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Abstract
A limit theory is developed for mildly explosive autoregressions

under stationary (weakly or strongly dependent) conditionally het-
eroskedastic errors. The conditional variance process is allowed to
be stationary, integrable and mixingale, thus encompassing general
classes of GARCH type or stochastic volatility models. No mixing
conditions nor moments of higher order than 2 are assumed for the
innovation process. As in Magdalinos (2012), we �nd that the asymp-
totic behaviour of the sample moments is a¤ected by the memory of
the innovation process both in the form of the limiting distribution
and, in the case of long range dependence, the rate of convergence,
while conditional heteroskedasticity a¤ects only the asymptotic vari-
ance. These e¤ects are cancelled out in least squares regression the-
ory and thereby the Cauchy limit theory of Phillips and Magdalinos
(2007a) remains invariant to a wide class of stationary conditionally
heteroskedastic innovations processes.
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1 Introduction

First order autoregressive processes with an explosive root, i.i.d. Gaussian
innovations and zero initial condition were �rst analysed by White (1958),
who using a moment generating function technique, derived a Cauchy limit
theory for the OLS/ML estimator. Using martingale methods, Anderson
(1959) arrived to the same conclusion and showed that the Cauchy limit
theory is not invariant to deviations from Gaussianity and that, in general,
the limit distribution of the OLS/ML estimator depends on the distribution
of the (i.i.d.) innovations.
Invariance of the Cauchy least squares regression limit theory to the dis-

tribution of the innovations can be recovered when the explosive root ap-
proaches unity as the sample size n tends to in�nity at su¢ ciently slow rate.
Phillips and Magdalinos (2007a, hereafter PMa) considered mildly explosive
processes of the form

Xt = �nXt�1 + ut; �n = 1 +
c

n�
; � 2 (0; 1) ; c > 0: (1)

When the innovation process (ut)t2Z is i.i.d. and square integrable, PMa

establish central limit theorems for sample moments generated by mildly
explosive processes and obtain the following least squares regression theory:
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2c
n��nn (�̂n � �n)) C as n!1. (2)

This Cauchy limit theory is invariant to both the distribution of the innova-
tions and to the initialization of the mildly explosive process.
The results of PMa were generalised by Phillips and Magdalinos (2007b,

hereafter PMb) to include a class of weakly dependent innovations. Aue and
Horvath (2007) relaxed the moment conditions on the innovations by consid-
ering an i.i.d. innovation sequence that belongs to the domain of attraction of
a stable law. The limiting distribution is represented by a ratio of two inde-
pendent and identically distributed stable random variables and reduces to a
Cauchy distribution when the innovations have �nite variance. Multivariate
extensions are included in Magdalinos and Phillips (2008).
Magdalinos (2012, hereafter Ma) considered mildly explosive autoregres-

sions generated by a correlated innovation sequence that may exhibit long
range dependence. The asymptotic behaviour of the sample moments that
appear in the ratio of the centred least squares estimator �̂n � �n was found
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to be a¤ected by long range dependence both in the rate of convergence and
in the form of the limiting distribution, crucially, in the same way and by the
same amount for both components of the ratio. Hence, there is an asymp-
totic cancellation and, unlike its constituent components, the ratio �̂n��n is
not a¤ected by the memory of the innovation sequence and continues to be
asymptotically Cauchy with the rate of convergence of (2). The limit theory
of PMa was thus generalised and found invariant to the dependence structure
of the innovation sequence even in the long memory case.
Phillips, Wu and Yu (2009) and Phillips and Yu (2011) employ the limit

theory of PMa to construct inferential procedures for the detection and dating
of �nancial bubbles. Since the empirical stylized facts of �nancial asset re-
turns are consistent with conditional heteroskedasticity, see for example Ghy-
sels et al. (1996), it is natural to ask whether these Cauchy based con�dence
intervals remain valid in the presence of time varying conditional second mo-
ments. Lee (2017) and Oh, Lee and Chan (2017) con�rm the Cauchy limit
theory of PMa for conditionally heteroskedastic innovations under restrictive
assumptions on the innovation sequence ut that include strong mixing with
exponentially decaying coe¢ cients, the existence of fourth moments and, in
the case of Lee (2017), restrictions on the distribution of the conditional vari-
ance in some neighborhood of the origin. In it well known that �nite four
moments impose severe restrictions on the parameter space of GARCH type
models. Also, the fact that the Cauchy limit theory (2) is directly general-
isable to long memory innovations that violate the strong mixing condition,
suggests that strong mixing may not be an appropriate medium of testing
the invariance of the Cauchy limit theory (2) to the dependence and distri-
butional properties of ut.
In this paper we extend the homoskedastic framework of Ma and that

of Lee (2017) and Oh et.al. (2017) by allowing the sequence ut in (1)
to be a stationary (possibly long memory) linear process with to be con-
structed upon a stationary square integrable conditionally heteroskedastic
process where the conditional variance is a mixingale. The innovation se-
quence ut is not assumed to be strong mixing nor to have �nite moments
of higher order than 2. We provide detailed examples of general classes of
conditionally heteroskedastic models that satisfy our framework, including
stationary ARCH(1) processes, asymmetric GARCH type models and log-
linear stochastic volatility models in Examples 1-3 in the next section. Our
asymptotic development is based on the establishment of a new law of large
numbers for weakly dependent heterogeneous triangular arrays (Lemma 1)
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below, which constitutes a partial generalisation of the L1-mixingale law of
large numbers in Andrews (1988). Employing this law of large numbers and
following the martingale approximation approach of Ma, we establish the
invariance of the Cauchy limit theory (2) under this extended dependence
and conditional heteroskedasticity framework. In doing so, we con�rm the
robustness of the Phillips, Wu and Yu (2009) and Phillips and Yu (2011) pro-
cedures in environments consistent with the empirical properties of �nancial
asset returns.

2 Main Results

Consider the mildly explosive process in (1) with innovations (ut)t2N that
take the form of a covariance stationary linear process with possible long
memory, as in Ma (see Assumption LP below). We propose a framework
for the introduction of conditional heteroskedasticity to the innovations of
(1) that: (i) maintains the potential for strong dependence in the innovation
sequence (by avoiding to impose mixing conditions on (ut)t2N); (ii) does
not require the existence of moments of higher order than 2 for (ut)t2N,
thus giving rise to GARCH-type models with su¢ ciently general parameter
spaces. We impose this framework on the primitive innovations ("t)t2Z of the
linear process ut in (1) by Assumption CH bellow. We denote conditional
expectation by EF (�) and the Lp norm by k�kp.

