

Article

Multi-proteomic and transcriptomic analysis of oncogenic β -catenin molecular networks

Rob M. Ewing, Jing Song, Giridharan Gokulrangan, Sheldon Bai, Emily Bowler, Rachel Bolton, Paul Skipp, Yihua Wang, and Zhenghe Wang

J. Proteome Res., **Just Accepted Manuscript** • DOI: 10.1021/
acs.jproteome.8b00180 • Publication Date (Web): 10 May 2018

Downloaded from <http://pubs.acs.org> on May 18, 2018

ACS Publications

is published by the American Chemical Society. 1155 Sixteenth Street
N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American
Chemical Society. However, no copyright claim is made to original
U.S. Government works, or works produced by employees of any
Commonwealth realm Crown government in the course of their duties.

Just Accepted

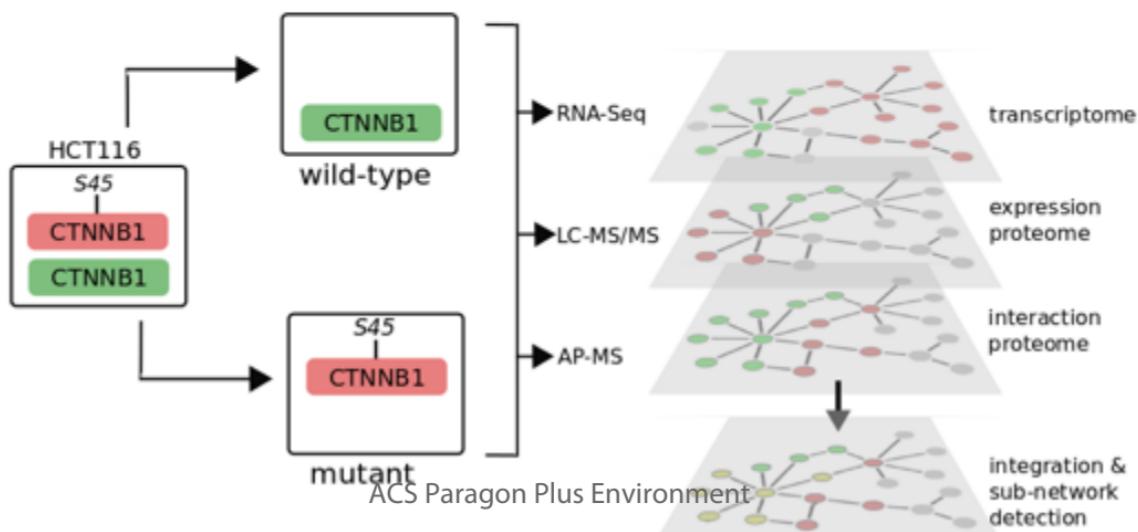
"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After

ACS Publications

is published by the American Chemical Society. 1155 Sixteenth Street
N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American
Chemical Society. However, no copyright claim is made to original
U.S. Government works, or works produced by employees of any
Commonwealth realm Crown government in the course of their duties.

Subscriber access provided by UNIV OF SOUTHAMPTON


a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Publications

is published by the American Chemical Society. 1155 Sixteenth Street
N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American
Chemical Society. However, no copyright claim is made to original
U.S. Government works, or works produced by employees of any
Commonwealth realm Crown government in the course of their duties.

1 Multi-proteomic and transcriptomic analysis of 2 oncogenic β -catenin molecular networks

3 *Rob M. Ewing¹*, Jing Song², Giridharan Gokulrangan², Sheldon Bai², Emily H. Bowler¹,*
4 *Rachel Bolton¹, Paul Skipp¹, Yihua Wang¹, Zhenghe Wang².*

5
6 1. School of Biological Sciences, University of Southampton, Southampton, UK

7 2. School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA

37 10 ABSTRACT

41 Dys-regulation of Wnt signalling is a frequent occurrence in many different cancers. Oncogenic
42 mutations of CTNNB1/ β -catenin, the key nuclear effector of canonical Wnt signalling, lead to
43 accumulation and stabilization of β -catenin protein with diverse effects in cancer cells.
44 Although the transcriptional response to Wnt/ β -catenin signaling activation has been widely
45 studied, an integrated understanding of the effects of oncogenic β -catenin on molecular
46 networks is lacking. We used Affinity-Purification Mass-Spectrometry (AP-MS), label-free

1
2
3 17 LC-MS/MS and RNA-Seq to compare protein-protein interactions, protein expression and
4
5 18 gene-expression in colorectal cancer cells expressing mutant/oncogenic or wild-type β -catenin.
6
7 19 We generate an integrated molecular network and use it to identify novel protein modules that
8
9 20 are associated with mutant or wild-type β -catenin. We identify a DNA methyltransferase I
10
11 21 (DNMT1) associated sub-network that is enriched in cells with mutant β -catenin and a sub-
12
13 22 network enriched in wild-type cells associated with the CDKN2A tumor suppressor linking
14
15 23 these processes to transformation of colorectal cancer cells through oncogenic β -catenin
16
17 24 signaling. In summary, multi-omics analysis of a defined colorectal cancer cell model provides
18
19 25 for a significantly more comprehensive identification of functional molecular networks
20
21 26 associated with oncogenic β -catenin signaling.
22
23
24
25
26
27
28 27 **INTRODUCTION**
29
30 28 Altered activity of the Wnt/ β -catenin signaling is a key driver of tumorigenesis in many
31
32 29 cancers. Stabilizing mutations of β -catenin are an important class of mutations that alter
33
34 30 canonical Wnt signaling and function by blocking phosphorylation of residues that would
35
36 31 normally target the protein for destruction ¹. Substitution or deletion mutations at S45 of β -
37
38 32 catenin are important clinical mutations in diverse tumors, since this residue acts as a critical
39
40 33 molecular switch for canonical Wnt signaling ^{1,2}. Elevated β -catenin levels then exert
41
42 34 oncogenic effects through activation of downstream gene-expression programs in concert with
43
44 35 TCF transcription factors ³. In addition to its role as a transcriptional effector, β -catenin
45
46 36 functions as a component of cell-cell adhesion complexes, although the relative balance
47
48 37 between β -catenin's different cellular functions is complex ⁴. As expected given its diverse
49
50 38 functions and sub-cellular localizations, β -catenin exhibits a wide range of different protein
51
52
53
54
55
56
57
58
59
60

1
2
3 39 interactions, with other structural proteins in adhesion complexes, proteins in the destruction
4 40 complex⁵, and nuclear interactions with transcription and chromatin modification factors⁶. In
5
6 41 addition, transcriptional targets of β -catenin/TCF signalling have been defined in many
7
8 42 systems; in cancer cells these include other transcription factors, regulators of the cell-cycle
9
10 43 and components and antagonists of the Wnt signaling pathway (Wnt homepage,
11
12 44 <http://wnt.stanford.edu>).
13
14
15 45

16
17 46 Omics analyses of Wnt activation to date have focused on understanding a single molecular
18
19 47 layer of the response to Wnt activation, such as proteomic analyses of selected Wnt pathway
20
21 48 components^{7,8} or the proteomic or transcriptomic expression response to Wnt activation^{9,10}.
22
23 49 However, the response to activation of cell signaling pathways occurs at multiple molecular
24
25 50 levels; recent work has shown how activation of the Wnt pathway leads directly to protein
26
27 51 stabilization in addition to the well-studied transcriptional response¹¹. In addition, although it
28
29 52 is convenient to consider proximal events in cell signalling (i.e. components of the pathway
30
31 53 itself) separately from the response or output of signalling activation (e.g. transcriptional
32
33 54 activation), these are intrinsically linked. Several core protein components of the Wnt signaling
34
35 55 pathway (e.g. Axin, Dkk) are themselves transcriptional targets, directly activated through β -
36
37 56 catenin/TCF signaling and providing feedback regulation of Wnt signaling activity^{12,13}
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

58 To understand therefore how oncogenic β -catenin alters networks at multiple molecular
59 levels and how this promotes tumorigenesis, we conducted a multi-omics analysis using
60 colorectal cancer cells with targeted inactivation of either the mutant (stabilizing $\Delta 45$ mutation)
61 or wild-type allele of CTNNB1/ β -catenin¹⁴. Affinity-Purification Mass-Spectrometry (AP-
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757<br

1
2
3 62 MS) analysis of mutant and wild-type β -catenin cells showed patterns of protein interactions
4
5 63 consistent with nuclear localization of mutant β -catenin and membrane-associated wild-type
6
7 64 β -catenin. Integrating AP-MS and expression proteomic profiling, we identified several
8
9 65 enriched protein networks that are preferentially expressed in mutant or wild-type cells
10
11 66 including elevated DNA-methylation linked proteins in mutant cells, and a nucleolar-enriched
12
13 67 tumor suppressor module in wild-type cells. Through comparative analysis of enriched Gene
14
15 68 Ontology categories, we show that there is concerted alteration of pathways and processes at
16
17 69 the proteomic and transcriptomic levels in the mutant and wild-type cells. We show that
18
19 70 interaction proteomics, expression proteomics and transcriptomic datasets contribute
20
21 71 complementary information to the integrated network, and that multi-omics analysis provides
22
23 72 for a more comprehensive delineation of β -catenin associated oncogenesis. In summary, our
24
25 73 multi-omics analysis provides a comprehensive view of how oncogenic β -catenin alters
26
27 74 molecular networks at multiple levels.

