
UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Speeding Up GDL-Based Distributed Constraint Optimization

Algorithms in Cooperative Multi-Agent Systems

by

Md. Mosaddek Khan

A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy

April 2018

mailto:mmk1g14@soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Doctor of Philosophy

SPEEDING UP GDL-BASED DISTRIBUTED CONSTRAINT OPTIMIZATION

ALGORITHMS IN COOPERATIVE MULTI-AGENT SYSTEMS

by Md. Mosaddek Khan

Coping with an increasing number of agents, tasks and/or resources in a complex envi-

ronment poses an onerous challenge for coordination algorithms that are developed to

process constraints in multi-agent systems. In particular, Distributed Constraint Op-

timization Problems (DCOPs) are a widely studied constraint handling framework for

coordinating interactions in cooperative multi-agent systems. For the past decade, a

number of algorithms have been developed to solve DCOPs, and they have been applied

to many real world applications. However, it is often observed that the outcome ob-

tained from such algorithms becomes outdated or unusable as the optimization process

takes too much time. The issue of taking too long to complete the internal operation

of a DCOP algorithm is even more severe and commonplace as the system becomes

larger. This, in turn, limits the practical scalability of such algorithms. In effect, an

optimization algorithm can eventually handle larger systems if the completion time can

be minimized. However, it is difficult to maintain the quality of solution and generic

applicability whilst minimizing the completion time.

In this thesis, we investigate techniques that have been used to solve DCOPs and exam-

ine their efficacy in light of the above mentioned observation. Specifically, we identify

that Generalized Distributive Law (GDL) based inference algorithms have a number of

axiomatic benefits, and as such, are suited to deploy in practical multi-agent settings.

However, scalability remains a widely acknowledged challenge for these algorithms ow-

ing to a number of potentially expensive phases. In the multi-agent systems literature,

several attempts have sought to improve the scalability of GDL-based algorithms by

typically speeding up one of the expensive phases of existing approaches. However,

most of them focus on a specific application domain, and therefore cannot be applied

to general DCOP settings. Although a few studies have been conducted to speed-up

GDL-based algorithms for general settings, they typically experience lack of consis-

tency in their performance.

Against this background, the central problem that this thesis aims to address is of

speeding up GDL-based DCOP algorithms, so that they can be applied to general

DCOP settings without compromising on solution quality. To accomplish this objec-

tive, we determine three of the expensive phases of such algorithms, then speed them

up independently. Firstly, the maximization operation – which a GDL-based algorithm

performs repetitively during its optimization process. Notably, each of these operates

on a search space that grows exponentially with either, or both, of the corresponding

constraint function’s arity and its associated variables’ domain size. Consequently, this

particular phase has been considered as one of the main reasons GDL-based algorithms

mailto:mmk1g14@soton.ac.uk

iv

can be computationally infeasible in practice, which eventually incurs delay in producing

the final outcome of these algorithms. To overcome this challenge, we develop a generic

domain pruning technique so that the corresponding maximization operator can act

upon a significantly reduced search space of 33% to 81%. Moreover, we theoretically

prove that the pruned search space obtained by our approach does not affect the outcome

of the algorithms.

Secondly, GDL-based algorithms follow the Standard Message Passing (SMP) protocol

to exchange messages among the nodes of a corresponding graphical representation of

a DCOP. We identify that this incurs a signicant delay in the form of average waiting

time for agents to attain the ultimate outcome. Building on this insight, we advance

the state-of-the-art by developing a new way of speeding up GDL-based message pass-

ing algorithms. In particular, we propose a new cluster-based generic message passing

protocol that minimizes the completion time of GDL-based algorithms by replacing the

SMP protocol. To elaborate further, our approach utilizes partial decentralization and

combines clustering with domain pruning. It also uses a regression method to determine

the appropriate number of clusters for a given scenario. We empirically evaluate the per-

formance of our proposed method in different possible settings, and find that it brings

down the completion time by around 37 − 85% (1.6 − 6.5 times faster) for 100 − 900

nodes and by around 47− 91% (1.9− 11 times faster) for 3000− 10000 nodes, compared

to the current state-of-the-art.

Finally, the conventional DCOP model assumes that the sub-problem that each agent

is responsible for (i.e. the mapping of nodes in the constraint graph to agents) is part

of the model description. While this assumption is often reasonable, there are many

applications where there is some flexibility in making this assignment. Specifically, we

recognise that a poor mapping can increase an algorithm’s completion time in a signifi-

cant manner, and that finding an optimal mapping is an NP-hard problem. In the wake

of this trade-off, we propose a new time-efficient heuristic to determine a near-optimal

mapping of nodes to the participating agents of a DCOP. As a pre-processing step, it

works prior to executing the optimization process of a GDL-based algorithm, and can

be executed in a centralized or a decentralized manner, depending on the applications’

suitability. We empirically demonstrate that it performs at a level of around 90%−100%

of the optimal mapping. Our results also show a speed-up of 16%−40% when compared

with the state-of-the-art. This means that a GDL-based algorithm can perform 1.2−1.7

times faster when using node-to-agent mapping obtained by our method. When taken

together, the contributions presented in this thesis signify advancement in the state-of-

the art of GDL-based DCOP algorithms, in terms of their scalability and applicability,

by speeding up their optimization process.

Contents

Declaration of Authorship xv

Acknowledgements xvii

Nomenclature xix

Acronyms xxiii

1 Introduction 1

1.1 Distributed Constraint Optimization in Cooperative Multi-Agent Systems 4

1.2 Research Contributions . 7

1.3 Thesis Outline . 9

2 Literature Review 11

2.1 Distributed Constraint Optimization Problems 11

2.2 Graphical Representations of DCOPs . 13

2.2.1 Depth First Search Tree . 13

2.2.2 Junction Tree . 15

2.2.3 Factor Graph . 16

2.3 Exact DCOP Algorithms . 17

2.3.1 Search-Based Exact Algorithms 17

2.3.2 The Generalized Distributive Law (GDL) Framework 19

2.3.3 GDL-Based Exact Algorithms . 20

2.3.3.1 DPOP and Its Variants 20

2.3.3.2 Action GDL . 22

2.4 Non-Exact DCOP Algorithms . 22

2.4.1 Local Greedy Non-Exact Algorithms 23

2.4.2 GDL-Based Non-Exact Algorithms 25

2.4.2.1 The Max-Sum Algorithm 25

2.4.2.2 The Bounded Max-Sum Algorithm 27

2.5 Speeding Up GDL-Based DCOP Algorithms 29

2.5.1 Constraint Graph Formation . 29

2.5.2 Maximization Operation . 29

2.5.3 Message Passing Process . 32

2.5.4 Node-to-Agent Mapping . 32

2.6 Summary . 33

3 Speeding Up the Maximization Operation 37

v

vi CONTENTS

3.1 Problem Description . 38

3.2 The Generic Domain Pruning Technique 40

3.3 Theoretical Analysis . 44

3.4 Empirical Evaluation . 46

3.5 Summary . 51

4 Speeding Up the Message Passing Process 53

4.1 Problem Description . 54

4.2 The Parallel Message Passing Protocol . 57

4.2.1 Algorithm Overview . 58

4.2.2 Cluster Formation and Message Passing 60

4.2.3 Intermediate Step . 63

4.2.4 Comparative Example . 70

4.3 Empirical Evaluation . 73

4.4 Approximating the Appropriate Number of Clusters for a DCOP 81

4.4.1 Determining the Appropriate Number of Clusters 82

4.4.2 Empirical Evaluation . 85

4.5 Summary . 88

5 Speeding Up via Efficient Node-to-Agent Mapping 89

5.1 Problem Formulation . 90

5.2 The MNA Heuristic . 93

5.2.1 Centralized Version of MNA . 94

5.2.2 Decentralized Version of MNA . 98

5.3 Empirical Evaluation . 99

5.4 Summary . 105

6 Conclusions and Future Work 107

6.1 Conclusions . 107

6.2 Future Work . 110

Bibliography 113

List of Figures

2.1 A sample constraint graph representation of a DCOP, with four variable
nodes {x0, x1, x2, x3} being held by four agents {A1, A2, A3, A4}. In the
figure, variables are denoted by circles and agents are octagons. 13

2.2 Constraint graph of Figure 2.1 arranged as a DFS-tree. 14

2.3 Constraint graph of Figure 2.1 arranged as a junction tree. Here, the
intersection of any two nodes remain as a subset of a node in the path
of those two nodes. For example, {x2} remains in the path of the nodes
{x0, x2} and {x1, x2}. Moreover, if the tree is projected onto any variable,
such as x1, it yields a tree as well. 15

2.4 A sample factor graph representation of the constraint graph of Figure 2.1.
In the figure, variables are denoted by circles, factors are squares and
agents are octagons. 16

3.1 In the figure, the same factor graph shown in Figure 2.4 is used to high-
light (i.e. grey arrows) the factor-to-variable messages of GDL-based al-
gorithms, each of which requires the maximization operation to be per-
formed. 39

3.2 Worked example of GDP in computing a factor-to-variable message, F1

to x3 or RF1→x3(x3), within the factor graph shown in Figure 3.1. In this
example, for simplicity, we show that part of the original factor graph
which is necessary for this particular message computation. In the figure,
red, blue and green coloured values are used to distinguish the domain
states R, B and G respectively for each of the variables involved in the
computation, and arrows between the nodes of the factor graph are used
to indicate the direction of the corresponding messages. 42

3.3 Empirical results: GDP vs G-FBP− for the factor graph (sparse) repre-
sentations of different instances of the graph colouring problem. Error
bars are calculated using standard error of the mean. 48

3.4 Empirical results: GDP vs G-FBP− for the factor graph (dense) repre-
sentations of different instances of the graph colouring problem. Error
bars are calculated using standard error of the mean. 49

3.5 Comparative cost of GDP and G-FBP in terms of their runtime on top
of the maximization operator. Error bars are calculated using standard
error of the mean. 51

4.1 Worked example of SMP on a sample factor graph representation of a
DCOP. In the factor graph, each of the tables represents the corresponding
local utility of a function for domain {R,B}. The values within a curly
bracket represent a message computed based on these local utilities, and
each arrow indicates the sending direction of the message. 56

vii

viii LIST OF FIGURES

4.2 Worked example of PMP (participating clusters: first round - (c1, c3)
and second round - (c1, c2, c3)) on the same factor graph and local utility
as Figure 4.1. In this figure, blue circles represent split variables for
each cluster and coloured messages show the ignored values (ignV al())
recovered during the intermediate step, where yellow messages require
synchronous computations but green underlined ones are ready after the
first round. 62

4.3 Single computation within the intermediate step. In the figure, directed
dashed arrows indicate the dependent messages to generate the desired
message from F8 to x0 or F8 to F7 (directed straight arrows). 65

4.4 Worked example of domain pruning during the intermediate step of PMP.
In this example, red and blue colours are used to distinguish the domain
state R and B while performing the domain pruning. 69

4.5 Comparative example of SMP (top) and PMP (bottom), in terms of
completion time, based on the factor graph shown in Figure 4.1. In the
figure, each edge weight within a first parentheses represents the time
required to compute and transmit a message from a node to its corre-
sponding neighbouring node. For instance, the edge weight from F0 to x0
in SMP is (136−150)ms. That means, F0 starts computing a message for
x0 after 135ms of initiating the message passing process, and the receiving
node x0 receives the message after 150ms. 71

4.6 Completion time: Standard Message Passing (Number of Cluster=1);
Parallel Message Passing (Number of Cluster >1) for the experimental
setting, E1: (Tp1 > Tp2 AND Tp1 ≈ Tcm). 74

4.7 Completion time: Standard Message Passing (Number of Cluster=1);
Parallel Message Passing (Number of Cluster >1) for the experimental
setting, E2: (Tp1 � Tp2 AND Tp1 � Tcm). 76

4.8 Completion time: Standard Message Passing (Number of Cluster=1);
Parallel Message Passing (Number of Cluster >1) for the experimental
setting, E3: (Tp1 � Tp2 AND Tp1 > Tcm). 77

4.9 Completion time: Standard Message Passing (Number of Cluster=1);
Parallel Message Passing (Number of Cluster >1) for the experimental
setting, E4: (Tp1 � Tp2 AND Tp1 ≈ Tcm). 78

4.10 Completion time: Standard Message Passing (Number of Cluster=1);
Parallel Message Passing (Number of Cluster >1) for the experimental
setting, E5: (Tp1 ≈ Tp2 AND Tp1 ≈ Tcm). 79

4.11 Completion time: Standard Message Passing (Number of Cluster=1);
Parallel Message Passing (Number of Cluster >1) for the experimental
setting, E6: (Tp1 ≈ Tp2 AND Tp1 � Tcm). 79

4.12 Completion time: Standard Message Passing (Number of Cluster=1);
Parallel Message Passing (Number of Cluster >1) for the experimental
setting, E7: (Tp1 ≈ Tp2 AND Tp1 < Tcm). 80

4.13 Total number of messages: SMP vs PMP. 81

4.14 Empirical performance of PMP vs SMP running on two GDL-based al-
gorithms. Error bars are calculated using standard error of the mean. . . 86

5.1 Two sample mappings of nodes {A,B,C,D,E} of a constraint graph
to agents A1 and A2. In the figure, nodes are denoted by circles and
agents as octagons. 91

LIST OF FIGURES ix

5.2 Event-based dependency graph for the constraint graph of Figure 5.1. . . 92

5.3 Empirical results for different instances of the constraint graphs with the
number of nodes and the number of agents ratio: (2−12). Error bars are
calculated using standard error of the mean. 101

5.4 Differences in Decentralized MNA’s performance as opposed to central-
ized MNA for different values of l (i.e. path distance). The reported
results are calculated by taking average of 20 randomly generated con-
straint graphs based on the same setting as the centralized version. Error
bars are calculated using standard error of the mean. 103

5.5 Comparative runtime to obtain the node-to-agent mapping: MNA vs
Optimal. 104

List of Tables

4.1 Sample training data from Figures 4.6 − 4.12. 83

4.2 Predicted number of clusters by applying the straight-line linear regres-
sion (Equations 4.20− 4.22) on the training data of Table 4.1. 84

4.3 Performance gain of PMP using the linear regression method compared
to the highest possible gain from PMP. 85

xi

List of Algorithms

1 Algorithm for computing BnB-MS domain pruning message from function

Fj to variable xi. 30

2 Generic Domain Pruning- GDP(Fj(xj), xi, Mxj\xi
) 41

3 Overview of the SMP protocol on a factor graph 55

4 Overview of the PMP protocol on a factor graph 58

5 Parallel Message Passing . 61

6 intermediateStep(Cluster ci) . 64

7 Domain pruning to compute DFj→Fp(xi) in intermediate step of PMP . . 68

8 MNA (G, η, A, A) . 95

9 minDistance(G, ηi, λ, uniformV al) . 96

xiii

Declaration of Authorship

I, Md. Mosaddek Khan, declare that the thesis entitled Speeding Up GDL-Based Dis-

tributed Constraint Optimization Algorithms in Cooperative Multi-Agent Systems and

the work presented in the thesis are both my own, and have been generated by me as

the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published in a number of conference and journal

papers (see Section 1.2 for a list).

Signed: .

Date: .

xv

Acknowledgements

I would like to thank everyone who supported and encouraged me during my PhD. First

and foremost, I want to thank my supervisors, Nicholas R. Jennings and Long Tran-

Thanh, for their relentless support, encouragement, guidance and expertise. Thanks a

lot for dedicating a tremendous amount of time during our weekly meetings, as well as

in correcting my writings. Finally, I am incredibly grateful for the opportunity they

have provided me to pursue my PhD at the School of Electronics and Computer Science

in University of Southampton. I would like to thank my co-authors, William Yeoh and

Sarvapali Ramchurn, for their invaluable technical guidance. I would also like to thank

my examiners, Timothy J. Norman and Alessandro Farinelli, for making my viva and

thesis finalisation an enriching experience.

Thanks to everybody from the AIC lab who have extended their support to keep me stay

on track, and also for providing necessary distractions and different perspectives, during

various phases of my PhD. I owe special thanks to Olabambo Oluwasuji, Zoltan Beck,

Nhat Truong, Ibrahem Almansour, Radu Pruna, Alper Turan, Alexandry Augustin,

Edoardo Manino and Henry Truong Ngoc Cuong for being so helpful.

I gratefully acknowledge the financial support provided by ECS, University of Southamp-

ton. I also acknowledge the use of the IRIDIS High Performance Computing Facility,

and associated support services at the University of Southampton, in the completion of

some of my experiments.

Last but not the least, I have received enormous support from my family. My parents

and my two sisters have always given me love and encouragement. Specially, I would not

be in this phase of my academic life without my father’s stimulation and my mother’s

sacrifice. Thanks to my lovely wife Nishe for tolerating me during this journey, and

for picking me up when I am down. I would be lost without you. To my beloved two-

year-old daughter Nameera, thanks for being such a good girl – always cheering me up.

Above all, I thank my almighty Allah for letting me through all the difficulties.

xvii

Nomenclature

A A set of cooperating agents in a DCOP

Ai A single agent in A

X A set of variables in a DCOP

xi A single variable in X

D The set of discrete and finite variable domains

Di The domain of variable xi

di Domain size of variable xi

d Domain size of all the variables when di−d′i = 0 for all di and d′i
F The set of constraint functions/factors in a DCOP

Fi A single constraint function in F

xi The subset of X associated with the function Fi

S The set of states corresponding to the domains of xj

si A single state in S
G A constraint graph corresponding to a DCOP

Gj A sub-graph of G

FG A factor graph representation of G

η The set of variable (and function) nodes in G or FG

n The arity of a function node Fi in FG (i.e. n = |xi|)

δ The node-to-agent mapping function within a DCOP

U, V Cliques of a junction tree

K A set stands for a commutative semiring

Qxi→Fj (xi) A variable to function message in the GDL framework

RFj→xi(xi) A function to variable message in the GDL framework

Zi(xi) Generated local objective function in the GDL framework

wij The weight that defines the maximum impact of an edge be-

tween xj and Fi in a factor graph

V ∗ The optimal solution from a factor graph

Ṽ The approximate solution obtained from the transformed acyclic

factor graph

tj A single task in the formulation of task allocation used by FMS

Iij(xi) An indicator function that relates a variable xi to a task

Mi The set of function nodes connected to xi in a factor graph

xix

xx Nomenclature

Nj The set of variable nodes connected to Fj in a factor graph

Mxj\xi
Received messages by a function node Fj from all of its neigh-

bouring variable nodes xj , other than xi in a factor graph

n The total number of received messages by Fj (i.e. n = |Mxj\xi
|)

m The summation of the maximum values of each of the n mes-

sages of Mxj\xi

Vi The array of sorted values of si

p The maximum value of Vi
b The summation of the corresponding values of p from the in-

coming n messages of Fj

t The subtraction of b from m

q The minimum value of the proposed range within Vi
iNodes The variable and function nodes of FG that are connected to

minimum number of neighbours

iNodesci The variable and function nodes of cluster ci that are connected

to minimum number of neighbours

pNodes The variable and function nodes of FG that are permitted to

generate and send a message at a certain time

pNodes.pNeighbours The permitted neighbours of pNodes in FG

Am.iNodes The agents Am that act on behalf of iNodes

A′m.pNodes The agents A′m that act on behalf of pNodes

iNodes.allNeighbours All the neighbours of iNodes

generatedMessages All GDL messages generated at a certain time

T The completion time of a GDL-based algorithm

Tsmp The completion time of a GDL-based algorithm following the

SMP protocol

Tpmp The completion time of a GDL-based algorithm following the

PMP protocol

Tintm The time required to complete the intermediate step of PMP

NF The number of function nodes in FG

NC The number of clusters.

ci A single cluster.

clargest The largest cluster

N The maximum number of function nodes per cluster.

firstFunction the cluster initiator function node.

Ac The agent that holds the firstFunction.

iNodesci The variable and function nodes of cluster ci that are connected

to minimum number of neighbours

min nFunction(F) Returns the functions which share variables with only one neigh-

bouring function nodes.

CH The set of cluster heads

Nomenclature xxi

ch1 A single cluster in CH
ci.member() The set of member function nodes of cluster ci

adj(node) The neighbouring function node

SN The set clusters having only one neighbouring cluster each

∀Q(ci) All variable-to-function messages within cluster ci

∀R(ci) All function-to-variable messages within cluster ci

QignEdge(ci) Edges of ci that are ignored during the cluster formation process

S The set of split nodes in ci

Si The single split node in S
DFj→Fp(xi) Single computation within the intermediate step of PMP.

dCountci Number of neighbouring clusters of ci

DG(Sj) The dependent acyclic graph for split node Sj
Sj .values The recovered ignored values for split node Sj
Mr The message shared by the participating clusters of the first

round of PMP.

Tp1 Average time to compute a function-to-variable message within FG

Tp2 Average time to compute a variable-to-function message within FG

Tcm Average time to transmit a message between nodes of FG

E1, E2, . . . , E7 Seven different experimental settings to evaluate PMP as op-

posed to SMP

W0,W1 The regression coefficients.

X The independent or predictor variable.

Y The dependent or response variable.

D The set of training data for the regression analysis.

A A deployed message passing DCOP algorithm

EG(A, P) Event-based dependency graph based on A and P

Ei A single event in EG

υ(Ei, Ej) The duration between the starting of Ei and the end of Ej .

Ei A single event in EG

T (A, P) The total completion time of A based on P

deg(ηi) The number of connected neighbours of node ηi in G

k The number of agents participating in the optimization process

N The number of nodes in G

uniformV al the ratio of N and k in G

λ The set of control points in G

λi A single control point in λ

cap(Aj) The computational capability/processing power of agent Aj

l Non-weighted path distance between two nodes of G

Acronyms

MAS Multi-Agent Systems

DCSP Distributed Constraint Satisfaction Problem

DCOP Distributed Constraint Optimization Problem

GDL Generalized Distributive Law

SMP Standard Message Passing

PMP Parallel Message Passing

BMS Bounded Max-Sum

FMS Fast Max-Sum

DFS Depth First Search

BFS Breadth First Search

NP Nondeterministic Polynomial time

ADOPT Asynchronous Distributed OPTimization

BnB Branch and Bound

OptAPO Optimal Asynchronous Partial Overlay

DPOP Distributed Pseudotree Optimization Procedure

PC-DPOP Partially Centralized Distributed Pseudotree Optimization Procedure

MB-DPOP Memory Bounded Distributed Pseudotree Optimization Procedure

A-DPOP Approximate Distributed Pseudotree Optimization Procedure

DJTG Distributed Junction Tree Generator

DSA Distributed Stochastic Algorithm

MGM Maximal Gain Message

xxiii

xxiv Acronyms

DBA Distributed Breakout Algorithm

GHS Gallager, Humblet and Spira

BnB-MS Branch and Bound Max-Sum

BnB-FMS Branch and Bound Fast Max-Sum

BFMS Bounded Fast Max-Sum

MNA Node-to-Agent Mapping

G-FBP Generalized Fast Belief Propagation

GDP Generic Domain Pruning

SECP Smart Environment Configuration Problem

UAV Unmanned Aerial Vehicle

GPU Graphics Processing Unit

GP-GPU General Purpose Graphics Processing Unit

Chapter 1

Introduction

Advances in technologies in recent years have triggered a significant growth in the use

of intelligent physical devices (e.g. robots, wireless sensors, smart home appliances and

unmanned aerial vehicles) in a broad range of application domains. These applications

range from disaster response, climate research, military operations to industry/home

and security arrangements (Jarvis et al., 2013). The varied nature of the applications

reflects the diversity of the intelligent devices in terms of their capabilities, as well as

their interactions with intelligent human operatives. In many of these situations, each

of the individual intelligent entities, often referred to as an autonomous agent, needs

to work with others as a team, rather than act on their own in order to achieve their

individual goals, towards increasing the performance of the whole system (Jennings &

Wooldridge, 1995). Thus, a number of cooperating agents with different capabilities

form a multi-agent system (MAS) that can be deployed to accomplish a global objec-

tive. In such situations, an individual agent may need to take decisions that affect the

performance of other agents within the MAS. Therefore, to obtain the best possible out-

come from a system perspective, an effective coordination strategy that leads the agents

to perform coordinated actions by considering their joint choices is crucial. To achieve

this objective, significant attention has been given by the MAS research community to

coordination techniques, in which the decision making process of each individual agent

can be improved by taking into account the decisions of other agents within the system.

In the multi-agent systems literature, studies that address the coordination issue are

based on different perspectives, including task/resource allocation, coalition formation

and meeting scheduling. However, scalability remains an open issue for most of these.

Specifically, scalability in MAS manifests itself as a performance problem caused by the

inclusion of a large number of heterogeneous agents, their available resources and the

tasks performed by the agents. Moreover, it is observed that coordination approaches

often produce results in dealing with large settings, but take too much time in doing so

(Farinelli et al., 2013; Lesser & Corkill, 2014; Fioretto et al., 2018). As a consequence,

it is a common phenomenon that a coordination algorithm that works perfectly (or

1

2 Chapter 1 Introduction

reasonably) for a smaller setting does not cope with a larger setting. For example,

often it is necessary to take a prompt decision when allocating rescue agents to save

critical patients in a disaster response scenario or to obtain the highest profit from an

e-commerce application (Ramchurn et al., 2010; Müller & Fischer, 2014). In such cases,

and many others besides, the time required to obtain a solution from the coordination

algorithm (the so-called completion time) should be minimized because the solution is

likely to be outdated when it takes too long to produce.

In more detail, the completion time of a multi-agent coordination algorithm depends on

two main elements: computation cost and communication cost (Lesser & Corkill, 2014).

The former is the amount of computation that needs to be performed by the participating

agents during the coordination process. The latter reflects the overall time elapsed during

the interactions of the cooperating agents. Besides their impact on the completion time,

there are other reasons for minimizing the computation and communication cost. For

example, in many applications such as sensor networks or disaster response, agents

possess a limited power back up, so it is undesirable to constantly keep the agents

busy either for computing or for communicating (Vinyals et al., 2011). In any case,

depending on the application, the computation cost can be significantly higher than

the communication cost and vice versa. For example, the latter can be excessively

expensive compared to the former in a disaster response scenario where communication

facilities are disrupted. Considering the constraints that arise from the aforementioned

background, it is important for a coordination approach to focus on reducing the cost

of these two elements in order to minimize its completion time.

For over a decade, a significant amount of research has sought to address the coordination

issue in the form of a constraint handling framework for different domains of MAS

(e.g. disaster response, sensor networks and smart-homes). Approaches based on the

constraint handling framework are suitable for large-scale settings as they generally

produce results after a “one-shot” process (Farinelli et al., 2013; Leite et al., 2014). In

the constraint handling framework, coordination problems are formulated as constraint

networks that are often represented graphically. In particular, the agents are represented

as nodes, and the constraints that arise between the agents depending on their joint

choice of action are represented by edges (Dechter, 2003). Each constraint can be defined

by a set of variables held by the corresponding agents related to the constraint, and

denoted by a value (cost) or reward relation among the set of variables. In more detail,

each agent holds one or more variables, each of which takes values from a finite and

discrete domain. Each value in the domain represents a possible state of the agent. The

agent is responsible for only setting the value of its own variable(s), but can communicate

with other agents. Thus, agents are only aware of constraints that involve variables they

hold. Such constraints are usually termed “local functions” and the sum of these local

functions is the local utility of the agent. Here, two agents are considered neighbours

Chapter 1 Introduction 3

if there is at least one constraint that depends on variables held by each agent. Only

neighbouring agents can directly communicate with each other.

The constraints that form the relationships among the agents in a graphical represen-

tation can either be hard or soft (Yokoo et al., 1998; Dechter, 2003). Hard constraints

only consider relations that describe the accepted joint assignments of the variables.

Unlike the hard constraints which returns a binary value for a particular assignment,

a soft constraint is a real valued function that describes the cost or reward for each

joint variable assignment. If a constraint network only considers hard constraints, the

problem of finding a variable assignment that satisfies all the constraints is referred to

as a Constraint Satisfaction Problem (CSP). In other words, a CSP can be described as

a problem whose purpose is to find a combination of values for all variables, from their

corresponding domains, such that all constraints are satisfied. Nevertheless, in MAS,

computational resources are distributed across the network of interconnected agents,

and this group of agents choose values for their variables in a distributed way. This is

why Distributed Constraint Satisfaction Problems (DCSPs), which are the distributed

version of CSPs, are a better fit for MAS (Yokoo et al., 1998).

Distributed Constraint Optimization Problems (DCOPs) only deal with soft constraints,

and are problems in which agents choose values for their variables, such that the cost

of a set of constraints over the variables is either minimized or maximized (Modi et al.,

2005). In other words, a DCOP is similar to a DCSP except that the constraints return

a real number instead of a boolean value, and the goal is to set every variable to a

value from its domain to minimize the constraint violation. This is an assignment of

all variables that optimizes a global function, which is an aggregation of the functions

representing the constraints (i.e. local utilities). In a multi-agent system, it is usually

more feasible to aim for the best possible solution rather than target a specific one. This

is because the violation of even a single constraint among hundreds/thousands would

mean the complete process is of no use. As a consequence, conceptualizing a multi-agent

constraint handling problem setting as a DCOP is more appropriate as well as a natural

approach than DCSP. This is therefore the focus of this thesis. Given this background,

we formally define the key research requirements here.

• R1: The completion time of a DCOP solution approach employed for a MAS

should be minimized while maintaining good or acceptable solution quality.

• R2: Minimize either or both the computation and communication cost of the

participating agents, in order to speed-up the overall optimization process.

• R3: The employed DCOP algorithm should not be limited to one or few appli-

cation specific setting(s), and should deal with a large (e.g. hundreds/thousands)

number of cooperating agents, tasks and/or resources.

4 Chapter 1 Introduction

In light of these research requirements, we discuss possible solutions of DCOPs and the

challenges that remain open for further research in Section 1.1. We then go on to outline

our contributions to the solution of those challenges in Section 1.2. Finally, we detail

the structure of the rest of this thesis in Section 1.3.

1.1 Distributed Constraint Optimization in Cooperative

Multi-Agent Systems

Over the last decade, a number of algorithms have been developed to solve DCOPs

(see Sections 2.3 and 2.4 for more details). They have been applied to many real world

multi-agent applications in the form of task/resource allocation (Ramchurn et al., 2010;

Zivan et al., 2014), meeting scheduling (Maheswaran et al., 2004b) and coalition forma-

tion (Cerquides et al., 2013). These algorithms can be broadly classified into exact and

non-exact approaches. The former always finds an optimal solution, and can be further

classified into fully decentralized and partially centralized approaches. In fully decen-

tralized approaches (e.g. ADOPT (Modi et al., 2005), BnB ADOPT (Yeoh et al., 2008),

DPOP (Petcu, 2005)), the agent has complete control over its variables and is aware of

only local constraints. However, such approaches often require an excessive amount of

communication when applied to complex problems (Petcu et al., 2007). On the other

hand, centralizing parts of the problem can often reduce the effort required to find

a globally optimal solution (e.g. OptAPO (Mailler & Lesser, 2004), PC-DPOP (Petcu

et al., 2007)). In both cases, finding an optimal solution for a DCOP is an NP-hard

problem that exhibits an exponentially increasing coordination overhead as the system

grows (Modi et al., 2005). As a consequence, exact approaches are often impractical for

application domains with larger constraint networks. On the contrary, non-exact algo-

rithms sacrifice some solution quality for better scalability, and are thus more suitable to

meet the research requirement R3. These algorithms are further categorized into local

greedy and Generalized Distributive Law (GDL) based inference methods.

In general, local greedy algorithms, such as DSA (Fitzpatrick & Meertens, 2003) and

MGM (Maheswaran et al., 2004a), begin with a random assignment of all the variables

within a constraint network, and go on to perform a series of local moves that try to

greedily optimize the objective function. They often perform well on small problems

having constraints with lower arity. There has been some work on providing guarantees

on the performance of such algorithms in larger DCOP settings (Kiekintveld et al., 2010;

Pearce & Tambe, 2007; Bowring et al., 2008; Vinyals et al., 2010). However, for large and

complex problems consisting of hundreds or thousands of nodes, this class of algorithms

often comes up with a global solution far from the optimal (Farinelli et al., 2013; Leite

et al., 2014; Zivan & Peled, 2012; Rogers et al., 2011). This is because agents do not

explicitly communicate their utility for being in any particular state. Rather they only

communicate their preferred state (i.e. the one that will maximise their own utility)

Chapter 1 Introduction 5

based on the current preferred state of their neighbours. Taken together, this particular

class of algorithms is clearly not practically effective if we wish to meet the last part of

our research requirement R1, along with R3.

Among the non-exact approaches, GDL-based inference algorithms, such as Max-Sum

(Farinelli et al., 2008) and Bounded Max-Sum (BMS) (Rogers et al., 2011), have re-

ceived particular attention. Agents in this class of algorithms calculate and propagate

utilities (or costs) for each possible value assignment of their neighbouring agents’ vari-

ables. Thus, the agents explicitly share the consequences of choosing non-preferred

states with the preferred one during inference through a constraint graph. Eventually,

this information helps these algorithms to achieve good solution quality for large and

complex problems. Moreover, unlike many other DCOP solution approaches, GDL-

based algorithms can directly handle n-ary constraints and more than one variable per

agent (Cerquides et al., 2013; Farinelli et al., 2013). Consequently, these algorithms can

easily be deployed to any DCOP setting without depending on an additional reformu-

lation technique. Furthermore, they make efficient use of constrained computational

and communication resources. This is achieved by following a message passing protocol

in which the agents continuously exchange messages to compute an approximation of

the impact that each of the agents’ actions have on the global optimization function.

This involves building a local objective function (detailed in Section 2.4.2). Once the

function is built, each of the agents picks the value of a variable that maximizes the

function. Taking into account all of these benefits, this class of algorithms are more

suited to meet our key requirements, denoted as R1, R2 and R3, than other DCOP

solution approaches. Therefore, we specifically concentrate on the GDL-based non exact-

approaches for this work.

Despite these aforementioned advantages, scalability remains a widely acknowledged

challenge for GDL-based algorithms due to several reasons (Kim & Lesser, 2013; Ram-

churn et al., 2010). Firstly, they perform repetitive maximization operations for each

constraint function to select the locally best configuration of the associated variables,

given the local utility function and a set of incoming messages. To be precise, a con-

straint function that depends on n variables having domains composed of d values each,

will need to perform dn computations for a maximization operation. As the system

scales up, the complexity of this step grows exponentially, eventually making this class

of algorithms too expensive in terms of computational cost. Several attempts have been

made to reduce the cost of the maximization operation. However, they are either tai-

lored to a specific domain, and as such, are not applicable to general DCOP settings, or

they experience lack of consistency (see Section 2.5.2 for more details).

Secondly, it is worth mentioning that previous attempts at speeding up1 GDL-based al-

gorithms have mainly focused on reducing the overall cost of the maximization operator.

1They attempt to speed-up existing approaches in order to improve their scalability, and we are
specifically influenced by this insight.

6 Chapter 1 Introduction

However, they overlook an important concern that all the GDL-based algorithms follow

a Standard Message Passing (SMP) protocol to exchange messages among the nodes of

a constraint graph that represents the corresponding DCOP. In the SMP protocol, a

message is sent from a node v on an edge e to its neighbouring node w if and only if all

the messages are received at v on edges other than e, summarized for the node associated

with e (Aji & McEliece, 2000; Kschischang et al., 2001). This means that a node in the

constraint graph is not permitted to send a message to its neighbouring node until it

receives messages from all its other neighbours. Here, for w to be able to generate and

send messages to all its other neighbours, it depends on the message from v. To be

exact, w cannot compute and transmit messages to its neighbours other than v until

it has received all essential messages, including the message from v. This dependency,

which is common for all the nodes, produces increasing amounts of average waiting time

for agents as the graphical representation of a DCOP becomes larger. As a consequence,

the time required to obtain the solution from the DCOP algorithm (i.e. the completion

time) increases. Besides the synchronous SMP protocol, there is an asynchronous ver-

sion of message passing where nodes are initialized randomly, and outgoing messages

can be updated at any time and in any sequence (Farinelli et al., 2008). Nevertheless,

the completion time for both the cases are proportional to the diameter of the constraint

graph, while the asynchronous version never outperforms SMP in terms of the comple-

tion time (see Section 2.5.3 for details). In either case, therefore, the ensuing increase

of delay, produced by currently used message passing protocols, with the corresponding

constraint graph remains a key issue for scalability.