Assumption CH. The process ("t)t2Z satis�es "t = zt
p
ht a:s: for all

t 2 Z, where the sequence (zt)t2Z is i.i.d. with E (z1) = 0 and E (z21) = 1.
Given a �ltration (Ft)t2Z, ht is Ft�1-adapted and zt is independent of Ft�1
for all t 2 Z. The process (zt; ht)t2Z is strictly stationary with ht > 0 a:s:
and �2 := E (h1) 2 (0;1). Finally, there exist real positive sequences (�t)t2Z
and ( m)m2N satisfying supt2Z �t <1,  m ! 0 as m!1, and

EFt�1�m �ht � �2

�


1
� �t m for any t;m � 0: (3)

Under Assumption CH, ("t)t2Z is conditionally heteroskedastic w.r.t. (Ft)t2Z.
Typically, Ft represents the informational content of the history, up to time
t, of the i.i.d. process (zt)t2Z or any other process upon which ht is formed.
Furthermore, ("t)t2Z is a stationary white noise with variance equal to �

2, and
additionally a martingale di¤erence when zt is Ft-adapted. The conditional

4



variance process (ht)t2Z is strictly stationary and integrable. The adaptation
property of ht to Ft�1 combined with (3) implies that its demeaned version
ht � �2 is an L1 mixingale (see for example Andrews (1988)).
Assumption CH encompasses several classes of conditionally heteroskedas-

tic processes. For example, for (strong) GARCH-type models we have that
Ft := � (zt�i; i � 0). Then, stationarity typically follows by a representation
of ht as a measurable function of Ft�1. Positivity and uniform integrability
are usually ensured via properties of the aforementioned representation possi-
bly combined with parameter restrictions. The mixingale property is readily
veri�able for a large class of frequently used conditionally heteroskedastic
models, such as ARCH(1) processes which include �nite order covariance
stationary GARCH processes; see Example 1 below. In more complicated
cases, such as Examples 2 and 3 below, the mixingale property can be estab-
lished by stricter integrability conditions on the primitive innovations zt of
ht (only the �rst moment of ht is assumed to exist) along with strong mixing
properties due to the relation between the mixingale and the strong mixing
properties implied by relevant mixing inequalities, see for example McLeish
(1975). Notice, however, that these su¢ cient conditions are not necessary:
the conditional variance process ht of the ARCH(1) model of Example 1
satis�es the mixingale property without higher order moments nor mixing
conditions. Note also that the strong mixing property of ht does not impose
weak dependence on the innovation sequence ut in (1): the latter may have
long memory (see Assumption LP(ii) below). In what follows, we provide
details on certain general classes of models that satisfy Assumption CH.

Example 1 (ARCH(1) process). For ! > 0 , some non negative real
sequence (�i)i2N and Ft := � (zt�i; i � 0) consider the in�nite order recursion
de�ning the ARCH(1) model:

ht = ! +
1X
i=1

�iz
2
t�iht�i = ! +

1X
i=1

�i"
2
t�i: (4)

A su¢ cient condition for the existence of a unique stationary causal solution
to the above is that

P1
i=1 �i < 1 in which case the latter admits a Volterra

expansion and �2 = ! (1�
P1

i=1 �i)
�1 (see Theorem 2.1 of Giraitis et al.

(2000)). Furthermore, by Theorem 4.1 of Giraitis et al. (2000), for (~�i) i2N
de�ned by ~� (z) =

P1
i=0 ~�iz

i = 1=� (z) with � (z) =
P1

i=0 �iz
i and jzj � 1,
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we have that

"2t � �2 =

1X
i=0

~�ivt�i;

with
�
(vt)t2Z ; (Gt)t2Z

�
a stationary martingale di¤erence de�ned by vt :=

(z2t � 1)ht, for all t 2 Z. Using the above, we have that for any t and any
m > 0,



EFt�1�m �ht � �2
�



1
=


EFt�1�m �"2t � �2

�


1
� 2�2

1X
i=m

j~�ij ;

hence (3) holds with �t = 2�2 and  m =
P1

i=m j~�ij ; since
P1

i=0 j~�ij < 1.
Hence, the previous assertions hold also for any GARCH(p; q) model under
the

P1
i=1 �i < 1 restriction when applied to its ARCH(1) representation.

Example 2 (Asymmetric GARCH type Models). Similarly to Car-
rasco and Chen (2002) consider the stochastic recursion

� (ht) = c (mt) � (ht�1) + g (mt) ;

with � increasing and continuous on R+, mt a measurable function of zt,
and c; g polynomials. This formulation encompasses several GARCH(1,1)-
type models as for example the (1,1) versions of the LGARCH, VGARCH,
EGARCH, MGARCH, GJR, and TGARCH models (for de�nitions and ref-
erences see Carrasco and Chen (2002)). Their properties are, among others
and in some varying extend, in accordance with the empirical stylized fact
of dynamic asymmetry in �nancial time series (for the so-called asymmet-
ric leverage e¤ects, see for example Bollerslev et al. (2011)). Suppose now
that the distribution of mt is absolutely continuous w.r.t. the Lebesgue
measure on R with support that contains zero, and that for some s � 1,
jc (0)j < 1;E (cs (m1)) < 1, and E (gs (m1)) < 1. Then, by Proposition 5
of Carrasco and Chen (2002) the adaptation and stationarity parts of As-
sumption CH follow, and furthermore the conditional variance process ht
is strongly mixing with exponentially decaying mixing coe¢ cients. If fur-
thermore E

�
(��1 (c (mt) � (ht�1) + g (mt)))

s�
< +1, for some s > 1, then

�2 = E (h1) exists and by the mixing inequality of Lemma 2 of McLeish
(1975) (3) holds.
In a similar manner consider the Power GARCH(p,q) recursion for ! > 0,
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�i � 0; i = 1; : : : ; p, �i � 0; i = 1; : : : ; q, � > 0,

h�t = ! +

pX
i=1

�ih
�
t�1z

2�
t�i +

pX
i=1

�ih
�
t�1;

which is essentially a Box-Cox transformation for the conditional variance.
If the distribution of zt is absolutely continuous w.r.t. the Lebesgue measure
on R with support equal to the real line, for some s > 1

�
, E
�
z2s�1
�
<1, and

E (�smax (z1)) < 1 where �max is the largest root of
Pmax(p;q)

i=1

�
�iz

2�
1 + �i

�
=�i

(where a parameter is considered equal to zero if its index exceeds the relevant
order), then all the assertions of Assumption CH follow by Proposition 13 of
Carrasco and Chen (2002) and Lemma 2 of McLeish (1975).

