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Multi-proteomic and transcriptomic analysis of

oncogenic -catenin molecular networks

Rob M. Ewing'* Jing Song’, Giridharan Gokulrangan®, Sheldon Bai’, Emily H. Bowler!,

Rachel Bolton!, Paul Skipp!, Yihua Wang', Zhenghe Wang’.

1. School of Biological Sciences, University of Southampton, Southampton, UK

2. School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA

ABSTRACT

Dys-regulation of Wnt signalling is a frequent occurrence in many different cancers. Oncogenic
mutations of CTNNB1/B-catenin, the key nuclear effector of canonical Wnt signalling, lead to
accumulation and stabilization of B-catenin protein with diverse effects in cancer cells.
Although the transcriptional response to Wnt/B-catenin signaling activation has been widely
studied, an integrated understanding of the effects of oncogenic B-catenin on molecular

networks is lacking. We used Affinity-Purification Mass-Spectrometry (AP-MS), label-free
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LC-MS/MS and RNA-Seq to compare protein-protein interactions, protein expression and
gene-expression in colorectal cancer cells expressing mutant/oncogenic or wild-type -catenin.
We generate an integrated molecular network and use it to identify novel protein modules that
are associated with mutant or wild-type B-catenin. We identify a DNA methyltransferase I
(DNMTT) associated sub-network that is enriched in cells with mutant B-catenin and a sub-
network enriched in wild-type cells associated with the CDKN2A tumor suppressor linking
these processes to transformation of colorectal cancer cells through oncogenic B-catenin
signaling. In summary, multi-omics analysis of a defined colorectal cancer cell model provides
for a significantly more comprehensive identification of functional molecular networks

associated with oncogenic -catenin signaling.

INTRODUCTION

Altered activity of the Wnt/ B-catenin signaling is a key driver of tumorigenesis in many
cancers. Stabilizing mutations of B-catenin are an important class of mutations that alter
canonical Wnt signaling and function by blocking phosphorylation of residues that would
normally target the protein for destruction !. Substitution or deletion mutations at S45 of B-
catenin are important clinical mutations in diverse tumors, since this residue acts as a critical
molecular switch for canonical Wnt signaling 2. Elevated B-catenin levels then exert
oncogenic effects through activation of downstream gene-expression programs in concert with

TCF transcription factors 3

. In addition to its role as a transcriptional effector, B-catenin
functions as a component of cell-cell adhesion complexes, although the relative balance

between B-catenin’s different cellular functions is complex *. As expected given its diverse

functions and sub-cellular localizations, B-catenin exhibits a wide range of different protein

2
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interactions, with other structural proteins in adhesion complexes, proteins in the destruction
complex?, and nuclear interactions with transcription and chromatin modification factors ©. In
addition, transcriptional targets of B-catenin/TCF signalling have been defined in many
systems; in cancer cells these include other transcription factors, regulators of the cell-cycle
and components and antagonists of the Wnt signaling pathway (Wnt homepage,

http://wnt.stanford.edu).

Omics analyses of Wnt activation to date have focused on understanding a single molecular
layer of the response to Wnt activation, such as proteomic analyses of selected Wnt pathway
components’® or the proteomic or transcriptomic expression response to Wnt activation %1°.
However, the response to activation of cell signaling pathways occurs at multiple molecular
levels; recent work has shown how activation of the Wnt pathway leads directly to protein
stabilization in addition to the well-studied transcriptional response !'. In addition, although it
is convenient to consider proximal events in cell signalling (i.e. components of the pathway
itself) separately from the response or output of signalling activation (e.g. transcriptional
activation), these are intrinsically linked. Several core protein components of the Wnt signaling
pathway (e.g. Axin, Dkk) are themselves transcriptional targets, directly activated through f3-

catenin/TCF signaling and providing feedback regulation of Wnt signaling activity '>!3

To understand therefore how oncogenic B-catenin alters networks at multiple molecular
levels and how this promotes tumorigenesis, we conducted a multi-omics analysis using
colorectal cancer cells with targeted inactivation of either the mutant (stabilizing A45 mutation)

or wild-type allele of CTNNB1/B-catenin . Affinity-Purification Mass-Spectrometry (AP-
3
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MS) analysis of mutant and wild-type B-catenin cells showed patterns of protein interactions
consistent with nuclear localization of mutant -catenin and membrane-associated wild-type
B-catenin. Integrating AP-MS and expression proteomic profiling, we identified several
enriched protein networks that are preferentially expressed in mutant or wild-type cells
including elevated DNA-methylation linked proteins in mutant cells, and a nucleolar-enriched
tumor suppressor module in wild-type cells. Through comparative analysis of enriched Gene
Ontology categories, we show that there is concerted alteration of pathways and processes at
the proteomic and transcriptomic levels in the mutant and wild-type cells. We show that
interaction proteomics, expression proteomics and transcriptomic datasets contribute
complementary information to the integrated network, and that multi-omics analysis provides
for a more comprehensive delineation of B-catenin associated oncogenesis. In summary, our
multi-omics analysis provides a comprehensive view of how oncogenic B-catenin alters

molecular networks at multiple levels.

