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Abstract

Tuned Mass Dampers (TMDs) are typically introduced and calibrated as natural passive
control devices for the vibration mitigation of the steady-state response of primary structures
subjected to persistent excitations. Otherwise, this work investigates the optimum tuning
of TMDs towards minimising the transient structural response. Specifically, a single-degree-
of-freedom system is considered as a primary structure, with added TMD, subjected to
pulse-like excitations. First, the system is analytically analysed, within the time domain,
for unit impulse base displacement, through Laplace transform. Then, the tuning process is
numerically explored by an optimisation procedure focused on an average response index, to
extract the optimum condition towards best TMD calibration. The efficiency of the proposed
control device is then assessed and demonstrated through further post-tuning numerical tests,
by considering as dynamic loadings: first, a time unit impulse base displacement, coherent
with the source description above; second, different pulse-like excitations, to detect the
effectiveness of the so-conceived TMD for generic ideal shock actions; third, a set of non-
stationary earthquake excitations, to enquire the achievable level of seismic isolation. It is
shown that this leads to a consistent passive TMD in such a transient excitation context,
apt to mitigate the average response. Additionally, the present tuning forms a necessary
optimum background for a possible upgrade to a hybrid TMD, with the potential addition of
an active controller to the so-optimised TMD, to achieve even further control performance,
once turned on, specifically for abating the peak response, too.

Keywords: Tuned Mass Damper (TMD); Optimum TMD Tuning; Unit Impulse Excitation;
Pulse-like shock actions; Seismic response reduction.
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1 Introduction

In this study, the optimisation of a Tuned Mass Damper control device under transient impulse
excitation is developed, as an innovative part of a wider research project on the general dynamic
vibration absorber tuning concept [18,51] and on the specific TMD optimisation process [37–39].
Particularly on TMD calibration, while TMDs have been optimised for reference loadings in [38]
and for earthquake excitation in [37,39], in this paper, and in companion work [36], the innovative
scenario of TMD tuning under impulse excitation is considered, here by proposing a purely
passive TMD, apt to control the average structural response along the whole time window of
analysis, there by outlining a hybrid TMD, relying on the present background tuning, apt to
further control also the peak structural response, if made available and once turned on. That may
consider the further upgrade of the present passive control device to a hybrid version, whereby
an active controller may be added to the optimised passive TMD as here derived. Thus, the
present work forms a necessary background reference for such a possible active update of the
passive vibration control device here under investigation. A compact review on the use of
different types of passive, active and semiactive control systems, with focus on passive devices
for seismic response reduction, a main application perspective of the whole present research
investigation, may be found in [28]. Recent studies on advanced TMD technologies with energy
harvesting/dissipation have lately appeared on this journal in [21,22].

The first documented proposal of a TMD is likely represented by the patent of Frahm (1911),
and has been followed by different initial fundamental studies (Ormondroyd and Den Har-
tog, 1928; Brock, 1946), as finally codified in Den Hartog book [10], which outlined the theo-
retical bases and formulae for the optimum design of the TMD parameters, assuming external
loading as a harmonic excitation, acting as a force on an undamped primary structure. Af-
terwards, many works have focused on the optimum tuning of TMDs, in order to deepen the
tuning knowledge on different response indices and dynamic excitations. In particular, the usual
framework of such studies has considered a Single-Degree-Of-Freedom (SDOF) damped primary
structure, with added TMD, subjected to either harmonic [14, 34, 35] or white noise [6, 19] ex-
citations, acting as a force on the primary structure or as a base motion [4, 20, 48]. In general,
passive TMDs appear to be usually characterised by a narrow operating frequency range and
a high sensitivity to possible harmful effects of the so-called de-tuning, i.e. the loss of tuning
due to changes in the structural features, which may compromise the overall performance of
the control device. Also, the TMD parameters appear to be at least slightly dependent on the
characteristics of the applied dynamic loading [7, 23, 41, 42]. This issue motivated different in-
vestigations based, inter alia, on the modelling of real excitation cases, such as for random [43],
wind [3, 27] or seismic [2, 8, 11,12,24–26,44] actions.

In the case of impulse excitation, as here addressed, a passive TMD may generally be con-
sidered as being not significantly effective in reducing the structural response [1], even if several
important issues must still be deepened in this sense, as outlined in recent contributions within
this specific later TMD field [25,33], which seems to have received less attention in the dedicated
literature, than for the more consolidated contexts above. For instance: expected effectiveness
of TMD as the pulse action duration shortens; use of H∞ (peak) or other, e.g. H2 (average),
norms, looking at peak or average response index mitigation, respectively; effectiveness of TMD
at increasing mass ratio, which may be pushed to high values; difference between the use of an-
alytical or codified pulse-like ground motions vs. real earthquake pulse ground motions; overall
powerfulness of TMD insertion for mitigating pulse-like action responses and importance of the
specific tuning concerning that. These open issues indeed motivate for further investigations on
this peculiar subject of TMD calibration, as handled within the paper.

The present fundamental analytical/numerical study, prior to possible subsequent foreseen
experimental validation and application scenarios, is placed within such a specific TMD tun-
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ing context, by concerning the underlying theoretical optimum tuning of an added TMD when
the primary structure is subjected to shock loading. While here experimental aspects are not
directly considered, perspectives in that sense may be addressed by following literature contri-
butions on this specific TMD tuning and related subjects. For instance, recent experimental
studies have inspected the response of SDOF or Multi-Degree-Of-Freedom (MDOF) primary
structures equipped with TMDs. In [9], multiple mass dampers were earlier tested to suppress
the seismic responses of a scaled three-storey building by vibration tests on a shaking table,
under white noise excitation and two different scaled earthquakes, showing the multiple damper
system to being rather effective, and likely superior to a single TMD, in mitigating the floor
accelerations. In [50], a proposal of TMD tuning with a small required stroke length for base-
isolated or high-rise structures was experimentally assessed by small-scale model experimental
setups, as subjected to a time scaled long period impulsive excitation and a shaking table earth-
quake excitation experiment, indicating the TMD control system to displaying a high potential
for seismic response control or retrofit of structures, even when a limited space is made available
to accommodating TMDs. In [49], the seismic response reduction of an offshore platform by the
application of a specific TMD system was explored on a scaled prototype (SDOF+TMD) model,
by an experimental study under different earthquakes, demonstrating that the proposed TMD
system can effectively suppress the earthquake stimulus on the response of the offshore platform.
Further, within the specific presence of dynamic Soil-Structure-Interaction (SSI) effects, recent
experimental investigations were made by [15–17], where interesting centrifuge tests were con-
ducted on MDOF multi-storey structural models. In [15], it was shown that the TMD tuning
based on the properties of the soil-structure system may lead to doubling the improvement gain
in reducing the original peak response, while a great response magnification may be recorded
for a de-tuned TMD neglecting SSI effects, thus pointing out to the importance of making a
TMD tuning on the soil-structure system, and with an appropriate description of SSI effects, as
theoretically investigated in [40]. In [16], the specific issue of storey TMD positioning was en-
quired, showing this to possibly playing a role on the overall TMD effectiveness, within SSI, and
potentially lead, if non-optimal, to detuning-similar effects. In [17], Structure-Soil-Structure
Interaction (SSSI) of adjacent structures retrofitted by TMDs was additionally investigated,
showing that harmful effects linked to detuning may become even higher.

In the present paper, an ideal structural system composed of a linear damped SDOF primary
structure and a linear TMD added on it, and subjected to a true unit impulse excitation acting as
base displacement on the supported structure, has been considered first and assumed as a main
reference case for the TMD methodological tuning purposes. Several features presented and
discussed within this theoretical study hold true also when the unit impulse excitation may act
as a force on the primary structure, which represents a complementary interesting scenario, for
instance in terms of recorded transient response, vibration control and potential of reducing the
structural response, specifically in terms of average response indices, and effective adoption of
a TMD in this context. Subsequently, several post-tuning pulse-like excitations are numerically
analysed, and the TMD efficiency is fully assessed and confirmed in that context, nearing real
applications. Finally, implications in the seismic engineering range are also successfully explored,
by considering the post-tuning system response to instances of a set of earthquake excitations
and by observing the achieved seismic response reduction, in terms of both peak and average
response indices all along the transient time window of analysis, the latter being best and well
controlled by the conceived TMD device.