Example 3 (Log-Linear Stochastic Volatility). Suppose now that (�t)t2Z
is another i.i.d. sequence such that (�t; zt)t2Z is stationary, Ft := � (ut�i; zt�i; i � 0),
zt is independent of Ft�1, and ! 2 R while (�i)i2N is a real sequence. Con-
sider the process

lnht = ! +
1X
i=0

�i�t�i�1: (5)

The conditional variance is de�ned as an (exogenous) log-linear process w.r.t.
(�t)t2Z, and thereby the previous specify a stochastic volatility model (see for
example Straumann (2004)). The possibility of contemporaneous dependence
between �t and zt is also related to the empirical dynamic asymmetry in
�nancial data (see above). It is easy to see that if the distribution of �1 has
a well-de�ned moment generating function, say M�, on the range of (�i)i2N
and

P1
i=0 lnM� (�i) converges, then all the assertions of Assumption CH

except for (3) hold with �2 = exp (! +
P1

i=0 lnM� (�i)). For example when
�1 � N (0; 1) then square summability for the (�i)i2N su¢ ces for the above
and �2 = exp

�
! + 1

2

P1
i=0 �

2
i

�
. For (3) notice that any set of conditions

for strong mixing of linear processes like (5), see for example Theorem 14.9
of Davidson (1994), along with the convergence of

P1
i=0 lnM� ((1 + ") �i)

for some " > 0 would su¢ ce due to Theorem 14.1 of Davidson (1994), and
Lemma 2 of McLeish (1975). In the standard normal case those are reduced
to the absolute summability of (�i)i2N due to Theorem 13.3.3. in Ibragimov
and Linnik (1971).
The mixingale property of Assumption CH facilitates the validity of a

law of large numbers for weakly dependent heterogeneous triangular arrays,
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Lemma 1(ii) below, which constitutes a partial generalisation of the L1-
mixingale law of large numbers in Andrews (1988). This is a key result for
the asymptotic development of the paper, as it characterises the asymptotic
behaviour of the conditional variance of martingale transforms that arise in
mildly explosive least squares theory and allows the application of a central
limit theorem to these martingale transforms to establish their asymptotic
normality (see Lemma 2). Part (i) of the lemma is an auxiliary result of sums
of martingale di¤erences weighted by triangular arrays of constants, leading
to the main result of part (ii), where the martingale di¤erence is generalised
to a L1 mixingale processes without the imposition of rates to the original
mixingale numbers. We denote by (Gt)t2Z a generic �ltration that need not
coincide with that of Assumption CH.

Lemma 1. For an integer valued sequence (kn)n2N with kn !1, consider
an array of real numbers f�n;t : 1 � t � kng satisfying

sup
n2N

knX
t=1

jan;tj <1 and
knX
t=1

a2n;t ! 0 as n!1: (6)

(i) If
�
(�t)t2Z ; (Gt)t2Z

�
is a uniformly integrable martingale di¤erence process,

then



Pkn

t=1 an;t�t





1
! 0.

(ii) Let
�
(yt)t2Z ; (Gt)t2Z

�
be a uniformly integrable adapted process with

zero-mean satisfying

EGt�m (yt)

1 � �t m for each t;m � 0 (7)

for real positive sequences (�t)t2Z and ( m)m2N with supt2Z �t <1 and

 m ! 0 as m!1. Then



Pkn

t=1 an;tyt





1
! 0:

The adaptation property along with (7) imply that (yt)t2Z is an L1 mixin-
gale (see for example Andrews (1988)).
Having introduced a convenient conditional heteroskedasticity framework,

we proceed to de�ning the linear relationship between the innovations of the
mildly explosive autoregression (1) with the process ("t)t2Z of Assumption
CH.
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Assumption LP. For each t 2 N, ut has Wold representation ut =
P1

j=0 cj"t�j
where ("t)t2Z is as in Assumption CH and (cj)j�0 is a sequence of constants
satisfying c0 = 1 and one of the following conditions:

(i)
P1

j=0 jcjj <1 and
P1

j=0 cj 6= 0.

(ii) For each j 2 N , cj = L (j) j��, for some � 2 (1=2; 1), where L is a
slowly varying function at in�nity such that ' (t) := L (t) t�� is even-
tually non-increasing and supt2[0;B] t

�L (t) <1 for any �; B > 0:

(iii) cj = �j�1, j 2 N , for some � 6= 0.

Assumption IC. X0 can be any �xed constant or a random process X0 (n)
satisfying X0 (n) = op

�
n�=2

�
under LP(i), X0 (n) = op

�
n(3=2��)�L (n�)

�
un-

der LP(ii) and X0 (n) = op
�
n�=2 log n

�
under LP(iii).