Finally, a number of representations, such as Depth First Search (DFS) trees (Modi

et al., 2005; Petcu, 2005), junction trees (Aji & McEliece, 2000; Stefanovitch et al.,

2011) and factor graphs (Kschischang et al., 2001; Farinelli et al., 2008), have been used

by different DCOP algorithms as the constraint graph (see Section 2.2 for detail dis-

cussion). In all of these representations, nodes (i.e. variables and/or factors depending

on the graphical representation) are being held2 by the agents participating in the op-

timization process. In a conventional DCOP model, it is assumed that this mapping

of nodes of a DCOP graphical representation to the participating agents is part of the

model description. Although this assumption is often reasonable, there are many ap-

plications where there is some flexibility in making this assignment (e.g. assignment of

UAVs to target to survey). While it is possible to arbitrarily choose a mapping and

run any off-the-shelf DCOP algorithm to solve the problem, choosing a good mapping

is important as it can have a significant impact on an algorithm’s completion time (as

we shall expound in Section 5.1). However, choosing an optimal mapping may be pro-

hibitively time consuming as this is an NP-hard problem (Rust et al., 2016), and there

is currently no generic heuristic algorithm that efficiently maps the nodes to the agents

(see Section 2.5.4 for details).

2The agents act (i.e. generate and transmit messages) on behalf of the nodes they hold.

Chapter 1 Introduction 7

Summarily, in light of the above discussion, the following are the key research challenges

we will address in this thesis.

• C1: Reduce the computation cost of the maximization operation of GDL-based

algorithms while maintaining the same solution quality and preserving generic

applicability.

• C2: Speed up the message passing process of GDL-based algorithms while main-

taining the same solution quality and preserving generic applicability.

• C3: Speed up GDL-based algorithms via an efficient Node-to-Agent mapping

heuristic that does not affect the solution quality or applicability.

1.2 Research Contributions

In the context of the challenges outlined in the previous section, the contributions of

the work presented in this thesis are as follows. Note that these contributions operate

independently of one another; however, they can be used in the same deployed algorithm

to accelerate the respective phases.

1. We propose a Generic Domain Pruning technique, that we call GDP, in order

to prune the search space during the execution of the maximization operation

of GDL-based algorithms (Chapter 3). GDP is applicable to all DCOP settings,

and we theoretically prove that the pruned search space obtained by our approach

does not alter the solution quality of such algorithms (C1). Finally, we empirically

evaluate the performance of GDP, and observe a significant reduction of search

space (i.e. 33% − 81%) by using this technique. More importantly, we illustrate

that the relative performance gain of our approach gets better with an increase in

the parameters the maximization operator acts on. This work has been accepted

for publication in a conference (Khan et al., 2018a).

2. We introduce a new generic message passing protocol for GDL-based algorithms,

that we call Parallel Message Passing (PMP). Specifically, we utilize the advan-

tages of partial centralization without being affected by its major shortcomings

(see Chapter 4). To be precise, PMP combines clustering with domain pruning,

as well as the use of a regression method to determine the appropriate number

of clusters for a given scenario while maintaining the same solution quality. In

so doing, PMP efficiently distributes the computational and communication over-

head to the agents, such that their computational power is concurrently exploited,

and their average waiting time before sending messages to solve DCOPs using the

GDL framework is reduced (C2). We empirically evaluate the performance of our

method in a number of settings and find that it brings down the completion time by

around 37−85% (1.6−6.5 times faster) for 100−900 nodes, and by around 47−91%

8 Chapter 1 Introduction

(1.9 − 11 times faster) for 3000 − 10000 nodes compared to the current state-of-

the-art. A part of this study is presented in a workshop (Khan et al., 2016), and

the complete work is published in a journal (Khan et al., 2018b).

3. We formulate the problem of node-to-agent mapping as an optimization problem,

where the goal is to find an assignment that minimizes the completion time of

the GDL-based algorithms that operate on this mapping. Then, we propose a

new time-efficient heuristic to determine a near-optimal Mapping of Nodes to

the participating Agents, that we call MNA (see Chapter 5). MNA is a pre-

processing step that works prior to executing the optimization process of a GDL-

based DCOP algorithm. Specifically, we propose two versions (i.e. centralized and

decentralized) ofMNA that can be used considering the application at hand. As

a pre-processing step, our approach does not alter any internal process of such

DCOP algorithm; therefore, it does not have any impact on its solution quality

(C3). Additionally, the decentralized version of MNA specifically caters for sce-

narios where the graphical representation experiences change(s) during runtime.

We empirically evaluate the performance of MNA in terms of completion time,

and show that it performs at a level of around 90% − 100% of the optimal map-

ping, which is computationally infeasible to obtain in practice. Our results also

show a speed-up of 16%−40% compared to the current state-of-the-art, meaning a

GDL-based algorithm can perform 1.2−1.7 times faster when using node-to-agent

mappings generated by MNA. This work has been accepted for publication in a

conference (Khan et al., 2018c).

Overall, the work in this thesis has led to the publication of the following papers.

1. Khan, M. M., Tran-Thanh, L., & Jennings, N. R. (2018a). A generic domain prun-

ing technique for gdl-based dcop algorithms in cooperative multi-agent systems.

In Proceedings of the 17th International Conference on Autonomous Agents and

Multi-Agent Systems (accepted as a full paper) (pp. 1− 9).: IFAAMAS.

2. Khan, M. M., Tran-Thanh, L., Ramchurn, S. D., & Jennings, N. R. (2018b).

Speeding up gdl-based message passing algorithms for large-scale dcops. The Com-

puter Journal (pp. 1− 28).: Oxford University Press.

3. Khan, M. M., Tran-Thanh, L., Yeoh, W., & Jennings, N. R. (2018c). A near-

optimal node-to-agent mapping heuristic for gdl-based dcop algorithms in multi-

agent systems. In Proceedings of the 17th International Conference on Autonomous

Agents and Multi-Agent Systems (accepted as a full paper) (pp. 1−9).: IFAAMAS.

4. Khan, M. M., Ramchurn, S. D., Tran-Thanh, L., & Jennings, N. R. (2016). Speed-

ing up gdl-based message passing algorithms for large-scale dcops. In International

Workshop on Optimization in Multi-Agent Systems (OPTMAS’2016) (pp. 1−15).

Chapter 1 Introduction 9

1.3 Thesis Outline

The remaining part of this thesis is structured as follows.

• In Chapter 2, we provide a review of related literature with a focus on the research

areas and challenges mentioned in Section 1.1.

• Chapter 3 presents and evaluates GDP, which reduces the computation cost of the

potentially expensive maximization operation. That is the first of the three ways

we speed-up GDL-based DCOP algorithms in cooperative multi-agent systems.

• In Chapter 4, we address the second challenge by speeding up the message pass-

ing process of GDL-based algorithms. We develop a new message passing proto-

col, and discuss the technical details of how it can minimize the completion time

while maintaining the same solution quality compared to the current state-of-the-

art. We then report comparative empirical results. At the end, we demonstrate

the details and the performance of applying the linear regression model on top of

the proposed protocol.

• In Chapter 5, we speed-up GDL-based algorithms via an effective node-to-agent

mapping (i.e. the third way). In so doing, we present a near-optimal node-to-

agent mapping heuristic in the form of its centralized and decentralized versions,

and evaluate its performance empirically against the current state-of-the-art.

• Chapter 6 draws conclusions to the work explained in Chapters 3, 4 and 5, and

highlights areas of future work.

Chapter 2

Literature Review

In this chapter, we survey the literature of multi-agent systems (MAS) to explore dif-

ferent approaches that have been applied to solve Distributed Constraint Optimization

Problems (DCOPs). In Section 2.1, we formally define the generic DCOP framework.

Then, we discuss three main forms of constraint graphs that have been used to repre-

sent DCOPs graphically (Section 2.2). Section 2.3 presents various exact approaches

for solving DCOPs, and discusses the shortcomings of these approaches in dealing with

large and complex DCOPs. To be precise, we begin with different search-based exact

algorithms in Section 2.3.1. We then detail the Generalized Distributed Law (GDL)

framework, and discuss a number of prominent exact algorithms that have been in-

spired by this framework (Sections 2.3.2 - 2.3.3). Subsequently, Section 2.4 discusses

two major classes of non-exact DCOP solution approaches, namely local greedy algo-

rithms and GDL-based algorithms. We end this section by highlighting the significance

of GDL-based non-exact approaches with regards to the scalability issue, and discussing

how speeding up such algorithms can further improve their applicability in terms of scal-

ability. Next, in Section 2.5, we identify a number of expensive phases of GDL-based

algorithms, and investigate current approaches that have been proposed for speeding

them up. Finally, we provide a summary of our findings in Section 2.6.

2.1 Distributed Constraint Optimization Problems

Distributed Constraint Optimization Problems (DCOPs) are a widely studied framework

for coordinating interactions in cooperative multi-agent systems. DCOPs have gained

such popularity because of their ability to optimize a global objective function that can

be described as the aggregation of a number of distributed constraint cost functions.

More specifically, this framework has been frequently used in multi-agent applications

where participating agents must come to some form of agreement. Such an agreement

leads them to do some actions jointly to obtain the best possible solution for the complete

11

12 Chapter 2 Literature Review

system (e.g. coalition formation, meeting scheduling, task allocation). Typically, when

multiple, perhaps all, solutions are valid some are usually preferred to others. One of the

key aspects of DCOPs for multi-agent settings relies on the fact that each agent normally

negotiates locally with just a subset of other agents (i.e. neighbours) which have direct

influence on its actions. In more detail, Cerquides et al. (2013); Farinelli et al. (2013);

Leite et al. (2014) and Fioretto et al. (2018) summarize the major approaches and the

applications of DCOPs from different perspectives of MAS. In general, a DCOP can be

formally defined as follows.

Definition 2.1. (DCOP). A DCOP can be defined by a tuple 〈A, X, D, F, δ〉, where

• A is a set of agents {A1, A2, . . . Ak}.

• X is a set of finite and discrete variables {x0, x1, . . . , xm}, which are being held by

the set of agents A.

• D is a set of domains {D0, D1, . . . , Dm}, where each Di ∈ D is a finite set con-

taining the values to which its associated variable xi may be assigned.

• F is a set of constraints {F1, F2, . . . , FL}, where each Fi ∈ F is a function depen-

dent on a subset of variables xi ∈ X defining the relationship among the variables

in xi. Thus, function Fi(xi) denotes the value for each possible assignment of

the variables in xi and represents the joint pay-off that the corresponding agents

achieve. Note that this setting is not limited to pairwise (binary) constraints, and

the functions may depend on any number of variables.

• δ is a function δ : η → A that represents the mapping of variables (and functions),

jointly denoted by η, to their associated agents. Each ηi ∈ η is held by a single

agent. However, each agent can hold several ηi.

Notably, the dependencies (i.e. constraints) between the variables and functions generate

a constraint graph G. Within this model, the objective of a DCOP algorithm is to have

each agent assign values to its associated variables from their corresponding domains in

order to either maximize or minimize the aggregated global objective function, which

eventually produces the value of all the variables, X∗ (Equation 2.1).

X∗ = arg max
X

L∑
i=1

Fi(xi) OR X∗ = arg min
X

L∑
i=1

Fi(xi) (2.1)

Although a constraint graph G is a standard, as well as a natural way to visualize a

DCOP instance, most of the DCOP algorithms require certain structure and ordering

among the components (i.e. nodes, agents) of G. To reconcile the differences in choice,

each of the algorithms makes use of a pre-processing step which operates before exe-

cuting the original optimization process (Modi et al., 2005; Farinelli et al., 2008). This

Chapter 2 Literature Review 13

Agent A2 Agent A3

Agent A1 Agent A4

x1

x3

x0

x2

Figure 2.1: A sample constraint graph representation of a DCOP, with four
variable nodes {x0, x1, x2, x3} being held by four agents {A1, A2, A3, A4}. In
the figure, variables are denoted by circles and agents are octagons.

phenomenon, particularly, leads to different graphical representations corresponding to

G. Note that the selection of a graphical representation for a DCOP plays a fundamental

role, both from an agent coordination perspective and from an algorithmic perspective

(Fioretto et al., 2018). In the following section, we are going to discuss predominant

representations that have been adapted for various DCOP algorithms.

2.2 Graphical Representations of DCOPs

There are three common graphical representations upon which the development of dif-

ferent DCOP algorithms have been based. In other words, a DCOP algorithm operates

directly on one of the following three graphical representations: Depth First Search

(DFS) trees (Modi et al., 2005; Petcu, 2005), junction trees (Aji & McEliece, 2000; Ste-

fanovitch et al., 2011) or factor graphs (Kschischang et al., 2001; Farinelli et al., 2008).

In the remainder of this section, we are going to discuss each of them in detail.

2.2.1 Depth First Search Tree

A number of DCOP algorithms have been developed based on the fact that the nodes of

a constraint graph G must be arranged in a depth first search (DFS) order. Formally,

a DFS arrangement of a constraint graph G is a rooted tree with the same nodes and

edges as G, and the property that adjacent nodes from the original graph fall in the

same branch of the tree (Petcu, 2007). Figure 2.1 illustrates an exemplary constraint

graph, and a sample corresponding DFS-tree arrangement is depicted in Figure 2.2.

In both of these figures, variables {x0, x1, x2, x3} are denoted by circles, while agents

{A1, A2, A3, A4} are denoted by octagons. In a DFS-tree, direct parent-child relationship

between agents are depicted via tree edges (solid black lines). For instance, agent A1

14 Chapter 2 Literature Review

Agent A2

Agent A3

Agent A1

Agent A4

x0

x1

x3

x2

Figure 2.2: Constraint graph of Figure 2.1 arranged as a DFS-tree.

is the parent of agent A4 in Figure 2.2. In addition to the tree edges, there exists back

edges (dashed black lines) which symbolize pseudo parent/child relationships between

the agents of a DFS-tree. Specifically, these are the edges of G that are not identified

as the tree edges during the DFS traversal process. In the example, agent A2 is the

pseudo-child of agent A4.

Notably, the property of DFS-tree, which ensures the adjacent nodes from the original

graph G fall in the same branch of the tree, is significant in the perspective of the

distributive nature of DCOPs. This is because agents in different branches of the tree

do not share any constraints, so that they can search for solutions independently of each

other. Despite this benefit, a DFS-tree experiences several shortcomings when applied

to a DCOP. First, each agent can hold only one variable of the DFS-tree representation

of a DCOP, while a general DCOP definition allows multiple nodes per agent. Second,

it cannot directly deal with n-ary constraints (i.e. functions involving more than two

variables). In more detail, a DCOP with binary constraints (i.e. relations) is typically

represented by a specific type of constraint graph, called primal-constraint graph, whose

nodes stand for variables and edges stand for binary constraints (Dechter, 2003). DFS-

trees are considered as a possible arrangement for this type of constraint graphs. To

overcome these shortcomings, a DCOP algorithm designed over DFS-tree has to rely

on one or more additional reformulation technique(s), which requires changes in the

algorithm design (Burke & Brown, 2006; Yokoo, 2001; Bowring et al., 2006; Pecora

et al., 2006). This incurs an added complexity from an algorithmic perspective.

Chapter 2 Literature Review 15

Agent A2 Agent A3

Agent A1 Agent A4

x0 x1 x2 x1 x2 x3

x0 x2

x0 x1

x1 x2

x2 x3

Figure 2.3: Constraint graph of Figure 2.1 arranged as a junction tree. Here,
the intersection of any two nodes remain as a subset of a node in the path of
those two nodes. For example, {x2} remains in the path of the nodes {x0, x2}
and {x1, x2}. Moreover, if the tree is projected onto any variable, such as x1, it
yields a tree as well.

2.2.2 Junction Tree

Another way to represent a DCOP is through a junction tree, a phenomenon that

originated from the fact that DCOPs can also be represented by a different type of

constraint graph (namely dual-constraint graph) whose nodes stand for constraints and

whose edges link constraints that share some variable in their domains (Aji & McEliece,

2000; Dechter, 2003). Specifically, a junction tree is a clique graph that satisfies following

properties (the so-called junction tree properties). Firstly, a clique is a maximal and

complete cluster of nodes (i.e. subset of variables), such that if a node xi has a link

to all of the nodes in clique U , node xi belongs to clique U . Secondly, if a variable xi

appears in both clique U and V , then xi should remain in all cliques on the path between

U and V . Thirdly, a junction tree is a tree which yields another tree when projected

onto each individual variable. Figure 2.3 illustrates a sample junction tree transformed

from the exemplar constraint graph of Figure 2.1. By considering the above mentioned

properties, it is relatively trivial to determine whether a junction tree exists or not for a

given constraint graph. Moreover, unlike a DFS-tree, a junction tree can directly handle

n-ary constraints and more than one variable per agent (Stefanovitch et al., 2011). As

a consequence, it can easily be deployed to any DCOP setting without depending on

an additional reformulation technique. However, finding the optimal junction tree in

the sense of a minimal size of the largest clique is itself an NP-hard problem (Aji &

McEliece, 2000). Hence, DCOP algorithms developed over junction trees are required

to use one of the distributed heuristics proposed in the MAS literature. Moreover, it is

often difficult to visualize the factorization property of large and complex DCOPs from

the usual depictions of graphs as utilized in junction trees (Wainwright & Jordan, 2008).

This is why, despite having a number of advantages over DFS-tree, junction tree does

not gain much popularity among the DCOP community.

16 Chapter 2 Literature Review

F1

F0 x1

x2 x3

x0

Agent A2 Agent A3

Agent A1

Agent A4

Figure 2.4: A sample factor graph representation of the constraint graph of
Figure 2.1. In the figure, variables are denoted by circles, factors are squares
and agents are octagons.

2.2.3 Factor Graph

The formalism of factor graphs provides an alternative graphical representation, one

which emphasizes the factorization of the variable distribution, unlike the previous two

representations. Specifically, factor graphs are a straightforward generalization of Tan-

ner graphs (Kschischang et al., 2001). The Tanner graph was originally used to depict

constraints imposed for error recovery using parity checking. The basic problem of error-

control coding is that of transmitting a message (a sequence of bits) through a noisy

channel in such a way that a receiver can recover the original message despite the noise.

Definition 2.2. (Factor Graph). A factor graph is a bipartite graph that expresses

the structure of the factorization. It has a variable node for each variable, a factor/

function node for each local function and an edge that connects a variable node to a

factor/function node if and only if that variable is an argument of that function.

Similar to the Tanner graph, a factor graph (Definition 2.2) is a bipartite graph, mean-

ing it has two types of nodes, and each node only has neighbours of the opposite type.

This graphical model represents the factorization of a function. Similar to junction tree,

it can directly handle n-ary constraints and more than one variable per agent (Farinelli

et al., 2013; Fioretto et al., 2018). Moreover, it experiences an additional axiomatic

benefit, that is because of the bipartite nature of factor graph, it can easily distinguish

the relationship between the constraints and the variables of a DCOP. Initially, Kschis-

chang et al. (2001) proposed the use of the factor graph instead of the junction tree

for the belief propagation or probability propagation algorithm. Afterwards, a number

of DCOP algorithms that operates on the factor graph representation of a DCOP have

been developed (see Section 2.4.2 for details). Figure 2.4 shows an instance of such a

problem represented effectively by a factor graph.

Chapter 2 Literature Review 17

Building on these graphical representations, numerous studies have attempted to propose

algorithms to solve DCOPs in the context of MAS. Some of these algorithms are generic

while others focused on specific application domains. They can be broadly categorized

as exact and non-exact algorithms. In the following two sections, we briefly discuss some

of the most prominent exact and non-exact DCOP solution approaches.

2.3 Exact DCOP Algorithms

Exact algorithms always find a solution that optimizes the global objective function

for a DCOP instance. Some of these algorithms are search-based and the rest are

inference-based, the later typically inspired by the Generalized Distributive Law (GDL)

framework. Both of these classes of DCOP algorithms can be further categorized as fully

decentralized and partially centralized approaches. In the remainder of this section, we

describe some key exact algorithms.

2.3.1 Search-Based Exact Algorithms

ADOPT (Asynchronous Distributed OPTimization) is a search-based fully decentralized

exact algorithm that allows agents to asynchronously change the values of the variables

they hold (Modi et al., 2005). It uses the best-first strategy as a search technique where

each agent always assigns the best possible value to its variable(s) based on the local

information. ADOPT has a preprocessing step, where all the agents participating in the

optimization process are arranged in a DFS-tree (see Section 2.2.1). After forming the

DFS-tree from the corresponding constraint graph, ADOPT starts its message propa-

gation along the edges of the tree. Specifically, three different types of messages, Value,

Cost and Threshold, are exchanged during this process. At the beginning, each agent

chooses a random value for the variable it holds and initializes its lower bound (zero)

and upper bound (infinity). These bounds are iteratively refined over time. The whole

process terminates when the agents find a value for which their bounds are equal. To this

end, each agent sends its descendants the value with the smallest lower bound through

the Value message, then waits for Cost messages to come back from the children and

adds them to the lower bound of its current value. Threshold messages are sent from

parents to children to update the agent’s backtrack thresholds. ADOPT uses thresh-

olds to store the lower bound previously computed for its current context, such that it

can reconstruct the partial solution more efficiently. Thus, the backtrack thresholds are

useful when a previously visited context is re-visited.

Yeoh et al. (2008) propose another search based exact algorithm named BnB-ADOPT,

which inherits most of the messages and data structures of ADOPT. However, BnB-

ADOPT employs the depth-first branch-and-bound search strategy unlike ADOPT,

18 Chapter 2 Literature Review

which uses the best-first search approach. This particular difference changes the be-

haviour of the agents in terms of sharing their values. In ADOPT, each agent chooses

the value that minimizes its lower bound. On the other hand, BnB-ADOPT changes

the value of a variable for a particular context only when it is able to find out that the

optimal solution for that value is not better than the current best solution. In addition,

also unlike ADOPT, each agent in BnB-ADOPT uses thresholds to store the cost of the

current best solution for all contexts and uses them to change its values more efficiently.

Thus, BnB-ADOPT consistently reduces computation cost by using a depth-first search

strategy in previously formed DFS tree representation of the DCOP.

A number of other attempts have been made to improve the performance of ADOPT and

BnB-ADOPT. In particular, Ali et al. (2005) introduce the use of pre-processing tech-

niques for guiding ADOPT search, and prove that it eventually increases the performance

consistently. Moreover, researchers observed that many messages sent by BnB-ADOPT

are redundant, and an extension of BnB-ADOPT, BnB-ADOPT+, without most of the

redundant messages is proposed (Gutierrez & Meseguer, 2010). As a result of exchanging

fewer messages, it performs better than the original BnB-ADOPT algorithm in terms

of communication cost. Notably, the search-based exact algorithms either use best-first

or depth-first search strategy in order to solve DCOPs. Both of them have their own

shortcomings. For instance, the former often has to deal with a large number of solution

reconstructions, while the later is unable to promptly prune sub-optimal branch. In

order to remedy their weaknesses, Chen et al. (2017a) propose the use of a combination

of those two search strategies based on agents’ positions in a DFS-tree.

Unlike the algorithms discussed above, the Optimal Asynchronous Partial Overlay (Op-

tAPO) is an exact DCOP algorithm that maintains partial decentralization (Mailler &

Lesser, 2006). It was originally proposed to solve DCSPs, but can easily be adopted for

DCOPs. OptAPO discovers the hard portions of the problem through trial and error and

centralizes these sub-problems into mediating agent(s). These mediating agents posses

higher processing power than other agents within the system. The authors show that the

message complexity of OptAPO is significantly smaller than that of ADOPT. However,

in order to guarantee that an optimal solution has been found, one or more agents may

end up centralizing the entire problem, depending on the difficulty of the problem and

the tightness of the interdependence between the variables. As a consequence, it is im-

possible to predict where and what portion of the problem will be eventually centralized,

or how much computation the mediator(s) have to resolve. Nonetheless, it is possible

that several mediators needlessly duplicate effort by solving overlapping problems.

In general, the search-based exact algorithms require polynomial memory in terms of

their message size. However, their main downside is that they produce a very large

number of small messages due to their asynchronous nature, resulting in large commu-

nication overheads (Petcu, 2007). In contrast, inference-based exact algorithms mainly

rely on synchronous message passing protocols. As a consequence, they produce a linear

Chapter 2 Literature Review 19

number of messages. Given the fact that the GDL framework plays an important role

in developing inference-based algorithms, we first discuss the framework in the subsec-

tion that follows.

2.3.2 The Generalized Distributive Law (GDL) Framework

The distributive law is one of the most frequently used properties in mathematics. It

comes from the fact that multiplying a number is the same as multiplying its addends

by the number, then adding the products. In general, it exploits the ability of one

operation to “distribute” over another operation contained inside a set of parenthesis.

Through the distributive law, it is possible to compute equations such as (pq+pr) where

{p, q, r} ∈ R(real number) in a faster way. This is because the equivalent equation

p(q + r) obtained by applying the distributive law involves two arithmetic operations

as opposed to three operations required by the former. The following example shows

how significant the computational difference is. Suppose, f1(x, y, w) and f2(x, z) are

two real valued functions, where x, y, z and w variables take values from the domain D

of size n. The global function F (w, x) in the left side of Equation 2.2 can be obtained

by marginalizing out the variables y and z from f1(x, y, w)f2(x, z). Thus it takes 2n4

arithmetic operations. On the other hand, because of the distributive law, the same

global function can be computed by the expense of total n3 + n2 + n2 or n3 + 2n2

equations only, which is much less than 2n4 (Equation 2.3).

F (w, x) =
∑

y,z∈D
f1(x, y, w)f2(x, z) (2.2)

F (w, x) = (
∑
y∈D

f1(x, y, w))(
∑
z∈D

f2(x, z)) (2.3)

At this point, the computational gain that can be obtained by using the distributive

law is obvious from the above example. Although the computational savings can be

dramatic in more complicated cases, it is not trivial to recognize the impact through

raw mathematical expressions. This is why it is necessary to have a general framework

to handle such problems coming from a wide range of applications. The Generalized

Distributive Law (GDL) accomplishes this objective by passing messages in a commu-

nication network which is often represented graphically using a junction tree or a factor

graph (Aji & McEliece, 2000; Kschischang et al., 2001).

Given this background, it is clear that GDL can greatly reduce the number of additions

and multiplications required in a certain class of computational problems. Specifically,

much of the power of the GDL lies in the fact that it can be applied to situations in which

the notions of addition and multiplication are themselves generalized. The appropriate

framework for this generalization is the commutative semiring (Definition 2.3).

20 Chapter 2 Literature Review

Definition 2.3. (Commutative Semiring). A commutative semiring is a set K, along

with two binary operations called “+” and “·”, which satisfy the following three axioms.

• The operation “+” is associative and commutative, and there is an additive identity

element called “0” such that k + 0 = k where ∀k ∈ K.

• The operation “·” is also associative and commutative, and there is an multiplica-

tive identity element called “1” such that k · 1 = k where ∀k ∈ K.

• The distributive law holds, that is (a · b) + (a · c) = a · (b+ c) where {a, b, c} ∈ K.

From the definition of commutative semiring, we know that 0 and 1 are the identity

elements for the operators “+” and “.”, respectively. The generalization we highlighted

can be realized from the following instance: if those two operators are replaced by

the symbols max and + having identity elements −∞ and 0 respectively, it forms a

commutative semiring named Maximum-Summation or Max-Sum. Equation 2.4 depicts

an example of distributed law for the semiring Max-Sum.

max (a+ b, a+ c) = a+ max (b, c) (2.4)

In a nutshell, GDL is a unifying framework for performing inference in a graphical model,

and this framework operates on commutative semirings through message propagation.

We obtain different message passing algorithms, such as Sum-Product, Max-Product,

Max-Sum or Min-Sum, depending on the specific semiring used.

2.3.3 GDL-Based Exact Algorithms

Distributed Pseudotree Optimization Procedure (DPOP) and Action-GDL are two key

exact inference DCOP algorithms inspired by the GDL framework. In the remainder of

this section, we detail both of them along with their variants.

2.3.3.1 DPOP and Its Variants

DPOP was the first exact inference-based DCOP algorithm, proposed by Petcu (2005).

Specifically, it is a utility propagation method originated using the concept of GDL.

Since GDL-based approaches are correct only for acrylic/tree-shaped constraint graphs

(expounded in Section 2.4.2), they propagate an additional type of message (the so called

value propagation) in order to provide optimal solutions for cyclic graphical representa-

tions. Similar to ADOPT and BnB-ADOPT, DPOP works on a DFS-tree representation

of a DCOP. Nevertheless, unlike those asynchronous search-based approaches, DPOP

propagates messages in a synchronous manner. In more detail, the algorithm operates

Chapter 2 Literature Review 21

in two phases over a DFS-tree. First, agents compute the optimal utility by perform-

ing summations and maximizations (i.e. the GDL semiring operators) flowing from the

leafs to the root of the tree. Then, the optimal assignment is obtained using the value

propagation procedure down the tree. To be precise, DPOP performs the following

three phases in sequence.

• DFS traversal: An agent is selected as root, preferably by a leader election process.

From the root, a distributed DFS traversal of the constraint graph is started. At

the end, each agent labels its neighbours as parents, pseudo-parents, children or

pseudo-children, and edges are identified as tree or back edges. The DFS-tree

serves as a communication structure for the following phases.

• Util propagation: the agents, starting from the leaves, send Util messages to their

parents. Each of these messages contains an aggregated cost function that is

computed by adding received Util messages from its children with its own cost

functions as well as its parent and pseudo-parents’, and then projecting out its

own variables by optimizing over them.

• Value propagation: The agent at the root starts this phase. Then, each of the

agents determines their optimal value using the cost function computed in Util

propagation phase and the Value message(s) received from their parent(s). After-

wards, they inform their children using Value messages.

In the literature, there are several extensions of DPOP that have been proposed to ad-

dress various trade-offs in the approach. Specifically, the cycle-cut set idea for addressing

the trade-off between the number of messages used and the amount of memory that each

message requires is exploited by MB-DPOP (Petcu & Faltings, 2007). Another method,

A-DPOP, addresses the trade-off between message size and solution quality. It reduces

message size by optimally computing only a part of the messages and approximating

the rest with upper and lower bounds (Petcu, 2007). Moreover, Petcu et al. (2007)

introduces PC-DPOP, a partial decentralization technique based on DPOP, in order

to take the benefits experienced by OptAPO (the partially decentralized search-based

approach). However, unlike OptAPO, it offers prior exact predictions about communica-

tion, computation and memory requirements. Additionally, PC-DPOP provides better

control than OptAPO over what parts of the problem are centralized, though this control

cannot be guaranteed to be optimal. Furthermore, Chen et al. (2017b) recently claim

that practically constructed DFS-trees often come to be chain-like and that phenomenon

greatly impairs the performances of DPOP algorithms. To overcome this, they propose

the use of a Breadth First Search (BFS) traversal instead of DFS, in order to form the

corresponding graphical representation of a DCOP. However, they observe that BFS-tree

often generates a very large utility message with improper allocations. Consequently,

their approach requires an additional step to deal with this.

22 Chapter 2 Literature Review

2.3.3.2 Action GDL

Action-GDL is another inference-based exact algorithm which is more explicitly associ-

ated with GDL framework than DPOP (Vinyals et al., 2009). Action-GDL itself operates

exactly similar to DPOP. More specifically, both Action-GDL and DPOP have two simi-

lar phases (i.e. Util and Value phases) for their message propagation, and use exactly the

same two GDL operators, summation and maximization, in their respective Util phases.

However, unlike DPOP, Action-GDL operates over a junction tree instead of a DFS-tree.

To be exact, they propose to use a Distributed Junction Tree Generator (DJTG) algo-

rithm in order to capture the distribution of relations in DCOPs. As aforementioned,

unlike the DFS-tree, a junction tree can directly represent n-ary constraints and allows

more than one node per agent, thus it is more suitable to represent complex problems. As

a result, Action-GDL experiences some axiomatic benefit over DPOP in terms of the

amount of computation, communication and parallelism of the algorithm solving cost.

In any case, although inference-based algorithms require a linear number of messages

compared to search approaches, the problem is that the messages (i.e. Util messages)

exchanged by the agents in DPOP/Action GDL may be exponentially large. This re-

flects an exponential increase of computation cost and memory requirements. On the

contrary, we observe that the search algorithms can be infeasible to deploy due to their

communication cost (i.e. a large number of small messages exchanged). This is obvious

because finding an optimal solution for a DCOP is an NP-hard problem. Therefore,

multi-agent DCOPs, where a large number of agents, tasks and resources are involved,

are too expensive (computation and/or communication) to solve using the exact algo-

rithms. This phenomenon significantly limits their applicability and provides opportu-

nity for non-exact approaches.

2.4 Non-Exact DCOP Algorithms

As discussed earlier, all the exact algorithms calculate the globally optimal solution.

However, achieving optimality demands an exponentially increasing coordination over-

head. Such exponential relationships are unsuitable for a multi-agent system where

agents are constrained in computational capacity, bandwidth and memory resources.

Under these circumstances, non-exact algorithms are appropriate, as they trade some so-

lution quality for scalability, such that they have been used more in practice (Fitzpatrick

& Meertens, 2003; Maheswaran et al., 2004a; Farinelli et al., 2008). In the remainder

of this section, we discuss various non-exact algorithms that are broadly classified into

local greedy search and GDL-based inference approaches.

Chapter 2 Literature Review 23

2.4.1 Local Greedy Non-Exact Algorithms

In general, local greedy algorithms begin with a random assignment of all the variables

within a constraint graph, and go on to perform a series of local moves that try to greedily

optimize the objective function. Normally, changing the value of a small set of variables

is involved in a local move so that the difference between the value of the objective func-

tion with the new assignment and the previous value is maximized. This is defined as

the gain. The search terminates when the procedure obtains a local maximum, implying

that there is no local move available which offers a positive gain. In other words, agents

in a local search algorithm perform and evaluate the local moves in parallel, and inform

their neighbours about the assignment after each move. Local greedy search is a popular

non-exact optimization technique, as it requires very little memory and computation,

and can obtain good solutions in many settings. However, the parallel execution without

coordination can produce poor system performance, since these agents can act based on

outdated knowledge about the choices of other agents. To address this, a number of

efforts have been made that introduce different key algorithms of this type for solv-

ing DCOPs, such as Distributed Stochastic Algorithm (DSA) (Fitzpatrick & Meertens,

2003), Distributed Breakout Algorithm (DBA) (Yokoo & Hirayama, 1996; Hirayama &

Yokoo, 2005) and Maximum Gain Message (MGM) (Maheswaran et al., 2004a).

Specifically, DSA can be used for both synchronous and asynchronous contexts. In the

initialization phase of the former version, each of the agents chooses a random value for

the variable it holds and enters in an infinite loop. Within the loop, an agent chooses

an activation probability pi ∈ [0, 1] and generates a random number ri < pi. Then, the

agent will choose a value for its variable xi only if ri is less than pi. Otherwise it will not

change the current value of xi. Afterwards, the agent sends the updated information to

all neighbours and they, in turn, update information accordingly. On the other hand,

the asynchronous version of DSA can be used when the rate of the variable change is

low. Notably, the optimization step considers only the current values of neighbours,

and the communication step involves a message to communicate just the new value

of the agent’s variable. Hence, there is no exponential increase in computation and

communication. Finally, the algorithm is anticipated to increase the solution quality

after each execution step. Thus the longer an agent waits before acting, the better the

solution will be and importantly the solution is always available. This any-time property

of DSA is suitable for many practical applications. However, coupled with the lack

of theoretical guarantees, the solution quality is strongly dependent on the activation

probability pi. Unfortunately, there is no proactive way of computing this value from

an analysis of the problem instance, which is the main drawback of DSA.

