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 8 

 9 

ABSTRACT  10 

Dys-regulation of Wnt signalling is a frequent occurrence in many different cancers. Oncogenic 11 

mutations of CTNNB1/β-catenin, the key nuclear effector of canonical Wnt signalling, lead to 12 

accumulation and stabilization of β-catenin protein with diverse effects in cancer cells. 13 

Although the transcriptional response to Wnt/β-catenin signaling activation has been widely 14 

studied, an integrated understanding of the effects of oncogenic β-catenin on molecular 15 

networks is lacking. We used Affinity-Purification Mass-Spectrometry (AP-MS), label-free 16 
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LC-MS/MS and RNA-Seq to compare protein-protein interactions, protein expression and 17 

gene-expression in colorectal cancer cells expressing mutant/oncogenic or wild-type β-catenin. 18 

We generate an integrated molecular network and use it to identify novel protein modules that 19 

are associated with mutant or wild-type β-catenin. We identify a DNA methyltransferase I 20 

(DNMT1) associated sub-network that is enriched in cells with mutant β-catenin and a sub-21 

network enriched in wild-type cells associated with the CDKN2A tumor suppressor linking 22 

these processes to transformation of colorectal cancer cells through oncogenic β-catenin 23 

signaling. In summary, multi-omics analysis of a defined colorectal cancer cell model provides 24 

for a significantly more comprehensive identification of functional molecular networks 25 

associated with oncogenic β-catenin signaling. 26 

INTRODUCTION 27 

Altered activity of the Wnt/ β-catenin signaling is a key driver of tumorigenesis in many 28 

cancers. Stabilizing mutations of β-catenin are an important class of mutations that alter 29 

canonical Wnt signaling and function by blocking phosphorylation of residues that would 30 

normally target the protein for destruction 1. Substitution or deletion mutations at S45 of β-31 

catenin are important clinical mutations in diverse tumors, since this residue acts as a critical 32 

molecular switch for canonical Wnt signaling 1,2. Elevated β-catenin levels then exert 33 

oncogenic effects through activation of downstream gene-expression programs in concert with 34 

TCF transcription factors 3. In addition to its role as a transcriptional effector, β-catenin 35 

functions as a component of cell-cell adhesion complexes, although the relative balance 36 

between β-catenin’s different cellular functions is complex 4. As expected given its diverse 37 

functions and sub-cellular localizations, β-catenin exhibits a wide range of different protein 38 
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interactions, with other structural proteins in adhesion complexes, proteins in the destruction 39 

complex5, and nuclear interactions with transcription and chromatin modification factors 6. In 40 

addition, transcriptional targets of β-catenin/TCF signalling have been defined in many 41 

systems; in cancer cells these include other transcription factors, regulators of the cell-cycle 42 

and components and antagonists of the Wnt signaling pathway (Wnt homepage, 43 

http://wnt.stanford.edu). 44 

 45 

Omics analyses of Wnt activation to date have focused on understanding a single molecular 46 

layer of the response to Wnt activation, such as proteomic analyses of selected Wnt pathway 47 

components7,8 or the proteomic or transcriptomic expression response to Wnt activation 9,10. 48 

However, the response to activation of cell signaling pathways occurs at multiple molecular 49 

levels; recent work has shown how activation of the Wnt pathway leads directly to protein 50 

stabilization in addition to the well-studied transcriptional response 11. In addition, although it 51 

is convenient to consider proximal events in cell signalling (i.e. components of the pathway 52 

itself) separately from the response or output of signalling activation (e.g. transcriptional 53 

activation), these are intrinsically linked. Several core protein components of the Wnt signaling 54 

pathway (e.g. Axin, Dkk) are themselves transcriptional targets, directly activated through β-55 

catenin/TCF signaling and providing feedback regulation of Wnt signaling activity 12,13 56 

 57 

To understand therefore how oncogenic β-catenin alters networks at multiple molecular 58 

levels and how this promotes tumorigenesis, we conducted a multi-omics analysis using 59 

colorectal cancer cells with targeted inactivation of either the mutant (stabilizing Δ45 mutation) 60 

or wild-type allele of CTNNB1/β-catenin 14. Affinity-Purification Mass-Spectrometry (AP-61 
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4 

 

MS) analysis of mutant and wild-type β-catenin cells showed patterns of protein interactions 62 

consistent with nuclear localization of mutant β-catenin and membrane-associated wild-type 63 

β-catenin. Integrating AP-MS and expression proteomic profiling, we identified several 64 

enriched protein networks that are preferentially expressed in mutant or wild-type cells 65 

including elevated DNA-methylation linked proteins in mutant cells, and a nucleolar-enriched 66 

tumor suppressor module in wild-type cells. Through comparative analysis of enriched Gene 67 

