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Abstract

The effects of pre-ignition chemistry on laminar flame speed in methane/n-
heptane fuel blends are investigated numerically, leading to flame speed mod-
elling accounting for these effects. The laminar flame speeds of fuel blends are
important input parameters for turbulent combustion models needed to support
design of dual-fuel engines. At the autoignitive conditions found in engines, pre-
ignition reactions cause the speed of the reaction front to increase. Fuels that
exhibit two-stage ignition behaviour, such as n-heptane, also exhibit a two-
stage increase in the speed of the reaction front as the reactant residence time
increases. There is a corresponding reduction in the flame thickness until the
residence time approaches the ignition delay time, whereupon the deflagrative
scaling of flame thickness breaks down. The analysis shows that the increase
in flame speed is due to distinct contributions of heat release, reactant con-
sumption, and enhanced reactivity ahead of the flame. Addition of methane
to n-heptane—air mixtures retards and reduces the first-stage increase in flame
speed, in part due to dilution of the more-reactive n-heptane fuel, and in part
due to consumption of radical species by the methane chemistry. The effect of
methane/n-heptane fuel blending on flame speed is described adequately by a
linear mixing rule. The effect of pre-ignition chemistry can then be modelled
as a linear function of the progress variable ahead of the flame — accounting for

heat release, reactant consumption, and enhanced reactivity ahead of the flame.
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The flame speed model accurately describes the variation of flame speed across
the full range of methane/n-heptane blends at engine-relevant conditions, up to
the deflagaration/ignition transition.

Keywords: cool-flame, low temperature chemistry, two-stage ignition,

residence time, flame speed, dual-fuel

1. Introduction

High efficiency engines require high temperature and high pressure combus-
tion conditions — conditions at which the reactants may become autoignitive.
Even in engine systems nominally characterised by deflagarative combustion,
flame propagation may still be affected by the pre-ignition chemical reactions
taking place ahead of the flame. Such reactions can affect flame stability and
prompt flashback in steady-flow combustors [I], and affect ignitability [2], heat
release rates [3] and detonation phenomena [4] in piston engines. Ignition chem-
istry differs markedly among fuels, with heavier hydrocarbon fuels exhibiting
two-stage ignition under some conditions [5], leading to differences in the struc-
ture and speed of flame propagation through autoignitive mixtures [6]. These
differences may be particularly relevant in dual fuel engines in which fuels with
dissimilar ignition behaviours, such as natural gas and diesel, are introduced
separately [7]. However the effect that blending fuels with dissimilar ignition
chemistry has on flame propagation through autoignitive mixtures is not well
characterised.

Hydrogen and light hydrocarbon fuels such as methane exhibit single-stage
high-temperature ignition behaviour. Pre-ignition reactions have limited effect
on flame propagation through single-stage ignition mixtures until the mixture
is close to the point of autoignition [0, 8]. In contrast, heavier hydrocarbons
relevant to real transport fuels, such as n-heptane, exhibit low temperature
chemistry (LTC) [9] and cool flames [10]. The chemical kinetics controlling
cool flames arise at high pressure and moderate temperatures, and are closely

related to those of two-stage ignition and Negative Temperature Coefficient
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(NTC) behaviour [l II]. Low temperature chemistry can significantly modify
the chemical and transport properties of a mixture [3], thereby affecting the
laminar flame speed well before the occurrence of high-temperature ignition [6]
12]. The response of laminar flame properties to blending of fuels with dissimilar
ignition behaviours, such as methane and n-heptane, has not been characterised
fully at autoignitive conditions. Methane/n-heptane mixtures are of particular
interest because these have been used in research studies as surrogate fuels for
the natural gas/diesel mixtures arising in pilot-ignited dual fuel engines [e.g.
13, (14, [15).

The laminar flame speed and laminar flame thickness are centrally important
in characterisation and modelling of turbulent combustion in engines because
they directly affect the turbulent flame speed [16]. The dependence of the
turbulent flame speed on laminar flame properties persists for flames affected by
LTC [1, B]. Knowledge of the laminar flame speed and laminar flame thickness
are therefore key to understanding and modelling combustion processes under
the autoignitive conditions that predominate in practical combustion systems.
However established empirical models for the variation of flame speeds with
temperature, pressure, equivalence ratio and dilution, such as in Ref. [I7], do

not account for the effect of pre-ignition chemical processes on flame speed.