32
33 75
3435 76 **MATERIALS AND METHODS**
3637 77 **Cell line culture and sample extraction**
38

40 78 Colorectal cancer cell lines HCT116-CTNNB1 $^{-\Delta 45}$ and HCT116-CTNNB1 $^{WT/-}$ were
41
42 79 regularly maintained in McCoy-5A media (Life Technologies, 16600-108, Carlsbad, CA)
43
44 80 containing 10% fetal bovine serum (Life Technologies, 10438-026, Carlsbad, CA) and 1%
45
46 81 streptomycin-penicillin (Life Technologies, 15140-148, Carlsbad, CA) at 37°C in CO₂
47
48 82 incubator (5% CO₂, 100% H₂O). Cells were harvested by scraping the cells off plates and then
49
50 83 washed with cold PBS twice for immediate use or storage (-80°C). Harvested cells were lysed
51
52 84 (25mM Tris-HCl, pH7.4, 1mM EDTA, 150mM NaCl, 1% NP-40, 50% glycerol, Protease
53
54 4
55
56
57
58
59
60

1
2
3 85 inhibitor cocktail) by homogenization and incubated on ice for 30 min followed by
4 86 centrifugation at 13,000rpm for 30min. The supernatant (soluble fraction) was kept for further
5 87 analysis. Proteins were quantified by Bio-Rad protein assay dye (500-0006, Bio-Rad, Hercules,
6 88 CA) by measuring the absorbance at 595nm. NE-PER Nuclear and Cytoplasmic Extraction kit
7 89 (Pierce) was used to prepare nuclear and cytosolic fractions, which were assessed using anti-
8 90 Dnmt1 and anti-Gapdh Western blots.
9
10
11
12
13
14
15
16
17
18
19 91
20
21 92 **SDS-PAGE & Immunoblotting**
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

92 **SDS-PAGE & Immunoblotting**

93 Equal amounts (20 µg) of proteins from different samples was loaded on precast 4–12% Bis-
94 Tris gel (Life Technologies NP-0335, Carlsbad, CA) and subjected to electrophoresis. Gels
95 were either stained with Coomassie Brilliant Blue (Pierce 20278, Rockford, IL) or transferred
96 to nitrocellulose membrane (Whatman 10402594, Dassel, Germany). Western blotting was
97 used to detect the protein with super signal ELISA Pico chemiluminescent substrate. Primary
98 antibodies used: anti-β-catenin (Cell Signaling Technology 9581, Danvers, MA), anti-Dnmt1
99 (Cell Signaling Technology 5119, Danvers, MA), anti-UHRF1 (Novus Biologicals
100 H00029128-M01, Littleton, CO), anti-HDAC1 (Abcam ab7028, Cambridge, MA), anti-PCNA
101 (Santa Cruz Biotechnology sc-56, Santa Cruz, CA) and anti-α-tubulin (Cell Signaling
102 Technology, Inc., 2144, Danvers, MA). Loading controls were applied at 1:1000 and secondary
103 antibodies horseradish peroxidase (HRP)-conjugated anti-mouse (Promega W4011, Madison,
104 WI) and HRP-conjugated anti-rabbit (Cell Signaling Technology 7074, Danvers, MA) were
105 added at 1:20,000. Chemi-luminescence detection using SuperSignal* ELISA Pico
106 Chemiluminescent Substrate (Thermo Scientific PI-37070, Rockford, IL) was applied to all
107 westerns.

1
2
3 108 **Proteomic sample preparation**
4

5 109 For analysis of the expression proteome, cell extracts were fractionated using the NE-PER
6
7 110 Nuclear and Cytoplasmic Extraction kit (Pierce), each fraction separated using SDS-PAGE and
8
9 111 then fractionated in 2 fractions per sample/lane after Coomassie blue staining prior to tryptic
10
11 112 digestion. Each sample combination (e.g. Mutant/nuclear, Mutant/cytosolic) was replicated
12
13 113 twice. Affinity-purifications from 10^7 cells were performed as previously described ¹⁵ using
14
15 114 anti- β -catenin (Cell Signaling Technology 9581, Danvers, MA) antibodies. Affinity-
16
17 115 purification experiments were replicated using two independent mutant and two independent
18
19 116 wild-type cell lines, and each sample replicated twice. In-gel tryptic digestion was performed
20
21 117 and combined elution fractions were lyophilized in a SpeedVac Concentrator (Thermo Electron
22
23 118 Corporation, Milford, MA), resuspended in 100 μ L of 0.1% formic acid and further cleaned up
24
25 119 by reverse phase chromatography using C18 column (Harvard, Southborough, MA). The final
26
27 120 volume was reduced to 10 μ L by vacuum centrifugation and addition of 0.1% formic acid.
28
29
30
31
32

33 121 **Mass-spectrometry**
34

35 122 Online reverse phase nanoflow capillary liquid chromatography (nano-LC, Dionex Ultimate
36
37 123 3000 series HPLC system) coupled to electrospray injection (ESI) tandem mass spectrometer
38
39 124 (Thermo-Finnegan LTQ Orbitrap Velos) was used to separate and analyze tryptic peptides.
40
41 125 Peptides were eluted on nano-LC with 90 min gradients (6 to 73% acetonitrile in 0.5% formic
42
43 126 acid with a flow rate of 300 nL/min). Data dependent acquisition was performed using Xcalibur
44
45 127 software (version2.0.6, Thermo Scientific) in positive ion mode with a resolution of 60 000 at
46
47 128 m/z range of 325.0–1800.0, and using 35% normalized collision energy. Up to the five most
48
49 129 intensive multiple charged ions were sequentially isolated, fragmented and further analyzed.
50
51
52 130 Raw LC-MS/MS data were processed using Mascot version 2.2.0 (Matrix Science, Boston,
53
54
55
56
57
58
59
60

1
2
3 131 MA). The sequence database was searched with a fragment ion mass tolerance of 0.8Da and a
4 132 parent ion tolerance of 15 ppm. The raw data were searched against the human International
5 133 Protein Index database (74,017 protein sequences; version 3.42) with fixed modification
6 134 carbamidomethyl (C) and variable modification oxidation (M), and 1 allowed missed cleavage.
7 135 Peptides were filtered at a significance threshold of $P < 0.05$ (Mascot). Raw mass spectrometry
8 136 chromatograms were processed and analyzed using Xcalibur Qual Browser software (Thermo
9 137 Fisher Scientific Inc. Version 2.0.7). Scaffold (Proteome Software Inc., Portland, OR, USA;
10 138 version 3.00.04) was used to analyze LC-MS/MS-based peptide and protein identifications.
11 139 Peptide identifications were accepted if they could be established at greater than 95.0%
12 140 probability as specified by the Peptide Prophet algorithm ¹⁶. Protein identifications were
13 141 accepted if they could be established at greater than 99.0% probability and contained at least 2
14 142 identified peptides. Proteins that contained similar peptides and could not be differentiated
15 143 based on MS/MS analysis alone were grouped to satisfy the principles of parsimony. Protein
16 144 quantitation for the expression proteomics study was performed using ion peak intensity
17 145 measurements in the Rosetta Elucidator software (version 3.3.0.1; Rosetta Inpharmatics LLC,
18 146 Seattle, WA). The PeakTeller algorithm within Rosetta Elucidator was used for peak detection,
19 147 extraction and normalization of peptide and protein abundance. Protein quantitation of AP-MS
20 148 experiments was performed using Scaffold (Proteome Software Inc., Portland, OR, USA;
21 149 version 3.00.04) to compute normalized spectral counts for each protein. Proteins were
22 150 excluded from AP-MS results if frequency across control experiments from HCT116 cells was
23 151 > 0.33 ¹⁵. Mass spectrometry data are available via the PRIDE repository with dataset
24 152 identifiers PXD006053 (Expression proteome) and PXD006051 (Interaction proteome).
25 153 **RNA-Seq Analysis**

1
2
3 154 The quantity of total RNA in each sample was collected using Qubit (Invitrogen) and
4
5 155 libraries prepared using Illumina TruSeq Total RNA v2 kit with Ribo Zero Gold for rRNA
6
7 156 removal. The Ribo-Zero kit was used to remove ribosomal RNA (rRNA) from 1 μ g of Total
8
9 157 RNA using a hybridization/ bead capture procedure that selectively binds rRNA species using
10
11 158 biotinylated capture probes. The resulting purified mRNA was used as input for the Illumina
12
13 159 TruSeq kit in which libraries are tagged with unique adapter-indexes. Final libraries were
14
15 160 validated using the Agilent High Sensitivity DNA kit (Agilent), quantified via Qubit, and
16
17 161 diluted and denatured per Illumina's standard protocol. High-throughput sequencing was
18
19 162 carried out using the Illumina HiScan SQ instrument, 100 cycle paired-end run, with one
20
21 163 sample loaded per lane, yielding on average > 100 million reads per sample. Reads were
22
23 164 mapped to human genome hg19 using TopHat2 version 2.1.0¹⁷ with default settings and reads
24
25 165 summarized by gene feature using htseq-count. Differential expression analysis was performed
26
27 166 and p-values adjusted for fdr were computed with DeSeq. Data are available from GEO,
28
29 167 accession: GSE95670.
30
31
32
33
34
35
36
37
38 169 **Functional and network analyses**
39
40 170 The Combined Abundance Score as previously described¹⁹ was computed using all
41
42 171 significant ($p < 0.05$) proteins from the 3 datasets, providing a single, normalized log fold
43
44 172 change value for each protein. (Selected additional protein were included where the p-value
45
46 173 was significant at $p < 0.1$, since it was observed for several proteins that they were differentially
47
48 174 abundant across more than one dataset – e.g. CUL1). Functional networks were constructed
49
50 175 from the Pathway Studio database (Elsevier), version 9.0. Gene/Protein identifiers were
51
52 176 imported and networks created by selecting all direct edges between the imported nodes

1
2
3 177 (Physical Interactions, Expression Regulation and Protein Modification relations. Network
4
5 178 diagrams were created in Cytoscape (v3.3.0). Edge thickness between two functional groups
6
7 179 was calculated by dividing the number of interactions between the groups by the size of the
8
9 180 groups (number of genes/proteins) creating a normalized edge weight. Gene Ontology term
10
11 181 enrichment was computed in Pathway Studio (Ariadne Genomics). The significantly
12
13 182 differential sets of mutant and wild-type genes from the RNA-Seq analysis were analyzed using
14
15 183 Enrichr²⁰ and o-POSSUM-3²¹.
16
17
18
19 184
20
21 185 **Experimental Design and Statistical Rationale**
22
23 186 Affinity-Purification Mass-Spectrometry (AP-MS) were performed on two independently
24
25 187 derived clones of the HCT116-CTNNB1^{-Δ45} and HCT116-CTNNB1^{WT}-cell-lines (i.e. 4
26
27 188 different cell-lines) and then replicated twice. The use of independent clones allowed us to
28
29 189 capture the biological variation in the expression of CTNNB1/β-catenin. We observed that AP-
30
31 190 MS proteomics experiments produced very similar results between these clones
32
33 191 (Supplementary Figure 1). Expression Proteomics experiments were performed on sub-cellular
34
35 192 fractionated mutant and wild-type cell cultures. Each combination of cell-type/sub-cellular
36
37 193 fraction (mutant/nuclear, mutant/cytosol, wild-type/nuclear, wild-type/cytosol) was replicated
38
39 194 twice, and we found high correlation within these groups (Supplementary Figure 3). RNA-Seq
40
41 195 experiments were performed in triplicate (3 mutant, 3 wild-type), yielding significant
42
43 196 differentially regulated transcripts at low fdr. For each dataset, the log₂ ratio of mutant/wild-
44
45 197 type abundance was computed and Student's T-test was used to compute p-values with
46
47 198 adjustment for false discovery rate.
48
49
50 199
51
52
53
54
55
56
57
58
59
60