Ontology categories, we show that there is concerted alteration of pathways and processes at 68 

the proteomic and transcriptomic levels in the mutant and wild-type cells. We show that 69 

interaction proteomics, expression proteomics and transcriptomic datasets contribute 70 

complementary information to the integrated network, and that multi-omics analysis provides 71 

for a more comprehensive delineation of β-catenin associated oncogenesis. In summary, our 72 

multi-omics analysis provides a comprehensive view of how oncogenic β-catenin alters 73 

molecular networks at multiple levels. 74 

 75 

MATERIALS AND METHODS 76 

Cell line culture and sample extraction 77 

Colorectal cancer cell lines HCT116-CTNNB1-/Δ45  and HCT116-CTNNB1WT/- were 78 

regularly maintained in McCoy-5A media (Life Technologies, 16600-108, Carlsbad, CA) 79 

containing 10% fetal bovine serum (Life Technologies, 10438-026, Carlsbad, CA) and 1% 80 

streptomycin-penicillin (Life Technologies, 15140-148, Carlsbad, CA) at 37°C  in CO2 81 

incubator (5% CO2, 100% H2O). Cells were harvested by scraping the cells off plates and then 82 

washed with cold PBS twice for immediate use or storage (-80°C). Harvested cells were lysed 83 

(25mM Tris-HCl, pH7.4, 1mM EDTA, 150mM NaCl, 1% NP-40, 50% glycerol, Protease 84 

Page 5 of 40

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5 

 

inhibitor cocktail) by homogenization and incubated on ice for 30 min followed by 85 

centrifugation at 13,000rpm for 30min. The supernatant (soluble fraction) was kept for further 86 

analysis. Proteins were quantified by Bio-Rad protein assay dye (500-0006, Bio-Rad, Hercules, 87 

CA) by measuring the absorbance at 595nm. NE-PER Nuclear and Cytoplasmic Extraction kit 88 

(Pierce) was used to prepare nuclear and cytosolic fractions, which were assessed using anti-89 

Dnmt1 and anti-Gapdh Western blots. 90 

   91 

SDS-PAGE & Immunoblotting 92 

Equal amounts (20 μg) of proteins from different samples was loaded on precast 4−12% Bis-93 

Tris gel (Life Technologies NP-0335, Carlsbad, CA) and subjected to electrophoresis. Gels 94 

were either stained with Coomassie Brilliant Blue (Pierce 20278, Rockford, IL) or transferred 95 

to nitrocellulose membrane (Whatman 10402594, Dassel, Germany). Western blotting was 96 

used to detect the protein with super signal ELISA Pico chemiluminescent substrate. Primary 97 

antibodies used: anti-β-catenin (Cell Signaling Technology 9581, Danvers, MA), anti-Dnmt1 98 

(Cell Signaling Technology 5119, Danvers, MA), anti-UHRF1 (Novus Biologicals 99 

H00029128-M01, Littleton, CO), anti-HDAC1 (Abcam ab7028, Cambridge, MA), anti-PCNA 100 

(Santa Cruz Biotechnology sc-56, Santa Cruz, CA) and anti-α-tubulin (Cell Signaling 101 

Technology, Inc., 2144, Danvers, MA). Loading controls were applied at 1:1000 and secondary 102 

antibodies horseradish peroxidase (HRP)-conjugated anti-mouse (Promega W4011, Madison, 103 

WI) and HRP-conjugated anti-rabbit (Cell Signaling Technology 7074, Danvers, MA) were 104 

added at 1:20,000. Chemi-luminescence detection using SuperSignal* ELISA Pico 105 

Chemiluminescent Substrate (Thermo Scientific PI-37070, Rockford, IL) was applied to all 106 

westerns. 107 
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Proteomic sample preparation 108 

For analysis of the expression proteome, cell extracts were fractionated using the NE-PER 109 

Nuclear and Cytoplasmic Extraction kit (Pierce), each fraction separated using SDS-PAGE and 110 

then fractionated in 2 fractions per sample/lane after Coomassie blue staining prior to tryptic 111 

digestion. Each sample combination (e.g. Mutant/nuclear, Mutant/cytosolic) was replicated 112 

twice. Affinity-purifications from 107 cells were performed as previously described 15 using 113 

anti-β-catenin (Cell Signaling Technology 9581, Danvers, MA) antibodies. Affinity-114 

purification experiments were replicated using two independent mutant and two independent 115 

wild-type cell lines, and each sample replicated twice. In-gel tryptic digestion was performed 116 

and combined elution fractions were lyophilized in a SpeedVac Concentrator (Thermo Electron 117 

Corporation, Milford, MA), resuspended in 100 μL of 0.1% formic acid and further cleaned up 118 

by reverse phase chromatography using C18 column (Harvard, Southborough, MA). The final 119 

volume was reduced to 10μL by vacuum centrifugation and addition of 0.1% formic acid.  120 

Mass-spectrometry 121 

Online reverse phase nanoflow capillary liquid chromatography (nano-LC, Dionex Ultimate 122 

3000 series HPLC system) coupled to electrospray injection (ESI) tandem mass spectrometer 123 

(Thermo-Finnegan LTQ Orbitrap Velos) was used to separate and analyze tryptic peptides. 124 

Peptides were eluted on nano-LC with 90 min gradients (6 to 73% acetonitrile in 0.5% formic 125 

acid with a flow rate of 300 nL/min). Data dependent acquisition was performed using Xcalibur 126 

software (version2.0.6, Thermo Scientific) in positive ion mode with a resolution of 60 000 at 127 

m/z range of 325.0−1800.0, and using 35% normalized collision energy. Up to the five most 128 

intensive multiple charged ions were sequentially isolated, fragmented and further analyzed. 129 