On the other hand, in DBA, agents initiate the optimization process by assigning values

equal to one to all constraints. Subsequently, each of the participating agents randomly

24 Chapter 2 Literature Review

chooses a value for the variable it holds, then it propagates the selected value and obtains

the values chosen by its neighbouring agents. Once any of the agents receives all the

values chosen by the neighbours, it computes the assignment that results in a global

cost reduction by considering the weights of the violated constraints. At the end, the

agents share this cost reduction among their neighbours. When the cost reduction is

larger than zero, the corresponding agent assigns the value computed for this reduction.

Otherwise, it adds one to all the weights of all the violated constraints. The overall

search process ends when there is no violation of constraints. Since the main objective

of the DCSP model is to ensure that there is no constraint violation (see Chapter 1),

DBA is usually more appropriate for DCSPs than DCOPs.

The MGM algorithm is typically considered as the DCOP version of DBA, wherein the

difference lies in the fact that MGM does not alter the cost of the constraints to avoid a

local maximum. Similar to DBA, MGM is executed synchronously where all the agents

perform their local computations in each round of the algorithm. Each agent starts the

process by choosing an arbitrary value for its variable. Afterwards, the agents propagate

the selected values and obtain the values chosen by neighbouring agents. After receiving

the values chosen by the neighbours, each agent selects a value that results in better uni-

lateral gain, and propagates the gain among its neighbouring agents. The agent assigns

the selected value if the gain computed locally is greater than the maximum gain of all

neighbouring agents. To be precise, MGM performs a distributed hill climbing; however,

the algorithm avoids local maximum when computing the maximum improvement from

its neighbour prior to assigning the selected value. The rounds in MGM are repeated

until a ending condition is satisfied. Since the agents compute unilateral actions, MGM

does not guarantee convergence to the optimal solution. Unlike DSA, which requires a

single cycle (i.e. only the value propagation), MGM requires two cycles in each round.

For the first cycle, the agents propagate their assigned values. For the second cycle, the

agents propagate the obtained gains by unilateral changes.

Overall, these local greedy approaches often perform well on small problems having

constraints with lower arity. There has been some work on providing guarantees on

the performance of such algorithms in larger DCOP settings (Kiekintveld et al., 2010;

Pearce & Tambe, 2007; Bowring et al., 2008; Vinyals et al., 2010). However, for large and

complex problems consisting of hundreds or thousands of nodes, this class of algorithms

often comes up with a global solution far from the optimal (Farinelli et al., 2013; Leite

et al., 2014; Zivan & Peled, 2012; Rogers et al., 2011). This is because agents do not

explicitly communicate their utility for being in any particular state. Rather they only

communicate their preferred state (i.e. the one that will maximise their own utility)

based on the current preferred state of their neighbours.

Chapter 2 Literature Review 25

2.4.2 GDL-Based Non-Exact Algorithms

Among the non-exact approaches, GDL-based algorithms are receiving increasing at-

tention. They gain notable computational savings by using the distributive law (see

Section 2.3.2). Moreover, unlike greedy approaches, agents in a GDL-based algorithm

explicitly share the consequences of choosing non-preferred states with the preferred one

during inference through the graphical representation of a DCOP (Farinelli et al., 2008;

Ramchurn et al., 2010; Leite et al., 2014). Thus, agents can obtain global utilities for

each possible value assignment. In other words, in contrast to the greedy local search

algorithms, agents do not propagate assignments. Instead, they calculate utilities for

each possible value assignment of their neighbouring agents’ variables. Eventually, this

information helps this class of algorithms to achieve good solution quality for large and

complex problems. Hence, they perform well in practical applications.

Although the GDL framework has been utilized before in exact approaches, non-exact

GDL-based algorithms essentially inherit most of its benefits by preserving the iden-

tical means of computation. Moreover, unlike exact inference algorithms, they do not

introduce any additional phase of message passing – for example, an additional value

propagation phase is used by DPOP and Action-GDL. Furthermore, this class of al-

gorithms specifically operates on the factor graph representation of a DCOP, which

overcomes several of the shortcomings of the junction tree representation while inher-

iting the benefits it experiences over DFS-tree (see Section 2.2.3). In the remainder of

this section, we discuss two key GDL-based non-exact algorithms in greater detail.

2.4.2.1 The Max-Sum Algorithm

As discussed in Section 2.3.2, the “generalization” property of GDL framework allows

a certain application to choose its preferred commutative semiring operators that are

required to perform inference in a graphical model. In this way, we obtain different

message passing algorithms such as Sum-Product, Max-Sum or Max-Product, depending

on the specific semiring used. These algorithms are widely used to perform inference

in different domains. Initially, the GDL framework gained much popularity with the

Max-Product algorithm in the domain of probabilistic belief propagation (Kschischang

et al., 2001). However, from the perspective of MAS, the global utility of a set of agents

can be expressed more efficiently by “summing” the local utilities, instead of computing

their “product”. This is why the semiring operator sum used by the semiring Max-Sum

is more suited in this case than the operator product used by Max-Product. Building

on this insight, Farinelli et al. (2008) proposed the use of the Max-Sum semiring for

solving DCOPs in MAS.

Definition 2.4. (Standard Message Passing (SMP) protocol). Within a graphical rep-

resentation of a DCOP, a message is sent from a node v on an edge e to its neighbouring

26 Chapter 2 Literature Review

node w if and only if all the messages are received at v on edges other than e, summarized

for the node associated with e.

Similar to the Max-Product algorithm, Max-Sum operates on a factor graph represen-

tation of a DCOP. Specifically, it follows a standard message passing protocol (so called

SMP protocol – Definition 2.4) to exchange messages among the nodes of the factor graph

(Kschischang et al., 2001; Farinelli et al., 2008). According to SMP, a node (variable

or function) in the factor graph is not permitted to send a message to its neighbouring

node until it receives messages from all its other neighbours. For example, in the factor

graph of Figure 2.4, the function node F1 can send a message to the variable node x3

only after receiving the messages from its other neighbouring variable nodes, x1 and x2.

In other words, F2 has to wait for the messages to come from x1 and x2 before sending

a message to x3, according to the SMP protocol.

Qxi→Fj (xi) =
∑

Fk∈Mi\Fj

RFk→xi(xi) (2.5)

RFj→xi(xi) = max
xj\xi

[Fj(xj) +
∑

xk∈Nj\xi

Qxk→Fj (xk)] (2.6)

Zi(xi) =
∑

Fj∈Mi

RFj→xi(xi) (2.7)

Now, the algorithm uses Equations 2.5 and 2.6 for the message passing. Specifically,

the variable and the function nodes of a factor graph continuously exchange messages

(variable xi to function Fj (Equation 2.5) and function Fj to variable xi (Equation 2.6))

to compute an approximation of the impact that each of the agents’ actions have on

the global objective function, by building a local objective function Zi(xi). Once the

function is built (Equation 2.7), each agent picks the value of a variable that maximizes

the function by finding arg maxxi(Zi(xi)). In Equations 2.5−2.7, Mi stands for the set

of functions connected to xi and Nj represents the set of variables connected to Fj .

According to the SMP protocol, the iterative message passing process of Max-Sum

terminates after each variable receives messages from all its connected neighbours. Now,

there is an asynchronous version of message passing where nodes are initialized randomly,

and outgoing messages can be updated at any time and in any sequence (Farinelli et al.,

2008). Thus, the asynchronous protocol minimizes the waiting time of the agents, but

there is no guarantee about how consistent their local views (i.e. the local objective

function) are. In other words, agents can take decisions from an inconsistent view and

they may need to revise their action. Therefore, unlike SMP, even in an acyclic factor

graph, this asynchronous version does not guarantee convergence after a fixed number

Chapter 2 Literature Review 27

of message exchanges. Thus, it experiences more communication and computational

cost as redundant messages are generated and sent, regardless of the structure of the

graph. As a consequence, the asynchronous property limits the inference algorithms’

axiomatic benefit of communicating a limited number of messages compared to search-

based algorithms. Significantly, even in the asynchronous version, the expected result for

a particular node can be achieved only when all the received messages for the node are

computed by following the regulation of the SMP protocol. Based on this observation,

Elidan et al. (2006) introduced an asynchronous propagation algorithm that schedules

messages in an informed way. Moreover, Peri & Meisels (2013) demonstrated that the

impact of inconsistent views is worse than the waiting time of the agents regarding the

total completion time, due to the effort required to revise an action in the asynchronous

protocol. Thus, the completion time for both the cases are proportional to the diameter

of the factor graph, and the asynchronous version never outperforms SMP in terms of

the completion time (Kschischang et al., 2001; Peri & Meisels, 2013; Leite et al., 2014).

In any case, due to several reasons, Max-Sum is often considered as one of the prominent

non-exact algorithms. Firstly, in Max-Sum, agents only need to have a local perspective

of the complete problem and they do not rely on greedy moves. Secondly, the size of

the messages exchanged in Max-Sum depends only on the domain size of the variables,

thus either they are small or increase linearly with variables’ domain size. Whereas, the

message size of exact inference algorithms (e.g. DPOP and Action-GDL) increases ex-

ponentially with either or both variables’ domain size and constraints’ arity. Then, the

number of messages exchanged varies linearly with the number of nodes within the sys-

tem. Thirdly, in Max-Sum, agents do not need to hold the connectivity graph in memory

and update it as new nodes are joined or leave because it does not need the agents to

organize themselves into a DFS-tree, unlike most other complete DCOP algorithms (see

Section 2.3). Fourthly, this algorithm can directly handle n-ary constraints and more

variables per agent. Finally, Max-Sum provides optimal solution when applied to an

acyclic factor graph. However, it is not guaranteed to converge when applied to general

factor graphs which typically contain loops/cycles. We are going to discuss an extension

of Max-Sum that remedied this particular concern in the subsection that follows.

2.4.2.2 The Bounded Max-Sum Algorithm

Building on the fact that Max-Sum is neither guaranteed to converge nor provide optimal

solutions for cyclic factor graphs, Rogers et al. (2011) introduced Bounded Max-Sum

(BMS) that provides a bounded approximate solution by removing cycles in the factor

graph. This is achieved by ignoring the dependencies between functions and variables

which have the least impact on the solution quality. In more detail, BMS is able to

bound the quality of the solutions found by removing a subset of edges from a cyclic

28 Chapter 2 Literature Review

factor graph to make it acyclic, and by running Max-Sum to solve the acyclic problem.

Specifically, the goal is to compute a variable assignment X̃ in the transformed acyclic

factor graph, such that V ∗ ≤ ρṼ , where the approximate solution Ṽ =
∑L

i=1 Fi(x̃i)

and V ∗ =
∑L

i=1 Fi(x
∗
i) is the solution based on the optimal variable assignment. In

this context, ρ represents the approximation ratio. BMS prunes the edges that have the

least impact on solution quality in order to keep this approximation ratio as small as

possible. The maximum impact of an edge between xj and Fi is defined as its weight

wij . Thus, if variable xj is ignored when maximising a function Fi, the distance between

the approximate and the optimal solution will be at most wij (Equation 2.8).

wij = max
xi\xj

[max
xj

Fi(xi)−min
xj

Fi(xi)] (2.8)

Once all the weights are computed, BMS uses a modified version of a distributed min-

imum spanning tree algorithm developed by Gallager, Humblet and Spira (GHS), to

generate the maximum spanning tree (Gallager et al., 1983). GHS is reasonable in

terms of communication cost (O(N logN + E)) and has a running time of O(N logN),

where N is the number of nodes in the factor graph and E denotes the number of edges.

The newly obtained acyclic factor graph is then used in the second phase, where the

Max-Sum algorithm is used to compute the optimal variable assignment to the modified

problem (Equation 2.9).

Ṽ = arg max
X

∑
i

min
xc
i

Fi(xi) (2.9)

Here, xc
i is the set of variables that were eliminated from the scope of a function Fi, corre-

sponding to the edges that were pruned from the factor graph. Now, the approximation

ratio ρ can be obtained by Equation 2.10.

ρ = 1 + (Ṽ +W − Ṽ)/Ṽ (2.10)

Here, W is the sum of the weights of the pruned edges. Thus, an upper bound on the

optimal solution can be computed by Equation 2.11.

Ṽ +W ≥ V ∗ (2.11)

Notably, the BMS algorithm has been enhanced in terms of solution quality by de-

composing the utility functions and using tighter upper and lower bounds (Rollon &

Larrosa, 2014). Besides, a number of other efforts have been made to improve the

applicability and scalability of Max-Sum and BMS algorithms. We explore these in

the following section.

Chapter 2 Literature Review 29

2.5 Speeding Up GDL-Based DCOP Algorithms

Based on the discussion undertaken in the previous section, it becomes apparent that

GDL-based non-exact algorithms, such as Max-Sum and BMS, are good candidates for

dealing with DCOPs in practical multi-agent systems. Nevertheless, scalability remains

a key challenge for them due to a number of potentially expensive phases. In the

remainder of this chapter, we examine different approaches that have been proposed to

reduce those phases’ costs, and finally summarize our key findings.

2.5.1 Constraint Graph Formation

As discussed in Section 2.2, the internal optimization process of a DCOP algorithm is

usually followed by a pre-processing step, which is used to generate a corresponding

constraint graphical representation such as DFS-tree, junction tree or factor graph. It

has also been observed that none of these representations are unique for a corresponding

DCOP. Instead, it is common to have many variants of a particular graphical repre-

sentation where each variant corresponds to the same problem (Aji & McEliece, 2000;

Modi et al., 2005). That being the case, it is important for a DCOP algorithm to

choose the best of the variants, as it would ensure a lessened completion time for the

deployed algorithm (Petcu, 2007; Stefanovitch et al., 2011). Moreover, the attribute

that defines the optimality is predicated on the choice of the graphical representation.

For example, a minimal size of the tree width is preferred in the context of DFS-tree,

whereas an optimal junction tree should have the largest clique of minimal size. In any

case, finding an optimal representation that corresponds to a DCOP is itself an NP-hard

problem. Therefore, DCOP solution approaches usually rely on a distributed heuristic

(e.g. Awerbuch (1985); Stefanovitch et al. (2011)) in order to form a suitable variant of

a representation corresponding to a particular DCOP.

2.5.2 Maximization Operation

As mentioned in Section 2.4.2, both the Max-Sum and BMS algorithms use Equations 2.5

and 2.6 for their message passing, and they can be directly applied to the corresponding

factor graph representation of a DCOP. Specifically, Equation 2.6 stands for a message

that is computed by each of the factor nodes (i.e. constraint functions) distinctly for

all of its neighbouring variable nodes. Each of these factor-to-variable messages com-

prises a maximization operation that is used to obtain the locally best configuration

of the associated variables, given the local utility function and a set of incoming mes-

sages. To be exact, a constraint function that is associated with n variables having

domains composed of d values each, will need to perform dn computations to complete

a maximization operation. The computational complexity of this operator grows ex-

ponentially as the system scales up. In other words, because of the potentially large

30 Chapter 2 Literature Review

Algorithm 1: Algorithm for computing BnB-MS domain pruning message from func-
tion Fj to variable xi.

1 Compute Fj(xi)
ub ≤ minxj\xi

F (xi,xj \ xi)
2 Compute Fj(xi)

lb ≥ maxxj\xi
F (xi,xj \ xi)

3 Send < Fj(xi)
ub, Fj(xi)

lb > to xi

parameter domain size and constraint functions with high arity, the maximization oper-

ator of the factor-to-variable message is one of the main reasons GDL-based algorithms

can be computationally expensive.

Against this backdrop, Stranders et al. (2009) propose an extension of Max-Sum, named

as Branch and Bound Max-Sum (BnB-MS), to reduce the computation cost of this step

(Algorithm 1). Specifically, they perform a branch and bound search with constraint

functions that ensure the upper and lower bound can be evaluated with a subset of

variable values (lines 1 − 2 of Algorithm 1), and then send to the receiving variable xi

(line 3). Here, xj stands for those subset of variables the sending function Fj associ-

ated to. However, they introduce BnB-MS to be applied for the coordination of mobile

sensors. More importantly, the bounding function they propose to compute the upper

and lower bounds is solely focused on this specific application domain. Hence, this

method is not directly applicable to other DCOP settings.

Another application specific approach that has been proposed to speed-up the maxi-

mization operation is named as the Fast Max-Sum (FMS) algorithm (Ramchurn et al.,

2010). In particular, FMS reduces the domain size of variables associated with constraint

functions for task allocation domains where agents’ action choices are strictly divided

into working on a task or not. In more detail, unlike standard Max-Sum, where each

function node must enumerate all valid states and choose the one with the maximum

utility, FMS restricts the domain of each variable to only two states for each connected

function node. One of the states represents the fact that an agent Ai is assigned to a

specific task tj and the other state indicates that task tj is not allocated to the agent

Ai. The function Iij(xi) ∈ {0, 1} acts as an indicator which returns 1 if xi = tj , and

0 otherwise. The revised variable-to-function and function-to-variable messages that

reflect the above mentioned changes are shown in Equations 2.12 and 2.13, respectively.

Where Mi denotes the set of indices of functions connected to xi and Nj denotes the set

of indices of variables connected to Fj in the factor graph. Notice that this is different

from the Max-Sum which would have searched assignments of the variable which do not

improve the utility of the factor in any way. Thus, FMS prunes the space that would

have originally been searched by Max-Sum without losing any information. When a

variable xi receives all the messages from its neighbours, it computes the local objective

function Zi(xi) using Equation 2.14. Then, the variable can choose which value it takes

as arg maxxi(Zi(xi)) as before. Thus, it reduces the domain size (state) of each variable

Chapter 2 Literature Review 31

from d to 2, compared to a standard implementation of Max-Sum. Hence, the compu-

tational complexity of a factor with n variables of domain size d in FMS is O(2n), in

contrast to O(dn) required by applying Max-Sum to the same environment. Similar to

Max-Sum, FMS is not guaranteed to converge in cyclic factor graphs. To overcome this

challenge, Macarthur (2011) combines BMS with FMS to provide a bounded approx-

imate solution in this particular formulation of a task allocation problem. Moreover,

Macarthur et al. (2011) applies BnB-MS on top of the FMS algorithm to deal with the

task allocation problem in mobile sensor application domain.

Qxi→Fj (Iij(xi)) =


∑

k∈Mi\Fj
RFk→xi(0) // if Iij(xi) = 1

max
b 6=j

[RFb→xi(1) +
∑

k∈Mi\Fb,Fj
RFk→xi(0)] // otherwise

(2.12)

RFj→xi(Iij(xi)) = max
xj\i

[Fj(xj) +
∑

k∈Nj\xi

Qxk→Fj (Ikj(xk))] (2.13)

Zi(xi) = RFj→xi(1) +
∑

k∈Nj\xi

RFk→xi(0) (2.14)

Tarlow et al. (2010) have shown that the computation associated to belief propagation

algorithms can be reduced to polynomial time for some specific types of factors, known

as Tractable Higher Order Potentials(THOPs). Nevertheless, they admit that not all

DCOP settings can be represented using THOPs, and a notable limiting feature of

THOPs is that they can only be defined or formulated over binary constraints. In

particular, Pujol-Gonzalez et al. (2015) utilize THOPs to run Max-Sum in polynomial

time for the domain of task allocation in RoboCup Rescue. Meanwhile, Kim & Lesser

(2013) propose a more general approach, namely Generalized Fast Belief Propagation

(G-FBP), to speed up the maximization operation of Max-Sum/BMS. Specifically, G-

FBP uses two partially sorted lists in order to find the maximum of the summation as in

Equation 2.6. The value list and the message list are the two partially sorted lists used

here. The value list corresponds to a partially sorted version of the constraint function

Fj given the specific value of a single variable. On the other hand, the message list

represents a partially sorted list corresponding to the sum of incoming messages to a

function node. Notably, they select and sort only the top cd(n−1)/2 items of both lists

where d is the domain size, n is the number of associated variables and c is a constant.

The main intuition behind such a select-then-sort operation is that for the maximization

operation, only the top cd(n−1)/2 items will be accessed most of the time; unsorted entries

are not accessed in most cases. Nevertheless, Kim and Lesser admit that they cannot

guarantee in advance whether the presumption is true or false, and in the latter case

G-FBP incurs a significant penalty in terms of the computational cost.

32 Chapter 2 Literature Review

2.5.3 Message Passing Process

In reviewing the literature, we have found that previous attempts at speeding up GDL-

based non-exact algorithms have mainly focused on reducing the overall cost of the

maximization operator. However, they overlook an important concern that all such

algorithms follow a message passing protocol, the so-called SMP (Definition 2.4), to

exchange messages among the nodes of the corresponding factor graph representation

of a DCOP. It is apparent from the discussion of Definition 2.4 that a node (variable or

function) of a factor graph has to rely on other message(s) to receive before generating

its own message(s). This dependency, which is common for all the nodes, increases the

average waiting time for agents as the graphical representation of a DCOP becomes

larger. As a consequence, the time required to obtain the solution from the DCOP

algorithm (i.e. the completion time) increases. Although there is an asynchronous

alternative of this protocol, this issue of taking too long remains identical because of

the fact that an algorithm converges under similar conditions for both versions of the

protocol (see Section 2.4.2.1 for details). Thus far, no studies have been performed to

speed-up the message passing process, despite the significance of this issue. Nevertheless,

it is worth mentioning that there have been few approaches that change the order of

the propagation of the messages with the intention to improve the convergence property

(i.e. solution quality) in the cyclic graphical representations (Vinyals et al., 2010; Elidan

et al., 2006; Zivan & Peled, 2012).

2.5.4 Node-to-Agent Mapping

As mentioned in Section 2.2, DCOPs are formulated as constraint networks that are

often represented graphically using one of the following representations: junction trees,

factor graphs or DFS-trees. In all of these representations, nodes (i.e. variables and/or

functions depending on the graphical representation) are being held by the agents par-

ticipating in the optimization process, and the agents act (i.e. generate and transmit

messages) on behalf of the nodes they hold.

The conventional DCOP model assumes that the mapping of nodes to the participating

agents is part of the model description. In other words, the nodes that each agent holds

is given as an input. This assumption is reasonable in many applications where there

are obvious and intuitive mappings – for example, in a smart home scheduling problem

(Fioretto et al., 2017), agents correspond to the different smart homes, and variables

(i.e. nodes) correspond to the different smart devices within each home. In this case,

the agent controls all the variables that map to the devices in its home. However, in

other applications, there may be more flexibility in the mapping of nodes to agents.

For example, imagine an application where a team of unmanned aerial vehicles (UAVs)

need to coordinate with each other to effectively survey an area. In this application,

Chapter 2 Literature Review 33

agents correspond to UAVs and variables correspond to the different zones in the area

to be surveyed. The domain for each variable may correspond to the different types

of sensors to be used and/or the different times to survey the zone. Since a UAV can

survey any zone, there are multiple possible assignments of zones to UAVs. That is,

there are multiple possible mappings of variables (i.e. nodes) to agents.

Although it is possible to arbitrarily choose a mapping and run any off-the-shelf DCOP

algorithm to solve the problem, choosing a good mapping is important as it can have

a significant impact on an algorithm’s completion time (as we shall see in Section 5.1).

However, choosing an optimal mapping may be prohibitively time consuming as this

is an NP-hard problem (Rust et al., 2016). To date, this particular issue has received

scant attention in the research literature. Notably, Rust et al. (2016) introduce a simple

heuristic of node-to-agent mapping, based on constraints that arise from a specific prob-

lem formulation of a smart-home application, called Smart Environment Configuration

Problem (SECP). Therefore, this method cannot be applied to other DCOP settings.

In any case, the method does not aim to speed-up the overall DCOP algorithm, rather

concentrating on establishing the roles of each smart-home devices.

2.6 Summary

Based on our survey of the literature, we outline the key shortcomings of existing works

and highlight elements that we intend to build upon with a view to address the challenges

mentioned in the previous chapter. Even though exact algorithms such as ADOPT,

BnB-ADOPT, DPOP, Action-GDL, PC-DPOP and OptAPO always provide an optimal

solution for a DCOP, they incur exponential coordination overhead. Consequently, such

algorithms are unsuitable for settings involving a large number of agents, tasks and/or

resources. Nevertheless, it is worth mentioning that centralizing parts of a DCOP can

often reduce the effort required to find a globally optimal solution. To that end, ap-

proaches such as PC-DPOP and OptAPO have been proposed to take advantage of

this phenomenon. In any case, non-exact algorithms have gained prominence as poten-

tial realistic alternatives. They sacrifice some solution quality for scalability and have,

therefore, been used more in practice. Typically, they are based on local information

exchange and can render acceptable solution quality while being efficient in terms of the

computation and communication cost. Among the non-exact algorithms, DSA, DBA

and MGM are local greedy search-based. They do not necessitate extensive compu-

tation/memory and provide good solutions for some applications. However, local best

choices picked by a greedy method often translate into a global solution far from the

optimal one for relatively large and complex multi-agent systems.

34 Chapter 2 Literature Review

On the other hand, GDL-based inference non-exact methods, such as Max-Sum and

BMS, do not rely on greedy moves. They try to maximize the global optimization func-

tion expressed as the sum of local functions by exchanging messages in a factor graph.

The messages here are generated using the GDL framework that has an axiomatic ten-

dency of computational savings. Moreover, they also provide some additional advantages

by using a factor graph as the graphical representation of a DCOP. Furthermore, they

ensure an optimal solution for acyclic factor graphs and bounded approximate solution

for cyclic ones. Under such circumstances, this class of algorithms has great potential

of being effective in large multi-agent settings.

Despite these advantages, scalability continues to pose a challenge for GDL-based al-

gorithms. In reviewing the literature, we specifically find the presence of a number of

potentially expensive phases within this class of algorithms, which can make them in-

feasible with regard to either or both computation and communication cost. Over the

past few years, a number of attempts have been made to speed-up these phases, and

in effect, improve the scalability and applicability of such algorithms. The majority of

these attempts mainly focus on reducing the computation cost of the maximization op-

eration. In particular, FMS and BFMS reduce the domain size of variables associated

with constraint functions (for the purpose of task allocation domains) where the agents’

action choices are strictly divided into working on a task or not. However, this method

is completely application dependent, because it can only be applied to a specific problem

formulation of the task allocation domain. Moreover, BnB-MS performs a branch and

bound search with constraint functions that ensure the upper and lower bound can be

evaluated with a subset of variable values. However, the bounding function they propose

to achieve this is solely focused on coordinating mobile sensors. Hence, it is not directly

applicable to general DCOP settings. In contrast, G-FBP is a more general approach

proposed to reduce the cost of the maximization operator. In this approach, they select

and sort the top cd
n−1
2 values of the search space, presuming that the maximum value

can be found from these ranges. Here, c is a constant. Nevertheless, no guarantee can

be made in advance about whether the presumption is true or false; in the latter case,

G-FBP incurs a hefty penalty in terms of the computational cost. When taken together,

it is obvious that the existing approaches of addressing this particular issue are unable to

address our key research challenge C1 (see Chapter 1). To address this issue, we develop

a domain pruning technique to speed up the maximization operation in Chapter 3. This

is something that can function regardless of any application dependency.

Another potentially expensive phase of GDL-based algorithms is the message passing

protocol that ensures the manner in which nodes of a graphical representation exchange

messages among themselves. On the basis of the agents’ average waiting time, the cur-

rently used standard message passing protocol is eventually seen to increase the duration

of the overall optimization process. Notably, no studies have been conducted thus far

Chapter 2 Literature Review 35

to speed-up this process. In order to bridge the gap, and ultimately address the re-

search challenge outlined as C2, we introduce a generic message passing protocol for

GDL-based algorithms that can be used in place of existing protocol in Chapter 4.

Finally, the node-to-agent mapping, which explicitly defines the responsibility of the

cooperating agents as well as their relationships with the nodes in the optimization

process, signifies one of the key phases of GDL-based algorithms that can potentially

increase the algorithms’ completion time. While very few attempts have been made

targeting this particular issue, they are generally tailored for specific application domain.

This insight inspires the final contribution of our thesis where we speed-up the overall

optimization process through a time-efficient node-to-agent mapping heuristic, and as

such, successfully address our final research challenge C3 (Chapter 5).

Chapter 3

Speeding Up the Maximization

Operation

As discussed in Chapter 2, scalability becomes a challenge for Generalized Distributive

Law (GDL) based message passing algorithms, such as Max-Sum and Bounded Max-Sum

(BMS), when they have to deal with constraint functions with high arity or variables

with a large domain size. In either case, the ensuing exponential growth of search space

can make the maximization operation of such algorithms computationally infeasible in

practice. Moreover, the existing studies that have been attempted to reduce the cost

of this particular phase of GDL-based DCOP algorithms generally focus on a specific

application domain and/or experience lack of consistency in their performance. Under

such circumstances, it is important to speed-up the maximization operation to enable

the effective implementation of these algorithms on larger and more complex problems,

which is outlined as our first research challenge C1. This can be attained by reducing its

computation cost whilst maintaining consistent performance and general applicability.

Building on this insight, this chapter proposes a Generic Domain Pruning technique,

that we call GDP, that is applicable to all DCOP settings. To be exact, GDP operates

as a part of the maximization operator, proveably without affecting its solution quality

(see Lemma 1 of Section 3.3). In other words, we improve the computational efficiency

of non-exact GDL-based algorithms by reducing the search space over which the max-

imization operation is computed. More importantly, we show the relative performance

gain of GDP gets better with an increase in the domain size of the variables and the

arity of the corresponding constraint function. The remainder of this chapter is struc-

tured as follows. We describe the problem in greater detail in the section that follows

(Section 3.1). In Section 3.2, we discuss the complete process of GDP with a worked

example. We then discuss theoretical results in Section 3.3. Subsequently, in Section 3.4,

we present the empirical results of our method compared to the current state-of-the-art.

Finally, we conclude this chapter with the overall summary in Section 3.5.

37

38 Chapter 3 Speeding Up the Maximization Operation

3.1 Problem Description

As mentioned in Section 2.1, a DCOP can be defined by a tuple 〈X,D,F,A, δ〉, where

X is a set of discrete variables {x0, x1, . . . , xm} and D = {D0, D1, . . . , Dm} is a set of

discrete and finite variable domains. Each variable xi can take value from the states of

the domain Di. F is a set of constraint functions {F1, F2, . . . , FL}, where each Fi ∈ F is

a function dependent on a subset of variables xi ∈ X defining the relationship among the

variables in xi. Thus, the function Fi(xi) denotes the value for each possible assignment

of the variables in xi. Notably, the dependencies between the variables and the functions

generate a bipartite graph, called a factor graph, which is commonly used as a graphical

representation of such DCOPs (see Section 2.2.3). In a factor graph, each constraint

function Fi(xi) is represented by a square node and is connected to each of its associated

variable nodes xi (denoted by circles) by an individual edge. Hence, |xi| is the arity of

Fi(xi) in this particular graphical representation of DCOP. The nodes (variables and

functions1) of a factor graph G are being held by a set of agents A = {A1, A2, . . . Ak}.
This mapping of nodes to agents is represented by δ : η → A. Here, η stands for the set

of nodes within the factor graph. Each variable/function is being held by a single agent.

Nevertheless, each agent can hold several variables/functions. The corresponding agent

acts (i.e. generates and transmits messages) on behalf of the nodes they hold, and is

responsible for assigning values to the variables they hold. Within the model, the objec-

tive of a DCOP algorithm is to have each agent assign values to its associated variables

from their corresponding domains in order to maximize the aggregated global objective

function, which eventually produces the value of each variable, X∗ (Equation 3.1).

X∗ = arg max
X

L∑
i=1

Fi(xi) (3.1)

For example, Figure 3.1 illustrates the relationship among variables, functions and agents

of a factor graph representation of a sample DCOP. Here, we have a set of four variables

X = {x0, x1, x2, x3}, a set of two functions/factors F = {F0, F1}, and a set of four

agents A = {A1, A2, A3, A4}. Moreover, D = {D0, D1, D2, D3} is a set of discrete and

finite variable domains, each variable xi ∈ X can take its value from the domain Di.

In this example, agent A1 holds a function node F0 and a variable node x0. Similarly,

nodes F1 and x1 are being held by agent A3. While agents A2 and A4 hold variable

nodes x2 and x3, respectively. In this particular setting, four agents A1, A2, A3 and A4

participate in the optimization process in order to maximize a global objective function

F (x0, x1, x2, x3). Here, the global objective function is an aggregation of two local

functions F0(x0, x1, x2) and F1(x1, x2, x3). In the factor graph, F0 is associated (i.e.

1The term function is also known as factor, and they are used interchangeably throughout this thesis.

Chapter 3 Speeding Up the Maximization Operation 39

F1

F0 x1

x2 x3

x0

Agent A2 Agent A3

Agent A1

Agent A4

Figure 3.1: In the figure, the same factor graph shown in Figure 2.4 is used
to highlight (i.e. grey arrows) the factor-to-variable messages of GDL-based
algorithms, each of which requires the maximization operation to be performed.

connected) with three variable nodes, and as such, the arity of the constraint function

F0 is 3. Similar to F0, the arity of constraint function F1 is 3 in this particular example.

GDL-based inference algorithms follow a message passing protocol to exchange mes-

sages among the nodes of the factor graph (see Section 2.4.2 for more details). Here,

both the Max-Sum and BMS algorithms use Equations 3.2 and 3.3 for their message

passing. Specifically, the variable and function nodes of a factor graph continuously

exchange messages (variable xi to function Fj (Equation 3.2) and function Fj to vari-

able xi (Equation 3.3)) to compute an approximation of the impact that each of the

agents’ actions have on the global objective function by building a local objective func-

tion Zi(xi). In Equations 3.2−3.4, Mi stands for the set of function nodes connected

to variable xi and Nj represents the set of variable nodes connected to function Fj .

Once the function is built (Equation 3.4), each agent picks the value of a variable that

maximizes the function by finding arg maxxi(Zi(xi)).

Qxi→Fj (xi) =
∑

Fk∈Mi\Fj

RFk→xi(xi) (3.2)

RFj→xi(xi) = max
xj\xi

[Fj(xj) +
∑

xk∈Nj\xi

Qxk→Fj (xk)] (3.3)

Zi(xi) =
∑

Fj∈Mi

RFj→xi(xi) (3.4)

40 Chapter 3 Speeding Up the Maximization Operation

As discussed in Section 2.5.2, due to the potentially large parameter domain size and

constraint functions with high arity, the maximization operator of the factor-to-variable

message is the main reason GDL-based algorithms can be computationally expensive.

This can be visualized from an example where a function node has five variable nodes

connected to it, meaning the arity of the function is n = 5. Here, we assume each of the

variables can take its value from 9 possible options (i.e. states of the domain), implying

that the domain size is d = 9 for each of the variables. In this case, the function node

has to perform 95 or 59, 049 operations to generate a message for one of its neighbouring

variable nodes. Now, each of the function nodes in a factor graph has to generate and

send a single message to each of its neighbours to complete a single round of message

passing (Aji & McEliece, 2000; Kschischang et al., 2001). For example, function node

F1 of Figure 3.1 has to send a distinct message (grey arrow) to each of its neighbouring

variable nodes x1, x2 and x3. Each of these messages includes the expensive maxi-

mization operator. Under such circumstances, it is possible to significantly reduce the

computational cost of this step. Meanwhile, it is essential to ensure that this reduction

process does not limit the algorithms’ applicability, as well as not affecting the solution

quality. We deal with the issue that arises from the trade-off in the section that follows.

3.2 The Generic Domain Pruning Technique

GDP (Algorithm 2) works as a part of Equation 3.3, which represents a function-to-

variable message of a GDL-based algorithm, in order to reduce the search space over

which the maximization needs to be computed. This algorithm requires as inputs a

sending function node Fj(xj) whose utility depends on a set of variable nodes (xj)

associated with it (i.e. neighbours), a receiving variable node xi ∈ xj and all the incoming

messages from the neighbour(s) of Fj apart from the receiving node xi, denoted as

Mxj\xi
. Finally, GDP returns a pruned range of values for each state of the domains of

the variables over which the maximization operation needs to be performed to generate

the message from the function node Fj to the variable node xi (i.e. RFj→xi(xi)).