1
2
3 200 **RESULTS**
4
5 201
6
7
8 202 **Experimental overview**
9
10 203 The experimental strategy of this study is to use multiple, complementary ‘omics approaches
11
12 204 to identify perturbed molecular networks as shown in Figure 1. We used a previously described
13
14 205 model derived from HCT116 colorectal cancer cells (heterozygous for stabilizing $\Delta 45$ mutation
15
16 206 of β -catenin) in which either the mutant or wild-type allele has been disrupted¹⁴ thus creating
17
18 207 two cell-lines expressing either mutant β -catenin (CTNNB1^{-/Δ45}) or wild-type β -catenin
19
20 208 (CTNNB1^{WT/-}). To characterize mutant and wild-type β -catenin protein-protein interactions
21
22 209 we used anti- β -catenin Affinity-Purification Mass-Spectrometry (LC-MS/MS AP-MS). We
23
24 210 also analyzed nuclear and cytosolic fractions to increase overall coverage using label-free
25
26 211 protein profiling (LC-MS/MS) to identify differentially abundant proteins in the mutant and
27
28 212 wild-type cells (2 replicates of each cell-type/fraction combination – a total of 8 samples).
29
30 213 Finally, we used RNA-Seq (Illumina HiSeq) to compare the transcriptomes of mutant and wild-
31
32 214 type β -catenin cells. Three replicates of each of mutant and wild-type were analyzed and genes
33
34 215 with differential gene-expression profiles identified.
35
36
37
38
39
40 216
41
42 217 **AP-MS analysis identifies distinct mutant and wild-type β -catenin protein interactions**
43
44 218 We analyzed the mutant and wild-type β -catenin protein interactions using AP-MS
45
46 219 experiments as shown in Figure 2. AP-MS analyses were performed using two distinct clones
47
48 220 each for mutant and wild-type cells (a total of 4 replicates of mutant and 4 replicates of wild-
49
50 221 type cells), and we observed high correlation of protein abundance in AP-MS analyses between
51
52 222 replicates and clones (Supplementary Figure 1). AP-MS experiments yielded 67 proteins
53
54 223
55
56 10
57
58
59
60

1
2
3 223 differentially associated with mutant or wild-type β -catenin ($p<0.05$), and we observed distinct
4 224 profiles of proteins from the mutant and wild-type AP-MS analyses that are consistent with the
5 225 differential sub-cellular localization of mutant and wild-type β -catenin (Supplementary Table
6 226 1). Figure 2A shows a heatmap of proteins significant proteins identified in AP-MS
7 227 experiments and Figure 2B a volcano plot of \log_2 ratios of mutant and wild-type proteins. We
8 228 found that mutant protein interactions were highly enriched for nuclear proteins and for
9 229 proteins functioning in regulation of gene-expression, whereas wild-type proteins were
10 230 significantly enriched for membrane-associated proteins (see Figure 3). To investigate in more
11 231 detail, we constructed a protein network of all known physical interactions between the
12 232 identified set of proteins. The largest connected component of this network is shown in Figure
13 233 2C with known mutant-enriched (red) and wild-type-enriched (green) β -catenin interaction
14 234 partners identified in the analysis. Higher interconnectivity between pairs of proteins identified
15 235 in the mutant cells was observed than between proteins identified in the wild-type cells (and
16 236 this is not due to differences in the overall connectivity of mutant- and wild-type-enriched
17 237 proteins, as there is no significant difference between the degree distributions of the mutant
18 238 and wild-type proteins: two sample t-test; p -value > 0.3). These findings and the distinct sets
19 239 of enriched functional categories indicate that β -catenin in the mutant and wild-type cells
20 240 functions in distinct protein networks, in concordance with distinct sub-cellular localizations
21 241 of mutant and wild-type β -catenin.
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 246 with 1085 showing significantly differential expression in mutant cells ($p<0.05$; log-fold-
4 change >2) and 735 showing significantly differential expression in wild-type cells (FPKM
5 distribution plots, Supplementary Figure 2). To increase protein coverage, we performed
6
7 248 protein expression profiling in conjunction with sub-cellular fractionation of cell lysates. This
8
9 249 analysis yielded 640 proteins identified as significantly differentially expressed ($p<0.05$)
10
11 250 between mutant and wild-type cells in either cytosolic or nuclear fractions. We compared the
12
13 251 functional trends in the interaction proteome, expression proteome and transcriptome datasets.
14
15 252 For each dataset, Gene Ontology (GO) terms significantly ($p<0.05$) enriched in mutant and/or
16
17 253 wild-type samples were identified and then compared across the datasets. Overlap of
18
19 254 significantly differential genes/proteins between the datasets was limited (57 genes/proteins
20
21 255 were identified in more than one dataset from a combined total of 2465 significantly
22
23 256 differentially regulated genes or proteins). However, significant numbers of shared enriched
24
25 257 GO terms were identified across all 3 datasets. The number of shared GO terms is summarized
26
27 258 in Figure 3A, and we observed much greater concordance between mutant-enriched GO terms
28
29 259 in datasets and between wild-type-enriched GO terms, indicating a concerted cellular
30
31 260 response at proteomic and transcriptomic levels to β -catenin mutation (Figure 3A). Selected
32
33 261 significantly enriched GO terms in either mutant or wild-type cells are shown in Figure 3B,
34
35 262 and these reflect the findings for the AP-MS dataset, whereby mutant transcriptome and
36
37 263 proteome datasets are enriched for nuclear and gene-expression associated functions, whereas
38
39 264 the wild-type transcriptome and proteome are enriched for membrane and cytoskeleton
40
41 265 associated functions. In addition, comparison of the differentially regulated RNA-Seq gene sets
42
43 266 against two curated repositories, TSGene ²² and the Tumor Associated Gene database ²³,
44
45 267 showed significant enrichment ($p=0.00182$; Fisher's Exact) of tumor suppressors and
46
47 268 12

1
2
3 269 oncogenes ($p=0.02979$; Fisher's Exact), indicating that these cancer-relevant functional classes
4
5 270 are frequently differentially regulated in the mutant/wild-type β -catenin model.
6
7 271
8
9

10 272 As expected, the GO analysis showed that canonical Wnt signaling was highly enriched in
11
12 273 the mutant cells. We therefore analyzed which direct canonical Wnt signaling targets (taken
13
14 274 from the Wnt homepage <http://wnt.stanford.edu>), bound by TCF transcription factors were
15
16 275 differentially expressed between mutant and wild-type cells (Supplementary Table 2), and
17
18 276 found that many of the known Wnt targets are differentially regulated in our data, indicating a
19
20 277 substantial direct response to β -catenin/TCF. We noted that two classical targets of canonical
21
22 278 Wnt signaling CCND1 (cyclin D1) and MYC (c-myc) were not significantly differential
23
24 279 between the mutant and wild-type cells. The same finding was reported in the initial analysis
25
26 280 of the same cell-lines, and it was concluded that although these genes have been observed as
27
28 281 direct transcriptional targets of β -catenin/TCF in many systems²⁴, they are not physiological
29
30 282 targets in these cell-lines¹⁴. We next compared our transcriptome dataset to two previously
31
32 283 published CTNNB1 siRNA analyses in colorectal cancer cells^{25,26}. This previous study
33
34 284 identified a set of 335 genes for which a consistent positive and negative trend was seen across
35
36 285 siRNA experiments in 2 colorectal cancer cell-lines. Comparing our transcriptome dataset to
37
38 286 this set showed a significant overlap and trend correlation ($p=0.0245$; Fisher's Exact Test), in
39
40 287 particular in the correlation between genes whose expression is repressed in response to
41
42 288 CTNNB1 siRNA and genes up-regulated in mutant CTNNB1 cells (Supplementary Table 3),
43
44 289 indicating that different β -catenin perturbation models (siRNA, knock-out) have similar
45
46 290 transcriptional outcomes.
47
48
49
50
51
52
53
54 291
55
56 13
57
58
59
60

1
2
3 292 To further understand the transcriptional regulatory programs in the mutant or wild-type cells,
4
5 293 we analyzed enriched transcription factor binding sites in the mutant or wild-type gene sets
6
7 294 (Figure 3C). The β -catenin binding partner Lef1, a TCF transcription factor is amongst the
8
9 295 most highly represented predictions in the mutant cells. We also noted that the mutant and
10
11 296 wild-type gene sets exhibited enrichment of different classes of transcription factor (Figure
12
13 297 3C). The wild-type set is highly enriched in zinc-finger transcription factor binding sites (6/10
14
15 298 of the top 10 most enriched TFs are of this type). Multiple Kruppel-like factor (KLF)
16
17 299 transcription factors are represented in this set, and this class of transcription factor have been
20
21 300 shown to function as tumor suppressors in colorectal cancer²⁷⁻²⁹. KLF4 has been shown to
23
24 301 interact with Beta-catenin and inhibit Wnt signaling in the colon^{30,31}. TCF3 is also identified
25
26 302 as an enriched transcription factor in the wild-type cells. Recent analysis showed that TCF3
27
28 303 binds the MYC Wnt-responsive element to inhibit MYC expression by preventing binding of
30
31 304 β -catenin/TCF4 at the same promoter element³².
32
33 305
34
35 306 **An integrated proteomic and transcriptomic network**
36
37 307 To construct an integrated network combining the transcriptome, expression proteome and
38
39 308 interaction proteome data, a combined abundance score¹⁹ was computed for each significant
40
41 309 node (p-value < 0.05) across the three datasets. All direct relations (physical interaction, protein
42
43 310 modification and expression regulation) between the 2623 gene/protein entities in the
44
45 311 combined set were used to construct an integrated network using the Pathways Studio database
46
47 312 (we use hereafter the terminology ‘edge’ to refer to protein-protein relations and ‘node’ to refer
48
49 313 to proteins themselves). To analyze how each of the omics datasets contributes to this
50
51 314 integrated network, we computed several network statistics (Figure 4). We observed that the
55
56 14
57
58
59

