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Factors Controlling the Mobility of Shingle Beaches,
With Particular Reference to the North Kent Coast.
by Stephen M McFarland

Despite their scarcity on a global scale, shingle beaches are a common feature of the coastline
of the UK, in particular southern England. Shingle beaches have the ability to dissipate large
amounts of wave energy over short distances. As a result of this ability, shingle beaches have
become a popular ‘soft’ engineering option for providing protection to coastal regions from
the effects of sea flooding and erosion.

Shingle beaches are mobile features and, as a result, are subjected to transport under the
action of waves and currents. Whilst this mobility allows shingle beaches to respond rapidly
to changing environmental conditions, it often also results in localised erosion. This leads to
the lowering of beach levels and a subsequent reduction in the level of protection afforded to
the shoreline.

Numerical modelling techniques have been used in conjunction with archived wind, water
level, wave and beach profile data to assess the factors which influence the mobility and
stability of the shingle beaches on the coastline of north Kent in the southeast of England.

Shingle beaches which become eroded are commonly replenished using offshore gravel
deposits. Frequently, it has been found that the replenishment material contains a higher
percentage of fine-grained material than occurred on the natural shingle beach. These
replenished beaches are more reflective than their natural counterparts; this has important
implications for the estimated life expectancy of replenishment schemes and for the

performance of replenished beaches under storm conditions.
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Introduction

Beaches are a common feature on coastlines around the world; they are accumulations of
sediment on the land - water interface, which display a variety of forms (Carter, 1989). Well
cited beaches occur on the eastern coastline of the USA, and the south coast of England. It is

on one of the latter sites that the present research project is to be undertaken.

Beaches are of interest to geologists in the reconstruction of ancient environments (Hart &
Plint, 1989), coastal geomorphologists on the development and evolution of landforms (King,
1972), oceanographers for the examination of physical processes (Open University, 1994), and
coastal engineers involved with the design of sea defences and construction in the beach /

nearshore region (Muir Wood and Fleming, 1981).

Coastal zones and beaches are areas of wave and tidal energy dissipation. An understanding
of the processes of sediment transport in response to hydrodynamic forces is important in the

understanding and effective management of the nearshore and coastal regions (Dyer, 1986).

Shingle beaches are characterised by their steep gradients and stepped profiles (Nicholls and
Webber, 1988). Such features are subject to rapid morphological changes under wave action,
having the ability to dissipate large amounts of wave energy within a relatively narrow zone
(Powell, 1990; Diserens and Coates, 1993). Consequently, understanding the mobility of
shingle beaches in response to hydrodynamic forces and local geomorphological controls is of
extreme importance, both scientifically (Carr, 1983) and in the design of coastal protection

schemes and structures, (MAFF, 1993).

Hydrodynamic controls on shingle mobility include: variation in water level (tidal height
variations, including superimposed surges); wave energy, (temporal variations in wave height,
period and angle of approach); longshore currents; and climatic changes (global sea level rise

and changes in storm patterns), (Bird, 1996).

Geological controls include the source and the nature of the material composing the beach,
(Bluck, 1967). Sources may include the reworking of offshore deposits, longshore transport

from adjacent areas and the erosion of cliffs.



The type of material comprising the beaches range from flints and cherts to biogenic material,
such as fragments of coral reefs. Morphological controls include the presence of headlands or
any local changes in the coastal configuration (Muir Wood and Fleming, 1981). Also,
bathymetric controls can influence and modify wave patterns as they approach the shoreline.
The modification of waves will, in turn, be reflected in the patterns of beach sedimentation
(Carter, 1989).

It has been estimated that one third of the UK coastline is protected by shingle beaches (Fuller
& Randall, V1988). When these beaches become depleted by erosion, replenishment has often
been undertaken, using marine dredged gravels (Fairgrieve, 1994). In some cases, coarser
material derived from land-based quarries, has been added to the marine dredged replenishment
(McFarland et al, 1994); this was undertaken to increase the mean grain size of the replenished
beach.