This study is organised as follows. First, the structural context is explained in detail, and
the related dynamic response is analytically obtained in closed form (Section 2). In Section 3,
the numerical optimisation of a passive TMD is developed, showing all the possible applica-
tion benefits. In particular, the tuning methodology is presented, with a specific consideration
of the adopted objective function and of the implemented numerical algorithm. A single set of
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mechanical parameters has been assumed for the primary structure so far, in order to first inves-
tigate the efficiency of the tuning procedure. However, besides slight differences in the numerical
values, which may depend on the assumed structural parameters, the optimisation principles
here derived display a rather general validity, and could therefore be applied to a wide range of
engineering applications. The so-obtained results are mainly composed of the optimum TMD
parameters under true unit impulse base excitation (Section 4) and of the achieved dynamic
response reduction (Section 5), illustrated in the form of appropriate plots and tables. Besides
for the unit impulse base displacement, which plays the role of the main dynamic excitation
considered in this work, several real pulse-like excitations have been then considered in further
post-tuning trials, together with different reference tuning methods (Appendix A), so that to
assess the validity of the proposed impulse-tuned TMD also for generic ideal shock actions (Ap-
pendix B), and finally for real random earthquake excitations. A resuming discussion on the
results obtained by the whole study, focusing on its various technical details, is then outlined in
Section 6. Finally, Section 7 states the closing thesis of the present research investigation.

2 Structural and dynamic context

2.1 SDOF primary structure

A reference SDOF system is considered, initially at rest and subjected to a true unit impulse
excitation at t = 0, which may be ideally defined by a Dirac delta function δ(t). Particularly,
such an impulse excitation has been considered to be acting as a base displacement xg(t) (Fig. 1):

xg(t) = X̄gδ(t) (1)

where X̄g denotes the constant (unit) displacement impulse of the base excitation, here nominally
assumed as X̄g = 0.01 m s.

Figure 1

The assumption of ground motion in terms of absolute base displacement shall provide two
main considerable advantages: a) it allows for an easier formulation than that in the case of a
relative ground acceleration; b) it is more suitable from the viewpoint of real dynamic response
measuring, which turns out to be feasible when focused on the detection of absolute coordinates
rather than on the relative motion between the masses of the system.

These reasons may even look more important in the case of a MDOF primary structure,
which may reflect real engineering contexts and represent a generalisation scenario of the present
SDOF analysis, maybe also involving the adoption of Multiple TMDs [5,7,9] or the issue of TMD
positioning along the structure [16] and of structural system identification related contexts [13,
29–31], possibly in the contextual presence of vibration control devices [47], and/or of specific
characteristic structural effects, like Soil-Structure Interaction [15–17,32,40].

The mechanical parameters of such a SDOF linear system are: mass m1 , constant stiffness k1

and viscous damping coefficient c1 . In this sense, for the present study, the following nominal
values of the structural parameters have been fixed: m1 = 100 kg, k1 = 10000 N/m. Notice
however that, in case of different structural parameters, the methodology and related results
here outlined are characterised by a general validity. Different amounts of structural damping
have been considered, by focusing then on typical (subcritical) values for civil structural systems,
apt to already challenge the further application of a TMD controller (higher challenge of TMD
effectiveness being expected at increasing inherent structural damping).
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The associated natural angular frequency ω1 and damping ratio ζ1 of the primary structure
are classically defined as follows:

ω1 =

√
k1

m1

, ζ1 =
c1
c1,cr

=
c1

2
√
k1m1

=
c1

2ω1m1

(2)

where c1,cr is the critical damping coefficient of the primary system. Then, inherent structural
damping ratios in the order up to ζ1 = 5% will be considered in the following investigation
analysis, thus setting an increasing challenge for TMD effectiveness.

The dynamic behaviour of such a primary structure is ruled by the following equation of
motion in terms of absolute displacement DOF x1(t) (Fig. 1):

m1 ẍ1(t) + c1 ẋ1(t) + k1x1(t) = c1X̄g δ̇(t) + k1X̄gδ(t) (3)

or, in terms of the characteristic system parameters, i.e. by dividing all components by m1 and
by the definitions above:

ẍ1(t) + 2ζ1ω1 ẋ1(t) + ω2
1
x1(t) = 2ζ1ω1X̄g δ̇(t) + ω2

1
X̄gδ(t) . (4)

The analytical expressions of the involved indices and response norms (H2 , H∞) have been
obtained in closed form, as below reported.

2.2 SDOF primary structure response indices

In this section, the explicit expressions of the H∞ and H2 norms of SDOF primary structure
displacement response x1(t) to unit impulse base displacement xg(t) = X̄gδ(t) are presented.

The time response of the primary structure is obtained through a pair of Laplace Transforms.
First, equation of motion (4) (Section 2.1) is transformed in frequency Laplace variable s, with
homogeneous conditions, consistently with the hypothesis of system initially at rest:

[s2 + s2ζ1ω1 + ω2
1
]X1(s) = s2ζ1ω1X̄g + ω2

1
X̄g ⇒ Z1(s)X1(s) = F1(s) (5)

where Z1(s) is the impedance of the system, X1(s) is the degree of freedom response and F1(s) is
the Laplace transform of the dynamic excitation. Thus, the transform of the dynamic response
of the primary structure, in terms of displacement, as a function of s, can be expressed as:

X1(s) = Z1(s)−1F1(s) = H1(s)F1(s) (6)

where H1(s) = Z1(s)−1 is the receptance (or transfer function) of the system. Hence, one
obtains:

X1(s) = X̄g

s2ζ1ω1 + ω2
1

s2 + s2ζ1ω1 + ω2
1

= X̄g

g2ζ1 + 1

g2 + g2ζ1 + 1
. (7)

where g = s/ω1 .
The inverse Laplace transform of this relation provides the following analytical expression of

the time displacement of the SDOF primary structure:

x1(t) = X̄gω1

e−ζ1ω1 t√
1− ζ2

1

· [(1− 2ζ2
1
) sin(ω

1,d
t) + 2ζ1

√
1− ζ2

1
cos(ω

1,d
t)] (8)

where ω
1,d

= ω1

√
1− ζ2

1
, with the following velocity derivative:

ẋ1(t) = X̄gω
2
1

e−ζ1ω1 t√
1− ζ2

1

· [−ζ1(3− 4 ζ2
1
) sin(ω

1,d
t) +

√
1− ζ2

1
(1− 4 ζ2

1
) cos(ω

1,d
t)] . (9)
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Thus, response x1(t) to xg(t) = X̄gδ(t) may be interpreted as a damped free vibration to non-
homogeneous initial conditions at time 0+ as:

x
1,0+

= X̄g

c1
m1

= X̄gω12ζ1 ; ẋ
1,0+

= X̄g

(
k1

m1

−
(
c1
m1

)2
)

= X̄gω
2
1
(1− 4ζ2

1
) . (10)

Particular interest regards two response indices obtainable from Eq. (8), namely the H2 and
H∞ norms of the primary structure displacement, which refer to the overall and the peak re-
sponse, respectively. General Hi (1 <i<∞) and H2 , H∞ norms over time window of analysis Ta

can be classically defined as:

‖x1(t)‖i :=

(∫ Ta

0
|x(t)|i dt

)1
i

; ‖x1(t)‖2 :=

√∫ Ta

0
|x1(t)|2 dt , ‖x1(t)‖∞ := max

t
|x1(t)| . (11)

The H∞ norm is evaluated first. By setting the first derivative in Eq. (9) equal to zero, such
a stationary condition marks peak time t̄ where the peak displacement is obtained:

t̄ =
1

ω
1,d

arctan

(√
1− ζ2

1
(1− 4 ζ2

1
)

ζ1(3− 4 ζ2
1
)

)
(12)

The substitution of Eq. (12) into Eq. (8) provides the expression of the peak displacement, or
H∞ norm displacement:

‖x1(t)‖∞ = X̄gω1e

−
ζ1√

1− ζ2
1

arctan

(√
1− ζ2

1
(1− 4 ζ2

1
)

ζ1(3− 4 ζ2
1
)

)

(13)

which plays an important role in the tuning process, since the magnitude of the peak displace-
ment is one of the main objectives within the control of the system transient response.