Laminar flame speed. Pre-ignition chemical reactions ahead of a flame affect the
propagation speed. As such, there is not a unique freely-propagating laminar
flame speed (s;) at autoignitive conditions. Rather, the flame speed depends
on the extent of the pre-ignition reactions ahead of the flame [6] [8, [12], which
can be related to the residence time 7; of the reactants upstream of the flame
front [I8]. A non-autoignitive freely-propagating laminar flame corresponds to
the limit where the residence time is much less than the ignition delay time,
Tf K Tign, whereas the limit 7; — 754, corresponds to the transition from a
deflagarative flame to a pure ignition front [19].

The propagation speed of the flame front can be evaluated in a general way

from the density-corrected displacement speed sy, given by sf = psq/p., where
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p and sy are the local density and displacement speed, and p, is the density
of the unburnt reactants [20]. Evaluating sy in any unstrained one-dimensional
stationary flame configuration yields a well-defined residence time-dependent
flame speed, provided that diffusive fluxes through the inlet of the flow domain
are negligible [6].

Laminar flame thickness. In the case of diffusion-limited flame propagation with
negligible chemical reaction upstream of and within the preheat layer, the ther-
mal thickness of the flame front [; scales with the thermal diffusivity o and

laminar flame speed as [21]
o

Iy ~ ; (1)
The thermal thickness is [y = AT/(dT/dx)mas, where AT is the temperature
rise across the front and (d7T'/dx);mq. 1 the maximum thermal gradient within
the flame. Since the variation of thermal diffusivity and flame speed with re-
actant properties are typically well-modelled by established empirical relations
[e.g. [I7], this scaling relationship provides a simple means for estimating how
the reaction front thickness varies across a range of combustion conditions for
which the flame front behaviour is deflagarative. This scaling relationship breaks

down as the flame transitions into an ignition front. The transport equation for

progress variable ¢ within a stationary ignition front is

e we

U% = ?, (2)

where z and u are the displacement and velocity normal to the flame and w,
is the reaction source term for progress variable. The thermal thickness of
the reaction front can be approximated using the progress variable gradient:

ly ~ (80/6%);}117 giving the relationship

lfN Pu Sf, (3)

We,max
in which the factor p,/wemas is positive, with magnitude dependent on the

thermochemical state of the reactants. The relationship between Iy and sy
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therefore provides an indication of whether a flame front is deflagarative (~ Eq.
1)) or ignitive (~ Eq. .

The objectives of this study are to investigate and to model the effects of
different methane/n-heptane fuel blends and their pre-ignition chemistry on the
speed of reaction fronts under dual-fuel compression-ignition engine conditions.
The following section sets out the physical modelling and numerical approach
adopted. The results are then analysed in order (1) to assess the effects on flame
speed and structure due to thermal and chemical contributions of the different
fuels; and (2) to develop a new modelling approach for reaction front speeds

under autoignitive conditions.

2. Methodology

Simulations of adiabatic un-stretched one-dimensional laminar flames are
used to investigate the combined effects of methane/n-heptane ratios and pre-
ignition chemistry at engine-relevant temperatures. The effect of the pre-ignition
chemistry is assessed by varying the residence time upstream of the flame front.
The residence time 7; at the flame front is evaluated as

TF = /:f ﬁdm, (4)

where x; is the z—location of the inlet to the solution domain, x; is the location
of the upstream edge of the flame, here defined as being half of one thermal
thickness upstream of the maximum temperature gradient location.