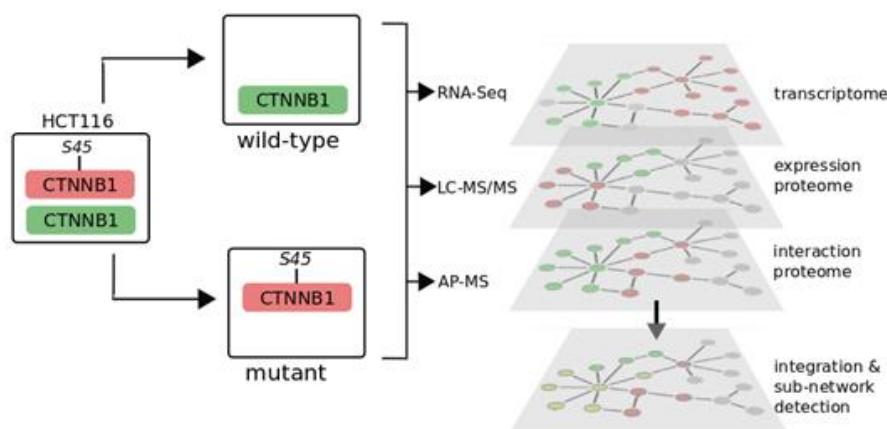
1
2
3 315 average degree of nodes from each of the three datasets differ within the integrated network
4
5 316 (interaction proteome=5.95; expression proteome=7.62; transcriptome=3.98) and we therefore
6
7 317 plotted the degree distributions of nodes from each dataset as shown (Figure 4B). Nodes within
8
9 318 the transcriptome dataset have a distinctly lower average degree, attributed to the large fraction
10
11 319 of genes/proteins from this dataset with few described interactions in the database. The
12
13 320 significant enrichment of genes encoding transcription factors present in the significantly
14
15 321 differential transcriptome dataset contributes towards this difference since for many of these
16
17 322 genes, relatively few interactions have been described. This finding prompted us to investigate
18
19 323 whether the types of edges represented in the 3 datasets differed (Figure 4C). We observe
20
21 324 substantial differences in edges annotated as 'Binding' in the Pathway Studio database and
22
23 325 those annotated as regulating 'Expression', with greater numbers of Binding edges in the
24
25 326 interaction and expression proteome datasets and substantially more Expression edges in the
26
27 327 transcriptome dataset, indicating the complementarity these different omics datatypes in
28
29 328 identifying different types of proteins and edges.
30
31
32
33
34
35
36
37
38 329
39
40 330 **Functional module identification and validation**
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 338 such as the cytoskeletal protein Vimentin (VIM) are strongly enriched in the mutant cells (VIM
4
5 339 was differentially expressed in both the expression proteome and transcriptome datasets). In
6
7 340 addition, several proteins with functions in tissue remodelling such as matrix metalloprotease
8
9 341 (MMP13) and laminins (LAMB3, LAMC2) which form the basement membrane required for
10
11 342 attachment and organization of epithelial cells were identified.

14
15 343
16
17 344 Wild-type cells preferentially expressed proteins implicated in non-canonical Wnt signaling.
18
19 345 In addition to non-canonical Wnt ligands WNT5A and WNT7A, we found that the Dis-
20
21 346 shevelled (Dvl) -interacting proteins, DACT3 and DAAM1 were more abundant in the wild-
22
23 347 type cells. DACT3 is a member of a family of proteins known to antagonize canonical Wnt/β-
24
25 348 catenin signaling, suggesting that the process of mutant β-catenin-driven oncogenesis involves
26
27 349 repression of antagonists of canonical signalling. Whilst most components of TGF-
28
29 350 Beta/SMAD and BMP signaling were higher in mutant cells (module 7), we noted that
30
31 351 LEMD3, a known antagonist of TGF-Beta/SMAD signaling was significantly higher in wild-
32
33 352 type cells.

37
38 353
39
40 354 Although integration of transcriptomic and proteomic allowed for increased coverage and
41
42 355 representation within functional modules as shown in Figure 5A, we also observed exclusively
43
44 356 proteomic modules. Skp-Cullin-Fbox (SCF) protein complexes are ubiquitin ligase complexes
45
46 357 that regulate ubiquitination of many proteins including β-catenin, and these were uniformly
47
48 358 more abundant in mutant cells (Figure 5B). This module was almost uniformly significantly
49
50 359 differentially regulated in the proteomic datasets, but not in the transcriptomic dataset,

1
2
3 360 indicating, in concordance with other findings, that these complexes are mainly regulated at
4
5 361 the post-translational level, through dynamic re-arrangement of protein components³⁴.
6
7
8 362
9
10
11 363 We selected two modules for further validation (Figures 5C and 5D). The primary maintenance
12
13 364 DNA methyltransferase (DNMT1) is significantly more abundant in the expression proteome
14
15 365 and transcriptome of mutant cells. We analyzed the expression of Dnmt1 and two direct
16
17 366 interaction partners of Dnmt1, USP7/HAUSP and UHRF1 and all of these proteins were found
18
19 367 to be both nuclear specific and enriched in mutant cells (Figure 5C). We previously showed
20
21 368 that an interaction between β -catenin and the primary DNA methyltransferase, Dnmt1
22
23 369 stabilizes both proteins in the nucleus of cancer cells³⁵. We previously showed that USP7
24
25 370 regulates the stability of Dnmt1 in cancer cells³⁶, and UHRF1 has been shown to also
26
27 371 participate in the regulation of Dnmt1 stability via ubiquitination³⁷. These latest results indicate
28
29 372 the coordinated up-regulation of Dnmt1-USP7-UHRF1 complexes in mutant cells, linking β -
30
31 373 catenin-driven oncogenesis to altered DNA methytransferase activity.
32
33
34 374
35
36
37 375
38
39
40 376 We also noted that one of the most enriched categories in the gene enrichment analysis for WT
41
42 377 cells were proteins annotated as nucleolar (WT expression proteome dataset, p-value=4x10⁻¹¹),
43
44 378 and with the related functional annotations of rRNA processing and ribosome biogenesis. We
45
46 379 found that many of these proteins formed a highly-connected module within the larger
47
48 380 integrated network (Figure 5D). Western analysis was used to validate the expression of several
49
50 381 proteins that were either significantly differentially abundant in the omics datasets (shaded
51
52 382 green) or predicted based upon their connections to other proteins in the module (shaded gray).
53
54
55 17
56
57
58
59
60


1
2
3 383 In addition to their role in ribosome function, several of these proteins have known tumor-
4 suppressor functions. The well-characterized tumor suppressor CDKN2A (P19ARF) is a
5 prominent member of this module and functions to regulate the levels of p53 through its
6 sequestration of MDM2 (a negative regulator of p53)³⁸ in the nucleolus (MDM2 was not
7 identified in the proteomic experiments, and not significantly differentially expressed in the
8 transcriptomic experiments). Another protein, nucleostemin (GNL3) that has also been linked
9 to MDM2-p53 regulation³⁹ was differentially more abundant in wild-type cells. We previously
10 identified GNL3 as an interaction partner of LYAR⁴⁰, and therefore analyzed the expression
11 of this and several other known nucleolar proteins linked to LYAR as shown in Figure 4D,
12 showing their greater abundance in wild-type cells.
13
14 393
15
16 394
17
18 395
19
20 396
21
22
23 397 **DISCUSSION**
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 398 In this study, we performed the first multi-proteomic and transcriptomic analysis of the
39
40 molecular response to stabilization of β -catenin in colorectal cancer cells. We used a cell model
41
42 of oncogenic β -catenin activity to compare cells expressing a pathogenically and clinically
43
44 important β -catenin mutation that stabilizes the protein with cells expressing wild-type β -
45
46 catenin. Global analysis of functional trends showed that mutant cells and mutant β -catenin
47
48 interactions were enriched in mutant cells in line with the known importance of nuclear
49
50 accumulation of β -catenin for its pathogenic activity. This is in line with the findings presented
51
52 in the original publication describing these cells showing that β -catenin in the mutant cells was
53
54 405
55
56 18
57
58
59
60

1
2
3 406 more abundant in the nucleus, and bound less to E-cadherin than β -catenin in the wild-type
4 407 cells, even though the overall abundance of β -catenin in the two cell-lines was similar ⁴
5 408
6
7 409 Using integrated proteomic and transcriptomic analyses allowed us to reveal novel functional
8 410 modules associated with β -catenin-driven oncogenesis. Significantly differential expression of
9 411 multiple Wnt ligand genes was observed between mutant and wild-type cells. WNT2, WNT5A
10 412 and WNT7A are significantly higher in the wild-type cells whereas WNT16 is higher in mutant
11 413 cells. Wnt5a is the best studied ligand of this group and is associated with β -catenin-
12 414 independent or non-canonical Wnt signalling ⁴¹. Interestingly, WNT5A can antagonize β -
13 415 catenin signalling ⁴², exhibits tumor suppressive activity in colorectal cancer ⁴³ and is associated
14 416 with sub-groups of colorectal cancer patients with good prognosis ⁴⁴, although WNT5A's
15 417 tumor suppressor properties appear to be limited to certain tumor types ⁴¹. We also showed
16 418 that the expression of DNA methyltransferase I (Dnmt1) and several key Dnmt1 interaction
17 419 partners are significantly elevated in mutant β -catenin cells, consistent with our previous report
18 420 that β -catenin and Dnmt1 proteins engage in a mutually stabilizing interaction in the nuclei of
19 421 cancer cells ³⁵. In addition, USP7 which regulates the stability of Dnmt1 has also recently been
20 422 shown to stabilize β -catenin in colorectal cancer cells expressing APC mutations ⁴⁵, further
21 423 linking the regulation of Dnmt1 to β -catenin-driven oncogenesis. Conversely, we identified a
22 424 module of nucleolar-enriched proteins that were significantly more abundant in wild-type β -
23 425 catenin cells, including the tumor suppressor CDKN2A. Expression of CDKN2A is frequently
24 426 silenced in colorectal and other tumors through promoter hyper-methylation ⁴⁶, suggesting that
25 427 alterations of CpG methylation may be induced via oncogenic β -catenin and the greater