MATERIALS AND METHODS
Cell line culture and sample extraction

Colorectal cancer cell lines HCT116-CTNNBI172% and HCT116-CTNNBIW"" were
regularly maintained in McCoy-5A media (Life Technologies, 16600-108, Carlsbad, CA)
containing 10% fetal bovine serum (Life Technologies, 10438-026, Carlsbad, CA) and 1%
streptomycin-penicillin (Life Technologies, 15140-148, Carlsbad, CA) at 37°C in CO2
incubator (5% CO2, 100% H20). Cells were harvested by scraping the cells off plates and then
washed with cold PBS twice for immediate use or storage (-80°C). Harvested cells were lysed

(25mM Tris-HCI, pH7.4, ImM EDTA, 150mM NaCl, 1% NP-40, 50% glycerol, Protease
4
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inhibitor cocktail) by homogenization and incubated on ice for 30 min followed by
centrifugation at 13,000rpm for 30min. The supernatant (soluble fraction) was kept for further
analysis. Proteins were quantified by Bio-Rad protein assay dye (500-0006, Bio-Rad, Hercules,
CA) by measuring the absorbance at 595nm. NE-PER Nuclear and Cytoplasmic Extraction kit
(Pierce) was used to prepare nuclear and cytosolic fractions, which were assessed using anti-

Dnmtl and anti-Gapdh Western blots.

SDS-PAGE & Immunoblotting

Equal amounts (20 pg) of proteins from different samples was loaded on precast 4—12% Bis-
Tris gel (Life Technologies NP-0335, Carlsbad, CA) and subjected to electrophoresis. Gels
were either stained with Coomassie Brilliant Blue (Pierce 20278, Rockford, IL) or transferred
to nitrocellulose membrane (Whatman 10402594, Dassel, Germany). Western blotting was
used to detect the protein with super signal ELISA Pico chemiluminescent substrate. Primary
antibodies used: anti-B-catenin (Cell Signaling Technology 9581, Danvers, MA), anti-Dnmt1
(Cell Signaling Technology 5119, Danvers, MA), anti-UHRF1 (Novus Biologicals
H00029128-M01, Littleton, CO), anti-HDAC1 (Abcam ab7028, Cambridge, MA), anti-PCNA
(Santa Cruz Biotechnology sc-56, Santa Cruz, CA) and anti-a-tubulin (Cell Signaling
Technology, Inc., 2144, Danvers, MA). Loading controls were applied at 1:1000 and secondary
antibodies horseradish peroxidase (HRP)-conjugated anti-mouse (Promega W4011, Madison,
WI) and HRP-conjugated anti-rabbit (Cell Signaling Technology 7074, Danvers, MA) were
added at 1:20,000. Chemi-luminescence detection using SuperSignal* ELISA Pico
Chemiluminescent Substrate (Thermo Scientific PI-37070, Rockford, IL) was applied to all

westerns.
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Proteomic sample preparation

For analysis of the expression proteome, cell extracts were fractionated using the NE-PER
Nuclear and Cytoplasmic Extraction kit (Pierce), each fraction separated using SDS-PAGE and
then fractionated in 2 fractions per sample/lane after Coomassie blue staining prior to tryptic
digestion. Each sample combination (e.g. Mutant/nuclear, Mutant/cytosolic) was replicated
twice. Affinity-purifications from 107 cells were performed as previously described > using
anti-B-catenin (Cell Signaling Technology 9581, Danvers, MA) antibodies. Affinity-
purification experiments were replicated using two independent mutant and two independent
wild-type cell lines, and each sample replicated twice. In-gel tryptic digestion was performed
and combined elution fractions were lyophilized in a SpeedVac Concentrator (Thermo Electron
Corporation, Milford, MA), resuspended in 100 pL of 0.1% formic acid and further cleaned up
by reverse phase chromatography using C18 column (Harvard, Southborough, MA). The final
volume was reduced to 10uL by vacuum centrifugation and addition of 0.1% formic acid.
Mass-spectrometry

Online reverse phase nanoflow capillary liquid chromatography (nano-LC, Dionex Ultimate
3000 series HPLC system) coupled to electrospray injection (ESI) tandem mass spectrometer
(Thermo-Finnegan LTQ Orbitrap Velos) was used to separate and analyze tryptic peptides.
Peptides were eluted on nano-LC with 90 min gradients (6 to 73% acetonitrile in 0.5% formic
acid with a flow rate of 300 nL/min). Data dependent acquisition was performed using Xcalibur
software (version2.0.6, Thermo Scientific) in positive ion mode with a resolution of 60 000 at
m/z range of 325.0—1800.0, and using 35% normalized collision energy. Up to the five most
intensive multiple charged ions were sequentially isolated, fragmented and further analyzed.