In more detail, S stands for a set {s1, s2, . . . , sr} representing each state of the domains

corresponding to xj (line 1 of Algorithm 2). This implies that S is the union (∪) of

those sets of states, each of which corresponds to the domain of a variable in xj . Line

2 sorts the local utility of the sending function node Fj independently by each state

si ∈ S. This sorting can be carried out at runtime of a message passing algorithm

without incurring an additional delay (discussed shortly in Conjecture 1). Then the

total number of incoming messages received by Fj is represented by n (line 3). Note

that, a complete worked example of GDP is depicted in Figure 3.2 where we use a part

of the factor graph of Figure 3.1 to show a factor-to-variable (i.e. F1 to x3) message

computation (Figure 3.2(a)), as well as the operation of GDP on it (Figure 3.2(b)).

Chapter 3 Speeding Up the Maximization Operation 41

Algorithm 2: Generic Domain Pruning- GDP(Fj(xj), xi, Mxj\xi
)

Input: Fj(xj) - Local utility of the sending function node Fj , where xj is the set of

variable nodes associated with Fj ;

xi ∈ xj - the variable node which is going to receive a message from Fj ;

Mxj\xi
- Received messages by Fj from all of its neighbouring variable nodes

xj , other than xi.

Output: Pruned range of values of the states over which maximization needs to be

performed to generate the message from Fj to xi.

1 Let S = {s1, s2, . . . , sr} be the states corresponding to the domains of xj

2 Sort the local utility Fj(xj) independently by each state si ∈ S

3 n← |Mxj\xi
|

4 m←
∑n

k=1 max(Mk), where Mk ∈Mxj\xi
is one of the n messages received by Fj

5 foreach si ∈ S do // for each state corresponding to the variables xj that

associate with Fj

6 Vi ← sortedV alsi(Fj(xj))

7 p← max(Vi)

8 b←
∑n

k=1 valp(Mk)

9 t← m− b

10 q← binarySearch(Vi, λ) where λ = max
c
{c ∈ Vi : c ≤ (p− t)}

11 if q == p− t then

12 result prunedRangesi([p,q])

13 else

14 result prunedRangesi([p,q))

42 Chapter 3 Speeding Up the Maximization Operation

Utility (cost) table for the

function node, F1 (x1, x2, x3)

x1 x2 x3 F1
R R R 5
R R B 10
R R G 12

R B R 13
R B B 12
R B G 35
R G R 9

R G B 38
R G G 11
B R R 12

B R B 14
B R G 38
B B R 10
B B B 3

B B G 9
B G R 40
B G B 14
B G G 13

G R R 10
G R B 37
G R G 12

G B R 39
G B B 13
G B G 14
G G R 11

G G B 12
G G G 4

{122,130,136}

F1

x1

x2

x3

{90,81,75}

Qx1F1(x1) Qx2F1(x2) F1 RF1x3(x3)

122 90 5 217

{256,263,258}

122 90 10 222

122 90 12 224

122 81 13 216

122 81 12 215

122 81 35 238

122 75 9 206

122 75 38 235

122 75 11 208

130 90 12 232

130 90 14 234

130 90 38 258

130 81 10 221

130 81 3 214

130 81 9 220

130 75 40 245

130 75 14 219

130 75 13 218

136 90 10 236

136 90 37 263

136 90 12 238

136 81 39 256

136 81 13 230

136 81 14 231

136 75 11 222

136 75 12 223

136 75 4 215

(a) Computation of a function-to-variable message (i.e. F1 to x3).

Domain pruning of state R during the computation of RF1 x3(x3)

"𝑀𝑎𝑥"Computation for state R

Qx1F1(x1) Qx2F1(x2) F1 "𝑆𝑢𝑚"
130 75 40 245

136 81 39 256

122 81 13 216

130 90 12 232

136 75 11 222

136 90 10 236

130 81 10 221

122 75 9 206

122 90 5 217

M1 = Qx1F1(x1) = {122, 130,136} M2 = Qx2F1(x2) = {90, 81,75} VR = sortedValR (F1(x1, x2, x3)) = {40, 39, 13, 12, 11, 10, 10, 9, 5}

 𝑚 = 𝑚𝑎𝑥 (M1) + 𝑚𝑎𝑥 (M2) = 136 + 90 = 226 𝑝 = 𝑚𝑎𝑥 (VR) = 40; 𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑏 = 130 + 75 = 205

Given 𝑚 = 226, t = m – b = 226 – 205 = 21

Target – find the row that contains utility value 𝑝 − 𝑡,

if not then closest smaller value of 𝑝 − 𝑡.

Here, 𝑝 − 𝑡 = 40 − 21 = 19

Thus, the desired value q is 13, which is in the third

row from the top. Use binary search to find this value

Now, if 𝒒 == 𝑝 − 𝑡, then the maximum value for R must be found from the rows within the range [𝑝, 𝒒].

Else If 𝒒 < 𝑝 − 𝑡, then the maximum value for R must be found from the rows within the range [p, q).

Here, 𝒒 < 𝑝 − 𝑡 (i.e. 13 < 19), hence we have to look only for the rows within the range [40, 39] or [40, 13), and discard the rest.

(b) Complete operation of GDP on RF1→x3
(x3).

Figure 3.2: Worked example of GDP in computing a factor-to-variable message,
F1 to x3 or RF1→x3(x3), within the factor graph shown in Figure 3.1. In this
example, for simplicity, we show that part of the original factor graph which
is necessary for this particular message computation. In the figure, red, blue
and green coloured values are used to distinguish the domain states R, B and
G respectively for each of the variables involved in the computation, and ar-
rows between the nodes of the factor graph are used to indicate the direction
of the corresponding messages.

Chapter 3 Speeding Up the Maximization Operation 43

Here, the local utility of the sending function node F1 is shown in a table at the left side

of Figure 3.2(a), which is based on three domain states {R,B,G} (for simplicity red,

blue and green colours are used to distinguish the values of the states, respectively) and

three neighbouring variable nodes x1, x2 and x3. Moreover, the direction of two incoming

messages (i.e. n = 2) received by F1, {122, 130, 136} and {90, 81, 75}, from the variable

nodes x1 and x2 respectively, are indicated using the black arrows. Then, the grey

arrow indicates the desired function-to-variable message RF1→x3(x3) = {256, 263, 258},
and the complete calculation is depicted in a table at the right side of Figure 3.2(a).

At this point, line 4 computes m which is the summation of the maximum values of

each of the messages Mk ∈ Mxj\xi
received by the sending function Fj , other than

the receiving variable node xi. Here, Mk is one of the n messages received by Fj .

In the worked example of Figure 3.2(b), since the maximum of the received messages

{122, 130, 136} (i.e. M1) and {90, 81, 75} (i.e. M2) by F1 are 136 and 90 respectively,

the value of m = 136+90 = 226. Now, the for loop in lines 5−14 generates the range of

the values for each state si ∈ S from where we will always find the maximum value for

the function Fj , and discard the rest. To this end, the function sortedV alsi(Fj(xj)) gets

the sorted value of si from line 2, and stores them in an array Vi (line 6). Then, line 7

finds p, which is the maximum of the local utility values for the state si (i.e. max(Vi)).
In the worked example, the sorted values of domain state R are stored in VR, depicted in

the right side of Figure 3.2(b). Hence, the value of p = max(VR) = 40. Afterwards, line 8

computes b, which is the summation of the corresponding values of p from the incoming

messages of Fj (i.e. valp(Mk)). In the example, the values corresponding to p (i.e. 40)

from two incoming messages are 130 and 75, thus the value of b = 130 + 75 = 205. This

can be seen in the first row of the rightmost table of Figure 3.2(b). The rows related to

the computation for the state R are summarized into this table from the rightmost table

of Figure 3.2(a), which depicts the complete computation of the function F1 to variable

x3 message based on domain states R, B and G. Having obtained the value of m and

b from lines 4 and 8 respectively, line 9 gets the base case t, which is a subtraction of b

from m (i.e. t = m− b = 226− 205 = 21).

Line 10 searches for a value λ in the sorted list Vi and stores it in a variable q. In this

context, λ stands for a value c ∈ Vi that is either equal to the value of p−t or immediately

smaller than p− t. In other words, λ is the maximum of those values in Vi that are not

greater than p − t. To this end, we use the binary search method because the list that

needs to be searched is already sorted. Now, when the value of q is equal to p− t, the

desired maximum value for the state si must always be found by considering the rows

corresponding to the values in the range [p,q], denoted by prunedRangesi([p,q]) (lines

11−12)2. Otherwise, the value of q is less than p−t, and the desired maximum value for

the state si must always be found by considering the rows corresponding to the values

44 Chapter 3 Speeding Up the Maximization Operation

in the range [p,q), denoted by prunedRangesi([p,q)) (lines 13 − 14)2. In the worked

example of Figure 3.2(b), the value of p− t is 19, given p = 40 and t = 21. The target is

to obtain the value of q from the list VR. In the third column of the rightmost table that

illustrates the computation for the state R, we see that the value of q is 13 because this

is the closest smaller (or equal) value of 19 (i.e. p−t). Since q is not equal to p−t in this

instance, according to lines 13 − 14 the desired maximization for R must be found by

considering the rows corresponding to the values in the range [40, 13) or [40, 39]. That

means, only considering the top two rows are sufficient to obtain the desired value of R;

hence, it is not necessary to consider the remaining 7 rows for this particular instance.

To be exact, the value for the state R after maximization is 256, which is obtained from

the row corresponding to the local utility value of 39. In this way, GDP reduces the

computational cost of the expensive maximization operator. The grey colour is used to

mark the discarded rows of the table. We can see that even for such a small instance,

having domain size d = 3 and arity n = 3, GDP prunes more than 75% of the search

space during the maximization of a state in computing the function-to-variable message.

As argued above, it is important to ensure that combining GDP with Equation 3.3 does

not make the computation of a function-to-variable message prohibitively expensive.

Given the sorting operation of line 2 does not incur an additional delay (see Conjec-

ture 1), the time complexity of GDP involves two parts. This includes the for-loop of

line 5 and the binary search of line 10. Hence, we determine that the overall time com-

plexity of GDP is O(r log |Vi|). In this context, r stands for the number of states of the

variables’ domain associated with the sending function node (line 5). Then, |Vi| is the

size of the array Vi, hence log |Vi| is the time complexity to do the binary search of line

10 on Vi. Taken together, GDP is able to reduce the search space significantly at the

expense of a quasi-linear computation cost of its own.

3.3 Theoretical Analysis

In order to ensure the efficacy of GDP, it is necessary to demonstrate that the sorting

operation of line 2 of Algorithm 2 can be conducted without incurring any further delay.

Moreover, to ensure the accuracy of our approach, it is paramount to prove that the

result of each maximization operation is always found within the proposed range of

GDP. In the remainder of this section, we provide theoretical analysis of these two vital

claims in the form of Conjecture 1 and Lemma 1, respectively.

Conjecture 1. The sorting operation performed in line 2 of Algorithm 2 does not incur

an additional delay during the computation of a factor-to-variable message.

Discussion. The message passing protocol followed by GDL-based DCOP algorithms

operates directly on a factor graph (acyclic or cyclic) representation of a DCOP, and it

2See Lemma 1 and its proof.

Chapter 3 Speeding Up the Maximization Operation 45

can be classified into the following two categories (Aji & McEliece, 2000; Kschischang

et al., 2001):

1. Synchronous message passing approach. A message is sent from a node v on an

edge e to its neighbouring node w if and only if all the messages are received at v on

edges other than e, summarized for the node associated with e. This implies that a

node in a factor graph is not permitted to send a message to its neighbour until it

receives messages from all its other neighbours. Here, for w to be able to generate

and send messages to all its other neighbours, it depends on the message from

v. To be exact, w cannot compute and transmit messages to its neighbours other

than v until it has received all essential messages, including the message from v.

In this process, a single round of the message passing process will complete once

each of the nodes is able to send a message to all of its neighbours.

2. Asynchronous message passing approach. Nodes of a factor graph are initialized

randomly, and outgoing messages can be updated at any time and in any sequence.

The message passing needs to continue for a number of rounds3 to either converge

or produce an acceptable approximate solution.

Based on both of these versions of the message passing protocol, the three following

cases are seen. We are going to illustrate that, for all of these cases, Conjecture 1 is true.

• Case 1: It is always preferable for acyclic factor graphs to use the synchronous

version of message passing (Farinelli et al., 2008; Aji & McEliece, 2000). This is

because it requires only one round of message passing to generate the optimal

solution in such factor graphs. Therefore, it is redundant to use the asynchronous

alternative. In this case, only a very small number of nodes act (i.e. generate

and transmit messages) initially, while the rest of the nodes have to wait for their

required messages to arrive before they can start generating message(s). Given a

sorting operation is not computationally expensive, we propose to apply GDP to

those nodes which are not initially active. Thus, they can utilize the waiting time

to complete the sorting operation without incurring an additional delay.

• Case 2: A key GDL-based DCOP algorithm, namely Bounded Max-Sum, deals

with cyclic factor graph representations of DCOPs by initially removing the cycles

from the original factor graph using a pre-processing step. During this step, the

agents experience an additional waiting time. Then, it applies the synchronous

version of message passing on the transformed acyclic factor graph to provide a

bounded approximate solution of the problem (see Section 2.4.2.2). In this case,

3A detailed description regarding how many rounds are required is beyond the scope of this work.
See Farinelli et al. (2008) for more details.

46 Chapter 3 Speeding Up the Maximization Operation

the sorting operation can be carried out during the agents’ waiting time of the

preprocessing step. Hence it does not incur an additional delay.

• Case 3: The so-called loopy message passing (Farinelli et al., 2008) is another

way to deal with the cyclic factor graph representation of DCOPs. It uses the

asynchronous approach as the message passing protocol. As mentioned above, this

version of message passing requires several rounds to either converge or produce

an approximate solution. We propose to enforce the fact that the first round must

follow the synchronous approach, so that the sorting operation can be completed

using the same way as Case 1. The following rounds can then proceed with the

asynchronous message passing approach without loss of its own characteristics.

�

Lemma 1. During a function-to-variable message computation, the desired maximum

value for a state si ∈ S must always be found from the rows corresponding to the values

ranging from q to p.

Proof. We prove this by contradiction. Assume there exists a row ra that resides outside

the range from which the maximum value for si can be found. As we know, a function-

to-variable message depends on two inputs− the local utility table of the function and

the incoming messages from its neighbours. In this context, p is the maximum utility

corresponding to si, and is within our proposed range. Therefore, to be able to find

ra, we have to rely on the only remaining input, that is the incoming messages from

the neighbours of the sending function node. To this end, let’s consider two parameters

from this remaining input. The first is the summation of the maximum values from each

of the incoming messages, denoted as m. The second is the summation of values from

the incoming messages corresponding to p, denoted as b. Given p is the maximum of

the first input, the value t = m− b is significant because this is the maximum difference

the remaining input can make. In GDP, the value of q is chosen in such a way that it

covers the difference. As a consequence, there exists no such row as ra.

�

3.4 Empirical Evaluation

We now empirically evaluate how much speed-up can be achieved using GDP and com-

pare this with the performance of G-FBP4. In so doing, we run our experiments on two

different types of factor graph representation (i.e. sparse and dense) of a benchmarking

graph colouring problem. Specifically, we consider factor graphs having a number of

function nodes ranging from 10 to 100, and that each of the factor graphs is generated

by randomly connecting a number of variable nodes per function node. Specifically, this

4See Sections 2.5.2 and 2.6 for the detailed reasoning behind the selection of this benchmark.

Chapter 3 Speeding Up the Maximization Operation 47

number of variable nodes connected to each function node, termed the arity n of a func-

tion, has been chosen based on the following parameters: the value of n for each function

node is randomly chosen from the ranges 1− 4 and 5− 10 to generate sparse and dense

factor graphs, respectively. Thus, the differences in the arity of the function nodes for

two different types of factor graphs are distinguished by the terms sparse and dense in

our experiments. Moreover, we categorize domain size d of the variable nodes into two

distinct classes. On the one hand, for a setting with “small domain size” we consider

the size between 2 to 5 for each of the variable nodes in a factor graph. On the other

hand, we consider them between 6 to 10 for a setting with “large domain size”. This

classification has been done in order to observe the performance of GDP and G-FBP

from a very small (e.g. dn = 23) to a large (e.g. dn = 105) search space. It is worth

noting that we make use of the Frodo framework (Léauté et al., 2009) to generate local

utility tables (i.e. cost function) for the function nodes of a factor graph. To get the

results based on the aforementioned setting, we initially compute the percentage of the

search space pruned (i.e. speed-up) by the algorithms for a function node by taking the

average of the speed-ups of all the messages sent by that function node. Afterwards, we

take the average of the speed-ups of all the nodes in a factor graph. Finally, we report

the results of each factor graph averaged over 50 test runs in Figure 3.3, recording stan-

dard errors to ensure statistical significance. All of the experiments were performed on

a simulator implemented in an Intel i7 Quadcore 3.4GHz machine with 16GB of RAM.

Note, both the algorithms, GDP and G-FBP, operate only on the function-to-variable

messages of a factor graph in order to reduce the computation cost of the maximization

operator. Therefore, experimenting with other typical DCOP parameters and metrics,

such as communication cost, message size and completion time, is beyond the scope of

the work presented in this chapter (Stranders et al., 2009; Kim & Lesser, 2013).

Figures 3.3(a)−3.3(b) and Figures 3.4(a)−3.4(b) illustrate the performance of GDP and

G-FBP for sparse and dense factor graphs of 10 − 100 function nodes, respectively.

In the figures, the black lines depict the results of GDP, while the results of G-FBP

are shown using the grey lines. More precisely, the black line of Figure 3.3(a) shows

the results of GDP obtained from the factor graphs having variable nodes with small

domain size. For the same algorithm, the results of the factor graphs having large domain

size variable nodes are shown using the black line of Figure 3.3(b). It can be clearly

seen from those two black lines of both the figures that GDP always performs better

when the variables take their values from a larger domain size, given that the value

of the arity n remains identical. Moreover, the performance of GDP increases steadily

with the number of function nodes for both the cases. This trend indicates that GDP
performs correspondingly better when the scale of the factor graph becomes larger. Note

that neither all the nodes, nor all the function-to-variable messages experience similar

performance from the proposed approach, due to their differences in the content of the

utility tables and incoming messages.

48 Chapter 3 Speeding Up the Maximization Operation

0 1 5 3 0 4 5 6 0 7 5 9 0 1 0 5

2 0

4 0

6 0

8 0

1 0 0
%

of
Se

arc
h S

pa
ce

 Pr
un

ed

N u m b e r o f F a c t o r / F u n c t i o n N o d e s

 G D P : S m a l l D o m a i n S i z e : (2 - 5)
 G - F B P : S m a l l D o m a i n S i z e : (2 - 5)

(a) Comparative results for sparse factor graphs having small domain size variable nodes.

0 1 5 3 0 4 5 6 0 7 5 9 0 1 0 5
2 0

4 0

6 0

8 0

1 0 0

%
of

Se
arc

h S
pa

ce
 Pr

un
ed

N u m b e r o f F a c t o r / F u n c t i o n N o d e s

 G D P : L a r g e D o m a i n S i z e : (6 - 1 0)
 G - F B P : L a r g e D o m a i n S i z e : (6 - 1 0)

(b) Comparative results for sparse factor graphs having large domain size variable nodes

Figure 3.3: Empirical results: GDP vs G-FBP− for the factor graph (sparse)
representations of different instances of the graph colouring problem. Error bars
are calculated using standard error of the mean.

Chapter 3 Speeding Up the Maximization Operation 49

0 1 5 3 0 4 5 6 0 7 5 9 0 1 0 5
2 0

4 0

6 0

8 0

1 0 0

%
of

Se
arc

h S
pa

ce
 Pr

un
ed

N u m b e r o f F a c t o r / F u n c t i o n N o d e s

 G D P : S m a l l D o m a i n S i z e : (2 - 5)
 G - F B P : S m a l l D o m a i n S i z e : (2 - 5)

(a) Comparative results for dense factor graphs having small domain size variable nodes.

0 1 5 3 0 4 5 6 0 7 5 9 0 1 0 5
2 0

4 0

6 0

8 0

1 0 0

%
of

Se
arc

h S
pa

ce
 Pr

un
ed

N u m b e r o f F a c t o r / F u n c t i o n N o d e s

 G D P : L a r g e D o m a i n S i z e : (6 - 1 0)
 G - F B P : L a r g e D o m a i n S i z e : (6 - 1 0)

(b) Comparative results for dense factor graphs having large domain size variable nodes

Figure 3.4: Empirical results: GDP vs G-FBP− for the factor graph (dense)
representations of different instances of the graph colouring problem. Error bars
are calculated using standard error of the mean.

50 Chapter 3 Speeding Up the Maximization Operation

In more detail, GDP running over sparse factor graphs having 10−40 function nodes and

variables with small domain size prunes around 33−42% of the search space during the

computation of the maximization operation. On the other hand, GDP prunes around

40−48% in the dense factor graph (Figure 3.4(a)) with a similar setting. This indicates

that our approach performs significantly better in dense factor graphs, where the value of

arity n is larger, compared to the sparse factor graphs. A similar trend is observed in the

larger factor graphs of Figures 3.3(a) and 3.4(a). For instance, having 75− 100 function

nodes and small domain size variable nodes, GDP prunes around 55−61% and 60−70%

of the search space for sparse and dense factor graphs, respectively. On the other hand,

it is observed from the results reported in Figure 3.3 that GDP always performs better

when the domain size of the variable nodes are larger, given the remaining parameters

are identical. In the sparse setting, we observe around 60 − 72% reduction of search

space by our approach when applied on the factor graph of 65− 100 function nodes and

large domain size of the variable nodes (Figure 3.3(b)). Notably, the performance gain

from GDP reaches its maximum level (i.e. 70 − 81%) in the dense factor graph with

similar setting (Figure 3.4(b)). This is important because it gives us a clear indication

that GDP is able to prune the maximum amount of search space when the values of n

and d becomes larger.

As mentioned already, the grey lines of Figures 3.3(a) − 3.4(b) illustrate the results of G-

FBP for the same settings as GDP. It can be seen from the results that the performance

obtained from G-FBP fluctuates throughout all the cases. The insight behind this trend

is due to the fact that G-FBP is based on an intuition that the maximum value can be

found from the partially sorted top cd
n−1
2 values (see Section 2.5.2 for details). When

this presumption is false, it incurs a significant penalty in terms of the computation

cost (i.e. search space). As a consequence, although we observe a good reduction of the

search space by G-FBP for a number of nodes in a factor graph, its overall performance

for a complete factor graph is neither guaranteed, nor consistent. Taken together, the

aforementioned results clearly show a significant reduction of search space by GDP while

computing the maximization of function-to-variable messages within a factor graph. In

contrast, although G-FBP prunes more of the search space for a number of instances,

its overall performance is worse than GDP most of the time because of the consistency

issue. This highlights a key shortcoming of G-FBP is that it is not consistent in pruning

the search space, while our approach performs better consistently with the growth of

the arity and the domain size. In addition, we run paired t-test on the results of GDP
and G-FBP for all of our experiments, where the obtained p-values are less than 0.05

for each of the cases. Therefore, it is obvious that the results are significant at p ≤ 0.05.

In the final experiment, we analyse whether GDP and G-FBP are prohibitively expensive

in terms of their execution time. We have to check this because both the algorithms

trade this time in order to generate the pruned search space. To this end, Figure 3.5

illustrates this result for both the sparse and dense settings defined in the previous

Chapter 3 Speeding Up the Maximization Operation 51

3 4 5 6 7 8 9

0

2 0

4 0

6 0

8 0
Ru

nti
me

 (m
s)

D o m a i n S i z e

 G D P - D e n s e S e t t i n g s
 G - F B P - D e n s e S e t t i n g s
 G D P - S p a r s e S e t t i n g s
 G - F B P - S p a r s e S e t t i n g s

Figure 3.5: Comparative cost of GDP and G-FBP in terms of their runtime
on top of the maximization operator. Error bars are calculated using standard
error of the mean.

experiment. The results reported in the figure are generated by taking the average of

ten different messages for each of the domain sizes (d) ranging from 3 to 9. On the

one hand, it can be clearly seen that the runtime of GDP (dotted-light-grey line) and

G-FBP (short-dash-dark-yellow line) are very small and comparable for all the values

of d for sparse settings. On the other hand, when the value of d is more than 5, GDP
(black line) requires comparatively less time than G-FBP (dash-grey line) in the dense

settings. Although GDP’s runtime is smaller, none of the algorithms incur such delays

that would make them prohibitively expensive to deploy. This is expected because

from their complexity analysis we find that both of them require quasi-linear time (see

Sections 3.2 and 2.5.2).

3.5 Summary

We presented a new algorithm, GDP that significantly reduces the computation cost of

the maximization operator in the widely used GDL-based DCOP algorithms. We observe

a significant reduction in the search space of around 33% − 81% from our empirical

evaluation. This is significant because by reducing the computation cost of the expensive

52 Chapter 3 Speeding Up the Maximization Operation

maximization operator, we are able to accelerate the overall optimization process of this

class of DCOP algorithms. Thus, we address the first part of the research challenge C1.

Moreover, our empirical evidence clearly demonstrates that the performance of GDP
improves with an increase in the parameters upon which the maximization operator

acts. Given this, by using GDP, we can now use GDL-based algorithms to efficiently

solve large real world DCOPs. In addition, we provide a theoretical proof regarding the

accuracy of our approach, which is also applicable on generic DCOP settings as opposed

to some previous approaches that tend to be restricted to specific application domains

(i.e. the second part of C1). Significantly, rather than being a preprocessing step, we

have incorporated GDP into a function-to-variable message of GDL-based algorithms

so that they can work jointly. This particular phenomenon provides an opportunity

to use existing application dependent approaches on top of GDP to further reduce the

computational cost of the maximization operator.

Chapter 4

Speeding Up the Message Passing

Process

In this chapter, we look into the challenge of speeding up the message passing process

of GDL-based DCOP algorithms in multi-agent systems (C2). To this end, we change

the way GDL-based algorithms propagate their messages during the optimization pro-

cess. That being said, it is challenging to maintain the quality of solution when there

is an alteration in the message passing protocol. Considering this trade-off, we propose

a generic message passing protocol, Parallel Message Passing (PMP), for GDL-based

algorithms that utilizes the benefits of partial centralization, combines clustering with

domain pruning, as well as the use of a regression method to determine the appropri-

ate number of clusters for a given scenario. PMP can actually replace SMP (or its

asynchronous alternative) in order to minimize the completion time of such algorithms

while maintaining the same solution quality. Therefore, it is possible to increase the

scalability of these algorithms in that either they complete the internal operation of a

given size of DCOP in a shorter span of time, or they can handle a larger DCOP in the

same completion time as a smaller one that uses SMP.

In this chapter, we use SMP as a benchmark in evaluating PMP because SMP is

faster (or in the worst case, equal) to its asynchronous counterpart (see Section 2.5.3). It

is worth mentioning that the GDL-based algorithms, which deal with cyclic graphical

representations of DCOPs (e.g. BMS1and BFMS1), initially remove the cycles (i.e. loops)

from the original factor graph, then apply the SMP protocol on the acyclic graph to

provide a bounded approximate solution of the problem. Comparatively, our protocol

can be applied on cyclic DCOPs in the same way. Thus, once the cycles have been

removed, PMP can be applied in place of SMP on the transformed acyclic graph.

1BMS has been proposed as a generic approach that can be applied to all DCOP settings, whereas
BFMS can only be applied to a specific formulation of task allocation domain.

53

54 Chapter 4 Speeding Up the Message Passing Process

The remainder of this chapter is structured as follows: Section 4.1 provides detail discus-

sion of how the SMP protocol operates on the corresponding factor graph representation

of a DCOP. Then, in Section 4.2, we discuss the technical details of our PMP proto-

col with worked examples. Next, we present the performance of our approach through

extensive empirical evaluation in Section 4.3. Afterwards, Section 4.4 demonstrates the

details and the performance of applying the regression method on PMP. Finally, we

conclude this chapter with a summary in Section 4.5.

4.1 Problem Description

To date, the factor graph representation of a DCOP follows the SMP protocol to ex-

change messages in GDL-based message passing algorithms. Notably, both the Max-Sum

and BMS algorithms (two key algorithms based on GDL) use Equations 4.1 and 4.2 for

their message passing (see Section 2.4.2 for details of the equations), and they can be

directly applied to the factor graph representation of a DCOP. Even though some exten-

sions of Max-Sum and BMS (e.g. FMS, BFMS and BnB FMS) modify these equations

slightly (as discussed in Section 2.5.2), the SMP protocol still underpins these algo-

rithms. The reason behind this is that a message passing protocol, by definition, does

not depend on how the messages are generated; rather, it ensures when a message should

be computed and exchanged (Aji & McEliece, 2000; Kschischang et al., 2001).

Qxi→Fj (xi) =
∑

Fk∈Mi\Fj

RFk→xi(xi) (4.1)

RFj→xi(xi) = max
xj\xi

[Fj(xj) +
∑

xk∈Nj\xi

Qxk→Fj (xk)] (4.2)

Zi(xi) =
∑

Fj∈Mi

RFj→xi(xi) (4.3)

Algorithm 3 gives an overview of how SMP operates on a factor graph in a multi-

agent system. Here, a number of variable and function nodes of a factor graph FG

are held by a set of agents A. The corresponding agents act (i.e. generate and trans-

mit messages) on behalf of the nodes they hold. Initially, only the variable and the

function nodes that are connected to a minimum number of neighbouring nodes in FG,

denoted by iNodes, are permitted to send messages to their neighbours. Line 1 of Al-

gorithm 3 finds the set of agents Am ∈ A that hold iNodes. Specifically, the function

messageUpdate() represents the messages sent by the agents on behalf of the permitted

nodes they hold to their permitted neighbours in a particular time step within a factor

graph. Notably, the SMP protocol ensures that a node, variable or function, within a

Chapter 4 Speeding Up the Message Passing Process 55

Algorithm 3: Overview of the SMP protocol on a factor graph

Input: A set of available agents A that holds the function and the variable nodes of a

factor graph FG that represents a DCOP.

1 Find such agents Am ∈ A that hold iNodes ∈ FG;

2 messageUpdate(FG, Am.iNodes, iNodes.allNeighbours, NULL);

3 while each node of FG yet to send messages to all their neighbours do

4 messageUpdate(FG, A
′
m.pNodes, pNodes.pNeighbours, generatedMessages);

5 if a variable xi receives messages from all of its neighbours within FG then

6 xi build a local objective function Zi(xi);

7 Agent that holds xi chooses the value to maximize Zi(xi) by

finding arg maxxi(Zi(xi))

factor graph cannot generate and transmit a message to its particular neighbour be-

fore receiving messages from the rest of its neighbour(s). According to this regulation

of SMP, the permitted nodes (pNodes) and their corresponding permitted neighbours

(pNodes.pNeighbours) for a particular time step are determined. At the very first time

step, agents Am on behalf of iNodes, also denoted as Am.iNodes, send NULL values

to all their neighbouring nodes (iNodes.allNeighbours) within FG (line 2). Now, fol-

lowing the SMP protocol, a set of agents A′m on behalf of pNodes, namely A′m.pNodes,

compute messages (generatedMessages) using Equation 4.1 or 4.2 for those neighbours

(pNodes.pNeighbours) they are allowed to send to (line 4). The while loop in lines

3− 7 ensures that this will continue until each of the nodes sends messages to all their

neighbouring nodes. Within this loop, once a variable xi receives messages from all of its

neighbours, it can build a local objective function Zi(xi), and the corresponding agent

chooses the value to maximize it by finding arg maxxi(Zi(xi))(lines 5− 7).

Figure 4.1 demonstrates a worked example of how SMP works on the factor graph

representation of a DCOP. Here, Equation 4.4 and Equations 4.5−4.8 illustrate two

samples of how the variable-to-function (e.g. x5 to F4 or Qx5→F4(x5)) and the function-

to-variable (e.g. F4 to x6 or RF4→x6(x6)) messages are computed based on Equation 4.1

and Equation 4.2, respectively. All the messages are generated considering the local

utilities depicted at the bottom of the Figure 4.1 for domain: {R,B}. During the

computation of the messages, red and blue colours are used to distinguish the values

of the domain states R and B, respectively. In the former example, apart from the

receiving node F4, the sending node x5 has only one other neighbouring node (i.e. F3).

Therefore, x5 only needs to forward the message it received from F3 to the node F4

(Equation 4.4). In the latter example, the computation of the message from F4 to x6

includes a maximization operation on the summation of the local utility function F4 and

the messages received by F4 from its neighbours other than x6 (i.e. x5, x7). Given

56 Chapter 4 Speeding Up the Message Passing Process

F0

x0 x1

F1

x3

F2

x4

F3

x5

F4

x7

F5

x8x6x2

{0, 0}

{154, 148} {52,47}
{65,72} {40,45}

{12, 10}

{0, 0}{40,45}{102,99}{119,126}{135, 144}

{154, 148}

{0, 0}

{154, 147}

{27,28}
{12, 10} {106,109}

{0, 0}{135,144}

{81,82}

{52,47}

{135, 144}

{154, 146}

{27,28}

{119,126}
{102,99}

{81,82} {106,109}

F0 x0 x1

3 R R

10 R B

12 B R

4 B B

F1 x1 x2 x3

5 R R R

8 R R B

15 R B R

9 R B B

7 B R R

18 B R B

4 B B R

6 B B B

F2 x3 x4

5 R R

20 R B

24 B R

6 B B

F3 x3 x4

8 R R

30 R B

34 B R

9 B B

F4 x5 x6 x7

6 R R R

9 R R B

25 R B R

7 R B B

6 B R R

27 B R B

3 B B R

2 B B B

F5 x7 x8

12 R R

40 R B

45 B R

13 B B

Figure 4.1: Worked example of SMP on a sample factor graph representation
of a DCOP. In the factor graph, each of the tables represents the corresponding
local utility of a function for domain {R,B}. The values within a curly bracket
represent a message computed based on these local utilities, and each arrow
indicates the sending direction of the message.

the messages are sent by the corresponding agents on behalf of the nodes they hold, for

simplicity, we skip mentioning agents from our worked examples in this chapter.

Qx5→F4(x5) = RF3→x5(x5) = {81, 82} (4.4)

RF4→x6(x6) = max
{x5,x6,x7}\{x6}

[F4(x5, x6, x7) + (Qx5→F4(x5) +Qx7→F4(x7))] (4.5)

= max
{x5,x7}

[
[
6 9 25 7 6 27 3 2

]
+
[
81 81 81 81 82 82 82 82

]
+

[
40 45 40 45 40 45 40 45

]
] (4.6)

= max
{x5,x7}

[
127 135 146 133 128 154 125 129

]
(4.7)

= {154, 146} (4.8)

Z1(x1) = RF0→x1(x1) +RF1→x1(x1) = {12, 10}+ {135, 144} = {147, 154} (4.9)

In the example of Figure 4.1, initially, only x0, x2, x6 and x8 (i.e. iNodes) can send

messages to their neighbours at the very first time step (line 2 of Algorithm 3). According

to the SMP protocol, in time step 2, only F0 and F5 can generate and send messages to

x1 and x7, respectively. It is worth mentioning that, despite receiving a message from x2

and x6 respectively in time step 1, F1 and F4 cannot send messages in time step 2 as they

Chapter 4 Speeding Up the Message Passing Process 57

have to receive messages from at least two of their three neighbours, according to the

regulation of SMP (line 4). Hence, F1 has to wait for the message from x1 to be able to

generate and send a message to x3. Similarly, F1 cannot generate a message for x2 until

it receives messages from x1 and x3. Subsequently, x3 cannot send a message to F1 until

it receives the message from F2. In this process, a variable x1 can only build its local

objective function Z1(x1) when it receives messages from all of its neighbours F0 and

F1 (Equation 4.9), and this is common for all the variables. In Equation 4.9, from the

value {R,B} = {147, 154} generated by Z1(x1) for the variable x1, the holding agent

of x1 chooses B = 154, that is arg maxx1(Z1(x1)). Following the SMP protocol, the

complete message passing procedure will end after each node receives messages from all

of its neighbours. These are the dependencies we discussed in Section 2.5.3, which make

GDL-based algorithms less scalable in practice for large real world problems. Formally,

the total time required to complete the message passing procedure for a particular factor

graph can be termed as the completion time T , and the ultimate objective is to reduce

the completion time while maintaining the same solution quality from a GDL-based

message passing algorithm. To address this issue, we introduce a new message passing

protocol in the following section.