Then, the H2 norm of x1(t) is evaluated as well, by substituting Eq. (8) into Eq. (11):

‖x1(t)‖2 =
X̄g

√
ω1√

4ζ1(1− ζ2
1
)
·
(

(1 + 4 ζ2
1
)(1− ζ2

1
)+

− e−2ζ1ω1Ta
[
1 + ζ1(1− 4 ζ2

1
)
√

1− ζ2
1

sin
(
2ω

1,d
Ta

)
+

+ ζ2
1
(3− 4 ζ2

1
) cos

(
2ω

1,d
Ta

)]
)1/2

(14)

2.3 Structural system with TMD

The structural system composed of a SDOF primary structure and a TMD added on top of it,
assumed as a benchmark model in the present study, is further represented as a 2DOF linear
system in Fig. 2. Similarly as for the primary structure alone, the TMD parameters are mass m2 ,
constant stiffness k2 and viscous damping coefficient c2 , while relevant natural angular frequency
ω2 and damping ratio ζ2 are consistently defined as in Eq. (2):

ω2 =

√
k2

m2

, ζ2 =
c2
c2,cr

=
c2

2
√
k2m2

=
c2

2ω2m2

(15)
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where c2,cr is the critical damping coefficient of the added TMD. Further two parameters are
then classically introduced for the purposes of the TMD tuning process, i.e. TMD mass ratio µ
and frequency ratio f (while TMD damping ratio ζ2 keeps defined as in Eq. (15)):

µ =
m2

m1

, f =
ω2

ω1

=

√
1

µ

k2

k1

. (16)

Figure 2

The equations of motion of the considered 2DOF linear structural system can be stated in
classical matrix form as follows:

Mẍ(t) + Cẋ(t) + Kx(t) = F(t) (17)

where

M =

[
m1 0
0 m2

]
, C =

[
c1 + c2 −c2
−c2 c2

]
, K =

[
k1 + k2 −k2

−k2 k2

]
; x(t) =

[
x1(t)
x2(t)

]
(18)

denote the structural matrices of mass, viscous damping and elastic stiffness, respectively, and
vector of absolute displacements x(t), with associated velocities ẋ(t) and accelerations ẍ(t).

Vector F(t), which represents the external dynamic excitation, for the case of unit impulse
base displacement takes the form:

F(t) =

[
c1 ẋg(t) + k1xg(t)

0

]
=

[
c1X̄g δ̇(t) + k1X̄gδ(t)

0

]
. (19)

For the purposes of the present study, vectors and matrices in Eqs. (18), (19) may be rewritten
in terms of structural and TMD parameters, by dividing all terms by m1 , leading to the following
array replacements:

M→
[
1 0
0 µ

]
, C→

[
2ζ1ω1 + 2ζ2ω2µ −2ζ2ω2µ
−2ζ2ω2µ 2ζ2ω2µ

]
, K→

[
ω2

1
+ ω2

2
µ −ω2

2
µ

−ω2
2
µ ω2

2
µ

]
,

F(t)→
[
2ζ1ω1X̄g δ̇(t) + ω2

1
X̄gδ(t)

0

]
.

(20)

The analytical expressions of the corresponding dynamic response indices are then derived
as follows.

2.4 Dynamic response of the structural system (SDOF primary structure +
TMD)

As for the SDOF system, the response of the considered structural system in the time domain
is obtained by a pair of Laplace transforms. Firstly, the equations of motion above are Laplace
transformed:
[
Z11(s) Z12(s)
Z21(s) Z22(s)

] [
X1(s)
X2(s)

]
=

[
F1(s)
F2(s)

]
⇒ Z(s)X(s) = F(s) (21)
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where Z(s) is the impedance matrix, X(s) is the vector of degrees of freedom and F(s) is the
excitation vector. In particular, impedance matrix Z(s) takes the following form:

Z(s) =

[
Z11(s) Z12(s)
Z21(s) Z22(s)

]

=

[
s2 + s(2ζ1ω1 + 2ζ2ω2µ) + (ω2

1
+ ω2

2
µ) −s2ζ2ω2µ− ω2

2
µ

−s2ζ2ω2µ− ω2
2
µ s2µ+ s2ζ2ω2µ+ ω2

2
µ

]
=

=

[
g2 + g2(ζ1 + ζ2fµ) + (1 + f2µ) −g2ζ2fµ− f2µ

−g2ζ2fµ− f2µ g2µ+ g2ζ2fµ+ f2µ

]
ω2

1
,

(22)

being g = s/ω1 , and the force vector:
[
F1(s)
F2(s)

]
=

[
s2ζ1ω1 + ω2

1

0

]
X̄g =

[
g2ζ1 + 1

0

]
X̄gω

2
1
. (23)

Then, the dynamic response of the structural system in terms of displacement, as a function
of s, can be obtained just through an algebraic manipulation of Eq. (21):

X(s) = Z(s)−1F(s) = H(s)F(s) (24)

where H(s) = Z(s)−1 is the receptance matrix of the system:

H(s) =

[
H11(s) H12(s)
H21(s) H22(s)

]
=

=
1

D(s)

[
s2µ+ s2ζ2ω2µ+ ω2

2
µ s2ζ2ω2µ+ ω2

2
µ

s2ζ2ω2µ+ ω2
2
µ s2 + s(2ζ1ω1 + 2ζ2ω2µ) + (ω2

1
+ ω2

2
µ)

]
=

=
ω2

1

D(s)

[
g2µ+ g2fζ2µ+ f2µ g2fζ2µ+ f2µ

g2fζ2µ+ f2µ g2 + g2(ζ1 + fζ2µ) + (1 + f2µ)

]
,

(25)

where:

D(s)

ω4
1

=
det[Z(s)]

ω4
1

=

=g4µ+ g32µ
(
ζ1 + fζ2(1 + µ)

)
+ g2µ

(
1 + f2(1 + µ) + 4fζ1ζ2

)
+

+g2fµ(fζ1 + ζ2) + f2µ .

(26)

Hence, one obtains:

X1(s)

X̄g

= H11(s)F1(s) +H12(s)F2(s) =
N1(s)

D(s)
,

X2(s)

X̄g

= H21(s)F1(s) +H22(s)F2(s) =
N2(s)

D(s)

(27)

where, in the present case:

N1(s)

ω4
1

= g32ζ1µ+ g2µ(4fζ1ζ2 + 1) + g2fµ(fζ1 + ζ2) + f2µ ,

N2(s)

ω4
1

= g24fζ1ζ2µ+ g2fµ(fζ1 + ζ2) + f2µ .

(28)

The time response is finally obtained through the inverse Laplace transform of Eq. (27).
However, even for a relatively simple system as that assumed in this study, the analytical
expressions of this time response take too lengthy forms to be reported here.
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2.5 Expected effects of the tuning variables

In order to obtain first useful indications for the following TMD tuning process, a preliminary
investigation on the expected trends of the structural displacement as a function of the tuning
variables has been developed, providing the following main tuning guidelines.

The H2 norm (average response) of the primary structure displacement, represented in Fig. 3,
exhibits a quite convex shape, which fact pushes this quantity as a potentially suitable objective
function within an optimisation process devised for the TMD tuning. Besides this character, it
was found that the range of frequency ratio f including the minimum is a bit extended, meaning
that also values not corresponding to the actual optimum one could still lead to an effective
TMD. This important consideration holds true also for TMD damping ratio ζ2 , and it appears
constant also for different values of mass ratio µ.

Figure 3

Hence, the features recovered from this preliminary analysis point out that even a limited
variation of the TMD parameters, possibly associated to de-tuning [34], should not much jeop-
ardise the effectiveness of the passive control device in the present impulse excitation context.
Also, this flattens out the importance of the specific adopted tuning approach, if still effective
in anyway localising the TMD parameters at around the global optimum.

3 TMD tuning process

The present TMD tuning process can be interpreted and managed by an appropriate optimisa-
tion procedure, where the objective (or cost) function is assumed to be a quantity representative
of the dynamic response of the structure, either in the time or in the frequency domain, which
is supposed to be minimised [36,37]:

min
p

J(p) , l
b
≤ p ≤ u

b
, (29)

where p, J(p), l
b

and u
b

represent the optimisation variables, the objective function, the lower
and the upper bounds on the optimisation variables, respectively. In the present context, follow-
ing a typical approach adopted in the TMD literature [4,6,10,14,19,20,34,35,48], only frequency
ratio f and TMD damping ratio ζ2 are taken as variables for a time-domain optimisation process,
while mass ratio µ is assumed to be given from scratch (two-variable optimisation: p = [f ; ζ2 ]),
based on values that may be encountered in real applications.

This two-variable optimisation approach is motivated by two main reasons. First, the amount
of added mass which composes the TMD is generally limited by a matter of practical design,
i.e. excessive masses of the device could be counterproductive in terms of suitability and safety
of the primary structure, especially if post-fitted by adding a TMD control device. The second
issue, which is instead related to rather theoretical aspects, is pointed out by the optimisation
process itself. Indeed, several previous tuning trials [36,37] have shown that, in case of a free mass
ratio, this parameter tends to reach the upper limit that has been set, leading to a lower TMD
damping ratio, so that to transfer the dynamic response entirely to the TMD. In this sense, a
suitable upper limit to the design guidelines could be established within the optimisation process,
which will likely correspond to the assumed value of µ. In practice, TMD efficiency is expected
to raise at increasing mass ratio, specifically in this pulse-like context, but the added TMD mass
shall be bounded by feasible constraints. Despite this, such considerations are worthwhile to be
explicitly mentioned, since some different studies have pushed to investigate even rather high
values of mass ratios (e.g., in the present pulse-like context, up to 50% [25]), and sometimes the
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mass ratio is still kept among the optimisation variables (e.g. [8], although likely systematically
falling on the admitted upper-bound value or around it).

