Hage, Sophie, Cartigny, Matthieu J.B., Clare, Michael, Sumner, Esther, Vendettuoli, Daniela, Hughes Clarke, John, Hubbard, Stephen, Talling, Peter J., Lintern, D. Gwynn, Cooper, Stacey, Englert, Rebecca, Vardy, Mark E., Hunt, James Edward, Yokokawa, Miwa, Parsons, Daniel, Hizzett, Jamie, Lee, Azpiroz-Zabala, Maria and Vellinga, Age, Jan (2018) How to recognize crescentic bedforms formed by supercritical turbidity currents in the geologic record: insights from active submarine channels. Geology, 46 (6), 563-566. (doi:10.1130/G40095.1).
Abstract
Submarine channels have been important throughout geologic time for feeding globally significant volumes of sediment from land to the deep sea. Modern observations show that submarine channels can be sculpted by supercritical turbidity currents (seafloor sediment flows) that can generate upstream-migrating bedforms with a crescentic planform. In order to accurately interpret supercritical flows and depositional environments in the geologic record, it is important to be able to recognize the depositional signature of crescentic bedforms. Field geologists commonly link scour fills containing massive sands to crescentic bedforms, whereas models of turbidity currents produce deposits dominated by back-stepping beds. Here we reconcile this apparent contradiction by presenting the most detailed study yet that combines direct flow observations, time-lapse seabed mapping, and sediment cores, thus providing the link from flow process to depositional product. These data were collected within the proximal part of a submarine channel on the Squamish Delta, Canada. We demonstrate that bedform migration initially produces back-stepping beds of sand. However, these back-stepping beds are partially eroded by further bedform migration during subsequent flows, resulting in scour fills containing massive sand. As a result, our observations better match the depositional architecture of upstream-migrating bedforms produced by fluvial models, despite the fact that they formed beneath turbidity currents.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
University divisions
- Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Southampton Marine & Maritime Institute (pre 2018 reorg)
- Faculties (pre 2018 reorg) > Faculty of Natural and Environmental Sciences (pre 2018 reorg) > Ocean and Earth Science (pre 2018 reorg) > Geology & Geophysics (pre 2018 reorg)
Current Faculties > Faculty of Environmental and Life Sciences > School of Ocean and Earth Science > Ocean and Earth Science (pre 2018 reorg) > Geology & Geophysics (pre 2018 reorg)
School of Ocean and Earth Science > Ocean and Earth Science (pre 2018 reorg) > Geology & Geophysics (pre 2018 reorg) - Faculties (pre 2018 reorg) > Faculty of Natural and Environmental Sciences (pre 2018 reorg) > Ocean and Earth Science (pre 2018 reorg)
Current Faculties > Faculty of Environmental and Life Sciences > School of Ocean and Earth Science > Ocean and Earth Science (pre 2018 reorg)
School of Ocean and Earth Science > Ocean and Earth Science (pre 2018 reorg)
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.