Assumptions LP and IC are identical to the assumption framework in Ma.
Under the �rst, (ut)t2N is a covariance and strictly stationary linear process,
since (cj)j�0 is square summable and ("t)t2Z is a stationary conditionally
heteroskedastic white noise.
LP(i) ensures absolute summability of the autocovariance function of

(ut)t2Z thereby giving rise to a weakly dependent stationary process. LP(ii)
induces long memory to (ut)t2Z. Recall that a function L is slowly vary-
ing at in�nity if and only if L (ut) =L (t) ! 1 for any u > 0; see Bingham,
Goldie and Teugels (1987), abbreviated hereafter as BGT. The parametri-
sation cj = L (j) j�� is standard for stationary linear processes that exhibit
long memory, see e.g. Giraitis, Koul and Surgailis (1996) and Wu and Min
(2005), including stationary AFRIMA processes, for � = 1 � d, d 2 (0; 1=2)
in the relevant notation. The boundary � = 1 between weak and strong
dependence in the memory of the innovation sequence is investigated via the
harmonic coe¢ cients of Assumption LP(iii).
The property of ' (t) being eventually non-increasing facilitates the com-

putation of asymptotic variances by means of Euler summation in Ma. This
property is for instance satis�ed by the Zygmund class of di¤erentiable slowly
varying functions (see BGT, Theorem 1.5.5). Boundedness of t�L (t) in
a neighbourhood of the origin is a standard requirement for the validity
of Abelian theorems for integrals involving regularly varying functions, see
BGT, Proposition 4.1.2(a). Both conditions hold trivially for the stationary
AFRIMA processes with fractional parameter as above, see Samorodnitsky
(2006).
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Under Assumptions LP-IC, and conditional homoskedasticity for ("t)t2Z,
Ma establishes the invariance of the Cauchy regression theory of PMa. This
invariance holds despite the di¤erent rates of convergence and limit distri-
butions (that arise as a result of the memory properties of ut) satis�ed by
the sample moments that enter least squares regression, as those are asymp-
totically cancelled out between the components of the OLS estimator. The
question here is whether an analogous result holds under conditional het-
eroskedasticity. Once the appropriate asymptotic framework has been set
by Assumption CH and the mixingale law of large numbers of Lemma 1,
it turns out that not only the above invariance remains true, but also that
every intermediate result of Ma continues to hold.
Speci�cally, as in the previous analyses of (mildly) explosive autoregres-

sion by Anderson (1959), PMa and Ma, the limit theory of the OLSE for �n
depends on properties of the stochastic sequences

Yn (�) =
1

n(
3
2
��)�

�n(�)X
t=1

��tn un+1�t and Zn (�) =
1

n(
3
2
��)�

�n(�)X
t=1

��tn ut (8)

with �n = 1 + c=n� as de�ned in (1) and

�n (�) =

�
n�

2

�
for some � 2

�
�;min

�
3�

2
; 1

��
: (9)

For notational convenience, following Ma, we employ the notation Yn (1) and
Zn (1) for the sequences in (8) under both Assumptions LP(i) and LP(iii).
This is consistent with the n�=2 normalisation that applies under weak de-
pendence.
By covariance stationarity of (ut)t2Z, Yn (�) and Zn (�) have equal vari-

ance; their asymptotic variance is computed in Lemma 1 of Ma for any white
noise process ("t)t2Z with variance equal to �

2 and is given by

V� := �2c2��3
� (1� �)2

2 cos f� (1� �)g ; � 2 (1=2; 1) (10)

where � (x) =
R1
0
ux�1e�udu is the gamma function. Under Assumption CH,

the above expression for V� continues to apply with �2 = E (h1). Lemma
2 below provides a limit theory Yn (�) and Zn (�) under conditional het-
eroskedasticity and both short and long memory in the innovations. Both
the rates of convergence and the limit distributions depend crucially on the
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linear dependence properties of (ut)t2Z via the memory parameter �. Under
CH the conditional variance process (ht)t2Z does not a¤ect the convergence
rates, but a¤ects the limit distributions via �2 = E (h1). For this value of �2,
denote !2 := �2

�P1
j=0 cj

�2
.

Lemma 2. Under Assumptions CH and LP, the sequences Zn (�) and
Yn (�) in (8) have the following joint asymptotic behaviour as n!1:

(i) Under LP(i), [Yn (1) ; Zn (1)]) [Y1; Z1], where Y1 and Z1 are indepen-
dent N (0; !2=2c) random variables.

(ii) Under LP(ii), L (n�)�1 [Yn (�) ; Zn (�)]) [Y�; Z�], where where Y� and
Z� are independent N (0; V�) random variables and V� is given by (10).

(iii) Under LP(iii), (log n�)�1 [Yn (1) ; Zn (1)] ) [Y 0
1 ; Z

0
1], where Y

0
1 and Z 01

are independent N
�
0; �2�2=2c

�
random variables.

Lemma 2 shows that Lemmata 2-4 of Ma continue to hold under con-
ditional heteroskedasticity with �2 arising as the expectation of the con-
ditional variance process ht of Assumption CH (instead of the conditional
homoskedasticity assumption ht = �2 for all t a:s: maintained in Ma). The
key insight is the application of the mixingale law of large numbers of Lemma
1(ii) which ensures the validity of a standard martingale central limit theorem
in each of the cases (i)-(iii) above. The joint asymptotic behaviour of Yn (�)
and Zn (�) completely determines the limit theory of the sample moments of
Xt and of the normalised and centred OLS estimator in the context of (1), as
long as the standard approximation argument of Anderson (1959) continues
to apply under Assumptions CH, LP, IC. The validity of this approximation
argument is established in the following lemma.

Lemma 3. Let L denote an arbitrary slowly varying function at in�nity.
Then, under Assumptions CH, LP and IC,

��2nn

n�n(3�2�)�L (n�)2

nX
t=1

X2
t�1 =

1

2c

�
1

L (n�)
Zn (�)

�2
+ op (1)

��nn
n(3�2�)�L (n�)2

nX
t=1

Xt�1ut =
Yn (�)

L (n�)

Zn (�)

L (n�)
+ op (1)
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as n ! 1 where: (a) Under LP(i), � = 1 and L (x) = 1. (b) Under
LP(ii), � 2 (1=2; 1) and L satis�es LP(ii). (c) Under LP(iii), � = 1 and
L (x) = log x.
Lemma 3 simply asserts that Lemma 5 of Ma continues to apply when the

conditional homoskedasticity assumption of Ma is replaced by Assumption
CH and con�rms the validity of the standard approximation argument per-
taining to (mildly) explosive sample moments. Combing Lemmata 2 and 3,
we deduce that, under appropriate normalisation, joint convergence in distri-
bution of

�Pn
t=1Xt�1ut;

Pn
t=1X

2
t�1
�
applies in all cases LP(i)-LP(iii). More-

over, the same normalisation applies to the centred OLS estimator �̂n � �n
irrespective of the dependence properties of ut. The resulting Cauchy limit
distribution for the normalised and centred OLS estimator is a simple corol-
lary of the continuous mapping theorem and the fact that the limiting ran-
dom vectors (Y1; Z1), (Y�; Z�) and (Y 0

1 ; Z
0
1) of Lemma 2 consist of independent

components.