As the local Coast Protection Authority, Canterbury City Council (CCC), are responsible for
the provision and maintenance of coastal defences within the bulk of the study area; these

defences have an estimated replacement value of £100 million (Canterbury City Council,
1988).

Previous work carried out within the study area has been limited to engineering-based
investigations, directed at specific coastal locations, (for example, Delft Hydraulics 1990a).
Prior to the present investigation, little effort has been made to develop a regional
understanding of coastal hydrodynamic processes along the north Kent coastline. The lack of
understanding of processes affecting shingle beaches (on both a global scientific basis, and a
regional coastal engineering basis) was of particular concern to the local coast protection

Authority, who have supported the present study.

Within the context of the framework which has been discussed, a research programme has
been undertaken along the north Kent coast, with the purpose of developing an understanding
of stability of beaches, with particular reference to shingle-sized material. The research

objectives include:



® derivation of a wave climate for the study area, based upon numerical modelling and,

calibration of the model using recorded data;
® evaluation of a formula for the longshore transport of shingle within the study area,
based upon measurements of the hydrodynamic controls and, the resulting sediment

response;

® establishing the regional patterns of shingle movement, based upon the numerically

modelled wave climate and longshore transport calculations;

® examination of improved techniques for the determination of longshore transport

rates, through the use of tracer pebbles;

® evaluation of a sediment budgetary approach to determining long term patterns of

shingle movement;

® assessment of the impact of extreme events upon beach stability and patterns of

longshore transport; and

® consideration of the various advantages and disadvantages associated with beach

replenishment schemes.

Data already collected by Canterbury City Council, has been used in conjunction with intensive

field monitoring to achieve the research objectives.
The preseﬁt report is structured as follows:

® an examination of those aspects of the published literature relevant to the present

study ( Chapter 1);

® a description of the study area, including the state of knowledge on regional coastal

processes, at the outset of the present investigations (Chapter 2);



@ an outline of the existing data availability, and the methodologies adopted for; (i)
obtaining additional data, and (ii) carrying out the analysis required to meet the study
objectives (Chapter 3);

® the derivation of the numerical wave model, its calibration using recorded wave data,

and its application to the determination of a wave climate for the study area (Chapter
4);

® details of the intensive field investigations carried out to evaluate the existing shingle
transport formula, and the development of the longshore transport numerical model for

the study area (Chapter 5);

® application of the longshore transport model to beaches within the study area, and
comparison with assessments of shingle mobility undertaken using archive beach

profile data (Chapter 6)

® discussion on the findings of the present investigation on beach stability, within the
context of regional coastal management and, the wider applicability of the findings to
the understanding of the hydrodynamics of coarse-grained and mixed sediment beaches
(Chapter 7)

® Finally, recommendations for further research are presented (Chapter 8).

In addition to the present document, the findings of these studies are presented as a series of
reports, compiled by the author, for the local coast protection Authority (Canterbury City
Council, 1990; 1991; 1992a; 1993a; 1993b; 1994). The results have also been used for the
investigation and design of coastal defence works within the study area (Canterbury City
Council, 1992b; 1994b, 1995; 1997; Robert West & Partners, 1993; Halcrow, 1996).






Chapter 1: Review of Published Literature
1.1. Occurrence and Composition of Shingle Beaches
1.1.1. Terminology

Terminology for use in the description of coarse-grained beaches is fraught with ambiguities
(Carter and Orford, 1993). In the present investigation, the term "shingle" is used to describe
rounded or sub-rounded stones, having a long axis of between 4 and 256mm. This range

corresponds to the pebble and cobble ranges of the Wentworth scale (Table 1.1).

Beaches which have a significant proportion of sand are described as "mixed" (sand-shingle)
beaches (Kirk, 1980). The sand may lie in the interstices of the shingle, or it may be present
as a fringing sand apron. However, no fixed terminology exists to define the percentage of

sand-sized material, which needs to be present to merit its description as a mixed beach.
1.1.2. World-wide Occurrence.