Raw LC-MS/MS data were processed using Mascot version 2.2.0 (Matrix Science, Boston, 130 
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MA). The sequence database was searched with a fragment ion mass tolerance of 0.8Da and a 131 

parent ion tolerance of 15 ppm. The raw data were searched against the human International 132 

Protein Index database (74,017 protein sequences; version 3.42) with fixed modification 133 

carbamidomethyl (C) and variable modification oxidation (M), and 1 allowed missed cleavage. 134 

Peptides were filtered at a significance threshold of P < 0.05 (Mascot). Raw mass spectrometry 135 

chromatograms were processed and analyzed using Xcalibur Qual Browser software (Thermo 136 

Fisher Scientific Inc. Version 2.0.7). Scaffold (Proteome Software Inc., Portland, OR, USA; 137 

version 3.00.04) was used to analyze LC-MS/MS-based peptide and protein identifications. 138 

Peptide identifications were accepted if they could be established at greater than 95.0% 139 

probability as specified by the Peptide Prophet algorithm 16. Protein identifications were 140 

accepted if they could be established at greater than 99.0% probability and contained at least 2 141 

identified peptides. Proteins that contained similar peptides and could not be differentiated 142 

based on MS/MS analysis alone were grouped to satisfy the principles of parsimony. Protein 143 

quantitation for the expression proteomics study was performed using ion peak intensity 144 

measurements in the Rosetta Elucidator software (version 3.3.0.1; Rosetta Inpharmatics LLC, 145 

Seattle, WA). The PeakTeller algorithm within Rosetta Elucidator was used for peak detection, 146 

extraction and normalization of peptide and protein abundance. Protein quantitation of AP-MS 147 

experiments was performed using Scaffold (Proteome Software Inc., Portland, OR, USA; 148 

version 3.00.04) to compute normalized spectral counts for each protein. Proteins were 149 

excluded from AP-MS results if frequency across control experiments from HCT116 cells was 150 

> 0.33 15. Mass spectrometry data are available via the PRIDE repository with dataset 151 

identifiers PXD006053 (Expression proteome) and PXD006051 (Interaction proteome). 152 

RNA-Seq Analysis 153 
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The quantity of total RNA in each sample was collected using Qubit (Invitrogen) and 154 

libraries prepared using Illumina TruSeq Total RNA v2 kit with Ribo Zero Gold for rRNA 155 

removal. The Ribo-Zero kit was used to remove ribosomal RNA (rRNA) from 1 µg of Total 156 

RNA using a hybridization/bead capture procedure that selectively binds rRNA species using 157 

biotinylated capture probes. The resulting purified mRNA was used as input for the Illumina 158 

TruSeq kit in which libraries are tagged with unique adapter-indexes. Final libraries were 159 

validated using the Agilent High Sensitivity DNA kit (Agilent), quantified via Qubit, and 160 

diluted and denatured per Illumina's standard protocol. High-throughput sequencing was 161 

carried out using the Illumina HiScan SQ instrument, 100 cycle paired-end run, with one 162 

sample loaded per lane, yielding on average > 100 million reads per sample. Reads were 163 

mapped to human genome hg19 using TopHat2 version 2.1.0 17 with default settings and reads 164 

summarized by gene feature using htseq-count . Differential expression analysis was performed 165 

and p-values adjusted for fdr were computed with DeSeq. Data are available from GEO, 166 

accession: GSE95670. 167 

 168 

Functional and network analyses 169 

The Combined Abundance Score as previously described 19 was computed using all 170 

significant (p<0.05) proteins from the 3 datasets, providing a single, normalized log fold 171 

change value for each protein. (Selected additional protein were included where the p-value 172 

was significant at p<0.1, since it was observed for several proteins that they were differentially 173 

abundant across more than one dataset – e.g. CUL1).  Functional networks were constructed 174 

from the Pathway Studio database (Elsevier), version 9.0. Gene/Protein identifiers were 175 

imported and networks created by selecting all direct edges between the imported nodes 176 

Page 9 of 40

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9 

 

(Physical Interactions, Expression Regulation and Protein Modification relations. Network 177 

diagrams were created in Cytoscape (v3.3.0). Edge thickness between two functional groups 178 

was calculated by dividing the number of interactions between the groups by the size of the 179 

groups (number of genes/proteins) creating a normalized edge weight. Gene Ontology term 180 

enrichment was computed in Pathway Studio (Ariadne Genomics). The significantly 181 

differential sets of mutant and wild-type genes from the RNA-Seq analysis were analyzed using 182 

Enrichr 20 and o-POSSUM-3 21. 183 

 184 

Experimental Design and Statistical Rationale 185 

Affinity-Purification Mass-Spectrometry (AP-MS) were performed on two independently 186 

derived clones of the HCT116-CTNNB1-/Δ45 and HCT116-CTNNB1WT/-cell-lines (i.e. 4 187 

different cell-lines) and then replicated twice. The use of independent clones allowed us to 188 

capture the biological variation in the expression of CTNNB1/β-catenin. We observed that AP-189 