Reactant mixtures are described in terms of their total-equivalence ratio,
Por, evaluated in the conventional manner by considering the stoichiometric
oxygen-fuel ratio for the fuel mixture, and fuel-equivalence ratios. The fuel
equivalence ratios are defined by ¢cr, = vem,YcH,u)/Y(02m) a0d dcyh,s =
VCyHye Y (CrHie,u)/ Y(0s,u), Where subscript u denotes the unburnt composition
and v; is the stoichiometric oxygen-to-fuel mass ratio for the i*" fuel species.
These definitions of the fuel equivalence ratio can be added to obtain the total

equivalence ratio, ¢ior = dcH, + PCyrHyg-
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The flames are simulated using the COSILAB one-dimensional flame solver
[22] with multi-component molecular transport and semi-perfect gas models
based on seven-coefficient polynomials for the temperature-dependence of ther-
modynamic properties. The methane/n-heptane chemistry is modelled using a
106 species mechanism for n-heptane combustion [23]. There are few experimen-
tal data available for autoignition and flame propagation in methane/n-heptane
fuel blends. Therefore the chemical model has been selected on the basis of sat-
isfactory autoignition and flame propagation predictions of experimental data
for pure methane—air and n-heptane—air mixtures, and satisfactory agreement
with more detailed models for autoignition and flame propagation in methane/n-
heptane fuel blends. Validation data for the 106 species mechanism used are
provided as supplementary material.

The COSILAB software employs adaptive grid refinement and a stationary
flame solution is obtained using a modified-Newton method [22]. The grid-
independence of the solution data presented in this paper has been established
by incrementally tightening the adaptive grid error tolerances until numerical
convergence is achieved, requiring between one and four hundred grid points,

depending on the simulation conditions.

3. Results and Discussion

8.1. Effects of pre-ignition chemistry on flame speed

Figure [1] shows the variation of flame speed with residence time for pure
methane, pure n-heptane and two methane/n-heptane fuel blends at 40 bar and
850 or 1000 K. The flame speed of the methane—air mixture remains approx-
imately constant until the residence time approaches the ignition delay time,
when it increases indefinitely, as observed previously by Habisreuther et al. [g].
For an unburned temperature of 1000 K where n-heptane—air mixtures exhibit
single-stage ignition, the evolution of the flame speed of the n-heptane—air mix-
ture is qualitatively similar to the pure methane case. However, for an unburned

temperature of 850 K where n-heptane—air mixtures exhibit two-stage ignition,
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the flame speed also increases in two distinct stages: the flame speed increases
by 15 % when the residence time reaches the first-stage ignition delay time, then
increases gradually during the second-stage ignition-delay, before increasing in-
definitely as the residence time approaches final ignition delay time. The same
two-stage increase in flame speed is observed for methane/n-heptane blends that
show two-stage ignition behaviour, and the two-stage effect is stronger as the
proportion of n-heptane increases.

Figure [2|shows that the first-stage increase in flame speed coincides with the
first-stage increase in temperature, occurring between 0.13-0.18 ms residence
time for 40 bar 850 K stoichiometric n-heptane-air flames. The flame speed
is expected to be affected by the temperature increase, however consumption
of major reactants and production of intermediate species by the pre-ignition
chemical reactions ahead of the flame also affect flame speed. We conduct a nu-
merical experiment in order to quantify the relative influence that the thermal
and chemical changes have on the flame speed during first-stage ignition. The
experiment isolates the effect of the intermediate species from the thermal effects
by performing modified flame simulations in which we remove all intermediate
species a short distance upstream of the flame while keeping the temperature
unchanged following the procedure set out in the Appendix. Since the inter-
mediate species have been removed from the modified flame, the change in the
speed of the Modified flame shown in Fig. [2]is entirely due to the temperature
rise and the consumption of major reactants ahead of the flame front. The re-
sults of the modified flame experiment indicate that that the first stage increase
in flame speed is due to both thermal and chemical influences in approximately
equal measure. Modelling for the flame speed should take each of these effects

into account.

