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UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Alexandros Zenonos

It is estimated that there are more than 7 billion mobile phone devices active worldwide.

This radical growth of mobile technology is starting to be exploited by experts for cheap

large-scale data collection. In this work, we are interested in environmental data, such

as radiation, noise and air pollution, which is crucial for public health. The traditional

approach of collecting environmental data typically requires equipment that is expensive

to obtain and maintain, as well as a number of environmental sciences experts to admin-

ister them. On the other hand, by exploiting the wide availability of mobile devices, fine

grained sensor data can be collected in cities. This data can be used to create detailed

maps providing insight to experts about the environmental phenomenon, which in turn

will assist the authorities in decision making and urban planning. In more detail, we are

interested in the concept of participatory sensing, where people contribute information

from the mobile devices they carry with them. However, even though collecting data

through people’s mobile devices is effective and cheap, people are often self-interested

actors that only have local information about the environment and pursue their own

agenda. This means measurements may be taken in a suboptimal way. In particular,

participants often do duplicate work, i.e., different people take a number of measure-

ments at the same location and time, or they do not explore the whole map of interest,

which leads to a partial or false picture of the environment.

http://www.soton.ac.uk
http://www.southampton.ac.uk/faculties/faculty_physical_sciences_engineering.html
http://www.ecs.soton.ac.uk
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To address these challenges, a coordination system is needed to guide or suggest when,

where and who should take measurements. Specifically, the use of intelligent algorithms

can solve this problem by coordinating and assisting humans to take more informative

measurements as well as fill the gaps for areas that are not covered yet and avoid

duplicate work. Moreover, since humans are often predictable in their daily routines the

system can exploit this fact in order to make more informative suggestions to people.

In particular, a key aim in this work is to ensure that people can get suggestions about

taking measurements at times and locations that are least intrusive to their daily life.

However, people might not provide the measurements suggested or worse provide false

information for their own reasons.

Against this background, we provide a complete participatory sensing framework

with algorithms for coordinating measurements for environmental monitoring. Our

algorithms use local search, heuristics, clustering techniques and stochastic simulations

to map participants to observations that need to be taken. In particular, our algorithms

intelligently search through the space of possible solutions to find mappings that will

maximise the total information learned about the environment in a given time period.

The main contributions of this thesis are three algorithms that solve the problem with

different requirements. Specifically, the first algorithm, Local Greedy Search, LGS,

deals with more deterministic scenarios, in terms of participants’ mobility patterns and

behaviour. The second algorithm, adaptive Best-Match, aBM, deals with uncertainty

in participants’ mobility patterns and behaviour, in terms of taking the suggested mea-

surements. Finally, the third algorithm, Trust-based adaptive Best-Match, TaBM, deals

with coordinating participants in the presence of malicious users, who attempt to alter

the overall picture of the environment by submitting false measurements.

We empirically evaluate our algorithms on real-world human mobility and air quality

data. Our results show that our algorithms outperform the state of the art in terms of

utility gain and accuracy, while being faster at runtime. This indicates that coordinating

measurements has a significant benefit in participatory sensing applications in terms of

understanding environmental phenomena.
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Chapter 1

Introduction

Applications involving the placement of sensors for monitoring dynamic environmental

phenomena, such as radiation, air and noise pollution, are receiving considerable atten-

tion (Brown et al., 2016; Venanzi et al., 2013; Seinfeld and Pandis, 2012; Stansfeld and

Matheson, 2003). It is a subject that concerns many, from environmental organisations

to policymakers and the general public. Noise pollution can cause heart conditions,

loss of sleep and changes in brain chemistry (Chepesiuk, 2005). Poor air quality can

have short-term effects on health, such as headaches, asthma, eye irritations and lack of

concentration (Mabahwi et al., 2014; Seaton et al., 1995a). More importantly, however,

air pollution is responsible for a range of heart-related diseases and leads to approx-

imately 7 million deaths per year (Landrigan, 2017). This costs the global economy

hundreds of billions of pounds in terms of lost labour income and trillions in welfare

losses (World-Bank, 2016). Thus, understanding the phenomenon and predicting how it

is going to change, in the long term as well as on a daily or even hourly basis, is crucial

in allowing decision makers to take action. For example, in terms of urban planning,

city councils can make decisions about where to build parks and plant trees to minimise

the effect of high pollution areas in cities (Paoletti et al., 2011) or construct new roads

so as to efficiently handle traffic based on air pollution measurements1. Furthermore, it

can help doctors link environmental factors with symptoms, and thus improve patients’

treatment (Burke et al., 2006).

In all of these cases, monitoring spatio-temporal phenomena used to require a significant

amount of effort and a high cost to accomplish. In particular, traditional methods

of environmental monitoring usually involved a number of expensive specialised static

sensors (Jutzeler et al., 2014; Chong and Kumar, 2003). Such approaches also required

a number of experts working for a significant number of hours in order to sample the

environment and analyse the collected data (Brian et al., 2008).

1http://planningguidance.communities.gov.uk/blog/guidance/air-quality/when-could-air

-quality-be-relevant-to-a-planning-decision/

1

http://planningguidance.communities.gov.uk/blog/guidance/air-quality/when-could-air-quality-be-relevant-to-a-planning-decision/
http://planningguidance.communities.gov.uk/blog/guidance/air-quality/when-could-air-quality-be-relevant-to-a-planning-decision/
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(a) Dylos (b) Aeroqual (c) Airbeam

Figure 1.1: Examples of portable devices that measure air quality in terms of atmo-
spheric particulate matter (PM).

Recent advances in technology now offer an alternative way to monitor environmental

phenomena. In particular, there are an estimated 3 billion Internet users2 and more

than 7 billion mobile phones active worldwide according to GSMA Intelligence’s real-

time tracker3. Moreover, 80% of all adults who are online own a smartphone4. This

proliferation of the Internet and mobile technology has given rise to a new data collec-

tion paradigm which is called participatory sensing. Participatory sensing is a term used

to describe the contribution of sensory information by a group of people using mobile

equipment (Burke et al., 2006). This approach, which will be the one explored in this

thesis, is so named because people contribute sensory information using cheap sensor

devices, so that the burden is divided between thousands of individuals (not necessarily

experts). In other words, participatory sensing has made city-scale environmental cam-

paigns feasible and cost-effective (D’Hondt et al., 2013). The sensors utilised can vary

from the ones built in to smartphone mobile devices, such as microphone and global

positioning systems (GPS), to external portable ones, for example, sensors that can be

connected and controlled via a smartphone. For instance, ‘Dylos’5 , ‘Aeroqual’6 or ‘Air-

Beam’7 are low-cost mobile air quality sensors that are able to measure fine particulate

matter in the atmosphere (shown in Figure 1.1).

Empowering citizens with sensors makes participatory sensing a promising paradigm

for data collection especially in urban planning, public health and natural resource

management (Burke et al., 2006). As we show below, participatory sensing is already

being utilised in many existing applications as a data collection paradigm.

In more detail, existing participatory sensing projects have included asking people to

observe plants and collect plant life data (Han et al., 2011), assessing the living quality of

2http://www.internetworldstats.com/stats.htm
3http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-m

ore-mobile-devices-than-people-in-the-world-9780518.html
4http://techcrunch.com/2015/01/12/80-of-all-online-adults-now-own-a-smartphone-les

s-than-10-use-wearables/
5http://www.dylosproducts.com/
6http://www.aeroqual.com/product/series-500-portable-air-pollution-monitor
7http://www.takingspace.org/aircasting/airbeam/

http://www.internetworldstats.com/stats.htm
http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
http://techcrunch.com/2015/01/12/80-of-all-online-adults-now-own-a-smartphone-less-than-10-use-wearables/
http://techcrunch.com/2015/01/12/80-of-all-online-adults-now-own-a-smartphone-less-than-10-use-wearables/
http://www.dylosproducts.com/
http://www.aeroqual.com/product/series-500-portable-air-pollution-monitor
http://www.takingspace.org/aircasting/airbeam/


Chapter 1 Introduction 3

people in cities (Shen et al., 2017), reporting bird sighting data (Wiggins, 2011), and tak-

ing geotagged photos of blooming flora for the purposes of water conservation (Reddy

et al., 2010b). Moreover, participatory sensing has been used in projects that could

potentially improve public health and assist in urban planning and management. For

instance, it has been successfully used to monitor non-life-threatening radioactive envi-

ronments by collecting more than 43 million measurements in five years, creating fine-

grained spatio-temporal heatmaps of radiation (Brown et al., 2016). Also, NoiseTube8 is

a project that explores the use of the participatory sensing approach to measure and map

urban noise pollution using smartphones (Stevens and D’Hondt, 2010) in cities. Noise-

Tube is further discussed in the next chapter, as it has been deployed in the real-world

since 2008 and, due to its maturity, serves as a case study in this work.

In most participatory sensing systems, including the projects mentioned above, a number

of experts (or task requesters/taskmasters) initiate a campaign (or a task) that ordi-

nary people can contribute to in order to collect information. People take part in such

missions for different reasons (Gao et al., 2015). Specifically, some people participate

for monetary incentives (extrinsic incentives) (Jaimes et al., 2012). This can take the

form of micro-payments or coupons (Albers et al., 2013). For example, a micro-payment

scheme was used as an incentive to promote realtime participation in a university cam-

pus garbage monitoring campaign (Reddy et al., 2010a). Likewise, SenseUtil is a model

where the consumer who needs data pays the producers who carry out sensing tasks

and report the data. The price is determined based on the concept of demand and

supply (Thepvilojanapong et al., 2013), where the price changes dynamically according

to the sensing frequency, quantity of nearby sensing locations and user preferences.

Others volunteer for social reasons, for example, to gain public recognition or a high

position on a leader-board. In some systems, volunteers compete against friends for

points or badges (Anderson et al., 2013). Finally, some people volunteer because of their

personal interest in a social cause, altruism, or as a hobby (intrinsic incentives) (Jennings

et al., 2014). For example, an application for finding an endangered species of insects in

the UK relies on the excitement of the visitors of a particular area on the South coast

of England that the insect is believed to inhabit (Zilli et al., 2013).

In this work, we capture the need for incentivisation (either intrinsic, extrinsic or social

interest) by assigning a cost for taking measurements to each participant (Chapter 4) or a

budget (Chapter 5). While a cost can capture the energy cost or monetary compensation

required to take measurements, it is difficult to quantify its value, as it has to be related

to the information gained when a measurement is taken. A budget is another way

to constrain the number of measurements that each user is able to take. This can

represent the number of measurements the mobile device is able to take before battery

life is depleted or the number of measurements a user is willing to take given a specific

incentive, such as money or social interest. Crucially, in either case it cannot be assumed

8http://www.noisetube.net/

http://www.noisetube.net/
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that participants will provide an unlimited number of measurements; they should not

be seen as robotic entities that behave exactly as instructed all the time. Instead, it is

more fitting to view them as self-interested agents that have their own personal goals

and limited information about the environment. For instance, they might believe that

taking a measurement in the city centre is more useful than elsewhere, since more people

are potentially affected, or they might not take a measurement at all since they are too

busy with their daily routine and might believe that the impact of a single measurement

is low at their location.

Despite the need for incentivisation, participatory sensing delivers impressive results.

However, all the aforementioned projects lack an equally important element. They do

not provide a coordination system that can efficiently guide or suggest to participants

when and where to take measurements in order to collect the most valuable information

about the environment. Rather, they rely on people taking measurements whenever they

want. In particular, citizens are self-interested actors making local decisions and pursu-

ing their own agenda. This is a major problem, because some areas remain unexplored,

which leads to a false or partial picture of the situation over the entire environment the

campaign initiator is interested in. Also, people may provide redundant information

by taking measurements at the same time and place. This information adds an un-

necessary communication and processing burden, as it entails no new information, and

consequently needs to be addressed by the interested parties. Furthermore, the very

openness of this approach enables the contribution of corrupted data. In particular,

people can act selfishly and exploit the system for their own benefit. Crucially, par-

ticipatory sensing systems are prone attacks from malicious users (Mousa et al., 2015;

Gadiraju et al., 2015). For example, users who fabricate higher pollution measurements

to affect the decision of authorities and policymakers about the development of parks

and roads. This issue is shown to be ubiquitous in systems that depend on people to

perform specific tasks (Gadiraju et al., 2015). Consequently, monitoring human be-

haviour, in terms of false measurements contribution in participatory sensing settings is

an essential need in order to create accurate maps of the environment.

Moreover, in some cases, such as when people carry GPS enabled phones with them

or their phones have Internet connectivity, knowledge about how they tend to move at

particular times might be available to the campaign initiator. This information could be

available either by learning those patterns (Gonzalez et al., 2008; Baratchi et al., 2014a)

or by asking users to explicitly submit their future travel plans9. Typically, people tend

to be predictable in their daily routine (McInerney et al., 2013b). However, to date, only

limited work in participatory sensing has looked into harnessing this knowledge (Chen

et al., 2014). This is a shortcoming because such knowledge can indicate when and where

sensors are available. In other words, a participatory sensing system could exploit the

fact that participants are likely to be at specific locations at specific times in order to

9http://www.tripomatic.com/

http://www.tripomatic.com/
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prepare a plan for suggesting measurements that will lead to a better spatio-temporal

map exploration.

Against this background, we are interested in monitoring environmental phenomena us-

ing the participatory sensing paradigm. In particular, we focus on intelligently collecting

data (measurements/observations) with the assistance of people in order to maximise

the information we learn about the environment over a period of time. This, in turn,

will enable the development of a fine-grained pollution map, covering an area of inter-

est. In more detail, the ultimate aim of this research is to provide a framework with

algorithms for efficiently coordinating measurements in the participatory sensing setting

for environmental monitoring. To this end, we provide the conceptual architecture and

the core algorithms to build a system which will be able to be deployed on a server and

should notify participants when and where to take a measurement either in real time

or in advance. The coordination system however, should be generalisable not only in

different environmental phenomena but also in different applications.

1.1 Research Challenges

Participatory sensing is a promising paradigm for various domains as discussed above.

However, there are still a number of open challenges that need to be addressed in order

to utilise its full potential. In particular, we focus on intelligently collecting data with

the assistance of people in order to maximise the information we learn about the envi-

ronment. In doing so, however, we will take into consideration a number of constraints

that real-life applications exhibit, such as limited resources and willingness of users to

participate. Furthermore, it is necessary to consider uncertainties in the environment,

such as locations where no observations are taken or where the phenomenon is rapidly

evolving over space and time. In addition, it is important to focus on participants’

behaviour in terms of reliability and commitment with the environmental campaign.

This is necessary because the aim of this work is to design algorithms that will not only

perform well in small-scale deterministic scenarios, but rather be applicable in the real

world. Specifically, this work considers the following key challenges:

1. Eliminate redundancy and explore the interested area

In many participatory sensing applications for environmental monitoring an im-

portant challenge is when and where to take measurements in order to learn more

about the area the campaign initiator is interested in. There have been a number

of partial efforts to develop an orchestration platform to assist the initiator in un-

derstanding the impact of the campaign by receiving real-time feedback (these are

further explained in Section 2.1.1). However, the main challenges are still open

since current approaches only provide feedback to the campaign initiator and no

intelligent algorithm is involved. Thus, even though it is possible to assess the
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success of the campaign, there is no way to efficiently explore the area of interest.

These challenges can be best highlighted through an example like the NoiseTube

application. Observing Figure 1.2, which shows an example of aggregated noise

data from Paris, it is clear that only some parts are covered and there is no infor-

mation available about the rest of the map. Consequently, the campaign initiator

only has a partial understanding of the noise pollution in the city of Paris.

This example is an instance of a ubiquitous challenge in participatory sensing do-

mains as none of the aforementioned applications provide any sort of coordination

in order to guide participants towards more informative measurements. Moreover,

it is plausible that the use of cellular phones as sensory devices might result in

the presence of a large number of densely located mobile sensors in an urban area.

As a result, it is possible that the information collected by many of the phones is

redundant (Thepvilojanapong et al., 2010). Such duplicate information may result

in energy loss, in terms of battery life, communication and processing power. In

this context, Thepvilojanapong et al. (2010) have shown that avoiding duplicate

information in participatory sensing applications could save up to 77% of the en-

ergy consumed. The challenge here is to maximise the information collected, but

at the same time reduce redundant measurements that do not add value to the

total information gained. Consequently, given an increasing number of people and

a number of possible spatio-temporal locations to take measurements, the possi-

ble combinations are exponentially increased, making the problem difficult to be

solved.

2. Quantify informativeness

As explained above, finding when and where to take measurements to gain more

information about the environment is the main challenge of this thesis. This as-

sumes that each measurement provides or entails a specific amount of information

that would be gained whenever that measurement is taken. This is true but no

practical to determnine in environmental monitoring as there is no trivial way of

telling how much information each measurement would provide. To illustrate this,

consider taking a measurement in a city where no other measurements were taken

versus a measurement in a city where multiple measurements already exist. Intu-

itively, a measurement where no other measurements exist is more valuable, but

it is not clear by how much. This depends on the distance in space and time of

other nearby measurements of the phenomenon.

3. Minimise cost / constraint on budget

Participatory sensing makes use of mobile devices that are limited in terms of

battery capacity. Thus, making observations cannot be considered ‘free’. For

instance, when using a smartphone’s GPS sensor, the battery is draining signifi-

cantly faster than normal (Ma et al., 2013). In addition, there may be an extra
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Figure 1.2: Collective noise map for part of Paris, France adopted by (Stevens and
D’Hondt, 2010). Red indicates high noise levels and green low levels. The arrows point

to the roads where measurements were taken.

cost of communicating those measurements in real time as the devices have a lim-

ited communication bandwidth. Each mobile phone device has a different battery

life and people make different uses of it. Thus, it is difficult to quantify this cost,

since taking a measurement might be more costly for one participant than another.

Given the previous observation, i.e., avoiding unnecessary measurements can sig-

nificantly improve energy efficiency, the challenge here is to effectively capture this

limitation of resources and consider its effect when coordinating measurements.

Also, suggesting to people when and where to take a measurement can be intru-

sive (Shilton et al., 2008). Even if they have volunteered for a campaign, frequent

suggestions can cause annoyance (Shilton et al., 2008). Consequently, each mea-

surement can be associated with the cost of the burden caused to people by having

to make a measurement when suggested. Another way to see this is as a budget

or quota on the daily amount of measurements that each participant is able to

take (Reddy et al., 2010b; Chon et al., 2013). If users were able to take measure-

ments at all times, no algorithm would be necessary as having more information is

always preferable. However, having this constraint requires a decision to be taken

as to when and where each user should take a limited number of measurements.

4. Deal with unreliability and uncertainty in human behaviour

Intelligent decisions in realistic scenarios about the place and time of taking mea-

surements are clearly affected by a number of factors. Specifically, it depends on
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the number of participants in the campaign and the percentage of those who are

available at any given time. Furthermore, it depends on their willingness to con-

tribute to the campaign when requested to do so. Also, even if they are willing

to contribute, they might end up not taking the suggested measurement due to

unforeseen circumstances, such as human error or device malfunction, or because

they changed their mind about participating in the campaign. These reasons com-

plicate the problem as uncertainty is introduced, which is related to both human

behaviour and device reliability.

Current approaches do not directly deal with these issues. They partially attempt

to tackle the human-related constraints by focusing on incentivisation of people

as discussed above. Their rationale is to motivate and engage more people in the

campaigns and get more and higher-quality information from each one of them.

However, monetary incentives imply that a significant budget is associated with

the environmental monitoring campaign, which is not favoured in this work, as

participatory sensing is about large-scale low-cost deployment. Even if other in-

centives are used there is always uncertainty associated with human behaviour,

which makes it impossible to completely alleviate these constraints (Reddy et al.,

2010b). This inherent uncertainty makes the problem more difficult as any deci-

sions taken in advance might be invalid when the actual campaign is running. On

the other hand, planning in real time might not be optimal since decisions often

need to be taken fast and information available might not be utilised.

5. Deal with malicious users

Participatory sensing campaigns rely on the collective information provided by peo-

ple. However, there are no standard mechanisms in place to guarantee the quality

of their contribution. In fact, participatory sensing campaigns are vulnerable to

misreporting. Specifically, in environmental monitoring settings, given that mea-

surements are submitted solely by people, there might be a tendency by malicious

users to falsify their contribution for their own selfish reasons (Dua et al., 2009).

As a result, a false representation of the environment might be created, which in

turn could affect urban planning decisions. In other settings, people might misre-

port or falsify data to gain monetary rewards (Gadiraju et al., 2015). Malicious

users are potentially present in participatory sensing settings (Mousa et al., 2015).

The challenge here is to identify malicious users or minimise the effect of their ac-

tions in order to achieve a truthful representation of the environment. Currently,

research in this area is very limited, as shown in (Mousa et al., 2015). For instance,

they attempted to use experts to rate users or monitor campaigns. However, this

is not always feasible. For instance, experts cannot always rate people monitoring

an environmental phenomenon, since the actual values of the phenomenon are not

known a priori. Also, expert verification of the values, based on a collection of

measurements at the same spatio-temporal location, is not always possible, since

users have only a limited budget; an extra measurement could potentially limit the
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ability of the system to achieve better coverage by taking measurements at more

informative locations.

6. Achieve scalability and high performance

Participatory sensing campaigns usually take place in large geographic areas, such

as cities, states or countries for a sustained period of time and involve potentially

hundreds or thousands of people. For example, NoiseTube is deployed in London,

Brussels and Paris; MobileGas is deployed in Zürich and Citisense in San Diego,

California. Consequently, designing a system that can deal with measurements

taken in a very limited space, i.e., less than the area of a small city or a university

campus, is not of great use in these applications. Thus, the challenge is to be

able to decide when and where to take measurements given a large area over a

time-horizon. In other words, our aim is to coordinate measurements for city-scale

environmental monitoring campaigns. Finding the optimal solution, i.e., the best

spatio-temporal locations where measurements should be taken in order to max-

imally increase the total information gained over the environment is difficult. In

particular, it is likely to be very costly in terms of the computation time (Stranders,

2010). Thus, in order to make a valuable contribution in this kind of participa-

tory sensing campaign, the time to compute these locations should be kept at a

minimum. However, this may require a trade-off with performance. Finding a

good compromise between these two is an important challenge that needs to be

addressed in our research.

Having listed the main challenges faced in this work, there are a number of requirements

that should be fulfilled in order to tackle these challenges. These requirements are

presented in the following section.

1.2 Research Requirements

The challenges noted in Section 1.1 lead to the following key research requirements:

1. Coordinating measurements

Participants should be notified to take a measurement only when it is neces-

sary. Specifically, they should avoid taking duplicate measurements that cause

energy loss or measurements that cost more than the benefit in general. This is to

maximise the information learned about the environment, i.e., to achieve better

spatio-temporal map exploration and therefore understand the phenomenon being

monitored (addressing challenge 1).

2. Representing the dynamics of environmental phenomena

Sensors often need to monitor highly dynamic and uncertain environments. The
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environmental phenomenon being monitored should be modelled in a way that

captures the spatio-temporal properties that are present in realistic scenarios. A

good model of the phenomenon is required in order to predict unobserved loca-

tions at any given time. This, in turn, will provide an accurate picture of the

phenomenon over the entire environment being monitored. Thus, it will facilitate

better decisions about map exploration and redundancy elimination (addressing

challenge 1). In particular, depending on how dynamic the phenomenon is, there

might be a need to take more measurements at a specific location frequently. How-

ever, there might be cases where the phenomenon is not rapidly evolving, which

means less measurements are required at the specific location. Moreover, many

measurements at the same location and time might not be useful and they should

rather be taken taken elsewhere. In addition, the model should be able to predict

the future state of the world in order to enable the decision makers to take the

best possible actions, concerning urban planning, at any given time.

3. Calculating the informativeness of spatio-temporal locations

A metric to capture or calculate how informative measurements are at specific

points in space and time is needed in order to be able to evaluate these locations

and select those that are the most informative ones (addressing challenge 2).

4. Incorporating constraints on measurements

Dealing with the challenges concerning the cost of taking measurements, the sys-

tem should incorporate a cost function or limit the number of measurements people

can take. Moreover, constraints related to human behaviour, such as availability of

individuals at specific times or willingness to contribute, should also be taken into

consideration. Thus, the algorithms should be able to function in highly uncertain

environments (addressing challenges 3 and 4).

5. Robustness to malicious users

The robustness of the system to malicious actions is crucial for providing an ac-

curate and up-to-date representation of the environment to the parties interested

in environmental monitoring. A key requirement is to provide the mechanisms to

identify potentially malicious users and treat malicious measurements accordingly

(addressing challenge 5).

6. Scalability, performance and complexity

The system should be able to scale with the number of participants, i.e., hundreds

or thousands, in campaigns for monitoring environments. The system should be

efficient in terms of computational complexity in order to make the system applica-

ble in real-life scenarios where time is crucial. At the same time, however, it should

produce high-quality suggestions that will lead to an efficient spatio-temporal ex-

ploration and consequently optimal information maximisation by avoiding dupli-

cated work (addressing challenge 6).
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1.3 Research Contributions

The primary aim of this research is to provide the framework and algorithms in order

to fulfil the requirements set out in the section above (Section 1.2). Concretely, the key

contributions of this work are:

1. We propose the first participatory sensing coordination framework (Section 3.1).

This framework captures the architecture of a system for participatory sensing

applications. In particular, we focus on a framework for environmental monitoring

applications that intelligently coordinates participatory sensing campaigns.

2. We are the first to formalise the problem of coordinating measurements for partic-

ipatory sensing applications (Section 3.2). In particular, we focus on when, where

and who should take an observation in order to maximise the information learned

about the environmental phenomenon.

3. We develop the first algorithm (Local Greedy Search - LGS) to make decisions

about who should take a measurement, when they should take it and where, so

that more information about the area of interest is learned while balancing this

with the cost of taking the measurements (Chapter 4).

4. We develop a novel stochastic coordination algorithm (adaptive Best-Match -

aBM) that extends LGS by efficiently coordinating measurements in uncertain

scenarios as well as handling hundreds of participants at every timestep. In par-

ticular, while LGS uses more accurate (deterministic) mobility patterns, aBM

relies on more noisy probabilistic estimates as these are not always available. The

algorithm consists of an offline component, which is responsible for simulating par-

ticipatory sensing campaigns and choosing the best measurements to be taken, as

well as an online component that adapts the measurements based on real-time

information. The algorithm considers each individual’s budget, incorporates prob-

abilistic knowledge about human mobility patterns and deals with the uncertainty

related to the willingness of people to take a measurement when notified by the

system (Section 5).

5. We present the first coordination algorithm (Trust-based adaptive Best-Match -

TaBM) that coordinates measurements in participatory sensing in the presence

of malicious users. While aBM assumes truthful measurements, TaBM works in

the presence of highly noisy or malicious measurements. Specifically, our algo-

rithm swaps low-trust users with high-trust nearby users. At the same time, even

when low-trust measurements are taken, they will not have a great impact on the

predicted function over space and time (Section 5.7). However, this comes at a

greater computational cost compared to aBM.