MS proteomics experiments produced very similar results between these clones 190 

(Supplementary Figure 1). Expression Proteomics experiments were performed on sub-cellular 191 

fractionated mutant and wild-type cell cultures. Each combination of cell-type/sub-cellular 192 

fraction (mutant/nuclear, mutant/cytosol, wild-type/nuclear, wild-type/cytosol) was replicated 193 

twice, and we found high correlation within these groups (Supplementary Figure 3). RNA-Seq 194 

experiments were performed in triplicate (3 mutant, 3 wild-type), yielding significant 195 

differentially regulated transcripts at low fdr. For each dataset, the log2 ratio of mutant/wild-196 

type abundance was computed and Student’s T-test was used to compute p-values with 197 

adjustment for false discovery rate. 198 

 199 
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RESULTS 200 

 201 

Experimental overview 202 

The experimental strategy of this study is to use multiple, complementary ‘omics approaches 203 

to identify perturbed molecular networks as shown in Figure 1. We used a previously described 204 

model derived from HCT116 colorectal cancer cells (heterozygous for stabilizing Δ45 mutation 205 

of β-catenin) in which either the mutant or wild-type allele has been disrupted 14 thus creating 206 

two cell-lines expressing either mutant β-catenin (CTNNB1-/Δ45 ) or wild-type β-catenin 207 

(CTNNB1WT/- ). To characterize mutant and wild-type β-catenin protein-protein interactions 208 

we used anti-β-catenin Affinity-Purification Mass-Spectrometry (LC-MS/MS AP-MS). We 209 

also analyzed nuclear and cytosolic fractions to increase overall coverage using label-free 210 

protein profiling (LC-MS/MS) to identify differentially abundant proteins in the mutant and 211 

wild-type cells (2 replicates of each cell-type/fraction combination – a total of 8 samples). 212 

Finally, we used RNA-Seq (Illumina HiSeq) to compare the transcriptomes of mutant and wild-213 

type β-catenin cells. Three replicates of each of mutant and wild-type were analyzed and genes 214 

with differential gene-expression profiles identified. 215 

 216 

AP-MS analysis identifies distinct mutant and wild-type β-catenin protein interactions   217 

We analyzed the mutant and wild-type β-catenin protein interactions using AP-MS 218 

experiments as shown in Figure 2. AP-MS analyses were performed using two distinct clones 219 

each for mutant and wild-type cells (a total of 4 replicates of mutant and 4 replicates of wild-220 

type cells), and we observed high correlation of protein abundance in AP-MS analyses between 221 

replicates and clones (Supplementary Figure 1). AP-MS experiments yielded 67 proteins 222 
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differentially associated with mutant or wild-type β-catenin (p<0.05), and we observed distinct 223 

profiles of proteins from the mutant and wild-type AP-MS analyses that are consistent with the 224 

differential sub-cellular localization of mutant and wild-type β-catenin (Supplementary Table 225 

1). Figure 2A shows a heatmap of proteins significant proteins identified in AP-MS 226 

experiments and Figure 2B a volcano plot of log2 ratios of mutant and wild-type proteins. We 227 

found that mutant protein interactions were highly enriched for nuclear proteins and for 228 

proteins functioning in regulation of gene-expression, whereas wild-type proteins were 229 

significantly enriched for membrane-associated proteins (see Figure 3).  To investigate in more 230 

detail, we constructed a protein network of all known physical interactions between the 231 

identified set of proteins. The largest connected component of this network is shown in Figure 232 

2C with known mutant-enriched (red) and wild-type-enriched (green) β-catenin interaction 233 

partners identified in the analysis. Higher interconnectivity between pairs of proteins identified 234 

in the mutant cells was observed than between proteins identified in the wild-type cells (and 235 

this is not due to differences in the overall connectivity of mutant- and wild-type-enriched 236 

proteins, as there is no significant difference between the degree distributions of the mutant 237 

and wild-type proteins: two sample t-test; p-value > 0.3). These findings and the distinct sets 238 

of enriched functional categories indicate that β-catenin in the mutant and wild-type cells 239 

functions in distinct protein networks, in concordance with distinct sub-cellular localizations 240 

of mutant and wild-type β-catenin.  241 

 242 

Comparison of functional trends between mutant and wild-type cells 243 

We next analyzed gene and protein expression in the mutant and wild-type cells using RNA-244 

Seq and LC-MS/MS respectively. RNA-Seq analysis identified transcripts from 18239 genes 245 
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with 1085 showing significantly differential expression in mutant cells (p<0.05; log-fold-246 

change >2) and 735 showing significantly differential expression in wild-type cells (FPKM 247 

distribution plots, Supplementary Figure 2). To increase protein coverage, we performed 248 

protein expression profiling in conjunction with sub-cellular fractionation of cell lysates. This 249 

analysis yielded 640 proteins identified as significantly differentially expressed (p<0.05) 250 

between mutant and wild-type cells in either cytosolic or nuclear fractions. We compared the 251 

functional trends in the interaction proteome, expression proteome and transcriptome datasets. 252 

For each dataset, Gene Ontology (GO) terms significantly (p<0.05) enriched in mutant and/or 253 

wild-type samples were identified and then compared across the datasets. Overlap of 254 

significantly differential genes/proteins between the datasets was limited (57 genes/proteins 255 

were identified in more than one dataset from a combined total of 2465 significantly 256 

differentially regulated genes or proteins). However, significant numbers of shared enriched 257 

