT—(qz) ) (2.80)
(@) = 5 [Fr(a) + (ME, — M2)gr(a?)] (281)

2.9 Conclusion

In this chapter we have given a brief introduction to the Standard Model of particle
physics, effective Hamiltonians for weak decays and form factors, these are the ba-
sic building blocks of the rest of this dissertation. We also discussed the continuum
phenomenology which justifies the study of form factors for the decays B; — K/{v,
Bs = Dglv and By — ¢¢f which will be the final outcome of this dissertation.






Chapter 3

Quantum Chromodynamics

3.1 Introduction

Quantum Chromodynamics (QCD) is the theory of the strong nuclear force, it is for-
mulated in terms of quarks and gluons which are believed to be the basic constituents
of hadronic matter. The behaviour of the QCD coupling gs(x) which sets the strength
of the interactions involving quarks and gluons is such that although at large momen-
tum transfer perturbation theory is reliable, at hadronic scales p < 1 GeV the coupling
constant is O(1) and perturbative methods fail. In this low energy regime lattice QCD
offers the only first principles method for computing QCD observables. In this chapter
we provide an overview of the formulation and basic features of lattice QCD. We begin
by introducing the QCD action in the continuum in section 3.2. This is followed by
an outline of the steps necessary for its discretization in sections 3.4 to 3.7. Finally in

sections 3.8 to 3.12 the general methods used in lattice computations are discussed.

This chapter is based mainly on references [94-97], additional references will be given

where appropriate.

3.2 The QCD action in the continuum

The continuum action of QCD in Euclidean space time can be written as!+2

1
292

S

Ny
Se=3 [ d'wi0(a) (300, + i9.G(w) + M) 6O @) + 5 [ G @)G (o)
f=1

(3.1)

'where T have used matrix/vector notation for the color and Dirac indices.
T use M for the mass to avoid confusion once m is introduced to label lattice sites.

19
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Sept. 2013
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Figure 3.1: Running behaviour of the strong coupling as a function of energy
scale. Taken from [6].

where the number of quark fields ¢ with flavour f is denoted by Ny and the coupling
strength, the gluon field and the field strength tensor are labelled by gs, G, and G,
respectively, and we have written all indices down as we are using the Euclidean metric.
The first term on the right hand side of Eq. (3.1) is known as the fermionic part of
the action, denoted S, it deals with quark fields and quark-gluon interactions. The
term that includes the field strength tensor in Eq. (3.1) is known as the gluonic part
of the action, it is denoted Sg and deals exclusively with gluons, their propagation and

interaction.

3.2.1 Gauge invariance

The physical content of QCD is invariant under local gauge transformations, that is,

given Q(z) € SU(3) the quark and gluon fields must transform as

bla) = V() = Qa)le),  Be) = F(2) = Pa)Qa)’ (3.2)
Gulw) = Gy (x) = A)Gu(@)x) + i(0,0x))2x)! (3.3)

so that Sg[y’, v, G’ = Sk, ¥, G].

3.3 Asymptotic freedom and quark confinement

Nonabelian gauge theories in 4D display asymptotic freedom, where the coupling con-
stant decreases as the energy scale at which it’s measured or defined increases. In

dimensional regularisation we introduce a mass scale p, and we find that the coupling
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depends on p such that gs(u) decreases as p increases — c.f Figure 3.1 —. In other
regularisation schemes some other mass parameter would enter but asymptotic freedom
would still be present. This means that different tools must be employed for the study
of QCD at different energy scales. Asymptotic freedom [98, 99] at short distances means
that because the coupling constant tends to zero perturbation theory can successfully
be applied to study QCD at high energies. Conversely, at long distance the coupling
constant increases, quarks become confined [100] and a non-perturbative approach such
as Lattice QCD must be applied to study the interactions between quarks and gluons.
In this work we are interested in the study of hadronic matrix elements and hence will

use Lattice QCD as our tool of choice.

3.4 Discretization of QCD

We now introduce a 4D lattice A with L points in each spatial direction and Np points

in the temporal direction,
A= {TL = (n17n27n3an4) ’ ni,n2,n3 = 0717"' aL_ 1;”4 = 0717"' 7NT - 1} (34)

These points are separated by a lattice constant a and are populated by spinors ¥ (n)
that carry the same color, Dirac, and flavour indices as in the continuum. With this
setup the continuum action of Eq. (3.1) is discretized by replacing the path integral over
fields by ordinary integrals over the field values at the points in A — c.f section 3.5 —

and derivatives by finite differences of the form

1

0ut(@) = oo (Ualm)b(n+ 1) + U (n)b(n — ) (35)

where p are directional indices and the gauge field U,(n) —which is located on the link
that connects the sites n and n + — has been introduced to preserve SU(3) gauge
invariance and U_,(n) = U, (n — fi). Tt transforms under the local rotation of the color

indices of the gauge fields given by an element Q(n) of SU(3) as
Uu(n) = U, (n) = Qn)U,(n)Qn + ). (3.6)

If we now introduce the algebra valued lattice gauge field A,(n) and the link variable is
written as

Uu(n) = exp (iaA,,) (3.7)

then we can interpret the link variable U, (n) as a lattice version of the continuum gauge

transporter

G(z,y) x exp (z ; A- ds) (3.8)
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connecting the points n and n + u. Equation (3.8) is a path-ordered exponential where

Cyy is a curve connecting the points x and y.

3.5 The Lattice path integral

Lattice QCD calculations are a non perturbative implementation of field theory using the
Feynman path integral approach. By discretising and using a finite volume, the path
integral is turned into an ordinary multiple integral, though with an extremely high

dimension, and hence best evaluated by a stochastic Monte Carlo sampling technique.

The expectation value of an operator O in terms of the Lattice path integral is given by

(Ow,5.U) = 5 [1av]adlidvofw, b, UleSaco (39
- / [dy)[dy][dU]e5acD (3.10)
where
Ny 4
[ded)lau] = T T I de(n dU(n),, (3.11)
neNi=1 p=1

with Ny the number of fermion fields. Given that the fermionic part of the QCD action
(3.15) is quadratic in the fermionic fields these can be integrated out using the Matthews-
Salam formula [101, 102] with the result

J1dU] det DIUJO[U)e~ScU]

[[dU] det D[U]e~S (3.12)

(O, v, U]) =

3.6 The Wilson gauge action Sg

The Wilson gauge action is given by

2ZZReTm— Uy (n)] (3.13)

neA p<v

where the factor of 2/¢? with g the bare quark-gluon coupling has been introduced to

get the correct continuum limit and
U (1) = Up(n)Uy (1 + 0)U—p(n + i+ )0 (1 + 9) (3.14)

is the plaquette. Other choices of gauge actions, involving more complex Wilson loops
than the plaquette can be, and are, used (e.g. Iwasaki [43], DBW2 [103, 104], Luscher-

Weisz [105]) they allow to improve the action by reducing discretisation effects.
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3.7 Fermionic actions Sy

3.7.1 The naive fermionic action

In the absence of interactions the lattice formulation of the fermionic QCD action for a

single flavour can be written as

Se[e, %, Ul =a* Y (n)D(nm)p(m), (3.15)

n,meA

where the Dirac operator is given by

D) — Zw ) Vsl 5.16)

The quark propagator is given by the inverse of Eq. (3.16) and reads

D™ (n|m) = o] ZD Lexp (ip(n — m)a), (3.17)
peA

where |A| = L? x Ny is the total number of lattice points, A is the set of discrete lattice

momenta

~ 2k L L
A:{p;apuzz;keZ;—2§k<2}, (3.18)

and the momentum space propagator is given by

M —ia~1 >, Y sin(pya)
M?+a23%" sin(pua)?

D7'(p) = (3.19)

3.7.2 The doubler problem

Equation (3.19) has one physical pole at p = (0,0,0,0) and 15 unphysical ones for p € P

when set M = 0, where
P ={(r/a,0,0,0),(0,7/a,0,0),---,(7/a,7/a,7/a,7/a)}. (3.20)

These unphysical poles are called doublers and can be removed by inserting an extra

term in the momentum space Dirac operator

R 1o 1o M p=0
D(p) = M + = " qusin(pua) + ~ Y (1 — cos(pua)) = (3.21)
¢= @.= M+2l/a, peP.

Wilson term



24 Chapter 3 Quantum Chromodynamics

where [ labels the number of momentum components with p, = 7/a. The introduction
of the Wilson term changes the dispersion relation so that there is only one lowest energy
solution, all other solutions become heavy in the continuum limit and hence decouple
from the theory. Unfortunately, even in the massless limit the Wilson term does not
anticommute with 75 and hence the Wilson fermionic action ® which in position space

reads

_ _ 4
SWilson [1/}7 ”tﬁ? U, M} = CL4 Z Tﬂ(f) (77,) {(M(f) + a> 5a55ab5n,m
n,meA

. (3.22)

1
(1- VM)aﬁUu(n)ab5n+ﬂ,m w(f) (m)

2
pn==x1

explicitly breaks chiral symmetry.

3.7.3 The Sheikholeslami-Wohlert (Clover) action
The “Sheikholeslami-Wohlert” or “clover” action [106]

S[wa 17[_)7 U, M, Csw] = SWilsonW}a ’QZ_}? U, M] + Cswa5 Z @(n) Z %Uuuﬁ‘uuw(n) (323)

neA u<v

is an improved Wilson fermionic action Eq. (3.22) in which discretization errors have

been reduced from O(a) to O(a?) by introducing the dimension-5 operator
SSWW, 1/_}7 U] = &U,ul/ﬁ:uuw- (3.24)

In Equations (3.23) and (3.24) cs, is a real coefficient which has to be tuned nonper-
turbatively to remove O(a) errors in physical results, 0., = (—i/2)[y,,7,] and the field
strength tensor has the form

- 1

F,ul/ = _@ (Uuy(n) + Uy—u(n) + U—M—V(n) + U—V,u(n)) - (N A V)‘ (325)

where Uy, is the plaquette —c.f Equation (3.14)—. In this work we use an anisotropic
version of the clover action to generate b quark propagators, this action is known as the

Relativistic Heavy Quark action and will be introduced in section 3.7.5.

3.7.4 The Domain Wall Fermion (DWF) action

The construction of lattice actions is heavily constrained by the Nielsen-Ninomiya the-
orem [107], which states that no local action on an even number of dimensions can be

constructed such that it does not contain doublers and which preserves chiral symmetry.

Y= =Yu
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In the statement of the Nielsen-Ninomiya theorem it is assumed that the Dirac oper-
ator anticommutes with 75, it was then shown by Ginsparg and Wilson [108] that the
conclusion of the Nielsen-Ninomiya theorem can be avoided by changing the definition

of chiral symmetry in the lattice to the following relation
¥5D(n|m) + D(n|m)~y® = aD(n|s)y>D(s|m). (3.26)

This equation know as the Ginsparg-Wilson relation allows for a definition of chiral
symmetry on the lattice which corresponds to continuum chiral symmetry when the
lattice spacing vanishes. It was shown in [13, 14, 109] that by introducing an unphysical
fifth dimension an action can be constructed which solves the Ginsparg-Wilson relation
in the limit of infinite fifth dimensional extent. This action is known as the Domain
Wall Fermion action (DWF) and reads

Ls—1
S, T, U = Y Y B(n,s)D(n,slm,r)¥(m,r), (3.27)

nmeN s,r=0

where the extent of the fifth dimension is denoted by L, ¥ are 5D fermionic fields, the

gauge fields U are copied on each value of the 5-coordinate s, and
DY (n, slm, ) = 65, D(n|m) + 6pm DI (s]r). (3.28)

The two operators on the right hand side of Eq. (3.28) are given by

+4

D(nlm) = (4~ Ms)onm — 5 3~ (1= )V jm: (3.20)
p==x1

Dgw(3|T) = 53,7' - (1 - 55,N5—1)P753+1,r - (1 - 53,0)P+5371,r
+ M(Pf(ss,Ns—ldO,r + P+6s,05N5—1,r) (330)

with chiral projectors Py = (1 4+ +5)/2, quark mass M, and a 5D mass term Ms whose
domain is chosen so that doublers are removed and the positivity of the transfer matrix
is guaranteed. Physical observables can then be constructed from the physical fields
and 1) which live on the 4D boundary of As,

Y(n) = P_¥(n,0)+ Py ¥(n,Ns — 1), (3.31)
Y(n) = ¥(n, N5 — 1)P_ + ¥(n,0)P,. (3.32)

This mixing of left and right chiral modes is exponentially suppressed in Lg, meaning
that exact chiral symmetry is recovered in the limit Ly — oo, but given that in the
lattice L is finite there is a residual chiral symmetry breaking which can be measured

by a residual mass of the quarks.
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We end this section by noting that an alternative solution to the Ginsparg-Wilson rela-
tion is given by the overlap fermion action [110, 111] this action satisfies the Ginsparg-
Wilson relation exactly but is computationally more expensive than the DWF' action.
Moreover, the DWF action becomes equivalent to the overlap fermion action as Ly — oo
[112].

3.7.5 The Relativistic Heavy Quark (RHQ) action

The fermionic actions discussed in the previous sections can be used to study hadrons
containing light, strange and charm quarks for which discretization errors can be con-
trolled with the currently accessible lattice spacings. This, however, is not the case for
bottom quarks for which mya > 1. The study of hadrons containing b quarks requires
the use of effective theories, such as heavy quark effective theory (HQET) [31-36], non-
relativistic QCD (NRQCD) [37-39] or the relativistic heavy quark action (RHQ) [40-42].
In HQET the limit of infinite mass, i.e the static approximation, is discretized and 1/my,
corrections are treated as operator insertions. Because HQET relies on the static ap-
proximation it does not apply for heavy-heavy states. NRQCD is a discretization of a
non-relativistic effective Lagrangian for heavy quarks in the continuum, it requires that
the quarks have low velocities and its Lagrangian contains power-law divergences that
blow up in the limit mya — 0. The RHQ action can be used when the heavy quark
states are at rest or have small spatial momenta and can be used to describe both heavy-
light and heavy-heavy systems. It is based on the Fermilab method [40] which uses an
anisotropic clover action (3.23) and extends Symanzik effective field theory [113, 114] to
the regime mpa £ 1. In the Columbia formulation [42] the RHQ action takes the form

S[, B, Uy M, ey (] = a* S~ b(n) [M +30Do + ¢7 - D = $(Do)* = 5(D)?
o . (3.33)
+top Y, 3 O Fy | ()
u>v
where
D) = oo [Unn)n+ ) = Uln — ) = )] (3.34)
DY) = = [Uanb(n ) + Ufn = i — ) —w(m)] . (3:35)

F,, is defined in equation (3.25), and the three parameters, bare quark mass M,
anisotropy parameter ¢ and clover coefficient ¢, are tuned non-perturbatively — c.f.
Sec. 5.3.3.1 — so that all errors of O(|pla), O([Ma]™) and O(|pa|[Ma]™) are removed

from on-shell Green’s functions.
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3.8 FEuclidean Correlators

In Euclidean space, the correlation function of two gauge invariant operators Oy (6, 0)
and Oy(Z,t) is given by

1

(02(#,1)01(0,0)) = >~ (mle” D0, 0)e~ 04 (0, 0)m) (3.36)

n

where Ol and Og are operators that create and annihilate states, T' denotes the extension
of the lattice in the time direction, m are energy eigenstates and the normalization factor
Zr is given by

Zp="Tr [e*TH} = Z(m\e*ﬂqlm). (3.37)

m

The Euclidean correlator can be evaluated by inserting the unit operator?

1
1= T Zn: n) (n| (3.38)

into (3.36) which then becomes

1
2E,Z1

(02(Z,1)01(0,0)) = Y (mle=T=H Oy(Z,0)[n) (n|e " O1 (0, 0)|m)

m,n

o o
-> e (T=0Em (m|Oy (@, 0) ln)e ™" (n|O1(0,0)lm) (3 39)

2E,Z1

_ Z 1 (m|Os(Z,0)|n)(n]O1(0,0)|m)e”T=DAEm ~tAEn
£ 2E, 1+ e TAEl 4 o~ TAE: 4 ...

where |n) are energy eigenstates and we defined
AFE, = FE, — E. (3.40)

where Ej is the vacuum energy. In the limit 7' — oo

1

T (0]02(Z, 0)|n) (n|O1(0,0)|0)e~tAFn (3.41)

(02(7,1)01(0,0)) =

n

lim
T—00

each of the exponentials corresponds to an energy level. These energies can be calculated
by for instance choosing operators O, = OA& and O = Ox which create and annihilate a
given state X from the vacuum, these states are described by a set of quantum numbers
and hence the only matrix elements (n|O;]0) that will contribute are those for which (n|

has the same quantum numbers as X. If we now write (n| = (z(9)| for the ground state

4where we use the relativistic normalization of states
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of X and (z(M], ()], --- for subsequent excited states then we obtain from (3.41)
- 1 A -
. - Ty § : (n)| AT 2 —tAE,—iZ-pn

n

It follows that for sufficiently large ¢ the sub-leading terms are strongly suppressed and
so we can extract AF; from the exponential decay of the correlator. In this case we

speak of single state dominance.

3.9 Discrete Symmetries

An understanding of discrete symmetries is necessary to construct meson interpolators
that have the desired quantum numbers of physical states and to construct improved
current operators. In the following we will discuss the discrete symmetries of charge
conjugation, parity and time reversal, for quark bilinears involving a bottom quark b

and a light or strange quark .