3.2. Effects of pre-ignition chemistry on flame thickness

Diffusion-limited (i.e. deflagarative) flame propagation is expected to exhibit
a scaling relationship between flame thickness and flame speed given by Eq. [I}

Figure [3| shows the variation of the high-temperature flame’s speed with o/l
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for premixed combustion of stoichiometric methane—air and n-heptane—air at a
range of reactant temperature (7, = 700 to 1000 K). Data are normalised by
the short-residence time laminar flame speeds of methane (s; cm, = 0.79ms™!)
and n-heptane (s;,c, 1,6 = 1.20ms™ 1) at 850 K and 40 bar. Flames with short
residence times (shown as circular symbols) follow the deflagarative scaling rela-
tionship as T, is increased from 700 to 1000 K. The gradient of s; with respect
to a/ly is greater for n-heptane-air flames due to the greater reactivity of n-
heptane compared to methane. As residence time increases (dashed lines), the
flame speed of the n-heptane—air mixture remains largely unchanged until the
mixture undergoes first-stage ignition. Subsequently the reaction front speed
increases, and the reaction front thickness initially reduces in accordance with
the deflagarative scaling given in Eq. Finally, as the temperature-based
progress variable (¢ = (T — T,)/(Ty — Ty,)) ahead of the flame reaches 0.15,
the deflagarative scaling breaks down and the front thickness starts to increase
(/15 reduces) as the residence time ahead of the flame approaches the ignition
delay time — marking the transition from deflagarative to ignitive scaling of the
front thickness.

Figure[4] presents the variation of the cool-flame’s speed and thickness for the
850 K 40 bar stoichiometric n-heptane—air flame as the residence time increases.
The thickness of the cool-flame follows the linear scaling behaviour given for ig-
nition fronts in Eq. [3] Despite its name, the cool-flame exhibits ignitive rather
than deflagarative behaviour across all of the conditions in this study. The
absence of deflagarative cool-flames is consistent with Ref. [24], where steady
deflagarative cool-flames could only be stabilised when aerodynamic straining
was used to prevent the development of a high-temperature flame. These ob-
servations support a hypothesis that deflagarative cool-flames, if they arise, do
not survive in premixed combustion configurations in which the cool-flame is
chased by a high-temperature flame — since the high-temperature flame speed
would typically be fast enough to overtake a diffusion-limited cool-flame.

The transition between deflagarative and ignitive scaling of the flame thick-

ness is accompanied by diminishing importance of diffusive transport within the
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flame fronts. Figure [b|shows mass fraction transport budgets for stoichiometric
n-heptane flames at 850 K and 40 bar for two residence times 7;/7;gn, = 0.85
and 0.95. The reaction (R), convection (C) and diffusion (D) terms [6] are pre-
sented for the alkyl hydroperoxy radical (QOOH) within the cool-flame and for
OH within the high-temperature flame front. The budgets indicate that dif-
fusive transport in the high-temperature reaction front becomes gradually less
important as the residence time increases, and is generally less important in the
cool-flame front. The magnitude of the diffusion term in the high-temperature
flame is lower at 77 /7,4, = 0.95, at which point the flame thickness is increasing
with flame speed, than at 7;/7;4, = 0.85, at which point the flame thickness is
reducing in accordance with the deflagarative scaling (Eq. . However the grad-
ual reduction of the diffusive transport contribution does not provide as clear
a delineation of the transition between deflagarative and ignitive behaviours as
the changes in the sy — Iy dependence shown in Figs. [ and

Analysis of the flame thickness indicates that the deflagarative scaling in Eq.
applies to the high-temperature flame front across a wide range of autoignitive
conditions and, given models for sy and o, provides a useful means of modelling
the variation of Iy in a flow. Eq. [1]is not applicable to cool-flames or to high-
temperature flames burning through mixture that exhibits ignitive behaviour,
however this restriction is not very limiting since the flame thickness was sought
for use in flamelet combustion models, and such models are not expected to be

valid in relation to flames with ignitive behaviour.