Shingle beaches are common in northern latitudes where glaciation has had a marked influence
on the Recent geomorphology (Whitcombe, 1995); they occur where the erosion of cliffs or
nearshore outcrops yield pebble or cobble sized material. In tropical regions, such coarse
sediments may be transported to the coastline by torrential rivers; eventually, they are
reworked as beaches. Shingle beaches are also common in Canada, New Zealand, Ireland, and

along stretches of the pacific coast of the USA (Carter, 1989).
1.1.3. British Isles Occurrences.

The British Isles and, in particular the south coast of England, exhibit a wide range of shingle
features. It has been estimated that one third of the UK coastline is protected by shingle
beaches (Fuller and Randall, 1988). A well known and extensively studied shingle feature is
Chesil Beach, in Dorset (Carr, 1983); this beach stretches from Bridport (in the west) to the
Isle of Portland (in the east). At either end of the system the beach is attached to the land; over

its central part however, it is detached and encloses a narrow stretch of water called "The



Fleet". The height of the bank and the mean size of the shingle increases gradually from west

to east, representing a corresponding increase in exposure to wave action (Carr, 1983).

Dungeness (Kent) is an example of a constructional shingle feature; it has been formed as a
series of abandoned storm crests, as shingle has built up in response to longshore supply from
both the west and the north-east. Elsewhere along the coastline of south-east England, there
are numerous smaller shingle accumulations, examples of which are to be found in
Christchurch Bay (including Hurst Spit, Nicholls and Webber, 1988), at Hayling Island
(Harlow, 1980), and along the north Kent coast, (the present investigation).

Elsewhere in the British Isles, shingle is found in pocket beaches along indented coastlines of
Dorset (Bray 1990), South Wales (Bluck, 1967), and as accumulations at the head of flooded

rivers or glacial valleys (for example, Arran Island in Western Scotland).

The abundant occurrence of shingle beaches around the British Isles and in particular,

south-east England has been attributed to a number of geological and hydrodynamic factors:

® the availability and durability of suitably sized source material;
® the effects of post-glacial sea level rise;

@ and the characteristics of the wave climate.

Flint deposits occur as nodules (often in bands), within the Cretaceous Chalk of the British
Isles. A large proportion of these flint nodules have been released into rivers or the sea, where
the Chalk has been eroded. In addition, Jurassic strata commonly contain bands of siliceous
chert rock in association with softer rocks such as clay, marl and limestone. The more durable
flint and chért material is reworked by rivers or by the sea to form substantial accumulations

of shingle-sized material.

In the central and northern parts of the British Isles, glacial moraines contain a range of particle
sizes from fine silts to large boulders; these have been eroded from hard igneous or
metamorphic rocks. Erosion of these glacial deposits yield suitable source materials for shingle
beaches to accumulate at coastlines (common in Scotland, Wales and the nérthern parts of

Ireland). Cliff erosion may supply shingle sized material if either the pebbles or cobbles are
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already present in a softer matrix, or the exposed rock is heavily jointed or fractured. The latter

is commonly found in fine grained metamorphic rocks.

Following a period of Recent glaciation in the northern latitudes, extensive sand and gravel
deposits covered what was to become the southern North Sea and the south-east of England.
Many of these deposits had been extensively reworked by ancient river systems (D'Olier,
1975). As the ice retreated, accompanied by a rise in sea levels, large amounts of gravel were
eroded and moved landwards. As the gravels were transported progressively inland, in
response to the rising sea level, they formed shingle barriers; for example Chesil Beach and
Slapton Beach (Carr, 1983). It is considered that the majority of beaches in the south of
England were formed by such a mechanism and nowadays receive little or no natural

replenishment. Beaches formed in this way are referred to as fossil or relict beaches.

Within the British Isles, there is a large potential supply of shingle-sized material (as described
above). However, the supply of finer-grained sediment, such as sand, is significantly greater
than that of shingle, therefore, most beaches should be dominated by sand-sized material. The
reé.son why this does not occur extensively and why shingle dominates has been attributed to
the nature of the wave climate (Vincent, 1979). Swell waves (ie of low amplitude and long
period), occur commonly on oceanic coastlines and tend to move sand inshore to accumulate
on the beaches. With storm waves (locally-generated with a short wave period); sand is carried
offshore and accumulates in banks or bars. Shingle tends to move onshore, however, as a

constructional response to storm waves.