The characteristics of the considered objective function play a fundamental role for the real
effectiveness of the optimisation process. Above all, despite that a relatively simple system
has been here assumed, namely a 2DOF structure, the analytical expressions of its dynamic
response quickly take a complex form, which leads to consider a numerical optimisation method
as a suitable mean to develop the TMD tuning process.

Another important feature, within the tuning process, regards the choice of the optimisation
algorithm. In this sense, despite that a large series of modern algorithms may assure even higher
optimisation performances (see e.g. [20], and [8], with references quoted therein), a classical
numerical method looks rather sufficient, and robust, for the solution of the present tuning
problem. Indeed, the computational time required by the optimisation process has been no-
ticed to be quite short, probably because of the simplicity of the structural system and the
deterministic nature of the dynamic excitation. Particularly, a classical nonlinear gradient-based
optimisation algorithm has been adopted, which is based on Sequential Quadratic Programming
(SQP) and takes advantage of the fmincon function within MATLAB.

The ranges of parametric values of mass ratio µ and structural damping ratio ζ1 have been
chosen similarly to those typically appearing in engineering applications (as expressed in MAT-
LAB notation):

µ = [0.0025 : 0.0025 : 0.1] , ζ1 = [0, 0.01, 0.02, 0.03, 0.05] . (30)

Namely, mass ratio µ ranges from 0.25% to 10%, with steps of 0.25% and inherent damping
ratio ζ1 takes values of 0 (no damping) and 1%, 2%, 3%, 5%, thus pushing to relatively high
damping ratios in terms of challenging TMD effectiveness. Moreover, the values assumed for the
tolerances and the maximum value of iterations and function evaluations were able to ensure
both fast convergence and high level of accuracy. Further details on the implemented algorithm
of TMD tuning are provided in [37].

In order to find out the best objective function for the tuning process, a preliminary inves-
tigation had been carried out on several response indices, which were actually the H∞ (peak
value) and the H2 (average value) norms of the primary structure displacement (see Section 2.2);
recall also prodromal considerations at the end of Section 2.5. The results obtained from the
optimisation trials provided the following useful indications. In general, the assumption of a H∞

response quantity leads to undesired results, since frequency ratio f takes values corresponding
to the upper bound, while TMD damping ratio ζ2 displays abnormal decreasing trends, and
the dynamic response appears not to take appreciable advantages from the presence of the so-
conceived TMD. In fact, the peak response is just a little reduced, while the overall response
appears to be even increased. Actually, the norm which rendered the best results is the H2

norm of the considered response quantities, because of the regular trends of the optimum TMD
parameters and of the remarkable efficiency in reducing the overall dynamic response. Hence,
the H2 norm of the primary structure displacement has been eventually assumed as objective
function within the final optimisation process.

4 Optimum TMD parameters for impulse loading

The optimum TMD parameters for impulse base displacement obtained by the tuning method-
ology above have been represented in Fig. 4. The main trends of the optimum TMD parameters
substantially provide a decreasing frequency ratio fopt and an increasing TMD damping ra-
tio ζopt

2
at increasing mass ratio µ. In general, fopt only slightly decreases at increasing primary

structure damping ratio ζ1 , while ζopt
2

exhibits a general high level of insensitivity with respect
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to this parameter. Thus, a main message of insensitivity of optimum TMD parameters fopt, ζopt
2

for impulse base displacement on inherent structural damping ratio ζ1 globally appears from
Figs. 4a and 4b, in the inspected window of reasonable mass ratios up to 10% (already a rather
high value).

The TMD tuning based on classical Den Hartog formulae [10]

f =
1

1 + µ
, ζ2 =

√
3µ

8(1 + µ)
(31)

is also taken into account as a universal reference for comparison purposes (despite for being
originally obtained for harmonic force and undamped primary structure) and provided values
of f and ζ2 respectively lower and higher than those achieved with the present impulse-based
tuning method, including for the case of undamped primary structure (ζ1 = 0), which indeed
constitutes the reference in Den Hartog analysis. Thus, while an overshooting is recovered
for fopt, an undershooting is recorded for ζopt

2
, with respect to classical Den Hartog reference,

which was considered for harmonic force loading.
A further comparison of the presented impulse-tuned optimum parameters with respect to

those obtainable in case of different external excitations is now proposed. In particular, the
tuning formulae for the cases of harmonic and white noise excitations, either applied as force on
the primary structure or as base acceleration, taken from previous work [38] (separately reported
in Appendix A), have been as well considered for this confrontation analysis on the optimum
TMD parameters.

The relevant results are represented in Fig. 5, and will be discussed in the following. First, the
main trends are confirmed, i.e. for all the considered loading cases, frequency ratio f decreases
and TMD damping ratio ζ2 increases at increasing mass ratio µ. The trends of f are a bit
different from each other, and in this sense the trend related to impulse loading is placed halfway
with respect to the others, quite similarly to the values of f for the case of excitations applied
as base acceleration (both harmonic and white noise loadings). However, this fact appears not
to be related to the present unit impulse applied as base displacement, since almost the same
parameters have been obtained from further separate tests in the case of unit impulse force on
the primary structure, which are not here reported.

On the other hand, the different trends of ζ2 look narrower, with two main streams defined
by the harmonic and white noise excitations, respectively [38]. In this context, the parameters
obtained for the case of unit impulse base displacement closely follow the trend outlined for the
white noise excitations. In general, the above discussed results seem to support the concept of a
sort of unified tuning, i.e. a tuning of TMD parameters that could reasonably approximate the
optimum tuning of the three different considered excitation cases.

Figures 4–5

5 Time response reduction

5.1 Unit impulse response

The effectiveness of the proposed impulse-tuned TMD, in terms of reduction of time primary
structure response x1(t), is the subject of the present subsection, where the unit impulse base
displacement is still considered as acting dynamic excitation, coherently with the previous ana-
lytical response and numerical tuning analysis.

In Table 1, the percentage magnitudes of analytical response reduction, in terms of ‖x1(t)‖∞
and ‖x1(t)‖2 norms have been gathered, which, for the SDOF primary structure alone, are
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represented by Eqs. (13) and (14) respectively (Section 2.2), for values ζ1 = [0, 0.03, 0.05] and
µ = [0.02, 0.05, 0.1]. One may observe that the peak response abatement is rather small, also for
significant values (from an engineering application point of view) of mass ratio µ, and it exhibits
a high insensitivity on structural damping ratio ζ1 . On the other hand, the overall response
decrease is characterised by remarkable values, especially for high values of µ and low values of
ζ1 , and it results to be quite sensitive to these structural parameters, i.e. ∆‖x1(t)‖2 increases at
increasing µ and decreasing ζ1 . Similar results are also recorded from a tuning based on classical
Den Hartog reference, Eq. (31), as further reported in Table 2. Despite for the optimum TMD
parameters being different (see earlier discussion in Section 4 and specifically trends depicted in
Fig. 4), the final vibration mitigation performance turns out to be rather similar, in this context,
as already conjectured at the end of Section 2.3 (see Fig. 3).

Tables 1–2

These considerations on the overall response reduction are further confirmed in plot form by
the inspection of Fig. 6a on the left. The percentage reduction of the H2 norm of the primary
structure displacement, here adopted as a suitable TMD performance index, shows similar trend
shapes as a function of µ, for all the different considered values of ζ1 , but the reduction values
turn out quite different, i.e. one may note that the lower ζ1 , the higher the response reduction, as
it may be expected from previous TMD tuning experience [37–40]. Again, quite similar results
are also depicted in Fig. 6b on the right, for Den Hartog tuning.

From the further time-history responses in Figs. 7a and 8a on the left, it can be observed
that the increase of mass ratio µ turns out in a remarkable increase of TMD efficiency, especially
after the very beginning of the dynamic response (i.e. the first two/three peaks of oscillation).
Further investigations pointed out that such a fact is more evident for the lower values of ζ1 .
However, the amplitude of primary structure displacement x1(t) tends to zero after more or less
the same duration (e.g. 6–8 seconds, for the considered primary structure), independently on
the assumed value of µ. Similar time-history results are again recorded in Figs. 7b and 8b on
the right, for Den Hartog tuning, definitively showing this to constitute a consistent and feasible
way of tuning to achieve vibration mitigation also for this impulse-like base excitation context,
despite for being originally conceived for an undamped primary structure under harmonic force.