Raw LC-MS/MS data were processed using Mascot version 2.2.0 (Matrix Science, Boston,

6
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MA). The sequence database was searched with a fragment ion mass tolerance of 0.8Da and a
parent ion tolerance of 15 ppm. The raw data were searched against the human International
Protein Index database (74,017 protein sequences; version 3.42) with fixed modification
carbamidomethyl (C) and variable modification oxidation (M), and 1 allowed missed cleavage.
Peptides were filtered at a significance threshold of P <0.05 (Mascot). Raw mass spectrometry
chromatograms were processed and analyzed using Xcalibur Qual Browser software (Thermo
Fisher Scientific Inc. Version 2.0.7). Scaffold (Proteome Software Inc., Portland, OR, USA;
version 3.00.04) was used to analyze LC-MS/MS-based peptide and protein identifications.
Peptide identifications were accepted if they could be established at greater than 95.0%
probability as specified by the Peptide Prophet algorithm '®. Protein identifications were
accepted if they could be established at greater than 99.0% probability and contained at least 2
identified peptides. Proteins that contained similar peptides and could not be differentiated
based on MS/MS analysis alone were grouped to satisfy the principles of parsimony. Protein
quantitation for the expression proteomics study was performed using ion peak intensity
measurements in the Rosetta Elucidator software (version 3.3.0.1; Rosetta Inpharmatics LLC,
Seattle, WA). The PeakTeller algorithm within Rosetta Elucidator was used for peak detection,
extraction and normalization of peptide and protein abundance. Protein quantitation of AP-MS
experiments was performed using Scaffold (Proteome Software Inc., Portland, OR, USA;
version 3.00.04) to compute normalized spectral counts for each protein. Proteins were
excluded from AP-MS results if frequency across control experiments from HCT116 cells was
> (.33 15, Mass spectrometry data are available via the PRIDE repository with dataset
identifiers PXD006053 (Expression proteome) and PXD006051 (Interaction proteome).

RNA-Seq Analysis
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The quantity of total RNA in each sample was collected using Qubit (Invitrogen) and
libraries prepared using Illumina TruSeq Total RNA v2 kit with Ribo Zero Gold for rRNA
removal. The Ribo-Zero kit was used to remove ribosomal RNA (rRNA) from 1 pg of Total
RNA using a hybridization/bead capture procedure that selectively binds rRNA species using
biotinylated capture probes. The resulting purified mRNA was used as input for the Illumina
TruSeq kit in which libraries are tagged with unique adapter-indexes. Final libraries were
validated using the Agilent High Sensitivity DNA kit (Agilent), quantified via Qubit, and
diluted and denatured per Illumina's standard protocol. High-throughput sequencing was
carried out using the Illumina HiScan SQ instrument, 100 cycle paired-end run, with one
sample loaded per lane, yielding on average > 100 million reads per sample. Reads were
mapped to human genome hg19 using TopHat2 version 2.1.0 17 with default settings and reads
summarized by gene feature using htseq-count. Differential expression analysis was performed
and p-values adjusted for fdr were computed with DeSeq. Data are available from GEO,

accession: GSE95670.

Functional and network analyses

The Combined Abundance Score as previously described '* was computed using all
significant (p<0.05) proteins from the 3 datasets, providing a single, normalized log fold
change value for each protein. (Selected additional protein were included where the p-value
was significant at p<0.1, since it was observed for several proteins that they were differentially
abundant across more than one dataset — e.g. CUL1). Functional networks were constructed
from the Pathway Studio database (Elsevier), version 9.0. Gene/Protein identifiers were

imported and networks created by selecting all direct edges between the imported nodes

8
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(Physical Interactions, Expression Regulation and Protein Modification relations. Network
diagrams were created in Cytoscape (v3.3.0). Edge thickness between two functional groups
was calculated by dividing the number of interactions between the groups by the size of the
groups (number of genes/proteins) creating a normalized edge weight. Gene Ontology term
enrichment was computed in Pathway Studio (Ariadne Genomics). The significantly
differential sets of mutant and wild-type genes from the RNA-Seq analysis were analyzed using