The high storm / swell wave ratio experienced around the British Isles means that sand moves
offshore easily, leaving the shingle behind on the beach and in the nearshore regions. A
tendency fér the sand eroded from cliffs to move offshore at the ness sites in East Anglia has
also been observed by Vincent (1979); this was seen as a means of maintaining a high shingle

to sand content on the beaches in this region.
1.1.4. Beach Composition.

The composition of shingle beaches, in terms of lithology and size-shape parameters, depends

upon: the composition of the supply; the durability of the clasts; and exposure to wave activity.
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Geological materials which have a low durability, such as limestones, are common in some
areas; they are usually restricted to the proximity of their source, due to their short life-span.
Flints and cherts are highly durable, forming a disproportionate percentage of clasts on many
beaches (for example, 98.5% on Chesil Beach (Carr, 1971)).

The size and shape of clasts on the beach differ from their source, due to the process of
abrasion. Clast size may be very gradually reduced by abrasion, or more rapidly reduced by
fracturing. The shape of the clasts should, in theory, approach spheres with increasing
maturity, however, there is conflicting evidence as to whether or not this modification of shape
actually occurs (Carr, 1983). Pebble shape may be controlled by lithology; for example, the
greywackes described by Bluck (1967) tend to fracture to form discs and blades. Likewise,
large cobbles have been shown to display a higher sphericity than smaller pebbles (Bray, 1990).

Regarding the angularity of the clast, there is little doubt from the published literature that
beach clasts become more rounded with time; however, periodic breakage will have the
opposite effect. Larger pebbles and cobbles display a greater degree of roundness than their

smaller counterparts (Carr, 1983).

Mixed beaches are of two types. The first is a composite structure, consisting of a ridge of
shingle or mixed sand and shingle, to seaward of which there is a wide sandy lower foreshore.
The second mixed beach type consists of fairly equal proportions of sand and shingle, which

vary in concentration both in the longshore and the cross-shore directions.
1.1.5. Beach Structure.

The internal structure of shingle beaches is difficult to study because, unlike sandy beaches,
trenches excavated for investigation purposes cannot stand up vertically. Shingle beaches
preserved in the geological record display a coarsening upwards cycle together with trough
cross bedding. Examples of ancient beaches are found in the Upper Cretaceous of Alberta
(Hart and Plint, 1989).

The changes in beach structure, in terms of clast size and shape, is an important part of beach

development, (Bluck, 1967). Sorting of clasts by shape occurs due to the different hydraulic
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response of discs and blades, to spheres and rods, on the beach. Discs and blades tend to be
pushed up the beach by swash where they remain; this is in contrast to the spheres and rods,
which are rolled back down the beach under the action of the backwash. The ability of different
pebble shapes and sizes to migrate within and across the beach face is seen also as an important
size-shape sorting mechanism. On the basis of studies undertaken on the shingle beaches of
South Wales, Bluck (1967) has defined four distinct zones: to the seaward side, an outer frame
of spherical cobbles; adjacent to an infill zone of spherical cobbles, with rod-shaped pebbles;
an imbricate zone of mainly disc-shaped pebbles; and a large disc zone on the landward side
(Figure 1.1). Bluck (op cit.), identified also the “sand run”, which separates the landward zone

of imbricated disc-shaped particles from the seaward large cobble frame.
1.1.6. Mixed Beaches.

Mixed beaches show a strong bimodal character in their grain size distributions (Kirk, 1980),
which may represent mixing of two end members of the sediment population (Folk énd Ward,
~ 1957). Alternatively, the distribution of sand and shingle, within a mixed beach, may result
from a combination of bed roughness, settling velocity and thresholds for sediment transport
(Inman, 1949; McLean and Kirk, 1969).