Chapter 1 Introduction 12

This work has led to the following publications, which form the basis for Chapter 4 and

Chapter 5:

• Zenonos, Alexandros, Stein, Sebastian and Jennings, Nicholas R. (2015). Coordi-

nating measurements for air pollution monitoring in participatory sensing settings.

In, 14th Int. Conference on Autonomous Agents and Multi-Agent Systems, Istan-

bul, TR, 04 - 08 May 2015, 493-501.

• Zenonos, Alexandros, Stein, Sebastian and Jennings, Nicholas R. (2016). An Al-

gorithm to Coordinate Measurements Using Stochastic Human Mobility Patterns

in Large-Scale Participatory Sensing Settings.In, Thirtieth AAAI Conference on

Artificial Intelligence (AAAI-16), Phoenix, Arizona USA, 12-17 February 2016,

AAAI Press, 3936-3942.

• Zenonos, Alexandros, Stein, Sebastian and Jennings, Nicholas R. (2017). Co-

ordinating measurements in uncertain participatory sensing settings Journal of

Artificial Intelligence Research [Accepted].

• Zenonos, Alexandros, Stein, Sebastian and Jennings, Nicholas R. (2017). A Trust-

Based Coordination System for Participatory Sensing Applications In 5th AAAI

Conference on Human Computation and Crowdsourcing (HCOMP 2017), Quebec

city, Canada, 24-26 October 2017 [Accepted].

In particular, the first publication presents the LGS algorithm. The second one utilises

stochastic mobility patterns where people are fully reliable. The third one includes

both the aforementioned approaches, while also relaxing the assumption of fully reli-

able people. Finally, the last publication deals with the presence of malicious users in

participatory sensing campaigns.

1.4 Thesis Outline

The remainder of this report is organised as follows:

• In Chapter 2, we discuss related work and give a background on relevant tech-

niques used in the literature. In particular, we provide the background on the

techniques on how an environmental phenomenon can be modelled. Moreover, we

divide related work into three parts (agent coordination, task allocation and sensor

placement), which represent the key research areas that our research draws on.

• In Chapter 3, we present our vision of how a real participatory sensing system

could be used in practice such that it utilises an intelligent coordination system.

We also formally describe the problem of participatory sensing coordination and

our representation of the environment.
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• In Chapter 4, we describe our coordination algorithm (LGS) that utilises full

knowledge of human mobility patterns. We also describe how we designed and

performed our experiments and then compare our algorithm to our benchmarks in

terms of performance.

• In Chapter 5, we describe the algorithm (aBM) we developed to tackle the ex-

tended version of our problem where there is uncertainty about human behaviour

and mobility patterns We describe how we designed and performed our experi-

ments and present our findings.

• In Chapter 6, we describe the algorithm (TaBM) we developed to coordinate

measurements in the presence of potentially malicious users in the campaign. We

describe how we designed and performed our experiments and present our findings.

• In Chapter 7, we discuss the conclusions from our work and highlight potential

future work to be done.



Chapter 2

Literature Review

In this chapter, we provide the background that this research draws on. We firstly

present a number of participatory sensing applications (Section 2.1). Then, we describe

how environmental phenomena are represented in related work (Section 2.2) and then

how the informativeness of observations can be quantified (Section 2.3). Quantifying

informativeness enables the evaluation of the spatio-temporal locations of the environ-

ment being monitored, and thus enables the most informative selection of measurements

in space and time. Next, we present literature on coordination techniques. Specifically,

our work draws on the intersection of three main research areas: agent coordination

(Section 2.4), task allocation in the context of crowdsourcing (Section 2.5) and sensor

placement in environmental monitoring (Section 2.6). In the sections below we present

these research areas and show the relationship between our work and each one of those.

The algorithms described in these sections could be applied in our setting, and thus used

as benchmarks or provide the basis for developing novel algorithms.

2.1 Exemplar Participatory Sensing Applications

As mentioned in the first chapter, participatory sensing is a distributed data collection

approach that involves citizens carrying sensors and taking measurements using mobile

devices. In this section, we will give some examples of such applications, illustrating

the usefulness and the potential of participatory sensing. We will also evaluate to what

extent they meet our requirements, identify potential gaps in the literature and oppor-

tunities to improve the impact and usefulness of these campaigns. We focus mostly

on environmental monitoring because of its importance in human health. For instance,

air quality and noise monitoring are extremely important, as air and noise pollution

are detrimental for human health (Passchier-Vermeer and Passchier, 2000; Seaton et al.,

1995b). In particular, we discuss NoiseTube, which was already introduced in Chapter 1,

GasMobile, Citisense, ExposureSense, HazeWatch, P-sense, CommonSense, OpenSense,

14
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Safecast, The Next Big One and TrafficSense. NoiseTube is a research project started

in 2008, deployed in the real world, and finished active development in 2014. However,

due to its success there is a plan to reactivate it again in the near future1. Thus, it is a

suitable example for identifying potential gaps in the literature. GasMobile, Citisense,

ExposureSense, H-watch and P-sense, CommonSense and OpenSense are prominent ap-

plications of the participatory sensing paradigm in air pollution monitoring, which has

severe impact on human health. Also, Safecast, The Next Big One and TrafficSense

are important participatory sensing applications as they show the power of the crowd

and mobile technology in other domains. Consequently, these examples constitute good

candidates for understanding how participatory sensing is applied in practice and in

environmental monitoring in particular, as well as identifying potential gaps in the liter-

ature. However, by no means this is an exhaustive enumeration of participatory sensing

applications.

2.1.1 Noise Pollution

In this section we present the case study of Noisetube (Stevens and D’Hondt, 2010).

NoiseTube is a project that tackles the noise pollution problem in several large cities

in Europe. In particular, the deployment is focused on Brussels, Paris and London. It

proposes a participative approach of monitoring noise pollution by involving the general

public. Part of this project is the use of the NoiseTube app, a smartphone application

which turns smartphones into noise sensors, enabling citizens to measure the sound

exposure in their everyday environment. Each participant is able to share their geotagged

measurement data in an attempt to create a collective map of noise pollution, which is

available to NoiseTube community members. The main motivation for participation in

this campaign is social interest. In other words, people contribute in order to understand

their noise exposure, to build a collective map, to help local governments in tackling noise

pollution by understanding noise statistics and to assist researchers by providing real

data to analyse.

On the other hand, this project enables system designers to assess the potential of the

participatory sensing approach in the context of environmental monitoring. In partic-

ular, developing a smartphone application, which is a widely adopted technology, can

potentially reach thousands of people that could cover large cities. As a result, it can

potentially provide a complete noise pollution map to the interested parties.

Maisonneuve et al. (2010) argue that although noise pollution is a major problem in

cities around the world, current noise pollution monitoring approaches fail to assess

the actual exposure experienced by citizens. In particular, static sensors are located

away from streets and emission sources in order to reflect the average pollution over an

area (Jutzeler et al., 2014). Consequently, they might underestimate the true exposure

1http://citizen-observatory.be

http://citizen-observatory.be
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of people to air pollution. Thus, participatory sensing provides a low-cost solution for

the citizens to measure their personal exposure and contribute to the community by

taking measurements at the sources of the noise pollution. As a result, it can provide

more accurate maps, as fine-grained measurements, both in space and time, that reflect

the true exposure of people can be taken, which will enable authorities to take better

action. This approach seems to work well, achieving the same accuracy as standard

noise mapping techniques but at a significantly lower cost, as no expertise nor expensive

sound level meter equipment is required (D’Hondt et al., 2013).

However, this project still faces some challenges. Some people find it impractical or intru-

sive to continuously use their mobile phone for noise monitoring (Stevens and D’Hondt,

2010). Also, the use of an app for taking noise measurements drains the phone’s battery

faster than normal (Stevens, 2012). Moreover, different devices have different accuracies,

so there is a need for intelligent filtering of erroneous values and estimating accuracy.

More incentives, financial or otherwise, should be used in order to encourage contribu-

tion and promotion of large-scale campaigns (Stevens and D’Hondt, 2010). The main

challenge that we try to address in this work is the need of a system that is able to coor-

dinate measurements taken by participants, which is required given the results obtained

so far (Stevens and D’Hondt, 2010; Stevens, 2012; D’Hondt et al., 2013). In particular,

their analysis has shown that people tend to take measurements when and where they

want, following their own agenda, which results in a potentially suboptimal information

collection. As shown in Figure 1.2 people often fail to explore the area of interest. At the

same time, however, the intrusiveness of the mobile phone app, the energy consumption

and the cost for taking measurements in general should be considered (requirement 4).

It has been argued that setting up participatory sensing campaigns is not a well explored

field of study, and thus not much has been done on supporting those campaigns (Zaman

et al., 2014). To this end, the team behind NoiseTube published a proof-of-concept

architecture for orchestrating participatory sensing campaigns through feedback and

analytics to the campaign initiator (Zaman et al., 2014; D’Hondt et al., 2014). In

other words, when someone initiates a participatory sensing campaign, i.e., monitoring

a geographical area for a period of time with the assistance of the general public, the

system could monitor and support this campaign in real-time. The support is not about

coordinating measurements per se but rather about providing important information

to the campaign initiator (and the participants) about the progress of the campaign in

terms of covered area. Specifically, they present an approach to support participatory

campaigns by developing an orchestration framework2 with focus on scalability, usability

and data quality. The system is similar to Ohmage (Ramanathan et al., 2012), which

is a general purpose participatory sensing platform to monitor crowdsourced data, and

more specifically tailored for environmental monitoring. The idea is that a campaign is

2The ‘orchestration’ here is used to describe a system that consists of many components that if
combined together can support participatory sensing campaigns in terms of providing feedback to the
campaign initiator and the participants.
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initiated and the system processes contributions, monitors the overall campaign progress,

and provides feedback to participants to guide campaign creators towards a successful

campaign. In the first step of this workflow, data is parsed and stored only when people

are contributing to the specific campaign and their measurements fulfil the campaign

initiator’s constraints, such as geographical area and time interval. This framework

keeps track of the progress by measuring the average contribution rate, which can also

give an indication of the quality of the measurements. For example, if the progress

is below a specific threshold the campaign initiator is informed and is able to extend

the campaign duration in order to obtain better results. The framework was validated

by simulating reruns of several noise monitoring campaigns that took place within the

NoiseTube platform. The results show that this framework can potentially support

participatory sensing campaigns but further analysis is needed to understand the extent

that this is helpful.

We believe that this framework is a good step towards tackling the main challenge of

supporting participatory campaigns but it only partially does so. It does not utilise

data that can potentially be available to the campaign initiator, such as human mobility

patterns and historical sensory information about the geographical area of interest in

order to provide the full picture of the campaign. In addition, the main disadvantage

of this system is that it does not utilise any coordination algorithm (requirement 1)

to suggest when, where and who to take measurements in order to make participatory

sensing applications more efficient. Even if the campaign initiator is provided with

feedback about the progress of the campaign, there is currently no way to suggest to

participants to take measurements in an efficient way to provide a better coverage of

the area through time and thus maximise the information obtained. Analysing this

information to make suggestions about which measurements to take requires algorithms

that can intelligently take decisions. Such algorithms fall under the Artificial Intelligence

domain, which was out of scope for the NoiseTube project.

2.1.2 Air Pollution

Another important area in which participatory sensing is making an impact is air pol-

lution monitoring. Several participatory sensing platforms are utilised, each one with

different specifications and constrains.

For example, GasMobile is a low-power and low-cost mobile sensing system for par-

ticipatory air quality monitoring (Hasenfratz et al., 2012a). Instead of relying on the

expensive static measurement stations operated by official authorities for highly reliable

and accurate measurements, GasMobile relies on the participatory sensing paradigm.

In particular, GasMobile is a system developed from the combination of a small-sized,

low-cost ozone sensors and an off-the-shelf smartphone. This system, besides taking

ozone measurements to calculate air quality, can also exploit nearby static measurement
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Figure 2.1: Overview of air pollution map based on GasMobile measurements. This
is the average concentration value per region.

stations to improve calibration and consequently the system’s accuracy. This system was

used in a two-month campaign in an urban area. Specifically, the system was attached to

a single bicycle and took measurements from several rides all around the city. The sam-

pling interval was pre-set to five seconds, collecting a total of 2815 spatially distributed

data points. Data collected was aggregated based on the area selected by the user inter-

ested in the results. To produce the map they divided this area into rectangular regions

and took the average ozone concentration of the observations in that region. Then, each

region was classified into one of three categories: green, yellow or red depending on the

average concentration value as shown in Figure 2.1. The system was evaluated at a

prototyping stage but it has great potential as it shows that air pollution monitoring

can be achieved in a cost-effective manner. The results also show participatory sensing

can produce results of high accuracy as the mean error3 for 2815 measurements was

2.74ppb, which is only slightly higher than in static settings (Hasenfratz et al., 2012b).

However, we identify several gaps to be addressed. Specifically, besides taking mea-

surements, participants will make use of their phone, and thus a 5 second measurement

interval, which is used as a sampling rate, would drain the phone’s battery fast; even

3The mean error is calculated in units of parts per billion (ppb) which is a standard concentration
metric for measuring air quality.
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though due to the fact that the phone is connected with a USB cable and not Bluetooth

communication, battery consumption is reduced by a factor of two (Hasenfratz et al.,

2012a). However, in many cases, a USB connection might not be preferred as it restricts

the mobility of the smartphone. Also, the system was used on only one bicycle, while in

a real application each participant should have their own sensor or at least the sensors

will be deployed in a larger set of bicycles. Consequently, it would be infeasible for all

cyclists to take measurements at all times. Concretely, a coordination system would be

necessary to suggest when, where and who should take measurements in order to learn

more information about the environment while at the same time saving energy (require-

ments 1 and 4). Moreover, assuming that a potential future direction of this project is

to attach sensors to public bicycles, and participants will move from a public bicycle

dock to another, it is possible that they will provide duplicate measurements (measure-

ments taken at the same location at the same time). Depending on the dynamism of the

phenomenon, duplicate measurements can potentially be used to verify measurements

taken, but they provide no extra information about the environment. In this setting,

instead of getting a large number of duplicate measurements, it would be more beneficial

to coordinate measurements, i.e., postpone some measurements or suggest some users to

take them earlier in order to gain more information about the environment. We argue

that an intelligent algorithm could be exploited in order to suggest the points both in

space and in time at which taking measurements would lead to a better coverage of the

environment from the point of view of the campaign initiator, alleviating data redun-

dancy. Also, although air pollution is highly location/time-dependent, GasMobile does

not exploit this information. For instance, traffic junctions and industrial installations

can have a considerable impact on the air pollution. In addition, some roads might be

congested with traffic during specific times of the day, and thus air pollution could be

higher at those times. An environmental model could capture this relation (requirement

2) and thus be able to predict what the ozone concentration values are at unobserved

locations as well as what these values will be in the future.

Another important participatory sensing application that attracted media attention due

to its significance and popularity is Citisense (Nikzad et al., 2012) whose purpose is

to monitor air pollution in large regions, such as San Diego, California, US. Citisense

consists of three components: a wearable pollution sensor, a mobile phone application

and a web interface. Users carry the pollution sensor and the mobile phone with them

throughout the day in order to learn their air pollution exposure. The web interface

provides a more detailed reflection on the air pollution exposure as well as air pollu-

tion maps built with historical air pollution data collected from the users (satisfying

requirement 2). The sensor is connected via Bluetooth to the mobile phone and it is

claimed to take measurements for five days in a single charge. The mobile phone app

(shown in Figure 2.3) is responsible for collecting readings from the sensor and pre-

senting them to the user. Each reading is timestamped and geotagged by utilising the
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Figure 2.2: Measurements taken for the Citisense project. Most areas remain unex-
plored.

mobile phone’s GPS and network-based localisation services. Citisense study was con-

ducted in the field for one month, involving 16 participants. The results show that the

users’ exposure levels differ from the average measurements displayed by static sensors

scattered in cities. In particular, the participatory sensing approach is able to identify

pollution hot spots in the environment that develop due to busy roads, buildings and

natural topology. Also, Citisense made an impact on the awareness of people. Specif-

ically, participants better understood the properties of air pollution and in particular,

they realised that being near busy streets or buses, air pollution is significantly higher

than in other areas. However, as the authors admit, power management is an important

challenge. Even though the sensor has a 5-day battery life, the mobile phone’s battery is

draining much faster, requiring users to charge their phone during the day. Clearly, this

adds a significant burden to participants. Consequently, measurements were missed due

to resource limitations and areas of interest remained unexplored. Given this, Citisense

could strengthen, but not replace, current air quality monitoring techniques4 due to

these challenges that are also part of our requirements (requirement 4). It is evident

that the lack of a coordination system limits the potential of this application.

Another participatory sensing application that attempts to monitor air pollution in large

cities is ExposureSense (Predic et al., 2013). It exploits the increasing number of sensors

4http://mobihealthnews.com/18828/citisense-aims-to-improve-air-quality-data-with-wea

rable-sensors/

http://mobihealthnews.com/18828/citisense-aims-to-improve-air-quality-data-with-wearable-sensors/
http://mobihealthnews.com/18828/citisense-aims-to-improve-air-quality-data-with-wearable-sensors/
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Figure 2.3: Citisense mobile application interface

that smartphones tend to have to convert them into powerful mobile sensor devices. Ex-

posureSense has a different approach than other participatory sensing applications for

air pollution. It attempts to correlate humans’ daily activities and air quality monitor-

ing in order to estimate the users’ daily pollution exposure. To do so, the smartphone’s

accelerometer is used to infer the activities of users and an external mobile sensor is

used for air quality monitoring. In particular, machine learning techniques are applied

on accelerometer data to infer users’ daily activities. In order to gather data from mo-

bile devices they connect smartphones to air quality sensors via a USB cable. Data are

also collected from external sensor networks, which are combined with data collected

from the users and interpolation is performed. Data is spatio-temporally correlated in

order to estimate people’s daily pollutant exposure (satisfying requirement 2). Expo-

sure intensity is scaled based on activity type, burned calories and movement speed.

However, even though this application attempts to learn the users’ daily activities using

accelerometer measurements, it does not take into consideration the human mobility

patterns of people. Thus, in our opinion, important information about users’ daily ac-

tivities is omitted. Research has shown that people are typically predictable in their

daily routine (McInerney et al., 2013b), which can be used to enhance activity recogni-

tion inference. Specifically, having the knowledge about where someone will go can be

associated with their intended activity. Human mobility patterns can also be exploited

to understand people’s habits which could be associated with their personal pollution

exposure. For instance, if someone is jogging every afternoon in their neighbourhood,

they might be exposed to more pollution than someone running in the park. In other

words, the activity itself might not provide as much information as if we know the
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Figure 2.4: Screenshot from Haze Watch web interface. It shows the average air
quality per region.

context of that activity. Therefore, utilising human mobility patterns in participatory

sensing settings could provide insight.

Hazewatch (Sivaraman et al., 2013) is another low-cost participatory sensing system

for urban air pollution monitoring in Sydney. Hazewatch uses several low-cost sensor

units attached to vehicles to measure air pollution concentrations, and users’ mobile

phones to tag and upload data in real time. This project identifies the disadvantages of

current approaches, i.e., using static sensors to monitor air pollution in cities, and aims

to crowdsource fine-grained spatial measurements of air pollution in Sydney. Moreover,

it aims to engage users in managing their pollution exposure via personalised tools.

Specifically, HazeWatch, among others, suggests low pollution routes to users. However,

the system has only been tested by a single vehicle going around Sydney as shown in

Figure 2.4. This illustrates that some areas are not explored and inference is made based

on just a few measurements (satisfying only requirement 2).

Another air pollution monitoring system following the participatory sensing paradigm is

P-sense (Mendez et al., 2011). The ultimate goal of this project is to allow government

officials, international organisations, communities and individuals to access pollution

data to address their particular problems and needs. P-sense enables air pollution mea-

surements at a finer granularity than what is currently achieved by static sensors in

cities. It also enables users to assess their exposure to pollution according to the places

visited during their daily activities. P-sense is easily extensible to allow the integration

of existing data acquisition systems that could enrich the air quality dataset. P-sense

consists of four main components: the sensing devices, the first-level integrators (i.e.,

the users), the data transport network, and the servers. The environmental data are

collected by a number of sensors, such as gas, temperature, humidity, carbon monoxide,
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Figure 2.5: Measurements in P-sense application

carbon dioxide and air quality sensors integrated to mobile phones via Bluetooth. All

environmental data acquired from those sensors are transmitted to first-level integrator

devices, i.e., mobile phones. The phone is able to analyse data in real time, providing

visual feedback to users. The first-level integrators transmit environmental data over

the Internet (data transport network) to a dedicated server, where they are stored and

processed. Users are able to connect to the server and get visual feedback for the data.

However, there are several important research challenges to address before this system is

deployed in the real-world, as highlighted in the work by Mendez and Labrador (2014).

The most important are related to incentives, visualisation, privacy and security. Con-

cretely, participatory sensing campaigns rely on people’s contribution to succeed. This

means that before a campaign starts it should consider how it will incentivise people to

participate and contribute information. Generally, we cannot assume that people can

take an unlimited number of measurements, but rather they have a budget or a cost for

doing so. This cost should be minimised or stay within a specified budget while at the

same time maximising the information learned about the environment (requirement 4).

Moreover, in order to build up-to-date and fine-grained heat maps, both spatially as well

as temporally, a coordination system is required that guides users when and where to

take measurements (requirement 1). This is a crucial element missing from the proposed

framework for this application. Privacy and security of information are not addressed

in our work but rather reliability and robustness to malicious users, which are related,

are of interest (requirement 5). In particular, a mechanism is needed to make the par-

ticipatory sensing campaign robust to cases where malicious users want to contaminate

the campaign by falsifying the values of their measurements.

CommonSense (Willett et al., 2010; Aoki et al., 2009) is a participatory sensing project

that aims to design a mobile air quality monitoring system by conducting interviews

with citizens, scientists and regulators in order to derive the principles and the frame-

work for data collection and citizen participation in general. This approach can also

help in identifying and capturing practical constraints that people face in participatory
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sensing campaigns (requirement 4). Unlike the rest of the applications presented, they

divide analysis into discrete mini-applications designed to promote and facilitate novice

contributions. This approach allows the community members affected by poor air qual-

ity to engage in the process of locating pollution sources and exploring local variations

in air quality. Based on the fieldwork, a set of personas was developed to characterise

relevant stakeholders. Specifically, ‘activists’ are responsible for orchestrating actions

and publicising environmental issues. ‘Browsers’ are interested in environmental quality

but not directly involved in sensing. ‘Data collectors’ are novice community members

who are likely to be affected by air pollution.

However, this approach requires significant effort in order to train users and it is not

practical for large-scale participatory sensing campaigns (requirement 6). Data collected

from the designated people are annotated to provide the context where measurements

were taken. This is an additional burden to people’s workload, and thus it is not favoured

in this thesis. Importantly, however, this application utilises machine learning to make

predictions for the unobserved locations. This is a key step and is also part of our

requirements (requirement 2).

Besides relying on citizens to take measurements, CommonSense attempts to monitor

air pollution by other means. In particular, in one study they run trials with air quality

monitoring devices attached to the rooftops of street cleaners’ vehicles in the city of

San Francisco. These devices are associated with mobile phones that send data to

CommonSense servers. In this way, a systematic coverage of a large city can be achieved

as well as testing, refining and calibrating the system for future deployments. But, still,

street cleaners have a small number of vehicles and their routine is limited to major

roads, which results in unexplored areas, especially in residential zones. Moreover, since

they pass from a point with a specific frequency, it might not be sufficient to provide

temporal exploration of the area.

Overall, CommonSense attempts to monitor the environment with both street cleaners’

vehicles and novice people contribution. However, even though there is a significant

amount of fieldwork, which is essential in understanding the needs of citizens and elicits

the requirements for a participatory sensing application in air pollution monitoring, no

real-world trial with users using their phones was possible. This shows that there are

challenges in running such campaigns that are related to the incentivisation of ordinary

people. Moreover, since we want to minimise the burden caused to people by taking

measurements, this framework is not suitable in our settings as it requires considerable

human interaction to annotate measurements, and training of people to understand

scientific language. At the same time, street cleaners’ vehicles are not sufficient as

they have predetermined paths of a constant temporal granularity which might not be

sufficient. Also, sensors on street cleaners vehicle might be affected over time by other

environmental phenomena such as humidity, high temperatures or dust.
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OpenSense (Hasenfratz et al., 2014) is a project that aims to monitor air pollution in

large cities, which was deployed in Zurich, Switzerland. More than 25 million measure-

ments were collected in over a year from sensors attached to the top of public transport

vehicles. Based on these data, land-use regression models (satisfying requirement 2) were

built to create spatio-temporal pollution maps. One of the challenges that this approach

aims to tackle is the lack of fine-grained spatio-temporal air quality data. Static sensors

are expensive to acquire and to maintain, and thus only a few are placed in every city.

The proposed system consists of 10 nodes installed on top of public transport vehicles

that cover a large urban area on a regular schedule. The collected data are processed

and predictions about the unobserved locations are made using the regression mod-

els (Mueller et al., 2016). Although this is a good approach for providing fine-grained

spatio-temporal information about air pollution, measurements are only taken in roads

where there are bus routes. Consequently, some areas of the city remain unexplored as

in the application above. Also, as the authors point out since sensors are placed on top

of buses they endure vibrations, heat, humidity and long operating times, which might

lead to inaccurate measurements (Hasenfratz et al., 2014). Combining this approach

with human participation could be more beneficial as people will be able to capture air

quality in even more detail.

2.1.3 Other Environmental Monitoring Applications

Participatory sensing was utilised in other applications concerning environmental mon-

itoring. In particular, Safecast is an open platform utilised to measure radiation in

Fukushima, following the Fukushima Daichi Nuclear Power Plant disaster in 2011. The

levels of radiation did not impose a direct threat to life, so people volunteered to assist

authorities in measuring the radiation levels in the environment. Specifically, Safecast,

was utilised to allow people to submit measurements taken using specialised equipment

(Geiger tubes). A total of approximately 1000 devices were used globally, and envi-

ronmental radiation data collection has seen an exponential growth between 2011-2016.

This was a significant milestone in participatory sensing, as this was the first time it

was successfully employed in the wild on such scale (Brown et al., 2016). However, even

though there was a general target (monitor the Fukushima area), there was no system to

suggest when and where volunteers should take measurements to efficiently monitor the

environment. We believe that Safecast would greatly benefit from an intelligent coordi-

nation system, as duplicate measurements in the area will be reduced, while attention

will be drawn in unexplored areas (requirement 1).