4.2 The Parallel Message Passing Protocol

PMP uses a means similar to that of its SMP counterpart in computing messages. For

example, Max-Sum messages are used when PMP is applied to the Max-Sum algorithm,

and FMS messages are used when it is applied to the FMS algorithm. Even so, PMP
reduces the completion time by splitting the factor graph into a number of clusters

(Definition 4.1), and independently running the message passing2 on those clusters in

parallel. As a result of this, the average waiting time of the nodes during the message

passing is lessened. In particular, the completion time of PMP is reduced to
Tsmp

NC
;

where Tsmp is the completion time of the algorithm that follows the SMP protocol, and

NC is the number of clusters. However, PMP ignores inter cluster links (i.e. messages)

during the formation of clusters. Hence, it is not possible to obtain the same solution

quality as the original algorithm by executing only one round of message passing. This is

why PMP requires two rounds of message passing and an additional intermediate step.

The role of the intermediate step is to generate the ignored messages (Definition 4.2)

for the split node(s) of a cluster, so that the second round can use these as initial values

for those split node(s) to compute the same messages as the original algorithm. To be

precise, a representative agent (or a cluster head) takes the responsibility of performing

the operation of the intermediate step for the corresponding cluster. To make it possible,

we assume that each of the cluster heads retains full knowledge of that cluster, and it

can communicate with its neighbouring clusters, making PMP a partially centralized

2It can either be SMP or its asynchronous alternative, without loss of generality, we use SMP from
now on (see Section 2.5.3 for details).

58 Chapter 4 Speeding Up the Message Passing Process

Algorithm 4: Overview of the PMP protocol on a factor graph

Input: A set of available agents A that holds the function and the variable nodes of a

factor graph FG that represents a DCOP.

1 Find an agent Ac ∈ A that holds the cluster initiator function node firstFunction;

2 {c1, c2, . . . , cNC} ← distributeNodes(FG, Ac), each cluster ci is a sub-factor graph of FG;

3 Find such agents Am ∈ A that hold iNodesci ∈ ci;

4 messageUpdate(ci, Am.iNodesci , iNodesci .allNeighbours, NULL);

5 while All nodes of cluster ci, having only one neighbouring cluster, yet to send

messages to all their neighbouring nodes do

6 messageUpdate(ci, A
′
m.pNodes, pNodes.pNeighbours, generatedMessages)

7 A representative agent from each cluster ci computes the ignored values ignV al(ci) for

that cluster;

8 messageUpdate(ci, Am.iNodesci , iNodesci .allNeighbours, ignV al(ci));

9 while All nodes of each of the clusters ci yet to send messages to all their neighbours do

10 messageUpdate(ci, A
′
m.pNodes, pNodes.pNeighbours, generatedMessages);

11 if a variable xi receives messages from all of its neighbours within ci then

12 xi build a local objective function Zi(xi);

13 Agent that holds xi chooses the value to maximize Zi(xi) by

finding arg maxxi(Zi(xi))

approach. As a consequence of two rounds of message passing and an intermediate step,

the total completion time of PMP (i.e. Tpmp) becomes 2× Tsmp

NC
+ Tintm, where Tintm

is the time required to complete the intermediate step. As the sizes of the clusters can

be different in PMP, a more precise way to compute Tpmp is through Equation 4.10.

Here, Tclargest stands for the time required to complete the message passing process of

the largest cluster in PMP. Having discussed how to compute the completion time of

PMP, we explain the details of our proposed algorithm in the remainder of the section.

Tpmp = 2× Tclargest + Tintm (4.10)

4.2.1 Algorithm Overview

Algorithm 4 gives an overview of PMP. Similar to SMP, it works on a factor graph

FG, and the variable and the function nodes of FG are being held by a set of agents

A. To form the clusters in a decentralized manner, PMP finds an agent Ac ∈ A that

holds a special function node (firstFunction), which initiates the cluster formation

procedure (line 1). Specifically, firstFunction is a function node that shares variable(s)

Chapter 4 Speeding Up the Message Passing Process 59

with only one function node. As PMP operates on acyclic or transformed acyclic

factor graphs, such node(s) will always be found. Now, each agent that holds a function

node maintaining this property broadcasts an initiator message, and any agent can be

picked if more than one agent is found. Subsequently, in line 2, agent Ac initiates

the procedure distributeNodes(FG, Ac) that distributes the nodes of FG to the clusters

{c0, c1, . . . , cNC} in a decentralized way, and the detail of the cluster formation procedure

will be explained shortly in Algorithm 5. Note that, in PMP all the operations within

each cluster are performed in parallel.

After the cluster formation procedure has completed, PMP starts the first round of

message passing (lines 3 − 6). Line 3 finds the set of agents Am ∈ A that hold the

variable and function nodes iNodesci that are connected to the minimum number of

neighbouring nodes within each cluster ci. Then, messageUpdate() of line 4 represents

those messages with NULL values sent by Am on behalf of iNodesci , also denoted

as Am.iNodesci , to all their neighbouring nodes (iNodesci .allNeighbours) within the

cluster ci. Afterwards, following the same procedure as SMP, a set of nodes A′m.pNodes

generate the messages (generatedMessages) for the neighbours (pNodes.pNeighbours)

they are allowed to send messages to (line 6). However, unlike SMP where the message

passing procedure operates on the entire FG, PMP executes the first round of message

passing on the clusters having only one neighbouring cluster in parallel (line 5). This is

because, in the first round, it is redundant to run message passing on the cluster having

more than one neighbouring cluster, as a second round will re-compute the messages

(see the explanation in Section 4.2.3). The while loop in lines 5 − 6 ensures that this

procedure will continue until each of the nodes sends messages to all its neighbouring

nodes within the participating clusters of the first round. Next, a representative agent

from each cluster ci computes the values (Definition 4.2) ignored during the cluster

formation procedure for that particular cluster (line 7). Note that these ignored values,

represented by ignV al(ci), are the same values for those edges, should we run SMP

on the complete factor graph FG.

Finally, the second round of message passing is started on all of the clusters in parallel,

by considering ignV al(ci) as initial values for those ignored edges (line 8). Similar to

the first round, the while loop ensures that this procedure will continue until each of

the nodes sends messages to all its neighbouring nodes within ci (lines 9− 13). Within

the second round of message passing, once a variable xi receives messages from all of

its neighbours within ci, it can build a local objective function Zi(xi). Then, the corre-

sponding agent chooses the value that maximizes it by finding arg maxxi(Zi(xi)) (lines

12 − 13). By considering the ignV al(ci) values in the second round, PMP generates

the same solution quality as SMP. We give a more detailed description of each part of

PMP with a worked example in the remainder of this section. To be exact, Section 4.2.2

concentrates on the cluster formation and the message passing procedure. Then, Sec-

tion 4.2.3 presents the intermediate step. Finally, Section 4.2.4 ends this section with a

complete comparative example, SMP versus PMP, in terms of the completion time.

60 Chapter 4 Speeding Up the Message Passing Process

Definition 4.1. (Cluster, Neighbouring Clusters and Split Node). A cluster ci is a sub

factor graph of a factor graph FG. Two clusters ci and cj are neighbours if and only

if they share a common variable node (i.e. split node) xp. For instance, c1 and c2 of

Figure 4.2 are two sub factor graphs of the entire factor graph shown in Figure 4.1.

Here, c1 and c2 are neighbouring clusters as they share variable x3 as a split node.

Definition 4.2. (Ignored Values of a Cluster, ignV al(ci)). The value(s) overlooked,

through the split node(s) of each cluster ci, during the first round of message passing. In

other words, these are the incoming messages through the split node(s), should the SMP

protocol have been followed. The intermediate step of PMP takes the responsibility of

computing these ignored values, so that they can be used in the second round in order

to obtain the same solution from an algorithm as its SMP counterpart. In the example

of Figure 4.2, the intermediate step recovers {R,B} = {119, 126} for the split node x3

of cluster c1, which is going to be used as an initial value for x3 in the second round of

message passing instead of {R,B} = {0, 0}.

4.2.2 Cluster Formation and Message Passing

PMP operates on a factor graph FG of a set of variables X and a set of functions F.

Specifically, lines 1 − 12 of Algorithm 5 generate NC clusters by splitting FG. In the

process, lines 1 − 2 compute the maximum number of function nodes per cluster (N),

and associated variable nodes of a corresponding function goes to the same cluster. Now,

line 3 gets a special function node firstFunction, which is a function node that shares

variable node(s) with only one function node (i.e. min nFunction(F)). Any node can

be chosen in case of a tie. Then, line 4 initializes the variable “node” with the chosen

firstFunction, which is the first member node of the cluster c1. The for loop of lines

5 − 12 iteratively adds the member nodes to each cluster ci. In order to do this in a

decentralized manner, a special variable count is used as a token to keep track of the

current number of function nodes belonging to ci. When a new node added to ci is held

by a different agent, the variable count is passed to the new holding agent. The while

loop (lines 7 − 11) iterates as long as the member count for a cluster ci remains less

than the maximum nodes per cluster (N), then the new node becomes a member of the

next cluster. In the worked example of Figure 4.2, we use the same factor graph shown

in Figure 4.1 that consists of 6 function nodes {F0, F1, . . . , F5} and 9 variable nodes

{x0, x1, . . . , x8}. Here, F0 and F5 satisfy the requirements to become the firstFunction

node as both of them share variable nodes with only one function node (F1 and F4,

respectively). We pick F0 randomly as the firstFunction which eventually becomes the

first node for the first cluster c1; therefore, the holding agent of node F0 now holds the

variable count as long as the newly added nodes are held by the same agent. Assume,

the number of clusters (NC) for this example is 3: c1, c2 and c3 (see Section 4.4 for

more details about the appropriate number of clusters). In that case, each cluster can

retain a maximum of 2 nodes (functions). According to the cluster formation process

Chapter 4 Speeding Up the Message Passing Process 61

Algorithm 5: Parallel Message Passing

Data: A factor graph, FG consists a set of variables, X = {x1, x2, . . . , xm} and a set

of functions F = {F1, F2, . . . , FL}

1 NF ← |F |

2 N ← NF
NC

3 firstFunction← min nFunction(F)

4 node← firstFunction

5 for i← 1 to NC do // Cluster formation

6 count← 0

7 while count < N do // distribute the nodes to each cluster

8 ci.member()← node

9 ci.member()← adj(node)

10 node← adj(adj(node))

11 count← count+ 2

12 ci.member()← node

13 foreach cluster ci ∈ SN in PARALLEL do // First round of message passing

14 ∀Q(ci)← ∅

15 ∀R(ci)← ∅

16 Max− Sum(ci): Message Passing Only // Equation 4.1 and Equation 4.2

17 for i← 1 to NC in PARALLEL do // Intermediate step: call Algorithm 6

18 ignV al(ci)← intermediateStep(ci)

19 for i← 1 to NC in PARALLEL do // Second round of message passing

20 (∀Q(ci) \QignEdge(ci))← ∅

21 QignEdge(ci)← ignV al(ci)

22 ∀R(ci)← ∅

23 Max− Sum(ci): Complete // Equation 4.1, Equation 4.2 and Equation 4.3

62 Chapter 4 Speeding Up the Message Passing Process

F0

x0 x1

F1

x3x2

{0, 0}

{28,27}

{12,10}{15,18} {0, 0}

{52, 47}

{27,28}{12, 10}
{35,42}

{0, 0}

x3 F2 F3

{119,126} {102, 99} {65, 72}

F0

x0 x1

F1

x2

{12,10}{135, 144} {0, 0}

{154, 147}

{27,28}{12, 10} {135, 144}

x3

{154, 148}

{0, 0}

{119,126}

x3

F2

x4

F3

x3

x5

x5
{27, 28} {65, 72}

F2 F3

{52,47}

{102,99}

{102,99}

x3 x4 x5

{119,126}

{52,47}

{81,82}

{27,28} {65,72}

x5

F4

x7

F5

x8x6

{65,72} {40,45}

{0, 0}{40,45}

{72,65}{25,27}

{72, 65}

{0, 0} {0, 0} {25,27}

F2 F3 x5
{27,28} {52,47} {81,82}

F4 F5

{65,72} {40,45}

{40,45}

{106,109}

{0, 0}

{154, 146}

{106,109}

x5 x6 x7 x8

{0, 0}

{154,146}

{81,82}
Cluster c1 Cluster c2 Cluster c3

First Round

Second Round

Intermediate
Step

Figure 4.2: Worked example of PMP (participating clusters: first round -
(c1, c3) and second round - (c1, c2, c3)) on the same factor graph and local utility
as Figure 4.1. In this figure, blue circles represent split variables for each cluster
and coloured messages show the ignored values (ignV al()) recovered during the
intermediate step, where yellow messages require synchronous computations but
green underlined ones are ready after the first round.

of PMP, the sets of function nodes {F0, F1}, {F2, F3} and {F3, F4} belong to the

clusters c1, c2 and c3, respectively. Moreover, c1 and c2 are neighbouring clusters as they

share a common split node x3. Similarly, split node x5 is shared by the neighbouring

clusters c2 and c3. At this point, the first of the two rounds of message passing initiates

as the cluster formation procedure has completed.

The for loop in lines 13 − 16 acts as the first round of message passing. This involves

only computing and sending the variable-to-function (Equation 4.1) and the function-to-

variable (Equation 4.2) messages within clusters (SN) having only a single neighbouring

cluster in parallel. It can be seen from our worked example of Figure 4.2 that among the

clusters c1, c2 and c3, only c2 has more than one neighbouring clusters. Therefore, only

c1 and c3 will participate in the first round of message passing. Unlike the first round,

all the clusters participate in the second round of message passing in parallel (lines

19 − 23). In the second round, instead of using the null values (i.e. predefined initial

values) for initializing all the variable-to-function messages, we exploit the recovered

ignored values (Definition 4.2) from the intermediate step (lines 17−18) as initial values

for the split variable nodes, as shown in line 21. Here, all the ignored messages from

the split nodes of a cluster ci are denoted as QignEdge(ci). The rest of the messages are

then initialized as null (lines 20, 22). Here, ∀Q(ci) and ∀R(ci) represent all the variable-

to-function and the function-to-variable messages within a cluster ci, respectively. For

Chapter 4 Speeding Up the Message Passing Process 63

example, in cluster c3 all the messages are initialized as zeros for the first round of

message passing. Therefore, during the first round, the variable nodes x5 and x8 start

the message passing with the values {0, 0} and {0, 0} to the function nodes F4 and F5

respectively in Figure 4.2. However, in the second round, split node x5 starts with the

value {81, 82} instead of {0, 0} to the function node F4. Note that this value {81, 82}
is the ignored value for the split node x5 of cluster c3 computed during the intermediate

step of PMP. Significantly, this is the same value transmitted by the variable node x5

to the function node F4 when we follow the SMP protocol (see Figure 4.1), which ensures

the same solution quality from both the protocols. We describe this intermediate step of

PMP shortly. Finally, PMP will converge with Equation 4.3 by computing the value

Zi(xi) and hence finding arg maxxi(Zi(xi)).

4.2.3 Intermediate Step

A key part of PMP is the intermediate step (Algorithm 6). It takes a cluster (ci)

provided by line 18 of Algorithm 5 as an input, and returns the ignored values (Defini-

tion 4.2) for each of the ignored links of that cluster. A representative of each cluster

ci (cluster head chi) performs the operation of the intermediate step for that cluster.

Note that each cluster head operates in parallel. Initially, each cluster head needs to

receive the StatusMessages from the rest of the cluster heads (line 1 of Algorithm 6).

Each StatusMessage contains the factor graph structure of the sending cluster along

with the utility information. Notably, the StatusMessages can be formed and exchanged

during the time of the first round, thus it does not incur an additional delay. The for

loop in lines 2 − 14 computes the ignored values for each of the split nodes Sj ∈ S
(where, S = {S1,S2, . . . ,Sk}) of the cluster ci by generating a Dependent Acyclic

Graph, DG(Sj) (Definition 4.3). In addition to StatusMessages, a cluster head also re-

quires a factor to split variable message (Mr) from each of the participating clusters of

the first round. This is significant, as only clusters with one neighbouring cluster can

participate in the first round, and the Mr message is prepared for the split node Sj of

that neighbouring cluster. The content of Mr will not change as the participating cluster

of the first round has no other clusters on which it depends. As a consequence, if a neigh-

bouring cluster of ci has participated in the first round, the Dependent Acyclic Graph

DG(Sj) for Sj comprises only one edge having the message Mr. In more detail, cp stands

for the neighbouring cluster of ci that shares the split node Sj (i.e. adjCluster(ci,Sj)),
and the variable dCountcp holds the value of the total number of clusters adjacent to

cp obtained from the function totalAdjCluster(cp) (lines 3− 4). If the cluster cp has no

cluster to depend on apart from ci (i.e. cp has participated in the first round of mes-

sage passing), there is no need for further computation as the ignored value for Sj (i.e.

Sj .values) is immediately ready (READY.DG(Sj)) after the first round (lines 6 − 7).

Here, the function append(Sj .values) appends the ignored value for Sj to ignV al(ci).

64 Chapter 4 Speeding Up the Message Passing Process

Algorithm 6: intermediateStep(Cluster ci)

Input: A set of clusters, C = {c1, c2, . . . , cNC} with their corresponding cluster heads,

CH = {ch1, ch2, . . . , chNC}

Output: Ignored values ignV al(ci) for the set of k split nodes S = {S1,S2, . . . ,Sk} of

cluster ci

1 chi ← StatusMessage(∀CH \ chi) ∩Mr // required utility and messages

received by chi

2 for j ← 1 to k do

3 cp ← adjCluster(ci,Sj)

4 dCountcp ← totalAdjCluster(cp)

5 if dCountcp == 1 then // Cluster having only one neighbouring cluster

6 Sj .values← READY.DG(Sj)

7 ignV al(ci)← append(Sj .values)

8 else if dCountcp > 1 then // Cluster having more than one neighbouring

cluster

9 dNode← adjNode(Sj , cp)

10 while dNode 6= ∅ do // Formation of dependent acyclic graph for

split node Sj

11 DG(Sj)← dNode

12 dNode← adjNode(dNode)

13 Sj .values← sync(DG(Sj)) // synchronous operation (Equation 4.14) on

each edge of DG(Sj)

14 ignV al(ci)← append(Sj .values)

15 return ignV al(ci)

Chapter 4 Speeding Up the Message Passing Process 65

F8 F9

F4

F3

F8

F9

F3

F4

F7

F7 F8

F9

F3

F4

F7

x4

x3

x4x2x1x0

x4

x1

Figure 4.3: Single computation within the intermediate step. In the figure,
directed dashed arrows indicate the dependent messages to generate the desired
message from F8 to x0 or F8 to F7 (directed straight arrows).

On the other hand, if the cluster cp has other clusters to depend on, further computations

in the graph are required. This creates the need to find each node of that graph DG(Sj)
(lines 8 − 14). Line 9 initializes the first function node dNode of DG(Sj), which is

connected to the split node Sj and member of the cluster cp (i.e. adjNode(Sj , cp)). The

while loop (lines 10− 12) repeatedly forms that graph through extracting the adjacent

nodes from the first selected node, dNode. Finally, synchronous executions (explained

shortly) from the farthest node to the start node (i.e. split node Sj) of DG(Sj) produce

the desired value, Sj .values for Sj (line 13), which eventually becomes the ignored value

for that split node of the cluster ci (line 14). This value will be used as an initial value

during the second round of message passing for the corresponding split node.

Definition 4.3. (Dependent Acyclic Graph, DG(Sj)). A DG(Sj) is an acyclic directed

graph for a split node Sj of a cluster ci from the furthest node within the factor graph

FG from the node Sj towards it. Note that, apart from the node Sj , none of the nodes

of DG(Sj) can belong to the cluster ci. During the intermediate step, synchronous

operations are performed at the edges of this graph in the same direction to compute

each ignored value of a cluster, ignV al(ci). In the example of Figure 4.2, F3 → F2 → x3

is the dependent acyclic graph for split node x3 of cluster c1 in the intermediate step.

66 Chapter 4 Speeding Up the Message Passing Process

As discussed, the entire operation of the intermediate step is performed by the corre-

sponding cluster head for each cluster. Therefore, apart from receiving the Mr values,

which is literally a single message from the participating clusters of the first round, there

is no communication cost in this step. This produces a significant reduction of commu-

nication cost (time) in PMP. Moreover, we can avoid the computation of variable-to-

factor messages in the intermediate step as they are redundant and produce no further

significance in this step. In the example of Figure 4.3, we consider every possible scenario

while computing the message F8 → x0 (i.e. F8 → F7), and show that the variable-to-

factor messages (x4 → F8, x1 → F8, x2 → F8, x3 → F8) are redundant during the

intermediate step of PMP (Equations 4.11, 4.12, 4.13). Here, Q1→8(x1) = {0, 0, ..., 0}
and Q4→8(x4)) = {0, 0, ..., 0} as x1 and x4 do not have any neighbours apart from F8.

As a result, we get Equation 4.13 from Equations 4.11 and 4.12, and Equation 4.14 is

the generalization of Equation 4.13.

RF8→x0(x0) = Qx0→F7(x0)

= DF8→F7(x0)
(4.11)

RF8→x0(x0) = max
{x0,x1,x2,x3,x4}\{x0}

[F8(x0, x1, x2, x3, x4) +Qx1→F8(x1) +Qx2→F8(x2)

+Qx3→F8(x3) +Qx4→F8(x4)]

= max
{x1,x2,x3,x4}

[F8(x0, x1, x2, x3, x4) + {Qx1→F8(x1) +Qx4→F8(x4)}+ {RF9→x2(x2)}

+ {RF3→x3(x3) +RF4→x3(x3)}]

= max
{x1,x2,x3,x4}

[F8(x0, x1, x2, x3, x4) + {RF9→x2(x2) +RF3→x3(x3) +RF4→x3(x3)}]

= max
{x1,x2,x3,x4}

[F8(x0, x1, x2, x3, x4) + {DF9→F8(x2) +DF3→F8(x3) +DF4→F8(x3)}]

(4.12)

DF8→F7(x0) = max
{x1,x2,x3,x4}

[F8(x0, x1, x2, x3, x4)+{DF9→F8(x2)+DF3→F8(x3)+DF4→F8(x3)}]

(4.13)

DFj→Fp(xi) = max
xj\xi

[Fj(xj) +
∑

k∈Cj\Fp

DFk→Fj (xt)] (4.14)

Chapter 4 Speeding Up the Message Passing Process 67

c1



Before First Round of Message Passing :

split node of c1, S = {S1 = x3}
initial values for x3 = {0, 0}

Before Intermediate Step :

ignored values for x3 = {RF2→x3(x3)}

After Intermediate Step :

initial values for x3 = S1.values = {65, 72}

(4.15)

c2



Before First Round of Message Passing :

split node of c2, S = {S1 = x3,S2 = x5}
initial values for x3 = {0, 0}
initial values for x5 = {0, 0}

Before Intermediate Step :

ignored values for x3 = {RF1→x3(x3)}
ignored values for x5 = {RF4→x5(x5)}

After Intermediate Step :

initial values for x3 = S1.values = {27, 28}
initial values for x5 = S2.values = {65, 72}

(4.16)

c3



Before First Round of Message Passing :

split node of c3, S = {S1 = x5}
initial values for x5 = {0, 0}

Before Intermediate Step :

ignored values for x5 = {RF3→x5(x5)}

After Intermediate Step :

initial values for x5 = S1.values = {81, 82}

(4.17)

Despite the aforementioned advantages, each synchronous execution (i.e. DFj→Fp(xi))

within DG(Sj) is still as expensive as a factor-to-variable message, and can be computed

using Equation 4.14. In this context, Cj denotes the set of indexes of the functions

connected to function Fj in the dependent acyclic graph (DG(Sj)) of the intermediate

step, and xt stands for a variable connected to both functions Fk and Fj . Notably,

Equation 4.14 retains similar properties as Equation 4.2, but the receiving node is a

function node (or the split node) instead of only a variable node. For example, x3 is a

split node for cluster c1 in Figure 4.2, where F2 and F3 are the nodes of the directed

acyclic graph for x3. Here, the cluster head of c1 receives the Mr value {65, 72}. Then

the first operation on the graph produces {102, 99} for the edge F3 → F2. Subsequently,

by taking {102, 99} as the input, the cluster head of c1 generates {119, 126}, which is

68 Chapter 4 Speeding Up the Message Passing Process

Algorithm 7: Domain pruning to compute DFj→Fp(xi) in intermediate step of PMP

Input: Local utility of factor Fj(xj): sorted independently by each state of the

domain of xj ; Incoming messages from the neighbour(s) of Fj other than Fp,

where n is the number of neighbour(s) of Fj .

Output: Pruned ranges of values of the states over which maximization will be

computed.

1 Let {s1, s2, . . . , sr} be the states of the domain

2 m←
∑n−1

k=1 max(mk), where mk is one of the n− 1 messages received by Fj

3 for i← 1 to r do // for each state of the domain

4 p← maxsi(Fj(xj))

5 b←
∑n−1

k=1 valp(mk)

6 t← m− b
7 j ← 1

8 q← getV al(j) // pick a value from si less than p

9 if t ≤ p− q then

10 result valueRangesi [p,q)

11 else

12 j ← j + 1

13 go to line 8

the ignored value for x3 ∈ c1 generated during the intermediate step. At this point,

instead of {0, 0} the second round uses {119, 126} as the initial value for node x3 in

cluster c1. On the other hand, cluster c2 has two neighbouring clusters, c1 and c3, and

neither of them have other clusters to depend on. Therefore, there is no need for further

computation in the intermediate step for the split nodes x3 and x5 of cluster c2. The

Mr values {27, 28} and {65, 72} need to be used as the ignored values for the split

node x3 and x5 respectively for the cluster c2. During different steps of PMP, all the

values related to the split nodes of the clusters c1, c2 and c3 are shown in the set of

Equations 4.15, 4.16 and 4.17, respectively.

Note that each synchronous operation (i.e. Equation 4.14) on each edge of DG(Sj)) in the

intermediate step still requires a significant amount of computation due to the potentially

large parameter domain size and constraints with high arity. Considering this, in order to

improve the computational efficiency of this step, we propose an algorithm to reduce the

domain size over which the maximization needs to be computed (Algorithm 7)3. In other

3Algorithm 7 is inspired by Algorithm 2, and Algorithm 2 can also be tailored for this context.

Chapter 4 Speeding Up the Message Passing Process 69

x5

F4

x6x7

{81,82}

B:

F4 x5 x6 x7

6 R R R
9 R R B
25 R B R
7 R B B
6 B R R
27 B R B
3 B B R
2 B B B

b = 81 + 40 = 121

25 7 3 2

Maximum of Received
messages of F4 : 82 and 45

m = 82 + 45 = 127

 Now, t = m ‐ b = 127 – 121 = 6

Randomly pick s from top log2|B|values of B [where, s < p]:
Let, s = 3

So, p ‐ s = 25 – 3 = 22

 P = maxB(F4) = 25

Here, t < p ‐ s (i.e. 6 < 22).
Therefore, the maximum value for B will definitely be found from

the range [25, 3) or [25, 7].
 So no need to compute the rest of the values.

If t > p – s, then a smaller value of s from next top log2|B|values
should to be picked, and need to repeat this checking.

{40,45}

F5
F4 F5x6 F4 F5{154,146}

{154,146}

{154,146} {154,146} {154,146}

Local Utility
F4 (x5, x6, x7)

+

Qx5F4 (x5)

+

Qx7F4 (x7)

=

RF4 x6 (x6)/
 DF4 F5 (x6)

6 81 40 127

{154, 146}

9 81 45 135
25 81 40 146
7 81 45 133
6 82 40 128
27 82 45 154
3 82 40 125
2 82 45 129

Domain Pruning of state B:

Figure 4.4: Worked example of domain pruning during the intermediate step of
PMP. In this example, red and blue colours are used to distinguish the domain
state R and B while performing the domain pruning.

words, Algorithm 7 operates on Equation 4.14, that represents a synchronous operation

of the intermediate step, to reduce its computational cost. This algorithm requires

incoming messages from the neighbour(s) of a function in DG(Sj), and each local utility

must be sorted independently by each state of the domain. Specifically, this sorting

can be done before computing the StatusMessage during the time of the first round of

message passing. Therefore, it does not incur any further delay. Finally, this algorithm

returns a pruned range of values for each state of the domain (i.e. {s1, s2, . . . , sr}) over

which the maximization needs to be computed.

As discussed, DFj→Fp(xi) stands for a synchronous operation where Fj computes a

value for Fp within DG(Sj). Initially, line 2 computes m, which is the summation of

the maximum values of the messages received by the sending function Fj , other than

Fp. In the worked example of Figure 4.4, we illustrate the complete process of domain

pruning for the state B, while computing a sample message from F4 to F5. Notably,

this is the same example we previously used in Section 4.1 to explain the function-to-

variable message computation process (see Equations 4.5−4.8), and it can be seen that

the synchronous operation (i.e. F4 to F5) in the intermediate step is similar to that of the

function-to-variable (F4 to x6) computation. Here, the messages received by the sending

node F4 are {81, 82} and {40, 45}. As the maximum of the received messages are 82 and

45, the value of m = 82+45 = 127. Now, the for loop in lines 3−13 generates the range

of the values for each state si ∈ {s1, s2, . . . , sr} of the domain from where we will always

find the maximum value for the function Fj , and discard the rest. To do so, line 4 of the

algorithm initially generates the maximum value p for the state si of the function Fj (i.e.

70 Chapter 4 Speeding Up the Message Passing Process

maxsi(Fj(xj))). Then, line 5 computes b, which is the summation of the corresponding

values of p from the incoming messages of Fj . In the example of Figure 4.4, the sorted

local utility for B is {25, 7, 3, 2}, from where we get b = 81 + 40 = 121 for the maximum

value, p = 25. Subsequently, line 6 gets the base case t, which is a subtraction of b from

m (i.e. t = m− b = 127− 121 = 6).

At this point, a value q, which is less than p, is picked from the sorted list of that state

si (line 8). Here, the function getV al(j) finds the value of q, with j representing the

number of attempts. In the first attempt (i.e. j = 1), it will randomly pick a value of q

from a range of top log2 |si| values of si, where |si| is the size of si. Finally, if the value

of t is less than or equal to p − q, the desired maximization must be found within the

range of [p,q). Otherwise, we need to pick a smaller value of q from the next top log2 |si|
values, and repeat the checking (lines 9− 12). In the worked example, we pick the value

q = 3 which is in the top 2 (i.e. log2 |4|) values of B. Here, t is smaller than p−q, that is

6 < (25− 3), and it satisfies the condition of line 9. As a result, the maximum value for

the state B will definitely be found from range [25, 3) or [25, 7]. Hence, it is not required

to consider the smaller values of q for this particular scenario. Eventually, introducing

the domain pruning technique allows PMP to ignore these redundant operations during

the intermediate step, thus reducing the computational cost in terms of completion time.

Even for such a small example, this approach reduces half of the search space. Therefore,

the overall completion time of the intermediate step can be shortened significantly by

incorporating the domain pruning algorithm into it.

As mentioned earlier, PMP uses only the cluster heads to complete the operation of

the intermediate step, instead of using all cooperating agents in the system. This phe-

nomenon means PMP is a partially decentralized approach. To be exact, our approach

is mostly decentralized, and the specific part (i.e. intermediate step) of the algorithm

which needs to be done by the cluster heads is known in advance. Therefore, no effort is

required to find these parts of a DCOP. Consequently, there is no ambiguity in deciding

which part of a problem should be done by which agent, nor is there any possibility of

duplicating efforts in solving overlapping problems during this step of PMP. These are

the major weaknesses that have previously been observed in deploying partial central-

ized techniques (see Sections 2.3.1 and 2.3.3 for more details). Thus, we effectively take

the advantages of partial centralization without being affected by its major shortcomings.

4.2.4 Comparative Example

Having discussed each individual step of PMP separately, Figure 4.5 illustrates a com-

plete worked example that compares the performance of SMP and PMP in terms of

completion time. In so doing, we use the same factor graph shown in Figure 4.1. Addi-

tionally, the message computation and transmission costs for the nodes, based on which

Chapter 4 Speeding Up the Message Passing Process 71

F0

x0 x1

F1

x3

F2

x4

F3

x5

F4

x7

F5

x8
x6x2

(1-5)ms (1-5)ms
(1-5)ms

(1-5)ms

(6-20)ms

(6-20)ms

(21-27)ms

(21-27)ms

(28-52)ms
(28-52)ms

(53-59)ms

(53-59)ms

(60-74)ms

(60-74)ms

(75-81)ms
(75-81)ms

(82-96)ms

(97-103)ms

(104-128)ms

(104-128)ms

(129-135)ms

(136-150)ms
(82-96)ms

(97-103)ms

(104-128)ms

(104-128)ms

(129-135)ms

(136-150)ms

Computation time: F1 = F4 = 20ms

 F0 = F2 = F3 = F5 = 10ms

 x0 = x2 = x6 = x8 = 0ms (SMP)

 x1 = x3 = x4 = x5 = x7 = 2ms (SMP)

 x0 = x2= x3 = x5 = x6= x8 = 0ms (PMP)

 x1 = x4 = x7 = 2ms (PMP)

Transmission time: 5ms (for each of the messages)

F0

x0 x1

F1

x3x2

x3 F2 F3

F0

x0 x1

F1

x2 x3

x3

F2

x4

F3

x3

x5

x5

F2 F3

x3 x4 x5

x5

F4

x7

F5

x8x6

F2 F3 x5

Cluster c1 Cluster c2 Cluster c3

First Round

Second Round

Intermediate
Step

(1-5)ms (1-5)ms

(6-20)ms

(21-27)ms

(28-52)ms

(1-5)ms

(6-30)ms

(6-30)ms

(31-37)ms

(38-52)ms

(1-5)ms(1-5)ms

(6-20)ms

(21-27)ms

(28-52)ms

(1-5)ms

(28-52)ms

(6-30)ms

(31-37)ms

(38-52)ms

52ms 52ms52ms 52ms
(53-58)ms(59-64)ms (53-58)ms (59-64)ms

x5

F4

x7

F5

x8x6

(65-69)ms

(70-84)ms

(85-91)ms

(92-116)ms

(70-94)ms

(95-101)ms

(102-116)ms

(65-69)ms

(92-116)ms

(65-69)ms(65-69)ms (65-69)ms

(65-69)ms

(70-84)ms

(85-91)ms

(92-116)ms
(70-94)ms

(95-101)ms

(102-116)ms

(53-57)ms

(58-72)ms

(73-79)ms

(80-94)ms

(53-57)ms

(58-72)ms

(73-79)ms

(80-94)ms

(92-116)ms

Figure 4.5: Comparative example of SMP (top) and PMP (bottom), in terms
of completion time, based on the factor graph shown in Figure 4.1. In the fig-
ure, each edge weight within a first parentheses represents the time required to
compute and transmit a message from a node to its corresponding neighbouring
node. For instance, the edge weight from F0 to x0 in SMP is (136−150)ms. That
means, F0 starts computing a message for x0 after 135ms of initiating the mes-
sage passing process, and the receiving node x0 receives the message after 150ms.

the completion time is generated, are given in the figure. In general, a function-to-

variable message is computationally significantly more expensive to generate as opposed

to a variable-to-function message, and a node with a higher degree requires more time

to compute a message than a node with a lower degree (Kschischang et al., 2001; Lesser

& Corkill, 2014; Farinelli et al., 2013). In this example, the values were chosen to re-

flect this observation. For instance, a function node F1 with degree 3 requires 20ms

to compute a message for any of its neighbouring nodes, and F2 (with degree 2) re-

quires 10ms to compute a message. On the other hand, for the variable-to-function

72 Chapter 4 Speeding Up the Message Passing Process

messages, when a variable has only one neighbouring node (e.g. x0, x2), it generally

sends a pre-defined initial message to initiate the message passing process. Therefore,

the time required to generate such a message is negligible. On the contrary, we consider

2ms as the time it takes to produce a variable-to-function message when the variable

has degree 2 (e.g. x1, x4). Moreover, we consider 5ms as the time it takes to transmit

a message from one node to another in this example. Furthermore, each edge weight

within a first parentheses represents the time required to compute and transmit a mes-

sage from a node to its corresponding neighbouring node. For instance, the edge weight

from F0 to x0 in SMP is (136 − 150)ms. That means F0 starts computing a message

for x0 after 135ms of initiating the message passing process, and the receiving node x0

receives the message after 150ms.