Enrichr 2° and 0-POSSUM-3 2!,

Experimental Design and Statistical Rationale

Affinity-Purification Mass-Spectrometry (AP-MS) were performed on two independently
derived clones of the HCT116-CTNNBI172% and HCT116-CTNNB1WY"cell-lines (i.e. 4
different cell-lines) and then replicated twice. The use of independent clones allowed us to
capture the biological variation in the expression of CTNNB1/B-catenin. We observed that AP-
MS proteomics experiments produced very similar results between these clones
(Supplementary Figure 1). Expression Proteomics experiments were performed on sub-cellular
fractionated mutant and wild-type cell cultures. Each combination of cell-type/sub-cellular
fraction (mutant/nuclear, mutant/cytosol, wild-type/nuclear, wild-type/cytosol) was replicated
twice, and we found high correlation within these groups (Supplementary Figure 3). RNA-Seq
experiments were performed in triplicate (3 mutant, 3 wild-type), yielding significant
differentially regulated transcripts at low fdr. For each dataset, the log: ratio of mutant/wild-
type abundance was computed and Student’s T-test was used to compute p-values with

adjustment for false discovery rate.
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RESULTS

Experimental overview

The experimental strategy of this study is to use multiple, complementary ‘omics approaches
to identify perturbed molecular networks as shown in Figure 1. We used a previously described
model derived from HCT 116 colorectal cancer cells (heterozygous for stabilizing A45 mutation
of B-catenin) in which either the mutant or wild-type allele has been disrupted ' thus creating
two cell-lines expressing either mutant B-catenin (CTNNB172% ) or wild-type B-catenin
(CTNNBI1YT"). To characterize mutant and wild-type B-catenin protein-protein interactions
we used anti-fB-catenin Affinity-Purification Mass-Spectrometry (LC-MS/MS AP-MS). We
also analyzed nuclear and cytosolic fractions to increase overall coverage using label-free
protein profiling (LC-MS/MS) to identify differentially abundant proteins in the mutant and
wild-type cells (2 replicates of each cell-type/fraction combination — a total of 8 samples).
Finally, we used RNA-Seq (Illumina HiSeq) to compare the transcriptomes of mutant and wild-
type B-catenin cells. Three replicates of each of mutant and wild-type were analyzed and genes

with differential gene-expression profiles identified.

AP-MS analysis identifies distinct mutant and wild-type B-catenin protein interactions

We analyzed the mutant and wild-type B-catenin protein interactions using AP-MS
experiments as shown in Figure 2. AP-MS analyses were performed using two distinct clones
each for mutant and wild-type cells (a total of 4 replicates of mutant and 4 replicates of wild-
type cells), and we observed high correlation of protein abundance in AP-MS analyses between

replicates and clones (Supplementary Figure 1). AP-MS experiments yielded 67 proteins
10
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differentially associated with mutant or wild-type B-catenin (p<0.05), and we observed distinct
profiles of proteins from the mutant and wild-type AP-MS analyses that are consistent with the
differential sub-cellular localization of mutant and wild-type B-catenin (Supplementary Table
1). Figure 2A shows a heatmap of proteins significant proteins identified in AP-MS
experiments and Figure 2B a volcano plot of logs ratios of mutant and wild-type proteins. We
found that mutant protein interactions were highly enriched for nuclear proteins and for
proteins functioning in regulation of gene-expression, whereas wild-type proteins were
significantly enriched for membrane-associated proteins (see Figure 3). To investigate in more
detail, we constructed a protein network of all known physical interactions between the
identified set of proteins. The largest connected component of this network is shown in Figure
2C with known mutant-enriched (red) and wild-type-enriched (green) B-catenin interaction
partners identified in the analysis. Higher interconnectivity between pairs of proteins identified
in the mutant cells was observed than between proteins identified in the wild-type cells (and
this is not due to differences in the overall connectivity of mutant- and wild-type-enriched
proteins, as there is no significant difference between the degree distributions of the mutant
and wild-type proteins: two sample t-test; p-value > 0.3). These findings and the distinct sets
of enriched functional categories indicate that B-catenin in the mutant and wild-type cells
functions in distinct protein networks, in concordance with distinct sub-cellular localizations

of mutant and wild-type B-catenin.

Comparison of functional trends between mutant and wild-type cells
We next analyzed gene and protein expression in the mutant and wild-type cells using RNA-