1
2
3 428 abundance of DNMT1 and its associated regulators that we observed in cells with mutant β -
4
5 429 catenin.
6
7 430
8
9
10 431 Our study showed how a multi-omics approach combining different layers of proteomic and
11
12 432 transcriptomic information can reveal more comprehensively how oncoproteins transform
13
14 433 molecular networks in cancer cells. Recent studies have shown that in addition to mediation of
15
16 434 a transcriptional response, activation of canonical Wnt signaling also acts in-dependently of
17
18 435 transcriptional programs to alter protein stabilization⁴⁷, necessitating the characterization of
19
20 436 oncogenic-mediated effects at proteomic as well as transcriptomic levels. We have adopted the
21
22 437 approach of integrating multi-omics data with existing network information⁴⁸ to identify
23
24 438 modules within the cellular network that may be perturbed across the multiple layers of
25
26 439 transcriptome, expression proteome or interaction proteome. We observed concerted cellular
27
28 440 responses in terms of pathways and processes across these multiple layers. We also showed
29
30 441 that these different ‘layers’ of information contribute differentially to the overall analysis of β -
31
32 442 catenin-driven oncogenesis – by for example contributing different types of protein-protein
33
34 443 relationship (edges) and identifying proteins with differing network features. In summary, our
35
36 444 study reveals both novel biology associated with β -catenin-driven oncogenesis and also
37
38 445 illustrates the greater insight that can be gained from applying a systematic multi-omics
39
40 446 approach.
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 20
57
58
59
60

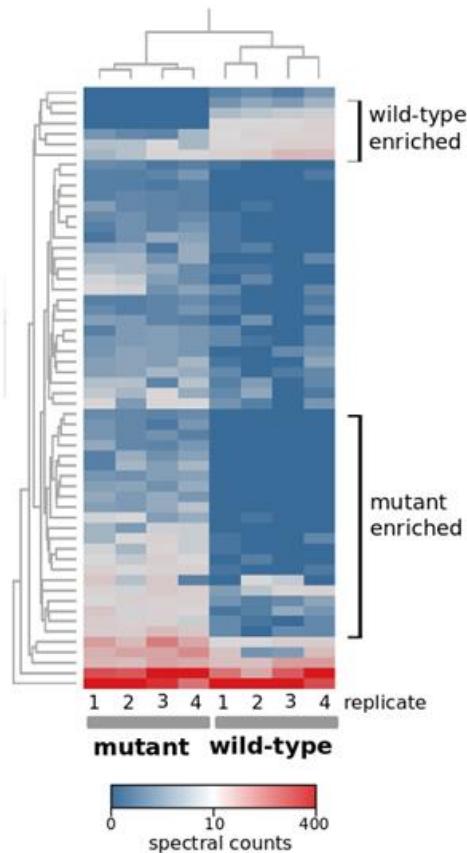
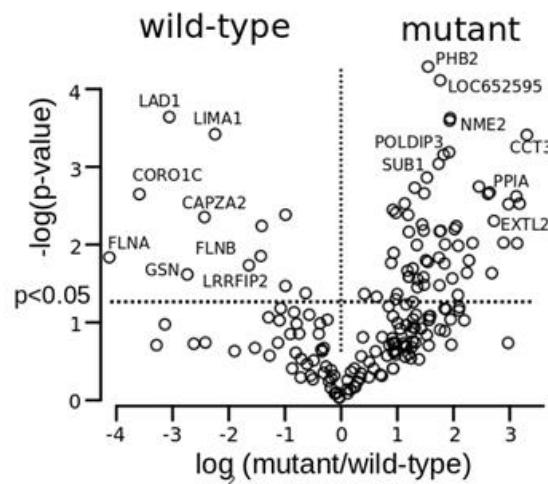
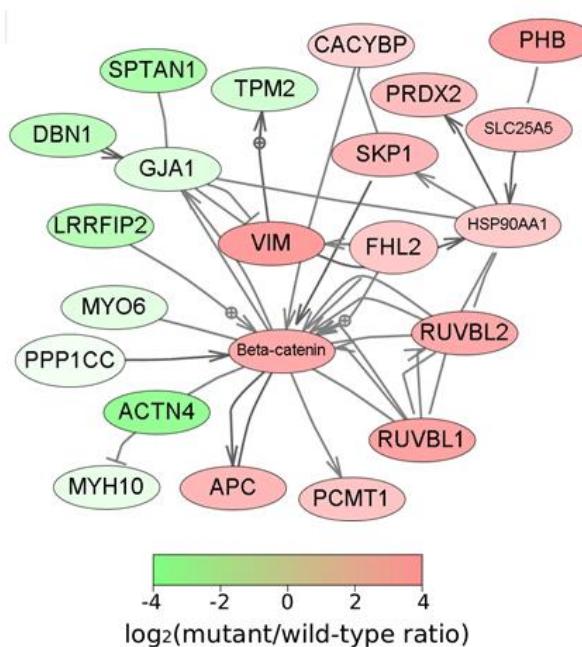


1
2
3
4
447

Figure 1


448
449 **Figure 1 Integrated multi-omics analysis of β -catenin signalling networks** Experimental
30
31
32 design and data acquisition of interactome (AP-MS), expression-proteome (LC-MS/MS) and
33
34 transcriptome (RNA-Seq) from colorectal cancer cell lines HCT116- $\text{CTNNB1}^{-\Delta 45}$ (mutant)
35
451 and HCT116- $\text{CTNNB1}^{\text{WT}/-}$ (wild-type) expressing endogenous mutant or wild-type
36
452 $\text{CTNNB1}/\beta$ -catenin.
37
453
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 21
57
58
59
60

455

Figure 2**A****B**

456

22

**Figure 2
(cont'd)****C**

457 **Figure 2 Affinity-Purification Mass-Spectrometry (AP-MS) analysis of mutant and wild-**
458 **type β -catenin protein interactions**(A) Heatmap of protein spectral counts across 4 replicate
459 HCT116-CTNNB1 $^{\Delta 45}$ (mutant) and 4 HCT116-CTNNB1 $^{WT/-}$ (wild-type) AP-MS samples.

1
2
3 460 Selected profiles of proteins associated with either mutant AP-MS or wild-type AP-MS
4
5 461 samples are shown.
6
7
8 462 (B) Volcano plot indicating \log_2 ratio of mutant/wild-type spectral counts from single AP-MS
9
10 463 study, with significantly ($p < 0.05$) proteins indicated.
11
12
13 464 (C) Network diagram of β -catenin (CTNNB1) interaction partners identified in the study. The
14
15 largest connected component sub-network in the Pathway Studio analysis is shown. Proteins
16
17 465 are shaded according to their mutant/wild-type spectral count ratio (red proteins are highly
18
19 466 enriched in mutant AP-MS samples, green shaded proteins are highly enriched in wild-type
20
21 467 enriched in mutant AP-MS samples, green shaded proteins are highly enriched in wild-type
22
23 468 AP-MS samples).
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 24
57
58
59
60

Figure 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A

Panel	Sample	Sample Type	Count
Transcriptome	wt	Transcriptome	10
	mut	Transcriptome	50
Transcriptome	wt	Expression proteome	18
	mut	Expression proteome	22
Interaction proteome	wt	Transcriptome	6
	mut	Transcriptome	17
Interaction proteome	wt	Expression proteome	15
	mut	Expression proteome	6
Expression proteome	wt	Transcriptome	11
	mut	Transcriptome	29
Expression proteome	wt	Interaction proteome	6
	mut	Interaction proteome	11

B

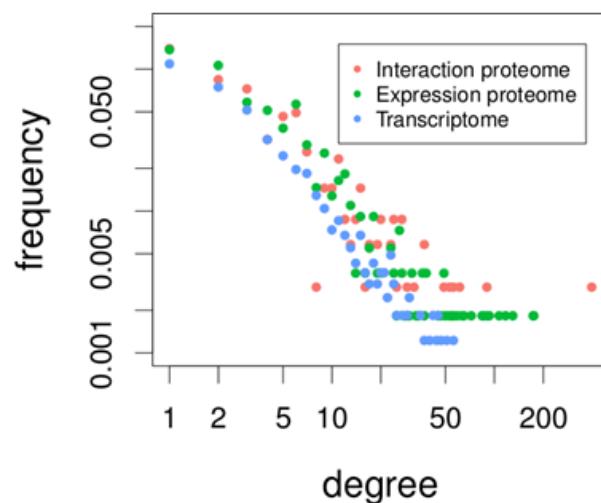
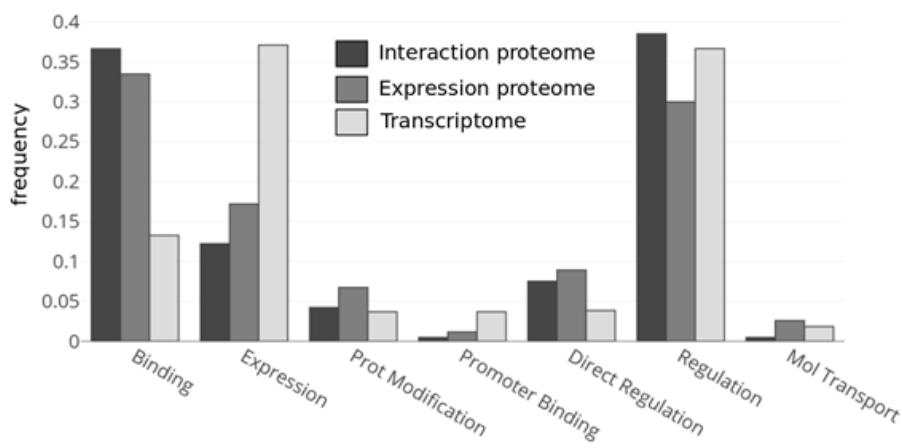
Panel	Process	Wild-type (-log(p-value))	Mutant (-log(p-value))
Transcriptome	endocytosis	0.5	0.5
	non-canonical Wnt signaling	0.5	0.5
	actin cytoskeleton	0.5	0.5
	-ve reg. of BMP signaling	0.5	0.5
	cytoplasm	1.5	1.5
	signal transduction	2.5	2.5
	membrane	3.5	3.5
	-ve reg. of apoptosis	3.5	3.5
	TGFBeta activity	3.5	3.5
	BMP signaling pathway	4.5	4.5
	Wnt signaling pathway	4.5	4.5
	chromatin modification	5.5	5.5
	nucleus	25.5	25.5
	transcription	38.5	38.5
	actin cytoskeleton	0.5	0.5
Expression proteome	-ve regulation of EMT	1.5	1.5
	lamellipodium	2.5	2.5
	membrane	3.5	3.5
	-ve regulation of apoptosis	4.5	4.5
	transcription	5.5	5.5
	nucleus	32.5	32.5
	actin cytoskeleton	0.5	0.5
	calmodulin binding	5.5	5.5
	nucleus	6.5	6.5
	RNA binding	20.5	20.5
Interaction proteome	gene expression	0.5	0.5
	actin cytoskeleton	1.5	1.5
	calmodulin binding	6.5	6.5
	nucleus	7.5	7.5
	RNA binding	20.5	20.5