3.8. Modelling methane/n-heptane flame speeds for dual-fuel engines.

The laminar flame speed is a key input for a number of turbulent combus-
tion models [16]. Several empirically-derived algebraic models for laminar flame
speed have been developed and used widely for combustion at non-autoignitive
conditions [e.g.[I7]. For applications involving flame propagation through inho-
mogeneous mixtures of natural-gas/diesel or methane/n-heptane, the preceding
results suggest that it would be beneficial to employ a laminar flame speed

model that accounts both for the local composition of the fuel blend, and for
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the effects of pre-ignition chemistry. Algebraic modelling for these effects is
developed following a three step approach. First, established empirical models
for the variation of flame speed with temperature, pressure, equivalence ratio
and dilution are calibrated for pure methane and for pure n-heptane fuels at
engine-relevant conditions. Second, new modelling is introduced to account for
the effects of pre-ignition chemistry on the flame speed — accounting for the
distinct contributions of heat release, reactant consumption, and enhanced re-
activity ahead of the flame. Third, a mixing rule is employed in order to model
the flame speed in methane/n-heptane mixtures based on the flame speed of the

pure fuels.

Step 1: Flame speeds of pure fuels. The laminar flame speeds for pure methane
and pure n-heptane fuels are evaluated for a set of engine-relevant conditions,
recording the converged flame speed in the limit where the flame residence time
is much less than the ignition delay time. Algebraic functions describing the
dependence of flame speed on equivalence ratio [25] and unburnt-temperature,
pressure and dilution [I7] are then fitted to this data. Simulation data for
the variation of methane and n-heptane flame speeds with equivalence ratio at
reference conditions of Ty, . = 850 K and p,.s = 40 bar are presented in Fig.
[B]l The variation of flame speed with equivalence ratio at these conditions is

adequately modelled by a four-parameter Gaussian function [25],

Stres = 167" exp [~ A3 (971)?] (5)

A = {A;, Ay, Az, Ay} is a set of fitted coefficients for a particular fuel. At
Tyref = 850 K and p,.y = 40 bar, we obtain Ay, = {11500, —5.44,1.20, —1.04}
and Ac.m,s = {344000, —4.80,0.628, —2.56} by least-squares fitting across the
range 0.45 < ¢y < 1.3, yielding the close agreement shown in Fig. [0}
Metghalchi and Keck [I7] provide the following empirical model for the de-
pendence of flame speed on the unburnt temperature T;,, pressure p, equivalence

ratio ¢s; and the mass fraction £ of diluents such as recirculated combustion

10
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products,

«a B
S, fuel = 5l,ref(¢tot) : < Tu > : < i > - (6)

Turef Dref
«a, B and 7 are model parameters given by expressions of the form: o =
By — Ba(¢tot — 1); B = —Bs + Ba(¢ior — 1); v = 1 — Bs&, in which By =
{Bi1, B2, B3, B4, Bs} is a set of fitted constants. Metghalchi and Keck fit-
ted Bfyer values using flame speed data for unburnt temperatures up to 700

K, however these values are not generally applicable to flames at the higher-

temperatures found in piston engines. We obtain Boy, = {3.04,0.70,0.40,0.10,2.49}

and Be, i, = {2.79, —0.05,0.26,0.02, 3.02} by least-squares fitting to a set of 45
flame speeds for each fuel at conditions comprising T, = {700, 775, 850, 925, 1000}
K, p = {20,40,60} bar, and ¢ = {0.8,1,1.2}. In order to evaluate B,
four additional diluted flames are included with £ = {0.00,0.05,0.10,0.15} at
diot = 1.0, T, = 850 K and p = 40 bar. The rms error of the fits for Boy, and
B, m,, are 0.020ms~! and 0.028ms ™!, and the maximum relative error of 10%
occurs at the coldest and leanest conditions. The dataset used for parameter

fitting is provided as supplementary material.