Participatory sensing was also utilised in more ambitious tasks. One promising applica-

tion is called The Next Big One (Faulkner et al., 2011). This is a participatory sensing

application for the early detection of earthquakes. These events are difficult to model

and characterise a priori. Thus, this project utilises the accelerometer sensors available
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Figure 2.6: Safecast online platform. It shows a contour map of radiation in Japan.

on smartphones in a way to detect rare events and earthquakes. The focus of the study

is to harness the power of the crowd, i.e., the wide availability of accelerometer sensors,

for early earthquake detection. In shake table experiments, it is found that it is possi-

ble to distinguish seismic motion from accelerations due to normal daily use. However,

for this application to be robust thousands of phones must be utilised. It is estimated

that a million phones would produce 30 Terabytes of accelerometer data per day. We

believe though, that intelligent coordination can alleviate the need for massive numbers

of measurements by selecting only those that contribute the most in the campaign (re-

quirement 1 and 4). In other words, coordination would enable taking measurements

that maximise information about the environment but at the same time minimise the

cost of taking those. Given a rough seismic model of the area of interest, an intelligent

algorithm can suggest to people when to submit their accelerometer readings in order to

contribute in the monitoring for seismic events in a way that maximises the information

learned about the environment, while at the same time minimising the communication

burden.

TrafficSense (Mohan et al., 2008) is a participatory sensing application for the mon-

itoring of road and traffic conditions. In particular, this application relies on people

carrying their smartphones with them while traveling and utilising their sensors like

accelerometer, microphone, GSM radio, and/or GPS sensors to detect potholes, bumps,

braking and honking. The effectiveness of the sensing functions was tested in the roads

of Bangalore and it is shown that is it possible to monitor the roads using a variety
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Figure 2.7: Seismic information in graphical form

of sensors built into the smartphones that users carry with them. In particular, the

accelerometer was used for braking detection and to distinguish pedestrians from users

stuck in traffic. Also, it is used to detect spikes that would suggest bumps in the roads.

Audio was recorded using the phones’ microphones in order to detect noisy and chaotic

traffic conditions. Finally, GPS and GSM cell triangulation are used to localise users’

positions.

While this is a promising way of monitoring the traffic, it is infeasible to utilise all

these sensors of users’ mobile devices throughout the day due to energy constraints

(requirement 4).

2.1.4 Summary

Participatory sensing is a cheap data collection paradigm that is actively being re-

searched. While delivering impressive results, there are still many open challenges.

Even though it has been around for more than a decade it has not yet become the stan-

dard data collection technique. The most important challenges are the incentivisation

of people to participate in those campaigns and contribute information on a daily basis

as well as the energy management of the mobile devices. Crucially, people’s measure-

ments cannot be considered free, or at least they are limited. Moreover, none of the

existing participatory sensing applications employs artificial intelligence techniques to

improve the quality of the campaigns. In particular, there is a major gap for a par-

ticipatory sensing framework that will consider incentivisation and energy constraints

(requirement 4) to coordinate the measurements (requirement 1) that need to be taken

in order to maximise the information learned about the environment. Concretely, it is

crucial to develop intelligent algorithms that search for mappings from participants to
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Table 2.1: Table summarising the requirements of our work that each application
fulfils

Name Req1 Req2 Req3 Req4 Req5 Req6

Coordinating
Measure-

ments

Pheno-
menon
Mod-
elling

Quanti-
fying
Infor-

mative-
ness

Incorpora-
ting
Con-

straints

Robust-
ness

Scal-
ability

NoiseTube

GasMobile

Citisense

ExposureSense X
HazeWatch X
P-sense

CommonSense X
OpenSense X
Safecast X
The Next Big
One

TrafficSense

spatio-temporal locations, given that users have a cost for taking those measurements

or a daily budget. Furthermore, humans are typically predictable in their daily life, i.e.,

having their daily routine which is not exploited by any participatory sensing applica-

tion. This information could be exploited to make relevant suggestions to users about

taking measurements that are on or nearby their daily route. Table 2.1 summarises the

requirements that each participatory sensing application meets. It is clear they fail to

meet most of our requirements, which we believe are crucial to a successful participatory

sensing campaign.

2.2 Environmental Phenomena Representation

A key challenge in monitoring environmental phenomena is to identify any spatio-

temporal patterns in the observations that have been made. These patterns are used to

make predictions (such as noise and air quality) about the locations where no observa-

tions have been made and about the future state of the world.

Regression is commonly used to accomplish this (Stranders et al., 2013; Tiwari et al.,

2016; Schwager et al., 2017). This is a statistical process for estimating the relationship

among variables and in particular understanding how the value of a variable will change

by varying another variable. Two of the most common types used for environmen-

tal monitoring are Piecewise Linear Regression (Section 2.2.1) and Gaussian Processes

(Section 2.2.2).
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In our work, we use Gaussian Processes, as it is a non-linear non-parametric regres-

sion technique that can identify potentially complex spatio-temporal patterns in noisy

observations. Also, Gaussian Processes have been used successfully in modelling spatio-

temporal phenomena as shown in the work of Guestrin et al. (2005); Krause et al. (2006);

Low et al. (2011a); Garg et al. (2012) and Ouyang et al. (2014). Specifically, they pro-

vide uncertainty estimations alongside the predictions, which can be used as a basis for

utility functions.

In this section, we introduce Piecewise Linear Regression and Gaussian Processes in the

context of modelling environmental phenomena, but we focus more on Gaussian Pro-

cesses since it is our model of choice and we examine their properties used in our work.

The model described is key for representing the environment as well as valuing informa-

tion from measurements taken, which are part of the framework proposed in Section 3.1.

Finally, we briefly discuss other approaches used for environmental monitoring.

2.2.1 Piecewise Linear Regression

Linear regression is commonly used in many practical applications because of its sim-

plicity and computational performance. Environmental phenomena however, exhibit

non-linear behaviour over space and time (Stranders et al., 2013). Thus, linear re-

gression is not suitable for modelling the environment. However, Padhy et al. (2010)

proposed the use of a variation of linear regression, called Piecewise Linear Regression,

as an alternative that could be used in environmental monitoring. In particular, in order

to model temperature and pressure, which have a non-linear relationship over time, they

used Bayesian inference to decide whether each data point can be sufficiently explained

by the current regression model or whether a new linear model is required.

Consequently, their environment is separated into a number of regions such that each

region can be modelled by a linear regression. However, the parameters used in this

approach increase with the number of linear regressions used. This makes it difficult to

estimate them, which causes the model to be computationally expensive. Also, it is not

certain where to start and stop in each linear regression, as these parameters need to be

estimated again, which might result in an inaccurate model. Specifically, for each time

step a set of linear regression models is required to model the environment. Besides

the number of parameters of these models to be estimated, each model is only valid

for a specific area, which also needs to be learned. Moreover, standard piecewise linear

regression does not provide the confidence intervals over its estimates which are useful

in order to measure the information gained at each spatio-temporal location.
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2.2.2 Gaussian Processes Regression

Gaussian processes (GPs) (Rasmussen and Williams, 2006) are a class of nonparametric

probabilistic models that are used in modelling spatio-temporal phenomena. For this

kind of phenomena, the interest is not only on the value of the phenomenon (e.g. noise

level or air pollution level) at the sensed location, but also at locations where no obser-

vations were taken (requirement 2). In such problems, regression techniques are used to

perform these predictions. Although Piecewise Linear Regression can sometimes cap-

ture these relationships, as we have seen above, it is not flexible and it does not model

the uncertainty of its predictions (Guestrin et al., 2005; Krause et al., 2006; Low et al.,

2011a; Garg et al., 2012; Ouyang et al., 2014), which is useful to our utility function,

as will be shown in Section 2.3. In contrast, Gaussian processes can capture more com-

plex non-linear relationships and also provide a way to measure the uncertainty of those

predictions through the notion of variance. Moreover, they are flexible in the sense that

they can model different phenomena by using different covariance functions, as we will

see below. These make Gaussian processes the most suitable tool for our work.

Given this, we provide an introduction to Gaussian processes, explain their properties

and how they are of interest to our research. We start with some notation that will be

used throughout this thesis.

Let x∗ be the input vector (test data) and y∗ its corresponding output value (prediction).

In an environmental context, x∗ would represent a single location on the map described

by the spatial (x1, x2) and temporal coordinates (x3). The output value (y∗) would

be the prediction for the actual value (e.g. the air and noise pollution level) at that

specific spatio-temporal location represented by (x∗). Also, let y = f(x) be a process

that denotes the relationship of a D-dimensional input vector x ∈ RD and an output

variable y ∈ R. When representing spatio-temporal phenomena, D = 3. In addition, let

{(xi, yi)|i = 1 . . . n} denote a set of input-output pairs which represents past observations

of the process f (training data). In terms of environmental phenomena, the training data

would be the set of known spatio-temporal locations where measurements were taken

in the past with the corresponding value of the measurement at that time. Finally, we

denote the collection of n-dimensional output vectors yi as y. In other words, y is the

output for n locations. Also, we denote the D-dimensional input matrix as X which is

a collection of n xi (i.e., n rows).

Gaussian processes (GPs) are defined as a collection of random variables, any finite

number of which have a joint Gaussian distribution. In practice, a GP is completely

specified by its mean function and covariance function (or kernel). A mean function

m(x) and a covariance function k(x,x′) of a real process f(x) are defined as follows:

m(x) = E[f(x)],

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]
(2.1)
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where E[X] is the expectation of a random variable X. Thus, we can write a Gaussian

Process as follows:

f(x) ∼ GP(m(x), k(x,x′)) (2.2)

The covariance function k plays a critical role in Gaussian processes. It determines the

covariance between f(x) and f(x′). In other words, it specifies the relationship between

two outputs with respect to their associated input. This enables GPs to identify the

covariance between the outputs of training data, test data and the combination of both,

which gives the predictive power of GPs as shown below. When m(x) and k(x,x′) are

known, they function as a prior over function f . However, when new observations are

made, a GP can be updated to fit these data, increasing the prediction accuracy at the

unobserved locations.

In GPs a key assumption is that data can be represented as a sample from a multi-

variate Gaussian distribution. This is expressed as:[
y

y∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
(2.3)

whereK(·, ·) are obtained by evaluating the covariance function k for all pairs of columns.

X represents the input vector of training data and X∗ the input vector of test data. For

simplicity in notation we set K(X,X) = K, K(X,X∗) = KT
∗ , K(X∗, X) = K∗ and

K(X∗, X∗) = K∗∗. So, we calculate K:

K =


k(x1, x1) k(x1, x2) . . . k(x1, xn)

k(x2, x1) k(x2, x2) . . . k(x2, xn)
...

...
. . .

...

k(xn, x1) k(xn, x2) . . . k(xn, xn)

 (2.4)

K∗ and K∗∗ as follows:

K∗ =
[
k(x∗, x1) k(x∗, x2) . . . k(x∗, xn)

]
K∗∗ = k(x∗, x∗)

(2.5)

Thus, K is the covariance of the training points and K∗ for all the pairs of training

and test points. For the purposes of environmental monitoring we are interested in

the conditional probability p(y∗|y). In other words, given a set of observations y how

likely is a certain prediction for y∗. Using the properties of the Gaussian distribution

we obtain:

y∗|y ∼ N
(
K∗K

−1y,K∗∗K
−1KT

∗
)

(2.6)
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Thus, the best estimate for y∗ is the mean of the distribution and the uncertainty about

the estimation is the variance as shown below:

µ = K∗K
−1y

Σ = K∗∗ −K∗K−1KT
∗

(2.7)

An important property that we exploit in this work is that the covariance of the pre-

diction outputs y∗ does not depend on the actual value of the observations y made, but

rather only on the input vectors X, which are the spatio-temporal locations of those

observations. This will enable us to run simulations forward in time, as it is not neces-

sary to know the actual value of the measurements to estimate the variance at a future

timestep. We will come back to this property when dealing with the algorithms devel-

oped that exploit it.

As we have already mentioned, the covariance function is of critical importance. How-

ever, we have not yet examined how it is expressed mathematically. A popular choice

of such function is the square exponential. It is defined as follows:

k(x, x′) = exp

(
−1

2
|x− x′|2

)
(2.8)

Intuitively, this means that two points have a high covariance value if they are close to

each other (spatially and/or temporally) and a low one if they are far apart. In other

words, the covariance of two nearby observations is higher, which means they are more

correlated compared to others. In practice, however, functions are smoother. Thus,

when a new observation is made, those far apart will have little effect. To achieve this,

the squared exponential function is extended with a positive constant factor (l), called

the characteristic length-scale, which controls the smoothness of the process. In other

words, it determines how much of an effect observations that are far apart have on

the new one. Moreover, it is rarely the case that sensor observations are completely

noise free, thus an additive independent Gaussian distributed noise ε with variance σ2
n

is assumed. Specifically, instead of observing f(x), f(x) + ε is observed. In order to

incorporate this information into the covariance function an extra term σ2
nδxx′ is added

to it, where δxx′ is the Kronecker delta. This is defined as follows:

δxx′ =

1, if x = x′,

0, if x 6= x′.
(2.9)

The effect of adding this is to increase the variance of the output variable by adding

this term into the diagonal of the matrix. In addition, another parameter called signal

variance σf is introduced as a maximum bound on the covariance of the function. The

full version of the squared exponential covariance function is obtained by extending
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Equation 2.8 as follows:

k(x, x′) = σ2
fexp

(
− 1

2l2
|x− x′|2

)
+ σ2

nδxx′ (2.10)

In order to see the result of varying those parameters graphically, we refer the reader to

Figure 2.5 on Page 20 of Rasmussen and Williams (2006). Intuitively though, the larger

the l, the smoother the output function will be. When the noise variance (σn) is low,

sharp variations in the output function are made in order to better explain the data.

The larger the signal variance (σf ), the larger the error bars will be when making predic-

tions further from the observed points. Clearly, these free parameters (θ = {σ2
f , l, σ

2
n}),

called hyperparameters, affect the covariance function, and thus, if arbitrarily chosen,

the model, which is based on the covariance function, will not be able to represent the

phenomenon.

Another popular covariance function is Matérn, which is commonly used for spatial

statistics and geostatics (Jutzeler et al., 2014; Ouyang et al., 2014). Matérn is defined

as follows:

k(x, x′) = σ2
f (1 +

√
3r) exp(−

√
3r) + σ2

nδx,x′ (2.11)

where r =
√

(x− x′)TP−1(x− x′), P =

l1 0 0

0 l2 0

0 0 l3


and θ = {l1, l2, l3, σ2

f , σ
2
n} are the hyperparameters that need to be learned. Specifi-

cally, l1 is the length-scale that controls the smoothness of the regression function over

the x-axis, l2 controls the smoothness of the regression function over the y-axis and l3

over time. Intuitively, (l1, l2, l3) captures the dynamism of the phenomenon in both the

spatial and the temporal dimension. Also, σ2
f is the signal variance that controls the

uncertainty of predictions made further away from the observed points, and σ2
n is the

noise variance that controls the percentage of the data variation that can be attributed

to noise.

However, there is no standard kernel to be used in each application. Domain specific

knowledge should be taken into consideration when a specific kernel is chosen. For ex-

ample, an ideal kernel for air pollution would be a non-stationary5 one that considers air

dispersion and mathematically captures the dynamics of air pollution particles. How-

ever, often this is difficult to capture and, worse, such kernels require many parameters

and are computationally expensive to compute.

Estimating θ is equivalent to finding a value for θ that results in a high p(θ|x,y). In

practice, it is achieved by maximising the log marginal likelihood log p(θ|x,y). This is

5Non-stationary covariance functions allow the model to adapt to functions whose smoothness varies
with the inputs. A stationary kernel is one where covariance only depends on distances between
points (Paciorek and Schervish, 2004).
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given by:

log p(θ|x,y) = −1

2
yTK−1y − 1

2
log |K| − n

2
log 2π (2.12)

A practical implementation of Gaussian process regression (GPR) is shown in Algo-

rithm 1, which is adopted from (Rasmussen and Williams, 2006). Following through Al-

Algorithm 1 Gaussian Process Regression

1: input: X (inputs), y(target), K(covariance function), σ2
n(noise level), x∗(test input)

2: L:=cholesky(K+σ2
nI)

3: α:=LT \(L\y)
4: µ:=KT

∗ α
5: V:=L\K∗
6: Σ:=K∗∗ −VTV
7: log p(y|X):=−1

2yTα−
∑

i Lii −
n
2 log 2π

8: return: µ(mean), Σ(variance), log p(y|X)(log marginal likelihood)

gorithm 1, we observe that it is somewhat different from what we have already discussed

above. The reason is the computational complexity of the algebraic manipulations. In

particular, explicit inversion of the covariance matrix K is very expensive, especially

for a large amount of data. Instead of explicit inversion, Cholesky decomposition is

preferred, which has a complexity of n3

6 . Cholesky decomposition exploits the fact that

the covariance matrix Σ is symmetric and positive definite. Hence, matrix Σ can be

decomposed into a product of a lower triangular matrix L and its transpose LT .

This matrix manipulation makes Gaussian processes efficient to use in practice. In

terms of monitoring spatio-temporal phenomena, they have been used in several cases.

In particular, Guestrin et al. (2005) and Krause et al. (2006, 2008) have used GPs

to find informative locations to place sensors, based on the uncertainty given by the

model, in order to monitor spatial phenomena. Other work has looked into using GPs

to model environmental phenomena in order find informative paths for teams of mobile

robots (Stranders, 2010). In our work, we use Gaussian processes to model our environ-

ment and quantify the informativeness of making observations as shown in Chapter 3.

Moreover, we briefly introduce the concept of the heterskodetastic GP (HGP) model,

which we use in Section 5.7. Basically, a HGP is similar to a GP but it allows variable

noise across the input. This varying noise feature, commonly referred to as heteroskedas-

ticity (Venanzi et al., 2013), is relevant to our participatory sensing settings where data

are typically provided by devices with individual noise levels (i.e. the different levels

of accuracy). Typically, regression models are evaluated in terms of Root Mean Square

Error (RMSE), defined below:

RMSE =

√√√√ 1

|x∗|

|x∗|∑
i=1

(yi − y∗i )2 (2.13)
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This is a metric that captures the differences between the predicted and observed values

in the model and it is an indicator of the accuracy of the model. As indicated in (Venanzi

et al., 2013), each measurement can be modelled with an independent noise parameter.

This has an effect in the covariance function of Gaussian Processes. More specifically,

the new K calculated in Equation 2.4 becomes K + Σ, where Σ is a diagonal matrix

populated with individual measurement noises. In other words, Σ = diag(θ̂1, . . . , θ̂n),

where θ̂i = 1
σ2
i
.

2.2.3 Other Environmental Representation Approaches

Besides Gaussian Processes, other techniques have been applied in the field of environ-

mental monitoring. This section will briefly analyse this literature in order to get a

broad view of researchers’ approaches in this domain and explain why these approaches

are not suitable for our settings.

Rahimi et al. (2005) propose a nested stratified random sampling method for envi-

ronmental monitoring. This approach does not focus on modelling the environment,

but rather on a strategy for collecting data. This removes the predictive capabilities

compared to Gaussian processes, but it is a simple solution that works well for spatial

monitoring. In particular, this technique iteratively increases the sampling resolution,

so that it enables reconstruction of phenomena using a systematic method for balancing

accuracy with sampling cost. Concretely, the surveillance area examined is divided into

a number of strata. Then, environmental variables are sampled in each of the strata

with a number of samples proportional to the area of the strata. Then, the variance is

computed and if it exceeds a specific threshold value, the stratum is partitioned. The

process ends when the variance of each leaf of the stratum tree6 is below that threshold.

This sampling technique, however, does not capture the potential rapid temporal vari-

ations of the environmental variables. It focuses on snapshots of the environment and

thus it is not suitable for monitoring spatio-temporal phenomena.

Szczytowski et al. (2010) make use of Voronoi diagrams to remove unnecessary sam-

ples from oversampled regions and generate new sampling locations in undersampled

locations until an accuracy threshold value is met. This approach follows a similar

philosophy as the one above. Initially, each sensor node (SN) checks locally for the

fulfilment of accuracy requirements. Then, using Voronoi diagrams, the closest neigh-

bour of each SN is detected. Next, each SN checks its neighbour’s measurement for an

accuracy threshold violation. If a threshold violation exists, then a virtual node (VN)

is placed at the Voronoi edge in order to separate the neighbours whose measurement

variance violates the required accuracy. Now, the Voronoi diagram is rebuilt taking into

consideration the VNs added. This process iterates until accuracy requirements are met

6A stratum tree is a hierarchical tree of strata created by continuously applying the stratification
process.
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by adding the VNs. This technique captures the temporal dynamics of the environment

but with a high cost since the algorithm needs to be updated when a single change in the

environment is detected. Thus, it is impractical to use it for monitoring spatio-temporal

phenomena.

Contrary to the previous approaches, the Kalman filter (Deshpande et al., 2005a,b) is

a technique that is able to capture the spatio-temporal dynamics of the phenomenon.

To do so, Kalman filters take into consideration the domain knowledge or the physics

of a phenomenon to create a statistical model of it. For example, Kalman filters are

successfully used in tracking and navigation applications, such as tracking a moving

vehicle through GPS or an aircraft through a radar (Bizup and Brown, 2003). More

specifically, based on the noisy prediction of the aircraft’s previous position, its velocity

and elapsed time and the new noisy observation of its position, it is able to accurately

identify its current state. Also, Kalman filters are efficient in terms of communication

cost since only new information is needed to improve the estimation or the tracking

accuracy. However, for the various phenomena in which we are interested, the dynamics

of the environment are considered unknown, thus a Kalman filter is less suited for these

purposes. In contrast, Gaussian processes are able to identify and model the complex

dynamics of the environmental phenomenon by using a suitable covariance function and

learning the hyperparameters of it from the data (requirement 2).

For some environmental phenomena, such as noise or air pollution, other heuristic tech-

niques have been utilised to monitor the environment. In particular, the proximity

model (Jerrett et al., 2005) has been used to estimate the exposure of people to areas

of high pollution. This model considers the distance of the subjects to the pollution

sources, like roads and highway arteries. For example, studies have found significant

positive correlation between pollution concentration and decreasing distances to schools

from major automotive routes (Wyler et al., 2000). In another study, the distance from

a child’s home to the nearest main road was measured to understand the dynamics and

the effect of pollutants to human health (Jerrett et al., 2001). In these studies, people

have been interviewed about the traffic conditions in their neighbourhood. While this

method is straightforward in terms of analysing long-term exposure to pollution, it has

many limitations. First, it does not capture the air pollution in areas other than the

roads, home, workplace and schools where the studies run. Second, it does not consider

the temporal aspect of the phenomenon, nor the geographical and topological details of

each area. Third, humans are susceptible to biases (i.e., recall bias). Specifically, im-

portant information might be omitted or altered by people due to their personal beliefs.

For example, people might overestimate the traffic if they are in hurry to go to their

work or underestimate it if they are going on vacations.

Another commonly used technique for environmental monitoring is land-use regres-

sion (Jutzeler et al., 2014). This is a special type of linear or non-linear regression

model where traffic, altitude, wind, the surrounding buildings, street type, canyons and
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other topological data are taken into consideration. However, it is often difficult to get

the topography for all the areas that we are interested in. Given this, we are interested in

a more generic approach that is able to model any environmental phenomena in different

cities.

2.2.4 Summary

In this section we presented the state-of-the-art in modelling environmental phenomena.

In particular, we have introduced and analysed piecewise linear regression, Gaussian

Processes and other statistical techniques. We have argued that Gaussian Processes

(GPs) is a useful tool for modelling spatio-temporal phenomena. However, the modelling

capabilities of GPs come at a significant computational cost. On the other hand, GPs

can model a wide range of phenomena by choosing or devising an appropriate kernel.

Thus, GPs is an attractive technique, which we use in order to keep the generality and

flexibility of our work.

2.3 Valuing Information

An important requirement described in Section 1.2 (requirement 3) is to be able to

capture the informativeness of making an observation at a specific location at a specific

time. Valuing potential observations is a fundamental step required for understanding

the capability of an observation in improving situational awareness. Also, in the previous

section we mainly focused on how Gaussian processes are able to model spatio-temporal

phenomena. However, the quality of the representation is dependent on the spatio-

temporal locations of where the measurements are taken. Thus, in this section we present

the state of the art in valuing the information gained from taking measurements.

Let us consider a utility function u(xL, A) which depends on the state of the world,

xL, and chosen observations A ⊆ L, where L is a finite set of all the possible locations

where observations can be taken. One sensing quality function commonly used (Shewry

and Wynn, 1987) is the entropy criterion, where u(xL, A) = − log2 p(xA) and xA is a

vector with the realisations of the observations made at locations A, i.e., xA ∼ XA. In

this case, this is the Shannon entropy, H(XA), for a random vector XA. Intuitively,

maximising this criterion means picking observations that are the most uncertain (have

the highest entropy). Entropy is a local metric, which means it takes into account the

reduction in uncertainty at the location where the observation is made rather than the

entire environment. Intuitively, entropy measures the peakedness of the probability dis-

tribution of a random variable. The more peaked the distribution is, the more confidence

exists about its value, and thus not much information will be learned by making this

observation. However, placing sensors iteratively at the locations with maximal entropy
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Figure 2.8: GP illustrating the difference between global and local metrics when a
new observation is made, adopted from (Stranders et al., 2013)

results in placing a large proportion of those along the border of the environment where

they are maximally uncertain about each other’s measurements (Guestrin et al., 2005).

Thus, the centre of the area of interest area remains unexplored.

Extending this criterion to cases where one is interested in reducing the uncertainty

about a subset B ⊆ L is expressed as follows:

u(xL, A) = − log2 p(xB) + log2 p(xB|xA) (2.14)

This criterion is formally known as the D-optimality criterion (Chaloner and Verdinelli,

1995). It provides the mutual information between observation sets A and B and could

be expressed as I(XB;XA) = H(XB)−H(XB|XA). Intuitively, it measures the uncer-

tainty without making any observations minus the uncertainty after making the obser-

vations. This is a global metric, as it considers the reduction in uncertainty over the

entire environment when making an observation. The difference between local and global

metrics is shown in Figure 2.8. The figure illustrates the variance over the x-axis before

taking any measurements in light shading, and the variance after a measurement is taken

in dark shading. However, if one is interested in predicting the values of the unobserved

locations, B could be set to be L\A, meaning that the locations of interest are dependent

on the observed locations A. This criterion is applicable in cases where the goal is to

select locations that are maximally informative about the set of unobserved locations.

In this slightly different setting, the goal is to maximise H(XL\A)−H(XL\A|XA) and is

known as the Mutual Information criterion (Caselton and Zidek, 1984). This criterion

can be represented as MI(A) = I(XA;XL\A). This is shown to be a good metric for

monitoring spatial phenomena (Guestrin et al., 2005). In particular, it is a better metric

than entropy in terms of making observations more centrally by considering the effect



Chapter 2 Literature Review 39

each sensor placement would have on the entire environment (Guestrin et al., 2005).

However, this comes at a greater computational cost, since the effect of a set of new

observations on the entire environment needs to be computed. However, due to the

fact that we are interested not only on the spatial, but also the temporal, aspect of

the phenomena, even if a measurement is taken at a timestep, we still consider that

location as unobserved at the next one. As a result, the Mutual Information criterion is

less applicable in our settings and the D-optimality Criterion is preferred in this thesis

instead.

Another sensing quality function is the reduction of predictive variance (Krause, 2008).