Seq and LC-MS/MS respectively. RNA-Seq analysis identified transcripts from 18239 genes
11
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with 1085 showing significantly differential expression in mutant cells (p<0.05; log-fold-
change >2) and 735 showing significantly differential expression in wild-type cells (FPKM
distribution plots, Supplementary Figure 2). To increase protein coverage, we performed
protein expression profiling in conjunction with sub-cellular fractionation of cell lysates. This
analysis yielded 640 proteins identified as significantly differentially expressed (p<0.05)
between mutant and wild-type cells in either cytosolic or nuclear fractions. We compared the
functional trends in the interaction proteome, expression proteome and transcriptome datasets.
For each dataset, Gene Ontology (GO) terms significantly (p<0.05) enriched in mutant and/or
wild-type samples were identified and then compared across the datasets. Overlap of
significantly differential genes/proteins between the datasets was limited (57 genes/proteins
were identified in more than one dataset from a combined total of 2465 significantly
differentially regulated genes or proteins). However, significant numbers of shared enriched
GO terms were identified across all 3 datasets. The number of shared GO terms is summarized
in Figure 3A, and we observed much greater concordance between mutant-enriched GO terms
between datasets and between wild-type-enriched GO terms, indicating a concerted cellular
response at proteomic and transcriptomic levels to f-catenin mutation (Figure 3A). Selected
significantly enriched GO terms in either mutant or wild-type cells are shown in Figure 3B,
and these reflect the findings for the AP-MS dataset, whereby mutant transcriptome and
proteome datasets are enriched for nuclear and gene-expression associated functions, whereas
the wild-type transcriptome and proteome are enriched for membrane and cytoskeleton
associated functions. In addition, comparison of the differentially regulated RNA-Seq gene sets

22

against two curated repositories, TSGene > and the Tumor Associated Gene database 2°,

showed significant enrichment (p=0.00182; Fisher’s Exact) of tumor suppressors and

12
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oncogenes (p=0.02979; Fisher’s Exact), indicating that these cancer-relevant functional classes

are frequently differentially regulated in the mutant/wild-type B-catenin model.

As expected, the GO analysis showed that canonical Wnt signaling was highly enriched in
the mutant cells. We therefore analyzed which direct canonical Wnt signaling targets (taken
from the Wnt homepage http://wnt.stanford.edu), bound by TCF transcription factors were
differentially expressed between mutant and wild-type cells (Supplementary Table 2), and
found that many of the known Wnt targets are differentially regulated in our data, indicating a
substantial direct response to -catenin/TCF. We noted that two classical targets of canonical
Wnt signaling CCNDI (cyclin D1) and MYC (c-myc) were not significantly differential
between the mutant and wild-type cells. The same finding was reported in the initial analysis
of the same cell-lines, and it was concluded that although these genes have been observed as
direct transcriptional targets of B-catenin/TCF in many systems 2%, they are not physiological
targets in these cell-lines '*. We next compared our transcriptome dataset to two previously
published CTNNBI siRNA analyses in colorectal cancer cells 2°2°. This previous study
identified a set of 335 genes for which a consistent positive and negative trend was seen across
siRNA experiments in 2 colorectal cancer cell-lines. Comparing our transcriptome dataset to
this set showed a significant overlap and trend correlation (p=0.0245; Fisher’s Exact Test), in
particular in the correlation between genes whose expression is repressed in response to
CTNNBI siRNA and genes up-regulated in mutant CTNNBI cells (Supplementary Table 3),
indicating that different B-catenin perturbation models (siRNA, knock-out) have similar

transcriptional outcomes.
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To further understand the transcriptional regulatory programs in the mutant or wild-type cells,
we analyzed enriched transcription factor binding sites in the mutant or wild-type gene sets
(Figure 3C). The B-catenin binding partner Lefl, a TCF transcription factor is amongst the
most highly represented predictions in the mutant cells. We also noted that the mutant and
wild-type gene sets exhibited enrichment of different classes of transcription factor (Figure
3C).The wild-type set is highly enriched in zinc-finger transcription factor binding sites (6/10
of the top 10 most enriched TFs are of this type). Multiple Kruppel-like factor (KLF)
transcription factors are represented in this set, and this class of transcription factor have been
shown to function as tumor suppressors in colorectal cancer 22, KLF4 has been shown to
interact with Beta-catenin and inhibit Wnt signaling in the colon ***!. TCF3 is also identified
as an enriched transcription factor in the wild-type cells. Recent analysis showed that TCF3
binds the MYC Wnt-responsive element to inhibit MYC expression by preventing binding of

B-catenin/TCF4 at the same promoter element 3.

An integrated proteomic and transcriptomic network

To construct an integrated network combing the transcriptome, expression proteome and
interaction proteome data, a combined abundance score '° was computed for each significant
node (p-value <0.05) across the three datasets. All direct relations (physical interaction, protein
modification and expression regulation) between the 2623 gene/protein entities in the
combined set were used to construct an integrated network using the Pathways Studio database
(we use hereafter the terminology ‘edge’ to refer to protein-protein relations and ‘node’ to refer
to proteins themselves). To analyze how each of the omics datasets contributes to this

integrated network, we computed several network statistics (Figure 4). We observed that the

14
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average degree of nodes from each of the three datasets differ within the integrated network
(interaction proteome=5.95; expression proteome=7.62; transcriptome=3.98) and we therefore
plotted the degree distributions of nodes from each dataset as shown (Figure 4B). Nodes within
the transcriptome dataset have a distinctly lower average degree, attributed to the large fraction
of genes/proteins from this dataset with few described interactions in the database. The
significant enrichment of genes encoding transcription factors present in the significantly
differential transcriptome dataset contributes towards this difference since for many of these
genes, relatively few interactions have been described. This finding prompted us to investigate
whether the types of edges represented in the 3 datasets differed (Figure 4C). We observe
substantial differences in edges annotated as ‘Binding’ in the Pathway Studio database and
those annotated as regulating ‘Expression’, with greater numbers of Binding edges in the
interaction and expression proteome datasets and substantially more Expression edges in the
transcriptome dataset, indicating the complementarity these different omics datatypes in

identifying different types of proteins and edges.