3.9.1 Parity P

The parity operator P performs a spatial inversion. Let xp = (29, —Z) then quark and

gauge fields transform as

P (x) = Y(zp)yo (3.43) P Us(z) = Up(zp) (3.45)
b(IL’) — ”)/ob(.ilip) (3.44) Uj(l’) — U_j(xp) (346)

From which follows that derivatives acting on the heavy quark

B () = 5 [Up(@)b(a + 1) — U (@)b(e — )] (3.47)

N | =

will transform as:

P Bob(&?) — % [Uo(&?p)’)/ob(mp + 0) - U_o(.%p)’yob(.%'P - 6)]
= ’ch)Bob(ﬂﬁp) A A (3.48)
le)(f’«") ~ 35 {U—j(xP)’YOb(l'P +7) — Uj(zp)vob(zp — J)]

= —Vijb(fCP)

and similarly derivatives acting on the light/strange/charm quark

D) = § [+ Uf@) — wla - wUt, (3.9
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will transform as

@Do(x) = D Do(zp)e  and  D;(z) = —bD;(xp)0 (3.50)

3.9.2 Time reversal T

The time reversal operator T reverses the direction of the time axis. Let zp = (—z0, %)

then quark and gauge fields transform as

T (x) = d(zr)v 70 (3.51) T: Us(z) = U_o(ar) (3.53)
b(x) — y07°b(27) (3.52) Uj(x) = Uj(zr) (3.54)

from which follows that derivatives acting on the heavy quark will transform as:

A~

T+ DBobla) = 5 [Uo(erhror’blar +0) — Uop(ar)yor bar — 0]
— —107" Dob(ar) (3.55)

Bba) = 5 [Useryon™(er +3) - Uj(ar)onar - )]
— 107" Dob(ar) (3.56)

and similarly derivatives acting on the light /strange/charm quark will transform as:

1/1(3:)%0 — —z/;(a:T)ﬁgny’*yo and 1/3(3:)%] — @(xT)gj”yE’fyo (3.57)

3.9.3 Charge conjugation C

The charge conjugation operator C transforms particles into antiparticles. Let C be the

charge conjugation matrix with C~14*C = —(y*)T = —(4#)* and C~1y5C = (y5)T =
(75)* then quark and gauge fields transform as

C: Y(z)— -y ()0t (3.58) C: Up(x)— U_o(x) (3.60)

b(z) — Cb' () (3.59) Uj(z) — Uj(x) (3.61)

from which follows that derivatives acting on the heavy quark will transform as:

C: Bub(az) — % [UZ(&U)CBT(:C +4) — Uiu(x)Cl;T(x — )]
_ %c U @) (2 + ) = U @) (2 — ) .
_ %0 Bz + iU} () — Bl ﬂ)UjH(;v)}T

—C [E(x)ﬁ,f



30 Chapter 3 Quantum Chromodynamics

and similarly derivatives acting on the light /strange/charm quark will transform as:

W) D, - — [Buw(m)rc* (3.63)

3.10 Two-point functions

Meson interpolators are constructed out of quark fields such that they have the desired

quantum numbers of the physical state, their general form is
O(n) = Y (n) Ty (n) (3.64)

where I' is a product of Gamma matrices — c.f Appendix A — and f; are flavour
indices. We can now define the fermionic part of the correlation function of two meson
interpolators of the form O = d(n)T'u(n) as [96]

(O(n)O(m)) = (d(n)Tu(n)u(m)Td(m))F

= Foc151 FO@ﬁz <J(n)%11u(n),31 d(m)%ﬂ](m)ﬁz >
F

c1 2 c2
_ 7 3.65
:—rmﬁlrm<u<n>mu<m>g;> <d<n>g3d<m>m> (365)
c1 u Cco d

= _Falﬁlra252D;1(n’m)ﬁlaTD(;l(n|m)52a1

c1c2 c2c1

= — Te[C D, (njm)T' Dy (m|n)]

In the third line of equation (3.65) Grassmann variables have been reordered and expec-
tation values of the fermionic fields were factorized with respect to the flavours. This

was followed by a Wick contraction [115] for each of the two flavours which results in the
-1

1)
time point n to the point m. We can now use (3.65) and the momentum projection of

inverse Dirac operator D (n|m) which propagates a quark of flavour f; from space-

(3.41) to write two-point functions for pseudoscalar (P) and vector mesons (V') as

—

Cpp(t,k) =Y (Op(0,0)0p(Z,t)1)e "

—

T

VA 2
LN |2l13‘3]|3 e brt, (3.66)

O (1.k) = D (O (0,000 (@ 1)) e
%N ek, N (k A)@e—’fvf (3.67)
)\ ? 9y 2EV 9
where Zp = (P(k)|[0U1)459pU02(0), Zyet*(k,A) = (V(k,\)|[pU)~#p(2)]0) and e(k, \)
is the polarization vector of the vector meson with helicity A\. In (3.66) and (3.67)
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P ()Tb(t)

r(/}(fl)

Figure 3.2: Three-point function with point source and smeared sink

we assume single state dominance — c.f section 3.8 — and we drop the ’around the
world’ contribution — i.e self interactions between particles at lattice site n and their

counterpart across the boundary of the system —.

3.11 Quark Sources

3.11.1 Point Source

The lattice Dirac operator acts on the tensor product of the spin, color and lattice
vector spaces making the computation of the complete propagator matrix, known as an
all-to-all propagator, very expensive in terms of computer memory. The solution to this
problem is given by a point-to-all propagator which corresponds to a single column of

the inverse Dirac operator,

DY (nlmo)ga, = Y D~ H(nlmo)sa Sy ") (m)a (3.68)

bag m,a,a ba a

which is obtained by multiplying the full Dirac propagator by the point-source matrix

S(()mo,oco,ao)(m)a — 5(m — mo)éaao(saao- (3.69)

3.11.2 Smeared Source

Point sources put the quark and anti-quark on the same lattice site making the overlap
with the physical state small. To increase this overlap an extended source is used,
meaning that the two quarks are placed on different spatial points but on the same time

slice. A Gaussian smeared source [116-119] is obtained by multiplying the point source
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(3.69) by the smearing operator M
S(n) = M(n,m)Sp(m) (3.70)
where

M= <1 4 UH) (3.71)

3
H(7,m) Z(UJ 87t + j,m) + U;(7i — 5) (i —3,m)—25(ﬁ,m))N (3.72)

.
Il
-

here 77 and m are vectors containing the spatial coordinates of the lattice site. The
number of smearing steps IV and the smearing width o are chosen to get the best possible
overlap with the physical state. The Gaussian smeared source connects different sites of
the time slice to the central site resulting on a more realistic wave function which can

help to extract clear and strong correlation signals.

3.12 Three-point functions

So far we have discussed the propagation of two quarks of flavours f1 and f5 from space-
time point m to point n, we also need to consider processes in which one of the quarks

interacts with a flavour changing current
JE = Uy s, (3.73)

When this is the case we talk about three-point functions schematically given in Fig-
ure 3.2. The three-point function for the decay of a B; meson at rest into a pseudoscalar

or vector meson is given by

-
—

Chp(ttinks B) = 32 (0p(8,0)7" (5,00, (& ame ™57

—

Ty
t,lsin 9] R B m o

K2k (P(p)| T (i, 1)| Bs(p))ye Ertmas (bsini—t), (3.74)
Cgfﬁv(t, Lsink, E) = Z(O{j(ﬁ, 0)7 (7, t)OJTBS (Z, tsink)>e—ik~f

S 3k AV (R NI (@ 0| Bo(pye PV bk (3.75)

where single state dominance is assumed — c.f section 3.8 —, Op,, Op and Oy are
annihilation operators for the Bg, pseudoscalar (P) and vector meson (V') respectively,

k= P/VZBS)/(4EP/VmBS) with Z,,, and Zp, as defined in section 3.10 and

Op(x) = PV (2)y" V) (x), (3.76)
Of(x) = gV (@pn gl (@), (3.77)
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Op.(z) = ¢(x)7°b(x), (3.78)
T (z) = (x)Tb(z). (3.79)

3.13 Conclusion

In this chapter we have introduced the steps necessary to discretize QCD, we have dis-
cussed briefly different gauge and fermionic actions with particular emphasis on the
actions that were used in our simulations, namely, Domain Wall fermion and the Rela-
tivistic Heavy quark action. We have introduced the discrete symmetries of time rever-
sal, charge conjugation and parity which are necessary to obtain the O(a) improvement
coefficients for the currents in section 4.3. Finally, we have discussed how to generate
different quark sources, and how to construct two and three-point functions which are

necessary for the extraction of form factors which is the subject of the next chapter.






Chapter 4

Lattice QCD for B-physics

4.1 Introduction

As discussed in section 2.8 the matrix elements for By decays to pseudoscalar or vector
states can be expressed in terms of ten form factors which depend on the momentum
transfer ¢? between the initial B, meson and the final state meson. The matrix elements
on Eqns. (2.68), (2.71)-(2.74) are isolated from lattice simulations by carefully choosing
and computing ratios of 3-pt and 2-pt functions. These ratios are given in the Bs meson
rest frame by [120)]

RES—UD(L tsinkv k)

_ Ch,p(t tsink, F) \/ 4Epmp,
o = —Epto—mp, (tsink—t)
VCrp(t F)C,p, (b — 1) | €€

Lm0 p1)[ 77| By (p)), (4.1)
%Fﬁqg(t, Fn, k) = C%Ea(ﬁ(t, Usink s E) JEC(k7 N EyMp,
S \/% > Ctt, K)Cp, (tenk —t) ' € ote—Mp, (tsinic—t)
B0, $ 20 5, ) 6k )T |Bul). w2
A

where two-point Cxx and three-point functions C’gg _,y are described in sections 3.10
and 3.12, o and " are the required combinations of Gamma matrices for the vector final
state and the current, the polarization vector satisfies the relation

kHEY

> ek, Nk A) = =5 — g, (4.3)
A my

and f(k,A) =350, 5°, € (k, A)e*(k, A).

35
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4.2 Form factor extraction

In this section we will show the algebraic manipulations required to extract the full set of

form factors fo, f+, fv, fao, fa1, fa2, fr1, fre and frs from equations (2.68)-(2.74) using
equations (4.1) and (4.2)

4.2.1 fy and f,

The numerical analysis of the form factors f, and fy is performed by means of an

alternative parametrization of (2.68) where the matrix element is written as:

(P(k)|it)y"b| Bs(p)) = /2mp, [v" fi(a®) + P! fL(d?)] (4.4)

where v* = pt/mp, is the four-velocity of the By meson, p/| = k* — (k- v)v#, and

(P(k)[070b Be(p)) R, p(t:tsincs k)

fil@®) = T = Jam. (4.5)
byt R’Yi 1, tsink, k
fi(d®) = <P(kk):z|@\b/’%BBs(p)> = BSZ:/(WI( ) (no i sum). (4.6)

The form factor f and f, emerge directly from the lattice calculation, have a simple
description in heavy-quark effective theory (HQET) [121] and also in heavy meson chi-
ral perturbation theory (HMxPT) [122] making f; and f, an ideal choice for lattice

simulations. The form factors fy and fi can then be obtained from

folq®) = m;% [(ms, — Ep)fy(¢®) + (Ep — mp)fL(a)] (4.7)
£1l@®) = < (1) + (i, — E) fu()] (4.5)

422 fy

Working in the By meson rest frame (2.71) simplifies to

m GOi'keaf
V(e NG0B (p) = —ify (g?) B o M (4.9

mp, + my

Contracting with the polarization vector €™(k, A\) and summing over polarization states
it follows that

m T . QmBs Owkkk m
D €k AV (e MY 0B (p)) = =i (%) 5 ST e e, M) (R )
) ’ A
. 2mp EOzjkk,k k™M
_ 2 s J _ gm
= —ifv(q”) mp, +my \ m? 9;
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2m 6Oimkk
. 2 Bs k
=1 _— 4.10
fv(a®) mp, +my ( )
which can then be evaluated using (4.2)
N mp, +my .
fV(q2) = _ZR%Slv(tatsinka k)g (IlO L] Sum)' (411)

QmBSGOijkkk

4.2.3  fa,

Terms containing the form factors f4, and f4, can be removed from (2.72) by contracting

with the momentum transfer vector q. The resulting equation reads:

(2

G Y €' (k, NV (k, N [07#77b| By (p)) = 21, (¢%) (quki - qi>
A

E'Eym
= 2fa,(¢}) L. (4.12)

my

Equation (4.12) can then be used together with (4.2) to obtain the form factor fa,

my TS} .
fAO(QQ) _ mun}g:jV(t,tsmk, k) (no i sum) (4.13)

where Y2 = yHq5,

4.2.4  fa,

Contracting (2.72) with the vector n = (0,15, d25,3;) and setting k; = 0 (¢; = 0) we
obtain:

D €k NV (k, N)[9v*yb B (p)) = —fa, (¢°) (mp, +my)g™. (4.14)
A

which can then be used together with (4.2) to obtain the form factor fa,

j A/15 1 ; .
fAl (q2> - R’gslv(t, tSink7 k)m (k‘l = O) (nO 1 Sum). (415)

4.2.5 fa,

The contraction of (2.72) with a vector n such that 1-q = 0 yields a simplified expression

from which the form factor f4, can be extracted:

e 2 U NNV N2 8B, () = i, (), + ) (k)
A

— fa,(q?) n(k+p) <k'2qki —qi> . (4.16)

mp, +my \ my,
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Given that ¢ = (mp, — E,, —k) a possible choice of 7 is given by n = (ki/(mp, —
E,),—1,0,0). With this choice (4.16) yields

e 32 € 6 NV (R NI Bu(p) = Ly () m, + ) (52— 1)
A

1%
om% E ,
2 B,V i
— s kik
fA2(q )m%/(mBs — EV) 1
= — — | k1K
fAl(q )(mBs +mV)<m%/ klkz) 1
2m?2, By .
— fa, () —5 2 k1 k! (4.17)

mi,(mp, — Ev)

together with (4.2) and using k; = —k’ results in:

RvBi:fV(t’tsmk’ k) R§57i5v(tvtsinkv k) B 2 mp, sl
_ ki(mBs — Ev) N klkz - fAl(q )(mBS —+ mv) m%/ + m
2m2 EV
2 B
—JAN - : 4.18
I 2( )m%/(mBs — EV) ( )
4.2.6 le

In the Bs meson rest frame (2.73) simplifies to
GV (k, N[0 B Bs(p)) = — fr (4)2m, %€ (k, Nk (4.19)

which can be contracted with the polarization vector €™ (k,\) and summed over polar-

ization states

0 Y €™ (V (kN [ho”b|Bs(p)) = —2mp, fr, ()% " €™ (k, N€; (k, Ak
A A
= —2mgp, fr,(q°)e"* <m2j - 9;n> ki
14

=2mp, f1, (qQ)GOimkk:k. (4.20)

This expression can then be evaluated using (4.2)

2\ ,ymo.ui ) C]z/
le (q ) - RBS%V(t7t51nk7 k)m
1 m 017
= mp. Oimk, ((mBs — Ev)RE %y (t, tsink, k)

+ kle::l;(t, tsink, k‘)) (no i, m sum). (4.21)
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4.2.7 ng and fT3

Contracting (2.74) with the polarization vector € (k, \) and summing over polarization

states we obtain

av Y € (k, MV (k, )00 "#7°0| B(p))
A

= ifr,(¢%) [Z €' (k, N (k, A (mi, —miy) = > € (k, A)e™ (k, N)go(p + k)"
A A

2
. 7 * q
+ifr,(q®) ) €k, Ne’ (k,N)g, [cﬁ‘ -5+ k)"
A mBS - mV

=ifn,(q%) K mgu - 9“‘) (mp, —mi) — <m2p - 9”) q(p + k)“]

|4 \4

. kikP A q>
2 %
+ifry(q )<m2—gp> dp [qu_M(p‘i‘k)u

v B, v
, Kk k-q .,
=ifr,(q?) ng —g“> (szs—m%/)—<m2qk —Q>(P+k)”}
v v

. . . 2
wifr (o) (Salki - ) [q“ e (R (422)

i% B, — My

Terms including e-g can be removed from (4.22) by setting k* = 0 (¢* = 0). The resulting

expression can then be evaluated with (4.2) from which follows

—1

iglvils
fr(d?) = mQu(k)Rk—m (t, tsink, k)
—1 i 10i]5
= mE —m2) [(mBS — Ev)Ry .y (t tsink, k)
B, v
i L]
+ k]R’ég—]ﬂj (t7 tsinku k)} (423)

where oI5 = g#~45. The form factor fr, can then be obtained from (4.22) by setting
w=0:

4w S €k, M)V (k, X)o7 *b| B(p)
A

. E k-q i
= i) | oy (s, — ) (Sl 1) o+ B0 &
v v

e
(mp, — By) — —5———— (mp, + Ev)

K. (4.24)
mp, — My

witn(a) (Lo +1)
\%
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4.3 Operator renormalization and improvement

In lattice QCD, the lattice spacing a provides an ultraviolet cut-off, making Lattice QCD
a regularized field theory. To complete the renormalization process lattice results must
be identified to the continuum theory. In the case of matrix elements this identification
can be achieved by multiplying lattice results with the vector current renormalization

constant ZM
<P/¢|J|Bs>continuum = Z'}yi <P/¢|j|Bs>lattice (425)

where continuum and lattice currents are denoted by J and J, respectively, and P =

{K,Ds}. The uncertainty in the determination of Z% due to one-loop corrections can

be reduced by writing [123-125]
Al /
Z,m = Py, Z%‘Zlvlu (4.26)

where the heavy light renormalization factor Z{il has been decomposed into the prod-
uct of the coefficient pr and the flavour conserving nonperturbative renormalization

constants of the heavy-heavy and light-light vector currents

wh_ > (Bs(Z,1)B(0,0
0 Zf,g’<BS(f7 t/)JO(yat)

)
G (4.27)

) 4.28
X (4.28)

where B = 5vsb, Jo = byob, and the local (V) and conserved (V) vector currents are

defined for Domain Wall Fermions as [14]

Vi(n) = q(n)yiq(n) (4.29)
Ls—1 1
Valn) = 3 5 [+ i )1+ 70U ()
s=0
—Cj(TL, 3)(1 - 7u)UnMQ(n + /17 3)] . (4'30)

Here, L; is the extent of the unphysical fifth dimension, n are lattice sites, i is a unit
vector in the p direction, s is the value of the coordinate in the fifth dimension, and
Up, are link variables. The bulk of the renormalization of Z% is contained in the
flavour conserving factors Z,lylu and Zgﬁ, resulting in a much improved convergence of
perturbation theory for the residual matching factor p,,. This perturbative factor is
expected to be close to unity because most of the radiative corrections cancel in the

ratio 21 /\ [ ZBhZH [126].