Despite for the global considerable TMD efficiency, the maximum response, which in case
of impulsive loading for a system initially at rest occurs at the first peak of dynamic response,
does not seem to be substantially affected by the insertion of a passive TMD (at least for the
considered reasonable contained values of mass ratio µ). This may suggest the further application
of a hybrid controller, based on an underlying setting relying on the present passive TMD tuning
procedure, apt to improve the achievable control performance also in terms of H∞ norm.

Figures 6–8

5.2 Other post-tuning pulse-like excitation responses

In order to assess, and possibly to extend, the validity of the proposed TMD tuning procedure for
unit impulse base displacement excitation, the so-conceived pulse-tuned optimum TMD has been
tested for further four post-tuning pulse-like excitations, representative of real sudden actions
with a variable duration, namely versed-sine pulse, linear ramp, cubic ramp and unit step (whose
analytical statement is separately reported in Appendix B).

The amplitude of the signal has been assigned so that to satisfy the condition of unitary
impulse, as for a Dirac delta function (beginning of Section 2.1), i.e. so that to ensure a common
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unitary character of the pulse loading and to achieve similar amplitudes for the first peak of dis-
placement response, leading to a base displacement constant impulse amplitude of X̄g = 0.01 m s,
X̄g = 0.008 m s, X̄g = 0.007 m s, X̄g = 0.01 m s, for the versed-sine pulse, the linear ramp, the
cubic ramp and the unit step case, respectively. Pulse-like excitations are investigated for dif-
ferent values of excitation period Tp , with respect to natural period T1 , in order to enquire the
effect of different excitation durations for the pulse-like profile.

The post-tuning trials, with given values of mass ratio µ = [0.02, 0.05] and structural damping
ratio ζ1 = [0, 0.03], in order to appreciate TMD effectiveness at a widening spreading of them,
have been carried out by considering three different preceding tuning methods: (a) Impulse-
tuned TMD for the case of base displacement (Section 4), which is the method that has been
previously described and newly here proposed; (b) Classical reference Den Hartog tuning [10],
originally outlined from an undamped primary structure subjected to harmonic force, Eq. (31);
(c) Assigned TMD parameters, namely f = 1 and ζ2 = 0.15, as typical reference values for
practical design purposes. From the results obtained at a preliminary stage in Section 2.3, it
appears that a suitable choice of the TMD parameters may contemplate slightly lower values than
those indicated above. However, this set of TMD parameters may be considered as adequately
representative of a possible real TMD. Moreover, the assumption of a resonant TMD (f = 1)
has been proposed and validated in relevant literature works [45,46].

Tables 3–6 display the achieved percentage response reductions, evaluated as average values
of those achieved for the four pulse-like excitations, for different values of primary structure
damping ratio ζ1 (ζ1 = 0 in Tables 3 and 4; ζ1 = 0.03 in Tables 5 and 6) and mass ratio µ
(µ = 0.02 in Tables 3 and 5; µ = 0.05 in Tables 4 and 6), and for different amounts of pulse
excitation frequency, which cover the range from a situation of sudden loading (Tp = 0.1T1), to
a case where the loading period is close to the structural one (Tp = 0.8T1).

Tables 3–6

The representation of an average value is motivated by the fact that, especially for actual
pulse loading (Tp = 0.1T1), the obtained values of response reduction are almost the same for the
different excitations. This similarity of results tends instead to disappear when the excitation
period increases (Tp = 0.8T1), and the shape of the input signal affects a bit more the TMD
efficiency. In particular, this holds true for the case of unit step pulse.

Hence, from these results, it appears that for shock loading, i.e. in case of short-duration
actions, the nature of the impulsive excitation does not significantly affect the TMD performance,
while this feature gradually influences the response reduction at an increasing duration of the
external dynamic action.

In general, the peak response (H∞ norm) is just slightly reduced, while the overall response
(H2 norm) results to be quite lowered; such a situation holds true even when the period of the
excitation gets closer to that of the primary structure, i.e. when the sudden character of the
excitation is actually missing. Also, the TMD performance decreases at decreasing pulse period,
especially when the loading exhibits a period close to that of the system, losing therefore the
character of a sudden dynamic action.

The differences of performance between the various tuning methods appear quite small but,
on the whole, one could notice that the results coming from the proposed impulse tuning are
just slightly better than those obtained from Den Hartog tuning, which is indeed confirmed as
a valid benchmark reference, even in the damped case, while the case of assigned parameters
provides a slightly higher reduction of peak response, even if not really significant (lower than
2.5%). As expected, the achieved TMD benefit increases at increasing mass ratio µ, especially as
referred to the overall response reduction, which switches from 52–62% for µ = 0.02 to 63–70%
for µ = 0.05, when ζ1 = 0, and from 20–28% for µ = 0.02 to 29–37% for µ = 0.05, when ζ1 = 0.03.
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Also, TMD effectiveness is confirmed to be much lower for the higher inherent damping ratio
(ζ1 = 0.03), than for the undamped case (ζ1 = 0), despite for giving anyway visible response
reductions, which indeed motivates the insertion of the TMD device, disregarding for the specific
adopted tuning method.

5.3 Application case study: seismic response reduction

The efficiency of the proposed pulse-tuned TMD has been also investigated for the post-tuning
case of non-stationary seismic excitation. Indeed, to enhance the implications and potential ap-
plications of the proposed impulse tuning concept, the important seismic scenario of earthquake
response is further considered. The passive TMD is first tuned for impulse base displacement,
following the procedure outlined above (Section 4). Then, its effectiveness is evaluated in terms
of post-tuning achieved seismic response reduction of the primary structure.

Due to the unique nature of each seismic event, several earthquakes have been considered
within this investigation, acting as base acceleration on the structural system. Since the ana-
lytical Laplace transform can not be obtained for generic seismic input, here the time response
has been computed through a classical numerical direct integration technique of the equations
of motion in the time domain, by means of Newmark average acceleration method.

An extract of the outcomes of this seismic numerical investigation, based on four instances of
earthquake recordings (Imperial Valley 1940; Loma Prieta 1989; Kobe, 1995; L’Aquila, 2009),
has been here reported by assuming the following two structural instances in terms of values
of underlying structural parameters: (a) mass ratio µ = 0.02 and structural damping ratio
ζ1 = 0; (b) mass ratio µ = 0.05 and structural damping ratio ζ1 = 0.03. These two choices go
as follows: first case (a) refers to a possible realistic case of TMD insertion, with reasonable low
added TMD mass on a lightly damped (undamped) structure, a typical scenario of expected
effective TMD application; second case (b) points out to a limit investigation case in which, on
one hand, a rather high value of mass ratio has been assumed, in order to inspect how seismic
response mitigation may be pushed up by a TMD insertion, on the other hand, an already
challenging value of structural damping ratio has been considered, since a lower TMD efficiency
shall be recorded at increasing amount of inherent structural damping. The obtained numerical
percentage reductions in terms of ‖x1(t)‖∞ and ‖x1(t)‖2 norms are listed in Tables 7–8, again
with comparison to classical Den Hartog tuning, while the related time histories are shown in
Figs. 9–10.

Tables 7-8

Figures 9–10

In general, the peak response reduction appears to be smaller, i.e. nearly one third, than
for the overall displacement decrease, except for one earthquake case (Loma Prieta). The ratio
between the two indices is apparently quite variable and it seems that a clear relationship could
not be outlined on the considered earthquake set. This is somehow expected, for the different
characteristics of the seismic signals, especially in terms of signal power and frequency content.

On the other hand, as a general important consideration, the effectiveness of the passive
TMD, earlier optimised for a unit impulse base displacement excitation, turns out to be quite
significant also for the case of earthquake loading. Indeed, average values of 15% of ‖x1(t)‖∞
and 30% of ‖x1(t)‖2 unwanted response are suppressed by the addition of the TMD, for the
relatively high value of ζ1 = 0.03, which is a performance that provides a noticeable benefit to
the primary structure and therefore supports the adoption of this control device in the seismic
engineering context, even if optimised for a different source dynamic excitation (impulse loading).
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Comparison to Den Hartog tuning shows rather similar results, which confirms this to constitute
a consolidated general tuning concept, also within this seismic field.

The time histories shown in Figs. 9–10 also allow to add further relevant considerations. First,
the small effect of the TMD in reducing the sudden peaks of response is confirmed, as it can be
especially pointed out from the plots related to the Imperial Valley, Kobe and L’Aquila earth-
quakes. However, after these excitation peaks, the TMD starts to properly operate within the
dynamic response, and a remarkable reduction of subsequent oscillations is generally attained,
despite for the average, reasonable value of assumed inherent structural damping already chal-
lenging the TMD effectiveness (ζ1 = 0.03; see the effect of ζ1 on the TMD performance in
Table 1). Moreover, such a positive behaviour usually holds true until the end of the seismic
excitation, unless if a new peak in the input time history may come up.