In other words, for a set B we choose u(xL, A) =
∑

s∈B V ar(Xs) − V ar(Xs|xA) where

V ar(Xs|xA) = E[(Xs − E[Xs|xA])2|xA]. This denotes the predictive variance of Xs

after observing XA = xA. This criterion is formally known as the A-optimality crite-

rion (Chaloner and Verdinelli, 1995). However, Guestrin et al. (2005) have empirically

shown that it is inferior to the aforementioned criteria in terms of finding informative

locations. In particular, it is shown that the root mean error of the predictions at unob-

served locations is higher when using this criterion for placing sensors rather than using

the MI criterion.

Another approach is to consider a decision-theoretic metric. Specifically, instead of

minimising uncertainty of a set of variables, the objective is to acquire observations

that facilitate a decision-making process encoded by a parameter Θ. For example, let a

parameter Θ encode the presence or absence of a high level of noise (in noise pollution

monitoring settings). As in the cases above, a set of observations A ⊆ L can be selected.

When an observation is made, i.e. XA = xA, a decision d ∈ D is made. If the true state

of the world is Θ = θ, then this decision results in a utility g(d, θ). If θ encodes the

presence of high levels of noise the utility of choosing to take more measurements would

be higher than not to.

In terms of Gaussian processes, the criteria above can easily be applicable since there is

a direct relation between entropy and variance. In particular, the entropy of a random

variable Xy conditioned on some set of variables XA is a monotonic function of its

variance and is expressed as follows:

H(Xy|XA) =
1

2
log(2πσ2

Xy |XA
) =

1

2
log(σ2

Xy |XA
) +

1

2
(log(2π) + 1) (2.15)

2.4 Coordinating Agents

Our work is related to the agent coordination domain, as the overall purpose of our

system is to coordinate the measurements taken by users acting as self-interested agents

(requirement 1). Users typically have limited information about the environment and

follow their own personal agendas. In the agent coordination literature, mobile agents,
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such as autonomous ground vehicles (AGVs), autonomous unmanned aerial vehicles

(UAVs) or unmanned underwater vehicles (UUVs) are often used to explore an envi-

ronment or perform specific tasks in an area. Typically, coordination of teams of such

agents is computationally intensive (not satisfying requirement 6) and the focus is on

finding informative paths for a single autonomous agent (Marchant and Ramos, 2012;

Binney et al., 2010).

In order to scale up, domain specific heuristics and clustering approaches are utilised to

group spatially close sensing locations and thus reduce the search space (Singh et al.,

2009; Stranders et al., 2010). However, coordination is typically shown only for a small

team of agents (e.g., up to a dozen of autonomous robots (Singh et al., 2009; Ouyang

et al., 2014; Low et al., 2011b; Stranders et al., 2010; Schwager et al., 2017; Tiwari et al.,

2016; Reich and Sklar, 2006)). Thus, existing work does not scale to the settings we are

interested in. Also, these techniques cannot easily be extended to consider probabilistic

knowledge about the mobility patterns of participants or the willingness of the users to

take a measurement, since the agents are robotic entities that do not have their own

agendas, but rather follow computed paths on a graph.

In other related work, Stranders et al. (2009) deal with path finding for mobile sen-

sors, considering both the spatial correlations of a phenomenon, as well as the tempo-

ral ones. They implement an adaptive receding horizon algorithm in a decentralised

manner, which means that there is no central system that controls these sensors, but

instead they autonomously decide what to do based on the information available to

them by exchanging messages with other mobile sensors. The focus of their work is on

decentralised approximations and dealing with reliability in the communication network

between agents and permanent failure of agents’ hardware, which is not a concern in this

work. Rather, in our work an agent has a probability of being unavailable at a specific

time, in which case users might ignore a notification to take a specific measurement at

a given time, as well as a probabilistic model of their mobility patterns. Also, Stranders

et al. (2009) assume that each agent has a specific radius within which it collects in-

formation and no underlying model exists, while in environmental phenomena the effect

of a measurement can be captured by a probabilistic model that depends on the nature

of the phenomenon. In other words, a probabilistic model can capture the development

of the phenomenon in space and time, and thus is able to create heatmaps by interpo-

lating between measurements as well as predicting into the future (see Section 3.3 for

more details). Consequently, this enables us to be more accurate about the informa-

tion gained when taking each measurement, as well as deciding when and where to take

measurements, given the information collected by earlier measurements. Also, in many

cases, the measurements taken are noisy, which can be captured by using a probabilistic

model, creating accurate heatmaps about the phenomenon monitored. This can lead to

better coordination of measurements in order to maximise the information about the

environment. Furthermore, even though the algorithm uses a number of approximations
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and heuristics, it is evaluated only on ten agents, which highlights the complexity of the

solution.

Building on this, in other work Stranders et al. (2013) approach the problem of contin-

uous multi-agent coordination by modelling the problem of space exploration by a team

of mobile agents as a Markov Decision Process (MDP). They show that an approxima-

tion algorithm for solving MDPs can be used to continuously coordinate a small team of

mobile agents (up to ten agents) for an infinite time horizon. However, it is not shown

to work for larger teams of agents.

In other research, Partially Observable Markov Decision Process (POMDP) algorithms

have been used in the context of agent coordination (Pineau et al., 2006; Hollinger and

Singh, 2008). Firstly, POMDPs handle uncertainty in both action effect and state ob-

servability. Plans are expressed over information states instead of world states, since the

world state is not observable. POMDPs form plans by optimising a value function, thus

allowing the agent to numerically trade off between alternative ways to satisfy a goal,

compare actions with different costs/rewards, as well as plan for multiple interacting

goals. Also, instead of producing a sequence of actions, POMDPs produce a full policy

for action selection. However, the state space grows exponentially with the number of

variables that are considered in the selection problem. Also, the complexity of planning

for POMDPs grows exponentially with the cardinality of the state space (Pineau et al.,

2006). Thus, multiple agents, and multiple potential spatio-temporal locations where

they can take measurements from, exponentially increase the state space of the problem.

This makes the use of POMDPs infeasible for the settings we consider.

Drawing these together, even though the aforementioned algorithms solve problems that

are related to coordinating measurements in participatory sensing settings, they are not

applicable in our work mainly because they are not scalable to hundreds of participants.

Also, in environmental monitoring of dynamic phenomena, the Markov property7 might

not hold. In particular, taking a measurement at a timestep might provide enough

information such that no other measurement is required in the near future, given that

the phenomenon is changing slowly over time. Therefore, it might be better for some

people to wait many timesteps, given that they have a limited budget of measurements

they can take in the future, before taking a measurement that would be of greater value

in terms of providing more information about the phenomenon. Put differently, for a

number of different measurements in space and time, we obtain different amounts of

information about the phenomenon. This is not compatible with the Markov property,

which requires that the future of the process depends only on the current state, i.e.,

measurements taken at a given timestep and not on the ones in the past. Consequently,

the decision about when to take a measurement needs to be taken given the history of

measurements taken so far in space and time and not just the last one.

7In general, the Markov property states that a reward at the time t + 1 is only dependent in the
action at and state st.
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Overall, in our work we follow the agent-based problem formulation applied in the multi-

agent coordination problem, used in Stranders et al. (2013) for the coordination of mea-

surements for environmental phenomena in the participatory sensing settings. This en-

ables us to apply artificial intelligence techniques and exploit domain-specific knowledge

to develop an efficient algorithm.

Having said that, there are two different approaches in coordinating agents, namely,

offline and online approaches.

The purpose of offline algorithms is to pre-compute paths for a number of mobile sensors,

such that the information collected is maximised, while at the same time placing bounds

on their resources. These algorithms can run longer, since they are not expected to run

in real time and potentially produce better results than online algorithms. However,

when applied in highly uncertain environments they might not perform as well, since

the environment in real time could be different from the one simulated (Singh et al.,

2007; Meliou et al., 2007). In other words, they perform under the assumption that the

characteristics of the environment are known beforehand and do not adjust their output

in real time.

Online algorithms do not pre-compute the plan of the mobile sensors. Rather, the

mobile sensors select observations on the go. That is, they are adaptive to their envi-

ronment. This is also their main advantage, as mobile sensors can adapt to unknown

environments. A group of algorithms, specifically the greedy ones (Resende and Ribeiro,

2010), can be reactive in terms of responding to the current state of environment at each

time, in an effort to maximise the value of information at the given time. For example,

such algorithms could instruct a mobile sensor to take a measurement when a threshold

about the uncertainty of the value of the phenomenon (e.g. temperature or pollution

level) is exceeded. This approach is used as a benchmark to our algorithms (see Chap-

ters 4, 5). Overall, this category of algorithms produce an output very fast, as the output

is utilised in real time. However, this comes with an accuracy tradeoff. In particular, in

order to utilise domain knowledge, i.e., knowledge about the human mobility patterns,

more computational expensive operations might be required. Thus, monitoring of the

environment, following this paradigm, can be suboptimal.

Another category of online algorithms includes the receding horizon, or myopic algo-

rithms (Stranders, 2010). This type of algorithm attempts to maximise the value of the

information over a specific interval of time which is less than the length of the campaign

and captures more than a single observation. However, when an unexpected event oc-

curs, the algorithm recomputes the plan. Thus, the mobile sensors are able to adapt

to their environment. However, if they are applied in a highly uncertain environment,

frequent re-planning will be required, which will make the algorithm impractical to use.

In our work and more specifically in Chapter 5, we build on algorithms from both

categories (online and offline) to both utilise knowledge known in advance as well as
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adapt in real time when there is an uncertain and dynamic environment. Also, our work

is benchmarked with algorithms explored in this literature and in particular the Patrol

and the Myopic optimal algorithms. The patrol algorithm instructs an agent to take

measurements at all the timesteps until a budget or energy is depleted. Myopic optimal

takes finds the optimal set of measurements to be taken at any given timestep at a very

high computational cost. In the next section, we introduce another relevant research

area, where algorithms in these categories are also exploited.

2.5 Task Allocation

This work is also related to ongoing research in task allocation in the context of spatial

crowdsourcing. Task allocation research is concerned with developing algorithms to

mapping tasks, like taking a picture of specific products in different stores or reporting

experiences in restaurants to people, given a number of requirements or constraints.

Well-known commercial task allocation systems include: Gigwalk8 and FieldAgent9,

which are crowdsourcing applications that allow businesses to recruit citizens to collect

data and intelligence about their brand and the locations that matter most to their

business. They essentially connect people who need information with people who can

provide it. Citizens are compensated financially for their contribution, while businesses

receive real-time feedback on their product and services. This literature is relevant

to our work, as the purpose of our system is to allocate tasks to users, i.e., which

measurements to take. However, there are substantial differences that are unique to

environmental monitoring, which are discussed in the following sections.

2.5.1 Deterministic and Stochastic Human Mobility Patterns

Recent work by Chen et al. (2014) uses mobility patterns to effectively coordinate agents

in crowdsourcing. The focus of their work is assigning agents to tasks based on their

mobility patterns, so as to maximise the payoff of the tasks within a given time limit.

However, no budget is associated with each user to correspond to the inconvenience or the

incentive needed to execute the task. This is unrealistic in participatory sensing, because

people cannot provide an unlimited number of measurements (requirement 4). Moreover,

the tasks are assumed to be independent of each other and once they are executed, they

are no longer available. This is not the case when monitoring environmental phenomena,

where it is often important to revisit locations in order to keep track of the temporal

variations of the phenomenon. Also, the reward gained when taking measurements of

an environmental phenomenon is not easy to quantify. It cannot be captured by a

fixed reward value as in task allocation. Rather, it should be calculated based on the

8http://www.gigwalk.com/
9http://www.fieldagent.co.uk/

http://www.gigwalk.com/
http://www.fieldagent.co.uk/
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model of the environment (which is examined in Section 3.3), since each measurement

may be different in terms of the information it conveys. In other words, the utility in

environmental monitoring is associated with what measurements are taken globally in

space and time by the crowd. On the other hand, the reward for a particular task in

crowdsourcing is usually independent of what tasks other people are executing, since

each task has different characteristics, such as difficulty and type of task, which are not

affected by other available tasks. Also, Chen et al. (2014) assume that humans have

typically standard trajectories, which we also assume in this thesis.

Furthermore, even though simplified assumptions are made, such as the fact that users

will always accept and perform the requested tasks, or that users have up to two al-

ternative routes (Chen et al., 2015), the complexity of allocating people to tasks is still

NP-hard. Thus, a range of offline greedy approaches, including a greedy construction

heuristic and iterated local search, are utilised. Specifically, they first construct an ini-

tial solution as fast as possible by using a greedy heuristic and the quality of the initial

solution is improved iteratively by employing an iterated local search (ILS), which is part

of the stochastic local search (SLS) algorithm family (Hoos and Stützle, 2004). These

algorithms are a number of high-performance local search algorithms that make use of

randomised choices in generating or selecting candidate solutions for a given combinato-

rial problem instance. In particular, the algorithm performs four main actions: it swaps

two agents with two task nodes if that improves the total remaining detour time for

both agents. Next, it moves a task from an agent to another with the highest remaining

detour time. Then, an unassigned task is chosen with the highest reward and the agent

with the highest remaining detour time is selected to do it. Finally, an assigned task is

replaced by an unassigned one with higher reward. All possible insertions are examined

until the process exceeds a predefined number of iterations. That algorithm, however,

is not applicable in our situation, as the problem we are addressing is different in the

ways described above. However, similar to the work by Chen et al. (2014), we also build

on heuristic approaches, and in particular, we propose a novel Stochastic Local Greedy

Search (SLGS) algorithm (see Chapter 5).

2.5.2 Execution Uncertainty

As highlighted in (Ramchurn et al., 2009), users do not always successfully complete

their allocated tasks, but they are subject to a probability of success that refers to

the percentage of people successfully completing the tasks they are assigned to. How-

ever, most task allocation mechanisms do not take this into consideration. To address

this, Ramchurn et al. (2009) take into consideration this limitation by developing trust-

based mechanisms for robust and efficient task allocation in the presence of execution

uncertainty. Even though this is an important concept, this trust mechanism is not
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applicable in our settings where the main focus is coordination of agents for monitor-

ing a spatio-temporal phenomenon. In particular, participants are assessed a priori in

order to create a prior belief about their probability of success. This is infeasible to

do in environmental monitoring since users have only a limited budget, an extra test

measurement could potentially limit the ability of the system to achieve better coverage

by taking measurements at more informative locations. Moreover, the reward of users

when taking measurements, which is required in the aforementioned work, is not clearly

defined, as people participate in participatory sensing campaigns for different reasons,

as argued above, with no immediate reward value. In particular, there might not be

an obvious reward as people might volunteer because they are interested in the cause

of the participatory sensing campaign. Also, since the task in our settings is monitor-

ing environmental phenomena, users cannot rate other users since the true value of the

phenomenon is unknown and people have only local information about the environment.

On the other hand, in our work we assume that people will carry mobile equipment and

receive a notification on their mobile phone regarding when to take a measurement. In

that respect, related work has shown that only 83% of smartphone users engage with

notifications on their device within five minutes of receiving them (Sahami Shirazi et al.,

2014), which implies some desired measurements will be missed. In this work, we refer

to execution uncertainty as the reliability of users.

2.5.3 Users’ Trust

On top of execution uncertainty, people might not be trustworthy in terms of providing

accurate measurements. In fact, the very openness of participatory sensing as a data

collection approach enables the contribution of false data, i.e., the measurements’ values

are significantly different than the true value of the phenomenon monitored. In partic-

ular, people can act selfishly and exploit the system for their own benefit. Crucially,

participatory sensing systems are prone to such malicious users’ attacks (Mousa et al.,

2015; Gadiraju et al., 2015). For example, a factory owner might falsify their readings to

show normal air quality levels, while others may fabricate higher pollution measurements

to affect the decision of authorities and policymakers about the development of parks

and roads. There is a vast amount of literature on trust in multi-agent systems Keung

and Griffiths (2009); Griffiths (2005), but in terms of participatory sensing this work is

very limited.

One of the related work by Gadiraju et al. (2015) studies the prevalence of malicious

users in crowdsourcing settings. In particular, they analysed the prevalence of malicious

activity on crowdsourcing platforms and studied the behaviour exhibited by people on

crowdsourced surveys. They did this by asking people to complete a survey using the

CrowdFlower platform10 about previously completed tasks. They collected answers

10http://www.crowdflower.com/overview

http://www.crowdflower.com/overview
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for a total of 34 questions, which were a mixture of open-ended, multiple choice and

Likert scale questions from 1000 people. They analysed people’s responses and their

results show that approximately 25% of the users participating could be characterised

as malicious. However, maliciousness depends on a number of factors and it is shown

that different countries have different prevalence of malicious users. Mousa et al. (2015)

highlight the issue of trust in participatory sensing settings and present how this problem

is currently addressed. Specifically, one approach is to use Trusted Platform Modules

(TPMs), which are hardware chips that reside on participants’ devices and which ensure

that measurements are taken by authentic and authorised sensor devices within the

system. However, TPMs can control neither the software on a user’s device nor the

actual reading the user is taking. For example, a user can take a measurement in a

controlled environment, where they can adjust pollution levels to the desired level in

order to bypass the TPM mechanism.

Moreover, reputation systems have been proposed that require participants to rate each

other or get rated by experts who compare their input against ground truth data (Jøsang

and Ismail, 2002; Reddy et al., 2008). Other multi-agent approaches suggest formulating

stereotypes (stereotype-trust and stereotype-reputation) about agents’ behaviour given

limited observability of their actions (Taylor et al., 2017). In other words, they assume

that people with similar traits will behave similarly. This concept, however, is not

easily applicable in participatory sensing settings, as it is difficult to assess whether a

measurement provided is truthful or not. Moreover, people do not typically interact

with each other about their readings, i.e. they are oblivious about the readings of other

people, and thus subjective opinion about participants cannot be expressed.

Also, Reece et al. (2009); Bachrach et al. (2012); Irshad et al. (2017) provided methods to

infer users’ trust in crowdsourced classification and image labelling tasks. However, these

classification methods are unsuitable for dealing with continuous spatio-temporal data,

as in environmental monitoring applications, since dependencies over space and time

need to be taken into consideration. In particular, the representation of the phenomenon

must be derived as a continuous function accounting for the relationship among different

measurements taken over space and time. Furthermore, in many cases ground truth data

and experts might not be available.

Other work (Venanzi et al., 2013) has shown that probabilistic trust-based models can be

built to minimise the effect of the contribution of noisy measurements. Specifically, Ve-

nanzi et al. (2013) develop a method for aggregating crowdsourced spatial estimates

where the reports consist of pairs of measurements and precisions. In other words, each

user submits a pair of their measurements and the associated precision, which captures

their confidence that their measurement is correct. Then, Heteroskedastic Gaussian

Processes (HGPs) (Section 2.2.2) are used to model trust of crowdsourced spatial data.

In particular, the trustworthiness of each user is a hyperparameter of the HGP. That hy-

perparameter (t) is used as an uncertainty scaling parameter which provides the model
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with the ability to flexibly increase the noise around subsets of reports associated with

untrustworthy users. Then, by training the model with the reports gathered from the

crowd, they are able to estimate the underlying spatial function and also learn the in-

dividual user’s trustworthiness. However, the system presented in there focuses neither

on the time domain, nor on coordinating measurements taken. Rather it focuses on how

to fuse data from a variety of untrustworthy sources. Also, they require the precision

of users as an input, which might not be feasible in scenarios where users do not have

specific knowledge of the quality of the sensor they are using. Finally, malicious users

will not provide their true belief about their precision.

2.5.4 Summary

In this section we presented literature on task allocation for spatial crowdsourcing set-

tings. In particular, we discussed the three main topics in this area. The main focus is

developing efficient algorithms for allocating tasks to the most appropriate people, given

a particular goal. However, people may not always perform their allocated task for their

own reasons. Consequently, probabilistic information about human behaviour could be

considered when devising task allocation algorithms. Another major concern is that

people cannot always be trusted to provide truthful measurements. Specifically, people

may have their own agendas which involve altering the real picture of the environment.

2.6 Sensor Placement

Finally, our work is related to the sensor placement problem in the context of envi-

ronmental monitoring. Specifically, it can be viewed as the task of placing a number

of sensors that equals the number of users, in a dynamic environment where specific

constraints are associated with the sensors. For instance, the number of sensors to be

placed in the environment is changing at every timestep (depending on whether a user

has some budget left or not), and the location of the sensors is constantly changing

as humans follow their daily routine. Importantly, each sensor is associated with un-

certainty about their future location and whether they will actually be able to take a

measurement when instructed to do so. Since the nature of this problem is combina-

torial, finding the optimal solution is computationally infeasible. In a seminal paper,

Krause et al. (2008) show that the sensor placement problem is NP-hard. They also

prove that the sensor placement problem has a desirable property, submodularity, that

allows a greedy algorithm to provide specific guarantees about the approximation ratio

of the solution provided. In particular, building on the work of Nemhauser et al. (1978),

they show that using a greedy algorithm, the solution is always at least 1 −
[

(K−1)
K

]K
times the optimal value and has a limiting value (i.e., as K → ∞) of (1 − 1

e ), where

K is the number of sensors placed. In the context of monitoring spatial phenomena,
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the same property is exploited to produce a polynomial-time approximation algorithm,

which is within (1 − 1
e ) of the optimum (Guestrin et al., 2005; Golovin and Krause,

2011). Specifically, Guestrin et al. (2005) greedily deploy a fixed number of sensors in

an environment such that a submodular function, and in particular, mutual information

between the chosen locations and the locations which are not selected, is maximised.

The algorithm at each iteration adds the sensor which results in the maximum increase

in mutual information until the desired number of sensors is reached. This is repre-

sentative of a large class of algorithms that greedily select the next measurement that

maximises an entropy-based criterion until a given budget is exhausted. More recent

approaches attempt to make more efficient algorithms in terms of computational com-

plexity, namely to make greedy faster by trading off utility gained (Mirzasoleiman et al.,

2015). Moreover, (Mirzasoleiman et al., 2016) have focused on developing distributed

algorithms whose performance approximates the standard greedy one. We believe, how-

ever, that the greedy algorithm described in Guestrin et al. (2005) is the most relevant

representative of this class as it is shown to perform well in similar settings and it will

be used as benchmark to our approach.

2.7 Summary

At the start of the chapter we introduced a number of participatory sensing applications

to highlight the need of an intelligent coordination system. In particular, none of the ap-

plications satisfy all the requirements set for this work and we demonstrated that there

is a major opportunity to make an important contribution in this area. Specifically,

we highlighted the lack of an intelligent coordination system to guide people when and

where to take measurements in order to maximise the information collected about the

environment over time (requirement 1). Some of the applications model the environment

and predict environmental values at unobserved locations (satisfying requirement 2) but

they do not attempt to quantify information gained by taking measurements (require-

ment 3). Moreover, most of them do not consider uncertain human behaviour and the

presence of malicious users (requirements 4 and 5), nor do they focus on scaling up the

campaigns (requirement 6).

Next, we introduced the techniques and concepts utilised in our work, including how

to represent the environment and value information collected by taking measurements.

We have showed that Gaussian processes are powerful in terms of representing spatio-

temporal phenomena, while at the same time providing a measure of certainty about

predictions, which can be used to value measurements.

Finally, we positioned our work at the intersection of three main research areas, agent

coordination, task allocation and sensor placement, all of which are closely related to the

problem dealt with in our work. We provided an introduction to these areas and have
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shown how they are related to our problem. In particular, the benchmarks that we will

use in our empirical work in Chapters 4 and 5 are drawn from these three categories.



Chapter 3

Problem Description and Model

As we have seen in Chapter 1, the aim of this research is to provide the framework and

algorithms in order to satisfy a number of requirements specified in Section 1.2. In this

chapter we introduce the overall architecture of the framework we propose (Section 3.1).

This includes features that others are working on but that are required to present the

big picture of our vision in this area. Next, we formally introduce the problem of co-

ordinating measurements for participatory sensing applications (Section 3.2.1) and the

extended versions of the problem with relaxed assumptions in terms of human mobility

patterns and user reliability (Section 3.2.2) as well as malicious user behaviour (Sec-

tion 3.2.3). Then, we describe our Gaussian Process model that is used to represent the

environment (Section 3.3). Finally, we present an example based on the basic problem

formulation, to illustrate the main characteristics of our problem (Section 3.4).

3.1 Overall Architecture

Our framework shows how our coordination algorithm fits into the broader context

of participatory sensing campaigns for environmental monitoring. In particular, it de-

scribes how to efficiently monitor an environment by coordinating measurements, taking

into consideration available knowledge about the participants. This is informed by the

examples presented in Section 2.1 and it is designed to address the main challenges

in participatory sensing in general (Section 1.1). In particular, it captures our vision

for a participatory sensing framework that satisfies the requirements set in Chapter 1.

Figure 3.1 shows the overall architecture of the framework and illustrates how the com-

ponents interact with each other. In particular, our framework consists of five core

components:

• The main component is the coordination algorithm, which is the main contribution

of this work. This component decides when and where each participant should take

50
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Figure 3.1: A conceptual architecture of an intelligent participatory sensing
platform

a measurement to maximise information about the environment. More specifically,

it produces a mapping from users to spatio-temporal locations.

• The human mobility patterns prediction component is a system for making predic-

tions about the mobility patterns of the participants. This component provides

probabilistic information about the future locations of the users, which is used to

make decisions about when and where to take a measurement.

• The budgets/costs component captures the number of measurements an individual

is willing to take, since users have a limited number of measurements they can

take.

• The reliability models component captures the uncertainty related to individuals

about whether they will actually take a measurement when asked to do so, as

discussed by (Ramchurn et al., 2009). This model is built based on information

collected from users based on their past behaviour in participatory sensing cam-

paigns. This is similar to the notion of execution uncertainty described in the

agent-based task allocation problem (Section 2.5.2).

• The components related to the environmental phenomenon supply the system with

information about the environment being monitored. In particular, historic mea-

surements from multiple users are fused together using a model that creates a

representation of the environment (environment representation component). This,

in turn, is used to value future measurements taken in terms of their information

value (value information component) as in Section 2.3.
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A participatory sensing campaign is initiated by a person, group or organisation inter-

ested in understanding an environmental phenomenon for a particular area (campaign

initiator). The initiator is responsible for the recruitment of the participants for explor-

ing a specific area and setting up the time interval of the campaign, i.e., the starting

and ending date and time.

Anyone willing to take part in the campaign would own or be provided with a smartphone

with Internet connectivity and specialised equipment, depending on the phenomenon

and environment to be monitored. The participatory sensing platform is responsible

for contacting the participants over the Internet in real time or in advance in order

to suggest which measurements they need to take and at what time. This would take

the form of notifications on their smartphone. It can be possible to agree a priori to a

number of measurements in order not to be intrusive to the users’ daily routine. The

coordination algorithm is the most important component of the framework, which is

based on the intersection of three research areas discussed in Sections 2.4, 2.5 and 2.6,

and it is the main contribution of Chapters 4 and 5.

The participants are in a feedback loop, where they provide the platform with the

measurements taken, as well as their mobility patterns and their budget and/or cost.

