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Abstract: We systematically investigate the optical properties of silver films to clear up the 
inconsistency in the published values of the dielectric function of silver. The silver films were 
deposited on mica by using a facing target sputtering system, which yielded large area single 
crystal of silver suitable for the fabrication of high-finesse plasmonic devices and 
metamaterials. We confirmed that wide variations in the optical properties of silver were 
associated with the overall quality of the silver films including crystal structure, thickness, 
and surface roughness. The quality factor of the surface plasmon polaritons calculated for the 
obtained single crystal is 5×103, which is about five times higher than that for polycrystalline 
films. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Plasmonic structures and metamaterials exploiting surface plasmons have attracted great 
attention over the last decade [1, 2] since they gave rise to some innovative concepts and 
novel devices such as superlenses, nano-antennas, spasers, and subwavelength waveguides 
[3–6]. Research on metamaterials operating in the infrared and visible spectral regions is 
often carried out using metasurfaces rather than their three-dimensional counterparts because 
of the ease of manufacture. However, the response of the metasurfaces is very sensitive to the 
presence of dissipative losses in the subwavelength resonators making it difficult to obtain the 
optimum performance. Several approaches to overcome the losses were investigated, 
including the search for better plasmonic materials among metallic alloys, heavily doped 
semiconductors, graphene, and conductive oxides [7–9] in addition to direct compensation of 
the losses by integrating metamaterials with optical gain media [10]. Although these 
approaches aim to minimize Joule losses, the actual dissipation rates are often much higher 
than those expected from Ohm’s law. The additional drawback associated with surface 
roughness and grain boundary scattering due to polycrystalline nature of thin metal films was 
reported [11]. As a result, employing single crystals of noble metals could become a major 
step towards the reduction of plasmonic losses. We demonstrated that metamaterials 
fabricated using epitaxial gold thin films with a surface roughness of less than 0.2 nm showed 
a strong resonant response in the near-infrared spectral region [12]. Silver is far less 
expensive than gold and has the lowest intrinsic loss in the visible and near-infrared regions 
among all metals. Thus, to improve the performance of plasmonic devices and metamaterials, 
the use of single crystal films of silver is desirable [13–16]. However, silver has low cohesive 
energy as compared with other metals, while silver films on dielectric substrates are easily 



agglomerated by heating. In fact, it is difficult to obtain continuous silver films with a 
thickness of 100 nm or less using conventional methods [17–19]. To overcome the difficulty, 
chemical methods and molecular beam epitaxy techniques have been developed. They 
enabled the growth of high-quality single-crystal films at temperatures lower than room 
temperature [13, 14]. Another problem related to the use of silver films stems from an 
inconsistency in the measured values of the optical dielectric function [20–24]. The dielectric 
function is important to understand electronic and optical properties of noble metals, 
especially for transmission and reflection of light. The propagation length of surface plasmon 
polaritons, plasmon lifetime, and non-radiative loss are directly related to the dielectric 
function [25]. However, silver has wide variations in the dielectric function associated with 
sample preparation, measurement techniques, and surface texture. While it is well known that 
optical properties are affected by surface roughness, grain boundary, and film thickness [11, 
12], there have been only a few systematic studies on how film structure affects the optical 
dielectric function of silver. 

In this work, we present a systematic investigation of optical properties of silver thin films 
deposited by a facing target sputtering system, which yielded large area single crystal thin 
films. We investigated the effects of film thickness, surface texture, and crystal structure on 
the optical properties of silver thin films. The deposition conditions were optimized by 
evaluating the optical characteristics of silver films. We found that the inconsistency in the 
measured values of the optical dielectric function of silver resulted from the overall quality of 
the films including crystal structure, thickness, and surface roughness. The obtained single 
crystal silver thin films allowed us to reduce plasmonic losses and, in contrast to single crystal 
gold films, extend the useful spectral range to the near ultraviolet wavelengths. The obtained 
films were also used to fabricate a nanostructured metasurface with a structurally complex 
pattern, which showed high-Q resonance in the near infrared region. We believe that the 
silver growth technique, described here, makes it possible to realize inexpensive and low-loss 
plasmonic systems and devices for various practical applications. 