6 Resuming technical discussion on the obtained results

This study concerned the optimisation of a passive Tuned Mass Damper device for linear me-
chanical systems subjected to transient loading, in the form of unit impulse excitation, acting
as base displacement, assuming as primary structure a SDOF structural system (which may be
emblematic also of a MDOF system controlled on a single mode of vibration). The dynamic
response of such a structural system has been analytically obtained, through a pair of Laplace
transforms, and then adopted for numerical TMD tuning purposes. This work also forms a
theoretical background for a possible further upgrade of the passive TMD device to a smarter
hybrid version, whose features are complementary outlined in [36].

The impulse-tuned TMD calibration process involved the development of a numerical optimi-
sation procedure, carried out by means of a nonlinear algorithm based on Sequential Quadratic
Programming (SQP). In a preliminary round of analysis, different response quantities have been
assumed to characterise the objective function, so that to find out the best control function in
terms of TMD performance and stability of the whole tuning process. The evaluation of the
objective function, i.e. of its most pertinent norm, has been investigated as well. The tests and
related outcomes revealed that the best choice as cost function appeared to be the H2 norm
of primary structure displacement x1(t), namely an average quantity over the whole window of
transient analysis. Other response quantities could represent valid alternatives, the key point
being their evaluation as H2 norm, since other norms rendered rather unsatisfactory results,
from both the point of view of optimum TMD parameters (main problems in this sense could be
either constituted by uncertainties on the optimum values or the reaching of the given bounds)
and effective performance of the control device. The optimum TMD parameters exhibit trends
that are quite similar to those obtainable for other benchmark excitations, such as harmonic or
white noise [10,38]. This feature turns out to be quite useful in view of a possible comprehensive
tuning of passive TMD devices.

Several post-tuning numerical tests on the structural time response have been carried out
after the impulse-based TMD tuning process, in order to quantify the amount of potential
TMD effectiveness within the transient loading regime. Firstly, the same excitation assumed
in the optimisation process, i.e. a unit impulse base displacement, has been considered as
dynamic loading. The results at that stage pointed out a remarkable efficiency of the so-conceived
optimum TMD, since it allowed to reduce the overall dynamic response of the primary structure
by a significant amount, for instance in the order of about 30%, for mass ratio µ = 0.02 and
structural damping ratio ζ1 = 0.03, and also for µ = 0.05, ζ1 = 0.05. On the other hand, it
appears that the passive TMD device is not effective in reducing as well the peak response,
likely because of its inertial behaviour, despite for the small added mass, which does not allow
to promptly react to a sudden excitation, as it is for the case of unit impulse here considered.
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Indeed, negligible percentage reductions have been obtained in terms of the H∞ norm of x1(t),
at least for the reasonable, realistic values of mass ratio considered within the study. This
constitutes the main motivation for a possible further improvement by the insertion of a hybrid
controller, apt to control the peak response, too. Despite, good response reductions in terms
of H2 norm (average response) truly motivate the a priori adoption of such a pulse-tuned (even
passive) TMD, made anyway available even if the active controller may be found turned off.

In a second session of tests, four additional post-tuning pulse-like excitations have been
considered, so as to enquire the potential effectiveness of the control device for generic sudden
dynamic actions of a variable duration, also through a comparison with other tuning methods,
namely by classical Den Hartog tuning formulae or by the assignment of TMD parameters given
from scratch, close to those usually adopted for real applications, due to design or availability
constraints. The so-obtained results, quite similar for the different pulse-like excitations, mainly
pointed out an overall response that is even more reduced than for the peak displacement,
confirming therefore what obtained for the previous ideal impulse excitation case. As a main
general remark, the TMD is acknowledged to produce an abatement of at least 1/4 (which
becomes 1/3 for the higher values considered for the mass ratio) of the total response, with
consequent significant benefit supplied to the structural system, despite for the reasonable,
relatively high value of the assumed structural damping ratio, in the order of 3%, which already
much challenges the achievable level of TMD effectiveness (TMDs are indeed expected to produce
significant benefits for undamped or very lightly-damped primary structures). Such a fact
supports the assumption of passive TMDs for impulsive response reduction, since it appears
that, in principle, such devices shall provide a remarkable benefit to the host structure, especially
all along the whole window of transient dynamic response. Moreover, being in a sense not so
sensitive to the specific adopted tuning procedure (see discussion at the end of Section 2.3), with
a similar effectiveness displayed through classical Den Hartog tuning, the response to pulse-like
loading with TMD should also become rather independent of possible phenomena of de-tuning,
which may occur as a consequence of modifications in the structural properties, and of different
possible tunings.

In a third assessment investigation, the effectiveness of the pulse-tuned passive TMD has been
explored within the seismic engineering range, by considering the primary structure response
reduction under different earthquake instances. This has demonstrated that the TMD tuning
based on impulse excitation shall provide an effective way of tuning the passive TMD device
toward possible seismic isolation and control for a priori unknown seismic input. Moreover, in
terms of achieved seismic response reduction, the above positive features have been also revealed
for the seismic excitation case, where a visible level of average response reduction at about 30%
has been recorded, even for the (relatively high but reasonable) value assumed for the structural
damping ratio at 3%. Less effect on the peak response reduction is again noticed (for the
examined contained values of mass ratio).

The following main remarks out of the present analytical/numerical theoretical investigation
may be itemizely resumed as follows:

• H2-norm (i.e. average response) optimisation of the TMD tuning concept has revealed to
be robust and effective in estimating the TMD tuning parameters under impulse excita-
tion. Associated to that, the higher TMD performance under impulse loading has been
recorded on the average response, rather than on the peak response.

• The post-addition of an active controller, to make the passive TMD to become a hybrid
device, may further help in controlling the peak response, too. Like that, the classical
(passive) device may be alerted with no active control available or turned off and mitigate
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the average response following a transient impulse excitation. With the active control
turned on there appears the possibility to force the control of the peak response, too.
However, the classical passive configuration shall provide a first basic reliable and effective
protection for the after-pulse vibration.

• Trends of the obtained optimum TMD parameters are similar to those obtained for refer-
ence excitations, with very little effect of changes in the structural damping ratio. With
respect to classical Den Hartog tuning, frequency ratio overshoots, while TMD damp-
ing ratio undershoots, while final results in terms of response mitigation turn out rather
similar, with the present tuning generally leading to slightly better abatements. Since
achievements are anyway good, this supports the option of TMD insertion for this tran-
sient loading context, disregarding for the specific TMD tuning concept being selected.

• Post-tuning tests, including pulse-like and earthquake excitations, have confirmed the
response control trends experienced for impulse tuning, in terms of considerable abatement
of the average structural response, increasing at raising mass ratio and lowering structural
damping ratio.

7 Conclusion

In conclusion, the main results of this research study outline several crucial indications on the
optimum design of passive Tuned Mass Dampers for the control of transient impulse responses
of structural systems. In particular, the basic addition of a passive TMD control device to a
structural system could significantly abate its transient impulsive response, with a remarkable
benefit in terms of serviceability and safety, specifically on the average response indices evaluated
all along the whole transient window of analysis. The reduction of the peak response looks
instead less effective (for contained, reasonable values of added TMD mass) and may require the
further addition of a smarter active controller to the passive control device, towards achieving
an even more effective hybrid TMD, to be turned on for mitigating the peak response, too.

The overall TMD tuning and effectiveness analysis here developed and presented for impulsive
excitation claims for a passive TMD to be anyway inserted, disregarding for the specificities
of the adopted tuning method, provided that the TMD parameters shall take values within
typical reasonable ranges for practical applications. This supports the general concept that,
for transient, pulse-like loading, or earthquake excitation, the presence of a passive TMD shall
ensure a reliable basic protection against unwanted transient vibration, with a low sensitivity on
the specific adopted TMD tuning method and thus on possible de-tuning effects.
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[8] Bekdaş, G., Nigdeli, S.M., 2017, Metaheuristic based optimization of tuned mass dampers
under earthquake excitation by considering soil-structure interaction, Soil Dynamics and
Earthquake Engineering, 92(January 2017):443–461.

[9] Chen, G., Wu, J., 2003, Experimental study on multiple tuned mass dampers to reduce seis-
mic responses of a three-storey building structure, Earthquake Engineering and Structural
Dynamics, 32(5):793–810.

[10] Den Hartog, J.P., 1956, Mechanical Vibrations, McGraw-Hill, 4th ed.

[11] Desu, N.B., Dutta, A., Deb, S.K., 2007, Optimal assessment and location of tuned mass
dampers for seismic response control of a plan-asymmetrical building, Structural Engineer-
ing and Mechanics, 26(4):459–477.