The heavy-light current can be improved to O(a) by adding to it terms containing a single

covariant derivative (that is, of one higher mass dimension) with appropriate coefficients.
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These improvement terms must satisfy symmetry and dimensional considerations and

for vector and axial vector currents are given by [126]:

= Db,

= 0Dyub.
V,f’ = 7/;’Yu7i3ib,
Vf = TE'Yu%‘gib,

4.31
4.32
4.33
4.34

A}L = 7/;75Bub7
AZ = 1/;75gub7
AP = 1/;75%%31‘57

(
(
(
( A, = 1/;’}’5’711%%1‘[)-

)
)
)
)

These improvement terms can then be used together with temporal (cZ oo 2570) and

spatial matching factors (cZ , ¢ calculated to one loop in lattice perturbation theory

Cris 'YS’Yi)
to obtain the O(asa) renormalized currents [127]

() = pyor) Z0ZEI [V Vi (@) + & Ve (@) (4.39)

() = py\/ ZLZPN [V () + L Vil (@) + S Vi () + & Vi (@) + &, Vil ()] . (4.40)
Ao(x) = prgro\| ZRZE [AD(2) + 00 AT (2) + €550 A0 ()] (4.41)

l’ = Pysi \/ leZhh AO ’ys'y Al( ) ’Ys’Y AQ( )

’Y5’YZA3<$) 757 A4( )] (4.42)

In Section 6.3.1 we will present our results for the matching coefficients. In the case of
tensor and pseudotensor currents the operators needed for O(a) improvement have not
been published [128], but they can be obtained by studying how tensors and pseudoten-
sors transform under discrete symmetries. In the next sections we present the steps we
followed for our independent calculation of the O(a) improvement terms for tensor and

pseudotensor currents.

4.3.1 Transformation of unimproved Tensor and Pseudotensor cur-

rents

Having introduced the discrete symmetries of parity, charge conjugation and time rever-
sal in section 3.9, we can now see how tensorial currents, that is, how operators of the

form J = &awjb transform under these symmetries

P I = (zp)y o’y b(ap)
_JjO(xP)
J* = P (zp)y 07" b(xp)
= J7*(zp) (4.43)
T J° = (zr)y57°0799° b (zr)
= —J"(ar)
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J* = 4 (21)7°7 %07 b(ar)
= J7*(zr) (4.44)
C: J¥ = —l@)c e bt (z7)
T (2)(a) 6" (wr)
= ¢T(x)(0“”)TI3T(fET)
— [b(@) (" ye()] "
— [T ()]s (4.45)

Similarly, we can study how pseudotensors, that is, how operators of the form J =

1&750‘“,6 transform under discrete symmetries
P:J° = Jap)

TJ* = —g*(ap)
T 2 T = d(er)y° 1"y 0772 b(ar)

= J%(xr)
T — T (xr)
C . jlw [j'wj( )]b<—>¢ (446)

4.3.2 O(a) improvement terms for tensor and pseudotensor currents

Having introduced the transformation properties of tensor and pseudotensor currents
under discrete symmetries, we can now work out the O(a) improvement terms. We start
by writing down all possible combinations of gamma matrices and a single covariant
derivative which have two antisymmetric free indices. Furthermore, because we are
interested in the RHQ action (3.33) which is anisotropic we write separately terms that
have only spatial indices and those that involve a temporal index. We arrive at the

following preliminary list of improvement terms

W@=<mgwﬁm>—mﬁm (4.47
O, = P(a)g"y D*b(x) — (u ¢ v) (4.48)
Oy = ()01 DOb(a (4.49)
Ol = b(w)o™y D'b(a (4.50)
04, = D(@) A Dib(a (4.51)
b = P(2)d DOz (4.52)
O, = 1/3(56)602“”707’7”3”6(%) (4.53)
it = (@) in 3 DPb(a) (4.54)
= D)9 " DVb(x) — (u < ) (4.55)
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Ok, = D(x)g"y' 2> DVb(x) — (u  v) (4.56)
O, = B()o~07* D(x) (4.57)
O, = b(a)o"+'2* Dib(x) (4.58)
Ot = () in DO(x) (4.59)
Ok, = G(a)d™2 " Dib(z) (4.60)
Ol = () e#¥1OinP~ DPb(z) (4.61)
oL, = &(xw%w% ﬁpb(x) (462)
Ot = P(a)g" D¥b(x) — (1 < v) (4.63)
o, = ¥(x)g ”‘B”b (b4 v) (4.64)
Ot o = b(@)e ™ BVb(x) — (4 & v) (4.65)
O . = d(x)o™ D*b(x) — (> v) (4.66)
O g, = ¥(x)g™ ”ABA b(x) = (1 <> v) (4.67)
O o = d(a)g" o D b(a) — (1 > v) (4.68)
Ol o = D)% +* D"b(x) — (1 > v) (4.69)
O . = (a)g" 1" DVb(z) — (u ¢ v) (4.70)
O3 R, = 1/3(3:)00“753”6(3: —(p ) (4.71)
Ot o = B(x)o™ " D¥b(x) — (1 ¢ v) (4.72)
Oy g, = &(w)go“a”'f’BAb () — (u > v) (4.73)
O . = D(x)g* 0" P Do) — (u ¢ v) (4.74)

This list can be reduced by noticing that some terms are identical up to a sign —e.g.
(4.61) and (4.62)—, others have uncontracted Latin indices and hence violate rotational
symmetry —e.g (4.72)— and others do not transform under discrete symmetries as
tensors nor as pseudotensors -e.g (4.73). The list can also be reduced by means of the

equations of motion, which for on-shell states read

) + WD 4 ¢y D+ O(a)| b =0 (4.75)

g [mi? - DD~ + O(a?)] = (4.76)
and hence

D% = m0 7 — (70 - Bb—i—(’) (a) (4.77)

zﬁg = m(()Q)z/ry - wﬁ -y° 4+ O(a?) (4.78)
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Equations (4.77) and (4.78) can then be used to show that terms involving temporal

derivatives are redundant, e.g
O%ﬁ = @(;c)a’“’fyoﬁob(x)
— ot [—m{b(w) — ¢y - Db(a)|
(b)JMV _ COW;{E
" _ ;
ok = ia )ity 530

=(x )O”'va’[ my )7 b(z) — (7' - Db(x )}

- %Z( L L Ll e [—m(()b)yob(z) — (A0 Bb(x)} (4.79)
= %/3(93) Ty [=m 2 b() — (0 Bb(x)}

= £ L)y [mP () - (0 - Bb)]

=+ L3 [P i) — - Bote)

= i%ﬂ(w) [méb);ﬂk + gogf“Rx] b()

Finally, given that y®+8~P = g®PyP — goPyP 1 gBrye i€uapp"y° we have that

Oy, = D)0y D)

= it (@) Oyt B S T ) (4.80)
0ijk m
== 5;10]17710? Ry
and similarly Ofth = —1526],5710“ "> . It can be concluded that the full list of O(a)

improvement terms classified in terms of operators which transform just like the unim-

proved tensor and pseudotensor currents is given by!:

1. Tensor
0%, + 0%, = [h(x) DBIb(x) + () DIA b(x)] — (0 ¢ j) (4.81)
O + 0, = [B(x)y DIb(x) + () DIn'b(a)] - (i ¢ j) (4.82)
Ol =09, = p(w)o’ly - Db(x) — d(x) D - yoVb(x) (4.83)
Oy, — Oy, = i(x)o™ - Db(x) —zﬁ(x)ﬁ o () (4.84)
04 +0¥, =) om,yo,ysyBl gz,y UL (4.85)
2. Pseudotensor
023 . + 03 = w lOzg OBl gl lOng (4.86)

Lwhere O denotes operators in which the derivative acts on the left, that is it acts on the ligth
quark, e.g if 0%, = [(z)7° B’b(z) — (0 ¢ j)] then O, = [(z) DI7b(z) — (0 ¢> 5)]
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oY, +05 I, = P Dib(a) + d(x) DI Ob(m) (
07 + 07, & 53% x)ﬁ (x)] — (i & j) (4.88
Oé(,)Rt 6 Lt = (

(

ij
Oﬁ,RI 6 Lt

These operators are in agreements with those obtained in [128].

4.4 Conclusion

In this chapter we have discussed the steps necessary to extract the form factors involved
in the decays of pseudoscalar mesons to pseudoscalar or vector meson final states, namely,
Tis o5 fvs faos fays favs s fr, and fry, from lattice simulations. We followed this
with a brief discussion on operator renormalization and improvement. We performed
an independent calculation of the O(a) improvement terms for tensor and pseudotensor
currents which provides a check on the results obtained in [128]. Once perturbative
calculations of the matching coefficients for the improvement operators of tensor and

pseudotensor currents become available a full calculation to O(asa) will become possible.






Chapter 5

Data generation and processing

5.1 Introduction

In this chapter we discuss the setup used on our simulations and the statistical methods
used to study our results. In Section 5.2 we give an overview of the gauge field ensembles
we used as the starting point of our numerical simulations, this is followed in Section 5.3
by the technicalities involved in the generation of the quark propagators and the RHQ
action tuning. We then discuss in Section 5.4 the steps followed to obtain the best
possible signal from our two-point and three-point functions. Finally in Section 5.5 we
discuss the jackknife and super-jackknife methods which will be used to determine the

statistical errors from our results.

5.2 Gauge Fields

Our simulations are based on RBC-UKQCD’s set of 241 flavour gauge field configura-
tions [7, 10-12] generated with the Iwasaki gauge action [43]

SqlU] = —32 (1-8c1) > > ReTr[Up(n)] +c1 Y Y ReTr[Us(n)] (5.1)

g neN p<v neA u#v

where U, (n) is the plaquette Eq.(3.14) and Ufy(n) is the path ordered product of link

variables around the 1 x 2 rectangle in the u, v plane at the point n,
UL (n) = Uu(n)Uy(n+ 20)U—p(n + 241+ 2)U_p (n + 0). (5.2)

We use the Iwasaki gauge action since it produces smoother gauge fields which reduce
the residual chiral symmetry breaking for Domain Wall Fermions (DWF) at finite Ls —
c.f Section 3.7.4 —. We use the DWF action [13, 14, 44] for the light quarks and work

47
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a ! M # time
L3xT Ly [GeV] ami®® ams® amB™® [MeV
243 x 64 16 1.785(5) 0.005 0.040 0.03224(1 1636 1
243 x 64 16 1.785(5) 0.010 0.040 0.03224(1 1419

]

(5) (18) (1)
(5) (18) (1) 1
328 x 64 16 2.383(9) 0.004 0.030 0.02477(18) 302(2) 628 2
323 x 64 16 2.383(9) 0.006 0.030 0.02477(18) (2) 889 2
328 x 64 16 2.383(9) 0.008 0.030 0.02477(18) (2) 544 2

# configs sources

Table 5.1: Overview of the gauge field ensembles. The ensembles were generated
by the RBC and UKQCD collaborations [7, 10-12] using 241 flavour domain-
wall fermions and Iwasaki gauge actions. The domain-wall height for light and
strange quarks is Ms = 1.8. The 24 and 322 ensembles are generated using
the Shamir domain-wall kernel [13, 14]. Values for the inverse lattice spacing
and the quark and meson masses are taken from the refined analysis [11] and
updated to include the finer a=! = 2.77 GeV ensemble [12]. The light sea-quark
mass is labelled am;, the heavy sea-quark mass amy,, and am®™® is the mass of
the physical strange quark mass. The valence strange quark masses used in our
simulations on 24% and 323 ensembles are amS™ = (0.03224 and amS™ = 0.025,
respectively.

on five ensembles featuring unitary pion masses down to ~300 MeV, at inverse lattice
spacings of 1.785(5) and 2.383(9) GeV. These lattice spacings were determined from a
global fit that included the ensembles of Table 5.1 and the physical point ensembles with
lattice sizes 483 x 96 and 643 x 128 [7, 10-12] by adjusting the masses of light and strange
quarks until the ratios M, /Mgq and Mg /Mg had their physical values and taking ratios

such as
ail = (Mﬂ)phys/(aMQ)lat~ (53)

On all our ensembles M L is greater than 3.8 and the spatial box sizes are at least 2.6 fm,
meaning that finite volume corrections which are O(exp (—M L)) [129] are therefore ~
2%. Details of the configurations as well as the number of gauge field configurations and
sources per configuration are summarized in Tab. 5.1. In order to reduce autocorrelations
between ensembles, we perform a random 4-vector shift of the gauge field prior to starting

the generation of quark propagators.

5.3 Quark propagators

5.3.1 Light and strange quark propagators

We generate light and strange quark domain-wall propagators with periodic boundary
conditions in space and antiperiodic in time, using a point source —c.f Section 3.11.1—,
domain-wall height M5 = 1.8 and fifth dimension extent L; = 16.
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L3xT a7 'lGeV] am; amy amSm M7 [GeV]

243 % 64 1.785(5) 0.005 0.040 0.30, 0.35,0.40 1.5654(8), 1.6981(9), 1.8244(10)
243 x 64 1.785(5) 0.010 0.040 0.30, 0.35, 0.40 1.5707(9), 1.7037(10), 1.8304(11)
329 x 64 2.383(9) 0.004 0.030  0.28, 0.34 1.8300(12), 2.0367(14)

32% % 64 2.383(9) 0.006 0.030  0.28,0.34  1.8340(10), 2.0406(11) 3.059(11)
32% % 64 2.383(9) 0.008 0.030  0.28, 0.34 1.8351(13), 2.0420(15)

Table 5.2: Simulated charm-like bare input quark masses am™
sponding values of the DS™ meson masses in GeV for our 243 and 323 ensembles.

The physical Ds mass is Mp, = 1.969(14) GeV [6].

and the corre-

5.3.2 Charm quark propagators

Given that the mass of the charm quark (mMS(u = m.) = 1.28 £ 0.03 GeV [6]) is less
than our smallest cut-off (a=! = 1.785(5) GeV), the simulation of charm quarks can
proceed either by means of the RHQ action or through a fully relativistic formulation
based on the DWF action. While the RHQ action is numerically cheaper, simulating
charm quarks using the DWF action has the advantage that we match the action used
for light and strange quarks, and there is no need to tune the three parameters of the
RHQ action for the charm quark. We therefore simulate charm quarks based on the
recent work featuring the optimized Mobius DWF action [12, 130-132] with domain-
wall height M5 = 1.6, extent of the fifth dimension Ls; = 12 and Md&bius parameters
b= 1.5 and ¢ = 0.5. With this set-up and the use of bare quark masses below am, < 0.4
discretization errors have been shown to remain small for physical quantities such as
decay constants and meson masses [131]. Thus on our coarse ensembles (a~* = 1.785(5)
GeV), we cannot directly simulate charm quarks but expect a linear extrapolation to
be benign [12, 132]. We simulate 2—3 charm-like quark masses and subsequently extra-
/interpolate to the physical charm quark mass. The bare charm quark masses used in
our simulations as well as the Ds masses relevant for the extra-/interpolation are listed
in Table 5.2.

5.3.3 Bottom quark propagators

We simulate the heavy b-quarks using the RHQ action [42, 133] discussed in Section 3.7.5
with Gaussian smeared sources [119] to reduce excited state contamination — c.f Sec-
tion 3.11.2 —, the smearing parameters for the a=! = 1.785(5) GeV ensemble are
o = 7.86 and N = 100, and for the a~! = 2.383(9) GeV ensemble o = 10.36 and

N =170.
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5.3.3.1 RHQ action tuning

We performed the non-perturbative tuning of the three RHQ parameters moa, ¢, and
¢ following the prescription of Ref. [134]. In this prescription the RHQ parameters are

determined by requiring that the By meson lattice dispersion relation

(aE@)? = (ﬁ) (@) + (adDy) + O((al*)

My =E@?=0) (5.4)
2\ —1
M2 = Ml X <8E32>
op; ) 5

is equivalent to the continuum one to O([ap]?), that is, we require M; = M. We also

require that the calculation of the spin-averaged Bs; meson mass

Mp, = ~ (Mp, +3Mp;), (5.5)

N

and the hyperfine splitting
AMp, = Mp: — Mp, (5.6)

obtained with the RHQ action correctly reproduce the experimentally measured results
AMp, = 49.0(1.6) MeV and Mp, = 5.404(1) GeV [6]. The bottom strange system is
chosen since discretization and chiral perturbation errors are expected to be small. The
tuning is carried out in a region of parameter space close enough to the true parameters

such that the linear relation

MBS mopa
AMp, | =J | ¢, | +4 (5.7)
i ¢

Mo

holds. In Eq. (5.7) J is a 3 x 3 matrix of coefficients and A is a 3-element constant
column vector. We determine seven sets of parameters {moa, ¢, (}, {moa=£omga,cp, (},
{moa, cp£o.,,C} and {moa, ¢y, (£o¢} where ox is a chosen uncertainty of the parameter
X, and check whether the region bounded by them is in the region for which Eq. (5.7)
holds. If this is the case then the matrix J and the vector A are computed

1 B3-Y Y5V, V7Y

J = , (5.8)

)
20mpa

A=Y1—J x[moa,cp, C]Tv (5.9)
Y; = [My,, AMp,, My /Ms]; (5.10)

20, = 20¢
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a~! [GeV] moa c ¢
1.785(5) 7.471(51)(705)(82)(45) 4.92(13)(21;)(07)(24) 2.929(63)(100)(15)(03)
2.383(9)  3.485(25)(38)(45)(31) 3.06(07)(18)(05)(15) 1.760(30)(58)(07)(02)

Table 5.3: Tuned RHQ parameters on the 24% and 323 ensembles. Errors listed
for mga, cp, and ( are, from left to right: statistics, heavy-quark discretization
errors, the lattice scale uncertainty, and the uncertainty due to the experimental
measurement of the Bg meson hyperfine splitting, respectively.