GO terms were identified across all 3 datasets. The number of shared GO terms is summarized 258 

in Figure 3A, and we observed much greater concordance between mutant-enriched GO terms 259 

between datasets and between wild-type-enriched GO terms, indicating a concerted cellular 260 

response at proteomic and transcriptomic levels to β-catenin mutation (Figure 3A). Selected 261 

significantly enriched GO terms in either mutant or wild-type cells are shown in Figure 3B, 262 

and these reflect the findings for the AP-MS dataset, whereby mutant transcriptome and 263 

proteome datasets are enriched for nuclear and gene-expression associated functions, whereas 264 

the wild-type transcriptome and proteome are enriched for membrane and cytoskeleton 265 

associated functions. In addition, comparison of the differentially regulated RNA-Seq gene sets 266 

against two curated repositories, TSGene 22 and the Tumor Associated Gene database 23, 267 

showed significant enrichment (p=0.00182; Fisher’s Exact) of tumor suppressors and 268 
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oncogenes (p=0.02979; Fisher’s Exact), indicating that these cancer-relevant functional classes 269 

are frequently differentially regulated in the mutant/wild-type β-catenin model.  270 

 271 

As expected, the GO analysis showed that canonical Wnt signaling was highly enriched in 272 

the mutant cells. We therefore analyzed which direct canonical Wnt signaling targets (taken 273 

from the Wnt homepage http://wnt.stanford.edu), bound by TCF transcription factors were 274 

differentially expressed between mutant and wild-type cells (Supplementary Table 2), and 275 

found that many of the known Wnt targets are differentially regulated in our data, indicating a 276 

substantial direct response to β-catenin/TCF. We noted that two classical targets of canonical 277 

Wnt signaling CCND1 (cyclin D1) and MYC (c-myc) were not significantly differential 278 

between the mutant and wild-type cells. The same finding was reported in the initial analysis 279 

of the same cell-lines, and it was concluded that although these genes have been observed as 280 

direct transcriptional targets of β-catenin/TCF in many systems 24, they are not physiological 281 

targets in these cell-lines 14. We next compared our transcriptome dataset to two previously 282 

published CTNNB1 siRNA analyses in colorectal cancer cells 25,26. This previous study 283 

identified a set of 335 genes for which a consistent positive and negative trend was seen across 284 

siRNA experiments in 2 colorectal cancer cell-lines. Comparing our transcriptome dataset to 285 

this set showed a significant overlap and trend correlation (p=0.0245; Fisher’s Exact Test), in 286 

particular in the correlation between genes whose expression is repressed in response to 287 

CTNNB1 siRNA and genes up-regulated in mutant CTNNB1 cells (Supplementary Table 3), 288 

indicating that different β-catenin perturbation models (siRNA, knock-out) have similar 289 

transcriptional outcomes.  290 

 291 
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To further understand the transcriptional regulatory programs in the mutant or wild-type cells, 292 

we analyzed enriched transcription factor binding sites in the mutant or wild-type gene sets 293 

(Figure 3C). The β-catenin binding partner Lef1, a TCF transcription factor is amongst the 294 

most highly represented predictions in the mutant cells. We also noted that the mutant and 295 

wild-type gene sets exhibited enrichment of different classes of transcription factor (Figure 296 

3C).The wild-type set is highly enriched in zinc-finger transcription factor binding sites (6/10 297 

of the top 10 most enriched TFs are of this type). Multiple Kruppel-like factor (KLF) 298 

transcription factors are represented in this set, and this class of transcription factor have been 299 

shown to function as tumor suppressors in colorectal cancer 27–29. KLF4 has been shown to 300 

interact with Beta-catenin and inhibit Wnt signaling in the colon 30,31. TCF3 is also identified 301 

as an enriched transcription factor in the wild-type cells. Recent analysis showed that TCF3 302 

binds the MYC Wnt-responsive element to inhibit MYC expression by preventing binding of 303 

β-catenin/TCF4 at the same promoter element 32.  304 

 305 

An integrated proteomic and transcriptomic network  306 

To construct an integrated network combing the transcriptome, expression proteome and 307 

interaction proteome data, a combined abundance score 19 was computed for each significant 308 

node (p-value <0.05) across the three datasets. All direct relations (physical interaction, protein 309 

modification and expression regulation) between the 2623 gene/protein entities in the 310 

combined set were used to construct an integrated network using the Pathways Studio database 311 

(we use hereafter the terminology ‘edge’ to refer to protein-protein relations and ‘node’ to refer 312 

to proteins themselves). To analyze how each of the omics datasets contributes to this 313 

integrated network, we computed several network statistics (Figure 4). We observed that the 314 
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average degree of nodes from each of the three datasets differ within the integrated network 315 

(interaction proteome=5.95; expression proteome=7.62; transcriptome=3.98) and we therefore 316 

plotted the degree distributions of nodes from each dataset as shown (Figure 4B). Nodes within 317 

the transcriptome dataset have a distinctly lower average degree, attributed to the large fraction 318 

of genes/proteins from this dataset with few described interactions in the database. The 319 

significant enrichment of genes encoding transcription factors present in the significantly 320 

differential transcriptome dataset contributes towards this difference since for many of these 321 

genes, relatively few interactions have been described. This finding prompted us to investigate 322 

whether the types of edges represented in the 3 datasets differed (Figure 4C). We observe 323 

substantial differences in edges annotated as ‘Binding’ in the Pathway Studio database and 324 

those annotated as regulating ‘Expression’, with greater numbers of Binding edges in the 325 

interaction and expression proteome datasets and substantially more Expression edges in the 326 

transcriptome dataset, indicating the complementarity these different omics datatypes in 327 

identifying different types of proteins and edges. 328 

 329 

Functional module identification and validation 330 

To focus on specific modules within the integrated network, we curated sub-networks 331 

associated with biological pathways or processes that were identified as significantly different 332 

between mutant and wild-type cells in the gene set enrichment analysis. Figure 5A shows 333 

several selected modules within the integrated network with β-catenin-associated functions. 334 