[12] Farshidianfar, A., Soheili, S., 2013, Ant colony optimization of tuned mass dampers for
earthquake oscillations of high-rise structures including soil-structure interaction, Soil Dy-
namics and Earthquake Engineering, 51(August 2013):14–22.

[13] Ghahari, S.F., Abazarsa, F., Taciroglu, E., 2017, Blind modal identification of non-
classically damped structures under non-stationary excitations Structural Control and
Health Monitoring, 24(6):1–21, June 2017, Article number e1925.

[14] Ioi, T., Ikeda, K., 1978, On the dynamic vibration damped absorber of the vibration system,
Bulletin of the Japanese Society of Mechanical Engineering, 21(151):64–71.

[15] Jabary, R.N., Madabhushi, G.S.P., 2015, Tuned mass damper effects on the response of
multi-storied structures observed in geotechnical centrifuge tests, Soil Dynamics and Earth-
quake Engineering, 77(October 2015):373–380.

VIB-18-1027 (Research Paper) 18 E. Rizzi



[16] Jabary, R.N., Madabhushi, G.S.P., 2017, Tuned mass damper positioning effects on the
seismic response of a soil-MDOF-structure system, Journal of Earthquake Engineering, 31
January 2017:1–22.

[17] Jabary, R.N., Madabhushi, G.S.P., 2017, Structure-soil-structure interaction effects on
structures retrofitted with tuned mass dampers, Soil Dynamics and Earthquake Engineer-
ing, 100(September 2017):301–315.

[18] Jang, S.-J., Brennan, M.J., Rustighi, E., 2010, Comparing the performance of optimally
tuned dynamic vibration absorbers with very large or very small moment of inertia, Journal
of Vibration and Acoustics, ASME, 132(3):1–4.

[19] Krenk, S., Høgsberg, J., 2008, Tuned mass absorbers on damped structures under random
load, Probabilistic Engineering Mechanics, 23(4):408–415.

[20] Leung, A.Y.T., Zhang, H., 2009, Particle Swarm Optimization of tuned mass dampers,
Engineering Structures, 31(3):715–728.

[21] Li, S., Tang, J., 2017, On Vibration Suppression and Energy Dissipation Using Tuned Mass
Particle Damper, Journal of Vibration and Acoustics, ASME, 139(1):011008-1–10.

[22] Liu, Y., Lin, C.-C., Parker, J., Zuo, L., 2016, Exact H2 Optimal Tuning and Experimental
Verification of Energy-Harvesting Series Electromagnetic Tuned-Mass Dampers, Journal of
Vibration and Acoustics, ASME, 138(6):061003-1–12.

[23] Marano, G.C., Greco, R., 2011, Optimization criteria for tuned mass dampers for structural
vibration control under stochastic excitation, Journal of Vibration and Control, 17(5):679–
688.

[24] Matta, E., 2011, Performance of tuned mass dampers against near-field earthquakes, Struc-
tural Engineering and Mechanics, 39(5):621–642.

[25] Matta, E., 2013, Effectiveness of tuned mass dampers against ground motion pulses, Journal
of Structural Engineering, ASCE, 139(2):188–198.

[26] Miranda, J.C., 2016, Discussion of system intrinsic parameters of tuned mass dampers used
for seismic response reduction, Structural Control and Health Monitoring, 23(2):349–368.

[27] Morga, M., Marano, G.C., 2014, Optimization criteria of TMD to reduce vibrations gener-
ated by the wind in a slender structure, Journal of Vibration and Control, 20(16):2404–2416.

[28] Parulekar, Y.M., Reddy, G.R., 2009, Passive response control systems for seismic response
reduction: A state-of-the-art review, International Journal of Structural Stability and Dy-
namics, 9(1):151–177.

[29] Pioldi, F., Ferrari, R., Rizzi, E., 2015, Output-only modal dynamic identification of frames
by a refined FDD algorithm at seismic input and high damping, Mechanical Systems and
Signal Processing, 68–69(February 2016):265–291, doi:10.1016/j.ymssp.2015.07.004.

[30] Pioldi, F., Ferrari, R., Rizzi, E., 2015, Earthquake structural modal estimates of multi-
storey frames by a refined Frequency Domain Decomposition algorithm, Journal of Vibra-
tion and Control, 23(13):2037–2063, doi:10.1177/1077546315608557.

VIB-18-1027 (Research Paper) 19 E. Rizzi

http://dx.doi.org/10.1016/j.ymssp.2015.07.004
http://dx.doi.org/10.1177/1077546315608557


[31] Pioldi, F., Ferrari, R., Rizzi, E., 2017, Seismic FDD modal identification and monitoring of
building properties from real strong-motion structural response signals, Structural Control
and Health Monitoring, Early View: 9 February 2017, 24(11):1–20, e1982, November 2017,
doi:10.1002/stc.1982.

[32] Pioldi, F., Salvi, J., Rizzi, E., 2016, Refined FDD modal dynamic identification from earth-
quake responses with Soil-Structure Interaction, International Journal of Mechanical Sci-
ences, 127(July 2017):47–61, doi:10.1016/j.ijmecsci.2016.10.032.

[33] Quaranta, G., Mollaioli, F., Monti, G., 2016, Effectiveness of design procedures for linear
TMD installed on inelastic structures under pulse-like ground motion, Earthquakes and
Structures, 10(1):239–260.

[34] Rana, R., Soong, T.T., 1998, Parametric study and simplified design of tuned mass dampers,
Engineering Structures, 20(3):193–204.

[35] Randall, S.E., Halsted, D.M., Taylor, D.L., 1981, Optimum vibration absorbers for linear
damped systems, Journal of Mechanical Design, ASME, 103(4):908–913.

[36] Salvi, J., Rizzi, E., Rustighi, E., Ferguson, N.S., 2015, On the optimisation of a
hybrid Tuned Mass Damper for impulse loading, Smart Materials and Structures,
doi:10.1088/0964-1726/24/8/085010, 24(8)(2015)085010, 15 pp.

[37] Salvi, J., Rizzi, E., 2015, Optimum tuning of Tuned Mass Dampers for frame structures un-
der earthquake excitation, Structural Control and Health Monitoring, doi:10.1002/stc.1710,
22(4):707-715.

[38] Salvi, J., Rizzi, E., 2016, Closed-form optimum tuning formulas for passive
Tuned Mass Dampers under benchmark excitations, Smart Structures and Systems,
doi:10.12989/sss.2016.17.2.231, 17(2):231–256.

[39] Salvi, J., Rizzi, E., 2017, Optimum earthquake-tuned TMDs: Seismic performance and new
design concept of balance of split effective modal masses, Soil Dynamics and Earthquake
Engineering, doi:10.1016/j.soildyn.2017.05.029, 101(October 2017):67–80.

[40] Salvi, J., Pioldi, F., Rizzi, E., 2016, Optimum Tuned Mass Dampers under seismic Soil-
Structure Interaction, Submitted for publication, revised version.

[41] Setareh, M., 2001, Use of semi-active mass dampers for vibration control of force-excited
structures, Structural Engineering and Mechanics, 11(4):341–356.

[42] Sun, C., Nagarajaiah, S., Dick, A.J., 2014, Family of smart tuned mass dampers with
variable frequency under harmonic excitations and ground motions: closed-form evaluation,
Smart Structures and Systems, 13(2):319–341.

[43] Tigli, O.F., 2012, Optimum vibration absorber (tuned mass damper) design for linear
damped systems subjected to random loads, Journal of Sound and Vibration, 331(13):3035–
3049.

[44] Tributsch, A., Adam, C., 2012, Evaluation and analytical approximation of Tuned Mass
Damper performance in an earthquake environment, Smart Structures and Systems,
10(2):155–179.

[45] Villaverde, R., 1993, Reduction in seismic response with heavily-damped vibration absobers,
Earthquake Engineering and Structural Dynamics, 13(1):33–42.

VIB-18-1027 (Research Paper) 20 E. Rizzi

http://dx.doi.org/10.1002/stc.1982
http://dx.doi.org/10.1016/j.ijmecsci.2016.10.032
http://dx.doi.org/10.1088/0964-1726/24/8/085010
http://dx.doi.org/10.1002/stc.1710
http://dx.doi.org/10.12989/sss.2016.17.2.231
http://dx.doi.org/10.1016/j.soildyn.2017.05.029


[46] Villaverde, R., Koyama, L.A., 1993, Damped resonant appendages to increase inherent
damping in buildings, Earthquake Engineering and Structural Dynamics, 22(6):491–507.