0.7

0.6 .Q*’+,+.+s+%+%+t+%+%+«+¢**,++¢+*

0.5 , y oy '

504 '* + Goink = 18 +

g.\ 0.3 * + Csink = 20

0.2) = Goink = 22

0.1f + Csink = 24

0.0 5 10 05 20 25

time slice [lattice units]

Figure 5.1: Unimproved form factor f4, for the B; — ¢fT¢~ decay at zero

momentum for four different source-sink separations on the coarse a=! =

1.785(5) GeV ensemble with am; = 0.005.

where i denotes the i** parameter set. The RHQ parameters are then determined from

RHQ

moa MBS
cp =J ' x| |[AMp, | — A (5.11)
: 1

The RHQ parameters are considered tuned when the values obtained from Eq. (5.11)
are within the box defined by the seven sets of parameters. If this is not the case the
box is re-centered at the result of Eq. (5.11) and another iteration is performed. The

results of the tuning are presented in Table 5.3.

5.4 Two point and three point functions

As discussed in Section 4.1 the extraction of matrix elements requires the calculation
of two-point and three-point functions. In this Section we discuss the steps that we

followed to obtain the best possible signal.

5.4.1 Source-sink separation

In order to optimise the signal obtained from 3-point correlators, we study four different

source-sink separations seeking the choice which results in the longest plateau and small
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statistical errors. We compare the results obtained for a given decay at zero momentum
using At = tgnk — tsource = 18, 20, 22, 24, we present an example of the resulting plot
in figure 5.1. Within statistical uncertainties, all choices for tg,) agree. We found that
for all 3-point correlators the best signal is obtained for tgnx — tsource = 20 confirming
the choice made in reference [135] for semileptonic charged currents. Scaling with the
lattice spacing we obtain fgnk — tsource = 26 as the optimal source sink separation for
the ensembles with a1 = 2.383(9) GeV.

5.4.2 Smearing of Charm-strange 2-point functions

We investigated Gaussian smeared sources for the charm quarks with different widths
o following a similar procedure to the one presented in [134]. We generate c-quark
propagators with a gauge invariant Gaussian source for the spatial wave function (3.70)
where we use the criterion N > 30%/2 for the number of iterations N so that the source
is spatially smooth and a good approximation to a Gaussian [134]. We study the ef-
fect that combinations of (o, N) = {(1.39,5),(1.97,10), (2.78,15), (3.93,30), (7.86,100),
(11.79,215)} have on the effective mass of the Dy and D} mesons. We show the results
of our study on the coarse ensemble 243 with am; = 0.005 in Figure 5.2. As can be seen
in the plots, the green data corresponding to a width ¢ = 7.86 and N = 100 smearing
iterations result in the earliest onset of the plateau which also extends over many time
slices. This is the same outcome as found in the study of bottom quarks in reference
[134].

5.5 Statistical Analysis

The data presented in the following chapter was analyzed using single elimination jack-
knife re-sampling after first averaging correlators computed with different sources on
the same gauge field configuration. For functions of several observables computed on
different ensembles we use the super jackknife method introduced in [136] and discussed
in more detail in [137]. The jackknife and super jackknife methods can be used to study
both simple averages and quantities that are obtained from a fit [96, 138, 139], hence
we will use these two methods to determine the errors for fitted quantities in a simple

straightforward way.

5.5.1 Jackknife method

The single elimination jackknife method [140] estimates the bias of an estimator 0 for
the parameter 0 of a data set of size IV, by removing the nth entry of the original data set

(n=1,---,N) and recalculating the estimator based on the rest of the data. Let 0 be



Chapter 5 Data generation and processing 53

1.070
bo
__1.050 Y 11 139
= &Y I 197
e 1.030 N ‘ | 278
a%‘? e TN By B A MWMH% I 303
Lotor . 1t 786
1179
0'9900 5 10 15 20 25 30
time slice [lattice unit]
1.160 -
+ J[ 0
.
B U | 139
I e ‘ w ‘ | 1.97
N + +
T ‘w 3.93
Y'u 1.100 * R Pt Wﬂﬁﬂ# %MWMWHMW l J[ 7.86
. | I 1179
1.080

0 5 10 15 20 25 30
time slice [lattice unit]

Figure 5.2: Exploring different widths o of the Gaussian source used to generate
charm quarks by comparing effective masses for the Dg-like meson on the top
and the D}-like meson on the bottom. Strange quarks are generated with a point
source and both propagators are contracted with a point sink. The data are
obtained on the coarse 243 ensemble with am; = 0.005 using amS™ = 0.03224
and am™ = 0.400.

the estimator of the unknown parameter 6 obtained using all available observations X =
{X1, X2, -+, Xn}, let ; be the given statistic but based on the subset of observations
{X1, -+, Xi—1,Xiy1, -+, Xn} then the jackknife bias estimator is given by

1 Y R
biack = (N — 1) (N S0 - 9) (5.12)
=1

which leads to the bias reduced jackknife estimator of 6

- ; I T 1L 1L
ejauck:a_bjatck:]\fe_]\[Z‘Z;Qz':]\/vi1 (NG—(N—l)Ql):N;HZ (513)

which defines 0;. Tukey [141] conjectured that 6;, i = 1,--- , N may be treated as though
they were independently and identically distributed and that their variance can be used

to estimate the variance of the original estimator. The jackknife variance estimator is
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then given by
2

N N

N -1 1

2 §
1= Jj=

The results presented in the following chapter are quoted using () = 0 + o

5.5.2 Super Jackknife method

The Super Jackknife method [137, 142] starts with M distinct uncorrelated ensembles,
we denote by 0% the central value and by 6F with n = 1,---, Nj, the jackknife samples
of the observable 6 on the k' ensemble of size Ny. We now construct N = Z]szl Ny,

super jackknife samples of which the first N7 are given by the columns of the following

matrix: o )
R
62 62 62 62
03 03 93 .. . 03
) , (5.15)
GM-1 GM-1 GM-1 .. ... GM-1
oM oM oM .. .. oM
the next Ny are the columns of
r él él él él 7
02 9% 6% e 9]2\]271 9]2\,2
63 ik 63 63
, (5.16)
gM—-1  pgM-1 GM-1 | ... pM—1
oM oM oM .. . oM

and in general we will get the k" set of super jackknife samples from the columns of

S Y T o
- S
ék—l ék—l ék—l . . ék—l
Aek AO’f Ae’; e 0% gka : (5.17)
g+l pgk+1  pgk+1 | . gk+1
éM—l éM—l éM—l éM—l
oM oM oM ... L. oM
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That is, if there are two ensembles A and B of size Ny = 100 and Np = 20, respectively,
then the jth superjackknife block for j < 100 is built using the jth sample of ensemble
A and the central value of B, if 7 > 100 then the super jackknife block is constructed
using the central value of A and the jackknife sample j-100 of ensemble B. If the super

jackknife blocks, a, are used for a fitting procedure then one minimizes the function

Nag Na
=3 et a —ad N} s — ad e
a=1 =1
Np Np

33 W) — a8 ) ({a}P)s — a8,)(CP),

a=1 =1

(5.18)

where y({z}) is a model function with parameters {z} which might be ensemble depen-
dent, the index j denotes the number of the super jackknife block and the covariance

matrix is defined as

Can = NAl— L@ — (@) (@, — (@) (5.19)

The super jackknife method takes the correlations within each ensemble correctly into
account, and implicitly sets correlations amongst different ensembles to zero. In the
limit case in which M = 1 it reduces to the regular jackknife method discussed in the

previous section.

5.6 Conclusion

In this chapter we have introduced the setup that we used for the generation of two-
and three-point functions necessary for the extraction of form factors using the ratio
method discussed in Section 4.1. We have also discussed the statistical methods that

will be central for our data analysis and the extraction of results on Chapter 6.
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Results

6.1 Introduction

In this chapter we present our final results. We begin in section 6.2 by determining
the effective masses of the By, Ds, K and ¢ mesons. We then divide the rest of this
chapter into two main sections which discuss our results for the Standard Model tree-
level decays By — K{v and B, — D,lv, section 6.3, and the rare decay By — ¢pf™4~,
section 6.4. These two sections have the same structure, we begin by determining the
flavour conserving renormalization factor Z{’,b, we then use this result to renormalise
our improved vector and tensor currents. Then we discuss the process to perform the
chiral-continuum extrapolation of our results and finally we introduce the z-expansion

which we use to extrapolate our continuum results to ¢? = 0.

6.2 Effective Mass fits

In section 4.1 we have shown that in order to extract the form factors fo, f+, fv, fa,,
fay, fays fry, fr, and fr, we need to compute ratios of two point and three point
functions (4.1) and (4.2). Given that these ratios involve meson masses and energies,
we will start by computing these values for all the mesons involved in the decays we
are interested in, namely, By — K/{v, By — Dy v and By — ¢fT¢~. At sufficiently
large lattice times the effective mass (p'= 0) and energies (p # 0) for meson X can be

extracted from its two-point function Cxx (3.65) using the formula

Cxx(t,ﬁ) +Cxx(t+ Q,ﬁ)
20xx(t+1,p)

E(t,p) = cosh™! (6.1)

o7
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The result of applying (6.1) yields a value for the effective mass/energy for each time

slice, we then perform correlated, constant in time fits minimizing

X2 = (E(At, o — En)Crg J(E(At, P)s — Egy). (6.2)

where E(At,p) means that we are summing terms E(¢,p) in the range At. The fitting
range At is chosen so that there is no visible excited state contamination and where
we obtain acceptable y? per degree of freedom and p values, the exceptions are the B,
and ¢ meson masses on the am; = 0.004 where p values of 6% and 1.06% were obtained
respectively. We keep these values since we impose the same fit ranges for all ensembles
with the same lattice spacing. Fitting ranges for the 323 ensembles are obtained by
scaling our choices on 243 using the ratio of the lattice spacings. In Figure 6.1 we show
results for effective mass fits on the a=! = 1.785(5) GeV ensemble with am; = 0.005
together with the dependence of the effective mass on the starting time slice used for
the fit. Numerical results for all other ensembles are given in Tables 6.1—6.3. Where
available our results fully agree with previous published RBC/UKQCD results [135]. In
lattice simulations the quality of the signal is reduced as the momentum of the meson

is increased, it is convenient then to use either the continuum dispersion relation
E* =m® + [pl? (6.3)

or the lattice dispersion relation

E =24 'sinh™! | | sinh? ( ) + Zsm (apl> (6.4)

together with the effective mass obtained from (6.1) and (6.2) to extract effective ener-
gies. In figure 6.2 we show a comparison of the pion, kaon, ¢ and Ds; meson energies
with continuum-limit expectations, we see deviations from continuum-limit expectations
for the Dy meson, but the lattice dispersion relation gives a good description of all the
meson energies studied. Residual cutoff effects will vanish once we extrapolate to the

continuum limit.

Kaon ¢ meson
am, [tmina tmaz] aMK X2/d0f p [tmzna maz} aM(b X2/d0f 1%
0.005 | [12,23] 0.30576(45) 1.35  19% | [12,22] 0.5014(28) 127  24%
0.010 | [12,23] 0.32670(43) 0.80  63% | [12,22] 0.6079(29) 0.36  97%
0.004 | [16,29] 0.22419(45) 1.22  25% | [16,29] 0.4412(24) 211 1%
0.006 | [16,29] 0.23412(34) 0.58  89% | [16,29] 0.4508(22) 0.40  97%
0.008 | [16,29] 0.24089(42) 1.13  32% | [16,29] 0.4486(27) 0.84  62%

Table 6.1: Kaon and ¢ meson masses on all ensembles
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Figure 6.1: From top to bottom: (left) effective mass plots for the kaon, ¢

meson , Ds meson (with unphysical am, = 0.350) and By meson on the a~

1 _

1.785GeV ensemble with am; = 0.005, (right) dependence of the effective mass
on the starting time slice with a fixed final time, the shaded band indicates the
preferred fit, red diamonds indicate p-value.

6.3 Semileptonic decays B, — D,/v and B, — K/lv

6.3.1 Operator renormalization and improvement

As discussed in Section 4.3 operator renormalization requires the determination of the

perturbative coefficient p (4.26), and the flavour-conserving renormalization factors Z%

(4.28) and Z" (4.27). The flavour conserving renormalization factor Z! is taken from

[11] and we determine Z" from the matrix element of the b — b vector current between

two B mesons following [143]. We reduce discretization errors in the heavy-light /charm

vector current by improving it through O(asa). The temporal and spatial O(a) vector
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Figure 6.2: From top to bottom: Comparison of the kaon, ¢ and Ds am. = 0.280
meson energies with continuum-limit and lattice dispersion relation expectations
on the a=! = 2.383(9) GeV ensemble with am; = 0.004. E indicates energy from
fit to (6.2) and £ indicates energy using the dispersion relation. Blue points are
obtained using the continuum dispersion relation (6.3) and red points using the
lattice dispersion relation (6.4). The dashed lines show a power counting esti-
mate of the leading order O((ap)?) momentum dependent discretization errors.

current operators needed are given by the following sums [135]

Vo™ () = V() + e}V () + ¢t Vil(x), (6.5)
ViR (z) = VO (@) + LVl () + 2V () + VPR () + V(). (6.6)

(]

We obtain the values of the coefficients ¢’ and ¢} at one loop using mean-field improved
lattice perturbation theory [15] evaluated at the MS coupling aM(a~!). Results for op-
erator renormalization factors and the improvement coefficients are shown in Tables 6.5,

6.4, respectively.
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a lGeV] am;  ame  [tmins tmaz) aMp, x?/dof p
1.785 0.005 0.30 11 19] 0.87681(44 1.07 38%
]

0.35 11,19 0.95105(50 1.01 42%
0.40 0.92 49%
1.785 0.010 0.30 0.34 95%
0.35 11,19] 0.95407(55 0.28 97%
0.40 11,19] 1.02505(60 0.26 97%

[ (44)
[ (50)
[11,19]  1.02188(54)
[ (51)
i )
2383 0.004 028 [15,25]  0.76789(51) 1.24  25%
[ (57)
[15 (41)
[ (46)
[ (57)
[ (64)

11,19] 0.87957(51

0.34 15,25 0.85462(57 1.25 25%
2.383 0.006 0.28 1.00  43%
0.34 0.90 53%
2.383 0.008 0.28 0.44  93%
0.34 0.48 90%

]
15,25]  0.76941(41
15,25]  0.85611(46
]
]

15,25
15,25

0.77010(57
0.85689(64

Table 6.2: D; meson masses on all ensembles

B;
ami [tmma ma:r] CL]\4BS XQ/dOf p
0.005 | [10,29] 3.0062(12) 045  98%
0.010 [10 29} 3 0072(14) 1.11 33%
0.004 [13 29} 2.2515(11) 1.58 6%
0.006 | [13,29] 2.25274(95) 0.55 92%
0.008 | [13,29] 2.2541(13) 095  51%

Table 6.3: B meson masses on all ensembles

Table 6.4: Operator renormalization factors. The flavour conserving factor Z{}
was obtained non-perturbatively in [11]. We determine Z¥ from a weighted
average of the result of correlated fits to (4.27) on our ensembles —c.f Fig-
ure 6.3—. We compute the p factor at one loop in mean-field improved lattice
perturbation theory using o%(a=1) [15].

' [GeV] zy Z¥ B oy PV,
1.785(5)  0.71273(26) 9.130(21)  0.23  1.02518 0.99653
2.383(9)  0.74404(181) 4.768(11)  0.22  1.01535 0.99358

Table 6.5: Improvement coefficients. We compute the matching coefficients c'

at one loop in mean-field improved lattice perturbation theory using oM MS (a7 1)
[15].
' GeV] ayBah) ¢ ci s c e cs
1.785(5) 0.23 0.0562 —0.010 —0.00088 0.0017 0.0489 —0.0031
2.383(9) 0.22 0.05645 —0.0094 —0.0013 0.00031 0.0479 —0.0019

6.3.2 The form factors f| and f, at finite lattice spacing

Having extracted the effective masses and energies of the Kaon, Dy and Bs; mesons,

we can now use (4.5) and (4.6) to obtain the form factors f| and f,, respectively. We
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Figure 6.4: From top to bottom Bs; — Dglv form factors fj and fi, (left)
form factors as a function of time on the a=! = 1.785(5) GeV ensemble with
am; = 0.005 and am, = 0.300. (right) dependence of the form factor on the
starting time slice with a fixed final time ¢ = 13 at the smallest momentum
fi:n =0, fL : n=1. The shaded band indicates the preferred fit with error,
red diamonds indicate p-value.

present the results of performing correlated, constant in time fits to (4.5) and (4.6) in
Figure 6.4, and Tables B.1—B.3. We choose our fitting range for a given form factor
on the a=! = 1.785(5) GeV ensembles using the following procedure: for the smallest
allowed momentum we pick the right most time slice we consider unaffected by excited
state contamination and then we analyse how the p-value is affected by varying the
initial time slice included in the fit. Our goal is to choose the largest possible plateau
with a sensible p-value. Having determined the best fitting range for a given form factor
at the smallest momentum we apply this same range for all momenta removing the
bias that will rise if the fitting range for each momentum is found by visual inspection.
Within our fitting ranges contamination from excited states is not visible. Fitting ranges
for the 323 ensembles are obtained by scaling our choices on 243 using the ratio of the
lattice spacings. These procedure returns p values in the range [20%, 100%] on 80% of
the fitted quantities.

6.3.2.1 Charm mass extrapolation

As discussed in section 5.3.2 the results of our simulation of By — Dsfv decays are two-
point and three-point functions obtained with unphysical charm like quark masses —c.f.