In our work, we assume that participants have to explicitly take a measurement using

their mobile device. This is reasonable, because although there are devices that are

able to continuously take measurements this is usually associated with high energy

cost. Also, this is required to ensure the quality of the measurements. For instance,

measurements cannot be taken automatically from the device as it might be in users’

pockets or bag, which might distort the actual measurements. Moreover, continuous

measurements decrease the need for coordination and so we focus on settings where

measurements are taken explicitly and maybe constrained by a budget. Concerning their

mobility patterns, intelligent agents on participants’ devices can monitor their behaviour

and provide the platform with the mobility patterns as per the work of Sánchez-González

et al. (2016). This might raise privacy concerns but this is a different research area which

is currently active. Recent work has shown that it is possible to learn mobility patterns

in a privacy preserving manner (Agadakos et al., 2017).

Also, each participant is associated with a budget (Chon et al., 2013), which, in our

framework, can be given directly by participants or learned from their participation in

previous campaigns with the assistance of the intelligent agents. The human mobility

pattern prediction system infers their future mobility patterns for a specific time horizon

producing a number of possible routines with associated probabilities (McInerney et al.,

2013b; Baratchi et al., 2014b; Thomason et al., 2015). However, this human mobility

pattern system is a separate active research area which is out of scope of this thesis.
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The framework also considers that people are not guaranteed to take the measurement

requested. As discussed in Section 2.5.2, 83% of users check their smartphone notifica-

tions within 5 minutes of receiving them. Thus, the intelligent agents on participants’

phones can monitor the behaviour of the participants, as is commonly done in the

crowdsourcing domain (DiPalantino et al., 2010), to provide a model for their reliability

(shown in Figure 3.1) with respect to the system. Specifically, this model can be used

to estimate the probability that a user will take a measurement when notified to do so.

Further, the environmental phenomenon can be modelled using a probabilistic technique

as shown in Section 2.2. This could capture the spatio-temporal relationships of the phe-

nomenon, interpolate over space in order to get the phenomenon’s values in unobserved

locations as well as predict the phenomenon’s values into the future.

In this work, we do not focus on a complete implementation of the aforementioned

framework, since each of the components is an active research area on its own. We

rather focus on the algorithmic challenge of developing the main component, which is

an efficient coordination algorithm that maps users to spatio-temporal locations in the

environment. Our algorithm, however, is able to exploit probabilistic knowledge about

participants’ mobility patterns and consider budget and reliability constraints of each

participant, as provided by the other components.

3.2 Problem Description

This section formally introduces the problem of coordinating measurements in partic-

ipatory sensing for environmental monitoring. In particular, we focus on the problem

that the coordination algorithm, shown in Figure 3.1, has to solve subject to budget

constraints and the reliability of users.

3.2.1 Basic Problem Formulation

First of all, an environmental campaign is initiated to collect as much information about

a particular phenomenon in an environment as possible. A campaign is a collection of

observations O constrained on geography, duration, context and users such that O is

collected participatively by a set of users A. For the purposes of the problem definition,

we use the agent abstraction instead of referring to humans, since we assume that they

will act as mobile agents taking measurements when suggested.

An environment E is a continuous set of spatio-temporal locations (L, T ) that the cam-

paign initiator is interested in. This is defined by the spatial and temporal bound-

aries of the area and time interval of interest up to time E. A set of participants A=

{A1, . . . ,AM} can take a set of discrete measurements (also called observations) within
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the spatial boundaries of this environment within the time period of the campaign. For-

mally, the problem of monitoring an environment E in the multi-agent setting can be

given by:

• A set of spatio-temporal observation coordinates O = (L ∪ {⊥})× T . An element

o ∈ O is called an observation. The observation made by Ai at time t is denoted

as oi,t. The set of observations made by all agents at or before time t is denoted

as Ot ⊆ O. The set of observations made by all agents at time t is denoted as

Ot ⊆ Ot. We also denote by loc(Ot) = {l|(l, t) ∈ Ot} the spatial coordinates of the

observations made at time t. If loc is applied to a single observation, i.e., loc(oi,t),

it describes the spatial coordinate of the observation of a particular agent i at time

t. If no observations at timestep t are made by an agent i, we denote this by the

null observation oi,t = (⊥, t).

• A utility function u : 2O → R+ assigns a utility value to a set of observations.

The value assigned by this function is based on the entropy, which is a way to

measure information (given by the value information component in the framework

in Section 3.1) and it is further discussed in Section 3.3. Here it is sufficient

to say that the goal is to maximise the sum of utilities over the time period of

the environmental campaign. However, each individual Ai has a specific budget,

i.e., Bi ∈ N+, which is the maximum number of measurements that it can take

within a day. Each agent can have a different budget. In this work, we assume

that people only take measurements without deviating from their daily routine. As

described in Section 3.1, people tend to contribute a limited amount of information

in participatory sensing campaigns. Hence, we cannot assume that people can take

an unlimited number of measurements but they rather have a budget and/or incur

a cost when taking a measurement. We represent the budgets of all users with

B = {B1, B2, . . . , BM}.

• A cost function ci : O → R+, assigns a cost, ci(l, t), to each agent i for asking them

to make an observation at a location l and time t. We define the cost function for

an agent i that makes no observation at time t to be ∀t ci(⊥, t) = 0. The cost is

an abstract representation of the incentive required for users to participate as well

as the energy limitation of their devices and the annoyance caused by explicitly

using their devices to take measurements and it is different for each participant.

We denote by U the total utility earned by all the agents at time t, which is given by:

U(Ot) =

(
u(Ot)−

M∑
i=1

ci(loc(oi,t), t)

)
(3.1)



Chapter 3 Problem Description and Model 55

where M is the total number of agents in the campaign. The utility earned so far up to

time E from all the agents can be expressed as:

U(OE) =

E∑
j=1

U(Oj) =

E∑
j=1

[
u(Oj)−

M∑
i=1

ci(loc(oi,j), j)

]
(3.2)

The goal is to maximise the total U gained from all the agents throughout the campaign,

i.e., by its end time E. Importantly, u(Oj) depends on the measurements taken in

previous time steps and thus we cannot assume independence. We also need to keep

in mind that we know the cost functions and budgets of the agents a priori and we

have to intervene at the right time to ask them to take an observation. Also, due to

the regularities that human mobility patterns exhibit (McInerney et al., 2013b; Baratchi

et al., 2014a), we assume that only a single location is predicted for each agent for a

specific period of time (assumed only for the basic problem definition but relaxed in

Chapter 5. In other words, each agent has a known set of locations (l ∈ L) that will be

at specific timesteps (t ∈ T ). This is realistic as most people have a routine that involves

going to work five days a week and visit the same locations over time. Human mobility

prediction systems can learn those patterns and provide us with users’ future locations.

However, this assumption might not always be true. In particular, in Section 3.2.2 we

present an extended setting, where we assume that we have probabilistic information

about each user’s future location and that will form the basis for our algorithms in

Chapters 5. Furthermore, people are typically reactive when they receive a notification

on their smartphone (Sahami Shirazi et al., 2014). However, this might not always be

the case, which is also captured in the formulation in the next section (Section 3.2.2)

and considered in Chapter 5.

Finally, people participate in participatory sensing campaigns for a number of reasons,

extrinsic or intrinsic incentives or social interest. However, people sometimes contribute

false data. Specifically, there are cases where people may act selfishly or have their own

agendas about altering the overall picture of the environment. This is discussed further

in Section 3.2.3.

Given this nomenclature, the optimisation problem can be described as follows: We

are looking for a decision s : A → 2O, which determines which agents A should

make which observations to reach an optimal solution to the problem. Formally, S∗ =

argmaxsU(Ot). Note that a decision s gives us the set of observations Ot, which is the

union of all the observations taken from all the agents. In other words, different sets of

observations have different total utility and the objective is to find the set such that the

total utility over space and time is maximised (U(Ot)).

Consequently, a hypothetical solution to this problem should associate a number of

agents participating in the campaign with a number of observations taken from each

one of them. A solution could be {A1 7→ {(⊥, 1), (l1, 2), (l2, 3), (⊥, 4)}} ∪ {A2 7→
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{(⊥, 1), (l5, 2), (⊥, 3), (l7, 4)}} where li ∈ L. This is interpreted as the first agent needs

to make an observation at l1 at time step 2 and at l2 at time step 3, whilst agent two

should make an observation at l5 at time step 2 and at l7 on time step 4.

In addition, we introduce the following feasibility constraints on s:

1. An agent is said to make a null observation at each time step (⊥, t) unless stated

otherwise (l, t).

2. An agent can only make one observation at each temporal coordinate.

3. An agent can only make a total of Bi measurements per day.

3.2.2 Stochastic Extension

In this section, we modify and extend the formulation described above in order to in-

troduce uncertainty to the problem and capture more realistic scenarios. Concretely,

we assume that the mobility patterns of the participants are learned by a realistic sys-

tem that is able to make predictions about future locations and provide a distribution

over these locations regarding where each participant could be. Also, people could be

unreliable in terms of providing a measurement when requested (similar to execution

uncertainty discussed in Section 2.5.2). In order to capture this unreliability we define

the following function:

A function r : A → {v ∈ R| 0 ≤ v ≤ 1} assigns a real number between zero and one to

users representing their reliability (the reliability model component in Figure 3.1). This

is the probability that they actually take a suggested measurement when requested to

do so by the system. Each user has a personal reliability that is independent of other

users. We represent the reliability for all users with R = {r(A1), r(A2), . . . , r(AM )}. In

our formulation, even if a user fails to take the measurement suggested, their budget is

reduced, so as to avoid suggesting measurements to be taken by the same user if they are

not willing to contribute. Intuitively this implies that the users will not be continuously

notified to take measurements if they keep ignoring them.

Thus, the expected utility is defined as follows:

U(OE) =

E∑
t=1

u(Ot) (3.3)

where u(Ot) is the utility gained from a set of observations made by participants at

timestep t, given the effect of all the measurements taken before that. The coordination

algorithm needs to decide when and where the citizens should make these observations to

maximise this function, given a probability distribution over people’s possible locations

at each timestep and constraints of budget as well as user reliability.
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Given this notation, the optimisation problem solved by this algorithm can be formulated

as follows: map a set of participants to a set of measurements to maximise the expected

utility over the period of the campaign, subject to individual budget constraints of

participants. Formally, S∗ = arg maxs E(U(OE)), where s : A→ 2O.

Importantly, the utility function remains the same as the goal for this extended problem

remains the same; that is to maximise the total information about the environment over

time. However, uncertainty about human mobility patterns and execution uncertainty

makes solution to the previous problem infeasible for this one.

3.2.3 Coordination in the Presence of Malicious Users

As argued, users participating in the participatory sensing campaigns can be malicious.

In our work, malicious users are those who try to mislead and disrupt the participatory

sensing campaign by intentionally providing false, corrupted or fabricated measurements.

This is also known as data poisoning (Mousa et al., 2015). In particular, in our settings

malicious users can perform corruption attacks, which occur when the user deliberately

provides corrupted or forged data.

In order to capture this behaviour, we define a maliciousness function m : A → {0, 1}
that assigns a binary number (zero or one) to users, which represents whether a user is

malicious or not. This determines whether the measurement provided is the true value

of the phenomenon being monitored or a noisy version of it. Each user has a personal

maliciousness value that is independent of other users. We characterise all users, in

terms of maliciousness with M = {m(A1),m(A2), . . . ,m(AM )}.

However, the optimisation problem remains the same, and the expected utility is defined

as follows:

U(OE) =

E∑
t=1

u(Ot) (3.4)

and the objective is S∗ = arg maxs E(U(OE)), where s : A→ 2O.

Similarly to the problem above the utility function and the goal remains the same.

However, the presence of malicious users will affect the solution of this problem as

solutions to the previous problems can potentially underperform.

3.3 Modelling Environmental Phenomena

Given the introduction on Gaussian Processes in Section 2.2.2 and the definitions in

Section 3.2, we now focus on probabilistically modelling the environmental phenomenon.

This enables us to quantify the informativeness of measurements used in our utility
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function (Equation 3.4). In order to model the environmental phenomenon, we first

discretise the environment in a way such that a two-dimensional grid is created over

space and the time is divided into hourly measurements (timesteps). Consequently, we

say that locations L ⊂ L are the intersections of the grid and T ⊂ T are the timesteps. In

our work, we convert longitude and latitude into UTM (Universal Transverse Mercator)

format, i.e., meters, so as to be able to make calculations in the Euclidean space.

Each location l ∈ L and time t ∈ T is associated with a random variable Xl,t, that de-

scribes an environmental phenomenon, such as noise or air pollution. We use Xl,t = xl,t

to refer to the realisation of a random variable at a particular spatio-temporal coor-

dinate, which becomes known after an observation is made. In order to describe the

phenomenon at time t over the set of locations (L), given that some observations have

been made in the past (Ot−1), we use XL,t|Ot−1
. Similarly, we denote by the random

variable XL,t|Ot
, the environmental phenomenon over the set of locations L at time t

given that a set of observations are made at time t (Ot). For simplicity in the nota-

tion, and unless stated otherwise, we use Xy = XL,t|Ot−1
and XA = XL,t|Ot

. Similarly,

the realisation of the measurements over the set of locations L given a set of observa-

tions is denoted by XA = xA. Given the nomenclature above, we can now model the

phenomenon.

As explained in Section 2.2.2, the measurement of an environmental phenomenon can

have a multivariate Gaussian joint distribution over all of their locations L and timesteps

T . The main advantages of GPs in environmental monitoring are that they can capture

structural correlations of a spatio-temporal phenomenon, as well as providing a value

of certainty on the predictions (i.e., predictive uncertainty). Crucially, it is sufficient to

know the locations of the observations but not the actual value of the measurement, to

get the variance over the environment.

Gaussian Processes provide the mathematics of the utility function we need to maximise,

as shown in Section 2.2.2. Similar to the work by Guestrin et al. (2005), we want to

maximise the sum of information obtained over time, which is captured by the entropy

over the entire environment at a specific timestep minus the entropy that can be obtained

by taking specific measurements in the next time step over the entire environment.

In other words, our utility function measures the reduction of entropy at all locations

of the environment (global metric) by making a set of observations and it is propor-

tional to the uncertainty without making any observations minus the uncertainty when

observations are made. This is given by:

I(Xy;XA) = H(Xy)−H(Xy|XA) (3.5)
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In terms of Gaussian Processes, the conditional entropy of a random variable Xy given

a set of variables XA is expressed as follows:

H(Xy|XA) =
1

2
log(2πeσ2

Xy |XA
)

H(Xy|XA) =
1

2
log(σ2

Xy |XA
) +

1

2
(log(2π) + 1)

(3.6)

Using a GP to model the environment, we develop an algorithm to exploit predictive

uncertainty and the information metric designed.

3.4 Worked Example

In this section we present an example scenario illustrating our basic problem formulation

given in Section 3.2. In order to present this example we have to introduce the following:

• A graph G(L,E) that represents the layout of the agents’ environment, where E

are the edges that an agent can move on in order to reach spatial coordinates L.

An example of such a graph is shown in Figure 3.2. In the real world, l1, l2, l3, l4

represent the locations where users take measurements from. The edges of the

graph represent the potential movement or trajectory of the users.

• At each time step, an agent can move from one vertex to another via an edge.

• Agents have infinite budget.
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Figure 3.2: Graph G

For the purposes of this example we assume to have two agents (A1 and A2). The

campaign starts at t = 1 and ends at t = 2.

At the first timestep, A1 is at location l1 and A2 at location l4 as shown in Figure 3.3.

The set of observations made by both agents before the campaign begins is assumed

to be empty (O0 = ∅). At t = 1, O1 will contain the observations taken by agents
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Figure 3.3: Position of two agents on
a graph at t=1
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Figure 3.4: Position of two agents on
a graph at t=2

at the first timestep or null (⊥) accordingly. Observations made at one location affect

the entropy at others. For this example, we assume that the reduction in entropy at

the locations is proportional to the distance of the locations to the location where the

observation was made. We assume that by both making observations at their locations,

i.e., O1 = {(l1, 1), (l4, 1)}, we get the following:

I(XO0 ;XO1) =


10 + 0

5 + 5

5 + 5

0 + 10

 (3.7)

where I is the mutual information between the two measurements, the first value in each

row is the reduction in entropy in each location (l1, l2, l3, l4) caused by the observation

taken by A1 and the second value from the observation taken by A2. In other words,

we measure how much information was collected over the entire environment by taking

those observations. For simplicity, and without loss of generality, we assume that we can

just add the reduction of entropy caused by each agent. We can see that the reduction

in entropy caused by A1 at l1 is greater than elsewhere, where the reduction in entropy

at l4 is zero, which means taking an observation at l1 does not affect l4. Similarly, the

reduction of entropy caused by A2 at l4 is greater than elsewhere and zero at l1. Next,

we can calculate u(O1) as follows:

u(O1) = 10 + 10 + 10 + 10 = 40 (3.8)

Furthermore, we assume a constant cost value c1(l1, 1) = 4 for agent A1 making an

observation at its location and infinity for elsewhere and c2(l4, 1) = 6 for agent A2. An

initial simplifying assumption is that agents have their predetermined paths that they

will follow, which are known to the system in advance, and nothing new learned on their

way will affect this. This means that agents will never deviate from their route to make
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an observation at a location other than their predetermined path and therefore the cost

of moving between locations is zero. Having said that, U(O1) can be calculated:

U(O1) = u(O1)−
2∑
i=1

ci(loc(oi,1), 1) = 40− (4 + 6) = 30 (3.9)

At t = 2, both agents move to a different location as seen in Figure 3.4. A1 moves to l3

and A2 to l2. Both of them can again make an observation. However, observations were

made just one timestep earlier at nearby locations. Thus, we expect that the reduction

in entropy will not be as high. At this timestep, O2 contains the locations of both

agents and the corresponding time, i.e., O2 = {(l3, 2), (l2, 2)}. Given that information is

reduced at 1 for a measurement to their locations and only 0.5 elsewhere, I(XO1 ;XO2)

is as follows:

I(XO1 ;XO2) =


0.5 + 0.5

0.5 + 1

1 + 0.5

0.5 + 0.5

 (3.10)

As we can see, an observation made by A1 at l3 results in greater reduction of entropy

at that location but it is still just 1
10 of what it would be achieved if no observation were

taken before. Next, we can calculate u(O2) as follows:

u(O2) = 1 + 1.5 + 1.5 + 1 = 5 (3.11)

Given that the cost for taking a measurement remains the same for both agents, U(O2)

can be calculated:

U(O2) = u(O2)−
2∑
i=1

ci(loc(oi,2), 2) = 5− (4 + 6) = −5 (3.12)

Consequently, U(O2) = 30 − 5 = 25. In another case, if both agents take no measure-

ments at the first timestep but both take one at the second, i.e., O1 = {(⊥, 1), (⊥, 1)}
and O2 = {(l3, 2)(l2, 2)}, the mutual information I(XO1 ;XO2) would be:

I(XO1 ;XO2) =


5 + 5

1 + 10

10 + 1

5 + 5

 (3.13)

The observation made by A1 has a great impact on the reduction of entropy at l3 and

less on l1, l4. Concerning the reduction of entropy at l2, we observe that this time it is

not zero since the distance now from that location is not as large as it is from l1 to l4,

which was the case in the previous situation. A similar case holds for A2. Intuitively this

could be because both agents make observations at more central locations and thus, the

observation of each one reduces the entropy at all locations of the environment. Thus,
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u(O2) is calculated as follows:

u(O2) = 42 (3.14)

Consequently, U(O2) can be calculated as follows:

U(O2) = u(O2)−
2∑
i=1

ci(loc(oi,2), 2) = 42− (4 + 6) = 32 (3.15)

Clearly, the second case U(O2) = 32 is much better since the utility gained is more

than that gained in the first case. Having gone through this simple example, we can

conclude that a coordination algorithm is needed to intelligently assign agents to sets of

observations. In particular, both agents taking measurements at both timesteps results

in less total utility rather than when the two agents take measurements only at the

second timestep.

In the scenario described above, the system should have the following output: {A1 7→
{(⊥, 1), (l3, 2)}} ∪ {A2 7→ {(⊥, 1), (l2, 2)}}. This would be the optimal solution to this

problem among a total of 16 possible cases as seen in Table 3.1. The reason is that the

total utility earned is higher when agents make observations at crucial positions that

affect the entropy at more locations. When A1 is at l3, there is a reduction in entropy

at all locations. Similarly, when A2 is at l2, there is also a reduction in entropy at all

locations.

No. Timestep U(O2)

t=1 t=2

1 ⊥,⊥ ⊥,⊥ 0

2 l1, l4 l3, l2 25

3 ⊥,⊥ l3,l2 32

4 l1, l4 ⊥,⊥ 30

5 ⊥, l4 ⊥,⊥ 14

6 l1,⊥ ⊥,⊥ 16

7 ⊥, l4 l3, l2 9

8 l1,⊥ l3, l2 11

9 ⊥, l4 ⊥, l2 10.5

10 l1,⊥ ⊥, l2 12.5

11 ⊥, l4 l3,⊥ 12.5

12 l1,⊥ l3,⊥ 14

13 ⊥,⊥ ⊥, l2 15

14 ⊥,⊥ l3,⊥ 17

15 l1, l4 l3,⊥ 23.5

16 l1, l4 ⊥, l2 21.5

Table 3.1: Different cases of agents making (or not) observations at each timestep.
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In the next chapters we use the model developed here as a basis to develop our algo-

rithms. In particular, our algorithms minimise the entropy over the entire environment,

which is proportional to the minimisation of the predictive uncertainty given by the GP

model.

3.5 Summary

In this chapter we presented our proposal for a participatory sensing framework that

relies on an intelligent coordination system to efficiently coordinate measurements in

spatio-temporal settings (requirement 1). Specifically, we discussed the framework fo-

cusing on environmental monitoring applications and explaining how the framework

could be utilised in such settings. Even though the central component of our framework

is the coordination algorithm, it is able to accommodate all of the requirements set in

Chapter 1.

Also, we formally introduced the problem of coordinating measurements in participatory

sensing settings. This was described in three subsections that each one corresponds to

the problem solved in each one of the subsequent chapters (Chapter 4 and 5 accordingly).

We also presented how we modelled the environment in all of the settings we present in

this thesis (requirements 2 and 3).

Finally, we demonstrated an example based on the basic problem formulation, to high-

light the essence of the coordination problem, which is addressed in the following chapter

(Chapter 4).



Chapter 4

Coordinating Measurements in

Deterministic Scenarios

In the previous chapter, we formalised the problem of coordinating measurements in

the participatory sensing domain. In this chapter, we present our proposed solution for

deterministic scenarios and describe how we designed and performed our experiments.

Our main contribution is an algorithm that addresses the basic problem formulated

in Section 3.2, which satisfies requirements 1, 2, 3 and partially 4, as it considers the

cost to individuals for taking a measurement but not uncertainty in human behaviour.

This algorithm is useful when more information about users is available and thus there

are fewer candidate solutions to be evaluated. In particular, this algorithm coordinates

people to take measurements in an efficient way. The algorithm is heuristic as it strives

for good performance, in terms of execution runtime, instead of optimality. Finding

an optimal solution is computationally intractable, especially when large geographic

areas are monitored for a number of days. This is because this category of optimisation

problems is known to be NP-hard (Krause, 2008). Thus, the main challenges addressed

in this chapter are the mapping of participants to spatio-temporal locations in order to

explore the area of interest and avoid redundant measurements (challenge 1), while at

the same time considering the individual costs of participants for taking a measurement

(challenge 3).

In the following sections we present our algorithm (Section 4.1) and evaluate it by

comparing it to the state of the art (Section 4.2), in terms of accuracy, total utility

gained and execution time.

64
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4.1 Local Greedy Search Algorithm (LGS)

In this section we present the coordination algorithm developed to address the problem

formalised in Section 3.2.

First of all, in this work, we take into consideration the known mobility patterns of the

participants in order to efficiently plan ahead in terms of when and where to take mea-

surements. In particular, for each timestep, all participants are assigned a binary value.

This value indicates whether or not the specific individual should take a measurement

at that specific time. Since participants’ locations are assumed to be known, time alone

is sufficient to identify their spatial location. Thus, a full policy can be represented by a

binary matrix, where columns represents participants and rows the timesteps of a partic-

ipatory sensing campaign. The null policy, which is the policy where nobody takes any

measurements, is represented by the zero matrix. For example, a two timestep campaign

with two participants can be represented as a 2×2 matrix. In particular, assuming that

the two participants take measurements at every timestep the following matrix can be

created:

[
1 1

1 1

]
.

The goal of the algorithm, in the context of the design discussed above, is to produce a

binary matrix, such that the utility, U(OE), earned over the entire campaign is maximal.

In other words, the algorithm seeks to produce a mapping between a set of agents A

and observations that have to be taken at specific spatio-temporal locations in order to

maximise the difference between the utility and cost functions.

The algorithm uses a local search technique to reach a local maximum. In general,

local search is a metaheuristic method for solving optimisation problems as discussed in

Section 2.5. The idea is to find the best state among a set of possible states according

to an objective function. The way local search achieves finding the best state is by

starting at a random state and then moving to neighbours of that state, that are defined

in the context of each particular problem, until the best state is found. Given this

brief introduction to the local search technique, we attempt to both intuitively and

formally describe the algorithm developed. The pseudocode for the algorithm is shown

in Algorithm 2.

The algorithm initially starts with no measurements at all. So, initially a zero matrix is

created (line 2). At this point, the utility is known to be zero by definition. Next, the

algorithm checks what the total utility would be by adding a single measurement to the

matrix, i.e., setting that position in the matrix to 1 based on the utility function defined

in Equation 3.4. In this way, a subset p of possible measurements, other than cases where

agents are known to be unavailable1, are checked one by one (lines 6-22). This enables

1It is possible in the dataset for some locations to be missing, since a real dataset was used. This is
further discussed in Section 4.2.3
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the algorithm to look ahead in time and check what the utility will be if a measurement

is taken in the future. The fact that only a random subset is checked reduces the overall

runtime of the algorithm. If the utility of any of the produced matrices (line 23) is

greater than the utility of the zero matrix (line 25), then the matrix resulting in the

highest utility is selected (line 28). If the utility of the zero matrix is higher, then the

algorithm stops (line 26)2. In the same fashion, assuming that the zero matrix does not

produce a higher utility than any of the newly produced matrices, the algorithm keeps

the best configuration so far (line 28). It then attempts to add another measurement

to the matrix (line 10), and again all possible positions of the subset, other than the

one already selected, are evaluated (line 6). However, it is possible to evaluate another

policy (line 8) by removing one measurement previously selected, and thus backtracking

to a previous iteration. This will enable the algorithm to avoid bad local maxima.

The algorithm works greedily, in the sense that it starts by considering the null policy,

and when a measurement is chosen it cannot be altered unless a very bad choice is

made. For example, if a measurement at the last position of the matrix produces the

best result in the first iteration, it is set to one and it cannot be changed back to zero

in later iterations unless removing a single observation from a previous matrix results

in better utility. This approach limits the number of policies that are evaluated and

thus leads to a faster runtime. The procedure continues until no further increase in the

utility can be gained. In this chapter we assume that the budget of each agent is set to

infinity and we only deal with the cost of taking measurements.