C

Panel	Factor	Wild-type (-log(p-value))	Mutant (-log(p-value))
Enriched transcription factors (mutant)	THRB	10	12
	PITX2	11	13
	POU2F2	12	14
	LEF1	13	15
	HINFP	14	16
	TCFAP2A	15	17
	SP1	16	18
	SMAD4	17	19
	E2F1	18	20
	FOXC1	20	22
	RUNX1	10	12
	TFAP2A	11	13
Enriched transcription factors (wild-type)	NFE2	10	12
	TCF3	11	13
	SNAI2	11	13
	SNAI1	12	14
	KLF13	13	15
	ZNF148	14	16
	KLF4	15	17
	KLF11	16	18
	Zn-coord (WT)	1.0	0.8
	Zn-coord (Mut)	0.4	0.4
	HTH (WT)	0.0	0.0
	HTH (Mut)	0.4	0.4

469
470
25

ACS Paragon Plus Environment



1
2
3 471 **Figure 3 Functional analysis of β -catenin-associated proteomic and transcriptomic**
4
5 472 **profiles**
6
7
8 473 (A) Bubble plot indicating the size of the intersections of Gene Ontology terms between
9 interaction, expression proteome and transcriptomic datasets. The numbers indicate shared GO
10 terms for each comparison, for GO terms significantly ($p<0.05$) enriched in mutant or wild-
11 type samples. p-values are Fisher's Exact Test indicating the significance of the observed
12
13 475 terms for each comparison, for GO terms significantly ($p<0.05$) enriched in mutant or wild-
14 type samples. p-values are Fisher's Exact Test indicating the significance of the observed
15
16 476 overlap of GO terms.
17
18 477

19
20 478 (B) Enriched Gene Ontology (GO) terms in mutant and wild-type cells across each dataset. The
21 most significantly differential GO terms were identified for each dataset by comparing the p-
22 values for each term between mutant and wild-type gene-sets.
23
24 479

25
26 480 (C) Enriched transcription factors in the significantly ($p<0.05$) differential mutant or wild-type
27 gene sets from RNA-Seq analysis. Enrichr analysis was used to identify the most enriched
28 transcription factors in the significantly differential ($p<0.05$) RNA-Seq datasets. The top 10
29 enriched transcription factors are shown for mutant and wild-type (panel 1 and 2). Ranked
30 transcription factor classes for the mutant and wild-type RNA-Seq significantly differential
31 datasets showing distinct classes of transcription factors in each cell-type.
32
33 481
34
35 482
36
37 483
38
39 484
40
41 485
42
43 486
44
45
46
47
48
49
50
51
52
53
54
55
56 487
57
58
59
60

Figure 4**A**

	Interaction proteome	Expression proteome	Transcriptome
Nodes	345	549	1633
Edges	2053	4186	6501

B**C**

488

489

27

490 **Figure 4 Network properties of proteomic and transcriptomic datasets**

491 (A) Summary of network properties from the integrated network constructed by integrating all
492 3 datasets with known protein-protein interactions. The table indicates the numbers of nodes
493 (protein/genes) and edges (relations between proteins) from each dataset integrated into the
494 combined network.

495 (B) Log-log plot of the degree distributions for nodes from each dataset (Number of
496 connections for protein nodes typically show interaction proteome > expression proteome >
497 transcriptome).

498 (C) Analysis of interaction (edge) types for each dataset indicate significant differences of
499 functional type of edges contributed to the integrated network.

Figure 5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A

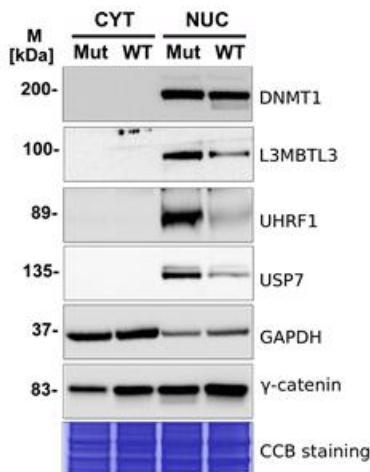
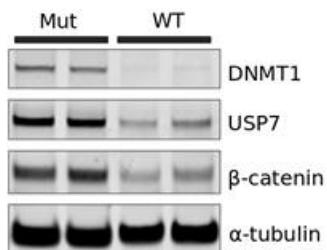
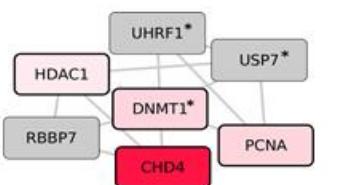
Non-canonical Wnt, JAK-STAT, Jun-Fos, BMP/TGF-Beta/SMAD, Canonical Wnt-associated, Chromatin/Epigenetic regulation, Epithelial/tissue remodelling, Adherens/tight junctions.

Legend: Interaction proteome, Transcriptome, Expression proteome, Multiple datasets. Combined Abundance Score: ← wild-type → mutant →

Key nodes include: WNT7A, DACT3, DAAM1, VANGL2, LRRKIP2, JAK2, STAT1, JAK1, STAT3, R81, HOXB4, RUVBL2, SUZ12, EZH2, HNRNPU, MSH2, L3MBTL3, CBX3, RUVBL1, CBX1, E2F8, HDAC1, HDAC4, RBBP4, E2F3, TCF7, AXIN2, FHL3, FOSL1, WNT16, CTNNB1, FRAT1, DKK, TCF7L2, FHL2, BMP4, SMAD4, BMPR1A, BAMBI, LEMD3, BMP6, LAMB3, SNAI1, MMP13, ELF3, LAMC2, CTNNA1, CLDN4, IQGAP1, CLDN7, CDH1, CDH3.

B

Key nodes include: DCUN1D1**, CAND1**, CUL3*, FBXO18*, SKP1**, CACYBP, CTNNB1**, CUL1*.




500

29

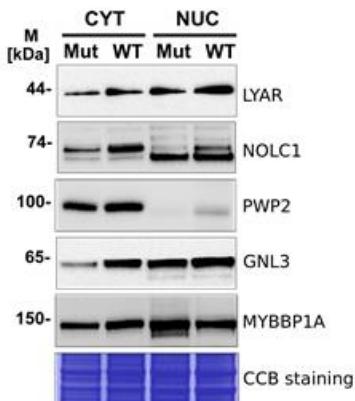
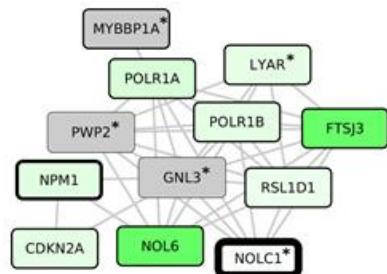


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

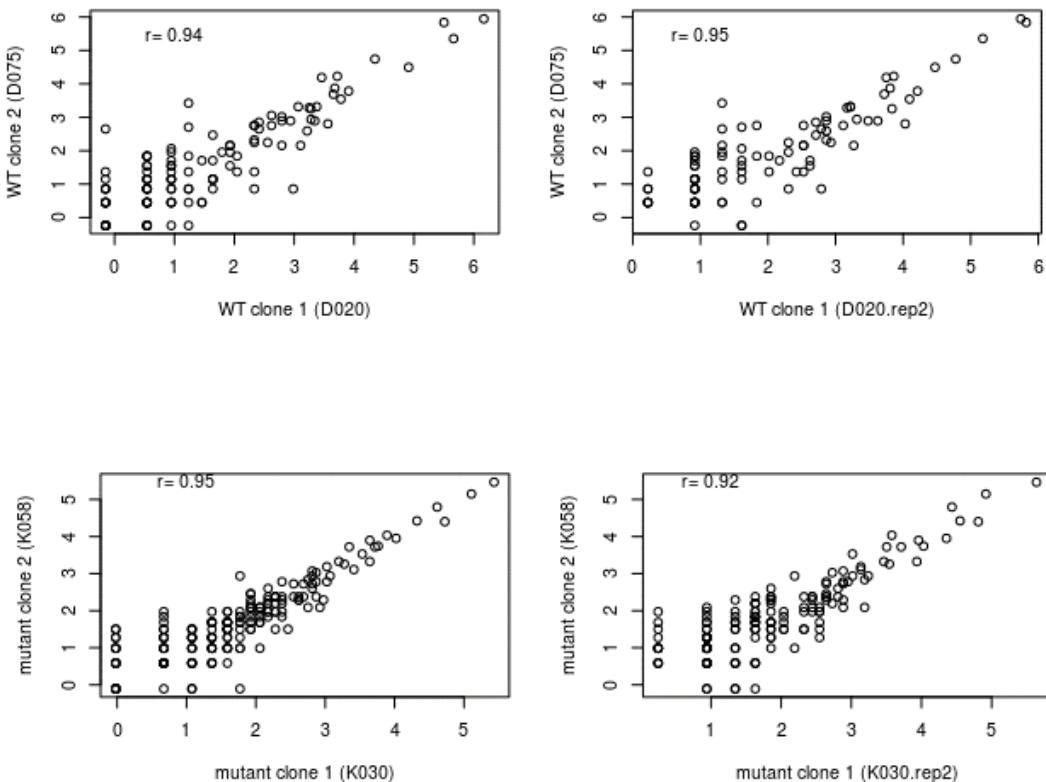
Figure 5 (cont'd)

C

D

501

502


30

503 **Figure 5 Integrated proteomic and transcriptomic functional modules.**504 (A) Selected functional modules from the integrated network. Edge thickness represents the
505 overall connectivity between modules (Normalized edge weights calculated as the total number
506 of edges divided by the number of genes/proteins in each module). Node (gene/protein) color
507 intensity indicates the combined abundance score (red = mutant; green = wild-type).508 (B) SCF (Skp-Cullin-F-box) associated protein network, showing proteins significantly (**
509 $p < 0.05$; * $p < 0.1$) abundant in interaction and expression proteome datasets.510 (C) DNA methyltransferase I (Dnmt1) associated protein network. Protein nodes marked with
511 an asterisk were also tested by immunoblotting as shown. Dnmt1, USP7 and β -catenin were
512 tested using immunoblotting on whole cell lysates from mutant and wild-type cells and
513 additional related interaction partners (UHRF1, L3MBTL3) analyzed by immunoblotting of
514 nuclear and cytosolic sub-cellular fractions from mutant and wild-type cells.515 (D) Western analysis of ribosome biogenesis associated protein network in sub-cellular
516 fractionated samples. Protein nodes marked with asterisk were also tested by immunoblotting
517 as shown in nuclear and cytosolic fractions from mutant and wild-type cells as in Figure 5C.