Functional module identification and validation

To focus on specific modules within the integrated network, we curated sub-networks
associated with biological pathways or processes that were identified as significantly different
between mutant and wild-type cells in the gene set enrichment analysis. Figure SA shows
several selected modules within the integrated network with B-catenin-associated functions.
The abundance of proteins indicative of epithelial-mesenchymal transition (EMT) were
strongly enriched in the mutant cells. We noted that epithelial markers such as claudins and E-

cadherin were differentially expressed in the wild-type cells *}, whereas mesenchymal markers
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such as the cytoskeletal protein Vimentin (VIM) are strongly enriched in the mutant cells (VIM
was differentially expressed in both the expression proteome and transcriptome datasets). In
addition, several proteins with functions in tissue remodelling such as matrix metalloprotease
(MMP13) and laminins (LAMB3, LAMC?2) which form the basement membrane required for

attachment and organization of epithelial cells were identified.

Wild-type cells preferentially expressed proteins implicated in non-canonical Wnt signaling.
In addition to non-canonical Wnt ligands WNTS5A and WNT7A, we found that the Dis-
shevelled (Dvl) -interacting proteins, DACT3 and DAAMI1 were more abundant in the wild-
type cells. DACT3 is a member of a family of proteins known to antagonize canonical Wnt/f3-
catenin signaling, suggesting that the process of mutant f-catenin-driven oncogenesis involves
repression of antagonists of canonical signalling. Whilst most components of TGF-
Beta/SMAD and BMP signaling were higher in mutant cells (module 7), we noted that
LEMD3, a known antagonist of TGF-Beta/SMAD signaling was significantly higher in wild-

type cells.

Although integration of transcriptomic and proteomic allowed for increased coverage and
representation within functional modules as shown in Figure SA, we also observed exclusively
proteomic modules. Skp-Cullin-Fbox (SCF) protein complexes are ubiquitin ligase complexes
that regulate ubiquitination of many proteins including pB-catenin, and these were uniformly
more abundant in mutant cells (Figure 5B). This module was almost uniformly significantly

differentially regulated in the proteomic datasets, but not in the transcriptomic dataset,
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indicating, in concordance with other findings, that these complexes are mainly regulated at

the post-translational level, through dynamic re-arrangement of protein components >*.

We selected two modules for further validation (Figures 5C and 5D). The primary maintenance
DNA methyltransferase (DNMT1) is significantly more abundant in the expression proteome
and transcriptome of mutant cells. We analyzed the expression of Dnmtl and two direct
interaction partners of Dnmtl, USP7/HAUSP and UHRFI1 and all of these proteins were found
to be both nuclear specific and enriched in mutant cells (Figure 5C). We previously showed
that an interaction between [-catenin and the primary DNA methyltransferase, Dnmtl
stabilizes both proteins in the nucleus of cancer cells 3°. We previously showed that USP7
regulates the stability of Dnmtl in cancer cells *°, and UHRF1 has been shown to also
participate in the regulation of Dnmt1 stability via ubiquitination*’. These latest results indicate
the coordinated up-regulation of Dnmt1-USP7-UHRF1 complexes in mutant cells, linking j3-

catenin-driven oncogenesis to altered DNA methytransferase activity.

We also noted that one of the most enriched categories in the gene enrichment analysis for WT
cells were proteins annotated as nucleolar (WT expression proteome dataset, p-value=4x107'1),
and with the related functional annotations of rRNA processing and ribosome biogenesis. We
found that many of these proteins formed a highly-connected module within the larger
integrated network (Figure 5D). Western analysis was used to validate the expression of several
proteins that were either significantly differentially abundant in the omics datasets (shaded

green) or predicted based upon their connections to other proteins in the module (shaded gray).
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In addition to their role in ribosome function, several of these proteins have known tumor-
suppressor functions. The well-characterized tumor suppressor CDKN2A (P19ARF) is a
prominent member of this module and functions to regulate the levels of p53 through its
sequestration of MDM2 (a negative regulator of p53) **-in the nucleolus (MDM2 was not
identified in the proteomic experiments, and not significantly differentially expressed in the
transcriptomic experiments). Another protein, nucleostemin (GNL3) that has also been linked
to MDM2-p53 regulation ** was differentially more abundant in wild-type cells. We previously
identified GNL3 as an interaction partner of LYAR *°, and therefore analyzed the expression
of this and several other known nucleolar proteins linked to LYAR as shown in Figure 4D,

showing their greater abundance in wild-type cells.