The abundance of proteins indicative of epithelial-mesenchymal transition (EMT) were 335 

strongly enriched in the mutant cells. We noted that epithelial markers such as claudins and E-336 

cadherin were differentially expressed in the wild-type cells 33, whereas mesenchymal markers 337 
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such as the cytoskeletal protein Vimentin (VIM) are strongly enriched in the mutant cells (VIM 338 

was differentially expressed in both the expression proteome and transcriptome datasets).  In 339 

addition, several proteins with functions in tissue remodelling such as matrix metalloprotease 340 

(MMP13) and laminins (LAMB3, LAMC2) which form the basement membrane required for 341 

attachment and organization of epithelial cells were identified.  342 

 343 

Wild-type cells preferentially expressed proteins implicated in non-canonical Wnt signaling. 344 

In addition to non-canonical Wnt ligands WNT5A and WNT7A, we found that the Dis-345 

shevelled (Dvl) -interacting proteins, DACT3 and DAAM1 were more abundant in the wild-346 

type cells. DACT3 is a member of a family of proteins known to antagonize canonical Wnt/β-347 

catenin signaling, suggesting that the process of mutant β-catenin-driven oncogenesis involves 348 

repression of antagonists of canonical signalling. Whilst most components of TGF-349 

Beta/SMAD and BMP signaling were higher in mutant cells (module 7), we noted that 350 

LEMD3, a known antagonist of TGF-Beta/SMAD signaling was significantly higher in wild-351 

type cells. 352 

  353 

Although integration of transcriptomic and proteomic allowed for increased coverage and 354 

representation within functional modules as shown in Figure 5A, we also observed exclusively 355 

proteomic modules. Skp-Cullin-Fbox (SCF) protein complexes are ubiquitin ligase complexes 356 

that regulate ubiquitination of many proteins including β-catenin, and these were uniformly 357 

more abundant in mutant cells (Figure 5B). This module was almost uniformly significantly 358 

differentially regulated in the proteomic datasets, but not in the transcriptomic dataset, 359 
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indicating, in concordance with other findings, that these complexes are mainly regulated at 360 

the post-translational level, through dynamic re-arrangement of protein components 34.  361 

 362 

We selected two modules for further validation (Figures 5C and 5D). The primary maintenance 363 

DNA methyltransferase (DNMT1) is significantly more abundant in the expression proteome 364 

and transcriptome of mutant cells. We analyzed the expression of Dnmt1 and two direct 365 

interaction partners of Dnmt1, USP7/HAUSP and UHRF1 and all of these proteins were found 366 

to be both nuclear specific and enriched in mutant cells (Figure 5C). We previously showed 367 

that an interaction between β-catenin and the primary DNA methyltransferase, Dnmt1 368 

stabilizes both proteins in the nucleus of cancer cells 35. We previously showed that USP7 369 

regulates the stability of Dnmt1 in cancer cells 36, and UHRF1 has been shown to also 370 

participate in the regulation of Dnmt1 stability via ubiquitination 37. These latest results indicate 371 

the coordinated up-regulation of Dnmt1-USP7-UHRF1 complexes in mutant cells, linking β-372 

catenin-driven oncogenesis to altered DNA methytransferase activity.  373 

 374 

 375 

We also noted that one of the most enriched categories in the gene enrichment analysis for WT 376 

cells were proteins annotated as nucleolar (WT expression proteome dataset, p-value=4x10-11), 377 

and with the related functional annotations of rRNA processing and ribosome biogenesis. We 378 

found that many of these proteins formed a highly-connected module within the larger 379 

integrated network (Figure 5D). Western analysis was used to validate the expression of several 380 

proteins that were either significantly differentially abundant in the omics datasets (shaded 381 

green) or predicted based upon their connections to other proteins in the module (shaded gray). 382 
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In addition to their role in ribosome function, several of these proteins have known tumor-383 

suppressor functions. The well-characterized tumor suppressor CDKN2A (P19ARF) is a 384 

prominent member of this module and functions to regulate the levels of p53 through its 385 

sequestration of MDM2 (a negative regulator of p53) 38 in the nucleolus (MDM2 was not 386 

identified in the proteomic experiments, and not significantly differentially expressed in the 387 

transcriptomic experiments). Another protein, nucleostemin (GNL3) that has also been linked 388 

to MDM2-p53 regulation 39 was differentially more abundant in wild-type cells. We previously 389 

identified GNL3 as an interaction partner of LYAR 40, and therefore analyzed the expression 390 

of this and several other known nucleolar proteins linked to LYAR as shown in Figure 4D, 391 