518

519

Supplementary Figure 1

520

Supplementary Figure 1


521 Protein abundance (log spectral count values) scatter plots and correlations for AP-MS analyses
522 of separate mutant and wild-type cell-line clones. Plots show proteins present in both compared
523 samples with proteins with high frequency in control samples excluded (upper left panel N=109
524 proteins; upper right panel N=105 proteins; lower left panel N=151 proteins; lower right panel
525 N=151 proteins).

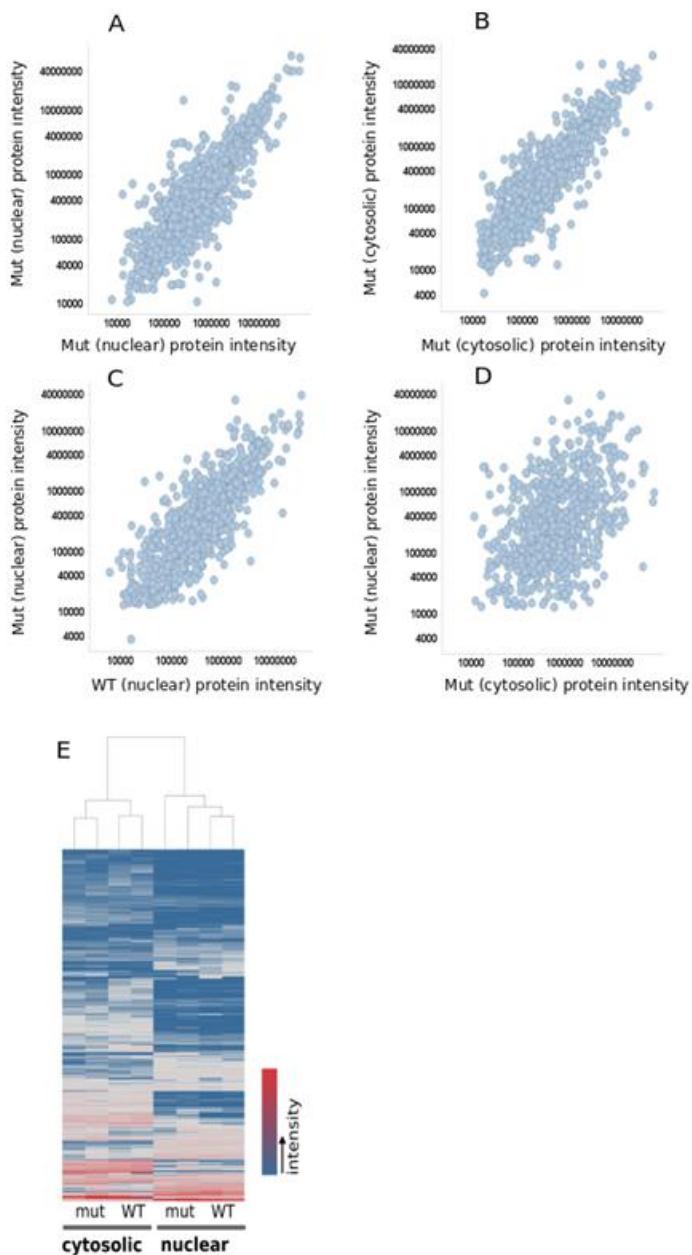
527

32

1
2
3 528
4
5
6 529
7
8
9

Supplementary Figure 2

30
31 530
32
33
34
35


531 Supplementary Figure 2

36 532 Correlation (left figure) and distribution (right) of Fragments Per Kilobase of exon per Million
37
38
39 533 reads (FPKM) values for mutant and wild-type RNA-Seq samples.

40
41
42
43
44
45 534
46
47
48
49
50
51
52
53
54
55
56 33
57
58
59
60

535

Supplementary Figure 3

536

34

537 **Supplementary Figure 3**

538 Exemplar protein intensity scatter plots (n=3272 proteins) of mutant and wild-type nuclear and
539 cytosolic expression profiling (A) Mutant nuclear vs Mutant nuclear (biological replicate), (B)
540 Mutant cytosolic vs Mutant cytosolic (biological replicate), (C) Mutant nuclear vs wild-type
541 nuclear and (D) Mutant nuclear vs Mutant cytosolic.
542 (E) Clustered heat map of protein abundance from expression proteome analysis (LC-MS/MS)
543 experiments from mutant (mut) and wild-type (WT) cytosolic or nuclear fractions.

544 **Supplementary Table 4a** Peptide list from expression proteomics experiments545 **Supplementary Table 4b** Peptide list from AP-MS proteomics experiments546 **Supplementary Table 4c** Protein and protein group list from expression proteomics
547 experiments548 **Supplementary Table 4d** Protein and protein group list from ap-ms proteomics experiments549 **Supplementary Table 5** Protein sequence database cross-referencing table for IPI human
550 v3.72

551

1
2
3 552
4
5 553 AUTHOR INFORMATION
6
7 554 Corresponding Author
8
9
10 555 * for correspondence: rob.ewing@soton.ac.uk
11
12
13
14 556 ACKNOWLEDGMENT
15
16
17 557 R.M.E and Z.W. acknowledge NCI award 1R21CA16006 that supported in part the work
18
19 558 described here. R.M.E acknowledges an EU Marie Curie FP7-PEOPLE-2012-CIG award. This
20
21 559 research was supported by the Genomics Core Facility of Case Western Reserve University
22
23
24 560 School of Medicine's Genetics and Genome Sciences Department.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 36
57
58
59
60

1
2
3 REFERENCES
4
5

6 (1) Clevers, H. Wnt/Beta-Catenin Signaling in Development and Disease. *Cell* **2006**, *127* (3),
7 469–480.

8 (2) Amit, S.; Hatzubai, A.; Birman, Y.; Andersen, J. S.; Ben-Shushan, E.; Mann, M.; Ben-
9 Neriah, Y.; Alkalay, I. Axin-Mediated CKI Phosphorylation of Beta-Catenin at Ser 45: A
10 Molecular Switch for the Wnt Pathway. *Genes Dev.* **2002**, *16* (9), 1066–1076.

11 (3) Morin, P. J.; Sparks, A. B.; Korinek, V.; Barker, N.; Clevers, H.; Vogelstein, B.; Kinzler,
12 K. W. Activation of Beta-Catenin-Tcf Signaling in Colon Cancer by Mutations in Beta-
13 Catenin or APC. *Science* **1997**, *275* (5307), 1787–1790.

14 (4) Valenta, T.; Hausmann, G.; Basler, K. The Many Faces and Functions of β -Catenin. *EMBO J.* **2012**, *31* (12), 2714–36.

15 (5) Angers, S.; Moon, R. T. Proximal Events in Wnt Signal Transduction. *Nat. Rev. Mol. Cell
16 Biol.* **2009**.

17 (6) Cadigan, K. M. TCFs and Wnt/ β -Catenin Signaling: More than One Way to Throw the
18 Switch. *Curr. Top. Dev. Biol.* **2012**, *98*, 1–34.

19 (7) Song, J.; Wang, Z.; Ewing, R. M. Integrated Analysis of the Wnt Responsive Proteome in
20 Human Cells Reveals Diverse and Cell-Type Specific Networks. *Mol. Biosyst.* **2014**, *10* (1),
21 45–53.

22 (8) Tian, Q. Proteomic Exploration of the Wnt/Beta-Catenin Pathway. *Curr Opin Mol Ther*
23 **2006**, *8* (3), 191–197.

24 (9) Gujral, T. S.; MacBeath, G. A System-Wide Investigation of the Dynamics of Wnt
25 Signaling Reveals Novel Phases of Transcriptional Regulation. *PLoS One* **2010**, *5* (4),
26 e10024.

27 (10) Hilger, M.; Mann, M. Triple SILAC to Determine Stimulus Specific Interactions in the Wnt
28 Pathway. *J Proteome Res* **2011**.

29 (11) Acebron, S. P.; Karaulanov, E.; Berger, B. S.; Huang, Y.-L.; Niehrs, C. Mitotic Wnt
30 Signaling Promotes Protein Stabilization and Regulates Cell Size. *Mol. Cell* **2014**, *54* (4),
31 663–674.

32 (12) Jho, E.; Zhang, T.; Domon, C.; Joo, C.-K.; Freund, J.-N.; Costantini, F. Wnt/Beta-
33 Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the
34 Signaling Pathway. *Mol Cell Biol* **2002**, *22* (4), 1172–1183.

35 (13) Niida, A.; Hiroko, T.; Kasai, M.; Furukawa, Y.; Nakamura, Y.; Suzuki, Y.; Sugano, S.;
36 Akiyama, T. DKK1, a Negative Regulator of Wnt Signaling, Is a Target of the [Beta]-
37 Catenin//TCF Pathway. *Oncogene* **2004**, *23* (52), 8520–8526.

38 (14) Chan, T. A.; Wang, Z.; Dang, L. H.; Vogelstein, B.; Kinzler, K. W. Targeted Inactivation
39 of CTNNB1 Reveals Unexpected Effects of Beta-Catenin Mutation. *Proc Natl Acad Sci U
40 A* **2002**, *99* (12), 8265–8270.

41 (15) Song, J.; Hao, Y.; Du, Z.; Wang, Z.; Ewing, R. M. Identifying Novel Protein Complexes in
42 Cancer Cells Using Epitope-Tagging of Endogenous Human Genes and Affinity-
43 Purification Mass Spectrometry. *J. Proteome Res.* **2012**, *11* (12), 5630–41.