The total calculation of the completion time following the SMP protocol is depicted at

the top of the figure. At the beginning, nodes x0, x2, x6 and x8 initiate the message

passing process, and their corresponding receiving nodes F0, F1, F4 and F5 receive

messages after 5ms. Then, x1 and x7 receive messages from F0 and F5 respectively

after 20ms. Although F1 has already received a message from x2, it cannot generate a

message as it requires at least two messages to produce one. In this process, the message

passing process will complete when all of the nodes receive messages from all of their

neighbours. In this particular example, this is when x0 and x8 receive messages from F0

and F5 respectively after 150ms. Thus, the completion time of SMP is 150ms.

On the other hand, PMP splits the original factor graph into three clusters in this

example. Each of the clusters executes the message passing in parallel following the

similar means and regulation as its SMP counterpart. To be precise, the first round

of message passing is completed after 52ms. Subsequently, the intermediate step to

recover the ignored values for the split nodes is initiated. For cluster c1, x3 is the split

node that ignored the message coming from F2 during the first round. Two synchronous

operations, DF3→F2(x4) and DF2→x3(x3), are required to obtain the desired value for the

split node x3. Each of these operations is as expensive as the corresponding function-

to-variable messages. However, Algorithm 7 can be used to reduce the cost of these

operations, and we consider a reduction of 40%, since this is the minimum reduction

we get from the empirical evaluation (see Section 4.3). In this process, the intermediate

step of cluster c1 and c3 is completed after 64ms. Unlike those two clusters, cluster c2

shares split node x3 (x5) with such a cluster c1 (c3) that has no other cluster to depend

on apart from c2. Therefore, the ignored values for x3 and x5 are ready immediately

after the completion of the first round (see Algorithm 6). As a result, cluster c2 can

start its second round after 52ms. In any case, the second round utilizes the recovered

ignored values as the initial values for the split nodes to produce the same outcome as its

SMP counterpart. We can observe that the second round of message passing completes

after 116ms. Thus, even for such a small factor graph of 6 function nodes and 9 variable

nodes, we can save around 23% of the completion time by replacing SMP with PMP.

Chapter 4 Speeding Up the Message Passing Process 73

4.3 Empirical Evaluation

Given the detailed description in previous section, we now evaluate the performance of

PMP to show how effective it is in terms of completion time compared to the bench-

marking SMP protocol. To maintain the distributed nature, all the experiments were

performed on a simulator in which we generated different instances of factor graph repre-

sentations of DCOPs that have varying numbers of function nodes 100−10, 000. Hence,

the completion time that is reported in this section is a simulated distributed metric, and

the factor graphs are generated by randomly connecting a number of variable nodes per

function from the range 2− 7. Although we use these ranges to generate factor graphs

for this experiment, the results are comparable for larger settings. Now, to evaluate

the performance of PMP on different numbers of clusters, we report the result for the

number of clusters 2− 99 for the factor graph of 100− 900 function nodes, and 2− 149

for the rest. These ranges were chosen because the best performances are invariably

found within these ranges, and the performance steadily gets worse for larger numbers

of clusters. Since both SMP and PMP are generic protocols that can be applied to

any GDL-based DCOP formulation, we run our experiments on the generic factor graph

representations that are not limited to any particular application domain. Moreoover,

instead of concentrating on the overall algorithm of a DCOP solution approach, we only

focus our objective on evaluating the performance of PMP as opposed to SMP in terms

of the completion time of the message passing process. Notably, the completion time of

such algorithms mainly depends on following three parameters:

• Average time to compute a potentially expensive function-to-variable message

within a factor graph, denoted as Tp1 .

• Average time to compute an inexpensive variable-to-function message within a

factor graph, denoted as Tp2 .

• Average time to transmit a message between nodes of a factor graph, denoted as Tcm.

In the MAS literature, a number of extensions of the Max-Sum/BMS algorithms have

been developed. Significantly, each of them can be defined by different ratios of the above

mentioned parameters. For example, the value of
Tp1
Tp2

is close to 1 for algorithms such as

FMS, BFMS or BnB-FMS, because they restrict the domain sizes for the variables always

to 2 (Ramchurn et al., 2010; Macarthur et al., 2011). In contrast, in a DCOP setting

with large domain size, the value of
Tp1
Tp2

is much higher for a particular application of the

Max-Sum or the BMS algorithm (Farinelli et al., 2008; Rogers et al., 2011). Additionally,

the communication cost or the average message transmission cost (Tcm) can vary due to

different reasons such as environmental hazard in disaster response or climate monitoring

application domains (Stranders et al., 2009; Vinyals et al., 2011). To reflect all these

74 Chapter 4 Speeding Up the Message Passing Process

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

 N o . o f f a c t o r s - 1 0 0
 N o . o f f a c t o r s - 3 0 0
 N o . o f f a c t o r s - 6 0 0
 N o . o f f a c t o r s - 9 0 0

Co
mp

leti
on

Tim
e (

sec
)

N u m b e r o f C l u s t e r s
(a) Number of function nodes (factors): 100− 900.

0 1 5 3 0 4 5 6 0 7 5 9 0 1 0 5 1 2 0 1 3 5 1 5 0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

Co
mp

leti
on

Tim
e (

sec
)

N u m b e r o f C l u s t e r s

 N o . o f f a c t o r s - 3 0 0 0
 N o . o f f a c t o r s - 5 0 0 0
 N o . o f f a c t o r s - 8 0 0 0
N o . o f f a c t o r s - 1 0 0 0 0

(b) Number of function nodes (factors): 3000− 10000.

Figure 4.6: Completion time: Standard Message Passing (Number of Clus-
ter=1); Parallel Message Passing (Number of Cluster >1) for the experimental
setting, E1: (Tp1 > Tp2 AND Tp1 ≈ Tcm).

issues in evaluating the performance of PMP, we consider different ratios of those

parameters to show the effectiveness of PMP over its SMP counterpart in a wide range

of conceivable settings. To be precise, we run our experiments on seven different settings,

each of which has identical ratios of the parameters: Tp1 , Tp2 and Tcm. Note that, once

the values of each of the parameters have been fixed for a particular setting, the outcome

remains unchanged for both SMP and the different versions of PMP even if we repeat

the experiments for that setting. This is because we run both the protocols on acyclic or

transformed acyclic version of a factor graph, hence they always provide a deterministic

outcome. Hence, there is no need to perform an analysis of statistical significance for

this set of experiments. Note that all of the following experiments are performed on a

simulator implemented on an Intel i7 Quadcore 3.4GHz machine with 16GB of RAM.

4.3.1 Experiment E1: Tp1 > Tp2 AND Tp1 ≈ Tcm

Figures 4.6(a) and 4.6(b) illustrate the comparative measure on completion time for

SMP and PMP under experimental setting E1 for the factor graph with the number of

function nodes 100− 900 and 3000− 10, 000, respectively. Each line of the figures shows

the result of both SMP (Number of Clusters = 1) and PMP (Number of Clusters> 1).

The setting E1 characterizes a scenario where average computation cost (time) of a

function-to-variable message (Tp1) is moderately more expensive than a variable-to-

function message (Tp2), and the average time to transmit a message between nodes

(Tcm) is approximately similar to Tp1 . To be precise, we consider Tp2 be 100 times

less expensive than a randomly taken Tp1 for this particular experiment. The scenario

E1 is commonly seen in the following GDL-based DCOP algorithms: Max-Sum, BMS

and FMS. Once these three parameters have been determined, the completion time of

SMP (i.e. Tsmp) and PMP (i.e. Tpmp) can be generated using Equation 4.18 and

Chapter 4 Speeding Up the Message Passing Process 75

Equation 4.19, respectively. Here, the function requiredT ime() takes Tp1 , Tp2 , Tcm and

an acyclic factor graph FG as inputs, and computes the time it needs to finish the

message passing by following the regulation of SMP.

Tsmp = requiredT ime(FG, Tp1 , Tp2 , Tcm) (4.18)

Tpmp = 2× requiredT ime(clargest, Tp1 , Tp2 , Tcm) + Tintm (4.19)

As discussed in Section 4.2, due to parallel execution on each cluster, for PMP, we

only need to consider the largest cluster of FG (i.e. clargest) instead of the complete

factor graph FG. Altogether the completion time of PMP includes the time required to

complete the two rounds of message passing on the largest cluster with the addition of the

time it takes to complete the intermediate step (Tintm). In the intermediate step, each

synchronous operation is as expensive as the factor-to-variable message (Tp1). However,

during the intermediate step, the proposed domain pruning technique of PMP (i.e.

Algorithm 7) minimizes the cost of Tp1 by reducing the size of the domain (i.e search

space) over which maximization needs to be computed. To empirically evaluate the

performance of the domain pruning technique, we independently test it on a randomly

generated local utility table that has a varying domain size from 2 to 20. In general, we

observe a significant reduction of the search space, ranging from around 35% to 75%, by

using this technique, and as expected the results are getting better with the increase of

the domain size (see Section 4.2.3). Hence, to reflect the worst case scenario, we consider

only a 35% reduction for each operation of the intermediate step while computing the

completion time of PMP for all the results reported in this experiment.

According to Figure 4.6(a), the best performance of PMP compared to the SMP pro-

tocol can be found if the number of clusters is picked from the range {5 − 25}. In

particular, for the smaller factor graphs this range becomes smaller. For example, when

we are dealing with a factor graph of 100 function nodes the best results are found within

the range of {5−18} clusters; afterwards, the performance of PMP gradually decreases.

This is because the time required to complete the intermediate step increases steadily

when the cluster size gets smaller (i.e. the number of clusters gets larger). On the other

hand, the time it takes to complete the two rounds of message passing increases when

the cluster size becomes larger. As a consequence, it is observed from the results that

the performance of PMP drops steadily with the increase of the number of clusters

after reaching to its peak with a certain number of clusters. Generally, we observe a

similar trend in each scenario. Therefore, a proper balance is necessary to obtain the

best possible performance from PMP (see Section 4.4). Notably, for the larger factor

76 Chapter 4 Speeding Up the Message Passing Process

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

3 0 0

6 0 0

9 0 0

1 2 0 0

1 5 0 0

 N o . o f f a c t o r s - 1 0 0
 N o . o f f a c t o r s - 3 0 0
 N o . o f f a c t o r s - 6 0 0
 N o . o f f a c t o r s - 9 0 0

Co
mp

leti
on

Tim
e (

sec
)

N u m b e r o f C l u s t e r s
(a) Number of function nodes (factors): 100− 900.

0 1 5 3 0 4 5 6 0 7 5 9 0 1 0 5 1 2 0 1 3 5 1 5 0
0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

Co
mp

leti
on

Tim
e (

sec
)

N u m b e r o f C l u s t e r s

 N o . o f f a c t o r s - 3 0 0 0
 N o . o f f a c t o r s - 5 0 0 0
 N o . o f f a c t o r s - 8 0 0 0
 N o . o f f a c t o r s - 1 0 0 0 0

(b) Number of function nodes (factors): 3000− 10000.

Figure 4.7: Completion time: Standard Message Passing (Number of Clus-
ter=1); Parallel Message Passing (Number of Cluster >1) for the experimental
setting, E2: (Tp1 � Tp2 AND Tp1 � Tcm).

graphs, the comparative performance gain of PMP is more substantial in terms of com-

pletion time due to the consequence of parallelism. As observed, PMP running over a

factor graph with 100 − 300 function nodes achieves around 53% to 59% performance

gain (Figure 4.6(a)) over its SMP counterpart. On the other hand, PMP takes 61% to

63% less time than SMP when larger factor graphs (600−900 functions) are considered.

Finally, Figure 4.6(b) depicts that this performance gain reaches around 61% to 65% for

the factor graph having 3000 to 10,000 function nodes. Here, this performance gain of

PMP is achieved when the number of clusters is chosen from the range of {25− 44}.

4.3.2 Experiment E2: Tp1 � Tp2 AND Tp1 � Tcm

In experimental setting E2, we generated the results based on similar comparative mea-

sures and representations as the setting E1 (Figure 4.7). However, E2 characterizes the

scenario where the average computation cost (time) of a function-to-variable message

(Tp1) is extremely expensive compared to the variable-to-function message (Tp2), and

the average time to transmit a message between nodes (Tcm) is considerably more inex-

pensive as opposed to Tp1 . To be exact, we consider Tp2 be 10,000 times less expensive

than a randomly taken Tp1 for this particular setting. Here, Tp1 is considered 200 times

more time consuming than Tcm. Max-Sum and BMS are two exemplary GDL-based

algorithms where E2 is commonly seen. More specifically, this particular setting reflects

those applications that contain variables with high domain size. For example, assume

the domain size is 15 for all 5 variables associated with a function. In this case, to

generate each of the function-to-variable messages, the corresponding agent needs to

perform 155 or 7, 59, 375 operations. Since Tp1 is extremely expensive in this experimen-

tal setting, the performance of PMP largely depends on the performance of the domain

Chapter 4 Speeding Up the Message Passing Process 77

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0
 N o . o f f a c t o r s - 1 0 0
 N o . o f f a c t o r s - 3 0 0
 N o . o f f a c t o r s - 6 0 0
 N o . o f f a c t o r s - 9 0 0

Co
mp

leti
on

Tim
e (

sec
)

N u m b e r o f C l u s t e r s
(a) Number of function nodes (factors): 100− 900.

0 1 5 3 0 4 5 6 0 7 5 9 0 1 0 5 1 2 0 1 3 5 1 5 0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

Co
mp

leti
on

Tim
e (

sec
)

N u m b e r o f C l u s t e r s

 N o . o f f a c t o r s - 3 0 0 0
 N o . o f f a c t o r s - 5 0 0 0
 N o . o f f a c t o r s - 8 0 0 0
 N o . o f f a c t o r s - 1 0 0 0 0

(b) Number of function nodes (factors): 3000− 10000.

Figure 4.8: Completion time: Standard Message Passing (Number of Clus-
ter=1); Parallel Message Passing (Number of Cluster >1) for the experimental
setting, E3: (Tp1 � Tp2 AND Tp1 > Tcm).

pruning technique. Similar to the above experiment, Figure 4.7(a) shows the results for

the factor graphs having 100−900 function nodes, and the results obtained by applying

on larger factor graphs (3000− 10000 function nodes) are shown in Figure 4.7(b). This

time, the best performance of PMP for those two cases are observed when the number

of clusters are picked from the ranges {15−41} and {45−55}, respectively. Afterwards,

the performance of PMP drops gradually due to the same reason as observed in E1.

Notably, the performance gain reaches around 37% to 42% for the factor graphs having

100− 900 function nodes, and 41% to 43% for 3000− 10000 function nodes.

4.3.3 Experiment E3: Tp1 � Tp2 AND Tp1 > Tcm

Experimental setting E3 possesses similar properties and scenarios as E2, apart from

the fact that here Tp1 is moderately more expensive than Tcm instead of extremely more

expensive. Similar to the previous experiment, we consider Tp2 be 10000 times less ex-

pensive than a randomly taken Tp1 . However, Tcm is taken only 10 times less expensive

than Tp1 . It is observed from the results that even without the domain pruning tech-

nique, PMP minimizes the cost of Tcm and Tp2 significantly in E3. This is because

Tcm is not too inexpensive and the operations of the intermediate step do not include

any communication cost. Moreover, given Tp1 is also very expensive, PMP produces

better performance than what we observed in E2 by utilizing the domain pruning tech-

nique. Altogether, Figures 4.8(a) and 4.8(b) show that PMP consumes 45% to 49% less

time than SMP for this setting when the number of clusters is chosen from the range

{17 − 47}. Max-Sum and BMS are the exemplary algorithms where settings similar to

E3 are commonly seen.

78 Chapter 4 Speeding Up the Message Passing Process

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

 N o . o f f a c t o r s - 1 0 0
 N o . o f f a c t o r s - 3 0 0
 N o . o f f a c t o r s - 6 0 0
 N o . o f f a c t o r s - 9 0 0

Co
mp

leti
on

Tim
e (

sec
)

N u m b e r o f C l u s t e r s
(a) Number of function nodes (factors): 100− 900.

0 1 5 3 0 4 5 6 0 7 5 9 0 1 0 5 1 2 0 1 3 5 1 5 0
0

1 5 0 0

3 0 0 0

4 5 0 0

6 0 0 0

7 5 0 0

9 0 0 0

1 0 5 0 0

1 2 0 0 0

Co
mp

leti
on

Tim
e (

sec
)

N u m b e r o f C l u s t e r s

 N o . o f f a c t o r s - 3 0 0 0
 N o . o f f a c t o r s - 5 0 0 0
 N o . o f f a c t o r s - 8 0 0 0
 N o . o f f a c t o r s - 1 0 0 0 0

(b) Number of function nodes (factors): 3000− 10000.

Figure 4.9: Completion time: Standard Message Passing (Number of Clus-
ter=1); Parallel Message Passing (Number of Cluster >1) for the experimental
setting, E4: (Tp1 � Tp2 AND Tp1 ≈ Tcm).

4.3.4 Experiment E4: Tp1 � Tp2 AND Tp1 ≈ Tcm

Figure 4.9 shows the comparative results of PMP over SMP for experimental setting

E4. E4 characterizes the scenarios where Tp1 is extremely more expensive than Tp2 , and

approximately equal to Tcm. To be exact, we consider Tp2 be approximately 5000 times

less expensive than randomly taken values of Tp1 and Tcm. Here, both Tp1 and Tcm are

substantial, and hence PMP achieves notable performance gains over SMP, compared

to the previous experiments. According to the graphs of Figures 4.9(a) and 4.9(b),

PMP takes 59% to 73% less time compared to its SMP counterpart. The preferable

range of number of clusters for the setting E4 is {15− 55}.

4.3.5 Experiment E5: Tp1 ≈ Tp2 AND Tp1 ≈ Tcm

Experiment E5 characterizes the scenarios where Tp1 and Tcm are approximately equal

to the inexpensive Tp2 . Such a scenario normally occurs when message passing (SMP

or PMP) is applied on the following algorithms: FMS, BnB Max-Sum, G-FBP or

Max-Sum/BMS with small domain size and inexpensive communication cost in terms of

time. This is a trivial setting where each of the three parameters is not that expensive.

Specifically, as Tp1 is inexpensive, the domain pruning technique has less impact on

reducing the completion time of PMP. However, the effect of parallelism from the

clustering process coupled with the avoidance of redundant variable-to-function messages

during the intermediate step allows PMP to take 55% to 67% less time than its SMP

counterpart (Figures 4.10(a) and 4.10(b)). The preferable range of number of clusters

is same as the setting E4.

Chapter 4 Speeding Up the Message Passing Process 79

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0
 N o . o f f a c t o r s - 1 0 0
 N o . o f f a c t o r s - 3 0 0
 N o . o f f a c t o r s - 6 0 0
 N o . o f f a c t o r s - 9 0 0

Co
mp

leti
on

Tim
e (

sec
)

N u m b e r o f C l u s t e r s
(a) Number of function nodes (factors): 100− 900.

0 1 5 3 0 4 5 6 0 7 5 9 0 1 0 5 1 2 0 1 3 5 1 5 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

Co
mp

leti
on

Tim
e (

sec
)

N u m b e r o f C l u s t e r s

 N o . o f f a c t o r s - 3 0 0 0
 N o . o f f a c t o r s - 5 0 0 0
 N o . o f f a c t o r s - 8 0 0 0
 N o . o f f a c t o r s - 1 0 0 0 0

(b) Number of function nodes (factors): 3000− 10000.

Figure 4.10: Completion time: Standard Message Passing (Number of Clus-
ter=1); Parallel Message Passing (Number of Cluster >1) for the experimental
setting, E5: (Tp1 ≈ Tp2 AND Tp1 ≈ Tcm).

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0
 N o . o f f a c t o r s - 1 0 0
 N o . o f f a c t o r s - 3 0 0
 N o . o f f a c t o r s - 6 0 0
 N o . o f f a c t o r s - 9 0 0

Co
mp

leti
on

Tim
e (

sec
)

N u m b e r o f C l u s t e r s
(a) Number of function nodes (factors): 100− 900.

0 1 5 3 0 4 5 6 0 7 5 9 0 1 0 5 1 2 0 1 3 5 1 5 0
0

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0

Co
mp

leti
on

Tim
e (

sec
)

N u m b e r o f C l u s t e r s

 N o . o f f a c t o r s - 3 0 0 0
 N o . o f f a c t o r s - 5 0 0 0
 N o . o f f a c t o r s - 8 0 0 0
 N o . o f f a c t o r s - 1 0 0 0 0

(b) Number of function nodes (factors): 3000− 10000.

Figure 4.11: Completion time: Standard Message Passing (Number of Clus-
ter=1); Parallel Message Passing (Number of Cluster >1) for the experimental
setting, E6: (Tp1 ≈ Tp2 AND Tp1 � Tcm).

4.3.6 Experiment E6: Tp1 ≈ Tp2 AND Tp1 � Tcm

Figure 4.11 illustrates the comparative results of PMP over SMP for experimental

setting E6, which possess similar properties, scenarios and the applied algorithms as

E5. However, in E6 the average message transmission cost Tcm is considerably more

expensive than Tp1 and Tp2 . To be exact, we consider Tp1 be 15 times less expensive

than a randomly taken value of Tcm. As Tcm is markedly more expensive and Tp2 is

approximately equal to Tp1 , the performance gain of PMP increases to the highest

level (70% to 91%). To be precise, the reduction of communication by avoiding the

variable-to-function messages during the intermediate step, which is extremely expensive

in this setting, helps PMP achieves this performance. This result signifies that PMP

80 Chapter 4 Speeding Up the Message Passing Process

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0
 N o . o f f a c t o r s - 1 0 0
 N o . o f f a c t o r s - 3 0 0
 N o . o f f a c t o r s - 6 0 0
 N o . o f f a c t o r s - 9 0 0

Co
mp

leti
on

Tim
e (

sec
)

N u m b e r o f C l u s t e r s
(a) Number of function nodes (factors): 100− 900.

0 1 5 3 0 4 5 6 0 7 5 9 0 1 0 5 1 2 0 1 3 5 1 5 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

Co
mp

leti
on

Tim
e (

sec
)

N u m b e r o f C l u s t e r s

 N o . o f f a c t o r s - 3 0 0 0
 N o . o f f a c t o r s - 5 0 0 0
 N o . o f f a c t o r s - 8 0 0 0
 N o . o f f a c t o r s - 1 0 0 0 0

(b) Number of function nodes (factors): 3000− 10000.

Figure 4.12: Completion time: Standard Message Passing (Number of Clus-
ter=1); Parallel Message Passing (Number of Cluster >1) for the experimental
setting, E7: (Tp1 ≈ Tp2 AND Tp1 < Tcm).

performs best in those settings where the communication cost is expensive. Note that

the preferable range of number of clusters for the setting E6 is {15− 61}.

4.3.7 Experiment E7: Tp1 ≈ Tp2 AND Tp1 < Tcm

Experiment E7 possess similar properties, scenarios and exemplary algorithms as the

setting E6, with the following exception. Tcm in E7 is moderately more expensive than

Tp1 instead of considerably more expensive. To be precise, we consider Tp1 be 4 times less

expensive than randomly taken values of Tcm. Due to the less substantial value of Tcm,

unlike E6 where the performance gain reaches to the maximum level, PMP consumes

65% to 82% less time compared to its SMP counterpart (Figures 4.12(a) and 4.12(b)).

The preferable range of number of clusters for E7 is {17− 50}.

4.3.8 Total Number of Messages

The most important finding to emerge from the results of the experiments is that PMP
significantly reduces the completion time of the GDL-based message passing algorithms

for all the settings. However, PMP requires more messages to be exchanged compared

to its SMP counterpart due to two rounds of message passing. To explore this trade-

off, Figure 4.13 illustrates the comparative results of PMP and SMP in terms of the

total number of messages for factor graphs with a number of function nodes 50 − 1200

with an average 5 variables connected to a function node. The results are comparable

for settings with higher arities. Specifically, we find that PMP needs 27 − 45% more

messages than SMP for a factor graph having less than 500 function nodes and 15−25%

more messages for a factor graph having more than 500 nodes. As more messages are

Chapter 4 Speeding Up the Message Passing Process 81

0

2000

4000

6000

8000

10000

12000

14000

16000

50 100 200 300 400 500 600 700 800 900 1000 1200

T
o

ta
l
N

u
m

b
e

r
o

f
M

e
s
s
a

g
e

s

Number of Nodes (Functions) with Average Degree 5

Standard Message Passing Parallel Message Passing

Figure 4.13: Total number of messages: SMP vs PMP.

exchanged at the same time in PMP due to the parallel execution, this phenomenon

does not affect the performance gain in terms of completion time.

Now, based on the extensive empirical results, we can claim that, in PMP, even ran-

domly splitting a factor graph into a number of clusters, within the range of around 10

to 50 clusters, always produces a significant reduction in completion time of GDL-based

DCOP algorithms. However, this performance gain is neither guaranteed to be the opti-

mal one, nor deterministic for a given DCOP setting. Therefore, we need an approach to

predict how many clusters would produce the best performance from PMP for a given

scenario. At this point, we only have a range from which we should pick the number of

clusters for a certain factor graph representation of a DCOP.

4.4 Approximating the Appropriate Number of Clusters

for a DCOP

In this section, we turn to the challenge of determining the appropriate number of

clusters for a given scenario in PMP. The ability to predict a specific number in

this regard would allow PMP to split the original factor graph representation of a

DCOP accurately into a certain number of clusters, prior to executing the message

passing. In other words, this information allows PMP to be applied more precisely in

different multi-agent DCOPs. However, it is not possible to predict the optimal number

of clusters due to the diverse nature of the application domains, and the fact that a

graphical representation of a DCOP can be altered at runtime. Therefore, we use an

approximation. To be precise, we use a linear regression method, and run it off-line

to approximate a specific number of clusters for a DCOP before initiating the message

passing of PMP. In this context, logistic regression, Poisson regression and a number

of classification models could be used to predict information from a given finite data set.

82 Chapter 4 Speeding Up the Message Passing Process

However, they are more suited to estimate categorical information rather than predicting

specific numerical data required for our model (Han et al., 2011). Therefore, we choose

the linear regression method for our setting. Moreover, this method is time efficient in

terms of computational cost because as an input it only requires an approximate number

of function nodes of the corresponding factor graph representation of a DCOP in advance.

The remainder of this section is organised as follows. In Section 4.4.1, we explain the

linear regression method, and detail of how it can be used along with the PMP protocol

to predict the number of clusters for a specific problem instance. Then, Section 4.4.2

presents our empirical results of using this method on different experimental settings

(i.e. E1, E2, . . . , E7) defined and used in the previous section. Specifically, we show

the differences in performance of PMP considering the prediction method compared

to its best possible results in terms of completion time. Notably, PMP’s performance

gain, for each value within the preferred range of number of clusters, is shown in the

graphs of the previous section. Here, we run a similar experiment to obtain the best

possible performance gain for a certain problem instance, and then compare this with the

gain obtained by using the predicted number of clusters. Finally, we end this section by

evaluating the performance of PMP as opposed to SMP on two explicit implementations

of GDL-based algorithms.

4.4.1 Determining the Appropriate Number of Clusters

Regression analysis is one of the most widely used approaches for numeric prediction

(Kutner et al., 2004; Han et al., 2011). The regression method can be used to model

the relationship between one or more independent or predictor variables and a depen-

dent or response variable which is continuous valued. Many problems can be solved

by linear regression, and even more can be handled by applying transformations to the

variables so that a non-linear problem can be converted to a linear one. Specifically,

the linear regression with a single predictor variable is known as straight-line linear

regression, meaning it only involves a response variable Y and a single predictor vari-

able X . Here, the response variable Y is modelled as a linear function of the predictor

variable X (Equation 4.20).

Y =W0 +W1X (4.20)

W1 =

∑|D|
i=1(Xi −X)(Yi − Y)∑|D|

i=1(Xi −X)2
(4.21)

W0 = Y −W1X (4.22)

Chapter 4 Speeding Up the Message Passing Process 83

Table 4.1: Sample training data from Figures 4.6 − 4.12.

Number of function nodes (X) Number of clusters (Y) Experimental setting

3000 25 E1

5000 33 E1

8000 38 E1

10000 40 E1

3000 47 E2

5000 50 E2

8000 52 E2

10000 55 E2

3000 32 E3

5000 36 E3

8000 44 E3

10000 47 E3

3000 40 E4

5000 50 E4

8000 52 E4

10000 55 E4

3000 38 E5

5000 46 E5

8000 50 E5

10000 52 E5

3000 50 E6

5000 55 E6

8000 58 E6

10000 61 E6

3000 40 E7

5000 46 E7

8000 49 E7

10000 50 E7

84 Chapter 4 Speeding Up the Message Passing Process

Table 4.2: Predicted number of clusters by applying the straight-line linear
regression (Equations 4.20− 4.22) on the training data of Table 4.1.

Number of function nodes (X) Predicted number of clusters (Y)

3050 41

4500 43

5075 44

6800 47

7500 48

8020 49

8050 49

9200 51

9975 52

In Equation 4.20, the variance of Y is assumed to be constant, and W0 and W1 are

regression coefficients which can be thought of as weights. These coefficients can be

solved by the method of least squares, which estimates the best-fitting straight line

as the one that minimizes the error between the actual data and the estimate of the

line. Let D be the training set consisting of values of the predictor variable X and

their associated values for the response variable Y. This training set contains |D| data

points of the form (X1,Y1), (X2,Y2), . . . , (X|D|,Y|D|). Equations 4.21 and 4.22 are used

to generate the regression coefficients W1 and W0, respectively.

Now, the linear regression analysis can be used to predict the number of clusters for a

certain application given that continuously updated training data from the experimental

results of PMP exists. To this end, Table 4.1 contains the sample training data taken

from the results shown in Section 4.3. Here, we formulate this training data D so that

straight-line linear regression can be applied, where D consists of the values of a pre-

dictor variable X (number of function nodes) and their associated values for a response

variable Y (number of clusters). In more detail, this training set contains |D| (number of

nodes - number of clusters) data of the form (X1,Y1), (X2,Y2), . . . , (X|D|,Y|D|). Initially,

Equations 4.21 and 4.22 are used to generate regression coefficients W1 and W0 respec-

tively, which are used to predict the appropriate number of clusters (response variable,

Y) for a factor graph with a certain number of function nodes (predictor variable, X)

(Equation 4.20). For instance, based on the training data of Table 4.1, we can predict

that for factor graphs with 4500 and 9200 function nodes PMP should split the graphs

into 43 and 51 clusters, respectively (Table 4.2). As we need to deal with only a single

predictor variable, we are going to use the terms linear regression and straight-line linear

Chapter 4 Speeding Up the Message Passing Process 85

Table 4.3: Performance gain of PMP using the linear regression method com-
pared to the highest possible gain from PMP.

Experiment: E1 Experiment: E6

Number of
function
nodes

Best possible
performance
from PMP

Performance of
PMP using lin-
ear regression

Best possible
performance
from PMP

Performance of
PMP using lin-
ear regression

3050 60.69% 60.21% 88.82% 88.12%

5075 63.08% 62.50% 89.45% 89.10%

6800 63.95% 59.62% 89.80% 89.35%

8050 64.82% 59.62% 90.17% 89.80%

9975 64.83% 64.18% 90.25% 89.93%

regression interchangeably. In the remainder of this section, we evaluate the performance

of this extension through extensive empirical evidence.

4.4.2 Empirical Evaluation

In this section, we evaluate the performance of PMP by considering the number of

clusters predicted using the linear regression method in terms of completion time, and

compare this with the highest possible performance gain from PMP, which is the best

case outcome of PMP using a certain number of clusters. In so doing, we use the

same experimental settings (E1, E2, . . . , E7) used in Section 4.3. Specifically, Table 4.3

illustrates the comparative performance gain of PMP using the straight-line linear

regression and the highest possible gain for five factor graphs having the number of

function nodes: 3050, 5075, 6800, 8050 and 9975 based on the experimental setting E1

and E6. We repeat the experiments of Section 4.3 for each of these factor graphs to

obtain the highest possible performance gain from PMP. That is, we reported the

performance of PMP for all the clusters ranging from 2− 150. From these results, we

get the highest possible gain and the performance based on the predicted number of

clusters of PMP. It can be seen that for the factor graph with 3050 function nodes the

highest possible gain of PMP reaches to 60.69%, meaning PMP takes 60.69% less time

to complete the message passing operation to solve the DCOP representing the factor

graph than its SMP counterpart. Now, when PMP is applied considering the predicted

number of clusters (i.e. 41) using the straight-line linear regression (Table 4.2), the gain

reaches to 60.21%. This indicates, PMP ensures 98.7% of its possible performance

gain by applying the straight-line linear regression. Similarly, PMP ensures 99.64%

86 Chapter 4 Speeding Up the Message Passing Process

1 5 0 3 0 0 4 5 0 6 0 0 7 5 0 9 0 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0
%

of
Co

mp
let

ion
 Ti

me
 Re

du
ce

d b
y P

MP
 Co

mp
are

d t
o S

MP

N u m b e r o f F a c t o r / F u n c t i o n N o d e s

 P M P o p e r a t e s o n M a x - S u m : d o m a i n s i z e (5 - 8)
 P M P o p e r a t e s o n M a x - S u m : d o m a i n s i z e (1 2 - 1 5)
 P M P o p e r a t e s o n F a s t M a x - S u m : d o m a i n s i z e (2)

(a) Number of function nodes (factors): 100− 900.

3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

%
of

Co
mp

let
ion

 Ti
me

 Re
du

ce
d b

y P
MP

 Co
mp

are
d t

o S
MP

N u m b e r o f F a c t o r / F u n c t i o n N o d e s

 P M P o p e r a t e s o n M a x - S u m : d o m a i n s i z e (5 - 8)
 P M P o p e r a t e s o n M a x - S u m : d o m a i n s i z e (1 2 - 1 5)
 P M P o p e r a t e s o n F a s t M a x - S u m : d o m a i n s i z e (2)

(b) Number of function nodes (factors): 3000− 10000.

Figure 4.14: Empirical performance of PMP vs SMP running on two GDL-
based algorithms. Error bars are calculated using standard error of the mean.

Chapter 4 Speeding Up the Message Passing Process 87

of the possible performance gain for a factor graph with 9975 function nodes in the

experimental setting E6 while applied based on the number of clusters obtained from

the linear regression method. Notably, this trend is common for the rest of the factor

graphs, and in each case more than 98.42% of the best possible results is assured by

applying the straight-line linear regression according to the results shown in Table 4.3,

and all the results are comparable for all the other experimental settings. Significantly,

it can be ascertained from our experiments that a minimum of around 98.5% of the

best possible results of PMP can be achieved when the number of clusters is predicted

by the straight-line linear regression method. Notably, a common phenomenon is noticed

from the empirical evaluation of Section 4.3 that the performance of PMP falls very

slowly after it reaches to its peak by a certain number of clusters on either increasing

or decreasing that number. This is why, approximating a number of clusters produces

such good results.