Theorem 1. For the mildly explosive process generated by (1) under As-
sumptions CH, LP and IC, the following limit theory applies as n!1 :

1

2c
n��nn (�̂n � �n)) C as n!1;

where C denotes a standard Cauchy random variable.

Remarks.

1. Theorem 1 shows that standard Cauchy mildly explosive regression
theory continues to hold under stationarity, weak or strong linear de-
pendence, mixingale conditional variance and second order integrability
for the innovation process. Even in this general framework, the limit
theory depends only on the parameters c and � that determine the
degree of mild explosion, i.e. the neighbourhood of unity that contains
the mildly explosive root �n. As remarked in Ma and also holds true
in the current conditional heteroskedasticity context, this invariance of
least squares limit theory to the memory properties of the innovation
sequence is due to the strength of the (mildly) explosive regression sig-
nal. Exponential signal strength gives rise to a fundamental property of
explosive and mildly explosive autoregression, established in our con-
text by Lemma 3, that the asymptotic behaviour of the normalised and
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centred least squares estimator is completely characterised by the ratio
Yn (�) =Zn (�) in which the numerator and the denominator have iden-
tical rates and limiting distributions (by Lemma 2). Hence any idiosyn-
cratic characteristic of the limit theory of the individual components
Yn (�) and Zn (�) is essentially canceled out in the ratio. Apart from
strict stationarity of ut (which is inherent in GARCH-type processes),
Theorem 1 constitutes a generalisation of the corresponding theorem
of Ma.

2. Mildly explosive autoregression with conditionally heteroskedastic in-
novations has recently been investigated by Lee (2017) and Oh et al.
(2017) under a more restrictive framework. In particular, the innova-
tion sequence (ut)t2Z is assumed to be strong mixing with exponentially
decaying coe¢ cients and �nite fourth moments (equivalently �nite sec-
ond moments for the conditional variance process ht). It is well known
that higher order moment assumptions severely restrict the parameter
space of GARCH type models. We avoid this problem since Assumption
CH does not require the existence of second moments (or inverse sec-
ond moments) for the conditional variance process. Also, Assumption
CH does not require the innovation sequence (ut)t2Z to be strong mix-
ing. Example 1 shows that Assumption CH is satis�ed by ARCH(1)
processes (and hence all GARCH(p; q) processes) satisfying the stan-
dard stability condition, irrespective of whether ht is strong mixing.
Even when the mixingale condition (3) is veri�ed by the strong mixing
property of ht (Examples 2 and 3), (ut)t2Z will not be strong mixing un-
der the strongly dependent correlation schemes of Assumption LP(ii)
and LP(iii). To our knowledge, Assumption CH provides the most
general framework of conditional heteroskedasticity in the literature of
(mildly) explosive autoregressions. Further generalisation may be pos-
sible, in the direction of non-integrability of the conditional variance
process, with the truncated �rst moment of h1 being slowly varying at
in�nity, see Goldie (1991); this slow variation is likely to appear in the
rates in Lemma 2, yet the Cauchy limit theory of Theorem 1 should
remain una¤ected. We leave such considerations for further research.

3. Theorem 1 provides a limit distribution that can be used for interval
estimation. Phillips, Wu and Yu (2009) and Phillips and Yu (2011)
apply the construction of Cauchy con�dence intervals for the detection
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of �nancial bubbles. Given the fact that �nancial asset returns in rele-
vant frequencies exhibit stylized facts consistent with several patterns
of conditional heteroskedasticity, see for example Ghysels et al. (1996),
Theorem 1 above ensures the robustness of those procedures to general
form of conditional heteroskedasticity in the innovations.

3 Proofs

This section contains the proofs of mathematical statements in the paper.
We employ a similar approach to Ma and Magdalinos (2009, hereafter Mb)
with the important addition of the mixingale law of large numbers of Lemma
1 permits the use of the martingale CLT in Corollary 3.1 of Hall and Heyde
(1980) in the present framework of conditional heteroskedasticity.

3.1 Proof of Lemma 1.

De�ne �̂n;t := �t1 fj�tj � �ng and ~�n;t := �t1 fj�tj > �ng for a sequence
(�n)n2N satisfying

�n !1 and �2
n

knX
t=1

a2n;t ! 0 as n!1: (11)

The martingale di¤erence property implies that �t = �̂n;t�EGt�1 (�̂n;t)+~�n;t�
EGt�1 (~�n;t) so


Pkn

t=1 an;tyt





1
�



Pkn

t=1 an;t
�
�̂n;t � EGt�1 (�̂n;t)

�



1
+



Pkn

t=1 an;t
�
~�n;t � EGt�1 (~�n;t)

�



1

�



Pkn

t=1 an;t
�
�̂n;t � EGt�1 (�̂n;t)

�



2
+ 2

�
supn2N

Pkn
t=1 jan;tj

�
supt2N k~�n;tk1

by the Lyapounov inequality and the Jensen inequality for conditional ex-
pectations. By (11) and uniform integrability of (�t), supt2N k~�n;tk1 ! 0 so
the second term on the right tends to 0. For the �rst term, orthogonality of�
�̂n;t � EGt�1 (�̂n;t) : t � 1

	
yields






knX
t=1

an;t
�
�1t � EGt�1 (�1t)

�





2

2

=

knX
t=1

a2n;tE
h�
�1t � EGt�1 (�1t)

�2i � �2
n

knX
t=1

a2n;t ! 0

by the choice of (�n)n2N in (11). This proves part (i).