We have 2(M ·E) possible combinations since we have an independent option for whether

or not to take a measurement by an agent at any timestep. However, since our algorithm

is greedy, its runtime is polynomial in the number of agents and timesteps. Specifically,

it will run for a maximum of (M · E) iterations and at each one of them compute

(M ·E)− l′ policies, assuming that (|p| = |z|), where M is the number of agents, E the

duration of the campaign and l′ is the number of observations already chosen. Initially,

l′ = 0. The total number of iterations can be expressed as follows:

M · E(M · E + 1)

2
(4.1)

2It might be the case that any single observation at any timestep is very costly compared to the
utility gained.
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Algorithm 2 Local Greedy Search Algorithm (LGS)

1: input: E (timesteps), A (agents)
2: Initialise M = |A|, maxU ′ = 0, S∗ ← null matrix(E,M), obsList = ∅
3: for k = 1 to (M · E) do
4: z ← null positions of S∗, newobs = S∗

5: p ⊂ z, sz ← |p| . p is randomly chosen
6: for l = 1 to sz + 1 do
7: if l = sz + 1 & k > 2 then
8: Change obsList(k − 2) to 0 in newobs matrix . Backtrack feature
9: else

10: Change lth zero bit to 1 in newobs matrix
11: end if
12: Set C = 0 . Initialise cost to zero
13: for i = 1 to E do
14: for j = 1 to M do
15: if newobs(i, j) = 1 then
16: C ← cj(i)+ C . calculate the cost for each agent and add it to

the total cost
17: end if
18: end for
19: U(Oi)← [u(Oi)− C] . calculate the total utility given what observations

are made
20: end for
21: sl ← U(OE)
22: end for
23: Keep the maximum U(OE) of sl in maxU variable
24: Add/Remove observation from obsList
25: if maxU < maxU ′ then
26: return: S∗

27: else
28: Set S∗ to be the best configuration
29: end if
30: maxU ′ ← maxU
31: end for
32: return: S∗
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In order to illustrate the behaviour of the algorithm an example is provided, which is

explained in more detail in Section 3.4. In this example, we assume a two timestep cam-

paign with two participants. In the context of the framework developed, it is represented

by a 2 × 2 binary matrix. As shown in Figure 4.1, the algorithm starts by evaluating

the null matrix and then adds the single best measurement that produces the highest

total utility. In this example, A1 taking a measurement at the second timestep, (t = 2),

has the highest utility and it is selected. Next, the algorithm determines whether taking

another measurement can increase the total utility earned (U(OE)), but no replacement

of the selected measurement can be performed. Specifically, in this example, when k = 3

it is assumed that the third instance produces the best utility. For example, the first

policy has a 14.5 total utility, the second policy has 12.5 and the third 32. Finally, the

algorithm checks whether any of the policies at k = 4 produce a higher total utility.

Assuming none of those produces a higher utility than what is already produced, the

algorithm terminates and returns the following:

[
0 0

1 1

]
. This is equivalent to:

{A1 7→ {(⊥, 1), (l3, 2)}} ∪ {A2 7→ {(⊥, 1), (l2, 2)}} (4.2)

in terms of the formulation in Section 3.2.

4.2 Empirical Evaluation

In this section, we evaluate the algorithms developed using real human mobility patterns

and air quality sensor data. In the first part, we introduce our benchmarks, describe

our hypotheses and the experiments performed to empirically understand how different

algorithms perform in our settings. Finally, we discuss our findings.

4.2.1 Benchmarks

The algorithm developed is benchmarked against the state-of-the-art algorithms which

are described below:

• Greedy: This algorithm checks which measurements should be taken in order

to maximise the utility at each timestep, i.e., maximise U(O1),U(O2), · · · ,U(OE)

sequentially. It does so in a greedy way, i.e., select the single observation among

the number of agents that maximises the utility but only at a specific timestep,

instead of looking ahead as in LGS, and then the next best observation until no

further improvement can be achieved for that timestep. The final policy produced,

S∗, is the concatenation of the outcome of each timestep. The Greedy algorithm

is the simplest approximation algorithm and it is used in determining where to

place sensors in static environments (see Section 2.6).
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Figure 4.1: LGS algorithm example.

• Patrol: This algorithm assumes that measurements are taken at each timestep

by all agents no matter the cost. It is an algorithm that replicates the behaviour

of mobile sensors, i.e., patrolling an area in order to monitor environmental phe-

nomena (see Section 2.4).

• Myopic Optimal (MyopicOpt): This algorithm makes decisions myopically,

i.e., considers only the current timestep, but it computes all the possible combi-

nations of agents making an observation for a particular timestep. Thus, it finds

the assignment of agents to observations that maximises utility U(Ot) for that

timestep. Like Greedy, it produces a policy S∗ that is the concatenation of the

outcome of each timestep and it is used in the literature on coordinating agents

(see Section 2.4).

• Random: This algorithm assumes that measurements are made randomly by

agents throughout time. Specifically, it selects uniformly distributed measurements

for each policy. It is an algorithm that creates a policy that could have potentially
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been created by participants making local decisions, i.e., without coordination, in

environmental monitoring campaigns.

• Random100: This algorithm runs 100 random policies and selects the best one

of those.

• Optimal (Brute Force): This algorithm produces the optimal policy S∗ for

coordinating measurements by evaluating all the possible combinations. This is

only feasible to do in small-scale scenarios.

4.2.2 Experimental Hypotheses

Given the benchmarks above, we formulate the following experimental hypotheses:

• Hypothesis 1: The total utility earned by the LGS algorithm will consistently be

higher than that of the Greedy, Patrol, Random100 and Random algorithms, irre-

spective of the number of agents participating.

Outperforming Greedy is a result of the fact that LGS looks ahead in time, and

thus is able to select measurements that should increase the total utility earned

by the end of the campaign. Outperforming the rest is caused by the fact that

the Patrol and Random algorithms ignore the costs of taking measurements and

thus taking a measurement at every time-step or randomly results in a suboptimal

behaviour.

• Hypothesis 2: The total utility earned by the LGS algorithm will be higher than

Greedy, MyopicOpt, Patrol, Random100 and Random in most scenarios of varying

dynamism.

This is because LGS aims to increase the total utility by taking account of the dy-

namics of the environment. Even though Greedy and MyopicOpt are expected to

perform better as the phenomenon becomes more dynamic, i.e., the phenomenon

is almost independent at each timestep, LGS will still outperform them, because

it is able to greedily add measurements in a similar way but at the same time look

ahead and thus make decisions that lead to a higher utility over time.

• Hypothesis 3: The total accuracy of the LGS algorithm (measured in terms of

RMSE3, defined in Section 2.2.2) will be higher than Greedy, MyopicOpt, Patrol,

Random100 and Random, irrespective of the number of agents participating.

This is because the accuracy is correlated with the total utility gained. Better

3Whilst the utility captures the total information gained by a set of measurements, RMSE evaluates
the overall accuracy in terms of the actual values of the phenomenon.
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AQI Category PM2.5 Level Associated Health Impacts

0-50 Excellent Little or no risk.

51-100 Moderate Few hypersensitive individuals should reduce outdoor exercise.

101-150 Unhealthy for Sensitive Groups Slight irritations may occur.

151-200 Unhealthy Everyone may begin to experience health effects.

201-300 Very unhealthy Healthy people will be noticeably affected.

300+ Hazardous Healthy people will experience reduced endurance in activities.

Table 4.1: Air Quality Index (AQI) for air pollution (http://airnow.gov/index
.cfm?action=aqibasics.aqi)

map exploration, i.e., collection of more information, will lead to better accuracy

of the heatmap produced. Consequently, the LGS algorithm will perform better

than the rest of the algorithms as argued in Hypothesis 1.

4.2.3 Experimental Setup

In order to empirically evaluate our algorithm, we compare its performance against

the algorithms described above. In particular, we focus on air quality in terms of fine

particulate matter (PM2.5) in Beijing, where the levels of air pollution are known to

be high and thus it is of considerable interest to both the authorities and the people

living there. Table 4.1 shows the air quality index for air quality. We use an air quality

dataset (Zheng et al., 2013) which contains one year’s (2013-2014) fine grained air quality

data from static air quality monitoring stations in Beijing (see Appendix B). We use

this data to train our GP model, and in particular learn the hyperparameters using

the MLE technique. These include the dynamism of the phenomenon (l3) and the

smoothness over latitude and longitude (l1, l2). The sensors are scattered across Beijing

and take measurements every hour.

(a) (b)

Figure 4.2: Air quality measurement stations in Beijing overlaid by air quality
measurements extrapolated by GP at different timesteps, demonstrating the spatio-

temporal variations of air quality.

http://airnow.gov/index.cfm?action=aqibasics.aqi
http://airnow.gov/index.cfm?action=aqibasics.aqi
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Figure 4.2 shows the stations and the state of the environment represented by a GP for

two different timesteps. As we can observe, air quality exhibits spatial variations, i.e.,

PM2.5 is different depending on where you are in Beijing, as well as temporal variations,

i.e., it is different depending on the time of the day. Figure 4.3 shows the variance over

the environment by taking measurements at the stations’ locations. Also, the use of

GPs helps with missing entries in the dataset as we are able to interpolate over the

environment.

At the same time of using an air quality dataset, we are interested in the mobility

patterns of people in the city. Ideally, these patterns are learned using a human mobility

prediction system. In this chapter, however, we use deterministic mobility patterns.

Specifically, we use data from the Geolife trajectories dataset (Zheng et al., 2009), which

contains sequences of time-stamped locations of 182 people in Beijing (see Appendix A)

over a period of 5 years (2007-2012). For our experiments, we extracted the patterns

of 108 people over a two-month period, so as to get as much temporal overlap between

collected patterns as possible. This is due to the fact that the dataset included empty

entries for some users’s locations over a period of time, or some of the users where not

in Beijing for some or most of the time during this period. Due to the fact that we

are dealing with real data, we filter out a large portion of those in order to bring them

in a format that we can use for further experiments. Also, In order to test our system

for more than 108 agents, we take patterns of different months from the same pool of

agents’ trajectories.

Participants are assumed to be equipped with the necessary equipment and they are

able to take measurements when necessary if their spatial coordinates are available in

the original dataset. Our system simulates human mobility patterns by getting the

location of people every hour. However, as described in the problem description, taking

a measurement involves a cost which is different for each agent. The cost, which is

Figure 4.3: Air quality measurement stations in Beijing overlaid by predicted uncer-
tainty given by GP.
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proportional to the utility and is empirically learned, is randomly assigned to each

agent. In addition, we assume there are peak and off-peak hours where measurements

are more expensive or cheaper for all agents respectively. For instance, we speculate

that during commute hours it is more inconvenient for people to take measurements as

they are in a hurry. Thus, measurements to be taken during these hours (08:00 - 10:00

and 17:00 - 19:00) are more expensive by 30% than in other times. This way we capture

the cost which would be associated with participants in a real deployment. However,

this values could be change to what the campaign initiator wants or to a model that

better captures the cost of people at different times of the day or the week. Also, each

participant has a daily budget but in this work we assume it is infinite and focus on the

cost of taking measurements.

The next section presents our findings from two different experiments. In the first

experiment we simulate a varying number of agents in a 5-day campaign and compare

the utility gained from LGS, Greedy, Random and Random100 to test hypothesis 1

(Section 4.2.4.1). The optimal algorithm and MyopicOpt are infeasible to run in city-

scale scenarios, as they require more than a day’s worth of computation. In fact, since

the problem is combinatorial, the number of possible combinations for 250 agents for

even a single timestep is not computable as it is CA(|L|), where |L| = 43 × 43 and

A = 250.

To make our system generally applicable, we experiment with a number of artificial

environments by altering the hyperparameters (Section 4.2.4.2), and in particular l3,

which controls the dynamism of the environment. This change shows how our algorithm

will potentially perform in other cities or for phenomena with other levels of dynamism.

In the second experiment we simulate a varying degree of dynamism for a single day with

5 agents and compare LGS against all of the six benchmarks both in terms of utility

gained as well as runtime (hypothesis 2). Experimenting with small-scale scenarios will

enable us to compare our algorithm with the optimal one.

For both of these experiments we also empirically compare our algorithm’s performance

against the algorithms described above in terms of Root Mean Squared Error (RMSE)

defined below:

RMSE =

√√√√ 1

|L|

|L|∑
l=1

(yl − y∗l )2 (4.3)

where |L| is the total number of locations of interest. This is a metric used typically

to measure the accuracy of regression models and it captures the differences between

the predicted and observed values (as discussed in Section 2.2.2). In our settings it

is interesting to use this metric to capture the RMSE of the algorithms in practice

(hypothesis 3) as it demonstrates the benefit of utilising a coordination algorithm in

terms of the accuracy of the model.
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Moreover, in order to obtain statistical significant in our results, we performed two-sided

t-test significance testing at the 95% confidence interval.

4.2.4 Results and Analysis

In this section, we present and analyse our findings. In particular, we focus on the

effect in the total utility and accuracy measured in RMSE when we vary the number of

participants (Section 4.2.4.1). Also, we present the effect on utility and accuracy when

varying the dynamism of the phenomenon as well as the overall execution time of the

algorithms (Section 4.2.4.2).

4.2.4.1 Effect of the Number of Agents
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Figure 4.4: Total utility gained for a 5-day participatory sensing campaign. The error
bars indicate the 95% confidence interval.

Figure 4.4 shows results of the performance of varying the number M of agents partici-

pating in the system. The dynamism in this experiment is fixed at l3 = 10.6, which was

found using the Maximum Likelihood Estimation (MLE) technique, which is a method

of estimating the parameters of a statistical model4. In particular, the MLE technique

was run a number of times with multiple initialisations. Then, the hyperparameters

which resulted in the highest negative log marginal likelihood (see Equation 2.12 in Sec-

tion 2.2.2) were selected. Estimating the hyperparameters of a Gaussian Process model

is an active research topic, and number of approaches have been proposed (Rasmussen

4We use GPML v3.4 toolbox and in particular a nonlinear conjugate gradient method.
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and Williams, 2006). However, in our work, we use the fastest one, which is commonly

used in literature (Low et al., 2011a; Ouyang et al., 2014).

The results confirm our first hypothesis that LGS outperforms the rest of the algorithms.

We can observe that LGS is 33.4% better on average than the Greedy algorithm. This is

because LGS can look ahead in time, and thus make choices that will increase the total

utility by the end of the participatory sensing campaign. Concretely, it is important

to look ahead in time because of the temporal correlation of measurements. In other

words, a future measurement at a specific location might be more valuable than taking

a measurement at the same location at the present. This depends on the participants

available at each timestep, as well as the cost of taking measurements. The Greedy

algorithm lacks this ability, and thus it does not perform as well as LGS. The rest of the

algorithms do not involve an intelligent element, and thus they act as a lower bound to

Greedy and LGS. In particular, their performance is so bad that we show the logarithm

of the absolute value of those because the cost of taking those measurements was more

than the utility gained, resulting in large negative utility.

Figure 4.5 shows results of varying the number M of agents participating in the system.

In this experiment we compare the algorithms in terms of the RMSE to benchmark the

accuracy of the algorithms in terms of the actual air quality levels. The results show that

LGS is significantly better than the other algorithms, confirming hypothesis 3. However,

the Greedy algorithm is only marginally worse. This can potentially indicate that the

covariance function used in our model (Gaussian Process) can be further improved.

Specifically, in this thesis we used one of the most common covariance functions used

in the literature (Matern kernel). However, modelling air pollution using Gaussian

Processes is a separate research area (Guizilini and Ramos, 2015; Liu et al., 2016). This

has a significant effect on the accuracy of air quality over the environment, which is why

the benefit of LGS in terms of accuracy measured by RMSE is not that great.

4.2.4.2 Effect of the Dynamism of the Phenomenon

Figure 4.6 shows results of the performance of the algorithms when varying the time-

scale (l3), which controls the dynamism of the phenomenon. Originally, the time-scale

was found to be (l3 = 10.6) using the MLE technique. The smaller the time-scale, the

more dynamic the phenomenon is. Consequently, as the time-scale approaches zero,

each timestep is more independent from the other. Thus, MyopicOpt is similar to the

optimal algorithm and Greedy performs near-optimally. Intuitively, the more dynamic

the phenomenon is, the more information is gained by taking observations continuously

(at every timestep). However, the dynamism of air pollution was at the scale of hours,

which makes Greedy and MyopicOpt far from optimal. The results confirm our second

hypothesis as LGS is better than the rest of the algorithms in all scenarios. However,

as the time-scale approaches zero, LGS’s performance tends to be similar to MyopicOpt
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Figure 4.5: Total RMSE for a 1-day participatory sensing campaign. The error bars
indicate the 95% confidence interval.

and Greedy. Also, the utility gained from LGS is near the optimal one. Figure 4.7 shows
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Figure 4.6: Total utility gained for a 1-day participatory sensing campaign. The error
bars indicate the 95% confidence interval.

results of the time efficiency of the algorithms when varying the time-scale (l3). As can

be seen, LGS needs more time in dynamic environments as more measurements need

to be taken and it is generally slower than Greedy, MyopicOpt, Patrol and Random

algorithms. However, the optimal algorithm requires a lot more time. Specifically,
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Figure 4.7 includes the natural logarithms of LGS, Greedy and the optimal algorithm’s

runtime.
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Figure 4.7: Average runtime of the algorithms for a 1-day participatory sensing cam-
paign. The error bars indicate the 95% confidence interval.

4.3 Summary

In this chapter, we presented a novel coordination algorithm (satisfying requirement 1)

that maximises the total utility gained over a period of time while at the same time

minimising the cost incurred by taking measurements (satisfying part of requirement

4). In particular, we demonstrated how efficient the algorithm is compared to the

state-of-the-art Greedy algorithm and Optimal approach. An empirical evaluation on

real data showed that, (a) LGS is 33.4% better than the Greedy algorithm in terms

of utility gained, (b) LGS is faster than the Optimal approach, (c) the dynamics of

the environment affect the performance of the LGS algorithm and the total utility

gained (the more dynamic, i.e., the lower the time-scale, the higher the utility and the

computational time), but still LGS outperforms the benchmarks in all scenarios, and

(d) LGS is better in terms of RMSE than the rest of the algorithms.



Chapter 5

Coordinating Measurements

under Uncertainty and Presence

of Malicious Users

In this chapter, we address the extended problem described in Section 3.2.2 as well as

Section 3.2.3. Specifically, in the next section (Section 5.1) we present an algorithm that

is able to coordinate measurements in the presence of uncertainty in people’s routines as

well as in reliability in terms of taking the measurements they are requested to. Following

this work, Section 5.7.1 presents an algorithm that is able to coordinate measurements

both in the presence of uncertainty and malicious users. However, it does so in expense

of computational complexity.

5.1 Coordinating Measurements under Human Mobility

Pattern and Task Execution Uncertainty

In this section, we tackle the extended problem described in Section 3.2.2 that introduces

uncertainty in the willingness of people to take the measurements suggested, as well as

in their mobility patterns. As discussed in Sections 2.4, 2.5 and 2.6, finding the optimal

solution is computationally infeasible for realistic settings.

In this work, we focus on designing an efficient algorithm that outperforms the state

of the art. In particular, contrary to the previous chapter, even though people are

typically predictable in terms of their mobility patterns, only probabilistic knowledge

might be available. Also, people might not always perform the action requested, which

makes the problem more difficult by introducing this kind of uncertainty as discussed

in Section 2.5.2. Thus, the main challenges addressed in this chapter are the probabilis-

tic nature of human mobility patterns and human reliability (challenge 4), the budget

78
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constraints (challenge 3), and the large number of participants (challenge 6). Given

these challenges, our algorithm must be able to adapt under uncertainty and be scalable

(requirement 4 and 6).

Our approach, the adaptive Best-Match algorithm or aBM (Algorithm 3), consists of

two main components, the offline component, i.e., the Simulations for Scalable Search-

ing (SiScaS) algorithm (Algorithms 4, 5 and 6), and the online component, i.e., the

Matching algorithm (Algorithm 7). This approach enables the algorithm to run offline

in order to find a good solution. However, since there is uncertainty related to human

behaviour and mobility patterns, participants might not be in their predicted locations

or might be unavailable to take measurements. Thus, an online component can adjust

measurements in realtime.

In the next section (Section 5.2), we first intuitively explain how our algorithm works by

providing a general overview and then provide the formal details. Next (Section 5.3), we

describe the core components of the offline algorithm in more detail, while Section 5.4

presents the online component of the algorithm. In Section 5.7.3 we describe our exper-

iments and show our results and in Section 5.6 we conclude by providing a summary for

this chapter.

5.2 Adaptive Best-Match

Adaptive Best-Match or aBM (Algorithm 3), has an offline and online component. The

offline algorithm is responsible for searching through the space of potential candidate

solutions in order to produce a number of mappings of participants to spatio-temporal

locations. Specifically, the algorithm makes small changes to the candidate solution

(local search), in terms of when and where each user should take a measurement, and

evaluates its performance by simulating the environmental campaign. The algorithm is

explained in detail in Section 5.3. This algorithm, however, treats spatial clusters of

people as a single entity, which speeds up the searching process. The Adapt algorithm

(Algorithm 6), which is part of the offline component of aBM and is presented in

Section 5.3.2, deals with finding people within a particular cluster who should take a

measurement, in order to maximise the expected utility while at the same time saving

budget for future iterations.

The next part of the algorithm (presented in Section 5.4) is responsible for acting in real

time, matching the simulated output with the current situation. In particular, given the

uncertainty in human mobility patterns, users are not guaranteed to be at the locations

used in the simulations. Thus, an algorithm that handles the real-time situation is

necessary. Our algorithm finds the best match between the simulation output from the

offline algorithm to the real-time situation.
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Our decision to exploit both offline and online components is due to the fact that the

offline algorithm can find good solutions by making assumptions about the uncertainty

related to mobility patterns and human behaviour. However, in real time, the actual lo-

cation of the users can be observed as well as whether a user actually takes the suggested

measurement or not. Thus, an online algorithm is required to adapt the measurements to

be taken, which are produced by the offline component, in order to match the real-time

situation and increase the total utility gained. For instance, if the offline component

determined that a user who will be in a specific location should take a measurement,

but in real time the user is not there, a nearby available user could potentially take the

required measurement instead.

In this section, we present a high-level overview of our algorithm and then focus on each

component and subcomponent of it.

In particular, the high level structure of our coordination algorithm (aBM) is shown in

Algorithm 3. This algorithm shows that given the number of timesteps, the budget of

the people and their reliability (line 1), a number of offline simulations (N) are made

(line 2). For each simulation (N), a different mapping of users to spatio-temporal loca-

tions is produced (S), as defined in Section 3.2, which we represent with S1,...,N . Also, a

number of spatio-temporal clusters are produced (C), depending on the spatial locations

of people, each of which is associated with the users that belong to it, their coordinates

and the coordinates of the centroid of the cluster. Formally, C= {C1,1, . . . , CE,m}, where

the number of clusters is less than the number of agents m ≤ M . Also, every Ci,j is

associated with a number of users A ⊆ A. In other words, it is a set of spatio-temporal

clusters that include information about each participant’s location that belongs in that

cluster, their reliability and budget as well as the centroid in terms of coordinates of

each cluster. Then, in real time (represented in lines 3 - 7), i.e., every timestep i, the

Matching algorithm is called to find the best match between simulations and the real-

time situation (line 4). Next, the selected users are notified to take the measurements

required by the system (line 5). Finally, the environment is updated (line 6) with the

information provided by the users.

Algorithm 3 Adaptive Best-Match (aBM) Algorithm

1: input: E (timesteps), B (budget), R (reliability)
2: S1,...,N , C1,...,N ←SiScaS(E,B,R) . Simulations running offline
3: for i = 1 to E do
4: S∗i ← Matching(E, i, B, S1,...,N , C1,...,N ) . Online mapping of users to

measurements
5: Notification(S∗i ) . Notify selected users to take measurement
6: E ← Update(S∗i ) . The environment is updated with the new information

obtained by the measurements taken by users at this timestep.
7: end for
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5.3 Simulations for Scalable Searching (SiScaS)

The Simulations for Scalable Searching (SiScaS) algorithm is a critical component in

our work, as it is responsible for a number of functions including calling the Stochastic

Local Greedy Search (SLGS) algorithm, which is described in Algorithm 5.

The SiScaS algorithm is shown in Algorithm 4. In particular, this algorithm is responsi-

ble for sampling from the human mobility patterns distributions, provided by the human

mobility prediction component in Figure 3.1 (line 4), in order to get the possible loca-

tions for each of the participants. It also clusters people in spatially correlated groups

for all the timesteps using a well-known clustering technique called DBSCAN (Ester

et al., 1996)1 (line 5). DBSCAN enables the grouping of people based on the distances

between each other and is independent of the shape of the cluster. Also, DBSCAN, in

contrast to other clustering techniques, does not require an explicit input of the number

of clusters that should be formed. Rather, it requires the minimum number of points

needed to form a cluster, as well as a distance threshold that prohibits points far apart

from each other belonging to the same cluster. Consequently, people close to each other

are said to belong to the same cluster, and thus can be treated as a single entity, which

is crucial in scaling up the number of participants in the campaigns. In particular, each

cluster could have a budget as the maximum of the people belonging to that cluster.

This is feasible since, in our case, measurements taken at the same spatio-temporal lo-

cation contribute the same information to the campaign. Since at each timestep people

can be in different locations, the algorithm produces a different set of clusters for each

timestep. For example, Figure 5.1 (a) shows an example of how a hundred people are

scattered in an area, which is part of the real human mobility dataset we use for our

experiments later on. Figure 5.1 (b) shows the same 100 people clustered in 47 spatial

groups. On average there are 2 people per cluster in this occasion. However, isolated

people are in their own cluster and people in more populated areas are grouped together.

Finally, Stochastic Local Greedy Search (SLGS) is called (line 6) and the human mobil-

ity patterns as well as the spatio-temporal clusters are passed to it. For each iteration of

the algorithm, SLGS will produce a different mapping of participants to measurements

since it will keep sampling from the mobility patterns and forming clusters for a number

of times Simulations = N .