DISCUSSION

In this study, we performed the first multi-proteomic and transcriptomic analysis of the
molecular response to stabilization of B-catenin in colorectal cancer cells. We used a cell model
of oncogenic B-catenin activity to compare cells expressing a pathogenically and clinically
important B-catenin mutation that stabilizes the protein with cells expressing wild-type B-
catenin. Global analysis of functional trends showed that mutant cells and mutant -catenin
interactions were enriched in mutant cells in line with the known importance of nuclear
accumulation of B-catenin for its pathogenic activity. This is in line with the findings presented

in the original publication describing these cells showing that f-catenin in the mutant cells was
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more abundant in the nucleus, and bound less to E-cadherin than B-catenin in the wild-type

cells, even though the overall abundance of B-catenin in the two cell-lines was similar *

Using integrated proteomic and transcriptomic analyses allowed us to reveal novel functional
modules associated with B-catenin-driven oncogenesis. Significantly differential expression of
multiple Wnt ligand genes was observed between mutant and wild-type cells. WNT2, WNTSA
and WNT7A are significantly higher in the wild-type cells whereas WNT16 is higher in mutant
cells. Wnt5a is the best studied ligand of this group and is associated with P-catenin-
independent or non-canonical Wnt signalling *!. Interestingly, WNT5A can antagonize P-
catenin signalling *?, exhibits tumor suppressive activity in colorectal cancer ** and is associated
with sub-groups of colorectal cancer patients with good prognosis **, although WNT5A’s
tumor suppressor properties appear to be limited to certain tumor types *'. We also showed
that the expression of DNA methyltransferase I (Dnmtl) and several key Dnmtl interaction
partners are significantly elevated in mutant B-catenin cells, consistent with our previous report
that B-catenin and Dnmtl proteins engage in a mutually stabilizing interaction in the nuclei of
cancer cells . In addition, USP7 which regulates the stability of Dnmt1 has also recently been
shown to stabilize B-catenin in colorectal cancer cells expressing APC mutations *°, further
linking the regulation of Dnmt1 to B-catenin-driven oncogenesis. Conversely, we identified a
module of nucleolar-enriched proteins that were significantly more abundant in wild-type -
catenin cells, including the tumor suppressor CDKN2A. Expression of CDKN2A is frequently
silenced in colorectal and other tumors through promoter hyper-methylation *°, suggesting that

alterations of CpG methylation may be induced via oncogenic B-catenin and the greater
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abundance of DNMTT and its associated regulators that we observed in cells with mutant -

catenin.

Our study showed how a multi-omics approach combining different layers of proteomic and
transcriptomic information can reveal more comprehensively how oncoproteins transform
molecular networks in cancer cells. Recent studies have shown that in addition to mediation of
a transcriptional response, activation of canonical Wnt signaling also acts in-dependently of
transcriptional programs to alter protein stabilization *’, necessitating the characterization of
oncogenic-mediated effects at proteomic as well as transcriptomic levels. We have adopted the
approach of integrating multi-omics data with existing network information ** to identify
modules within the cellular network that may be perturbed across the multiple layers of
transcriptome, expression proteome or interaction proteome. We observed concerted cellular
responses in terms of pathways and processes across these multiple layers. We also showed
that these different ‘layers’ of information contribute differentially to the overall analysis of B-
catenin-driven oncogenesis — by for example contributing different types of protein-protein
relationship (edges) and identifying proteins with differing network features. In summary, our
study reveals both novel biology associated with B-catenin-driven oncogenesis and also
illustrates the greater insight that can be gained from applying a systematic multi-omics

approach.
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Figure 1

>
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Figure 1 Integrated multi-omics analysis of B-catenin signalling networks Experimental
design and data acquisition of interactome (AP-MS), expression-proteome (LC-MS/MS) and
transcriptome (RNA-Seq) from colorectal cancer cell lines HCT116-CTNNB172% (mutant)
and HCTI116-CTNNBIWT- (wild-type) expressing endogenous mutant or wild-type

CTNNBI1/B-catenin.
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Figure 2
(cont’d)
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Figure 2 Affinity-Purification Mass-Spectrometry (AP-MS) analysis of mutant and wild-
type p-catenin protein interactions(A) Heatmap of protein spectral counts across 4 replicate

HCT116-CTNNB172% (mutant) and 4 HCT116-CTNNB1%T- (wild-type) AP-MS samples.
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Selected profiles of proteins associated with either mutant AP-MS or wild-type AP-MS

samples are shown.