[47] Wang, J.-F., Lin, C.-C., 2015, Extracting parameters of TMD and primary structure from
the combined system responses, Smart Structures and Systems, 16(5):937–960.

[48] Warburton, G.B., 1982, Optimum absorber parameters for various combinations of response
and excitation parameters, Earthquake Engineering and Structural Dynamics, 10(3):381–
401.

[49] Wu, Q., Zhao, X., Zheng, R., 2016, Experimental Study on a Tuned-Mass Damper of
Offshore for Vibration Reduction, Journal of Physics: Conference Series, MOVIC2016 &
RASD2016, IOP Publishing, 744(2016):012045(1–9).

[50] Xiang, P., Nishitani, A., 2015, Optimum design and application of non-traditional tuned
mass damper toward seismic response control with experimental test verification, Earth-
quake Engineering and Structural Dynamics, 44(13):2199–2220.

[51] Zilletti, M., Elliott, S.J., Rustighi, E., 2012, Optimisation of dynamic vibration absorbers
to minimise kinetic energy and maximise internal power dissipation, Journal of Sound and
Vibration, 331(18):4093–4100.

Appendix A. Optimum TMD tuning formulae for benchmark
excitations

In Table A.1, the optimum TMD tuning formulae from [38] adopted in Section 4 are reported.

Table A.1

Appendix B. Pulse-like excitations

A comprehensive scheme of pulse-like excitations adopted in Section 5.2, including formulation
in both time and Laplace domains, is displayed in Fig. B.1.

Figure B.1
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Table 1: Percentage reduction of H∞ and H2 norms of primary structure displacement x1(t) as a function of
different values of mass ratio µ and structural damping ratio ζ1 , achieved with the proposed tuning
method.

ζ1 0 0.03 0.05
µ 0.02 0.05 0.10 0.02 0.05 0.10 0.02 0.05 0.10

∆‖x1(t)‖∞ [%] 0.94 2.37 4.67 0.90 2.27 4.47 0.87 2.20 4.34
∆‖x1(t)‖2 [%] 62.54 70.25 75.05 28.76 38.54 46.00 19.00 27.84 35.23
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Table 2: Percentage reduction of H∞ and H2 norms of primary structure displacement x1(t) as a function of
different values of mass ratio µ and structural damping ratio ζ1 , obtained with Den Hartog tuning
method [10].

ζ1 0 0.03 0.05
µ 0.02 0.05 0.10 0.02 0.05 0.10 0.02 0.05 0.10

∆‖x1(t)‖∞ [%] 0.95 2.40 4.70 0.92 2.31 4.52 0.89 2.22 4.41
∆‖x1(t)‖2 [%] 62.20 69.92 74.76 28.47 38.21 45.64 18.79 27.57 34.91
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Table 3: Average percentage reduction of H∞ and H2 norms of primary structure displacement x1(t), with
µ = 0.02, ζ1 = 0, for the four considered pulse-like excitations (Appendix D).

Response reduction Tp = 0.1T1 Tp = 0.5T1 Tp = 0.8T1

∆‖x1(t)‖∞ [%]
Impulse tuning 0.95 1.03 0.88
Den Hartog 0.96 1.02 0.87
f = 1, ζ2 = 0.15 1.06 1.04 0.82

∆‖x1(t)‖2 [%]
Impulse tuning 62.47 61.54 58.12
Den Hartog 62.06 61.14 57.83
f = 1, ζ2 = 0.15 56.78 55.69 52.50
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Table 4: Average percentage reduction of H∞ and H2 norms of primary structure displacement x1(t), with
µ = 0.05, ζ1 = 0, for the four considered pulse-like excitations (Appendix B).

Response reduction Tp = 0.1T1 Tp = 0.5T1 Tp = 0.8T1

∆‖x1(t)‖∞ [%]
Impulse tuning 2.38 2.49 2.07
Den Hartog 2.41 2.46 2.02
f = 1, ζ2 = 0.15 2.60 2.56 2.02

∆‖x1(t)‖2 [%]
Impulse tuning 70.19 69.16 64.82
Den Hartog 69.86 68.87 64.69
f = 1, ζ2 = 0.15 68.69 67.40 62.79
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Table 5: Average percentage reduction of H∞ and H2 norms of primary structure displacement x1(t), with
µ = 0.02, ζ1 = 0.03, for the four considered pulse-like excitations (Appendix B).

Response reduction Tp = 0.1T1 Tp = 0.5T1 Tp = 0.8T1

∆‖x1(t)‖∞ [%]
Impulse tuning 0.91 0.99 0.83
Den Hartog 0.92 0.98 0.82
f = 1, ζ2 = 0.15 1.02 1.00 0.77

∆‖x1(t)‖2 [%]
Impulse tuning 28.75 27.92 23.64
Den Hartog 28.46 27.63 23.44
f = 1, ζ2 = 0.15 24.69 23.77 19.92

VIB-18-1027 (Research Paper) 28 E. Rizzi



Table 6: Average percentage reduction of H∞ and H2 norms of primary structure displacement x1(t), with
µ = 0.05, ζ1 = 0.03, for the four considered pulse-like excitations (Appendix B).

Response reduction Tp = 0.1T1 Tp = 0.5T1 Tp = 0.8T1

∆‖x1(t)‖∞ [%]
Impulse tuning 2.28 2.38 1.95
Den Hartog 2.32 2.36 1.90
f = 1, ζ2 = 0.15 2.50 2.45 1.89

∆‖x1(t)‖2 [%]
Impulse tuning 38.53 37.25 31.09
Den Hartog 38.19 36.94 30.95
f = 1, ζ2 = 0.15 36.88 35.22 28.83
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Table 7: Percentage reduction of H∞ and H2 norms of primary structure displacement x1(t), with µ = 0.02,
ζ1 = 0, for four different earthquake signals, with passive TMD optimised for unit impulse base
displacement.

Seismic input
∆‖x1(t)‖∞ [%] ∆‖x1(t)‖2 [%]

Impulse Den Hartog [10] Impulse Den Hartog [10]

Imperial Valley, 1940 11.43 11.27 61.78 63.18
Loma Prieta, 1989 40.32 39.75 78.93 79.28

Kobe, 1995 47.93 49.30 80.90 80.45
L’Aquila, 2009 29.46 28.20 77.27 77.39
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Table 8: Percentage reduction of H∞ and H2 norms of primary structure displacement x1(t), with µ = 0.05,
ζ1 = 0.03, for four different earthquake signals, with passive TMD optimised for unit impulse base
displacement.

Seismic input
∆‖x1(t)‖∞ [%] ∆‖x1(t)‖2 [%]

Impulse Den Hartog [10] Impulse Den Hartog [10]

Imperial Valley, 1940 10.63 10.09 30.80 30.71
Loma Prieta, 1989 22.56 21.45 17.62 21.26

Kobe, 1995 8.49 10.19 31.12 32.38
L’Aquila, 2009 15.06 14.72 40.49 40.12
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Table A.1: Tuning formulae for the optimum TMD parameters as outlined in [38] for different dynamic excita-
tions.

Dynamic loading fopt ζopt
2

Harmonic Force 1−√3µ
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Figure 1: Structural parameters and absolute dynamic degrees of freedom of a SDOF linear primary structure (in-
dex 1), subjected to generic base displacement xg (t).
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Figure 2: Structural parameters and absolute dynamic degrees of freedom of a 2DOF linear mechanical system
comprised of a SDOF primary structure (index 1) equipped with an added TMD (index 2), subjected
to generic base displacement xg (t).
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Figure 3: H2 norm of the primary structure displacement as a function of tuning variables f , ζ2 , for ζ1 = 0.03
and for different values of mass ratio µ.
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Figure 6: Percentage reduction of the H2 norm of the displacement of the primary structure at variable mass
ratio µ for different values of structural damping ratio ζ1 : (a) proposed tuning method and (b) Den
Hartog tuning method [10].
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Figure 7: Primary structure displacement time history with ζ1 = 0: (a) proposed tuning method and (b) Den
Hartog tuning method [10].
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Figure 8: Primary structure displacement time history with ζ1 = 0.03: (a) proposed tuning method and (b) Den
Hartog tuning method [10].
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(b) Loma Prieta, 1989.
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Figure 9: Response displacement time histories x1(t) with µ = 0.02, ζ1 = 0 for different seismic signals, with
passive TMD optimised for unit impulse base displacement.
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Figure 10: Response displacement time histories x1(t) with µ = 0.05, ζ1 = 0.03 for different seismic signals,
with passive TMD optimised for unit impulse base displacement.
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• Versed-sine pulse:
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• Linear ramp:
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• Cubic ramp:
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• Unit step:
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Figure B.1: Scheme of pulse-like excitations adopted in Section 5.2.
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