Table 5.2 for the details—, meaning that we must extra-/interpolate the form factors



64 Chapter 6 Results

Table 6.6: Fits to the non-perturbative flavour-conserving factor Z{’}’ on all

ensembles
a l[GeV] my A% x2/dof D
1.785(5)  0.005 9.152(29) 1.72 10.9%
1.785(5) 0.010 9.135(32) 1.06 38.3%
2.383(9) 0.004 4.782(12) 155 13.1%
2.383(9) 0.006 4.751(11) 0.36 93.9%
2.383(9) 0.008 4.779(14) 1.17 30.9%

obtained in the previous section to the physical charm mass Mp, = 1.969(14) GeV. We
begin by plotting the form factors as a function of the corresponding unphysical Ds mass
and units of momentum squared n? = (L/(27))? —c.f Fig. 6.5— The points look close

to being on a plane; hence we try a first order expansion in the Dy mass and momentum

F(@*(Mp, + 6Mp,, [p1* + 8|p]*); Mp, + 6Mp,) = f(¢*(Mp, + |p*), Mp,)
of ( 0¢* 0 . o
95 M
* P <8MD35 D+ Gz

of
dMp,

+

SMp,
(6.7)

where |p] = 2mn/L, L is the lattice size and n are units of momentum. From the above

discussion our first fit ansatz is given by the function:
f(Mp,,n*) = co+c1Mp, +can®  Type I (6.8)

where we have absorbed a factor of (27/L)? in c3. We also perform the following fits to

study systematic effects due to our choice of expansion

f(MDS,n2) =co+c1Mp, + con® + CgMDSTL2 Type 11 (6.9)
f(Mp,,n?) = co + c1Mp, + con® + c3(n®)*  Type III (6.10)
f(Mp,,n?) = co + c1Mp, + con® + csMp_ n? + c4(n?)>  Type IV (6.11)

The results for fits of Type I, II, III and IV for improved form factors are shown in
Tables B.7 and B.8 , given that the smallest x2/dof is obtained for type IV (6.11) fits
we extrapolate to physical charm using this fit and use types I, II and III to estimate

the systematics due to the charm extrapolation.

6.3.3 B, — K/v form factors chiral-continuum extrapolation

As discussed in section 2.5 chiral symmetry undergoes an explicit breaking due to the

nonzero mass of light and strange quarks giving rise to the pseudo-Goldstone bosons
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Figure 6.5: Form factors f| and f, as a function of the mass of the Dy meson and
units of momentum squared n?, the top two plots are for the a=! = 1.785(5) GeV
ensemble with am; = 0.005 and the bottom two plots are for the a=! = 2.383(9)
GeV ensemble with am; = 0.006. The shaded surface indicates our chosen fit
function (6.11)
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o, 70, K*, K% K9 and n. The low-momentum strong interactions of these pseudo-

Goldstone bosons are described by the effective Lagrangian [52]

2
L= [0720,57] + v T [STM 4+ M5 (6.12)

where v is an independent coefficient
M = diag(my, mg, ms), (6.13)

Y is given in (2.42) and f; is the pion decay constant. The inclusion of heavy-light mesons
in chiral perturbation theory requires the inclusion of heavy quark spin symmetry. This
is achieved by introducing the field [144-146]

_1+¥

H,(v) 5

(B (v} = B (v)s] (6.14)

where B® and B;* are pseudoscalar and vector heavy-light mesons, a indicates the
flavour of the light quark and the factor (1+%)/2 projects out the particle component of
the heavy quark only. The heavy meson superfield (6.14) transforms as H, — SH, and
H, — HbUJa under SU(2) spin transformations S and SU(3) flavour transformations
U. We can now write the HMxPT Lagrangian to lowest order in the chiral and 1/Mp
expansion as [144-146]

L= —iTr (Hy,0"Hy) + Ly (ﬁavu[STa"ﬁ + €G“€T]abe)
i ] 2 (6.15)
+5 Tr (HaW’Vs)[ETa“é = fa“g*me)

where the traces are on Dirac space, £ = VX, v is the four velocity of the heavy meson,
H,(v) = voHJ(v)70, and g is the coupling of the heavy meson to the Goldstone boson.
The HMxPT Lagrangian (6.15) contains both heavy meson superfields and pseudo-
Goldstone bosons, coupled together in an SU(3) x SU(3)g invariant way [147]. This
Lagrangian can then be used to determine the one loop chiral correction for By — K /v
form factors which take the form

310, (M

while this chiral logarithm is dominant in the limit of very small light quark masses it
is unlikely that for physical Kaons this is the case, it may however give an indication of
the magnitude of SU(3) violation [147]. The NLO SU(2) hard-kaon HMyPT expression

that we will use to extrapolate the renormalized lattice form factors to the physical light
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Table 6.7: Coefficients for the chiral-continuum extrapolation of the form factors
Jj and f1 for the B; — K/{v decay obtained from correlated fits to (6.17).

Co C1 C2 C3 C4 X2/d0f p
Mgsl/QfH 0.929(62) 0.692(251) 0.587(224) -0.331(161)  -0.007(3) 1.19 25%
M}g/sz 0.941(140) 0.181(199) -0.358(318) 0.011(220) -0.0020(28) 0.72 7%

quark mass and interpolate in the Kaon energy is given by [148, 149]

1 Sf M? Ex
Bs—K 2 s
B K (M B a?) = ————co |1+ [ 7pg + 18 + o
J 7 (M, B 0 EK+AiCO[ +<(47rf)2+clA2 ey
) ) (6.17)
£y a
+C3A2+C4A2a§2>]

where ¢ = {||, L} and the effects of resonances below the BsK production threshold
are accounted for by the inclusion of the poles Ay = Mp, — Mp«(0") and A; =
Mp, — Mp~(17) where the B*(JF) resonance corresponds to a state with flavour bu
and quantum numbers J© = 07 and 1~ for Jj and [, respectively. A = 263 MeV
from the model estimate in [150] and A} = —41.6 MeV from experiment [151]. The pion
decay constant has the value fr = 130.4 MeV [151], A = 1 GeV is the scale associated
with chiral symmetry breaking and the term proportional to a? in 6.17 accounts for
the dominant lattice spacing dependence. Cut-off effects from Domain Wall Fermions
and the Iwasaki action are O(aAQoD)2 using Agcp = 500 MeV we estimate this to be
~ 5%. The results of the chiral-continuum extrapolation are shown in Figure 6.6 and
the fitting coeflicients are given in Table 6.7. We also show in Figure 6.8 and discuss
in section 6.3.5.1 the effect that different fits have on the central value of the chiral

continuum extrapolation.

1.0 am; =0.010 +Y - am=0.010
\ 4 am;=0.005 t  am;=0.005
0.8 o am=0.008 3.2 am; =0.008
| t am; =0.006 \ am; =0.006
r\'{ o am=0.004 ﬁ?:. booam=0.004
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0.4 | 1.6 :
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)(2 /a"pf= 1.19, p=24.9% 0 x> 1dof=0.72, p=76.4%
%600 001 003 004 00 S0 001 003 , 004 005
(Ex /Ms,)’ (Ex/Mg,)’

Figure 6.6: Chiral-continuum extrapolation of the By — K/{v form factors —
fy (left) and f, (right)— from correlated fits using NLO SU(2) hard-Kaon
HMYPT. The shaded band indicates statistical errors, the vertical dashed line
on the left-hand side of each plot indicates where Fy, = M.
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Table 6.8: Coefficients for the continuum extrapolation of the form factors f
and f| for the B; — D4lv decay obtained from an uncorrelated fit to (6.18).

co c1 cy c3 x?2/dof
Mg P f [ 0.516(81) 1.22(1.31) 1.48(34) -8(5) 0.354

s

MY, | 0.694(91) 0.31(1.46) 1.77(27) -6(4) 0.539

6.3.4 B, — D,v form factors chiral continuum extrapolation

Having performed the extra-/interpolation to the physical charm individually on each
ensemble, we now proceed to obtain the form factor shape using pole dominance, our

ansatz is 9
co + Cl(AQCDCL)

1-— (02 + 03A2QCDCL2) q2/M123é*)

where Aqcp = 500 MeV, Mp = 6.330(9) GeV [152] and Mp, = 6.42(10) GeV [9].

Although the data obtained from the extra-/interpolation on a given ensemble is highly

filg,a) =

(6.18)

correlated, the correlation matrices have large condition numbers preventing their use in
correlated fits. As a result we perform uncorrelated fits for the continuum extrapolation
of the form factors f| and f,. Moreover, to improve the quality of the fit we have
removed the ensemble with am; = 0.004 from the fits of By — D fv form factors as this
ensemble has shown behaviour which is not in line with that of the other two ensembles
with a=! = 2.384(9) GeV. The resulting plots are shown in Figure 6.7 and the fitting
coefficients are given in Table 6.8, we see a > 6% lattice spacing dependence at lowest
momentum. Variation to our fitting ansatz are explained in section 6.3.5.1 and their

effect on the central value of the fit are shown in Figure 6.9

6.3.5 Systematics

In this section we present the sources of systematic errors on the determination of the

form factors of the By — K/fv and By — Dsfv decays.

6.3.5.1 Chiral-continuum extrapolation

The systematic uncertainty due to the chiral-continuum extrapolation of the By, — K
form factors is obtained by applying the following changes to the chiral-continuum fit
ansatz (6.17)

1. omitting the term proportional to a?

2. omitting the term proportional to M2

3. omitting terms proportional to a? and M2
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Figure 6.7: Continuum extrapolation using (6.18) and the main diagonal of the
covariance matrix for the form factors f and f, of the B; — Dsfv decay. The
shaded band indicates statistical errors, the vertical dashed line on the left-hand
side of each plot indicates where Ep, = Mp,.
4. analytic fits omitting the chiral logarithms
5. analytic fits omitting the chiral logarithms and the term proportional to a?
6. varying the value of f; in the coeflicients of the chiral logarithms from fy=
112 MeV [7] in the chiral limit to fx = 155.5 MeV [151]
7. varying the scalar pole mass Mp+(0") = 5.63 GeV in f; K by plus/minus 100 MeV
8. omitting the data point at zero momentum
9. omitting the data point at the highest momentum p'= 27/L(2,0,0)
10. excluding ensembles with pion masses M, = 400 MeV.

For the By — D, form factors we apply the following changes to (6.18)

1.

2.

3.

4.

replacing type IV charm extrapolation by types I, II and III (6.9)
omitting the data point at zero momentum
omitting the data point at the highest momentum p'= 27/L(2,0,0)

including a term proportional to M2 in the numerator of (6.18)
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Figures 6.8 and 6.9 shows the relative changes of the form-factor central values under

each fit variation
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Figure 6.8: Relative change of the form-factor central value under the considered
fit variations for By — K /v. In each plot, the shaded band shows the statistical
uncertainty of the preferred fit. The three vertical lines show the location of the
synthetic data points used in the subsequent extrapolation to g% = 0.

Afi = S0 = f1 AP (6.19)

where i = {0,+}. For By — K decays the largest difference between our preferred
fit and the alternative fits is obtained when the term proportional to M2 is removed
to (6.17) it accounts for a ~ 5% change for fo and ~ 3% for f;. Omitting the chiral
logarithms has an effect ~ 2% and ~ 3% for fo and f,, respectively. Removing the a?
term from (6.17) changes the central value of the fy and f, fits by ~ 3% and ~ 2%. For
Bs — Dglv decays the largest difference between our preferred fit and alternative fits is
obtained when the term proportional to M2 is added to (6.18) and when we use as input
for our fits Type III charm extrapolation (6.10). Given that there is no light valence
quark content variation in the decay By, — DJflv it is not clear why adding a term
proportional to M2 would result in the largest systematic for this decay. Whether the
observed change is due to a real effect such as a one-loop vertex correction, simulation
noise, or a combination of these two factors requires further study and is beyond the

scope of this work. We take the largest difference between our preferred fits (6.17) and
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Figure 6.9: Relative change of the form-factor central value under the considered
fit variations for By — Dgfv. In each plot, the shaded band shows the statistical
uncertainty of the preferred fit. The three vertical lines show the location of the
synthetic data points used in the subsequent extrapolation to ¢? = 0.

{moa, cp, (} {7.420,4.860,2.920}
{moa £ opmya,cp, C} | {7.420 £ 0.180,4.860,2.920}
{moa, cp £ 0¢,, C} | {7.420,4.860 + 0.420, 2.920}
{moa, ¢y, C £ oct | {7.420,4.860,2.920 + 0.210}

Table 6.9: Seven sets of parameters used to estimate the systematic errors due
to the implicit dependence of the RHQ parameters on the lattice spacing

(6.18) and any of the alternate fits as systematic uncertainty due to the chiral-continuum

extrapolation.

6.3.5.2 Lattice-scale uncertainty

The implicit dependence on the lattice spacing through the parameters of the RHQ
action moa, ¢, ¢ is estimated by computing the form factors f| and f, for the seven sets
of parameters shown in Table 6.9. We then perform uncorrelated two parameter fits to
obtain the slopes Af/Amga, Af/Acp,Af/A(. These slopes are then multiplied by the
uncertainty in the corresponding RHQ parameter due to the lattice spacing in Table 5.3.
We add the individual contributions from the three RHQ parameters in quadrature to

obtain the total systematic error due to the lattice spacing. We obtain that the error
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Table 6.10: Systematic error results due to the valence strange-quark mass
dependence of the B; — K{v and By — Dglv form factors f| and f, on the
a~! = 1.785(5) GeV ensemble with am; = 0.005, ms = ms + Myes. Results are
shown for final meson momenta p? = (27ii/L)?.

Bs — Kflv Bs — Dgly
n® | fi il fL
0 | 0.00% 0.01%

1 10.00% 0.05% | 0.00% 0.00%
2 |1 0.01% 0.04% | 0.00% 0.00%
3 10.02% 0.04% | 0.00% 0.00%
4 10.01% 0.03% | 0.00% 0.01%

due to the lattice spacing for the B — K /(v form factors is 1% both for f and f,, and
for the Bs — Dsflv form factor is 0.8% and 1.6% for f| and f,, respectively.

6.3.5.3 u/d - quark mass uncertainty

We estimate the error in the B; — K/{v form factors due to the u/d-quark mass uncer-
tainty by varying am,, /4 by plus/minus one sigma. We observe a central value shift for
fo and fi of 0.1%. For By — Dslv form factors we estimate that the error due to the

mass uncertainty of u/d-quark is negligible.

6.3.5.4 Valence strange-quark mass dependence

The strange quark masses employed in our simulations correspond to a mass at or near its
physical value. To study the valence strange-quark mass dependence, we calculated the
Bs — K{lv, By — Dglv form factors on the a=! = 1.785(5) GeV, am; = 0.005 ensemble
with two additional spectator-quark masses of amg = 0.03 and 0.04. Figure 6.10 shows
the valence-quark mass dependence of the B; — K{v and By — Dgflv form factors. We

observe that all errors are below percent level —c.f Table 6.10— and hence negligible.

6.3.5.5 Heavy-quark discretization errors

In the region mga ~ 1, the RHQ action leads to a nontrivial lattice-spacing depen-
dence of physical quantities. We estimate the discretization errors of the heavy sector
using HQET power counting. The O(a?) errors from the action are obtained from
the mismatch coefficients — i.e. coefficients needed so that lattice matrix element
match their continuum counterpart — of the dimension 6 bilinears b{v - D, o - E}b and
by4(D-E — E-D)b [143, 153]:

1 1

— 6.20
8m2Ea2 Sm%a2 ’ ( )

JE(mo, cp, ¢) =




Chapter 6 Results

73

t p=2m(0,0,0)/L }
b p=2x(1,0,0)/L f

1.10

p=2x(1,1,0)/L |

p=2x(1,1,1)/L

$=22(2,0,0)/L

1.05

1.0035»%

0.95

f| I/fﬁemml

0.90

0.030 0.034

1.10

0.038

ax4(my +myes)

0.042

0.046

1.05

11010 ] R

f /fcen tral
1/JL

0.95

0.90

0.030 0.034

0.038
a24(M +Myes)

0.042

0.046

~entral

I

0.034

0.038

ax4(m +Myes)

0.042

0.046

f /f<'emru/
1JL

0.034

Figure 6.10: Valence strange-quark mass dependence of the By — K (top two
panels) and Bs — D; (bottom two panels) form factors f; and f, on the
a~! = 1.785(5) GeV ensemble with am; = 0.005. The slopes are normalized by
the form factors obtained with the strange-quark mass used in our production
The colored lines show the results of a linear fit to the three
data points at each momentum. The black vertical line with error band shows
the total (statistical plus systematic) uncertainty in the physical strange-quark
mass [7]. For clarity, data points at equal strange-quark masses are plotted with

simulations.

a slight horizontal off-set.
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where
1 2¢? ¢
= 6.21
moa  moa(2 + moa) + 14+ moa’ (6.21)
1 2 c
= ¢ 4 e (6.22)

dmia  [moa(2+mea)l?  mea(2 + moa)’

(6.23)

The tree-level coefficients for the O(a?) improved heavy-light electroweak operators
bI'D2q, ql'iX - Bb and qla - Eb, are given in [40], and are used in [143] to obtain

the mismatch functions

R ¢
fX1 (moa,cp,C) - _2 _dl 2(1 + moa)} ; (624)
1, c
[xy(moa, ¢p, ¢) = ) _d1 - 2(1—|—pmoa)} ) (6.25)
1= )X +mea)  dy
fy (moa, ¢y, () = 2 moalz2 FTmoa) mga] , (6.26)
dy = ((L+moa) 1 (6.27)

moa(2 + moa)  2maa’

We estimate the O(a2a,a?) error from the current using the function [143]

2
2
= —_ 2
f3(m0a7 Cp, C) Oésc (2 + mga) (6 8)
and obtain the size of the relative error from fg, fx,, fx,, fy and f3 using

error, ~ fn(moa, cp,¢)(ahqep)F, (6.29)

where n = {F, X1, X2,Y,3} and k = 2 for all functions except for f3 for which it takes
the value kK = 1. We present in Table 6.11 the estimates of heavy-quark discretization
errors from the five different operators in the action and the current. We take the size
of the heavy-quark discretization errors to be the estimate on our finer a=! = 2.383(9)
GeV lattices, which is 1.55% for f| and 1.81% for f .