(B) Volcano plot indicating log> ratio of mutant/wild-type spectral counts from single AP-MS

study, with significantly (p<0.05) proteins indicated.

(C) Network diagram of B-catenin (CTNNBI1) interaction partners identified in the study. The
largest connected component sub-network in the Pathway Studio analysis is shown. Proteins
are shaded according to their mutant/wild-type spectral count ratio (red proteins are highly
enriched in mutant AP-MS samples, green shaded proteins are highly enriched in wild-type

AP-MS samples).
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Figure 3 Functional analysis of B-catenin-associated proteomic and transcriptomic

profiles

(A) Bubble plot indicating the size of the intersections of Gene Ontology terms between
interaction, expression proteome and transcriptomic datasets. The numbers indicate shared GO
terms for each comparison, for GO terms significantly (p<0.05) enriched in mutant or wild-
type samples. p-values are Fisher’s Exact Test indicating the significance of the observed

overlap of GO terms.

(B) Enriched Gene Ontology (GO) terms in mutant and wild-type cells across each dataset. The
most significantly differential GO terms were identified for each dataset by comparing the p-

values for each term between mutant and wild-type gene-sets.

(C) Enriched transcription factors in the significantly (p<0.05) differential mutant or wild-type
gene sets from RNA-Seq analysis. Enrichr analysis was used to identify the most enriched
transcription factors in the significantly differential (p<0.05) RNA-Seq datasets. The top 10
enriched transcription factors are shown for mutant and wild-type (panel 1 and 2). Ranked
transcription factor classes for the mutant and wild-type RNA-Seq significantly differential

datasets showing distinct classes of transcription factors in each cell-type.
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Figure 4 Network properties of proteomic and transcriptomic datasets

(A) Summary of network properties from the integrated network constructed by integrating all
3 datasets with known protein-protein interactions. The table indicates the numbers of nodes
(protein/genes) and edges (relations between proteins) from each dataset integrated into the

combined network.

(B) Log-log plot of the degree distributions for nodes from each dataset (Number of
connections for protein nodes typically show interaction proteome > expression proteome >

transcriptome).

(C) Analysis of interaction (edge) types for each dataset indicate significant differences of

functional type of edges contributed to the integrated network.
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Figure 5
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Figure S Integrated proteomic and transcriptomic functional modules.

(A) Selected functional modules from the integrated network. Edge thickness represents the
overall connectivity between modules (Normalized edge weights calculated as the total number
of edges divided by the number of genes/proteins in each module). Node (gene/protein) color

intensity indicates the combined abundance score (red = mutant; green = wild-type).

(B) SCF (Skp-Cullin-F-box) associated protein network, showing proteins significantly (**

p<0.05; * p<0.1) abundant in interaction and expression proteome datasets.

(C) DNA methyltransferase I (Dnmt1) associated protein network. Protein nodes marked with
an asterisk were also tested by immunoblotting as shown. Dnmt1, USP7 and B-catenin were
tested using immunoblotting on whole cell lysates from mutant and wild-type cells and
additional related interaction partners (UHRF1, L3MBTL3) analyzed by immunoblotting of

nuclear and cytosolic sub-cellular fractions from mutant and wild-type cells.

(D) Western analysis of ribosome biogenesis associated protein network in sub-cellular
fractionated samples. Protein nodes marked with asterisk were also tested by immunoblotting

as shown in nuclear and cytosolic fractions from mutant and wild-type cells as in Figure 5C.
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Supplementary Figure 2
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Supplementary Figure 2

Correlation (left figure) and distribution (right) of Fragments Per Kilobase of exon per Million

log(FPKM)

reads (FPKM) values for mutant and wild-type RNA-Seq samples.
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Supplementary Figure 3

Exemplar protein intensity scatter plots (n=3272 proteins) of mutant and wild-type nuclear and
cytosolic expression profiling (A) Mutant nuclear vs Mutant nuclear (biological replicate), (B)
Mutant cytosolic vs Mutant cytosolic (biological replicate), (C) Mutant nuclear vs wild-type

nuclear and (D) Mutant nuclear vs Mutant cytosolic.

(E) Clustered heat map of protein abundance from expression proteome analysis (LC-MS/MS)

experiments from mutant (mut) and wild-type (WT) cytosolic or nuclear fractions.

Supplementary Table 4a Peptide list from expression proteomics experiments

Supplementary Table 4b Peptide list from AP-MS proteomics experiments

Supplementary Table 4c¢ Protein and protein group list from expression proteomics

experiments

Supplementary Table 4d Protein and protein group list from ap-ms proteomics experiments

Supplementary Table 5 Protein sequence database cross-referencing table for IPI human
v3.72
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