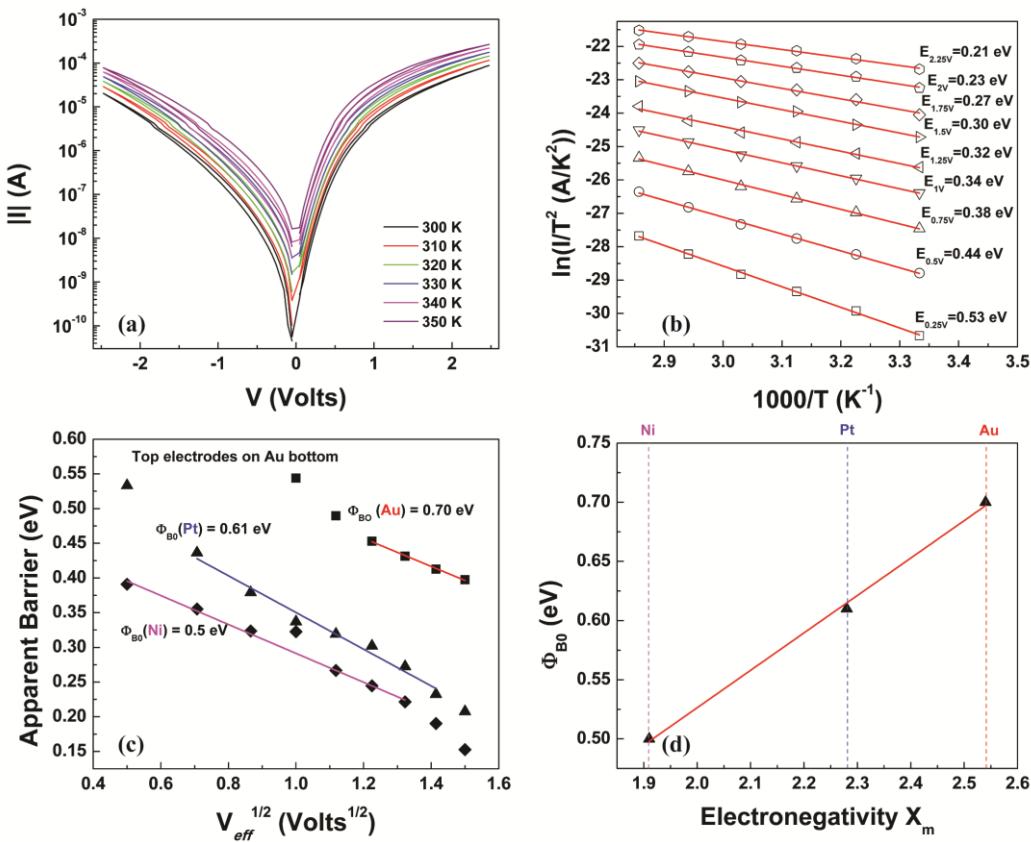


Interface barriers at Metal – TiO₂ contacts


L. Michalas*, A. Khiat, S. Stathopoulos and T. Prodromakis

Electronic Materials and Devices Research Group, Zepler Institute, University of Southampton, SO17 1BJ, UK

*Corresponding author Email: l.michalas@soton.ac.uk

Metal-oxides combine a unique ensemble of properties presenting great potential to meet the diverse requirements of modern electronics and in particular of brain-inspired applications¹. Among others, TiO₂ is without a doubt one of the most celebrated materials. The ability of TiO₂ to obtain different microstructures (i.e. amorphous, rutile etc.) and thus a plethora of electronic properties that can be determined/controlled by the fabrication² and/or biasing³ conditions augmented its use in practical applications, such as memristors⁴, TFTs⁵ and sensors⁶. Notwithstanding the importance of the active layer, identifying appropriate metal contacts and deciphering their interfacial role is also of paramount importance to a device's electrical behaviour^{7,8}. This paper aims to present a detailed quantitative electrical characterization study of Metal-TiO₂ interface characteristics.

The study is performed by recording the current-voltage (I-V) characteristics of Metal-TiO₂-Metal stacks at different temperatures (Fig. 1(a)), through appropriate modelling and analysis that includes field and temperature dependent signature plots (Fig. 1(b)). The results revealed the major role of the metal electronegativity and of the interface states on the formation of the interface barriers (Fig. 1(c) and 1(d)). The study also came across an unexpected observation where the common bottom electrode interfaces are found to be not identical but influenced by the top electrode material. Overall, this work provides a useful database for selecting appropriate electrode materials in TiO₂ based devices, offering new insights on the role of electrodes on metal-oxide electronic applications.

Figure 1: Analysis of the I-Vs, recorded at different temperatures (a), allowed the extraction of signature plots (b) that lead to interface barriers calculations (c). These depend on the electronegativity of the metal electrode (d).

References

- [1] A. Serb et al. *Nature Comms* **7**, 12611, 2016
- [2] M. Trapatseli et al. *J. Appl. Phys.* **120**, 025108, 2016
- [3] S. Stathopoulos et al. *Sci. Rep.* **7**, 17532, 2017
- [4] D. Strukov et al. *Nature* **459**, 1154, 2009
- [5] H. Choi et al. *ECS J. Solid State Sci. Tech.* **6**, 379, 2017
- [6] J. Bai et al. *Chem. Rev.* **114**, 10131, 2014
- [7] J.J. Yang et al. *Appl. Phys. A* **102**, 785, 2011
- [8] L. Michalas et al. *IEEE Trans. Nanotech.* - in press