In the final experiment, we analyse the performance of PMP (compared to SMP) based

on two GDL-based algorithms: Max-Sum and Fast Max-Sum. We do this to observe the

performance of PMP on the actual runtime metric that complements our controlled

and systematic experiments of Section 4.3. In the experiment, we consider the predicted

number of clusters obtained using the linear regression method. Here, the factor graphs

are generated in the same way as they are for the experiments of Section 4.3. Addition-

ally, we make use of the Frodo framework (Léauté et al., 2009) to generate local utility

tables (i.e. cost function) for the function nodes of the factor graphs. On the one hand,

we use two ranges, (5 − 8) and (12 − 15) of the variables’ domain size to generate the

utility tables for Max-Sum. In doing so, we are able to observe the comparative result

for different ratios of the parameters Tp1 and Tp2 . To be precise, these two ranges reflect

the scenarios Tp1 > Tp2 and Tp1 � Tp2 , respectively. On the other hand, we restrict the

domain size to exactly 2 for all the variables in case of Fast Max-Sum so that it reflects

the characteristic of the algorithm (i.e. Tp1 ≈ Tp2). Notably, it is not possible to emulate

a realistic application, such as disaster response or climate monitoring in a simulated

environment that provides the actual value of Tcm (Sultanik et al., 2008). Consequently,

we observe the value of Tcm to be very small in this experiment.

It can be seen from the solid-grey line of Figure 4.14(a) that PMP takes around 55−60%

less time than SMP to complete the message passing process for Fast Max-Sum on the

factor graph having 100 − 900 function nodes. Meanwhile PMP reduces 35 − 42% of

SMP’s completion time for Max-Sum where the variables’ domain size is picked from

the range 5− 8 (dashed-black line). This is because in the former case, all three param-

eters (i.e. Tp1 , Tp2 and Tcm) are small and comparable. Therefore, the parallel execution

of message passing, along with the avoidance of variable-to-factor messages in the in-

termediate step, allows PMP attain this performance in this case. In contrast, its

performance in the latter case mainly depends on the impact of domain reduction in the

88 Chapter 4 Speeding Up the Message Passing Process

intermediate step, given that the value of Tp2 and Tcm is negligible when compared to

Tp1 . The same holds true for Max-Sum with a larger domain size, where we observe a

67 − 72% reduction in completion time by PMP, as opposed to its SMP counterpart

(dashed-grey line). However, the observed outcome in this case indicates that the im-

pact of domain reduction in intermediate step gets better with an increase in domain

size. Figure 4.14(b) illustrates a similar trend in the performance of PMP, wherein we

take larger factor graphs of 3000 to around 10000 function nodes into consideration.

Here, we observe an even better performance for each of the cases, due to the impact of

parallelism in larger settings.

4.5 Summary

In this chapter, we propose a generic message passing protocol which significantly re-

duces the completion time of GDL-based DCOP algorithms while maintaining the same

solution quality. This is what we formally set as our key research challenge C2 at the

beginning of this thesis. To be precise, our approach is applicable to all the GDL-based

algorithms that use factor graph as the graphical representation of DCOPs. In particu-

lar, we achieve a significant reduction in completion time for such algorithms, ranging

from a reduction of 37 − 91% depending on the prevailing scenario. In order to attain

a performance of this quality, we introduced a cluster based method to parallelize the

message passing procedure. Additionally, a domain reduction algorithm is proposed to

further minimize the cost of each operation in the intermediate step. Subsequently, we

addressed the challenge of determining the appropriate number of clusters for a given

scenario. In doing so, we propose the use of a linear regression prediction method for

approximating the appropriate number of clusters for a DCOP. Remarkably, we observe

through empirical results that more than 98% of the best possible outcomes can be

achieved if PMP is applied on the number of clusters predicted by the straight-line

linear regression. In other words, if we know the size of a factor graph representing

a DCOP before performing the message passing, we can utilize the straight-line linear

regression method to ascertain how many clusters should be created from that factor

graph. Thus, we make PMP a deterministic approach. Given this, by taking ad-

vantage of the PMP protocol, we can now use GDL-based algorithms to rapidly and

effectively solve large-scale DCOPs.

Chapter 5

Speeding Up via Efficient

Node-to-Agent Mapping

As discussed in Chapter 2, very little research has been carried out so far to find a

good node-to-agent mapping for a DCOP. More significantly, none of them aim to re-

duce the completion time of DCOP algorithms through an effective mapping process.

Our final research challenge C3 has emerged in light of this backdrop, and to address

this we develop a new way of speeding up GDL-based message passing algorithms that

effectively solve DCOPs in multi-agent systems. In particular, we propose a new time-

efficient heuristic to determine a near-optimal Mapping of Nodes to the participating

Agents (MNA) while taking cognisance of the fact that finding an optimal mapping

is an NP-hard problem on its own.MNA is a pre-processing step that works before

executing the optimization process of a DCOP algorithm. Specifically, MNA can be

executed in a centralized or decentralized manner, based on the given application1. As

a pre-processing step, MNA does not alter any internal process of the original DCOP

algorithm, thereby preserving its solution quality. Additionally, the decentralized ver-

sion of MNA specifically accommodates scenarios where the graphical representation

of a DCOP experiences change(s) during the runtime of an algorithm.

The remainder of the chapter is organized as follows. In Section 5.1, we formulate the

phase of node-to-agent mapping as an optimization problem, where the goal is to find

an assignment that minimizes the completion time of a GDL-based exact/non-exact

DCOP algorithm that operates on this mapping. In Section 5.2, we discuss the details

of both the centralized and decentralized versions of MNA. Subsequently, Section 5.3

illustrates the empirical evaluation of our proposed approach as opposed to the current

state-of-the-art. Finally, we conclude the chapter with a summary in Section 5.4.

1See Section 2.5.4 for details of the applications’ preference.

89

90 Chapter 5 Speeding Up via Efficient Node-to-Agent Mapping

5.1 Problem Formulation

As mentioned in Section 2.1, a DCOP can be defined by a tuple 〈X,D,F,A, δ〉, where

X is a set of discrete variables {x0, x1, . . . , xm} and D = {D0, D1, . . . , Dm} is a set

of discrete and finite variable domains. Each variable xi can take its value from the

domain Di. F is a set of constraints {F1, F2, . . . , FL}, where each Fi ∈ F is a function

dependent on a subset of variables xi ∈ X defining the relationship among the variables

in xi. Thus, the function Fi(xi) denotes the value for each possible assignment of the

variables in xi. The dependencies between the variables and the functions are often

graphically represented by a constraint graph such as a junction tree, factor graph

or DFS tree, where the nodes (i.e. variables and/or functions) of the corresponding

graphical representation G are being held by a set of agents A = {A1, A2, . . . Ak}. This

mapping of nodes to agents is represented by δ : η → A. Here, η stands for the set of

nodes within the constraint graph G. As a result of the mapping represented by δ, we

get a partition P (A) of k = |A| sub-graphs (i.e.G1, G2, . . . , Gk) from G, where each

Gj ∈ G is held by the agent Aj ∈ A (Equation 5.1).

P (A)←
k⋃

j=1

Gj | ∀j′ 6= j : (Gj ∩ Gj′) = ∅ (5.1)

Within this model, a GDL-based DCOP algorithm operates directly on G by passing

messages among the nodes η ∈ G to have each agent assign values to its associated

variables from their corresponding domains. The aim is to maximize (minimize) the ag-

gregated global objective function which eventually produces the value of each variable,

X∗ = arg max
X

∑L
i=1 Fi(xi). In such algorithms, to compute a message for a particular

neighbour, a node takes into account the messages from its neighbours along with its

own utility. Thus, a number of nodes initially start generating (i.e. computation) and

then sending (i.e. communication) messages, each of which we jointly denote as a single

event. That means, an event involves both the computation and the communication

of a certain message. In this process, the completion of certain events might trigger

one or more new events to be initiated. Thus, the total message passing procedure will

complete when each node receives messages from all of its neighbours, such that all

the running events are completed without initiating any new events. The dependencies

among the events during the message passing process can be seen as an event-based

dependency graph EG(A, P), where A is the specific GDL-based DCOP algorithm de-

ployed and P is the partition obtained from Equation 5.1. Formally, let E be the set

of events {E1, E2, . . . , El} of EG(A, P). Here, the weight of an edge Ei → Ej between

two events Ei and Ej represents the time required to complete event Ei. Finally, the

longest path cost of all existing event pairs is the total completion time T (A, P) for a

given graphical representation of a DCOP (Equation 5.2). Here, the function υ(Ei, Ej)

represents the time elapsed (i.e. path cost) between the starting of the event Ei and

the end of the event Ej .

Chapter 5 Speeding Up via Efficient Node-to-Agent Mapping 91

Agent A1 Agent A2

A DB

C E

Agent A1 Agent A2

A DB

C E

δ1

δ2

Computation Cost
Node Time‐unit
 A 25
 B 0
C 0
D 12
E 0

Communication Cost
Type Time‐unit

Inter‐agent 7
Intra‐agent 2

Figure 5.1: Two sample mappings of nodes {A,B,C,D,E} of a constraint
graph to agents A1 and A2. In the figure, nodes are denoted by circles and
agents as octagons.

T (A, P) = max
∀Ei,Ej

∈EG(A,P)
υ(Ei, Ej) (5.2)

In this formulation, without loss of generality, we assume each agent possesses its own

memory and a separate processing unit2. Here, on behalf of the sending node of an

event, the holding agent generates and then sends the message to the receiving node.

The sending node and its corresponding receiving node can either be held by the same

agent or by two different agents. The time required to send a message in the former

case can be termed the intra-agent communication cost and the latter the inter-agent

communication cost. The former is typically less expensive in terms of communication

cost than the latter (Sultanik et al., 2008). This is because it requires less time for

an agent to take a message from its local memory than from a memory belonging to a

different agent. Moreover, since an agent has a single processing unit, it cannot compute

more than one message at a time. However, it can compute a message while transmitting

another one and vice versa. As a consequence, allowing an agent to hold too many nodes

2In a multi-processing capable setting, each processing unit with separate memory can be considered
as an agent.

92 Chapter 5 Speeding Up via Efficient Node-to-Agent Mapping

E1: B → A E2: C → A E3: E → D

E4: A → D E5: D → A

E8: A → BE6: D → E E7: A → C

Startt = 1, Endt = 2
Startb = 1, Endb = 7

Startt = 1, Endt = 2
Startb = 1, Endb = 7

Startt = 1, Endt = 2
Startb = 1, Endb = 2

Startt = 3, Endt = 21
Startb = 3, Endb = 16

Startt = 3, Endt = 34
 Startb = 15, Endb = 41

Startt = 53, Endt = 79
 Startb = 77, Endb = 108

Startt = 35, Endt = 48
Startb = 65, Endb = 78

Startt = 28, Endt = 54
Startb = 40, Endb = 71

Figure 5.2: Event-based dependency graph for the constraint graph of Fig-
ure 5.1.

eventually increases the waiting time for the nodes within the agent. Considering this

trade-off, the ultimate objective is to minimize the completion time T (A, P) of a message

passing algorithm A by providing an efficient mapping of nodes to agents (Equation 5.3).

P ∗ = arg min
P
T (A, P) (5.3)

Figure 5.1 illustrates two sample assignments of a constraint graph having five nodes

{A,B,C,D,E} between two agents A1 and A2. On the one hand, two sets of nodes

{A,B,C} and {D,E} are being held by the agents A1 and A2 respectively in the map-

ping δ1, depicted at the top of Figure 5.1. On the other hand, A1 holds nodes {B,C}
and A2 holds nodes {A,D,E} in the mapping δ2, shown at the bottom of that figure.

Additionally, the message computation cost of each node and the message transmis-

sion/communication cost for the edges in terms of time-units are given in the tables on

the right side of Figure 5.1. As can be seen, the computation cost of node A is 25 time-

units, meaning node A requires 25 time-units to generate a message for any one of its

neighbours. In this example, the inter-agent and the intra-agent communication cost is

7 and 2 time-units, respectively. Thus, the sending node A requires 7 time-units to send

a message to the receiving node D when both A and D are being held by different agents

(δ1). Otherwise, the same message takes 2 time-units, as is the case in mapping δ2.

The reason why the efficient mapping of node-to-agent is significant can be clearly seen

from Figure 5.2, where we generate an event-based dependency graph of the message

passing for the exemplar constraint graph shown in Figure 5.1. Here, the starting and

Chapter 5 Speeding Up via Efficient Node-to-Agent Mapping 93

finishing time of each event are represented by Startt/Startb and Endt/Endb respec-

tively, where t stands for the mapping δ1 and b corresponds to δ2. Finally, the largest

value of Endt and Endb represents the completion time of the constraint graph based

on the mappings δ1 and δ2, respectively. In this particular example, we get 8 events:

{E1, E2, . . . , E8}. For instance, event E4 stands for the summation of the computation

and the communication time of the message sending from A to D and the event E4 can

only initiate after events E1 and E2 have finished, that is when node A receives messages

from nodes B and C. It is worth mentioning that if the holding agent of node A (i.e.

the sending node of event E4) is already computing a message for another node, then

E4 has to wait until the agent finishes computing the message, even if E1 and E2 have

finished. Significantly, nodes A and D have degrees higher than that of any other nodes

in the constraint graph, and as such, they require substantially more time-units to gen-

erate each of their messages. In the mapping δ2, both A and D are being held by agent

A2. This potentially leads to a situation where the nodes of A2 have to wait for a long

period of time, even if the events they depend on have finished. In this worked example,

events E7 and E8 have to wait for an additional 24 and 61 time-units respectively, even

though they are ready to compute (δ2). On the other hand, the waiting times are 7

and 32 time-units respectively in δ1 due to the fact that the higher-degree nodes A and

D are held by two different agents. As a result, we observe that the completion time

of a DCOP algorithm for the mapping δ1 is 79 time-units, and 108 time-units for δ2.

Thus, even for a small constraint graph of 5 nodes, it is possible to save around 27% of

completion time through an efficient mapping of node-to-agent.

However, finding an optimal mapping is an NP-hard problem (see Section 2.5.4). Con-

sider an example where a constraint graph of 25 nodes have to distribute among 8 agents.

In this case, there are 1, 081, 575 possible uniform mappings. In addition to that, we

cannot ignore the possibility of getting better results from a non-uniform assignment.

Even though the search space can be reduced by giving preference to the contiguous

nodes being held by the same agent, the number is still significant (see empirical re-

sults in Section 5.3). Furthermore, the optimal mapping is completely dependent on the

structure of the graph, so it is not possible to predict such mappings in advance based

on prior information. Under such circumstances, finding an optimal mapping is not

practicable for large multi-agent settings. This leads us to theMNA heuristic detailed

in the following section.

5.2 The MNA Heuristic

Considering the observations made in the previous section, MNA specifically aims to

find mappings where nodes with high degrees are held by different agents. In other

words, the objective is to obtain a node-to-agent mapping for a DCOP, where nodes

with higher computational requirements for producing their messages do not end up

being held by the same agent. At the same time, it is important to ensure that the

94 Chapter 5 Speeding Up via Efficient Node-to-Agent Mapping

mapping process itself is not prohibitively expensive in terms of time consumption. To

this end, we propose two versions ofMNA, centralized and decentralized, each of which

is discussed in Sections 5.2.1 and 5.2.2, respectively.

5.2.1 Centralized Version of MNA

The complete process of MNA’s centralized version is detailed in Algorithm 8. As

aforementioned, it aims to reach a point where no two high-degree nodes are held by

the same agent. Subsequently, a suitable agent is picked for each of the remaining

nodes of a DCOP graphical representation based on this initial assignment. MNA
operates directly on the corresponding graphical representation G of a DCOP that is

going to be solved by deploying a GDL-based algorithm A. Here, G consists of a set

η = {η1, η2, . . . ηN} of N nodes and a set A = {A1, A1, . . . Ak} of k agents. At the end,

Algorithm 8 returns δ : η → A, that is the mapping δ of the nodes η to their associated

agents A. In line 1, a set deg = {deg(η1), deg(η2), . . . , deg(ηN)} represents the number

of connected neighbours of the nodes in η. More specifically, the function deg(ηi) ∈ deg
stands for the number of neighbours of the node ηi ∈ η, and it also provides information

regarding how many incoming messages are required to produce each of ηi’s outgoing

messages, taking the deployed algorithm A into consideration. Then, line 2 presents the

set of domains D, and each Di ∈ D is a finite set containing the values from which its

associated node ηi has to take its preferred value. It is clearly illustrated in the example

of the previous section that the degree of each node and the domain sizes of the connected

neighbouring nodes contribute significantly in determining the overall completion time

for a particular mapping. To be exact, the computation cost of the node ηi in terms of

time corresponds to the values of deg(ηi) and Di. In the worked example of Figure 5.1,

the degrees of node A and B are 3 and 1, respectively. Therefore, node A has to consider

the messages of at least two nodes along with its own utility to generate a message for

any of its neighbours. Moreover, the time required to generate a message is highest

for node A, as its degree is higher than that of any other nodes. On the other hand,

node B only needs to send a message to its only neighbouring node A. Consequently,

for B to be able to generate that message, it does not need to rely on receiving any

other message. As a result, B can immediately generate the message based on its local

utility or often this is a pre-defined initial message. Thus the computation cost of B is

negligible. Afterwards, line 3 computes the value of uniformV al, which is the ratio of

the number of nodes N and the number of agents k in G.

It is noteworthy that the problem of node-to-agent mapping becomes trivial if all the

nodes possess similar degrees and equal domain size. In this case, we can uniformly

distribute the nodes among the agents by giving preference to the contiguous nodes

being held by the same agent (lines 4 − 5). Nevertheless, this is not the case for most

DCOP applications, rather it is common to have nodes with dissimilar degrees and

Chapter 5 Speeding Up via Efficient Node-to-Agent Mapping 95

Algorithm 8: MNA (G, η, A, A)

Input: G is the corresponding graphical representation of a DCOP consisting of a set

η = {η1, η2, . . . ηN} of N nodes and A = {A1, A1, . . . Ak} is the set of k agents

participating in the optimization process, where k <= N . A stands for the

deployed GDL-based DCOP algorithm.

Output: Mapping δ of the nodes of η to their associated agents A (i.e. δ : η → A), so

that overall completion time can be minimized. Note that, each node can be

held by a single agent; however, each agent can hold several nodes.

1 Let deg = {deg(η1), deg(η2), . . . , deg(ηN)} be the set where each deg(ηi) ∈ deg stands

for the degree/number of connected nodes of ηi

2 D is a set of domains {D1, D2, . . . , DN}, where each Di ∈ D is a finite set containing

the values from which its associated node ηi has to get its preferred value

3 uniformV al← N/k

4 if (deg(ηi)− deg(ηi′) == 0)∧ (|Di| − |Di′ | == 0), where ∀ηi, ηi′ ∈ η, ∀Di, Di′ ∈ D then

// Contiguous uniform node-to-agent mapping, when the nodes possess

similar degree and equal domain size.

5 return δuniformV al : η → A

6 else

7 λ← k-largestNodes(G, η, k) // Find a set λ of k largest nodes from η in

terms of degree. Use the domain size of the

connected nodes in case of a tie.

8 δ : λ→ A // Distribute the nodes of λ = {λ1, λ2, . . . , λk} to A such that

each agent holds a single node.

9 λ = {λ1, λ2, . . . , λk} are the control points of the graph G

10 foreach node ηi ∈ η \ λ do // Distribute non control-point nodes

11 λcp ← minDistance(G, ηi, λ, uniformV al), where λcp ∈ λ // Call

Algorithm 9: choose the suitable control

point λcp for the node ηi.

12 δ : ηi → λcp.Acp // allocate ηi to the agent Acp that holds

the control point λcp.

13 return δ : η → A

96 Chapter 5 Speeding Up via Efficient Node-to-Agent Mapping

Algorithm 9: minDistance(G, ηi, λ, uniformV al)

Input: λ is a set of control points of the graph G, ηi is a non-control point node of G
to be associated with one of the control point nodes of λ and uniformV al is
obtained from line 3 of Algorithm 8.

Output: λm ∈ λ, the corresponding control point for ηi.

1 λ′ ← λ

2 λm ← sPath(G, ηi, λ
′)

3 if p(λm, Am) < uniformV al then // when the agent Am corresponds to λm
holds fewer nodes than the value of uniformV al.

4 return λm

5 else

6 λ′ ← λ′ \ λm
7 if λ′ 6= ∅ then

8 go to line 2

9 else

10 λm ← alt sPath(G, ηi, λ) // assign ηi to the closest control point

that does not currently associates the most number of non-control

point nodes among λ.

11 return λm

domain size (Kim & Lesser, 2013; Leite et al., 2014). This phenomenon, particularly,

accounts for the differences in completion time for various possible mappings of nodes

to agents. Specifically, lines 6− 13 of the algorithm concentrate on this issue. Now, the

function k-largestNodes(G, η, k) finds the k largest nodes from η in terms of degree. In

case of a tie, it uses larger domain size, then records them to a set λ = {λ1, λ2, . . . , λk}
(line 7). As a result, we get top k nodes with the highest degrees in G that require

more time-units to compute each of their messages. At this point, line 8 allocates

each node λi ∈ λ to the different agents of A, and MNA defines each of these nodes

as a control point (explained shortly) of the constraint graph G (line 9). In other

words, the set {λ1, λ2, . . . , λk} of k high-degree nodes are going to act as the control

points, each of which is exclusively held by one of the k agents of A. In the example of

Figure 5.1, the agents A1 and A2 are participating in the optimization process, hence

the value of k is two. Therefore, we need to find two control points from the set of

nodes: {A,B,C,D,E}. In this particular instance,MNA picks A and D as the control

points as they posses degrees that are higher than those of the other nodes, and they

should be held by those two different agents. Let A and D be held by agents A1 and A2,

respectively. This is significant because it assures that no two high-degree nodes will be

held by the same agent, which is the biggest cause of an increase in the waiting time

(as discussed in the previous section).

Chapter 5 Speeding Up via Efficient Node-to-Agent Mapping 97

At this point, the for loop of lines 10 − 12 associates the rest of the nodes that are

not the control points (i.e. η \ λ), to their corresponding agents. In so doing, we

utilize the concept of Fortune’s algorithm to generate the Voronoi diagram (Fortune,

1987). Notably, a Voronoi diagram is a partitioning of a plane into regions based on

the distance to a specific subset of points of the plane. This subset of points, denoted

as control points, is specified beforehand. For each of the control points, Fortune’s

algorithm generates a corresponding region consisting of all points closer to the control

point than to others. In other words, given a set of control points in a plane, Fortune’s

algorithm specifically finds the associated control points for the rest of the points on that

plane, based on the nearest Euclidean distance at the worst case cost of only O(N logN)

time. Here, the function minDistance(G, ηi, λ, uniformV al), detailed in the pseudo-

code of Algorithm 9, takes as input a non-control point node ηi, the subset λ of η

that acts as the control points and previously computed uniformV al, and then finds a

suitable control point λcp ∈ λ for ηi (line 11 of Algorithm 8).

The function is inspired by the method employed by Fortune’s algorithm to obtain

the appropriate control points for all such non-control point nodes. However, unlike

Fortune’s algorithm, which uses only the shortest Euclidean distance as the metric to

choose the suitable control point for a node, MNA uses different criteria. This is

because we have to deal with a graphical representation instead of a plane. In more

detail, in line 2 of Algorithm 9, sPath(G, ηi, λ
′) finds such a control point λm ∈ λ′ for

ηi that possesses the shortest path from ηi within the constraint graph G, and G is

considered as an unweighted graph during this process. Here, λ′ is a stand-in for the

set of control points λ (line 1). At this point, if the holding agent of λm, denoted by

Am, currently holds fewer nodes than the value of uniformV al, then λm becomes the

desired control point for ηi (lines 3 − 4). Here, the function p(λm, Am) represents the

current number of nodes held by the agent Am. If this is not the case, λm is excluded

from λ′, and the process is repeated (lines 6 − 8). Now, if none of the control points

of λ′ satisfies the condition of line 3, we assign ηi to its closest control point that does

not already associate the most number of non-control point nodes among all the control

points λ (lines 9−11). This is important because in this way we can ensure that no agent

corresponding to a control point ends up holding too many nodes. Notably, in case of a

tie in either or both of the functions in lines 2 and 10, priority should be given to the

control point whose associated agent possesses higher computational power. Thus, we

can utilize the disparity in agents’ computational capabilities (i.e. processing power).

Hence, Algorithm 9 returns the control point to line 11 of Algorithm 8, which is denoted

by λcp. Afterwards, line 12 assigns node ηi to the agent holding its associated control

point λcp. As a result, we produce a mapping where a high-degree node is held by the

same agent as its connected neighbours in most cases. Such a mapping experiences an

additional axiomatic benefit; that is, the intra-agent messages greatly outnumber more

expensive inter-agent messages. This is because the majority of the messages generated

by the high-degree nodes are transmitted by means of the intra-agent communication.

98 Chapter 5 Speeding Up via Efficient Node-to-Agent Mapping

In the example of Figure 5.1, the unweighted path cost (i.e. distance) of the non-control

points nodes B, C and E from control point A are one, one and two, respectively.

In contrast, the path costs are two, two and one respectively from control point D.

According to the regulation of MNA, nodes B and C will be associated with control

point A, as they have the shortest path from A as opposed to D. Thus, along with node

A, both nodes B and C are eventually held by agent A1. In the same way, node E picks

control point D, and both of them are held by agent A2. Finally, the mapping obtained

by following the process of MNA is δ1 which significantly outperforms δ2, as already

illustrated in the explanation of Figure 5.2 (see Section 5.1). The time complexity of

the MNA algorithm involves two parts. Firstly, O(k + (N − k) log k) for finding the

k-largest nodes (i.e. control points) from N nodes. Secondly, O(N logN) for choosing

suitable control points for the rest of the nodes in G. The overall complexity is therefore

O(N logN) as the value of k is always smaller (or in the worst case, equal) to the

number of nodes N .

5.2.2 Decentralized Version of MNA

Until this point,MNA considers those DCOP settings where a node-to-agent mapping

is not included as a part of the problem definition, or considerable flexibility exists in

choosing the mapping in a centralized manner. However, as discussed in Section 2.5.4,

the assignment is assumed as a part of the problem in a number of applications, and as

such, the centralized approach is not suitable for them. Moreover, it is important for

MNA to cope with settings that are not impervious to the introduction of new nodes

(and the departure of existing nodes), even after the node-to-agent mapping is done or

given. In order to yield the benefits similar to that of the centralized version in such

cases, we introduce a decentralized version of MNA (i.e. Steps 1 − 4). To be precise,

this particular version of MNA can be used before initiating the message passing in

applications where the mapping is given a priori; at the same time, it can be used in

the event of a change within the graphical representation G during the runtime of a

GDL-based algorithm.

• Step 1: Token Generation. Each agent Aj ∈ A generates a token that contains

degree deg(ηi) and domain info Di for each node ηi it currently holds. The token

also contains cap(Aj), which represents the computation capability (i.e. processing

power) of agent Aj .

• Step 2: Multicast Token. Each agent Aj (or the agents that experience change

in G at runtime) shares its token to agents holding nodes within the path distance

of length l in G. To be able to ensure that contiguous nodes are being held by

the same agent in most cases, it is recommended that the value of l is not too

large.3 Moreover, larger values of l would mean more messages are exchanged,

thus eventually increasing overall communication costs.

3By considering the value of l within the range 3 to 5, we empirically observe a similar performance
between decentralized MNA and it’s centralized version.

Chapter 5 Speeding Up via Efficient Node-to-Agent Mapping 99

• Step 3: Request Message. Based on the information of degree and domain

from the received tokens, each agent Aj (or only the receiving agents in the event

of change) decides whether it needs to hand over one or more nodes it is holding

to some other agent(s). The decision should be taken based on the main feature

of MNA; that is, an agent should hold the least number of high-degree nodes.

Note that, in the case of a tie, priority should be given to an agent that possesses

higher processing power (i.e. cap(Aj)). Then, each of the deciding agents sends a

single unicast request message to each of the agents it wants to relinquish its one

or more nodes to.

• Step 4: Response Message. Finally, considering all the received Request Mes-

sages, an agent takes a decision (based on the main feature of MNA and cap())

about each node it received request(s) for. Then, it sends a message in response

to each of the Request Messages, where the value 1 is used to mark the nodes it is

willing to hold, and 0 is used otherwise.

In terms of complexity, concurrently, each agent Aj is observed to generate its own

token, which is a small message that contains its nodes’ degree, domain information and

cap(Aj) based on pre-existing data. Additionally, two decision operations are performed

in Step 3 − 4 of decentralized MNA. Thus, the overall computation complexity is

O(2), and in effect, negligible with regard to time. Nevertheless, in Step 2, the agent

transmits the token (i.e. a small size message) to the holding agents of nodes within the

path distance l in G. Since the value of l and the token size is usually small, the overall

communication complexity of this approach is linear in terms of time (see Figure 5.5

and its discussion for empirical evidence).

5.3 Empirical Evaluation

We now empirically evaluate the performance of MNA4 in terms of completion time,

and compare it with the optimal mapping. As finding an optimal mapping is not feasible

for large-scale settings (see Figure 5.5), we also compare MNA with two more bench-

marks: (i) a centralized approach, where all the nodes are assumed to be held by a single

agent, and (ii) a contiguous random uniform distribution (i.e. mapping). We choose the

former as a benchmark to check whether distributing to many agents is indeed neces-

sary. On the other hand, the latter checks the impact of doing this mapping in a simple

way, similar to the method used by SECP (see Section 2.5.4). All the experiments were

performed on a simulator in which we generated different instances of the constraint

graph that have a varying number of nodes from 7 to around 100, and the degree of each

node is randomly chosen from the range 1 to 7. In the simulation, we made use of the

so-called “event-based dependency graph” method (see Section 5.1 for details) to obtain

the completion time for a particular node-to-agent mapping of a constraint graph. In

order to accomplish this, we performed an independent set of experiments to generate

each node’s computation cost (i.e. time) in advance. Here, we consider the domain size

4Note that both centralized and decentralized MNA provide comparable node-to-agent mapping,
depending on the choice of the value l in the decentralized version (see Figure 5.4 for details).

100 Chapter 5 Speeding Up via Efficient Node-to-Agent Mapping

of all the nodes in the range of 11 − 30. To obtain a node’s computation time for all

its messages, we initially generated 20 messages of varying sizes from that range, and

then averaged the time elapsed in computing the messages. We did so to reflect the

growth of search space in the generation of a message by an individual node with an

increase in the node’s degree and domain size in a DCOP (Farinelli et al., 2008; Kim &

Lesser, 2013; Petcu, 2005). For example, the computation cost (i.e. the time required to

generate each message) of a node with degree 5 is calculated by taking the average dura-

tion to compute 20 messages of following complexities: (115, 125, . . . , 305), where degree

n = 5 and domain size d = (11, 12, . . . , 30). While these experiments were performed in

a simulator, it is worth mentioning that we use the FRODO repository (Léauté et al.,

2009) to generate utility (i.e. cost) tables of such complexities. Meanwhile, we used a

network simulator tool (GNS3) in order to obtain the intra-agent and inter-agent com-

munication costs in terms of time (Welsh, 2013). It has been observed that the former

type of communication is a few times faster than the latter because we can take the

underline network cost into account by using GNS3. Notably, we obtained the values

(costs) of the parameters (i.e. computation and communication) through independent

empirical observations (and in advance), so as to accurately report the comparative

performance from different conceivable mapping approaches without being affected by

any application-specific factors (e.g. hazardous communication in disaster response sce-

nario). Moreover, the exact value of communication cost (in terms of time), which has

a significant impact on the overall completion time of a DCOP algorithm, cannot be as-

certained accurately in a simulated environment that runs on a single machine (or even

a few machines), implying that this would not reflect the application-specific situation

such as disaster response, sensor networks, etc. Therefore, we chose to carry out such

controlled and systematic experiments wherein the results are neither affected nor gen-

erated by skipping several implementation and application-specific issues. Without loss

of generality, the comparative results are reported for a single round of message passing5

for the constraint graphs with cycles, since the results for a single round stand-in as a

proportional representation for multiple rounds required for the cyclic constraint graphs

in this experiment. Nevertheless, we consider the total completion time of the message

passing operation for acyclic graphs, as they converge after a single round of message

passing. Finally, we report the results averaged over 20 test runs in Figure 5.3, record-

ing standard errors to ensure statistical significance. Note that the simulator is being

implemented and run in an Intel i7 Quadcore 3.4GHz machine with 16GB of RAM.

Figure 5.3(a) illustrates the comparative results considering the number of nodes-agents

ratio from the range (2−12). We found that the results are comparable for settings with

higher node-agent ratios. The completion time considering the obtained mapping from

MNA is compared with the optimal mapping for a particular constraint graph. To

report the optimal result for the constraint graph, we run our simulation for all possible

uniform mappings. Note that the results depicted in Figure 5.3 do not include the time

5We report results based on the standard message passing protocols used by GDL-based DCOP
algorithms for our experiments. These results are comparable for message passing protocol used by
DPOP and Action-GDL.

Chapter 5 Speeding Up via Efficient Node-to-Agent Mapping 101

0 2 0 4 0 6 0 8 0 1 0 0
0

4 0 0 0

8 0 0 0

1 2 0 0 0

1 6 0 0 0

2 0 0 0 0
Co

mp
leti

on
Tim

e (
ms

)

N u m b e r o f N o d e s

 O p t i m a l m a p p i n g
 M a p p i n g o b t a i n e d f r o m M N A
 C o n t i g u o u s r a n d o m u n i f o r m d i s t r i b u t i o n (m e a n)
 C o n t i g u o u s r a n d o m u n i f o r m d i s t r i b u t i o n (w o r s t - c a s e)
 A l l n o d e s i n a s i n g l e a g e n t

(a) Random constraint graphs

0 2 0 4 0 6 0 8 0 1 0 0
0

3 0 0 0

6 0 0 0

9 0 0 0

1 2 0 0 0

1 5 0 0 0

Co
mp

leti
on

Tim
e (

ms
)

N u m b e r o f N o d e s

 O p t i m a l m a p p i n g
 M a p p i n g o b t a i n e d f r o m M N A
 C o n t i g u o u s r a n d o m u n i f o r m d i s t r i b u t i o n (m e a n)
 C o n t i g u o u s r a n d o m u n i f o r m d i s t r i b u t i o n (w o r s t - c a s e)
 A l l n o d e s i n a s i n g l e a g e n t

(b) Scale-free constraint graphs.

Figure 5.3: Empirical results for different instances of the constraint graphs
with the number of nodes and the number of agents ratio: (2− 12). Error bars
are calculated using standard error of the mean.

102 Chapter 5 Speeding Up via Efficient Node-to-Agent Mapping

required to run the mapping algorithm (MNA or optimal) itself, but rather illustrate

the completion time of the message passing based on the obtained mapping. We discuss

the run-time of the algorithms shortly. In Figure 5.3(a), the dark yellow line indicates

the time to complete the message passing from the optimal mappings. As finding such

optimal results through this exhaustive approach is not practicable for larger settings,

we can only report this up to the constraint graph of 35 nodes (see Figure 5.5). Here,

the dashed black line represents the completion time on the mapping obtained from

MNA. Significantly, MNA always performs at a level of at least 90% of the optimal

one. Moreover, in a number of instances, we observe that MNA provides the optimal

performance. The solid black line represents the outcome from the centralized system,

where a single agent holds all the nodes. It performs worse in all the instances because

of the fact that an agent cannot compute more than a single message at a time. Even

though all the communications are intra-agent in this case, the waiting time for the

nodes eventually increases with the growth of the number of nodes. Afterwards, the

dashed-dot-dot black line of Figure 5.3(a) shows the results of the mean of 10 − 50

randomly taken contiguous uniform mappings for each constraint graph. As observed,

MNA takes around 17− 32% less time compared to this benchmark for the constraint

graphs having a number of nodes ranging from 7 to 35. Furthermore, we report 16%

to around 23% performance gain of MNA in the larger constraint graphs compared to

the same benchmark. Finally, the solid grey line reports the worst case outcome from

the randomly taken contiguous uniform distributions to indicate the possible impact

of doing this mapping in a trivial way. In the worst case, a randomly taken uniform

distribution performs 25% to around 38% (i.e. around 1.23 to 1.6 times) slower than

the mapping obtained from MNA.