6.3.5.6 RHQ parameter uncertainties

As discussed in section 5.3.3 our b-quark propagators are obtained using the non-
perturbatively tuned RHQ action (3.33). The tuned parameters moa,c, and ¢ given
in Table 5.3 have four significant sources of uncertainty: lattice-scale, statistics, heavy-
quark discretization errors and experimental inputs. We present in Figures 6.11 and 6.12
the RHQ parameter dependence of the B; — K/{v and Bs — Dslv form factors f and
f1. We estimate the systematics due to the RHQ parameter uncertainties by multi-
plying the slopes shown in this plots Af/Amga, Af/Acy, Af/A( by the uncertainty
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Figure 6.11: RHQ parameter dependence of the B; — K form factors f| (left)
and f| (right) on the 243 ensembles with am; = 0.005 using the unimproved
heavy-light vector current in Eq. (4.4). The slopes are normalized using the form
factors obtained at the central set of RHQ parameters. From top to bottom,
the plots show the dependence on mga, cp, and . The colored lines show the
results of a linear fit to the three data points at each momentum. The black
vertical lines indicate the tuned values of the RHQ parameters. The shaded
vertical bands indicate the systematic errors in the RHQ parameters due to
the lattice-scale uncertainty. For clarity, data points at equal RHQ parameter
values are plotted with a slight horizontal off-set.
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Figure 6.12: RHQ parameter dependence of the Bs — D; form factors f (left)
and f, (right) on the 243 ensembles with am; = 0.005 using the unimproved
heavy-light vector current in Eq. (4.4). The slopes are normalized using the form
factors obtained at the central set of RHQ parameters. From top to bottom,
the plots show the dependence on mga, cp, and . The colored lines show the
results of a linear fit to the three data points at each momentum. The black
vertical lines indicate the tuned values of the RHQ parameters. The shaded
vertical bands indicate the systematic errors in the RHQ parameters due to
the lattice-scale uncertainty. For clarity, data points at equal RHQ parameter
values are plotted with a slight horizontal off-set.
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Table 6.11: Percentage errors from mismatches in the action and current for the
bottom quark on the 243 and 323 ensembles. For this estimate, we calculate the
mismatch functions for the non-perturbatively-tuned parameters of the RHQ
action from Table 5.3. We estimate the size of operators using HQET power
counting with Aqcp = 500 MeV and the coupling constant a}S(1/a) = 1/3 on
the 243 ensemble and 0.22 on the 323 ensembles. To obtain the total, we add
the individual errors in quadrature, including each contribution the number of
times that operator occurs. Contribution E is counted twice, and 3 is counted
twice for f| and four times for f,.

O(a?) error  O(a®) errors  O(a2a) error
from action  from current  from current Total (%)
E X, Xo Y 3 i
a T =1.785(5) GeV 047  0.67 LI13 1.07  1.93  3.27 4.26
a~! =2.383(9) GeV 0.36 0.43 0.75 0.76 0.65 1.55 1.81

in the corresponding RHQ parameter due to heavy quark discretization errors and ex-
perimental inputs — c.f. Table 5.3—, and adding the individual contributions from the
three RHQ parameters and the two uncertainty sources in quadrature. We obtain that
the error due to the lattice spacing for the Bs — K /v form factors is 1% both for f| and
f1, and for the By — Dglv form factor is 0.8% and 1.6% for f| and f|, respectively.

6.3.5.7 Light/charm-quark discretization errors

The action and the heavy-light /charm vector currents are the dominant sources of dis-
cretization errors from the light /charm quark and gluon sector. These discretization er-
rors are O((aAqcp)?) from the action and O(asariy, (amy)?, a2aAqep, (ap)?) from the
heavy-light vector currents, where am, = amg + amyes = {amyg = 0.00102(5), am, =
0.540(13)} [6, 7, 10] is the bare quark mass. We do not observe any evidence of sizeable
momentum dependent discretization errors in our data. As shown in Figure 6.2 the Kaon
and Ds meson energies are consistent with continuum expectations, and smaller than
power-counting estimates of O((ap)?). Hence we do not include momentum dependent
discretization errors in our systematics. We remove the dominant error coming from the
action by the inclusion of a term proportional to a? in the chiral-continuum extrapola-
tion (6.17), and give estimates of the discretization errors from the heavy-light/charm

vector currents on the a~! = 2.384 GeV ensembles on Table 6.12

6.3.5.8 Renormalization factor

We have presented in section 4.3 our renormalization procedure. We will now consider
the uncertainties from the three parameters entering (4.26) separately and then add

them in quadrature to obtain the total error. The statistical uncertainty of the flavour
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Table 6.12: Heavy-light/charm vector current discretization errors for the B; —
K{lv and B; — Dylv decays with Aqcp = 500 MeV and o, = 0.22. As shown
in Figure 6.2 the Kaon and D, meson energies are consistent with continuum
expectations, and smaller than power-counting estimates of O((ap)?). Hence
momentum dependent discretization errors in our systematics are taken to be

0%.

By — Klv Bs — Dylv
O(asamy) ~ 0.7% ~ 12%
O((amy)?) > 0.1% ~ 29%
O(azaAQCD) ~ 1% ~ 1%
O((ap)?) 0% 0%

conserving factors Z/ (4.28) and Z" (4.27) is in both cases 0.2% —c.f. Table (6.4)—.
We estimate the perturbative truncation error to be the full size of the 1-loop correction
in the a~! = 2.384 GeV ensemble, this leads to an error for pyo and py, to be 1.6% and
0.6%, respectively. Errors of O(asam,) and O((ammg)?) due to quark mass dependent
errors in pyu have already been accounted for in the previous section, so we don’t count
them again. Our final estimate for the systematic uncertainty due to the renormalization
factor is 1.7% for f and 0.7% for f, .

6.3.5.9 Electromagnetic and Isospin breaking

The leading quark-mass contribution to the isospin breaking from the valence quark
masses is of O((mgq — my)/Aqcp) ~ 0.5%, which is obtained using the light quark
masses m,, = 2.40(23) MeV and mg = 4.80(23) MeV from [154] and Aqcp = 500 MeV.
The electromagnetic contribution to the isospin breaking is expected to be O(as) ~
1/137 ~ 0.7% which is the typical size of 1-loop QED corrections.

6.3.6 Error budget

We present in Tables 6.13 and 6.14 our complete error budget on the determination of
By, — Klv and B, — D lv form factors at three representative ¢? values within the
range of simulated lattice momenta — c.f Section 6.3.7 —. We find that the largest
source of uncertainty for Bs — K /v form factors comes from statistical errors, followed
closely by the systematic errors due to the chiral continuum extrapolation. We calculate
a total uncertainty of ~ 5% for f +S%K and ~ 6% for f&*7%. This values indicate a
reduction in the total uncertainty ~ 1% compared with [135]. The largest source of
uncertainty for By — Dgfv form factors comes from light quark and gluon discretization
errors and calculate a total uncertainty of ~ 16% for both the f f «=Ds and fég «=Ds form

factors.
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J]fs—ﬂ( féBs—>K
Ep [GeV] 0.85 0.50 0.27 | 0.85 0.50 0.27
¢ [GeV?] 17.6 20.8 23.4 |17.6 20.8 234
f(g*) 099 1.64 277|099 1.64 2.77
Statistics 39 33 33 | 32 26 26
Chiral-continuum extrapolation 3.1 28 25 | 46 45 4.7
Light-quark mass myq 01 01 0.1 01 0.1 01
Strange-quark mass m 01 01 01|00 00 00
Lattice-scale uncertainty 16 16 16 | 1.5 15 15
RHQ parameter tuning 10 10 10| 10 10 1.0
Renormalization factor 1.0 09 09 |16 16 1.7
Heavy-quark discretization errors 18 18 18 |16 16 16
Light-quark & gluon discretization errors | 1.2 1.2 1.2 | 1.2 1.2 1.2
Isospin breaking 07 07 07| 07 07 07
Total (%) 52 46 47 | 65 6.1 6.3

Table 6.13: Error budget for the B, — K /v form factors at three representative
¢? values in the range of simulated lattice momenta. For convenience, we also
show the corresponding Kaon and Dg meson energy, Ep. Errors are given in %.
The total error is obtained by adding the individual errors in quadrature.

6.3.7 Synthetic data points

The continuum physical quark-mass fy(¢?) and fo(g?) form factors are obtained from
the chiral-continuum extrapolation of the form factors f| and f, equations (6.17) and
(6.18), by performing the linear combinations

1@ = 5= Ui (Bp.) + (M~ Ep) () (6.30)

/2Mp,
fold*) = W[(MBS — Ep,) f(Ep,) + (E2DS - MQDS)fL(EDs)] (6.31)
Bs — Dy
Now that we have taken into account lattice effects, we generate three synthetic data
points in the ¢? region in which our lattice simulations were performed. These synthetic
data points are given in Table 6.13 and are used to extrapolate to ¢> = 0 using the

z-expansion [155, 156].

6.3.8 z-expansion

To obtain results over the full kinematical range we use our synthetic data points together
with their correlations, and rely on the analyticity of the form factors as a function of

the momentum transfer ¢? and the z-variable [155, 156]

(¢ to) = V1-a?/ty —1-to/ty (6.32)

V1@t 1 —tofty




80 Chapter 6 Results

Bs—Ds f s—Ds

+ 0
Ep [GeV] 22 21 20| 22 21 20
¢? [GeV?] 88 99 109 | 88 99 109
f(q*) 1.01 1.10 1.21 | 0.80 0.85 0.90
Statistics 3.7 23 19 | 46 3.0 1.7
Chiral-continuum extrapolation 43 1.7 42 | 53 28 1.7
Light-quark mass myq 00 00 00 ] 0.0 00 0.0
Strange-quark mass mg 00 00 00 ] 00 00 00
Lattice-scale uncertainty 1.2 12 12 | 15 15 15
RHQ parameter tuning 1.2 12 12 |09 08 0.8
Renormalization factor 1.2 12 1.2 |16 17 1.7
Heavy-quark discretization errors 25 25 25|18 18 18
Light-quark & gluon discretization errors | 13.9 13.9 13.9| 13.9 13.9 13.9
Isospin breaking 0r 07 07| 07 07 07
Total (%) 15.0 149 149 | 15.6 15.7 159

Table 6.14: Error budget for the Bs — D¢fv form factors at three representative
¢? values in the range of simulated lattice momenta. For convenience, we also
show the corresponding Kaon and D, meson energy, Ep. Errors are given in %.
The total error is obtained by adding the individual errors in quadrature.

where t; = Mp, + Mp with P = {K, D} and t( is a free parameter which determines
the range of |z| in the semileptonic region. The z-variable maps the complex ¢? plane
onto the unit disk |2(¢?, )| < 1 such that z(t4,t9) = —1 and z(co,ty) = 1 and allows
for the form factors to be expressed as a convergent power series whose coefficients are
constrained to be small by unitarity and heavy-quark symmetry [155-160]. This conver-
gent power series provides a better description of semileptonic form factors compared to
other functional forms [161, 162] and hence it has been adopted as the preferred method
to determine CKM matrix elements by experimentalists on Babar and Belle, the Heavy
Flavor Averaging Group, and the Particle Data Group [6, 163-167]. With this reasons
in mind we extrapolate our lattice results to ¢ = 0 using the simplified series expansion
[160, 168]

K
1 k
fO(q2> = W Zb(() )Z(q27t0>ka (6.33)
q (¢) k=0
1 K .
fe(@®) = 1= @M. > ) [Z(QQ,to)k - (—1)k_K?Z(q27to)K : (6.34)
(e) k=0

where M3 (0) = 5.63(4) GeV [150], M (1-) = 5.3252(4) GeV [151] and M}, = 6.330(9)
GeV [152]. Equation (6.34) has one degree of freedom less that (6.33) because the
derivative of the form factor f} at ¢® =t (z = —1) must satisfy

{CZ;*] =0 (6.35)

z=—1
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so that the asymptotic behavior Im fy(¢?) ~ (¢* — t,)%? near the Bm production
threshold is preserved [160] and no analogous constraint exists for (6.33). We choose
to = (Mp, + Mp)(y/Mp, —/Mp) where P = {K, D}, so that the full kinematic range
is centered around the origin z = 0 and the magnitude of |z| is minimized so that there
is rapid convergence of the expansion minimizing the errors which arise due to the trun-
cation of the z-expansion. We also implement the unitarity constraint of the coefficients
b; following [160]

K
3" Bil(to)b (t0)b" (t0) S 1, (6.36)
§,k=0
Bji(to) = Znn t0) Nt 15—k (o), (6.37)
n=0
where
(_1)K K-1
b == (—=1)*kby, (6.38)
k=0

and 7); are the Taylor coefficients in the expansion of

M3, 2 2
Bl (1—2)%(1 - 2)
4(t+ _ t0)¢l( ( ) ) (1 _ ZZ*)2 9

U(z) = 2y = z(MJQBS,tO), (6.39)

around z = 0. In equation (6.39) we use the outer functions [159, 160, 169]

(Vtr — @+ /1ty —to)

PR (P 1) =

QKX( JP)
(ty — ¢%) a+1)/4 = @+ )
(t4 —to) /4 ot
x (Vty —¢® + /'ty — (Mp, — Mp))\*/? (6.40)

pB P = 11213(1 + 2)2(1 — 2) (1 + 7)1 — 2) + 271+ 2)]° (6.41)
¢Bs7Ds = 0.5200(1 + 2)2(1 — 2)32[(L+r)(1— 2) + 201+ 2)]*  (6.42)

where for B; — K we have [159, 160] fi: (K = 487, xo+ = 5.03x107%,a = 3,b = 2) and
for fo: (K = 167/(t+(Mp, — Mp)),x1- = 1.46 x 1072,a = 1,b= 1), and r = Mp,/Mp,
in equations (6.41) and (6.42). The values of Bj;, for the By = K{v and By — Dslv

form factors are given in Table 6.15.

6.3.9 Extrapolation of lattice form factors to ¢*> =0

We present the results of the fits to our synthetic data points for the By, — K{v and
Bs — Dglv form factors in Appendix B —c.f. Tables B.9 and B.10 —. These tables are

divided into four sections:
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Table 6.15: Matrix elements Bjj(to) that enter the unitarity bound (6.36). The
remaining coefficients can be obtained from the relations Bj(j 1) = Box and the
symmetry property Bjy = By;.

Boo By B2 Bz Boa Boys
fBoK 0.0115 0.0004 -0.0076 -0.0007 0.0018 0.0004
+
oK 0.0926 0.0137 -0.0484 -0.0174 -0.0003 0.0024

fP7P 966 x 1077 —1.82x 107 —5.95x107° 250x 107° 875x 1076  —565x 1070
PP 3201071 ~1.08 x 107! —1.78 x 107* 148 x 107* 587 x 107 —3.24 x 107°

e The top two panels show the results of separate fits of fy and f. without any

constraints on the coefficients of the z-expansion.
e In the third panel we use the equality [170]

M2 2
old?) = =iz L&) (6.43)

which holds at large recoil to impose the kinematic constraint f1(0) = fo(0).

e In the fourth panel we present the results of fits obtained by applying both the

kinematic constraint and the constraint on the sum of the coefficients of the vector

form factor [171]
N 3
®\2 (A
kz_o(b+) (mb) . (6.44)

through Bayesian priors. Taking A = 1000(500) MeV we obtain for the central
value of the prior B = 0.01 and Gaussian width op = 0.03. We implement the
Bayesian fit by minimizing the augmented x3,, [172]

(B — > Bjibjby)?
2

(6.45)
OB

Xgug = X2 +

6.3.10 Conclusion

In Appendix B — c.f Tables B.9 and B.10 — we see that the results obtained using
the kinematic constraint f1(0) = fo(0) on its own and those obtained by also including
the heavy quark constraint (6.44) are in agreement. The normalization coefficients b(®),
slopes b)) /b©) and curvatures b /b0 are well determined by the lattice data, with
central values that are stable within errors for the good quality fits —i.e. p values
larger than 10% for By — K (constrained fits), and for all fits with K > 2 for By —
D; (unconstrained fits) which satisfy the unitarity constraint (6.36)—. Given that we
performed correlated fits for the By — K form factors we may use the x?/dof and
p-values to guide us on our choice of preferred fit for this decay. We therefore choose the

kinematic and heavy quark constrained fit with truncations K = 2/3 for the z expansion
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Figure 6.13: Preferred K = 3 fit of the Bs — K /v (left) and B; — Dslv (right)
lattice form factors to the z-expansion (6.33)—(6.34) including the kinematic
and heavy-quark constraints versus ¢2. The solid curves with error bands show
the fit results for f; (¢?) and fo(¢?). The vertical dashed line on the right-hand
side of each plot shows ¢*> = (Mp, — Mp)? where P = { Mg, Mp,}.
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Figure 6.14: Chiral and continuum extrapolated form factors, fo(q?) and f. (¢?)
as a function of the momentum transfer. Left By — K /v taken from [8], right
Bs — Dglv taken from [9].

of the form factors f/fo of the By — K decay as our preferred fit. For uncorrelated
fits the x?/dof and p-values are not objective measures of the quality of the fit, as such
we make our choice of preferred fit for the form factors fy and f1 of By, — Dy decays by
studying the effect that the number of term in the z expansion has on the error of the
slopes b(1) /b(0) and curvatures b® /b(?). We therefore choose the kinematic and heavy
quark constrained fit with truncations K = 3 for the z expansion of both form factors
f+/fo of the B — Dy decay as our preferred fit. The results obtained for our preferred
fit are shown in Figure 6.13. In the ¢? region where our simulation took place —i.e.
15 < ¢®> < q12nang_>mu and 8 < ¢® < qrznaXBﬁDgz,,f our fit results for the form factors fy
and fi are within statistical errors to the fits obtained by HPQCD —c.f Figure 6.14—.
Extrapolating our results to ¢> = 0 we obtain the values ff/s_?K(O) = 0.179(26) and

f(ﬁfm *(0) = 0.43(14). These results are in tension with those reported by HPQCD

using non relativistic lattice QCD (NRQCD) [8, 9] and those obtained using Light Cone
Sum Rules (LCSR) [173, 174] — c.f Table 6.16—. Our results for the form factors for
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Form factor HPQCD LCSR  RBC/UKQCD Our result
8,9  [173, 174] [135]
f27K0) = f7-7%0) |0.323(63) 0307003 0.153(33) 0.179(26)
B Ps(0) = fP7P(0) | 0.656(31)  0.867517 0.43(14)

Table 6.16: Values for By — K/v, By — Dsfv form factors in the physical limit
at ¢> = 0.

the By — K/{v decay are within statistical errors with those obtained in our previous
work [135].
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6.4 Rare B decays: b — s{™(~

In this section we present our results of B, — ¢f¢~ form factors.