5.3.1 Stochastic Local Greedy Search (SLGS) Algorithm

The Stochastic Local Greedy Search (SLGS) algorithm is the core component of SiS-

caS (called on line 6 of Algorithm 4). The idea of SLGS is to stochastically evaluate a

1Other clustering algorithms such as K-means (MacQueen, 1967), Gaussian Mixture Model (McLach-
lan and Peel, 2000) or Hierarchical Clustering (Johnson, 1967) could be used here.
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Figure 5.1: Spatial locations of 100 participants in Beijing, showing the locations of
individual users (a) and the locations of the means of the clusters created (b).
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number of policies, according to the utility function defined in Equation 3.5, and greed-

ily proceed to a neighbouring policy by applying local changes in order to maximise

that function. Thus, given a set of spatio-temporal clusters, the budget of people and

a number of timesteps, SLGS finds a mapping between clusters and possible measure-

ments, such that the information about the environment is maximised. SLGS is able to

simulate how the information about the environment is changing over time by exploiting

the property of Gaussian Processes that requires only the location of the measurement,

and not the actual value of it, in order to provide the magnitude of uncertainty over the

environment. In contrast to LGS, presented in Chapter 4, this algorithm is able to deal

with probabilistic human mobility patterns and users’ reliability. However, it lacks the

backtracking feature of LGS, which makes this algorithm faster but potentially make

suboptimal solutions more likely.
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Algorithm 4 Simulations for Scalable Searching (SiScaS) Algorithm

1: input: E (timesteps), B (budget), R (Reliability)
2: Simulations = N . Number of simulations to run
3: for s = 1 to Simulations do
4: A, l← SAMPLEHMPs . Sample from human mobility patterns distribution

where A ⊂ A and l ⊂ L are their corresponding locations
5: Cs ← DBSCAN(A, l, E)
6: Ss ← SLGS(E,Cs, B,R)
7: end for
8: return: S1,...,N , C1,...,N



Chapter 5 Coordinating Measurements under Uncertainty and Presence of Malicious
Users 85

Algorithm 5 Stochastic Local Greedy Search (SLGS)

1: input: E (timesteps), C (clusters), B (budget), R (Reliability)
2: maxU ′ = 0, S∗ ← null matrix(|C|)
3: for k = 1 to |C| do
4: . For each iteration k, an additional spatio-temporal cluster is taking a

measurement.
5: if maxi(Bi) == 0 then
6: return: S∗

7: end if
8: c← RANDOMSAMPLE . Take a random spatio-temporal sample from the

set of clusters available where people have some budget left such that c ⊆ C
9: sz ← |c|

10: for l = 1 to sz do
11: . For each l, a different spatio-temporal cluster is taking a measurement.
12: O′ ← O ∪ ol . Where ol is the extra observation to be taken
13: U(OE)← u(O′t) . Calculate the utility for every timestep

t, where O′ includes the spatio-temporal measurements selected so far, including a
new measurement l.

14: sl ← getMappings(U(OE), c) . A function that associates the
users in the spatio-temporal cluster with the utility of the measurement taken, i.e.,
sl : c→ U(OE)

15: end for
16: Keep maximum U(OE) of sl in maxU variable
17: Set Sl to be the best configuration of all sl
18: S∗ ← Adapt(Sl, R,E) . Get the subset of users that will be notified to get a

measurement
19: Reduce budget from users selected in S∗

20: δ = (maxU −maxU ′)/maxU
21: if δ < threshold then
22: return: S∗

23: end if
24: maxU ′ ← maxU
25: end for
26: return: S∗
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Figure 5.2: Schematic representation of an SLGS Algorithm example

A key feature of SLGS is that each cluster is treated as a single entity and can only take a

single measurement at a time, which is assumed to be taken from its centroid. The reason

for this is to avoid using individuals’ locations to make our algorithm more efficient.

However, the algorithm needs to decide who should actually take the measurement and

reduce the budget of the participants accordingly.

To do so we use a greedy algorithm within each cluster (Section 5.3.2), choosing the

users that provide the best expected utility, while taking into account their reliability.

Intuitively, our approach requires the most reliable people to take the most important

measurements. However, calculating the exact utility is intractable for a large number of

users. This is because we would have to consider all the combinations of users in a cluster

to get the expected utility. To overcome this problem, we calculate the probability that

at least one of the selected users in the cluster will take the measurement. This is easy

to calculate as it is one minus the product of probabilities of all users not taking a

measurement when notified:

R∗ = 1−
W∏
j=1

(1− r(Aj)) (5.1)

where W is the number of people instructed to take a measurement within a cluster and

Aj ∈ A the user to take the measurement.
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Since the number of spatio-temporal clusters can be large (up to a maximum of the

number of participants times the number of timesteps, i.e., M · E), we sample again

through space and time. That is, we select a random number of clusters c ⊆ C for every

timestep. Consequently, we are left with a smaller number of spatio-temporal clusters.

We greedily select measurements that maximise the total information. However, in

order to save computation time, we stop the process when the increase in information,

by taking a specific measurement, is below a predefined threshold.

A simple example of how the SLGS algorithm works is presented on Figure 5.2. Here,

for simplicity, we assume that there is a two timestep campaign (t1 and t2) with two

clusters (C1 and C2). This is similar to the worked example in Section 3.4, but more than

one agent is at the locations of A1 and A2, which is captured by the clusters C1 and C2

accordingly. Also, we assume that each of the clusters can only take one measurement

during the campaign, i.e., have a budget of one. The algorithm starts by evaluating the

null matrix, i.e., no measurements at all, and then adds the single best measurement

that produces the highest total utility. However, at this stage the algorithm is unaware

of who in particular will take the required measurements. A zero value means that no

measurement is taken and a one means that a measurement is taken by users in the

cluster at that timestep. The algorithm evaluates a number of candidate solutions at

each iteration (k), selects (denoted with the bold arrow line) the one that produces the

highest utility (U), calculated by Equation 3.4, and proceeds to the next iteration (k),

where an additional measurement is added. For instance, when k = 2 the maximum

utility is gained (U = 17) by cluster 1 (C1) taking a measurement on timestep 2 (t2).

Similarly, when k = 3 the maximum utility is gained (U = 32) when an additional

measurement is taken by cluster 2 (C2) on timestep 2 (t2).

Now, the SLGS algorithm, shown in Algorithm 5, is described in more detail. The

algorithm accepts the locations of people spatially clustered per timestep (C), as well as

the budget of each individual (B), their reliability (R) and the total number of timesteps

(E) as shown in line 1. Given that there is sufficient budget left for at least one person

in the cluster, it randomly selects a cluster per timestep (line 8). It then checks what

the utility would be when adding a measurement for each cluster (lines 10 - 15). This

is achieved by forwarding the campaign in time to check what the final utility would

be (line 13). This enables the simulations to run fast since not every single position

in the cluster is considered by the Gaussian Process. Next, the utility produced by

the specific combination of measurements is stored as a mapping from users to spatio-

temporal locations in sl (line 14). Then, the algorithm finds the cluster that produced

the highest marginal increase (δ) in utility, given the set of candidate solutions sl, and

selects it (line 16). Since the algorithm is greedy, this measurement can no longer be

removed, and thus it is not considered in the following iterations. At this point Adapt

is called (line 18) in order to select who, within the selected cluster, will actually take

the measurement (see Section 5.3.2 for more details). At the same time, the budgets of
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people in the cluster selected are adjusted accordingly, i.e., the budget of the individual

particiapants selected within the cluster is reduced by one (line 19). The algorithm

iterates until the marginal increase is below a percentage threshold or until everyone’s

budget is depleted (line 21 and line 5 respectively).

In order to speed up our algorithms, we reuse some of the results already calculated by

partially evaluating policies in the SLGS algorithm. In particular, at each iteration of

policy evaluation in time (line 13), i.e., when forwarding the campaign in time, we store

the utility earned from that part of the policy. When this part of the policy appears

again, we reuse the utility without the need to re-evaluate it.

5.3.2 Adapt Algorithm

Algorithm 6 is responsible for selecting the people within the cluster that should take

the measurement, as explained above. It is called on line 18 of the SLGS algorithm

(Algorithm 5).

Algorithm 6 Adapt Algorithm

1: input: Sl (users in space and time), r1,...,M (reliability), E (timesteps)
2: maxU ′ = 0, S∗ ← null
3: for f = 1 to |Sl| do
4: sz = |Sl| − |S∗| . People not yet selected, who have budget left
5: for l = 1 to sz do

6: R∗l = 1−
|S∗|+1∏
j=1

(1− r(Aj)) . Calculate the probability that

at least one user takes a measurement according to Equation 5.1, where Aj are the
people selected within the cluster including the new measurement ol.

7: u(OE)←
∑E

t=1R
∗
l · u(Ot) . Calculate the utility for each timestep

8: sl ← getMappings(U(OE), A). A function that associates the users with the
utility of the measurement taken, i.e., sl : c→ U(OE).

9: end for
10: Keep maximum U(OE) of sl in maxU variable
11: Set S∗ to be the best configuration of all sl
12: δ = (maxU −maxU ′)/maxU
13: if δ < threshold then
14: return: S∗

15: end if
16: maxU ′ ← maxU . Update the highest utility
17: end for
18: return: S∗

This is a greedy algorithm that estimates the utility that at least one of the users

that are requested to take the measurement in a particular cluster will actually take

the measurement. In other words, it selects a subset of people within the cluster to

take a measurement, saving measurements for future iterations. Figure 5.3 shows an
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example of how this algorithm works. Specifically, in this example, the utility gained

from the cluster taking measurement is U = 17 and the reliabilities of the agents are

r(A1) = 0.6, r(A2) = 0.9, r(A3) = 0.8, r(A4) = 0.7. Initially, the measurement to be

taken is by cluster 1 (C1) on timestep 2 (t2), which is the result of iteration K = 2

in Figure 5.2. The algorithm selects iteratively who in that cluster should take the

measurement. For instance, in the first iteration, user 2 (A2) is selected (bold arrow

line) since the total utility, calculated by Equation 5.1, is greater than any other choice,

as it has the highest reliability. Similarly, in the next iteration, the probability of at

least one user taking a measurement is calculated. The algorithm adds measurements

greedily until a threshold is met. In this case, we assumed that all the measurements

within the cluster have a utility of 17, but this is not typically the case in practice as

people in the same group are in slightly different locations producing a different utility

when taking a measurement.
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Figure 5.3: Adapt Algorithm Example

Now, Algorithm 6 is explained in more detail. This algorithm iterates through the

number of users (line 3 - 17), who belong in the cluster selected in Algorithm 5. Then, it

iteratively adds a user to the list of selected users (line 5 - 9), calculating the probability

(reliability) that at least one of the selected users will actually take the measurement

required (line 6). Next, the total utility is calculated (line 7) and this is stored as a

mapping from users to spatio-temporal locations in sl (line 8). Then, the algorithm

finds the user that produced the highest marginal increase (δ) in utility, given the set

of candidate solutions sl, and selects it (line 10). Since the algorithm is greedy, this

measurement can no longer be removed, and thus it is not considered in the following
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iterations. The algorithm iterates until the marginal increase is below a percentage

threshold (line 13).

5.4 The Matching Algorithm

SiScaS (presented in Section 5.3) produces a number of mappings (N) of participants

to measurements depending on the samples taken from human mobility patterns, as well

as the clusters that are formed.

Algorithm 7 Matching algorithm

1: input: E (timesteps), current (current timestep), B (budget), S1,...,N , C1,...,N

2: A× l← GetHumanLocations . Get GPS coordinates of users where A ⊂ A and
l ⊂ L

3: Ĉcurrent ← DBSCAN(A, l, current) . Ĉcurrent are the clusters formed at the
current timestep in real time

4: for s = 1 toN do
5: Find nearest neighbour from Ĉcurrent to Ccurrents . Find the

best match between the cluster in real time (Ĉcurrent) and a number of simulations
(Ccurrents ) at a specific timestep (current)

6: Ds ←Calculate Euclidean distance of Ĉcurrent nearest neighbour
7: end for
8: ind← arg min

s
Ds . Get the index of the minimum distance.

9: P ← Ccurrentind . Get people from the best simulation

10: P̂ ← Ĉcurrent . Get people in real time
11: Find S

′
= S∗ind ∩ P̂ . S∗ind is the best match between clusters formed in

simulations in advance and real-time clusters. S
′

is a subset of those mappings that
includes only those people that are actually available in real time.

12: Get the people not taking measurements within selected cluster S
′′

= P̂\S′

13: Select X = |S∗ind| − |S
′ | measurements

14: Append X random measurements to S
′

from S
′′

15: M ← Get people with budget left in ind simulation
16: totalBudget← Sum the budget left in ind simulation
17: O = totalBudget/(E − current)
18: Choose O random measurements from M
19: Append new measurements to S

′

However, in real time, participants can actually be in a different location or they may

not be available at all. Also, people might not take the designated measurement even

if they are actually at the desired position. The idea of the Matching algorithm is to

decide who to notify in real time, given the output of SiScaS (S1,...,N ) and the state of

the world at each timestep.

Concretely, the Matching algorithm (Algorithm 7) gets human locations (line 2) in

real time and clusters them using the DBSCAN algorithm (line 3). Then, the algorithm

finds the best match between the measurements that are most informative, as calculated
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in advance, and the actual positions of participants in real time. Specifically, we find

the nearest neighbours from the real-time clusters to the clusters produced in SiScaS

(line 5) and then the Euclidean distance between them is calculated (line 7). The

smaller the distance, the more similar the clusters are. Then, the simulation that best

matches the current situation is found by selecting the smallest distance (D) from all

the simulations (line 8). Given what measurements were selected in the simulations

in advance, the corresponding people in the cluster are selected (line 9). Then, the

people within the real-time cluster are selected (line 10). Since not everyone in the

cluster should take a measurement, the algorithm finds whether there are actually users

selected in simulations in that cluster (line 11). Given that not everyone in the cluster

would have been in the simulation, we randomly select people from the cluster to match

the number of users instructed to take the measurement (line 12 - 14). Next, the people

whose budget has not been depleted in the best simulation are retrieved (line 15) and

the total budget left is calculated (line 16). In order to evenly distribute the remaining

budget, we divide the total budget by the timesteps left (line 17). Then, the algorithm

randomly selects measurements to be taken by people whose budget was not depleted

in the simulations (line 18). Finally, the randomly added measurements are appended

to the previous ones (line 19).

5.5 Empirical Evaluation

In this section, we evaluate the algorithm developed using real human mobility patterns

and air quality sensor data similar to Chapter 4. However, we highlight the differences

that are specific to the extended problem (Section 3.2.2) that this chapter deals with.

In the first part, we introduce our benchmarks and give a description of the experiments

performed. Finally, we discuss our findings.

5.5.1 Benchmarks

The algorithm developed was benchmarked against the state-of-the-art algorithms which

are introduced below:

• Greedy: This algorithm is based on the work by Krause et al. (2008) discussed in

Section 2.6. It iterates through possible measurements available at each timestep,

finding the one that produces the highest utility. It keeps adding measurements

until a budget k is met. In our setting, k is derived from the total budget of

people available at each timestep. In particular, we divide the total budget that

is available by the number of timesteps left.

• Best-Match: The Best-Match algorithm works similarly to adaptive Best-Match

presented in this Chapter and consequently an extension of the LGS algorithm
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presented in Chapter 4. However, it is conservative in terms of the measurements

taken. Specifically, when a cluster is selected in the simulations, all of the peo-

ple belonging to that cluster are instructed to take a measurement. In real time,

the people belonging to the cluster that matches the offline simulations are again

instructed to take the measurement. In doing so, this algorithm does not take

in consideration the reliability of users and may exhaust its budget more quickly

than our approach. In practice, the Best-Match lacks the Adapt Algorithm (Al-

gorithm 6).

• Proximity-driven (Pull-Based): This algorithm is often used in practice to let

people execute tasks based on their spatial location, as described in Section 2.5.

In environmental monitoring this can be interpreted as taking measurements when

people are in an area of high uncertainty or when the measurement they take has

a high utility. In other words, a measurement is taken if the utility gained exceeds

a threshold. This approach is used by the state-of-the-art mobile crowdsourcing

applications outlined in Section 2.5.

• Random: This algorithm is similar to the one in Section 5.7.3.1 and it randomly

selects measurements to be taken by people until no budget is left. Specifically, at

each timestep, a random set of participants is requested to take measurement.

• Patrol: The Patrol algorithm takes measurements at all timesteps similar to

Section 5.7.3.1, until everyone’s budget is depleted. This algorithm draws on the

agent coordination literature (Section 2.4) and in particular on the work by Stran-

ders et al. (2013), where agents continuously take measurements for environmental

monitoring.

Also, since the optimal algorithm is computationally infeasible (shown in Chapter 4),

we developed an upper bound to the algorithm that can be easily calculated. The upper

bound is described below:

• Upperbound: We relax the assumption that people have a limited budget, we

assume full knowledge of human mobility patterns and assume that people are re-

liable. Thus, all participants are assumed to take measurements at every timestep

and the total utility can be trivially calculated.

5.5.2 Experimental Hypotheses

Given the benchmarks above, we formulate the following experimental hypotheses:

• Hypothesis 1: The total utility earned by the aBM algorithm will consistently be

higher than that of the Greedy, Best-Match, Patrol, Random and Proximity-driven
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algorithms, irrespective of the number of agents participating.

Outperforming Greedy is a result of the fact that aBM looks ahead in time and

thus is able to select measurements that should increase the total utility earned

by the end of the campaign. Outperforming Best-Match is due to the adaptive

capabilities of aBM that is able to use agent’s budget more effectively. The rest

is outperformed by the fact that the Patrol and Random algorithms ignore the

budget and thus taking a measurement at every time-step or randomly results in

a suboptimal behaviour.

• Hypothesis 2: The total utility earned by the aBM algorithm will be higher than

that of the Greedy, Best-Match, Patrol, Random and Proximity-driven algorithms

in all scenarios of varying reliability.

This is because aBM aims to increase the total utility by taking into account

of the reliability of the people and probabilistically chooses the set of agents to

maximise the total utility. The Greedy algorithm is indifferent to the reliability of

people, and thus it performs worse than aBM and Best-Match. The aBM, even

though it does not adapt, it is conservative in the sense that all the agents in the

designated cluster are requested to take a measurement. As a result, the most

important measurements are taken, but the budget is depleted earlier than using

the aBM algorithm.

• Hypothesis 3: The total accuracy of the aBM algorithm (measured in terms of

RMSE, defined in Section 2.2.2) will be higher than that of the Greedy, Best-

Match, Patrol, Random and Proximity-driven algorithms, irrespective of the num-

ber of agents participating.

This is because the accuracy is correlated with the total utility gained. Better

map exploration, i.e., collection of more information, will lead to better accuracy

of the heatmap produced. Consequently, the aBM algorithm will perform better

than the rest of the algorithms as argued in Hypothesis 1.

• Hypothesis 4: The total utility earned by the aBM algorithm will be higher than

that of the Greedy, Best-Match, Patrol, Random and Proximity-driven algorithms

in all scenarios of varying dynamism.

This is because aBM looks ahead in time as well as manages the budget so that

measurements can be taken in future iterations of the algorithm compared to Best-

Match. Also, as the settings become less dynamic the Greedy algorithm is able to

perform better. This is because it treats individual timesteps as independent, and

thus a good mapping of agents to specific locations in a particular timestep would

have a high impact in the overall utility.
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5.5.3 Experimental Setup

In order to empirically evaluate our algorithm, we compare its performance against the

algorithms described above. In this section we extend the experimental setup described

in Section 4.2.3.

In particular, we preprocess the dataset, and take the location of each user every ten

minutes. We also take patterns of different weeks or months from the same pool of

participants’ trajectories in order to create thousands of different routes. This is used

as the ground truth to compute the upper bound in our experiments. In order to make

the system more realistic, we provide a probability distribution of the users’ potential

future locations. This is to simulate the behaviour of a real human mobility prediction

system that is able to provide us with these probabilities over possible locations. In

particular, in this work, we assume that the correct locations have a high probability of

being assigned a higher probability than the rest of the locations. Specifically, we create

the probability distribution of the locations such that 80% of the time the true location

of the people will be allocated a higher probability than the alternative locations. At

the same time, 20% of the time the correct location is assigned less probability than a

random location from the user’s mobility patterns. This is in line with evidence from

the human mobility prediction literature (Song et al., 2010; McInerney et al., 2013a,b;

Baratchi et al., 2014a). In particular, Song et al. (2010) claim that the predictability of

human mobility patterns varies very little. Their results show that predictability peaks

at 93%, and no users were observed whose predictability was under 80%. However,

people have a limited budget of measurements they are willing to take per day. In our

work, we assume that people have an average budget of two measurements per day,

which is consistent with findings in real participatory sensing systems (Chon et al.,

2013). We also experimented with different budgets and mobility patterns distributions

and we got, broadly, the same results. Also, people may not take the measurement they

are requested according the their reliability, as described in Section 3.2.

The next section presents the results of our experiments. Our experiments involve

comparing the execution time of the algorithms and the performance in terms of accuracy

and utility gained (Equation 3.4 in Section 3.2) in campaigns similar to Chapter 4.

However, we additionally experiment with up to 1000 participants per timestep and

different user reliabilities. We compare algorithms in terms of execution time, as the

problem we address is NP-hard (Chapter 2), and thus no optimal solution is tractable.

Also, we experiment with up to a thousand of participants as the more people, the

more complex the problem becomes in terms of finding the best solution. However,

the more people participating in the campaign, the less the contribution of each one

is, in terms of information they provide to the overall campaign. Also, as mentioned

in Section 3.1, people are associated with uncertainty about whether they will actually
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take a measurement when they are asked to do so. In order to examine the robustness

of our algorithm, we vary the average reliability of the people between zero and one.

Moreover, in order to obtain statistical significant in our results, we performed two-sided

t-test significance testing at the 95% confidence interval. Our experimental platform

is the IRIDIS High Performance Computing Facility with 2.6 GHz Intel Sandybridge

processors and 64GB RAM per node2.

5.5.4 Results

Figure 5.4 shows results of the performance of the algorithms coordinating a thousand

participants when varying the time-scale, which controls the dynamism of the phe-

nomenon. Intuitively, the smaller the time-scale is, the more dynamic the phenomenon.

Consequently, as the time-scale approaches zero, the phenomenon rapidly changes over

time. In these environments, the adaptive Best-Match algorithm is better, in terms of

total utility gained than the rest of the algorithms. The adaptive Best-Match algorithm

saves measurements in the simulations by choosing who specifically should take measure-

ments within the cluster, while at the same time maximising the total utility. This allows

the algorithm to take extra measurements in real time, which increases the total utility

and thereby leads to a higher performance than the Best-Match algorithm (hypothesis

4). Next is the greedy algorithm. This algorithm is able to choose individuals to take

measurements that increase the total utility and that could potentially be in different

2http://cmg.soton.ac.uk/iridis
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Figure 5.4: Total utility gained for 24 timesteps when run 1000 participants. The
error bars indicate the 95% confidence intervals.

http://cmg.soton.ac.uk/iridis


Chapter 5 Coordinating Measurements under Uncertainty and Presence of Malicious
Users 96

clusters. However, as it will be discussed in detail later in this Section, this comes at a

great computational expense, as the algorithm needs to consider all the participants one

by one until the k best observations are found at each timestep. Also, since it cannot

look ahead in time, the algorithm struggles in highly dynamic environments. Specifically,

it is possible that some future measurement is more informative if no measurement was

taken at that location in the past. The adaptive Best-Match algorithm is designed to

produce reasonable outcomes in dynamic environments and it is shown to outperform all

the benchmarks in these environments. The proximity algorithm chooses measurements

that are informative, since they are above a threshold, but it does not perform well. As

we mentioned before, a future measurement might be more informative than the current

one. Thus, taking a measurement, which is above the threshold at a timestep, might not

be as informative as taking some other measurement in the future. If the threshold is

very high, taking only that future measurement might not be as informative as taking a

lot of measurements over time. Moreover, it is difficult to define which measurements are

informative as the threshold needs to be determined empirically. Patrol is an algorithm

that instructs all the users to take all the measurements whenever possible. This means

measurements are taken as early as possible until budgets are depleted. This is not a

good strategy as no budget is left later in the campaign. Even a random algorithm is

better than patrol since only a random subset of people are taking measurements at

each timestep. However, there is no intelligent component that determines how those

measurements are taken, and thus uninformative measurements are taken.

In particular, adaptive Best-Match is 23.93% better than the Best-Match algorithm for

1000 agents and 94.27% better than Greedy. It is consistent for different participants

and the results are significant to a 95% confidence level in a two-tailed t-test significance

test.

Figure 5.5 shows the results of the performance of the algorithms in terms of utility

gained when we vary the number of participants (M) in the campaign. The dynamism

in this experiment is fixed at 1, to show the performance of the algorithms in a highly

dynamic phenomenon. We can observe that adaptive Best-Match is 12.74% better than

the Best-Match algorithm and 3.3 times better than the Greedy algorithm for 250 par-

ticipants. It is 20.31% better than Best-Match and 2.8 times than Greedy with 500

participants. It is 21.43% better than Best-Match and 2.6 times than Greedy for 750

participants. Finally, it is 23.91% better than Best-Match and 2.5 times than Greedy for

1000 participants. The results are significant to a 95% confidence level in a two-tailed

t-tests significance test. Overall, we can observe that adaptive Best-Match algorithm is

significantly better in most scenarios and at least as good as the Best-Match up to 150

users (hypothesis 1). Crucially, the upperbound is on average only 13.14% better than

adaptive Best-Match, which highlights the good performance of our algorithm. Also,

Patrol, Random and Proximity algorithms have similar performance.
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Figure 5.5: Total utility for 24 timesteps and a varying number of participants at a
constant time-scale of 1. The error bars indicate the 95% confidence interval.
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Figure 5.6: Total RMSE gained for a 1-day participatory sensing campaign. The
error bars indicate the 95% confidence interval.

Figure 5.6 shows the results of the performance of the algorithms in terms of the RMSE

when varying the number of participants in the campaign. Our results confirm the

intuition that the more measurements the more accurate the heatmap produced would

be. However, there is significant difference between each algorithm. Specifically, aBM

is the most accurate and close to the upperbound. Our results are in line with the

findings we presented about the utility when varying the number of participants as the
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utility gained over the environment is related to how much the environment has been

explored over time, which ultimately leads to a more accurate map of the environment

(hypothesis 3).

Figure 5.7 shows the performance of the algorithms in terms of the total runtime when

varying the number of participants per timestep. The results show that the adaptive

Best-Match algorithm is faster than the Greedy and Proximity-driven algorithms and

it is comparable to Best-Match. Specifically, it is not significantly different up to 250

agents, but it is 40.5% slower for 1000 agents and 30.02% on average. It is evident that

the runtime of adaptive Best-Match and Best-Match algorithms grows linearly with the

number of agents. The Proximity-driven and Greedy algorithms require much more

time, because as the number of users increases, the number of possible measurements

that could be taken is greatly increased. In fact, the Greedy algorithm is about 50

times slower than the aBM algorithm for 1000 agents. Depending on the number of

measurements to be taken at each timestep (k), the Greedy algorithm attempts to find

the best measurements by iteratively adding the next single best measurement to the

list of measurements to be taken. Similarly, the proximity-driven algorithms evaluates

all the possible measurements to decide whether or not that measurement would lead

to a higher gain than the pre-defined threshold.
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Figure 5.7: Average runtime for 24 timesteps and a varying number of participants.
The error bars indicate the 95% confidence interval (wrong image here).