14



For part (ii), the fact that (yt)t2Z is Gt-adapted implies that, for any �xed
integer M > 0

knX
t=1

an;tyt =
M�1X
m=0

knX
t=1

an;t
�
EGt�m (yt)� EGt�m�1 (yt)

�
+

knX
t=1

an;tEGt�M (yt) (12)

as in equation (6) of Andrews (1988). For each m,

�
(m)
t := EGt�m (yt)� EGt�m�1 (yt)

is a Gt�m-martingale di¤erence process that inherits the uniform integrability
property from yt and so �

(m)
t satis�es the conclusion of part (i). Applying the

triangle inequality and (7) to (12) we obtain





knX
t=1

an;tyt







1

�
M�1X
m=0







knX
t=1

an;t�
(m)
t







1

+
knX
t=1

jan;tj


EGt�M (yt)

1

� M max
0�m<M







knX
t=1

an;t�
(m)
t







1

+ sup
n2N

knX
t=1

jan;tj sup
t2Z

�t M :(13)

Let � > 0 be arbitrary. Since C := supn2N
Pkn

t=1 jan;tj supt2Z �t < 1 and
 M ! 0, there exists M0 (�) 2 N such that  M0(�) � �= (2C). Choosing
M =M0 (�) in (13), we obtain






knX
t=1

an;tyt







1

� M0 (�) max
0�m<M0(�)







knX
t=1

an;t�
(m)
t







1

+
�

2

� M0 (�)
�

2M0 (�)
+
�

2
= �

where the second inequality applies for all but �nitely many n since
max1�m<M0(�)




Pkn
t=1 an;t�

(m)
t





1
! 0 by part (i).

3.2 Proof of Lemma 2.

Let us �rst establish some useful notation. As in Ma, using the linear process
representation of ut, Yn (�) and Zn (�) of (8) are factored as the sum of
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pairs of uncorrelated components: Zn (�) = Z
(1)
n (�) + Z

(2)
n (�) and Yn (�) =

Y
(1)
n (�) + Y

(2)
n (�) with

Z(1)n (�) =
1

n(
3
2
��)�

�n(�)X
t=1

��tn

tX
j=0

cj"t�j; Z(2)n (�) =
1X
j=1

Bnj (�) "�j (14)

Y (1)
n (�) =

�n(�)X
j=1

Cnj (�) "n+1�j; Y (2)
n (�) =

X
k>�n(�)

�n(�)X
t=1

��tn ck�t

n(
3
2
��)�

"n+1�k (15)

where Bnj (�) and Cnj (�) are arrays of real numbers de�ned by

Bnj (�) = n�(
3
2
��)�

�n(�)X
t=1

��tn ct+j; Cnj (�) = n�(
3
2
��)�

jX
t=1

��tn cj�t (16)

and �n (�) is the sequence de�ned in (9). Denote the array

Anj (�) = n�(
3
2
��)���jn

�n(�)X
i=0

ci�
�i
n ; (17)

related to Z(1)n (�). When � = 1, we write

Anj = Anj (1) ; Bnj = Bnj (1) and Cnj = Cnj (1) : (18)

As in Ma, the asymptotic behaviour of (Zn; Yn) is determined by Z
(1)
n and

Y
(1)
n under Assumptions LP(i) and LP(iii), and by Z(1)n ; Z

(2)
n and Y (1)

n under
Assumption LP(ii). Y (2)

n is asymptotically negligible in all cases. Finally, we
say an array ( nk) of random vectors satis�es the Lindeberg condition if

nX
k=0

EFk�1
�
k nkk

2 1 fk nkk > �g
�
!p 0 8� > 0: (19)

Proof of Lemma 2(i). Under Assumption CH, ("t)t2Z is a white noise
process with variance equal to �2, so Lemmata B1 and B2 of Mb continue to
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apply. We have that

[Yn (1) ; Zn (1)]
0 =

�
Y (1)
n (1) ; Z(1)n (1)

�0
+ op (1)

=

24�n(�)X
j=1

Cnj"n+1�j;

�n(�)X
j=0

Anj"j

350 + op (1)

=
nX
j=0

�nj + op (1) ; (20)

where �nj denotes the Fj-martingale di¤erence array

�nj =
�
�Cnj; �Anj

�0
"j

with

�Anj = Anj1 fj � �n (�)g �Cnj = Cn;n+1�j1 fj > n� �n (�)g

and Anj and Cnj de�ned in (17), (16) and (18). By (9), n� �n (�) > �n (�)
so �Unk �Cnk = 0 for all k. By Assumption CH the conditional variance ofPn

k=0 �nk is given by

Un :=
nX
j=0

EFj�1�nj�
0
nj = diag

0@�n(�)X
j=1

C2njhj;

�n(�)X
j=0

A2njhj

1A
By Lemma B2(ii) in Mb, Un !p

!2

2c
I2 provided that







�n(�)X
j=1

C2nj
�
hj � �2

�






1

+








�n(�)X
j=0

A2nj
�
hj � �2

�






1

! 0: (21)

To prove (21), we employ Lemma 1(ii) with the identi�cations yt := ht� �2,
kn := �n (�), Gt := Ft�1, and an;t 2 fC2nt; A2ntg. Since ht is Ft�1-adapted, (3)
of Assumption CH implies that yt = ht � �2 satis�es (7) of Lemma 1. The
sequences

P�n(�)
t=0 A2nt and

P�n(�)
t=0 C2nt are convergent by Lemma B2(ii) in Mb

so the �rst condition of (6) is satis�ed. For the second condition of (6), since
C :=

P1
i=0 jcij <1 we obtain

�n(�)X
k=1

C4nk =
1

n2�

�n(�)X
k=1

 
kX
t=1

��tn ck�t

!4
� C4

�n (�)

n2�
= o

�
1

n�=2

�

17



by (9) and, similarly,

�n(�)X
k=1

U4nk =
1

n2�

�n(�)X
k=1

��4kn

0@�n(�)X
j=0

cj�
�j
n

1A4

� C4

n2�

1X
k=0

��4kn = O

�
1

n�

�
:

This proves (21) and the required convergence Un !p
!2

2c
I2 for the conditional

variance. By the proof of equation (11) in Mb, it is clear that the array�
�nj
�
in (20) satis�es the Lindeberg condition (19) provided that ("2t )t2Z is a

uniformly integrable sequence. The latter is guaranteed by Assumption CH
because of strict stationarity and integrability of ("2t )t2Z. The lemma now
follows by applying the martingale CLT in Corollary 3.1 of Hall and Heyde
(1980) to the martingale di¤erence array

�
�nj
�
in (20).