6.4.1 Operator renormalization and improvement

The perturbative coefficient p (4.26), and the flavour-conserving renormalization factors
Z" (4.28) and Z% (4.27) are given in tables 6.4. We improve the heavy-strange vector
and axial vector currents through O(asa) and present the necessary matching coeffi-
cients in table 6.5. Temporal and spatial O(a) vector and axial-vector current operators
are obtained using equations 6.5 and (6.6), where we replace VJ (4.31)—(4.34) by AL
(4.35)—(4.38) for axial vectors. For the tensor current we do not have one-loop results
for the perturbative coefficient p nor for the O(a) improvement coefficients, as such we
set the residual matching factors and O(a) coefficients to their mean field improved

tree-level values [175],

3
Ty = VZBZT | 50,0+ ady Y 50,7, %50 (6.46)

j=1

where at tree-level d; = 0.07293 on the a1 = 1.785 GeV ensemble and d; = 0.069948
on the a~! = 2.384 GeV ensemble.

6.4.2 The form factors f4,, and frp,

In section 4.2 we have seen that to extract the form factor f4, from equation (4.18) it
is necessary to use as an input parameter the form factor f4,. Similarly, the extraction
of the form factor fr, from equation (4.24) requires the use of the form factor fr,. This
means that although possible, the extraction of the form factors f4, and fr, is a two
step process which results in a signal of lower quality than the one obtained for all other

form factors. As a consequence we choose to extract the form factors fa4,, and fr,, [16]

-
vV q ‘k’ * ]
fan(@*) = 8Mp, Eglm 0ulB. (6.47)

(Mp, + My)*(Mp — MZ —¢*)fa,(¢*) — Mfa,

_ , 6.48
16]\4}35]\4(]%(]\43S =+ M¢) ( )
. |E|(MBS + M, ) * mo V5
) = 1, 9 (649
Mp, + My 2 2 2 2 )\ng(QQ)
— DB Tl (M, +3M3 - - AL 6.50
SMBSM(ZQ) ( Bs + o) q )fT2(q ) M%S _ ]\4(125 ’ ( )
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Form factor Am
on 0

Jv, I 45

Jay, fan2, f1o, fros | 440

Table 6.17: Mass differences (in MeV), between the initial state Bs; meson and
the pertinent resonance, used in the z-expansion (6.56) of the By — ¢¢™ ¢~ form
factors. Taken from [16].

> . (6.51)

where
1

b= —75 | Kl (Bs — Mp,)
' \/q7<

which together with f4, and

ESI T

Val) = 3 | (14 22 ) i) F 5 MBs)fv(QQ)] (652
Tala®) = gy (VB ~ M2 in@) 7 VS ) (6.53)

form the helicity basis. In equations (6.52) and (6.53) A = 4M3,_ k|2

6.4.3 The form factors fy, fa,, fa,s fans frs fr, and fr,, at finite lattice
spacing

Having extracted the effective masses and energies of the ¢ and Bs mesons in section 6.2,
we perform correlated, constant in time fits to (4.11) to (4.23), (6.48) and (6.50) to
extract the form factors fy, fa,, fa,, fa,., fry, fr, and fr,,. We now present the
results of such fits in figure 6.15—6.16 and Tables B.4—B.6. Within our fitting ranges
contamination from excited states is not visible and we use the same fitting ranges for all
momenta and ensembles at the same lattice spacing. Fitting ranges for the 323 ensembles

are obtained by scaling our choices on 243 using the ratio of the lattice spacings.

6.4.4 B, — ¢(t{~ form factors chiral continuum extrapolation

We now proceed to obtain the form factor shape using pole dominance, our ansatz is

co+cC1 (AQCDa)2
1= (2 + esdyopa®) a2/ (M, + Am)?

filg,a) = (6.54)

where i = {V, Ay, A1, A12,T1,T>,T12}, Aqep = 500 MeV and Am is the mass difference

between the initial state and the pertinent resonance —c.f Table 6.17 —. The resulting
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co c1 2 3 x*/dof  p
Fv | 0.435(86) 0.2216(1.4465) 1.244(91) -0.6284(1.5393)  0.64 79 %
fa, | 0.428(77)  -0.4106(1.2166) 1.130(94)  0.7593(1.4779)  0.95 49 %
Fa, | 0.200(47) 0.96(80) 1.24(14) -3(2) 107 38%
fan, | 0.127(31) 0.24278(0.50744) 1.21(17) -1.31777(2.87626) 1.23 26 %
fr | 0.315(51)  0.0742(0.8565)  1.255(70)  -0.2740(1.1764)  0.62 81 %
fr, | 0.210(48) 1.08(82) 1.16(15) _4(2) 870 1Y%
Fro, | 0.308(94) 1(1) 1.28(18)  -2.8420(3.1817)  1.03 42 %

Table 6.18: Coefficients for the continuum extrapolation of the form factors of
the B — ¢¢T¢~ decay obtained from correlated fits to (6.54).

plots are shown in Figure 6.17 and the fitting coefficients are given in Table 6.18. Vari-
ation to our fitting ansatz are explained in section 6.4.5.1 and their effect on the central

value of the fit are shown in Figure 6.18

6.4.5 Systematics

A full error budget including all the sources of systematic errors for the form factors of
Bs — ¢fT¢~ decays has not been finalized. We present in this section the sources of

systematic errors for which a preliminary calculation has been completed.

6.4.5.1 Chiral-continuum extrapolation

The systematic uncertainty due to the chiral-continuum extrapolation of the By — ¢
form factors is obtained by applying the following changes to the chiral-continuum fit
ansatz (6.54)

1. omitting the data point at zero momentum

2. omitting the data point at the highest momentum p'= 27/L(2,0,0)

3. including a term proportional to M2 in the numerator of (6.18)

Figure 6.18 shows the relative changes of the form-factor central values under each fit

variation

Afy = [Pt — fae) ) gPret (6.55)

where i = {V, Ay, A1, A12,T1,T5,To3}. We take the largest difference between our
preferred fit and any of the alternate fits as systematic uncertainty due to the chiral-

continuum extrapolation.
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fgsﬁ¢ ngﬁﬁf’
Ep [GeV] 1.32 123 1.14 | 132 1.23 1.14
q? [GeV?] 15.6 16.6 17.6 | 15.6 16.6 17.6
f(d® 1.29 1.47 1.71]1.38 1.23 1.11
Statistics 72 58 6.2 | 64 52 5.1
Chiral-continuum extrapolation | 1.3 1.8 6.3 | 2.5 1.1 3.7
Renormalization factor 20 20 20| 20 20 20
Total (%) 76 64 91| 72 57 6.6

Table 6.19: Error budget for the By — ¢¢T¢~ form factors fi and f4, at
three representative ¢? values in the range of simulated lattice momenta. For
convenience, we also show the corresponding ¢ meson energy, Ep. Errors are
given in %. The total error is obtained by adding the individual errors in

quadrature.
fa " fai,”
Ep [GeV] 1.23 1.14 1.05|1.32 1.23 1.14
¢ [GeV?] 16.6 17.6 18.6 | 156 16.6 17.6
f(q®) 0.52 0.58 0.65|0.29 0.32 0.35
Statistics 71 53 55 | 70 53 48
Chiral-continuum extrapolation | 6.3 2.5 1.7 | 3.3 21 1.6
Renormalization factor 20 20 20| 20 20 20
Total (%) 9.7 62 61 | 80 6.0 54

Table 6.20: Error budget for the By — ¢¢™¢~ form factors fa, and fa,, at
three representative ¢ values in the range of simulated lattice momenta. For
convenience, we also show the corresponding ¢ meson energy, Ep. Errors are
given in %. The total error is obtained by adding the individual errors in

quadrature.

6.4.5.2 Renormalization factor

We have shown in sections 4.3 and 6.4.1 our renormalization procedure for vector and
tensor currents, respectively. Following the procedure described in section 6.3.5.8 we
estimate the systematic uncertainty arising from the renormalization factor of vector and
axial vector currents to be ~ 1.6%. The leading systematic error in the determination
of the renormalization factor of tensor and pseudotensor currents is given by the use of

the tree-level value pr,, = 1, this error has been estimated in [175] to be equal to two

times the maximum value of |py;, — 1| which using the values from Table 6.4 is ~ 5%.

6.4.6 Error budget

We present in Tables 6.19 to 6.22 our preliminary error budget on the determination of

B, — ¢l ¢~ form factors at three representative ¢ values within the range of simulated
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fjlg‘lsﬁqﬁ fgsﬂb
Ep [GeV] 1.32 1.23 1.14 | 1.23 1.14 1.05
q? [GeV?] 15.6 16.6 17.6 | 16.6 17.6 18.6
f(d®) 0.95 1.09 1.27|0.49 0.54 0.59
Statistics 64 52 52|69 54 54
Chiral-continuum extrapolation | 2.7 0.9 99 | 6.0 4.0 10.0
Renormalization factor 5.0 50 5.0 | 5.0 5.0 5.0
Total (%) 8.6 7.3 122 84 124

Table 6.21: Error budget for the B, — ¢¢T¢~ form factors fr, and fp, at
three representative ¢? values in the range of simulated lattice momenta. For
convenience, we also show the corresponding ¢ meson energy, Ep. Errors are
given in %. The total error is obtained by adding the individual errors in

quadrature.
fra
Ep [GeV] 1.32 123 1.14
7? [GeV? 15.6 16.6 17.6
f(d®) 0.77 0.84 0.94
Statistics 101 74 5.8
Chiral-continuum extrapolation | 6.6 3.8 0.5
Renormalization factor 50 5.0 5.0
Total (%) 131 97 7.7

Table 6.22: Error budget for the B; — ¢¢*¢~ form factors fr,, at three repre-
sentative ¢ values in the range of simulated lattice momenta. For convenience,
we also show the corresponding ¢ meson energy, Ep. Errors are given in %.
The total error is obtained by adding the individual errors in quadrature.

lattice momenta — c.f section 6.3.7 —. The total uncertainties range from ~ 5% to

~ 13% for all form factors.

6.4.7 Extrapolation of lattice form factors to ¢*> =0

We extrapolate our form factors from the rare B decay By — ¢¢T ¢~ to ¢ = 0 following
the same procedure used for the tree level decays By — K{lv and By — DJfv, that
is, we remove lattice discretization effects by means of the chiral continuum extrapola-
tion (6.54) and choose three synthetic data points in the ¢* region in which our lattice
simulations where performed. We then use these synthetic data points together with

their correlations to perform a z-expansion — c.f section 6.3.8 — using

K
2 1 () (2 4 \k
f’L(q ) = 1*q2/(MB +Am)2 Zbo Z(q 7t0) ) (656)
s k=0
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Form factor | NRQCD [16] Our result
fr 1.74(10) 2.20(20)
Fag 1.85(10) 1.67(12)
a, 0.62(3) 0.67(4)
Fa 0.41(2) 0.39(4)
fr 1.36(8) 1.63(12)
fr, 0.62(3) 0.61(3)
Frg 1.10(6) 1.02(20)

Table 6.23: Values for B; — ¢¢T¢~ form factors in the physical limit at q2,,..
First numerical column results from Table XXXI of [16], second column: our
results.

where i = {V, Ay, A1, A12,T1, T2, T12} and Am is the mass difference between the initial
state and the pertinent resonance —c.f Table 6.17 — We present the results of the fit to
(6.56) of our synthetic data points for the By — ¢¢T¢~ form factors in figure 6.19 and
table B.11.

6.4.8 Conclusion

The absence of kinematic constraints on the Bs — ¢¢*¢~ form factors, such as f;(0) =
£;3(0) for i # Ty and j # T gives a limited choice of truncations K that can be studied.
Given that we have three synthetic data points we must take K < 3 so that we have
less than or equal points as fit parameters. We use as guidance our study of the z-
expansion of By — K/v and By — D v form factors, and the result obtained for the
Bs — ¢4~ form factors fr, and fr, with the kinematic constraint fr,(0) = fr,(0)
to choose our preferred fit. We conclude that the most sensible fit we can obtain with
the available data is given by truncating the z expansion at K = 3. We use this
truncation to extract our final result for the By — ¢¢*¢~ form factors. Comparing
our results at ¢2,. = (Mp, — M¢)2 with those obtained in lattice simulations using
non relativistic QCD (NRQCD) —c.f Table 6.23— we see that within statistical errors
there is agreement for all form factors except fy and fr, which agree within ~ 1.30.
We compare in Table 6.24 our final results with those obtained in lattice simulations
that make use of NRQCD [16], we see that there is agreement within statistical errors
for the form factors fa,, fr,, fr, and fr,, but there is a tension for fy, fa, and fa,,.
Comparing our results with those obtained using Light Cone Sum Rules (LCSR) [17]

we see agreement in all form factors except fi .
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Form factor | NRQCD [16] LCSR [17] Our result
Fr 0.24(7) 0.434(35)  0.97(42)
Fag 0.38(6) 0.474(37)  0.56(10)
fa, 0.29(3) 0.311(29)  0.204(84)
Far 0.25(3) N/A 0.154(18)
fn 0.31(2) 0.349(33)  0.378(75)
r, 0.31(2) 0.349(33)  0.378(75)
JTos 0.56(5) N/A 0.45(14)

Table 6.24: Values for B, — ¢¢+¢~ form factors in the physical limit at ¢ = 0.
First numerical column results from Table XXXI of [16], second column: results
from LCSR Table VII of [17], third column: our results. N/A entries indicate
that this form factors were not directly calculated, but instead the alternative
form factors fa, and fr, were extracted.
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Figure 6.16: From top to bottom Bs; — ¢¢T¢~ form factors fr,, fr, and fp,,,
(left) form factors as a function of time on the a=! = 1.785(5) GeV ensemble
with am; = 0.005. (right) dependence of the form factor on the starting time
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Conclusions

In this work we have carried out the first calculation of By — D v form factors using
RHQ b quarks and heavy DWF ¢ quarks. We also performed an update on the calcula-
tion of B; — K /(v form factors of reference [135] with RHQ b quarks. We independently
determined the flavor conserving factor Z{’}’ and the perturbative coefficient p, which to-
gether with Z%} are necessary for the renormalization of vector and axial vector currents.
We have also calculated the one loop matching coefficients necessary to improve vector

and axial vector currents to O(asa).

We determined the O(a) improvement terms for tensor and pseudotensor currents, which
together with a future determination of matching coefficients at one-loop can be used
to reduce discretization errors in the heavy-strange tensor and pseudotensor currents by
improving them through O(asa). Working at tree-level, we performed the first calcula-
tion of By — ¢4~ form factors with RHQ b quarks and DWF s quarks. Rare B decays
are particularly challenging due to long-distance effects and the limited number of ¢?

values than can be simulated.

In the region of parameter space on which our simulations were performed our fit results
for the form factors f; and fy for the tree level decays Bs — K{v and By — Dslv are
in agreement with those obtained by the HPQCD collaboration using NRQCD [8, 9.
However, there is significant tension between our extrapolated results at ¢ = 0 and
those obtained from LCSR [173, 174].

Our results for the rare B decay By — ¢fT{~ are of particular importance as this
decay, being mediated by FCNC proceeds only through box and penguin diagrams.
This suppression results in a strong sensitivity to New Physics making it an ideal testing

ground in the search for new particles.

Our final results for the rare B decay Bs — ¢f*¢~ form factors in the region ¢2,, =
(Mp, — My)? are mostly in agreement within statistical errors with those obtained by
the Cambridge group using NRQCD [16, 176, 177], the two exceptions being the form

97
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factors fir and fr,. Once our results were extrapolated to ¢ = 0 all of our form factors

except fy were in agreement with those obtained using LCSR [17].

The calculations performed in this dissertation provide important, independent checks
to existing calculations by the Cambridge group [16, 176, 177], HPQCD [9, 178], and
the Fermilab/MILC [179, 180] collaborations which are all based on overlapping sets of
MILC’s staggered gauge field configurations, and which use NRQCD b quarks together
with highly improved staggered (HISQ) and/or AsqTad light and s quarks in the valence

sector.
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Conventions

A.1 Notation

Throughout this work in units in which c=h =1

Space time coordinates:

Minkowski metric is g, = diag(1,—-1,—1,—1)

Space time indices are denoted by Greek letters, latin indices indicate space com-

ponents only.