showing their greater abundance in wild-type cells.  392 

 393 

 394 

 395 

 396 

DISCUSSION 397 

In this study, we performed the first multi-proteomic and transcriptomic analysis of the 398 

molecular response to stabilization of β-catenin in colorectal cancer cells. We used a cell model 399 

of oncogenic β-catenin activity to compare cells expressing a pathogenically and clinically 400 

important β-catenin mutation that stabilizes the protein with cells expressing wild-type β-401 

catenin. Global analysis of functional trends showed that mutant cells and mutant β-catenin 402 

interactions were enriched in mutant cells in line with the known importance of nuclear 403 

accumulation of β-catenin for its pathogenic activity. This is in line with the findings presented 404 

in the original publication describing these cells showing that β-catenin in the mutant cells was 405 
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more abundant in the nucleus, and bound less to E-cadherin than β-catenin in the wild-type 406 

cells, even though the overall abundance of β-catenin in the two cell-lines was similar 4 407 

 408 

Using integrated proteomic and transcriptomic analyses allowed us to reveal novel functional 409 

modules associated with β-catenin-driven oncogenesis. Significantly differential expression of 410 

multiple Wnt ligand genes was observed between mutant and wild-type cells. WNT2, WNT5A 411 

and WNT7A are significantly higher in the wild-type cells whereas WNT16 is higher in mutant 412 

cells. Wnt5a is the best studied ligand of this group and is associated with β-catenin-413 

independent or non-canonical Wnt signalling 41. Interestingly, WNT5A can antagonize β-414 

catenin signalling 42, exhibits tumor suppressive activity in colorectal cancer 43 and is associated 415 

with sub-groups of colorectal cancer patients with good prognosis  44, although WNT5A’s 416 

tumor suppressor properties appear to be limited to certain tumor types  41. We also showed 417 

that the expression of DNA methyltransferase I (Dnmt1) and several key Dnmt1 interaction 418 

partners are significantly elevated in mutant β-catenin cells, consistent with our previous report 419 

that β-catenin and Dnmt1 proteins engage in a mutually stabilizing interaction in the nuclei of 420 

cancer cells 35. In addition, USP7 which regulates the stability of Dnmt1 has also recently been 421 

shown to stabilize β-catenin in colorectal cancer cells expressing APC mutations 45, further 422 

linking the regulation of Dnmt1 to β-catenin-driven oncogenesis. Conversely, we identified a 423 

module of nucleolar-enriched proteins that were significantly more abundant in wild-type β-424 

catenin cells, including the tumor suppressor CDKN2A. Expression of CDKN2A is frequently 425 

silenced in colorectal and other tumors through promoter hyper-methylation 46, suggesting that 426 

alterations of CpG methylation may be induced via oncogenic β-catenin and the greater 427 
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abundance of DNMT1 and its associated regulators that we observed in cells with mutant β-428 

catenin. 429 

 430 

Our study showed how a multi-omics approach combining different layers of proteomic and 431 

transcriptomic information can reveal more comprehensively how oncoproteins transform 432 

molecular networks in cancer cells. Recent studies have shown that in addition to mediation of 433 

a transcriptional response, activation of canonical Wnt signaling also acts in-dependently of 434 

transcriptional programs to alter protein stabilization 47, necessitating the characterization of 435 

oncogenic-mediated effects at proteomic as well as transcriptomic levels. We have adopted the 436 

approach of integrating multi-omics data with existing network information 48 to identify 437 

modules within the cellular network that may be perturbed across the multiple layers of 438 

transcriptome, expression proteome or interaction proteome. We observed concerted cellular 439 

responses in terms of pathways and processes across these multiple layers. We also showed 440 

that these different ‘layers’ of information contribute differentially to the overall analysis of β-441 

catenin-driven oncogenesis – by for example contributing different types of protein-protein 442 

relationship (edges) and identifying proteins with differing network features. In summary, our 443 

study reveals both novel biology associated with β-catenin-driven oncogenesis and also 444 

illustrates the greater insight that can be gained from applying a systematic multi-omics 445 

approach. 446 
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 447 

  448 

Figure 1 Integrated multi-omics analysis of β-catenin signalling networks Experimental 449 

design and data acquisition of interactome (AP-MS), expression-proteome (LC-MS/MS) and 450 

transcriptome (RNA-Seq) from colorectal cancer cell lines HCT116-CTNNB1-/Δ45 (mutant) 451 

and HCT116-CTNNB1WT/- (wild-type) expressing endogenous mutant or wild-type 452 

CTNNB1/β-catenin.  453 

  454 
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 455 
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Figure 2 Affinity-Purification Mass-Spectrometry (AP-MS) analysis of mutant and wild-457 

type β-catenin protein interactions(A) Heatmap of protein spectral counts across 4 replicate 458 

HCT116-CTNNB1-/Δ45 (mutant) and 4 HCT116-CTNNB1WT/-  (wild-type) AP-MS samples. 459 
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Selected profiles of proteins associated with either mutant AP-MS or wild-type AP-MS 460 

samples are shown.  461 

(B) Volcano plot indicating log2 ratio of mutant/wild-type spectral counts from single AP-MS 462 

study, with significantly (p<0.05) proteins indicated.  463 

(C) Network diagram of β-catenin (CTNNB1) interaction partners identified in the study. The 464 

largest connected component sub-network in the Pathway Studio analysis is shown. Proteins 465 

are shaded according to their mutant/wild-type spectral count ratio (red proteins are highly 466 

enriched in mutant AP-MS samples, green shaded proteins are highly enriched in wild-type 467 