Proof of Lemma 2(iii). From the proof of Lemma 4 of Mb (which only
employs unconditional second moment bounds) we obtain

1

log n�
[Yn (1) ; Zn (1)] =

1

log n�
�
Y (1)
n (1) ; Z(1)n (1)

�
+ op (1)

=
1

log n�

nX
j=0

�nj + op (1)

with �nj de�ned as in (20). By the argument of part (i), it is su¢ cient to
verify (6) of Lemma 1 with the same identi�cations as in part (i), apart
from an;t 2

�
(Cnt= log n

�)2 ; (Ant= log n
�)2
	
: The �rst part of (6) follows

since (log n�)�2
P�n(�)

j=0 C2nt and (log n
�)�2

P�n(�)
j=0 A2nt both converge to �

2=2c
(equations (16) and (17) of Mb). For the second part of (6), since

Pn
i=0 jcij =

O (log n),

1

(log n�)4

�n(�)X
k=1

C4nk =
1

n2� (log n�)4

�n(�)X
k=1

 
kX
t=1

��tn ck�t

!4

� (
Pn

i=0 jcij)
4

(log n�)4
�n (�)

n2�
= o

�
1

n�=2

�
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1

(log n�)4

�n(�)X
k=1

A4nk =
1

n2� (log n�)4

�n(�)X
k=1

��4kn

0@�n(�)X
j=0

cj�
�j
n

1A4

� (
Pn

i=0 jcij)
4

(log n�)4
1

n2�

1X
k=0

��4kn = O

�
1

n�

�
:

Proof of Lemma 2(ii). First note that the de�nition of Anj (�) in (17)
di¤ers from Anj in Ma by a slowly varying factor L (n�). By Propositions
3.2.1-3.2.3 of Ma,

L (n�)�1 [Zn (�) ; Yn (�)]
0 = L (n�)�1

�
Z(1)n (�) ; Z(2)n (�) ; Y (1)

n (�)
�
+ op (1)

=
nX

j=��n(�)

�nj + op (1) (22)

where �nk :=
h
~Anj; ~Bnj; ~Cnj

i0
"j is a Fj-martingale di¤erence array in R3 with

components given by

~Anj = L (n�)�1Anj (�)1 f0 � j � �n (�)g ; ~Bnj = L (n�)�1Bn;�j (�)1 fj < 0g ;
~Cnj = L (n�)�1Cn;n+1�j (�)1 fj > n� �n (�)g

(see equation (23) of Ma), with Anj (�), Bnj (�) and Cnj (�) de�ned in de�ned
in (17) and (16). By (9), n � �n (�) > �n (�) so ~Ank ~Bnk = ~Ank ~Cnk =
~Bnk ~Cnk = 0 for all k, so the conditional variance of the martingale array in
(22) is given by

Un =
nX

j=��n(�)

EFj�1�nj�
0
nj =

nX
j=��n(�)

diag
h
~A2nj; ~B

2
nj; ~C

2
nj

i
hj

=
1

L (n�)2
diag

24�n(�)X
j=0

A2nj (�)hj;

�n(�)X
j=1

B2
nj (�)hj;

�n(�)X
j=1

C2nj (�)hj

35 :
Denoting yj = hj � �2,

~Un =
1

L (n�)2
diag

24�n(�)X
j=0

A2nj (�) yj;

�n(�)X
j=1

B2
nj (�) yj;

�n(�)X
k=1

C2nj (�) yj

35(23)
U =

�2c2��3� (1� �)2

2
diag

�
1;

1

cos � (1� �)
� 1; 1

cos � (1� �)

�
;
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Propositions 3.2.1-3.2.3 of Ma, imply that

Un = U + ~Un + o (1) :

Therefore, ~Un !p 0 is su¢ cient for Un !p U as in Proposition 3.2.4 of Ma.
The proof of equation (24) of Ma, shows that uniform integrability of ("2t )t2Z
(which is guaranteed by Assumption CH) is su¢ cient for the array

�
�nj
�
in

(22) to satisfy the Lindeberg condition (19). Thus, if ~Un !p 0 holds, the
martingale CLT (Corollary 3.1 of Hall and Heyde (1980)) applied to (22)
yields

L (n�)�1
�
Z(1)n (�) ; Z(2)n (�) ; Y (1)

n (�)
�
)
�
Z(1) (�) ; Z(2) (�) ; Y (�)

�
(24)

for each � 2 (1=2; 1), as in Proposition 3.2.4 in Ma where Z(1) (�) ; Z(2) (�)
and Y (�) are independent zero mean Gaussian variates with variances V (1)

� ,
V� � V

(1)
� and V� respectively, where V

(1)
� = �2c2��3� (1� �)2 =2 and V� is

de�ned in (10). This completes the proof of the Lemma 2, provided that
~Un !p 0. To prove the latter, we employ Lemma 1(ii) to each term of (10),

by taking an;j 2
n
A2nj(�)

L(n�)2
;
B2nj(�)

L(n�)2
;
C2nj(�)

L(n�)2

o
. The �rst part of (6) is satis�ed sinceP�n(�)

j=0 jan;jj converges by Propositions 3.2.1-3.2.3 of Ma. For the second part

of (6),
P�n(�)

j=0 a2n;j is bounded by:

1

L (n�)4

�n(�)X
j=0

A4nj (�) =
1

L (n�)4 n(6�4�)�

0@�n(�)X
i=0

ci�
�i
n

1A4
�n(�)X
j=0

��4jn

=
1

L (n�)4 n(6�4�)�
O
�
n4(1��)�L (n�)4

� �n(�)X
j=0

��4jn

= O (1)
1

n2�

�n(�)X
j=0

��4jn = O

�
1

n�

�
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by Lemma A2(ii) of Ma; since t 7! L (t) t�� is non-increasing on [t0;+1),

1

L (n�)4

�n(�)X
j=1

B4
nj (�) =

1

L (n�)4 n(6�4�)�

�n(�)X
j=1

0@�n(�)X
t=1

��tn ct+j

1A4

=
1

L (n�)4 n(6�4�)�

�n(�)X
j=1

240@ �n(�)X
t=bt0c+1

��tn L (t+ j) (t+ j)��

1A+O (1)

354

� �n (�)

L (n�)4 n(6�4�)�

240@ �n(�)X
t=bt0c+1

��tn L (t) t
��

1A+O (1)

354

=
�n (�)