Figure 5.8 shows the performance of the algorithms in terms of utility when we vary

the average reliability of the users. The dynamism is fixed at 1, i.e., a highly dynamic

phenomenon and the agent number to 500, which is a representative number such that

all algorithms work efficiently, given the runtime of the algorithms in Figure 5.7. We
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Figure 5.8: Total utility for 24 timesteps for 500 agents with a varying reliability at
a constant time-scale of 1. The error bars indicate the 95% confidence interval.

observe that adaptive Best-Match is 19.55% better than the Best-Match when reliability

is 0.2 and 6.3% when reliability is 1 and 10.27% on average. This is because the offline

component of the adaptive Best-Match is able to select more people when reliability

is low by choosing the most important measurements in the simulations to be taken

by people with the highest reliability (hypothesis 2). Also, in real time, the online

component of the algorithm selects a number of available participants who still have

some budget left to take measurements randomly, evenly distributed across the time

domain. On the other hand, Best-Match selects all the participants in the best cluster.

This makes sure that the most important measurements are taken, but at the cost of

using the budget of some people that could potentially have taken other measurements

at a different location and time.

5.6 Summary

In this Chapter we presented an algorithm that maximises the total utility gained over

a period of time while at the same time considering people’s budget (requirements 1

and 4). We focused on solving the extended problem presented in Section 3.2.2 that

introduces uncertainty in human mobility patterns and behaviour, in terms of task

execution uncertainty (challenge 4). At the same time, our algorithm scales up to

a thousand participants per timestep (requirement 6). In particular, we demonstrated

how efficient the adaptive Best-Match algorithm is compared to the state-of-the-art Best-

Match and Greedy algorithms. An empirical evaluation on real data showed that, (a)

adaptive Best-Match is significantly better than the Best-Match and Greedy algorithms
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in terms of total utility gained, (b) adaptive Best-Match is significantly faster than the

Greedy approach and comparable to Best-Match, (c) dynamic environments affect the

performance of the adaptive Best-Match algorithm and the total utility gained, but it

still outperforms the benchmarks in all scenarios, (d) adaptive Best-Match is significantly

better than the Best-Match and Greedy algorithms in all scenarios with different degrees

of user reliability, and (e) adaptive Best-Match outperforms the rest of the algorithms

in terms of accuracy measured in terms of RMSE.

5.7 Coordinating Measurements under Uncertainty in the

Presence of Malicious Users

In this section, we consider the effect of the presence of potentially malicious users

as described in Sections 2.5.3 and 3.2.3. Thus, the main challenge addressed in this

chapter is coordination of measurements, in order to maximise the information about

the environment (challenge 1), in the presence of malicious users in the participatory

sensing campaign (challenge 5), given the budget constraints (challenge 3). Specifically,

in addition to the task execution uncertainty (reliability) of users (Section 5.1), our

algorithm must be able to deal with malicious users (requirement 5). Consequently, we

use a different model that is able to capture individual user maliciousness and the abM

algorithm is extended to swap potentially malicious users with non-malicious users in

real time. We firstly give a high level overview of the proposed algorithm and then

describe it in more detail.

5.7.1 Trust-based adaptive Best-Match

Our algorithm extends the trust-based Heterskedastic Gaussian Process (HGP) model

described in Section 2.2.2 by alleviating the requirement for manual user input of the

estimated precision. Specifically, our algorithm estimates the users’ trustworthiness

in real time by applying the MLE technique at each timestep3. In particular, the t

value, which is a scaling hyperparameter of the noise in Heterskedastic Gaussian Process

model, is estimated for all participants that took a measurement at a specific timestep

as described in Section 2.5.3. This value can only be learned after a user has already

taken a measurement and it is updated each time a user takes a measurement. At the

same time, trust values affect the mean prediction for specific areas. In particular, the

contribution of less trusted users has a lower impact on the predicted function over space

and time. By applying the MLE technique at each timestep, we incrementally learn the

trustworthiness of all users actively participating. Specifically, active participants are

associated with a trustworthy value when they take measurement and thus over time

3We use GPML v4 toolbox and in particular a nonlinear conjugate gradient method.
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more users are associated with a trustworthy value. Active participants are those who

are selected to take a measurement by the coordination system in Section 5.1. This

becomes more clear in the Algorithm 8.

Therefore, at each timestep, when selecting users to take measurements, some of these

may already be associated with trust values (if they have previously taken measure-

ments). This enables us to compare trust levels of individuals who we have information

about. Then, if the trustworthiness of a user that is about to take a measurement is

significantly lower than the rest, we swap that user with the closest one that still has

budget left and whose trustworthiness is not significantly different than the rest of the

users. This ensures that malicious users will be swapped out.

Overall, our Trust-based adaptive Best Match (TaBM) algorithm (Algorithm 8) has

two major additions compared to aBM (Section 5.1) in order to effectively deal with

malicious users. The first one is the application of the MLE technique per timestep

in order to learn the t values of participants’ taken measurements, which in turn is

used as a hyperparameter in the trust-based HGP model. This enables the system to

get a value for each participant’s measurement that characterises its accuracy. Also,

the contribution of less trusted users has a lower impact on estimating the state of

the environment. The other component is called swap and is responsible for swapping

malicious or low-trust users with more trustworthy nearby users in real time. Given the

t values learned above, the system is able to filter out potentially malicious users by

replacing them with higher-value users. As a result, people with lower trust values are

not chosen to take more measurements.

In more detail, the TaBM algorithm requires the number of timesteps of the participa-

tory sensing campaign, the budget of each participant, their reliability and the hyper-

parameters of the model (line 1). Next, simulations run offline, as in Section 5.1 and a

spatio-temporal mapping between participants and locations is produced (line 2). Then,

the trust-related hyperparameters are initialised (line 3) followed by the online compo-

nent of the algorithm (lines 4 - 17). In particular, for each timestep, the Matching

algorithm utilises information provided by the offline simulations to select participants

to take measurements (line 5). This algorithm is explained in more detail in Algorithm 7

in the previous Chapter (Section 5.4). At this point, given the set of users to take a

measurement at a specified timestep, the algorithm calculates the average trust of the

users, if it exists (line 6). Next, the standard error of the mean is calculated (line 7).

Given these values, a trust threshold is calculated (line 8), that is the lowest value of

trust a user’s measurement can have in order not to be swapped. In other words, all the

participants taking a measurement should not have a trust value less than the threshold

as this implies they are significantly more likely to be malicious. In order to evaluate

participants, the algorithm iterates through the participants which were selected to take

a measurement at each timestep (lines 9 - 15). If someone’s trust value is below the

threshold (line 10), then the swap function is called (line 11), which is further discussed
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in the following section. Otherwise, the participant takes the measurement as originally

intended (line 13). Finally, given the measurements taken, the new trust values for the

participants are estimated (line 16).

5.7.2 SWAP Algorithm

The swap algorithm is responsible for removing malicious users from the set of selected

users that are required to take measurements at any given timestep and for substituting

them with nearby high-trust ones. Intuitively, the algorithm searches through the par-

ticipants for the closest one, in terms of Euclidean distance, who at the same time has

taken high-trust measurements and has some budget left. This user will take the place

of the potentially malicious one.

In more detail, this algorithm requires the details of the particular user currently exam-

ined, the details of all other agents and the threshold calculated in Algorithm 8 (line 1).

Next, an empty set named evaluated is created to keep track of the users examined

(line 2). While the size of that set is less than the total number of agents the algorithm

searches for a suitable user to substitute the malicious one (line 3). The set of candidate

users is created by removing any already evaluated users from the set of all participants

(line 4). In order to find a suitable substitution, the algorithm looks for the nearest

neighbours to the malicious one (line 5). Once the nearest neighbour is found, it is

checked whether it satisfies certain properties (line 6). Specifically, the user should have

some budget left and a trust value. In our work, we assume we do not have a default

trust value but rather we assume it is unknown. Given that these are satisfied, the

algorithm checks whether the new user’s trust is above the threshold (line 10). Then,

the substitution is made (line 11) by removing the malicious user from the set of selected

users and adding the new one. If no substitute is found, the user is not swapped but

their measurement has a low impact on the overall prediction of the phenomenon. This

is due to the fact that the trust value is a scaling parameter as discussed in Section 2.5.3.

Thus, a low-trust value means that the variance of the kernel of the model is not greatly

affected. Consequently, the measurement provided by that user entails less information

about the phenomenon.
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Algorithm 8 Trust-aware adaptive Best-Match (TaBM) Algorithm

1: input: E (timesteps), B (budget), R (reliability) Θ̂ (hyperparameters) A (agents)
2: S1,...,N , C1,...,N ←SiScaS(E,B,R) . Simulations running offline 4
3: t = zeros
4: for j = 1 to E do
5: S∗j ← Matching(E, j,B, S1,...,N , C1,...,N ) . Online mapping of users to

measurements 7
6: average trust = 1

|S∗|
∑|S∗|

s=1 ts

7: sem = std(t)
|S∗| · 1.96 . standard error mean for 95% confidence level

8: threshold = average trust− sem
9: for i = 1 to |S∗j | do

10: if ti < threshold then
11: swap(S∗i ,A,threshold)
12: else
13: Take measurement
14: end if
15: end for
16: ΘML = arg maxΘ p(S

∗
j ,y|Θ̂) . y is the actual measurements taken by people in

S∗j
17: end for

Algorithm 9 swap Algorithm

1: input: A (agent), A (agents), threshold (trust value)
2: evaluated = ∅
3: while |evaluated| < |A| do
4: A*← remove(A, evaluated)
5: AN ← nearestneighbour(A,A*)
6: if AN = ∅ or tAN = ∅ or BAN = 0 then
7: Return
8: end if
9: Append AN to evaluated

10: if tAN > threshold then
11: Substitute A with AN
12: end if
13: end while
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5.7.3 Empirical Evaluation

In this section, we evaluate the algorithm developed using real human mobility patterns

and air quality sensor data. In the first part, we introduce our benchmarks and give a

description of the experiments performed. Finally, we discuss our findings.

5.7.3.1 Benchmarks

The algorithm developed was benchmarked against the state-of-the-art algorithms, which

are also described in the previous chapters. In particular, we compare our algorithm

against the Greedy, aBM and Best-Match algorithms and omit the rest since we have

already shown their poor performance in the previous chapters. The benchmarks are

presented below:

• Greedy: This algorithm is the same as the one described in Section 5.1 (Sec-

tion 5.5.1).

• adaptive Best-Match (aBM): This algorithm is presented in Section 5.1 and in

particular it is described in detail in Section 5.2. This is an adaptive coordination

algorithm shown to perform well in uncertain environments.

• Best-Match: This is an algorithm presented in Section 5.1 and in particular in

Section 5.5.1.

Also, since the optimal algorithm is computationally infeasible we developed an upper

bound to the algorithm that can be easily calculated. The upper bound is described

below:

• Upperbound with Optimal HGP: We relax the assumption that people have a

limited budget, we assume full knowledge of human mobility patterns and assume

that people are reliable. Thus, all participants are assumed to take measurements

at every timestep and the total utility can be trivially calculated. We use a HGP

model with trust values of 0 for malicious and 1 for trustworthy users.

5.7.3.2 Experimental Hypotheses

Given the benchmarks above, we formulate the following experimental hypotheses:

• Hypothesis 1: The total RMSE of the TaBM algorithm will consistently be lower

than that of the adaptive Best-Match, Best-Match and Greedy algorithms, irre-

spective of the number of agents participating.
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Outperforming Greedy is a result of the fact that TaBM looks ahead in time, and

thus is able to select measurements that should increase the total utility earned by

the end of the campaign, and thus result in better RMSE. Outperforming aBM

and Best-Match is due to the combination of trust and adaptive capabilities of

TaBM that is able to swap potentially malicious users who have an impact on the

RMSE.

• Hypothesis 2: The total RMSE of the TaBM algorithm will be lower than that

of the adaptive Best-Match, Best-Match and Greedy algorithms in all scenarios of

varying malicioussness.

This is because TaBM aims to increase the total utility by taking account of

the presence of potentially malicious users and minimises their impact to the cam-

paign as well as swaping them with more trustworthy participants. The rest of the

coordination algorithms do not consider the presence of malicious users, and thus

do not perform as well.

5.7.3.3 Experimental Setup

To empirically evaluate our algorithm, we compare its performance against the algo-

rithms described above.

As in Chapter 4 and Section 5.1, we focus on air quality in terms of fine particulate

matter (PM2.5) in Beijing, and we use the same air quality dataset (Zheng et al., 2013)

and mobility patterns (Zheng et al., 2009, 2008, 2010).

Also, as in Section 5.1, we assume that people have an average budget of two measure-

ments per day and an average reliability of 83%, which is consistent with findings in

real participatory sensing systems (Chon et al., 2013; Sahami Shirazi et al., 2014). Fur-

thermore, we vary maliciousness between 0.1− 1 for the experiments whose results are

shown in Figure 5.9 and it is fixed to 0.25 for experiments whose results are presented

in Figure 5.10 and Figure 5.11, as this is shown to be a typical prevalence of malicious

users in the crowdsourcing domain (Gadiraju et al., 2015). In our settings, we model

malicious users as agents whose measurements are significantly different from the ground

truth.

The next section presents the results of our experiments. Our experiments involve

comparing the execution time of the algorithms and the performance in terms of RMSE

with different numbers of participants (up to 1000 per timestep) and different degrees

of maliciousness. We compare algorithms in terms of execution time, as the problem we

address is NP-hard (Krause et al., 2008), and thus no optimal solution is tractable but

at the same time a solution should be given in a reasonable amount of time.
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At the same time, the RMSE measures the accuracy of the air quality heatmap created by

taking measurements over time. Also, the more people participate, the more complex

the problem becomes in terms of finding the best solution. Furthermore, people are

associated with uncertainty about whether they will actually take a measurement when

they are asked to do so.

Since measurements can be malicious, and thus deviate from their real values, it is crucial

to compare the algorithms in terms of the accuracy of the resulted heatmap. While we

are still interested in maximising utility, it is not directly worth comparing the algorithms

since even though an algorithm’s utility might be high, the overall accuracy might be

small due to the malicious contributions. This is because the utility is proportional to

the variance of the Gaussian Process model, which is affected by the location and the

time of the measurements but is independent of the actual values of the phenomenon.

Finally, in order to obtain statistical significance in our results, we performed two-sided

t-test significance testing with α = 0.05 significance level.

5.7.3.4 Results

Figure 5.9 shows that the TaBM algorithm outperforms the benchmarks with respect to

the RMSE. Crucially, at the same time, it is not significantly different from the optimal

approach. Also, we observe that the more malicious users exist in the system, the more

the RMSE increases for all the algorithms as expected. In more detail, TaBM is up

to 18.11% (14.8% on average) more accurate than the second algorithm of the Figure

(aBM). TaBM is better because it is able to capture measurements that are potentially

malicious, i.e., higher or lower than the true value of the phenomenon, in the HGP model.

The users taking such measurements are swapped with higher-trust neighbours, and thus

malicious measurements are reduced. However, there is a linear increase in RMSE for

all algorithms since the more malicious users there are, the more measurements deviate

from the true values of the phenomenon. When malicious users are more numerous than

the trustworthy ones, TaBM is still better as it is able to reduce the impact of extreme

measurements using parameter t that captures individual trust level. Thus, it continues

to be better than the rest even though the overall RMSE significantly increases.

Figure 5.10 shows that the TaBM algorithm outperforms the benchmarks by up to

60.4% with respect to the RMSE for 250 users. Also, it is consistently better for all

number of users in the participatory sensing campaign. What is mostly evident from

our results, is that a trust-based heteroskedastic GP approach with SWAP capabilities

significantly improves the accuracy of the coordination algorithm. However, there is no

improvement in performance when more agents participate in the campaign compared

to other algorithms.
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Figure 5.9: Total RMSE over space and time with a varying percentage of malicious
users. The error bars indicate the 95% confidence interval.
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Figure 5.10: Total RMSE over space and time with a varying number of users. The
error bars indicate the 95% confidence interval.

Figure 5.11 shows that aBM, Best-Match and the Optimal HGP have similar runtime.

However, the TaBM algorithm is more computationally expensive than these algorithms

but with the significant trade-off in performance as discussed above. In particular the

algorithm’s bottleneck is the kernel inversion, which is required in the MLE technique

for the estimation of the trust value. That is to say, TaBM should be used only in cases

where malicious users are present. Also, the Greedy algorithm has a significantly higher

computational cost compared to the rest of the algorithms, as the algorithm needs to

consider all of the participants one by one until the k best observations are found at

each timestep.

Overall, the TaBM algorithm makes more accurate predictions in terms of RMSE in
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all scenarios. Specifically, it overcomes the issue of malicious measurements over time

by correctly learning to place a low degree of trustworthiness on potentially malicious

users and then swap low-trust users with high-trust nearby users. This effectively allows

important spatio-temporal measurements to be taken as accurately as possible. Finally,

the results show that our method is more accurate and considerably more informative

in estimating air quality levels on a prominent air quality dataset.
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Figure 5.11: Average runtime for 24 timesteps and a varying number of users. The
error bars indicate the 95% confidence interval.

5.7.4 Summary

In this chapter, we developed a novel coordination algorithm that maximises the total

utility gained over a period of time (requirement 1), constrained on the number of mea-

surements each user is willing to take (requirement 4), under the presence of malicious

users and evaluated it in terms of RMSE and execution time (requirement 5). As in

Section 5.1, we still considered human reliability (requirement 4) and we experimented

with up to 1000 participants per timestep (requirement 6).

We demonstrated how efficient the Trust-based adaptive Best-Match (TaBM) algo-

rithm is compared to the state-of-the-art algorithms. An empirical evaluation on real

data showed that, (a) Trust-based adaptive Best-Match is significantly better than the

adaptive Best-Match, Best-Match and Greedy algorithms in terms of total RMSE, and

(b) Trust-based adaptive Best-Match is significantly faster than the Greedy approach.



Chapter 6

Conclusions and Future Work

This chapter summarises our work and suggests new ideas and avenues for the future.

6.1 Conclusions

In this thesis we have studied the challenges of monitoring environmental phenomena,

and in particular air pollution, in participatory sensing settings. Specifically, air pollu-

tion causes millions of deaths per year and billions of pounds are lost in labour income.

The state of the art in monitoring air quality is placing air quality static sensors in

cities to capture the average pollution of the area. As argued, this approach is expensive

to utilise as the equipment is typically expensive and requires experts to operate and

maintain it. An alternative low-cost approach is participatory sensing.

In this thesis, we firstly examined participatory sensing applications (Section 2.1) focus-

ing on environmental monitoring to identify gaps and potential areas for contribution.

It is obvious that there is a major gap in coordinating participatory sensing campaigns.

In particular, none of the existing applications guide users when and where to take mea-

surements such that more information is learned about the environment (challenge 1)

subject to a user budget or a cost (challenge 3), either in terms of battery consump-

tion or inconvenience incurred to users by taking measurements. Moreover, we observed

that, currently, no system exploits the spatio-temporal characteristics of the phenom-

ena and the potentially known human mobility patterns of the participants to improve

participatory sensing campaigns.

To address these challenges we proposed a novel participatory sensing framework (Sec-

tion 3.1) that can utilise historic information about the environment to build an environ-

mental model and human mobility patterns. This framework is the first to coordinate

participants towards more informative measurements, given that they have a limited

109
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budget or a cost for doing so. In that direction, we developed intelligent algorithms to

coordinate measurements in these settings.

Our initial algorithm (Chapter 4), called LGS, is able to outperform the state-of-the-art

Greedy algorithm and Optimal approach. An empirical evaluation on real data showed

that, (a) LGS is 33.4% better than the Greedy algorithm, (b) the dynamism of the envi-

ronment affects the performance of the LGS algorithm and the total utility gained, but

it still outperforms the benchmarks in all scenarios and, (c) LGS outperforms the rest

of the algorithms in terms of RMSE. This work was published at the 14th International

Conference on Autonomous Agents and Multi-agent Systems (AAMAS 2015). However,

our approach made assumptions about human mobility patterns that might not always

be true in real life. More specifically, even though people are typically predictable in

their daily routine, there is a chance of not following it or even have multiple possible

routines in particular days. In particular, real human mobility prediction systems pro-

vide probabilistic information about where each person will be in the future, which is

not exploited in that work. Most importantly, however, this approach was shown to

scale up-to 250 participants in our experiments, which is a limitation for participatory

sensing environmental campaigns.

In order to address the shortcomings of our previous work we developed advanced

stochastic algorithms to deal with the human uncertainty and scalability issues (Chap-

ter 5). In particular, we demonstrated how efficient the adaptive Best-Match algorithm

is compared to the state-of-the-art Best-Match and Greedy algorithms. An empirical

evaluation on real data showed that, (a) adaptive Best-Match is significantly better

than the Best-Match and Greedy algorithms in terms of total utility gained, (b) adap-

tive Best-Match is significantly faster than the Greedy approach and comparable to the

Best-Match one, (c) dynamic environments affect the performance of the adaptive Best-

Match algorithm and the total utility gained, but it still outperforms the benchmarks

in all scenarios, (d) adaptive Best-Match is significantly better than Best-Match and

Greedy algorithm in all scenarios with different degrees of user reliability, and (e) adap-

tive Best-Match is better than the rest of the algorithms in terms of RMSE. This work

was accepted in the Journal of Artificial Intelligence Research (JAIR) and the thirtieth

AAAI conference on Artificial Intelligence (AAAI-16). However, this algorithm does

not deal with the actual measurement accuracy of participants’ readings. Participatory

sensing is vulnerable to malicious users taking advantage of the system, falsifying the

overall picture of the environment to satisfy their own agendas.

In order to deal with the malicious users’ challenges we developed a coordination al-

gorithm that is able to coordinate measurements in participatory sensing settings in

the presence of malicious users. In particular, we developed a novel algorithm that

maximises the total utility gained over a period of time constrained on the number of

measurements each user is willing to take and evaluated in terms of RMSE and execution

time (Section 5.7). We demonstrated how efficient the Trust-based adaptive Best-Match
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(TaBM) algorithm is compared to the state-of-the-art algorithms. An empirical eval-

uation on real data showed that, (a) Trust-based adaptive Best-Match is significantly

better than the adaptive Best-Match, Best-Match and Greedy algorithms in terms of

total RMSE, and (b) Trust-based adaptive Best-Match is significantly faster than the

Greedy approach and comparable to the adaptive Best-Match and Best-Match. This

work was published at the fifth AAAI conference on Human Computation and Crowd-

sourcing (HCOMP-17).

This work constitutes a significant advancement in the area of artificial intelligence as

our algorithms can be used in other applications beyond environmental monitoring. In

particular, this work focuses on an entropy-based criterion as a utility function, which is

the difference in the information between two timesteps. However, a new utility function

for other applications can be devised. For example, in a crowdsourcing classification

system, users could be asked to verify objects or events (e.g., traffic jams, vandalism or

littering), which are classified from a machine vision algorithm, by physically visiting

those locations. The utility in this scenario could capture how valuable human input

is. For instance, verifying a rare event of vandalism at a specific location could be more

important than verifying a traffic jam in a usually busy area. Our algorithm could be

used to decide which users to ask to increase the overall system’s efficiency.

In summary, we have demonstrated a framework and algorithms that satisfy many of the

requirements set out in the introduction. Specifically, we addressed requirements 1, 2, 3,

4, 5, 6. However, requirement 6 was not fully satisfied as we only showed coordination up

to 1000 users per timestep, while expectations were to scale up to hundred of thousands.

Also, we did not provide theoretical guarantees of our results but rather our algorithms

were evaluated empirically.

6.2 Future Work

There are a number of potential avenues for the future.

• Improve scalability: The current system is able to deal with hundreds or up to a

thousand of users per timestep. However, we believe there is potential to improve

even more, scaling up to many thousands and even hundred of thousands. At the

moment, the Gaussian process is a major bottleneck in the overall system. In par-

ticular, calculating the covariance function has a O(n3) computational complexity.

We believe that there is room for more efficient use of Gaussian processes in the

context of environmental monitoring, and more research is required to develop

Gaussian process models that are more scalable.
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• Improve environmental representation: In this work we make use of common prac-

tices in the field of Gaussian processes like using Matern and/or Squared Expo-

nential covariance function, and learning the hyperparameters by maximising the

log likelihood. However, there are composite covariance functions that are com-

plicated, in terms of the number of hyperparameters needed to optimise as well as

computational expensive to compute, but may be most suited in spatio-temporal

environmental applications. Also, different covariance functions could be used for

different phenomena or different applications. Gaussian processes is an actively

researched topic and future work could devise a kernel that works better for pre-

dicting air quality over space and time in a specific area. This could dramatically

improve the accuracy and applicability of the system in real-world settings.

• Provide theoretical and more empirical analysis: The current algorithms are eval-

uated empirically on a composite of real datasets. Since, there was in fact a single

composite dataset it would be interesting to explore the performance of our algo-

rithms in other datasets. We expect no real difference since different settings would

require only different hyperparameters of our Gaussian Process model. However,

ideally a theoretical analysis of the algorithms developed could be provided as

well as performance guarantees, if possible, by examining the effect of different

properties that could be relevant in this field like submodularity, locality and tem-

porality. This will also allow the development of algorithms that are more scalable

and potentially have better performance (requirement 6).

• The trust model could be expanded. It can be given a Bayesian treatment in

order to take into consideration knowledge about users’ behaviour and efficiently

update this over time. Also, more types of attack could be considered. In partic-

ular, sophisticated attacks like ‘on-off’, where the user alternates between normal

and malicious behaviour or collusion attacks, where more than one malicious user

collaborates to cause more damage than each one acting alone.

• Finally, a real user study could be carried out to demonstrate the effectiveness of

participatory sensing utilising our coordination algorithm. We firmly believe that

a successful trial will promote the participatory sensing paradigm even further and

move towards a widespread adoption of it.



Appendix A

Mobility Patterns Data

Table A.1: Human Mobility Patterns Dataset

Entry UserId Latitude Longitude Time

1 1 39.9847 116.3184 3.9744e+04

2 1 39.9847 116.3184 3.9744e+04

3 1 39.9847 116.3184 3.9744e+04

... ... ... ... ...

180 182 26.1622 119.9438 3.9919e+04

181 182 26.1615 119.9432 3.9919e+04

182 182 26.1619 119.9432 3.9919e+04

The full dataset can be found here: https://www.microsoft.com/en-us/download/d

etails.aspx?id=52367&from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2F

downloads%2Fb16d359d-d164-469e-9fd4-daa38f2b2e13%2F
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Appendix B

Air Quality Data

Table B.1: Air Quality Dataset

Entry StationId Latitude Longitude Time Value

1 1001 40.0907 116.1736 4.1570e+04 74

2 1002 40.0040 116.2053 4.1570e+04 75

3 1003 39.9847 116.3184 4.1570e+04 85

... ... ... ... ... ...

20 1020 39.8865 116.4074 4.1570e+04 89

21 1021 39.8991 116.3954 4.1570e+04 147

22 1022 39.9210 116.4434 4.1570e+04 139

The full dataset can be found here: https://www.microsoft.com/en-us/research/p

ublication/u-air-when-urban-air-quality-inference-meets-big-data/
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