AP-MS samples). 468 
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Figure 3 Functional analysis of β-catenin-associated proteomic and transcriptomic 471 

profiles 472 

 (A) Bubble plot indicating the size of the intersections of Gene Ontology terms between 473 

interaction, expression proteome and transcriptomic datasets. The numbers indicate shared GO 474 

terms for each comparison, for GO terms significantly (p<0.05) enriched in mutant or wild-475 

type samples. p-values are Fisher’s Exact Test indicating the significance of the observed 476 

overlap of GO terms. 477 

(B) Enriched Gene Ontology (GO) terms in mutant and wild-type cells across each dataset. The 478 

most significantly differential GO terms were identified for each dataset by comparing the p-479 

values for each term between mutant and wild-type gene-sets.  480 

(C) Enriched transcription factors in the significantly (p<0.05) differential mutant or wild-type 481 

gene sets from RNA-Seq analysis. Enrichr analysis was used to identify the most enriched 482 

transcription factors in the significantly differential (p<0.05) RNA-Seq datasets. The top 10 483 

enriched transcription factors are shown for mutant and wild-type (panel 1 and 2). Ranked 484 

transcription factor classes for the mutant and wild-type RNA-Seq significantly differential 485 

datasets showing distinct classes of transcription factors in each cell-type.  486 

 487 
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Figure 4 Network properties of proteomic and transcriptomic datasets  490 

(A) Summary of network properties from the integrated network constructed by integrating all 491 

3 datasets with known protein-protein interactions. The table indicates the numbers of nodes 492 

(protein/genes) and edges (relations between proteins) from each dataset integrated into the 493 

combined network. 494 

(B) Log-log plot of the degree distributions for nodes from each dataset (Number of 495 

connections for protein nodes typically show interaction proteome > expression proteome > 496 

transcriptome).  497 

(C) Analysis of interaction (edge) types for each dataset indicate significant differences of 498 

functional type of edges contributed to the integrated network. 499 
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Figure 5 Integrated proteomic and transcriptomic functional modules.  503 

(A) Selected functional modules from the integrated network. Edge thickness represents the 504 

overall connectivity between modules (Normalized edge weights calculated as the total number 505 

of edges divided by the number of genes/proteins in each module). Node (gene/protein) color 506 

intensity indicates the combined abundance score (red = mutant; green = wild-type). 507 

(B) SCF (Skp-Cullin-F-box) associated protein network, showing proteins significantly (** 508 

p<0.05; * p<0.1) abundant in interaction and expression proteome datasets.  509 

(C) DNA methyltransferase I (Dnmt1) associated protein network. Protein nodes marked with 510 

an asterisk were also tested by immunoblotting as shown. Dnmt1, USP7 and β-catenin were 511 

tested using immunoblotting on whole cell lysates from mutant and wild-type cells and 512 

additional related interaction partners (UHRF1, L3MBTL3) analyzed by immunoblotting of 513 

nuclear and cytosolic sub-cellular fractions from mutant and wild-type cells. 514 

 (D) Western analysis of ribosome biogenesis associated protein network in sub-cellular 515 

fractionated samples. Protein nodes marked with asterisk were also tested by immunoblotting 516 

as shown in nuclear and cytosolic fractions from mutant and wild-type cells as in Figure 5C. 517 

  518 
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 519 

 520 

Supplementary Figure 1 521 

Protein abundance (log spectral count values) scatter plots and correlations for AP-MS analyses 522 

of separate mutant and wild-type cell-line clones. Plots show proteins present in both compared 523 

samples with proteins with high frequency in control samples excluded (upper left panel N=109 524 

proteins; upper right panel N=105 proteins; lower left panel N=151 proteins; lower right panel 525 

N=151 proteins). 526 

  527 
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 528 

 529 

 530 

Supplementary Figure 2 531 

Correlation (left figure) and distribution (right) of Fragments Per Kilobase of exon per Million 532 

reads (FPKM) values for mutant and wild-type RNA-Seq samples. 533 

  534 
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Supplementary Figure 3 537 

Exemplar protein intensity scatter plots (n=3272 proteins) of mutant and wild-type nuclear and 538 

cytosolic expression profiling (A) Mutant nuclear vs Mutant nuclear (biological replicate), (B) 539 

Mutant cytosolic vs Mutant cytosolic (biological replicate), (C) Mutant nuclear vs wild-type 540 

nuclear and (D) Mutant nuclear vs Mutant cytosolic. 541 

(E) Clustered heat map of protein abundance from expression proteome analysis (LC-MS/MS) 542 

experiments from mutant (mut) and wild-type (WT) cytosolic or nuclear fractions. 543 

Supplementary Table 4a Peptide list from expression proteomics experiments 544 

Supplementary Table 4b Peptide list from AP-MS proteomics experiments 545 

Supplementary Table 4c Protein and protein group list from expression proteomics 546 

experiments 547 

Supplementary Table 4d Protein and protein group list from ap-ms proteomics experiments 548 

Supplementary Table 5 Protein sequence database cross-referencing table for IPI human 549 
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