Step 2: Flame speeds at autoignitive conditions. Figure[f|shows that the laminar
flame speed at autoignitive conditions increases approximately linearly with the
value of progress variable just ahead of the flame for the full range of methane/n-
heptane fuel blends investigated. Therefore modelling for the flame speed at
autoignitive conditions will be developed as a function of the progress variable

in the form

St fuel = 81, fuel (1 + Cfuei€) (7)

where (fyer is a model coefficient and progress variable is based on temperature.
Figure [7] reports values for progress variable two thermal thicknesses ahead of
the location of the peak temperature gradient in the flame, however results show
low sensitivity to distances between one and five thermal thicknesses ahead of
the flame. The data presented in Fig. |Z| suggests that (fyer = 2.4 £ 0.5 for the

blends considered (¢cm,/dtor = 0,0.5,0.8,1.0) for progress variable less than

11
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0.1. Super-linear behaviour is expected as the residence time approaches the
ignition delay and the flame transitions into an ignition front, however flamelet-
based turbulent combustion models that require flame speed as an input would
not be applicable to flames with ignitive, rather than deflagarative behaviour.
Therefore the linear modelling approach remains valid for diffusion-limited com-
bustion conditions at which the flamelet approach is applicable.

Since the variation of ¢ among methane/n-heptane fuel blends is relatively
small it is convenient to adopt a single value of  for the full range of fuel blends.
Figure [I] shows that using ¢ = 2.4 in Eq. [7] provides an adequate prediction of
the variation of flame speed with residence time for all of the fuel blends and
temperatures investigated. In order to apply the flame speed model in engine
simulations, the progress variable in the mixture ahead of the flame then needs
to be modelled, either by simulating the evolution of the chemical composition
during ignition as in Ref. [26], or potentially by modelling the progress variable
as a function of the Livengood-Wu integral [27].

Analysis in Section shows that the flame speed is affected by the accu-
mulation of intermediate species ahead of the flame, in addition to the effects
of heat release and dilution due to reactant consumption. Equation [6] contains
factors accounting for effects of temperature and dilution of the unburned miz-
ture on flame speed. Similar factors may be applied to account for effects of the
increase of temperature and dilution of reactants due to pre-ignition reactions
ahead of the flame front: (T'/T%,)* and 1 — Bs&,,, where &, is the fraction of
the reactants that have been consumed by pre-ignition reactions. Additional
modelling is then necessary to account for the increased reactivity due to the
accumulation of intermediate species ahead of the flame.

The increase in flame speed due to the presence of intermediate species is
shown for stoichiometric n-heptane-air at 850 K by the difference between sy
and Sfmoq in Fig. Fig. [7| shows that s;/sfmoa also has an approximately
linear dependence on progress variable given by 1+dc¢, . ¢, with 6c, m, ~ 1.18.
Finally, thermal expansion due to pre-ignition heat release changes the velocity

of the flow into which the high-temperature flame propagates. Accounting for

12
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the thermal expansion upstream of a one-dimensional planar flame, the flame
speed is multiplied by the density ratio p/p, where p is the fluid density just
upstream of the flame, finally giving
T\ et p
S§ fuel = SI,fuel * <Tu> (1 = Bs, puetépr) - (1 + dpyerc) - (p) . (8)

u

Each of the factors in Eq. [8] can be expressed as a function of progress vari-
able: rearranging the definition of progress variable gives T/T,, = 1+ ¢(Tp/ T\ —
1); approximating the fraction of reactants that have been consumed by the
progress variable gives &, = c; and, neglecting changes in pressure and molar
mass, the ideal gas equation gives p/p,, =~ [1 + ¢(Tp /Ty, — 1)]_1. Since the model
is only required to be valid for small values of progress variable, a first-order
Taylor expansion of Eq. (8 yields

8§, fuel = S1,fuel (1 +c [(Oéfuel —-1)x <§: - 1) — Bs fyel + 6fuel]> (9
Entering the previous values for stoichiometric n-heptane fuel (ac,m,, = 2.79,
Tu/Ty = 3.18, Bs,c. 1y = 3.02, ¢, 1, = 1.18) in Eq. [§] corresponds to a value
of ¢c,m,s = 2.1 in Eq. [7} which is reasonably close to the value of ¢ ~ 2.4
obtained from Fig. [} Equations [§ and [] therefore provide a breakdown of the

various contributions to the flame speed increase.