2. Experimental details 

Silver thin films were deposited on freshly cleaved mica substrates (Nilaco) with the help of a 
facing target sputtering system (Biemtron LS-420R), which enabled to avoid plasma damage. 
The parallel facing target direction was perpendicular to the substrate holder in this system 
[26, 27]. The substrates were heated during deposition from the back side of the substrate 
holder. The deposition temperature ranged from room temperature to 500 °C, and the film 
thickness ranged from 44 to 150 nm. The sputtering was performed at a deposition rate of 2 
nm/s and a base pressure of less than 3×10-5 Pa. For comparison, we also prepared samples 
deposited at room temperature on both mica and glass substrates. The mica sheets were cut 
into pieces of approximately 1×1 cm2 and freshly cleaved to expose clean and atomically flat 
surface just before loading into the sputtering system. Mica is a highly transparent dielectric 
with an exceptionally broad transmission window spanning from UV to mid-IR (0.2 to 10 
μm) which makes it an ideal substrate for hosting metamaterial-based optical devices. The 
glass substrates were cleaned with acetone, isopropanol, and distilled water before the 
deposition. The thin films were characterized by using various analytical techniques including 
scanning electron microscopy (SEM), X-ray diffraction (XRD), and high-resolution 
transmission electron microscopy (HRTEM). The surface morphology of the samples was 
examined by using atomic force microscope (AFM) operating in a tapping mode under 
ambient conditions. Spectroscopic ellipsometry measurements using a spectroscopic 
ellipsometer (J. A. Woollam M-2000) were carried out to extract the optical constants of 
silver in the wavelength range of 200-1700 nm and at an incidence angle of 60°. The complex 
dielectric constant ε = ε1 ‒ iε2 was obtained from the measured ellipsometric angles Ψ and Δ 
as a function of wavelength. The quality factor of surface plasmon polariton (SPP) at the 
wavelength of 1 μm was evaluated as the ratio of enhanced local field to incident field, which 
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dash line in Fig. 7(b) shows the reflection spectrum of the silver ASR metasurface after 
leaving the sample in air for nine months. The aged silver ASR metasurface exhibits an 
almost identical reflection spectrum with only a slight red-shift. Exposing the sample to high 
vacuum did not affect the spectrum, which suggested that the red shift could not have resulted 
from the accumulation of moisture. The other possible explanation was that over time a 
certain fraction of silver in the film had been transformed into silver sulfide. To test the 
conjecture, we performed an energy dispersive X-ray spectroscopy (EDX) analysis of the 
sample. It revealed the presence of 0.5% of sulfur on the background of 67% of silver (with 
the remaining 32.5% taken mostly by aluminum and oxygen, which came from the mica 
substrate). Given that the thickness of the silver film was 110 nm, the detected amount of 
sulfur would be equivalent to a 0.8-nm-thick surface layer of silver sulfide, which is a 
monolayer of the compound. Such a thin surface layer would naturally cause a small red shift 
in the spectrum due to the high refractive index of silver sulfide [33]. At the same time, it was 
too thin to increase absorption in the metamaterials, which might explain the seeming stability 
of single crystal silver films regarding their optical performance. The formation of only a 
monolayer of silver sulfide was also consistent with the absence of grains. Indeed, in the case 
of a polycrystalline film, silver sulfide would have penetrated into the silver film along with 
the grain boundaries which increases the relative composition of sulfur in EDX analysis. 
Although further investigation is required, single crystal films appear to be stable due to the 
absence of grain boundaries. 

4. Conclusion 

A systematic investigation of optical properties of silver thin films deposited by a facing 
target sputtering system has been carried out. We found that the extracted optical dielectric 
function of silver depends on the overall quality of the films including such characteristics as 
crystal structure, thickness, and surface roughness which are held responsible for the 
inconsistency with previously reported data sets. The deposition conditions were optimized 
by evaluating the optical characteristics, and it was demonstrated that single crystal silver thin 
films enabled a substantial reduction of plasmonic losses. In particular, the SPP quality factor 
of a single crystal film with 110-nm-thick reached 5×103, which was about five times higher 
than that of commonly used silver films on glass. We believe that the described silver film 
deposition technique holds promise not only for the fabrication of large-scale plasmonics and 
metamaterial devices but also for crystal growth of two-dimensional materials. 
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