44 (16) Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R. A Statistical Model for Identifying
45 Proteins by Tandem Mass Spectrometry. *Anal Chem* **2003**, *75* (17), 4646–58.

46 (17) Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S. L. TopHat2:
47 Accurate Alignment of Transcriptomes in the Presence of Insertions, Deletions and Gene
48 Fusions. *Genome Biol.* **2013**, *14*, R36.

1
2
3 (18) Anders, S.; Pyl, P. T.; Huber, W. HTSeq—a Python Framework to Work with High-
4 Throughput Sequencing Data. *Bioinformatics* **2015**, *31* (2), 166–169.
5 (19) Balbin, O. A.; Prensner, J. R.; Sahu, A.; Yocum, A.; Shankar, S.; Malik, R.; Fermin, D.;
6 Dhanasekaran, S. M.; Chandler, B.; Thomas, D.; et al. Reconstructing Targetable Pathways
7 in Lung Cancer by Integrating Diverse Omics Data. *Nat. Commun.* **2013**, *4*.
8 (20) Chen, E. Y.; Tan, C. M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G. V.; Clark, N. R.;
9 Ma'ayan, A. Enrichr: Interactive and Collaborative HTML5 Gene List Enrichment Analysis
10 Tool. *BMC Bioinformatics* **2013**, *14*, 128.
11 (21) Kwon, A. T.; Arenillas, D. J.; Worsley Hunt, R.; Wasserman, W. W. oPOSSUM-3:
12 Advanced Analysis of Regulatory Motif over-Representation across Genes or ChIP-Seq
13 Datasets. *G3 Bethesda Md* **2012**, *2* (9), 987–1002.
14 (22) Zhao, M.; Sun, J.; Zhao, Z. TSGene: A Web Resource for Tumor Suppressor Genes. *Nucleic*
15 *Acids Res.* **2013**, *41* (D1), D970–D976.
16 (23) Chen, J.-S.; Hung, W.-S.; Chan, H.-H.; Tsai, S.-J.; Sun, H. S. In Silico Identification of
17 Oncogenic Potential of Fyn-Related Kinase in Hepatocellular Carcinoma. *Bioinforma. Oxf. Engl.* **2013**, *29* (4), 420–427.
18 (24) Lin, S. Y.; Xia, W.; Wang, J. C.; Kwong, K. Y.; Spohn, B.; Wen, Y.; Pestell, R. G.; Hung,
19 M. C. Beta-Catenin, a Novel Prognostic Marker for Breast Cancer: Its Roles in Cyclin D1
20 Expression and Cancer Progression. *Proc. Natl. Acad. Sci. U. S. A.* **2000**, *97* (8), 4262–4266.
21 (25) Herbst, A.; Jurinovic, V.; Krebs, S.; Thieme, S. E.; Blum, H.; Göke, B.; Kolligs, F. T.
22 Comprehensive Analysis of β -Catenin Target Genes in Colorectal Carcinoma Cell Lines
23 with Deregulated Wnt/ β -Catenin Signaling. *BMC Genomics* **2014**, *15*, 74.
24 (26) Mokry, M.; Hatzis, P.; Schuijers, J.; Lansu, N.; Ruzius, F.-P.; Clevers, H.; Cuppen, E.
25 Integrated Genome-Wide Analysis of Transcription Factor Occupancy, RNA Polymerase II
26 Binding and Steady-State RNA Levels Identify Differentially Regulated Functional Gene
27 Classes. *Nucleic Acids Res.* **2012**, *40* (1), 148–158.
28 (27) Buck, A.; Buchholz, M.; Wagner, M.; Adler, G.; Gress, T.; Ellenrieder, V. The Tumor
29 Suppressor KLF11 Mediates a Novel Mechanism in Transforming Growth Factor Beta-
30 Induced Growth Inhibition That Is Inactivated in Pancreatic Cancer. *Mol. Cancer Res. MCR*
31 **2006**, *4* (11), 861–872.
32 (28) Ghaleb, A. M.; Elkarim, E. A.; Bialkowska, A. B.; Yang, V. W. KLF4 Suppresses Tumor
33 Formation in Genetic and Pharmacological Mouse Models of Colonic Tumorigenesis. *Mol.*
34 *Cancer Res. MCR* **2016**.
35 (29) Zhao, W.; Hisamuddin, I. M.; Nandan, M. O.; Babbin, B. A.; Lamb, N. E.; Yang, V. W.
36 Identification of Krüppel-like Factor 4 as a Potential Tumor Suppressor Gene in Colorectal
37 Cancer. *Oncogene* **2004**, *23* (2), 395–402.
38 (30) Zhang, W.; Chen, X.; Kato, Y.; Evans, P. M.; Yuan, S.; Yang, J.; Rychahou, P. G.; Yang,
39 V. W.; He, X.; Evers, B. M.; et al. Novel Cross Talk of Kruppel-like Factor 4 and Beta-
40 Catenin Regulates Normal Intestinal Homeostasis and Tumor Repression. *Mol. Cell. Biol.*
41 **2006**, *26* (6), 2055–2064.
42 (31) Evans, P. M.; Chen, X.; Zhang, W.; Liu, C. KLF4 Interacts with Beta-Catenin/TCF4 and
43 Blocks p300/CBP Recruitment by Beta-Catenin. *Mol. Cell. Biol.* **2010**, *30* (2), 372–381.
44 (32) Shah, M.; Rennoll, S. A.; Raup-Konsavage, W. M.; Yochum, G. S. A Dynamic Exchange
45 of TCF3 and TCF4 Transcription Factors Controls MYC Expression in Colorectal Cancer
46 Cells. *Cell Cycle Georget. Tex* **2015**, *14* (3), 323–332.
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(33) Gonzalez, D. M.; Medici, D. Signaling Mechanisms of the Epithelial-Mesenchymal Transition. *Sci. Signal.* **2014**, 7 (344), re8.

(34) Pierce, N. W.; Lee, J. E.; Liu, X.; Sweredoski, M. J.; Graham, R. L. J.; Larimore, E. A.; Rome, M.; Zheng, N.; Clurman, B. E.; Hess, S.; et al. Cand1 Promotes Assembly of New SCF Complexes Through Dynamic Exchange of F-Box Proteins. *Cell* **2013**, 153 (1), 206–215.

(35) Song, J.; Du, Z.; Ravasz, M.; Dong, B.; Wang, Z.; Ewing, R. M. A Protein Interaction between -Catenin and Dnmt1 Regulates Wnt Signaling and DNA Methylation in Colorectal Cancer Cells. *Mol. Cancer Res.* **2015**, 13 (6), 969–981.

(36) Du, Z.; Song, J.; Wang, Y.; Zhao, Y.; Guda, K.; Yang, S.; Kao, H.-Y.; Xu, Y.; Willis, J.; Markowitz, S. D.; et al. DNMT1 Stability Is Regulated by Proteins Coordinating Deubiquitination and Acetylation-Driven Ubiquitination. *Sci Signal* **2010**, 3 (146), ra80.

(37) Qin, W.; Leonhardt, H.; Pichler, G. Regulation of DNA Methyltransferase 1 by Interactions and Modifications. *Nucl. Austin Tex* **2011**, 2 (5), 392–402.

(38) Stott, F. J.; Bates, S.; James, M. C.; McConnell, B. B.; Starborg, M.; Brookes, S.; Palmero, I.; Ryan, K.; Hara, E.; Vousden, K. H.; et al. The Alternative Product from the Human CDKN2A Locus, p14(ARF), Participates in a Regulatory Feedback Loop with p53 and MDM2. *EMBO J.* **1998**, 17 (17), 5001–5014.

(39) Tsai, R. Y. L. Turning a New Page on Nucleostemin and Self-Renewal. *J. Cell Sci.* **2014**, 127 (Pt 18), 3885–3891.

(40) Ewing, R. M.; Chu, P.; Elisma, F.; Li, H.; Taylor, P.; Climie, S.; McBroom-Cerajewski, L.; Robinson, M. D.; O'Connor, L.; Li, M.; et al. Large-Scale Mapping of Human Protein-Protein Interactions by Mass Spectrometry. *Mol. Syst. Biol.* **2007**, 3, 89.

(41) Kikuchi, A.; Yamamoto, H.; Sato, A.; Matsumoto, S. Wnt5a: Its Signalling, Functions and Implication in Diseases. *Acta Physiol.* **2012**, 204 (1), 17–33.

(42) van Amerongen, R.; Fuerer, C.; Mizutani, M.; Nusse, R. Wnt5a Can Both Activate and Repress Wnt/β-Catenin Signaling during Mouse Embryonic Development. *Dev. Biol.* **2012**, 369 (1), 101–114.

(43) Ying, J.; Li, H.; Yu, J.; Ng, K. M.; Poon, F. F.; Wong, S. C. C.; Chan, A. T. C.; Sung, J. J. Y.; Tao, Q. WNT5A Exhibits Tumor-Suppressive Activity through Antagonizing the Wnt/Beta-Catenin Signaling, and Is Frequently Methylated in Colorectal Cancer. *Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.* **2008**, 14 (1), 55–61.

(44) Dejmek, J. Wnt-5a Protein Expression in Primary Dukes B Colon Cancers Identifies a Subgroup of Patients with Good Prognosis. *Cancer Res.* **2005**, 65 (20), 9142–9146.

(45) Novellasdemunt, L.; Foglizzo, V.; Cuadrado, L.; Antas, P.; Kucharska, A.; Encheva, V.; Snijders, A. P.; Li, V. S. W. USP7 Is a Tumor-Specific WNT Activator for APC-Mutated Colorectal Cancer by Mediating β-Catenin Deubiquitination. *Cell Rep.* **2017**, 21 (3), 612–627.

(46) Baylin, S. B.; Herman, J. G.; Graff, J. R.; Vertino, P. M.; Issa, J. P. Alterations in DNA Methylation: A Fundamental Aspect of Neoplasia. *Adv. Cancer Res.* **1998**, 72, 141–196.

(47) Acebron, S. P.; Niehrs, C. β-Catenin-Independent Roles of Wnt/LRP6 Signaling. *Trends Cell Biol.*

(48) Joyce, A. R.; Palsson, B. Ø. The Model Organism as a System: Integrating “Omics” Data Sets. *Nat. Rev. Mol. Cell Biol.* **2006**, 7 (3), 198–210.