Step 3: Flame speeds of miztures. In order to model the laminar flame speed
Sfmiz i methane/n-heptane blends we compare the linear [25], Hirasawa et
al. [28], and Di Sarli et al. [29] mixing-rules in Fig. [6] The Di Sarli et al.
model tends to over-emphasise the contribution of methane. The linear model
is simpler and marginally more accurate than the Hirasawa et al. model for
methane/n-heptane blends, and it is adopted hereafter although either model is

acceptable. The linear model is given by

Sfmiz = ZCH4Sf,C’H4 + (1 - ZCH4)stC7H167 (10)

where Zon, = You, u/(Yor, v+ Yo, Hy.0) is the local mass fraction of methane
in the fuel blend. In agreement with Bourque et al. [30], adding higher-

hydrocarbons to methane increases the flame speed disproportionately under

13
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fuel-rich conditions. Potentially, a dependence on equivalence ratio could be
incorporated into Eq. in order to achieve even closer agreement. The com-
plete new model is validated for a range of stoichiometric methane/n-heptane
fuel blends in Fig. [I] and for the full range of lean equivalence ratios in Fig.
|§| (solid circles), adequately capturing the effects of pre-ignition chemistry on

flame speed across the full range of conditions with deflagarative behaviour.

4. Conclusions

The effects of pre-ignition chemistry on laminar flame speed in autoignitive
methane/n-heptane fuel blends are investigated using premixed laminar flame
simulations. The flame speed and thickness are important input parameters for
turbulent combustion models based on flamelet assumptions.

Pre-ignition reactions cause the speed of the flame to increase. Fuels that ex-
hibit two-stage ignition behaviour, such as n-heptane, also exhibit a two-stage
increase in the speed of the reaction front as the reactant residence time in-
creases. The increase in flame speed is due to distinct contributions of heat
release, reactant consumption, and enhanced reactivity ahead of the flame. Ad-
dition of methane to n-heptane—air mixtures retards and reduces the first-stage
increase in flame speed, in part due to dilution of the more-reactive n-heptane
fuel, and in part due to consumption of radical species by the methane chemistry.
As the residence time of the reactants approaches the ignition delay time, the
reaction front transitions into a pure ignition front, in which diffusive transport
is negligible.

Prior to transitioning into a pure ignition front, the behaviour of the flame
can be classified as deflagarative or ignitive depending whether the flame thick-
ness and flame speed obey the deflagarative scaling Iy ~ a/s;, subject to per-
turbations of the temperature ahead of the flame. The thickness of cool-flames
exhibits ignitive scaling with flame speed, {; ~ s¢, for all conditions simulated.
The transition between deflagarative and ignitive scaling for high-temperature

flame fronts occurs in 850 K stoichiometric n-heptane—air at a mixture residence
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time of around 93% of the ignition delay time, as the progress variable in mix-
ture ahead of the flame passes 0.15. The transition between deflagarative and
ignitive scaling is associated with a reduction in the relative magnitude of dif-
fusive transport within the flame front, however examination of the transport
budget alone does not provide a clear delineation between deflagarative and
ignitive behaviours.

Modelling for flame speed in dual-fuel blends at autoignitive conditions
should account for the local composition of the fuel blend, and for the effects of
pre-ignition chemistry. A linear mixing rule is adequate to describe the varia-
tion of flame speed in methane/n-heptane fuel blends. Modelling is introduced
to account for the effects of pre-ignition chemistry on the flame speed. The
model is a simple linear function of the progress variable ahead of the flame —
accounting for the distinct contributions of heat release, reactant consumption,
and enhanced reactivity ahead of the flame. The flame speed model accurately
describes the variation of flame speed and hence flame thickness for the full
range of methane/n-heptane blends at engine-relevant conditions, up to the

deflagaration /ignition transition.

Appendix

Procedure for removing intermediate species ahead of the flame. The modified

flame simulation involves two steps illustrated in Fig.