L (n�)4 n(6�4�)�
O
�
n4(1��)�L (n�)4

�
= O

�
�n (�)

n2�

�
= o

�
1

n�=2

�
by Lemma A2(ii) of Ma; by using the Cr-inequality with r = 4 we obtain

1

L (n�)4

�n(�)X
j=1

C4nj (�) =
1

L (n�)4 n(6�4�)�

�n(�)X
j=1

 
jX
t=1

��tn cj�t

!4

=
1

L (n�)4 n(6�4�)�

�n(�)X
j=1

 
j�1X
t=0

��(j�t)n ct

!4
� 1

L (n�)4 n(6�4�)�
(r1n + 8r2n + 8r3n) (25)

where

r1n =

bn�c+1X
j=1

 
j�1X
t=0

��(j�t)n ct

!4
� n�

0@bn�cX
t=0

ct

1A4

= O
�
n�n4(1��)�L (n�)4

�

r2n =

�n(�)X
j=bn�c+2

0@bn�cX
t=0

��(j�t)n ct

1A4

� �n (�)

0@bn�cX
t=0

ct

1A4

= o
�
n3�=2n4(1��)�L (n�)4

�
by (9) and

r3n =

�n(�)X
j=bn�c+2

0@ j�1X
t=bn�c+1

��(j�t)n ct

1A4

:
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It clear that from the above bounds that the terms of (9) corresponding
to r1n and r2n are of order O (n��) and o

�
n��=2

�
respectively. It remains

to estimate r3n. By Lemma A2(i) of Ma, �
�(j�t)
n = e�

c
n�
(j�t) + O

�
n��=2

�
uniformly in t and j

r3n =

�n(�)X
j=bn�c+2

0@ j�1X
t=bn�c+1

�
e�

c
n�
(j�t) +O

�
n��=2

��
ct

1A4

� 8

�n(�)X
j=bn�c+2

0@ j�1X
t=bn�c+1

e�
c
n�
(j�t)ct

1A4

+ 8O
�
n�2�

� �n(�)X
j=bn�c+2

0@ j�1X
t=bn�c+1

ct

1A4

= 8r03n +O
�
n�2�

�
O
�
n�n4(1��)�L

�
n�
�4�

= 8r03n + o
�
n(6�4�)�

�
because (9) implies that 4 (1� �) (� � �) � 2 (1� �)�, so

n�(6�4�)�n�2�n�n4(1��)�L
�
n�
�4

= o
�
n��=2

�
n�2�n4(1��)(���)L

�
n�
�4

� o
�
n��=2n���L

�
n�
�4�

:

To deal with the �nal remainder term r03n, we employ Euler summation:

r03n =

�n(�)X
j=bn�c+2

0@ j�1X
t=bn�c+1

e�
c
n�
(j�t)t��L (t)

1A4

=

�n(�)X
j=bn�c+2

�Z j�1

bn�c+1
e�

c
n�
(j�btc) btc�� L (btc) dt

�4

= n4�
�n(�)X

j=bn�c+2

 Z (j�1)=n�

(bn�c+1)=n�
e�

c
n�
(j�bn�tc) bn�tc�� L (bn�tc) dt

!4

= n4�
Z �n(�)

bn�c+2

 Z (bsc�1)=n�

(bn�c+1)=n�
e�

c
n�
(bsc�bn�tc) bn�tc�� L (bn�tc) dt

!4
ds

= n5�n�4��L (n�)4
Z �n(�)=n�

(bn�c+2)=n�

 Z (bn�sc�1)=n�

(bn�c+1)=n�
gn (s; t) dt

!4
ds

� n�n4(1��)�L (n�)4
Z 1

1

�Z s

1

gn (s; t) dt

�4
ds (26)
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where, for all t � 1

gn (s; t) = e�
c
n�
(bn�sc�bn�tc)

�
bn�tc
n�

���
L (bn�tc)
L (n�)

= e
�c
�
bn�sc
n�s

�bn
�tc

n�t

�
L (n�)

L (bn�c)

�
bn�c
n�

���
e�c(s�t)

�
bn�tc
bn�c

���
L (bn�tc)
L (bn�c)

� C1e
�c(s�t)

�
bn�tc
bn�c

���
L (bn�tc)
L (bn�c)

� C2e
�c(s�t)

�
bn�tc
bn�c

���+�
� Ce�c(s�t)t��+�

eventually for arbitrary � > 0 and C1, C2, C uniform constants by Potter�s
Theorem (see BGT, Theorem 1.5.6.(i)). Using the above bound, the integral
in (26) satis�esZ 1

1

�Z s

1

gn (s; t) dt

�4
ds � C4

Z 1

1

e�4cs
�Z s

1

ectt�(���)dt

�4
ds <1

by choosing � 2 (0; �� 1=2), because I =
R1
1
e�4cs

�R s
1
ectt��dt

�4
ds < 1

for any � > 1=2. To see this, note that lims!1 e
�cs R s

1
ectt��dt = 0 by

L�Hospital�s rule; applying integration by parts twice we obtain

I =
1

c

Z 1

1

e�3css��
�Z s

1

ectt��dt

�3
ds

=
1

3c2

Z 1

1

e�3cs

(
3s�2�ect

�Z s

1

ectt��dt

�2
� �s���1

�Z s

1

ectt��dt

�3)
ds

=
1

c2

Z 1

1

s�2�
�Z s

1

e�c(s�t)t��dt

�2
ds� �

3c2

Z 1

1

s���1
�Z s

1

e�c(s�t)t��dt

�3
ds

� 1

c2

Z 1

1

s�2�ds

�Z 1

0

e�cudu

�2
<1:

By (26) we conclude that r03n = O
�
n�n4(1��)�L (n�)4

�
and standardising by

the normalisation of (25), L (n�)�4 n�(6�4�)�r03n = O (n��). This shows that
the right side of (25) tends to 0 as n ! 1 and completes the proof of the
lemma.

23



Proof of Lemma 3. Having established the joint asymptotic behaviour of
L (n�)�1 Yn (�) and L (n�)

�1 Zn (�) under Assumption CH in Lemma 2, the
proof of Lemma 3 follows the same steps as the proof of Lemma 5 of Ma: see
page 185 of Ma.
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