Pauli matrices:

01 0 —1 1 0
o Gell-Mann matrices
010 0 -3 O 0 0
AM=1|1 0 0 =17 0 0 A3= 10 =1 0 (A.2)
000 0 0 0 0
0 01 0 0 —i 0 00
M=10 00 X=00 0 M= 10 0 1 (A.3)
1 00 i 0 0 010
0 0 O . 1 0 0
A= 10 0 — Ad=—1=10 1 0 A4
7 0 0 0 -2

99
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e Gamma matrices in Minkowski space:

oo O 0 o . 0 op
70 = V= ’ V5 = 10N V2Y3 = (A.5)
0 —00 —00 0

oo O 0 —ioj . 0 oo
70 = V=, ’ V5 = 10717273 = (A.6)
0 0 1 og O



Appendix B

Numerical results

a_l [GEV} my n2 [tmim tmax} Af[é ZfL X2/d0f p [tmim tmax] ]\/jél ZfH Xz/dOf p
1785 0.005 | 0 [6,10]  0.6465(73) 101 40 %
1| [6,10)  2609(42) 216 7% | [6,10]  0.5489(75) 0.60 66 %
2 | [6,10]  2.016(42) 254 4% | [6,10]  0.4820(99) 044 77 %
3| 6,10 1.645(59) 151 19% | [6,10]  0.432(15) 054 70 %
4] [6,10] 1.433(83) 088 47% | [6,10]  0420(24)  0.65 62 %
1785 0.010 | 0 [6,10]  0.6542(76) 244 4%
1] (6,10  2555(38) 098 42% | [6,10]  0.5553(80) 1.06 37 %
2 | 6,10 1.978(41) 012 97% | [6,10]  0.497(10) 020 94 %
3| [6,10] 1.676(57) 038 82% | [6,10]  0.468(16) 012 97 %
4| [6,10]  1.502(30) 034 85% | [6,10]  0.448(22) 015 96 %
2.383 0.004 | O 8, 13] 0.6485(79) 0.62 73 %
1 8, 13] 2.582(43) 066 70 % [8, 13] 0.5569(94) 0.40 90 %
2 | [8,13]  2046(52) 0.94 47% | [8,13  0.496(13) 070 67 %
3 8, 13] 1.608(79) 1.69 10 % (8, 13] 0.443(20) 099 43 %
4] [8,13)  1.34(14) 132 23% | [8,13]  0394(34) 140 20 %
2.383 0.006 | O 8, 13] 0.6408(54) 3.57 0%
1| [8,13] 2514(32) 276 1% | [8,13]  0.5462(61) 091 50 %
2 | 8,13  2084(39) 0.62 74% | [8,13]  0.4858(92) 0.56 79 %
3| [8,13] 1.738(56) 0.54 80% | [8,13]  0.439(15) 024 97 %
4| [8,13] 148285 0.69 68% | [8,13  0.398(25) 0.88 52%
2383 0.008 | 0 [, 13]  0.6537(79) 205 4%
1| [8,13]  2521(39) 234 2% | [8,13]  0.5666(84) 0.72 65 %
2 | 8,13  2.056(42) 049  84% | [8,13]  0.495(11) 083 55 %
3| [8,13]  1705(66) 1.01 42% | [8,13]  0453(19) 135 22 %
4| [8,13]  1.40(10) 026 97% | [8,13]  0.412(34) 1.06 38 %

Table B.1: Form factors f| and f, on all ensembles. Results are shown for K
meson momenta p* = (277 /L)?
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my Me n? [tmin, tmax} ]\4)13 ZfL X2/d0f p [tmina tmax] Ai_l/zf” XQ/dOf p
0.005 0.300 0 [9, 13] 0.7637(51) 0.03 100 %
1 [7, 13] 1.313(13) 0.74 61 % [9, 13] 0.7380(57) 0.17 95 %
2 [7, 13] 1.234(14) 0.73 62 % [9, 13] 0.7144(74) 0.61 65 %
3 [7, 13] 1.162(17) 0.95 45 % [9, 13] 0.690(10) 1.12 34 %
4 [7, 13] 1.111(23) 0.29 94 % [9, 13] 0.666(14) 3.65 1%
0.005 0.350 O [9, 13] 0.7812(56) 0.03 100 %
1 [7, 13] 1.239(13) 0.80 57 % [9, 13] 0.7602(62) 0.22 92 %
2 [7, 13] 1.175(14) 0.80 57 % [9, 13] 0.7406(80) 0.85 49 %
3 [7, 13] 1.115(17) 1.05 39 % [9, 13] 0.720(11) 1.56 18 %
4 [7, 13] 1.074(22) 0.40 38 % [9, 13] 0.697(15) 4.40 0%
0.005 0.400 O [9, 13] 0.7946(61) 0.04 100 %
1 [7, 13] 1.172(14) 0.85 53 % [9, 13] 0.7781(69) 0.29 88 %
2 [7, 13] 1.120(15) 0.87 51 % [9, 13] 0.7625(88) 1.12 34 %
3 [7, 13] 1.070(18) 1.18 31 % [9, 13] 0.744(12) 2.07 8%
4 [7, 13] 1.036(22) 0.52 79 % [9, 13] 0.723(16) 5.19 0%
0.010 0.300 0 [9, 13] 0.7534(54) 0.36 83 %
1 [7, 13] 1.315(13) 1.73 11 % [9, 13] 0.7249(60) 0.34 84 %
2 [7, 13] 1.226(15) 1.59 14 % [9, 13] 0.7007(77) 0.34 85 %
3 [7, 13] 1.140(18) 1.27 27 % [9, 13] 0.680(11) 0.30 87 %
4 [7, 13] 1.102(23) 2.35 3% [9, 13] 0.663(15) 0.35 84 %
0.010 0.350 O [9, 13] 0.7692(59) 0.40 81 %
1 [7, 13] 1.238(14) 1.85 8 % [9, 13] 0.7451(66) 0.37 83 %
2 [7, 13] 1.165(15) 1.66 12 % [9, 13] 0.7250(84) 0.34 84 %
3 [7, 13] 1.093(18) 1.50 17 % [9, 13] 0.708(11) 0.34 85 %
4 [7, 13] 1.068(23) 2.55 2% [9, 13] 0.695(16) 0.40 81 %
0.010 0.400 O [9, 13] 0.7807(65) 0.44 8 %
1 [7, 13] 1.169(14) 1.87 8 % [9, 13] 0.7609(72) 0.40 80 %
2 [7, 13] 1.108(16) 1.67 12 % [9, 13] 0.7451(92) 0.37 83 %
3 [7, 13] 1.046(19) 1.69 12 % [9, 13] 0.732(12) 0.41 80 %
4 [7, 13] 1.032(23) 2.66 1% [9, 13] 0.724(17) 0.49 74 %

Table B.2: Form factors f; and f, on all ensembles with a=! = 1.785 GeV.
Results are shown for Dy meson momenta p? = (2r7i/L)>
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my Me 7% [tmin, tmax] M]; 2}1 x%/dof  p [tmins tmax] ]Wl;l 2f” x%/dof  p
0.004 0.280 O [12, 17] 0.8286(69) 047 80 %

1 [9,17]  1.247(15) 170 9%  [12,17]  0.8037(78) 045 81 %
2 [9,17]  1.189(17) 175 8%  [12,17]  0.776(10) 041 84 %
3 [9,17] 1134200 172 9%  [12,17]  0.747(14) 045 81 %
4 (9,17 1.067(24) 221 2%  [12,17]  0.707(19)  0.39 86 %
0.004 0340 0 [12,17] 0.8515(79) 052 76 %
1 [9,17  1.147(15) 186 6%  [12,17]  0.8310(90) 043 82 %
2 (9,17  1.102(17) 1.98 4%  [12,17]  0.807(11) 043 83 %
3 (9,17 1.059(20) 202 4%  [12,17]  0.780(15) 057 72%
4 9,17  1.008(24) 247 1%  [12,17]  0.742(21) 047 79 %
0.006 0.280 0 [12,17] 0.8214(56) 0.74 59 %
1 [9,17]  1.261(13) 1.66 10% [12,17]  0.7993(64) 048 79 %
2 [9,17]  1.213(14) 2.05 4%  [12,17] 0.7778(83) 038 86 %
3 (9,17 1171(17)  2.04 4%  [12,17]  0.754(11) 032 90 %
4 9,17  1.088(21) 1.80 7%  [12,17]  0.742(16) 047 80 %
0.006 0.340 O [12, 17] 0.8429(64) 083 53 %
1 [9,17]  1L161(13) 156 13%  [12,17]  0.8259(73) 047 79 %
2 (9,17  1.128(15) 2.00 4%  [12,17]  0.8087(94) 0.33 89 %
3 (9,17  1.097(17) 2.06 4%  [12,17]  0.788(12) 026 93 %
4 9,17  1.028(21) 191 5%  [12,17  0.781(18) 047 80 %
0.008 0.280 0 [12,17] 0.8301(73) 050 78 %
19,17  1.230(18) 145 17% [12,17]  0.8099(84) 042 83 %
2 (9,17 1.179(19) 140 19% [12,17]  0.790(10)  0.63 67 %
3 [9,17]  1127(22) 117 31% [12,17]  0.771(15)  0.84 52 %
4 [9,17]  1.047(30) 167 10% [12,17]  0.746(21) 153 17 %
0.008 0.340 0 [12,17] 0.8550(84) 0.65 66 %
1 [9,17  1.134(18) 157 13%  [12,17]  0.8400(96) 0.56 73 %
2 [9,17]  1.098(20) 152 14% [12,17]  0.824(12) 083 52%
39,17 1.059(22) 127 25% [12,17]  0.808(16) 111 35 %
4 [9, 17] 0.992(29) 1.68 10 % [12, 17] 0.785(22) 1.76 12 %
Table B.3: Form factors f; and f, on all ensembles with a”! = 2.383 GeV.
Results are shown for Ds meson momenta p? = (27ii/L)>
a1 [GeV]  my | 7% | [tmin, tmax) fv X2/dof  p | [tmin,tmax) fa, xX2/dof p
1.785 0.005 | 0
1| [8,15]  1.568(45) 0.44 88% | [8,15]  1.417(40) 159  13%
2 | 8,15  1.397(45) 021 98% | [8,15]  1.239(37) 1.53  15%
3| [8,15]  1.244(56) 0.8 99% | [8,15]  1.069(42) 1.32  24%
1.785 0.010 | O %
1| (815  1.559(63) 155 15% | [8,15]  1.412(53) 0.37  92%
2 | [8,15]  1.346(60) 234 2% | [8,15]  1.258(48) 0.50  83%
3| [8,15]  1.222(68) 059 76% | [8,15  1.133(53) 0.46 87%
2.383 0.004 | O
1| [10,20] 1.626(54) 149 14% | [10,20] 1.356(44) 149 13%
2 | [10,20] 1.393(48) 1.22 27% | [10,20] 1.207(40) 144  15%
3| [10,20]  1.220(54) 0.51  88% | [10,20]  1.091(45) 1.0l  44%
2.383 0.006 | 0
1| [10,20] 1.636(59) 056 85% | [10,20] 1.480(53) 0.82 61%
2 | [10,20] 1.435(58) 0.77 66% | [10,20]  1.265(48) 0.93  51%
3| [10,200 1300(72) 076 67% | [10,20] 1.106(54) 1.37  19%
2.383 0.008 | 0
1| [10,20] 1.609(60) 0.62 80% | [10,20] 1.384(49) 155 12%
2 | [10,20] 1.451(59) 120 29% | [10,20] 1.225(47) 0.80  63%
3| [10,20] 1.261(69) 0.76 67% | [10,20] 1.139(53) 0.48  90%

Table B.4: Form factors fyr and f4, on all ensembles. Results are shown for ¢
meson momenta p* = (277 /L)?
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a”t [GCV] my n? [tmim tmax} fv X2 /dOf '4 [tmim tmax] A XQ/dOf p
1.785 0.005 | 0O [8, 15] 0.588(11) 0.78 60% [8, 15}
1 [8, 15] 0.551(12) 1.21 29% [8, 15} 0.3455(75) 1.13 34%
2 [8, 15] 0.511(15) 0.85 55% [8, 15] 0.3151(81) 0.96 46%
3 [8, 15] [87 15} 0.284(10) 0.33 94%
1.785 0.010 | O [8, 15] 0.598(18) 0.81 58% [8, 15]
1 [8, 15] 0.566(17) 0.92 49% [87 15} 0.3402(98) 0.59 7%
2 [8, 15] 0.545(20) 1.23 28% [8, 15} 0.328(10) 1.40 20%
3 [8, 15] [8, 15] 0.315(12) 2.09 4%
2.383 0.004 | O [10, 20} 0.598(14) 1.81 5% [10, 20]
1 (10, 20] 0.554(15) 1.42 16% [10, 20] 0.3364(88) 1.72 7%
2 [107 20} 0.505(17) 1.70 7% [107 20} 0.3082(88) 1.54 12%
3 [10, 20} [10, 20] 0.287(11) 1.19 29%
2.383 0.006 | O [107 20} 0.596(16) 1.55 12% [107 20}
1 (10, 20] 0.547(16) 1.01 43% [10, 20] 0.341(10) 1.52 13%
2 (10, 20] 0.506(20) 2.04 3% [10, 20] 0.320(10) 1.11 35%
3 [107 20} [107 20} 0.292(13) 1.19 29%
2.383 0.008 | 0 [10, 20] 0.634(16) 0.77 66% [10, 20]
1 [107 20} 0.585(17) 1.13 34% [107 20} 0.359(10) 0.41 94%
2 (10, 20] 0.554(20) 1.81 5% [10, 20] 0.331(11) 0.73 70%
3 [10, 20] [107 20] 0.312(13) 0.45 92%

Table B.5: Form factors f4, and fa,, on all ensembles. Results are shown for
¢ meson momenta p? = (27ii/L)?
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q2 ffsﬁ\K fOBSHK
[GeV?] 1.07 0.77 0.53 1.07 0.77 0.53
1.07 1.6139¢-03 2.0018e-03 2.9658e-03 | 5.2035e-04 5.1376e-04 6.0122e-04
f+ 0.77 | 2.0018e-03 3.0997e-03 3.9310e-03 | 6.2021e-04 7.4453e-04 8.9291e-04
0.53 2.9658e-03 3.9310e-03 8.5804e-03 | 9.0353e-04 1.0595e-03 1.3423e-03
1.07 | 5.2035e-04 6.2021e-04 9.0353e-04 | 2.5828e-04 2.2629¢-04 2.6213e-04
fo 0.77 | 5.1376e-04 7.4453e-04 1.0595e-03 | 2.2629e-04 2.8290e-04 3.4583e-04
0.53 6.0122e-04 8.9291e-04 1.3423e-03 | 2.6213e-04 3.4583e-04 4.4509e-04
Table B.12: Variance-covariance matrix for the By, — K /v form factors at three
representative ¢ values
2 Bs—Ds Bs—Ds
q + 0
[GeV? 2.2 2.1 2.0 2.2 2.1 2.0
2.2 1.3687e-03 8.7742e-04 1.2447e-04 | 1.2463e-03 8.4080e-04 2.6153e-04
f+ 2.1 8.7742e-04 6.4369e-04 2.8231e-04 | 7.6535e-04 5.6025e-04 2.6533e-04
2.0 1.2447e-04 2.8231e-04 5.1792e-04 | 4.6244e-05 1.3981e-04 2.6689e-04
2.2 1.2463e-03  7.6535e-04 4.6244e-05 | 1.3654e-03 9.0960e-04 2.3755e-04
fo 2.1 8.4080e-04 5.6025e-04 1.3981e-04 | 9.0960e-04 6.3880e-04 2.3756e-04
2.0 2.6153e-04 2.6533e-04 2.6689e-04 | 2.3751e-04 2.3756e-04 2.3487e-04
Table B.13: Variance-covariance matrix for the By — D v form factors at three
representative ¢ values
e f‘gzsw ffgﬁé
[GeV?] 15.6 16.6 17.6 15.6 16.6 17.6
15.6 1.7062e-06 1.4360e-06 8.9286e-07
fv 16.6 1.4360e-06 1.4436e-06 1.3833e-06
17.6 8.9286e-07 1.3833e-06 2.1661e-06
15.6 9.8533e-07 8.3852e-07 5.8806e-07
fao 16.6 8.3852e-07 8.0977e-07 7.4194e-07
17.6 5.8806e-07 7.4194e-07 9.5731e-07

Table B.14: Variance-covariance matrix for the By — ¢¢* ¢~ form factors fy and
fa, at three representative ¢> values. We present the block diagonal covariance
matrix for the form factors fir and fa, as the correlation between these two
form factors does not enter in our fits.
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e fa " Fan
[GeV?] 16.6 17.6 18.6 15.6 16.6 17.6
16.6 | 2.6149e-07 1.9648e-07 9.4682¢-08
fa, 17.6 1.9648e-07 1.8275e-07 1.5719e-07
18.6 | 9.4682e-08 1.5719e-07 2.4511e-07
15.6 8.2016e-08  6.2420e-08 3.3725e-08
fa, 16.6 6.2420e-08 5.4681e-08 4.2821e-08
17.6 3.3725e-08 4.2821e-08 5.4881e-08

Table B.15: Variance-covariance matrix for the B; — ¢¢¢ form factors f4, and
fa,, at three representative ¢> values. We present the block diagonal covariance
matrix for the form factors f4, and fa,, as the correlation between these two
form factors does not enter in our fits.

2 Bs—¢ Bs—¢

q le fTQ

[GeV?] 15.6 16.6 17.6 16.6 17.6 18.6

15.6 | 7.4206e-07 6.4486e-07 4.3749e-07 | 2.3406e-07 2.0420e-07  1.5920e-07
fr,  16.6 | 6.4486e-07 6.4011e-07 5.9672e-07 | 2.3959¢-07 2.2090e-07  1.9094e-07

17.6 | 4.3749e-07 5.9672e-07 8.4603e-07 | 2.3627e-07 2.3838e-07  2.3669e-07

16.6 | 2.3406e-07 2.3959e-07 2.3627e-07 | 2.2153e-07 1.7567e-07 1.0922e-07
fr, 17.6 | 2.0420e-07 2.2090e-07 2.3838¢-07 | 1.7567e-07 1.6576e-07 1.4893e-07

18.6 | 1.5920e-07 1.9094e-07 2.3669e-07 | 1.0922e-07 1.4893e-07  2.0069e-07

Table B.16: Variance-covariance matrix for the By — ¢¢¢ form factors fr, and
fr, at three representative ¢ values. We present the full covariance matrix as
we made use of it for the extrapolation of the form factors to ¢ = 0 with the
contraint fr, (0) = fr,(0).

¢ fre?

[GeV?] 15.6 16.6 17.6

15.6 | 1.1589e-06 8.9954e-07  4.9062e-07
frs  16.6 | 8.9954e-07 7.5988¢-07 5.3286e-07

17.6 | 4.9062e-07 5.3286e-07  5.8275e-07

Table B.17: Variance-covariance matrix for the B; — ¢¢*¢~ form factor fr,, at
three representative ¢ values.
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