The same experiments were performed with scale-free graphs (Barabási et al., 1999),

and Figure 5.3(b) illustrates those results. Although the results are comparable for

both types of constraint graphs, we found a notable difference for larger settings. The

performances of MNA compared to the contiguous random uniform distributions are

better (i.e. 24% to around 33% for contiguous random uniform distributions (mean),

and 30% to around 43% for the worst case) than what we observed in Figure 5.3(a) for

the constraint graphs of around 70 nodes or more. This is because the degree distri-

bution of a scale-free graph follows a power law that allows a small subset of nodes to

possess much higher degrees than the rest of the nodes in a graph. This phenomenon is

particularly suitable forMNA to obtain a good node-to-agent mapping. In addition, for

both of these experiments, we run the one-way ANOVA with post-hoc Tukey HSD test.

While doing so, we consider 4 heuristics (i.e.MNA, contiguous random uniform dis-

tribution (mean), contiguous random uniform distribution (worst-case) and completely

centralized approach) as treatments, each of which illustrates its performance compared

to the optimal mapping. For each experiment, the observed p-value corresponding to

the F-statistic of one-way ANOVA is lower than 0.05, suggesting that the one or more

treatments are significantly different. Subsequently, we employ a post-hoc test (Tukey

HSD) that also suggests that the performance of MNA is significantly different from

each of the remains, individually (i.e. p < 0.01).

Chapter 5 Speeding Up via Efficient Node-to-Agent Mapping 103

0 2 4 6 8 1 0
0

2 0

4 0

6 0

8 0

1 0 0

%
Dif

fer
en

ce
 in

 Pe
rfo

rm
an

ce
 of

 De
ce

ntr
aliz

ed
 M

NA
 Co

mp
are

d t
o C

en
tra

lize
d M

NA

V a l u e o f l
Figure 5.4: Differences in Decentralized MNA’s performance as opposed to
centralized MNA for different values of l (i.e. path distance). The reported
results are calculated by taking average of 20 randomly generated constraint
graphs based on the same setting as the centralized version. Error bars are
calculated using standard error of the mean.

The aforementioned results clearly show a significant speed-up of message passing algo-

rithms, when they are applied based on the mapping obtained from MNA. Although

we observe slight differences in the performance obtained using the decentralized ver-

sion of MNA compared to the centralized one, it is apparent from Figure 5.4 that the

difference is negligible, even for a value of l as small as 3. Nevertheless, we need to

ensure that runningMNA itself is not prohibitively expensive (since it is an additional

pre-processing cost on top of the DCOP algorithms). To this end, we need to consider

the timeMNA (centralized and decentralized versions) actually takes to obtain the de-

sired node-to-agent mapping for different constraint graphs, and compare this with the

time to obtain the optimal mapping. To report the result for the decentralized version,

we consider a processing unit with separate memory of a High Performance Computing

(HPC) cluster as an agent. Specifically, Figures 5.5(a) and 5.5(b) show the results for the

constraint graphs with the number of nodes ranging from 10 to 30 and 35 to 70, respec-

tively. It is clear from the grey lines that the centralized version of MNA takes linear

time to find the mapping for each of the constraint graphs. Although we observe that the

decentralized version (dotted black lines) takes slightly more time than its centralized

counterpart, it does not incur such delays that would make it prohibitively expensive

to deploy. On the other hand, the results illustrated in dashed-dot-dot blue lines show

that obtaining the optimal mapping is not practicable or is prohibitively expensive for

104 Chapter 5 Speeding Up via Efficient Node-to-Agent Mapping

1 0 1 5 2 0 2 5 3 0
0 . 0 0

7 . 5 0 x 1 0 4

1 . 5 0 x 1 0 5

2 . 2 5 x 1 0 5

3 . 0 0 x 1 0 5

3 . 7 5 x 1 0 5
Ru

nti
me

 (m
s)

N u m b e r o f N o d e s

 M N A - c e n t r a l i z e d v e r s i o n
 M N A - d e c e n t r a l i z e d v e r s i o n
 O p t i m a l w i t h p r i o r i n f o r m a t i o n

(a) Constraint graphs consist of 10− 30 nodes.

3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0
0

1 x 1 0 7

2 x 1 0 7

3 x 1 0 7

4 x 1 0 7

5 x 1 0 7

Ru
nti

me
 (m

s)

N u m b e r o f N o d e s

 M N A - c e n t r a l i z e d v e r s i o n
 M N A - d e c e n t r a l i z e d v e r s i o n
 O p t i m a l w i t h p r i o r i n f o r m a t i o n

(b) Constraint graphs consist of 35− 70 nodes.

Figure 5.5: Comparative runtime to obtain the node-to-agent mapping: MNA
vs Optimal.

Chapter 5 Speeding Up via Efficient Node-to-Agent Mapping 105

the constraint graphs of around 25 nodes or more. Note that, to obtain the optimal

mapping by considering all contiguous uniform distributions, we had to assume that the

computation and communication cost of each messages are known in advance. This is

generally unknown prior to executing an optimization algorithm. Taken together, finding

an optimal mapping is practically infeasible, while the overall cost of MNA is linear.

5.4 Summary

Motivated by the fact that a good node-to-agent mapping entails a significant potential of

reducing the overall completion time of a DCOP algorithm, we introduced centralized as

well as decentralized versions of a node-to-agent mapping heuristic in this chapter. These

versions can be implemented in both GDL-based exact and non-exact approaches. To

this end, we formulate this specific phase of node-to-agent mapping as an optimization

problem in such a manner that MNA can be applied to all GDL-based algorithms

operating on different graphical representations (e.g. junction tree, factor graph or DFS-

tree). In the formulation, our objective is to find a feasible mapping that minimizes

the completion time of the DCOP algorithm (e.g. DPOP, Action-GDL or Max-Sum)

operating on this mapping. Finally, we empirically evaluate the performance of our

approach in terms of completion time, showing that it does perform at a level of around

90% − 100% of the optimal mapping, which is computationally infeasible to obtain in

practice. Our results also denote an acceleration of 16%−40% as compared to the state-

of-the-art, implying that a message passing algorithm can perform 1.2− 1.7 times faster

when usingMNA-generated node-to-agent mappings. Finally, we empirically illustrate

that the speed-up can be attained with the expense of a linear run-time cost, which

is significant given that an optimal mapping is indeed prohibitively expensive. These

results are referring to the fact that the research challenge C3 is addressed successfully.

Chapter 6

Conclusions and Future Work

This thesis develops a number of new approaches to accelerate three potentially expen-

sive phases of GDL-based DCOP algorithms in order to improve their scalability and

practical applicability. In Section 6.1, we present an overview of the contributions of this

thesis within the overarching theme of the research requirements and challenges outlined

at the beginning of the thesis. Finally, we give directions for future work in Section 6.2.

6.1 Conclusions

In this thesis, we sought to improve the scalability of existing DCOP algorithms without

affecting their solution quality. This overall objective was influenced by the hypothesis

that it is possible to improve the scalability of an existing DCOP algorithm by min-

imizing the total completion time of the algorithm. In line with this hypothesis, we

explicitly identified computation and communication costs as two key elements of the

algorithms that have a significant influence on increasing their completion time. We also

identified that, while the reduced completion time of a DCOP algorithm is necessary

to effectively implement it on a large and complex multi-agent system, preserving its

solution quality poses a very stiff challenge. Thus, it is paramount to maintain solution

quality and general applicability when speeding up these algorithms. As such, at the

beginning of the thesis, we outlined our research requirements after taking these issues

into consideration. Thereafter, we explored the strengths and weaknesses of the differ-

ent classes of DCOP algorithms in light of the research requirements, and determined

that GDL-based non-exact algorithms are well suited to fulfilling them. In addition,

we pointed out that scalability continues to pose a challenge for this class of DCOP

algorithms due to a number of potentially expensive phases. The main intuition behind

the contributions of this thesis is attributed to this observation. In light of this, and

107

108 Chapter 6 Conclusions and Future Work

when contemplating on the above mentioned hypothesis along with the issue of main-

taining solution quality during the process, we outlined three main research challenges

(as discussed in Section 1.1), each of which has been addressed in Chapters 3, 4 and 5,

respectively. It is noteworthy that, although none of these three main contributions are

dependent on each other, any combination of them can be applied in the same algorithm

to speed up the phases they correspond to.

In Chapter 2, we analysed the academic literature related to our specific area of work.

Notably, we did not focus on a specific application domain; instead, we focused on

generic DCOP solutions that can be applied to any multi-agent setting. In this context,

we formally delineated the generic DCOP framework before discussing various exact and

non-exact approaches that have been proposed to solve DCOPs. In doing so, we initially

described three main graphical representations (i.e. DFS-tree, junction tree and factor

graph) over which the DCOP algorithms operate, as well as the reasons for and against

each of them. Then, we extrapolated on how non-exact approaches are more suitable

than exact approaches in the context of solving large and complex real world DCOPs,

despite in the fact that they compromise some solution quality. We further examined

how GDL-based message passing non-exact algorithms are feasible options as opposed

to other non-exact algorithms, and how this class of algorithms impart certain axiomatic

benefits by using a factor graph as the graphical representation. We also presented the

relevance of Max-Sum and Bounded Max-Sum algorithms, which are two of the most

popular GDL-based algorithms in solving such problems. Subsequently, we discussed

the expensive phases that these algorithms entail and explored the literature to examine

existing approaches that have been proposed to speed-up those phases against the re-

search requirements and challenges outlined in Chapter 1. In light of this discussion, we

highlighted three phases of GDL-based algorithms which, in our view, hold the potential

for considerable improvements.

In Chapter 3, we focused on the most expensive phase of GDL-based non-exact algo-

rithms in terms of computation cost; that is, the maximization operation. In particular,

we intended to speed-up these algorithms by reducing the computation cost of this op-

erator. Moreover, we tried not to affect the solution quality and generic applicability of

this algorithm in the process, which we jointly outlined as our research challenge C1.

To address the challenge, we introduced a domain pruning algorithm, namely GDP,

to reduce the computation cost of the maximization operator whilst maintaining the

same result, and that can be used regardless of any application dependency. We also

provided a theoretical proof to support the claim with regards to the quality of solu-

tion. Moreover, we empirically observed a significant reduction of the operator’s overall

computation cost of around 33%− 81% for a DCOP, and that has been achieved at the

expense of a quasi-linear runtime cost of GDP. More importantly, we observed from our

empirical evidence that the performance gain of GDP gets better with an increase in the

Chapter 6 Conclusions and Future Work 109

parameters upon which the maximization operator acts. Nevertheless, it is worth men-

tioning that GDP is only tailored for the maximization operator of non-exact GDL-based

algorithms, thus not applicable to other DCOP algorithms that calculate maximization

(if they have any) in a different way.

Having dealt with the expensive maximization operator, Chapter 4 turned to the second

research challenge, denoted as C2, wherein the collective goal (i.e. speeding up, solution

quality and generic applicability) is identical to the previous one. However, in this

chapter, we addressed this challenge by speeding up the message passing process of GDL-

based algorithms. We introduced a generic message passing protocol, namely PMP,

which significantly reduces the completion time of GDL-based algorithms that use factor

graphs as the graphical representation. It is worth noting that during the process,

PMP does not change the algorithms’ overall outcome. To be precise, by replacing the

currently used standard message passing protocol with PMP, we observed a significant

reduction in completion time for such algorithms, ranging from 37% − 91% depending

on the scenario. During the course of attaining this performance, we took advantage of

partial centralization and combined clustering with domain reduction as well as straight-

line linear regression to determine the appropriate number of clusters for a given scenario.

Here, the clustering process enables PMP to parallelize the message passing process,

while the regression method makes PMP a deterministic approach that is able to split

the original factor graph into a reasonably appropriate number of clusters. Furthermore,

we empirically observed that around 98% (or more) of PMP’s best possible outcomes

can be achieved when operated on the number of clusters predicted by the straight-

line linear regression.

Finally, Chapter 5 explores an important gap in the literature, namely the problem of

finding good mappings of nodes to agents in DCOPs. Since the choice of assignment can

significantly impact the completion time of the algorithms, it is imperative to find good

assignments. We specially took cognisance of this insight in our final research challenge

C3 along with the issue of preserving the solution quality and generic applicability. To

address this problem, we proposed MNA, a near-optimal heuristic that provides an

effective node-to-agent mapping for a DCOP in order to minimise the completion time

of the optimization process. Moreover, with a view to apply MNA to all GDL-based

algorithms running on different graphical representations, we formulated this particular

phase of node-to-agent mapping as an optimization problem. Furthermore, we have

proposed two versions (i.e. centralized and decentralized) of MNA to allow it to be

used based on the suitability of application at hand. Finally, our empirical evidence

is indicative of the fact that MNA performs at a level of around 90% − 100% of the

optimal mapping, which is computationally infeasible to obtain in practice. Our re-

sults also show a speed-up of 16% − 40% as compared to the state-of-the-art, which is

110 Chapter 6 Conclusions and Future Work

attained at the expense of linear run-time cost of its own. It is worth mentioning that al-

though we managed to produce the same solution from the deployed GDL-based DCOP

algorithm, none of the contributions discussed in this thesis are capable of bettering

the quality of its solution.

When taken together, the contributions of this thesis could be used to make existing

GDL-based algorithms more scalable in that either they take less time to complete the

internal operation (of a given size) of DCOP, or are adept at tackling a larger DCOP

within the same completion time as a smaller one. In effect, they offer an opportunity

to effectively deal with large real-world coordination problems formulated as DCOPs in

various multi-agent application areas.

6.2 Future Work

The findings we have presented in this thesis have thrown up few new questions that

need further investigation. In the remainder of this section, we discuss future work to

extend the scope and applicability of our research.

• It is apparent from the discussion and empirical results presented in Chapter 3 that

the development of GDP offers a major breakthrough in reducing the computation

cost of the maximization operator of non-exact GDL-based DCOP algorithms.

However, the main intuition of GDP has come from the message computation

means of this particular class of non-exact algorithms. Therefore, this algorithm

is not applicable to exact GDL-based solution approaches such as DPOP, Action-

GDL and their variants. There are two main reasons why this limitation should

be dropped. Firstly, each of these exact algorithms also performs computationally

expensive maximization operation(s) during its corresponding “util propagation”

phase (see Section 2.3.3). Secondly, the messages produced during this phase

may be exponentially large and have, therefore, also been expensive in terms of

communication cost. Hence, with a view to overcome this limitation from GDP,

future work needs to be done to establish whether GDP can be tailored for those

algorithms. Success in either doing so or introducing a new technique with a

performance similar to GDP would mean a remarkable progress in the context of

scaling up those exact algorithms. This is acknowledged as one of the long-standing

challenges endured by DCOP algorithms that always produce optimal results.

• As discussed in Chapter 4, PMP is a partially centralized approach since a spe-

cific part (i.e. the intermediate step) of it needs to be done by the cluster heads. A

general phenomenon for partially centralized approaches is that they trade privacy

for higher scalability (Such et al., 2014). Thus, it is conceivable, and even likely,

that PMP sacrifices some privacy. However, the term “privacy” is quite broad

from the perspective of multi-agent systems. In this context, Léauté & Faltings

Chapter 6 Conclusions and Future Work 111

(2013) provided a good summary of the classification of privacy that distinguished

between agent privacy, topology privacy, constraint privacy, and assignment/deci-

sion privacy. Considering these variants coupled with the fact that even completely

decentralized approaches often experience some loss of privacy, the evaluation of

privacy loss is a non-trivial task (Grinshpoun & Tassa, 2016; Léauté & Faltings,

2013). Recently, Tassa et al. (2015, 2017) proposed a privacy preserved algorithm

for non-exact GDL-based approaches which preserves three types of privacy: topol-

ogy privacy, constraint privacy, and assignment/decision privacy. However, they

assume that all constraints are binary and each agent holds a single variable,

which greatly limits several axiomatic benefits of this class of algorithms (see Sec-

tion 2.4.2). Against this background, analysing PMP in the context of DCOP

privacy would be an interesting line of future research.

• As discussed in Section 2.4.2, the GDL framework has gained enormous success in

many non-MAS (i.e. single-agent) application areas such as iterative decoding and

computer vision in the form of probabilistic belief propagation in the Max-Product

algorithm. Moreover, even the Max-Sum algorithm has recently been employed

as a biclustering approach, which is a renowned data mining technique used to

profile gene expression in the domain of biological science (Denitto et al., 2017). In

such applications, and many others besides, oftentimes a single high-performance

machine is deployed to carry out all the computation of messages. A modern

high-performance machine includes a Graphic Processing Unit (GPU), which is a

multiprocessor device that offers hundreds of computing cores and a rich memory

hierarchy for supporting graphical processing. During the last few years, a number

of programming models (e.g. CUDA (Sanders & Kandrot, 2010) and OpenACC

(Farber, 2016)) have been developed for enabling the use of the multiple cores of a

GPU to accelerate non-graphical applications (the so-called General Purpose GPU

(GP-GPU)). In addition, even in the MAS literature, we have found a few studies

that use GP-GPUs to accelerate some parts of the DPOP algorithm (Fioretto et al.,

2015, 2016). As such, it would be an interesting future work to determine whether

PMP can be incorporated with the concept of GP-GPUs to speed-up the Max-

Product and/or Max-Sum algorithms, since it parallelizes the message passing

process. Following this, further comprehensive research should be undertaken to

assess its performance in different application areas.

By meeting these challenges, the practical applicability and scalability of the approaches

developed in this thesis can be further increased.

Bibliography

Aji, S. M. & McEliece, R. J. (2000). The generalized distributive law. IEEE Transactions

on Information Theory, 46(2), 325–343.

Ali, S., Koenig, S., & Tambe, M. (2005). Preprocessing techniques for accelerating the

dcop algorithm adopt. In Proceedings of the 4th International Joint Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS) (pp. 1041–1048).: ACM.

Awerbuch, B. (1985). A new distributed depth-first-search algorithm. Information

Processing Letters, 20(3), 147–150.

Barabási, A., Albert, R., & Jeong, H. (1999). Mean-field theory for scale-free random

networks. Physica A: Statistical Mechanics and its Applications, 272(1), 173–187.

Bowring, E., Pearce, J. P., Portway, C., Jain, M., & Tambe, M. (2008). On k-optimal

distributed constraint optimization algorithms: New bounds and algorithms. In Pro-

ceedings of the 7th International Joint Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS), volume 2 (pp. 607–614).: IFAAMAS.

Bowring, E., Tambe, M., & Yokoo, M. (2006). Multiply-constrained distributed con-

straint optimization. In Proceedings of the 5th International Joint Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS) (pp. 1413–1420).: ACM.

Burke, D. A. & Brown, K. N. (2006). Efficient handling of complex local problems in

distributed constraint optimization. In Proceedings of the 17th European Conference

on Artificial Intelligence (ECAI), volume 6 (pp. 701–702).: Citeseer.

Cerquides, J. B., Farinelli, A., Meseguer, P., & Ramchurn, S. D. (2013). A tutorial on

optimization for multi-agent systems. The Computer Journal, 57(6), 799–824.

Chen, Z., He, C., He, Z., & Chen, M. (2017a). Bd-adopt: a hybrid dcop algorithm with

best-first and depth-first search strategies. Artificial Intelligence Review, 48(4), 1–39.

Chen, Z., He, Z., & He, C. (2017b). An improved dpop algorithm based on breadth

first search pseudo-tree for distributed constraint optimization. Applied Intelligence,

47(3), 1–17.

Dechter, R. (2003). Constraint processing. Morgan Kaufmann, first edition.

113

114 BIBLIOGRAPHY

Denitto, M., Farinelli, A., Figueiredo, M. A., & Bicego, M. (2017). A biclustering

approach based on factor graphs and the max-sum algorithm. Pattern Recognition,

62, 114–124.

Elidan, G., McGraw, I., & Koller, D. (2006). Residual belief propagation: Informed

scheduling for asynchronous message passing. In Proceedings of the 22nd Conference

on Uncertainty in AI (UAI) (pp. 200–208).: AUAI.

Farber, R. (2016). Parallel Programming with OpenACC. Morgan Kaufmann, first

edition.

Farinelli, A., Rogers, A., Petcu, A., & Jennings, N. R. (2008). Decentralised coordination

of low-power embedded devices using the max-sum algorithm. In Proceedings of the

7th International Joint Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS), volume 2 (pp. 639–646).: IFAAMAS.

Farinelli, A., Vinyals, M., Rogers, A., & Jennings, N. R. (2013). Distributed constraint

handling and optimization. In G. Weiss (Ed.), Multi-Agent Systems, chapter 12, (pp.

547–584). MIT Press, second edition.

Fioretto, F., Le, T., Pontelli, E., Yeoh, W., & Son, T. C. (2015). Exploiting gpus in

solving (distributed) constraint optimization problems with dynamic programming.

In Proceedings of the 21st International Conference on Principles and Practice of

Constraint Programming (CP): Springer.

Fioretto, F., Pontelli, E., & Yeoh, W. (2018). Distributed constraint optimization prob-

lems and applications: A survey. Journal of Artificial Intelligence Research, 61, 623–

698.

Fioretto, F., Yeoh, W., & Pontelli, E. (2016). A dynamic programming-based mcmc

framework for solving dcops with gpus. In Proceedings of the 22nd International

Conference on Principles and Practice of Constraint Programming (CP) (pp. 813–

831).: Springer.

Fioretto, F., Yeoh, W., & Pontelli, E. (2017). A multiagent system approach to schedul-

ing devices in smart homes. In Proceedings of the 16th International Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS) (pp. 981–989).: IFAAMAS.

Fitzpatrick, S. & Meertens, L. (2003). Distributed coordination through anarchic opti-

mization. In V. Lesser (Ed.), Distributed Sensor Networks: A Multi-Agent Perspective,

chapter 11, (pp. 257–295). Springer, first edition.

Fortune, S. (1987). A sweepline algorithm for voronoi diagrams. Algorithmica, 2(1-4),

153–174.

Gallager, R. G., Humblet, P. A., & Spira, P. M. (1983). A distributed algorithm for

minimum-weight spanning trees. ACM Transactions on Programming Languages and

systems, 5(1), 66–77.

BIBLIOGRAPHY 115

Grinshpoun, T. & Tassa, T. (2016). P-syncbb: A privacy preserving branch and bound

dcop algorithm. Journal of Artificial Intelligence Research, 57, 621–660.

Gutierrez, P. & Meseguer, P. (2010). Saving redundant messages in bnb-adopt. In

Proceedings of the 24th AAAI Conference on Artificial Intelligence (pp. 1259–1260).:

AAAI Press.

Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier,

third edition.

Hirayama, K. & Yokoo, M. (2005). The distributed breakout algorithms. Artificial

Intelligence, 161(1-2), 89–115.

Jarvis, D., Jarvis, J., Rönnquist, R., & Jain, L. C. (2013). Multi-agent systems. In

Multi-Agent Systems and Applications, chapter 1, (pp. 1–12). Springer.

Jennings, N. R. & Wooldridge, M. (1995). Intelligent agents: Theory and practice.

Knowledge Engineering Review, 10(2), 115–152.

Kiekintveld, C., Yin, Z., Kumar, A., & Tambe, M. (2010). Asynchronous algorithms for

approximate distributed constraint optimization with quality bounds. In Proceedings

of the 9th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS), volume 1 (pp. 133–140).: IFAAMAS.

Kim, Y. & Lesser, V. (2013). Improved max-sum algorithm for dcop with n-ary con-

straints. In Proceedings of the 12th International Conference on Autonomous Agents

and Multiagent Systems (AAMAS) (pp. 191–198).: IFAAMAS.

Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the sum-

product algorithm. IEEE Transactions on Information Theory, 47(2), 498–519.

Kutner, M. H., Nachtsheim, C., & Neter, J. (2004). Applied linear regression models.

McGraw-Hill/Irwin, fourth edition.

Léauté, T. & Faltings, B. (2013). Protecting privacy through distributed computation in

multi-agent decision making. Journal of Artificial Intelligence Research, 47, 649–695.

Léauté, T., Ottens, B., & Szymanek, R. (2009). FRODO 2.0: An open-source framework

for distributed constraint optimization. In Proceedings of the IJCAI’09 Distributed

Constraint Reasoning Workshop (DCR’09) (pp. 160–164). https://frodo-ai.tech.

Leite, A. R., Enembreck, F., & Barthès, J. A. (2014). Distributed constraint optimization

problems: Review and perspectives. Expert Systems with Applications, 41(11), 5139–

5157.

Lesser, V. & Corkill, D. (2014). Challenges for multi-agent coordination theory based

on empirical observations. In Proceedings of the 13th International Conference on Au-

tonomous Agents and Multi-Agent Systems (AAMAS) (pp. 1157–1160).: IFAAMAS.

https://frodo-ai.tech

116 BIBLIOGRAPHY

Macarthur, K. (2011). Multi-agent Coordination for Dynamic Decentralised Task Allo-

cation. PhD thesis, University of Southampton.

Macarthur, K. S., Stranders, R., Ramchurn, S. D., & Jennings, N. R. (2011). A dis-

tributed anytime algorithm for dynamic task allocation in multi-agent systems. In

Proceedings of the 25th AAAI Conference on Artificial Intelligence (pp. 701–706).:

AAAI Press.

Maheswaran, R. T., Pearce, J. P., & Tambe, M. (2004a). Distributed algorithms for dcop:

A graphical-game-based approach. In Proceedings of the ISCA 17th International

Conference on Parallel and Distributed Computing Systems (ISCA PDCS) (pp. 432–

439).

Maheswaran, R. T., Tambe, M., Bowring, E., Pearce, J. P., & Varakantham, P. (2004b).

Taking dcop to the real world: Efficient complete solutions for distributed multi-event

scheduling. In Proceedings of the 3rd International Joint Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS), volume 1 (pp. 310–317).: IEEE Computer

Society.

Mailler, R. & Lesser, V. (2004). Solving distributed constraint optimization problems

using cooperative mediation. In Proceedings of the 3rd International Joint Conference

on Autonomous Agents and Multi-Agent Systems (AAMAS), volume 1 (pp. 438–445).:

IEEE Computer Society.

Mailler, R. & Lesser, V. R. (2006). Asynchronous partial overlay: A new algorithm for

solving distributed constraint satisfaction problems. Journal of Artificial Intelligence

Research, 25, 529–576.

Modi, P. J., Shen, W., Tambe, M., & Yokoo, M. (2005). Adopt: Asynchronous

distributed constraint optimization with quality guarantees. Artificial Intelligence,

161(1), 149–180.

Müller, J. P. & Fischer, K. (2014). Application impact of multi-agent systems and

technologies: a survey. In O. Shehory & A. Sturm (Eds.), Agent-Oriented Software

Engineering, chapter 3, (pp. 27–53). Springer, first edition.

Pearce, J. P. & Tambe, M. (2007). Quality guarantees on k-optimal solutions for dis-

tributed constraint optimization problems. In Proceedings of the 20th international

Joint Conference on Artificial Intelligence (IJCAI) (pp. 1446–1451).: AAAI Press.

Pecora, F., Modi, P., & Scerri, P. (2006). Reasoning about and dynamically posting

n-ary constraints in adopt. In Proceedings of the AAMAS’06 Distributed Constraint

Reasoning Workshop (DCR’06) (pp. 1–15).

Peri, O. & Meisels, A. (2013). Synchronizing for performance-dcop algorithms. In

Proceedings of the 5th International Conference on Agents and Artificial Intelligence

(ICAART), volume 1 (pp. 5–14).: SCITEPRESS.

BIBLIOGRAPHY 117

Petcu, A. (2007). A class of algorithms for distributed constraint optimization. PhD

thesis, Ecole Polytechnique Federale de Lausanne.

Petcu, A. & Faltings, B. (2007). Mb-dpop: A new memory-bounded algorithm for

distributed optimization. In Proceedings of the 20th International Joint Conference

on Artificial Intelligence (IJCAI) (pp. 1452–1457).: AAAI Press.

Petcu, A., Faltings, B., & Mailler, R. (2007). Pc-dpop: A new partial centralization

algorithm for distributed optimization. In Proceedings of the 20th International Joint

Conference on Artificial Intelligence (IJCAI), volume 7 (pp. 167–172).: AAAI Press.

Petcu, A., F. B. (2005). A scalable method for multiagent constraint optimization.

In Proceedings of the 19th International Joint Conference on Artificial Intelligence

(IJCAI) (pp. 266–271).: AAAI Press.

Pujol-Gonzalez, M., Cerquides, J., Farinelli, A., Meseguer, P., & Rodriguez-Aguilar,

J. A. (2015). Efficient inter-team task allocation in robocup rescue. In Proceedings of

the 14th International Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS) (pp. 413–421).: IFAAMAS.

Ramchurn, S. D., Farinelli, A., Macarthur, K. S., & Jennings, N. R. (2010). Decentralized

Coordination in RoboCup Rescue. The Computer Journal, 53(9), 1447–1461.

Rogers, A., Farinelli, A., Stranders, R., & Jennings, N. (2011). Bounded approximate

decentralised coordination via the max-sum algorithm. Artificial Intelligence, 175(2),

730–759.

Rollon, E. & Larrosa, J. (2014). Decomposing utility functions in bounded max-sum

for distributed constraint optimization. In Proceedings of the 20th International Con-

ference on Principles and Practice of Constraint Programming (CP) (pp. 646–654).:

Springer.

Rust, P., Picard, G., & Ramparany, F. (2016). Using message-passing dcop algorithms to

solve energy-efficient smart environment configuration problems. In Proceedings of the

19th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 468–474).:

AAAI Press.

Sanders, J. & Kandrot, E. (2010). CUDA by Example: An Introduction to General-

Purpose GPU Programming. Addison-Wesley, first edition.

Stefanovitch, N., Farinelli, A., Rogers, A., & Jennings, N. R. (2011). Resource-aware

junction trees for efficient multi-agent coordination. In Proceedings of the 10th In-

ternational Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),

volume 1 (pp. 363–370).: IFAAMAS.

Stranders, R., Farinelli, A., Rogers, A., & Jennings, N. R. (2009). Decentralised co-

ordination of mobile sensors using the max-sum algorithm. In Proceedings of the

21st International Joint Conference on Artificial Intelligence (IJCAI), volume 9 (pp.

299–304).: AAAI Press.

118 BIBLIOGRAPHY

Such, J. M., Espinosa, A., & Garćıa-Fornes, A. (2014). A survey of privacy in multi-agent

systems. The Knowledge Engineering Review, 29(3), 314–344.

Sultanik, E. A., Lass, R. N., & Regli, W. C. (2008). Dcopolis: a framework for simulat-

ing and deploying distributed constraint reasoning algorithms. In Proceedings of the

7th international Joint Conference on Autonomous Agents and Multi-Agent Systems:

Demo Papers (pp. 1667–1668).: IFAAMAS.

Tarlow, D., Givoni, I., & Zemel, R. (2010). Hop-map: Efficient message passing with

high order potentials. In Proceedings of the 13th International Conference on Artificial

Intelligence and Statistics (AISTATS) (pp. 812–819).: MLR Press.

Tassa, T., Grinshpoun, T., & Zivan, R. (2017). Privacy preserving implementation of

the max-sum algorithm and its variants. Journal of Artificial Intelligence Research,

59, 311–349.

Tassa, T., Zivan, R., & Grinshpoun, T. (2015). Max-sum goes private. In Proceedings of

the 18th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 425–

431).: AAAI Press.

Vinyals, M., Pujol, M., Rodriguez-Aguilar, J., & Cerquides, J. (2010). Divide-and-

coordinate: Dcops by agreement. In Proceedings of the 9th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS), volume 1 (pp. 149–156).:

IFAAMAS.

Vinyals, M., Rodriguez-Aguilar, J. A., & Cerquides, J. (2009). Generalizing dpop:

Action-gdl, a new complete algorithm for dcops. In Proceedings of the 8th International

Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), volume 2

(pp. 1239–1240).: IFAAMAS.

Vinyals, M., Rodriguez-Aguilar, J. A., & Cerquides, J. (2011). A survey on sensor

networks from a multiagent perspective. The Computer Journal, 54(3), 455–470.

Wainwright, M. J. & Jordan, M. I. (2008). Graphical models, exponential families, and

variational inference. Foundations and Trends in Machine Learning, 1(1–2), 1–305.

Welsh, C. (2013). GNS3 network simulation guide. Packt Publishers.

Yeoh, W., Felner, A., & Koenig, S. (2008). Bnb-adopt: An asynchronous branch-and-

bound dcop algorithm. In Proceedings of the 7th international Joint Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS), volume 2 (pp. 591–598).:

IFAAMAS.

Yokoo, M. (2001). Distributed constraint satisfaction: foundations of cooperation in

multi-agent systems. Springer Science & Business Media, first edition.

Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1998). The distributed constraint

satisfaction problem: Formalization and algorithms. IEEE Transactions on Knowledge

and Data Engineering, 10(5), 673–685.

BIBLIOGRAPHY 119

Yokoo, M. & Hirayama, K. (1996). Distributed breakout algorithm for solving dis-

tributed constraint satisfaction problems. In Proceedings of the 2nd International

Conference on Multi-Agent Systems (ICMAS) (pp. 401–408).: AAAI Press.

Zivan, R. & Peled, H. (2012). Max/min-sum distributed constraint optimization through

value propagation on an alternating dag. In Proceedings of the 11th International

Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), volume 1

(pp. 265–272).: IFAAMAS.

Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., & Sycara, K. (2014). Distributed

constraint optimization for teams of mobile sensing agents. Autonomous Agents and

Multi-Agent Systems, 29(3), 495–536.

	Declaration of Authorship
	Acknowledgements
	Nomenclature
	Acronyms
	1 Introduction
	1.1 Distributed Constraint Optimization in Cooperative Multi-Agent Systems
	1.2 Research Contributions
	1.3 Thesis Outline

	2 Literature Review
	2.1 Distributed Constraint Optimization Problems
	2.2 Graphical Representations of DCOPs
	2.2.1 Depth First Search Tree
	2.2.2 Junction Tree
	2.2.3 Factor Graph

	2.3 Exact DCOP Algorithms
	2.3.1 Search-Based Exact Algorithms
	2.3.2 The Generalized Distributive Law (GDL) Framework
	2.3.3 GDL-Based Exact Algorithms
	2.3.3.1 DPOP and Its Variants
	2.3.3.2 Action GDL

	2.4 Non-Exact DCOP Algorithms
	2.4.1 Local Greedy Non-Exact Algorithms
	2.4.2 GDL-Based Non-Exact Algorithms
	2.4.2.1 The Max-Sum Algorithm
	2.4.2.2 The Bounded Max-Sum Algorithm

	2.5 Speeding Up GDL-Based DCOP Algorithms
	2.5.1 Constraint Graph Formation
	2.5.2 Maximization Operation
	2.5.3 Message Passing Process
	2.5.4 Node-to-Agent Mapping

	2.6 Summary

	3 Speeding Up the Maximization Operation
	3.1 Problem Description
	3.2 The Generic Domain Pruning Technique
	3.3 Theoretical Analysis
	3.4 Empirical Evaluation
	3.5 Summary

	4 Speeding Up the Message Passing Process
	4.1 Problem Description
	4.2 The Parallel Message Passing Protocol
	4.2.1 Algorithm Overview
	4.2.2 Cluster Formation and Message Passing
	4.2.3 Intermediate Step
	4.2.4 Comparative Example

	4.3 Empirical Evaluation
	4.4 Approximating the Appropriate Number of Clusters for a DCOP
	4.4.1 Determining the Appropriate Number of Clusters
	4.4.2 Empirical Evaluation

	4.5 Summary

	5 Speeding Up via Efficient Node-to-Agent Mapping
	5.1 Problem Formulation
	5.2 The MNA Heuristic
	5.2.1 Centralized Version of MNA
	5.2.2 Decentralized Version of MNA

	5.3 Empirical Evaluation
	5.4 Summary

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Bibliography