Step 1. The first step involves a single precursor flame simulation (Fig. |8 top)
that is used to determine the variation of the reactant composition with resi-
dence time upstream of the flame front. The composition recorded for each resi-
dence time is then modified by replacing the intermediate species with a mixture
of reactants and major products of stoichiometric combustion. The replacement
mixture consists of CHy, C;Hyg, Oz, No, COs, and HyO. The modified mixture
composition is determined as a function of the fuel equivalence ratios (¢c7m16
and ¢cm4), the temperature T, of the original unburnt mixture, and the local

temperature T recorded from the precursor flame. The modified mass fraction
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vector Y’ is calculated by weighting the unburnt and burnt composition, Y,

and Y, respectively, with a progress variable cy
Y’ =Yy —‘rYu(l—Cy). (11)

The burnt composition is taken as the products of complete stoichiometric com-
bustion, consisting of Ny, CO9 and HyO. The progress variable ¢y is given by

S Vaha(T) = Yauha(T,)] 2
Y Znspec [Ya,bhoc (Tb) - Ya,uha (Tu)] ’

a=1

where Y and T are the original unmodified mass fraction vector and tempera-

ture, and h, is the specific enthalpy of each species.

Step 2. The second step produces a flame solution using the modified com-
position as the inlet condition with the flame positioned 67um from the inlet
(Fig. |8 bottom). The flame residence time for the modified flame simulation
is sufficiently small that the results are not influenced significantly by chemical
reaction upstream of the modified flame front, and sufficiently large that the
flame speed is not influenced significantly by diffusive flux through the domain
inlet. This is confirmed in Fig. [2] by applying the two-step procedure with-
out removing intermediate species from the reactant mixture: the flame speeds
obtained using this ‘reduced’ solution domain closely follow the residence time-
dependence obtained using a single ‘full’ solution domain. The difference due to
the use of the reduced domain procedure is negligible compared with the effect
of replacing the intermediate species. This confirms the validity of the modified
flame approach for determining the relative influences of intermediate species

and thermal effects.
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Figure 1: Laminar flame speeds of stoichiometric methane/n-heptane blends versus residence

time at 40 bar: simulations (symbols); model Eqgs. [7] and [10] (solid).

21



1. 1100

O ¢ Full domain — Temperature —
e e Reduced domain 1050 2
e e Modified flame e
=
1000 =
(1
950 2
- £
~ ()
g 900 &
P
850
S « ® *
Cea0 0 @ ®
co®
1.2t ® ceo @W™®
10" 10°

Residence Time [s]

Figure 2: Laminar flame speed and temperature versus residence time for stoichiometric n-
heptane—air at 40 bar and 850 K: Unmodified flame in the full domain (white circles); 0.2 mm
domain with inlet composition from the unmodified flame (grey circles); 0.2 mm domain with

intermediate species removed from the inlet composition (black circles).
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Figure 3: Normalised high-temperature reaction front speed sy¢/s; ref versus o/(lfs ref)
for short residence time stoichiometric methane—air and n-heptane—air flames with unburnt
temperatures 700, 775, 850, 925 and 1000 K (symbols). Data for n-heptane—air combustion
with residence times up to 98% of the ignition delay time at 775, 850, and 925 K (various
dashed lines as labelled).
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Figure 4: Cool-flame reaction front speed sy versus thermal thickness Iy for stoichiometric

n-heptane—air flames at 850 K and 40 bar for a range of residence times (symbols). Dashed
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Figure 5: Transport budgets and mass fraction profiles for stoichiometric n-heptane—air at
850 K and 40 bar for Ygoon (left column) and Yo (right column). The residence times at
the flame front are 85% (top row), and 95% (bottom row) of the overall ignition delay time.

The data are plotted versus the distance from the inlet.
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Figure 6: Variation of flame speed with equivalence ratio for methane/n-heptane fuel blends
at 850 K and 40 bar for ¢cga/dtor = 0, 0.5 and 1.0; Fitted flame speeds from Eq. and
linear [25], Hirasawa et al. [28], and Di Sarli et al. [29] mixing-rules. Speeds for a long
residence time flame from simulations and from predictions of the model (Egs. m and are

also shown.
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Figure 7: Normalised flame speed versus the progress variable upstream of the flame front:
Round symbols show sf/s; ref at ¢cr, /Ptot =0, 0.5, 0.8 and 1.0 for T, = 850 K and 1000 K;
Square symbols show s7/sf moq based on data from Fig. Solid lines show s /s; e = 2.4
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