The internal structure of a mixed beach is more complex than that observed for shingle
structures. Below the surface layer of mobile pebbles, a mixed beach becomes less permeable,
as the interstices between the pebbles and cobbles is filled with sand-sized material (Petrov,

1989). Distinct layers of sand may also be present (McFarland et al, 1994).

The degree of interdependence exhibited by the separate fractions on a mixed beach is not well
understood. Some degree of hybridisation of the material occurs: this is exhibited most
commonly as a spatial and temporal variation in the beach surface, between rough shingle and

smooth sand.



1.2. Shingle Beach Profile Characteristics.
1.2.1. Beach Terminology.

The basic terminology for a shingle beach profile is shown in Figure 1.2. The definitions

presented below are based upon those given in the Shore Protection Manual, (CERC 1984).

Backshore: That zone of the shore or beach lying between the foreshore and the coastline

which only experiences wave action during severe storms.

Bar: An embankment of sand or gravel build seaward of| but as an integral part of, the main
shingle beach.

Beach Face: The section of the beach normally exposed to the action of the wave uprush.
Beach Ridge or crest: An accumulation of beach material above high water mark, with a steep
seaward face and a horizontal or landward dipping backshore. Several ridges may occur on the

same beach, representing different high water levels.

Foreshore: The area of beach between the ordinary low water mark and the seaward side of

the main beach crest.
Littoral Zone: The area between the base of the sea cliffs (or seawall) across the beach and to
a water depth where the ability of waves to cause sediment transport is limited (generally taken

as 18m, for shingle).

Offshore: The area extending to seaward of the breaker zone to the edge of the continental
shelf.

Step: A submerged ridge occurring at the point of wave breaking (also known as the break

point step).
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1.2.2. Beach Profile Response to Hydrodynamic Forces

Shingle beaches respond rapidly to wave action by altering their profile, as they attempt to
reach an equilibrium in which offshore and onshore transport rates are equal. On the basis of
model studies, two basic profile shapes have been shown to exist (Powell, 1990) (as outlined
below).

® A step profile, formed by waves of low steepness and associated with accretion
(synonymous with summer, swell and accretional profile),
® and, a bar profile, formed by waves of high steepness and associated with erosion

(synonymous with winter, storm or erosional profile).

In the natural environment, waves occur randomly and the beach is unable to reach an
equilibrium profile. Profile formation is further complicated by changing water levels, in
response to tides. Some doubt exists as to whether the bar profile can fully develop bn natural
beaches (Powell, 1990);

The following hydrodynamic factors have been shown to be important characteristics which
influence the profile development of shingle beaches: (i) wave height; (i) wave period; (iii)
wave duration; (iv) water level; (v) angle of wave attack; and (vi) spectral shape of the wave

energy distribution.

Wave height and period significantly influence the development of the profile (van der Meer,
1988; Powell, 1990). An increase in the wave height appears to have the effect of lengthening
the surf zone, where the wave energy is dissipated. Increasing the wave period seems to have
the effect of moving more material above the still water level, raising the elevation of the main
crest. A compensatory reduction in the volume of material is found below the step point of the
profile (Powell, 1990).

In model tests, it has been shown that the profile evolves rapidly, approaching its equilibrium
profile at an early stage. Longer durations of wave attack allow only minor adjustments to the
final profile (Powell, 1990). This pattern is manifested on a natural beach, which may alter in

response to individual waves within a train.
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Varying water levels influence the beach, by moving the profile up and down along the still
water level; they do not, however, alter the dimensions of the profile (Kemp, 1963). In nature,
the potential exists for water levels to indirectly affect the profile formed, by modifying the

waves incident to the shoreline.

1.2.3. Effects of Beach and Sediment Characteristics on Beach Profile Development.

In addition to the hydrodynamic controls on profile development, the following parameters
may influence the equilibrium profile: (i) initial beach profile or slope; (i) beach material size;
(iii) beach material grading; (iv) shape of beach material (v) effective depth of beach material

and; (vi) foreshore levels.

Conflicting evidence exists as to whether the initial slope influences the final profile or not.
Van der Meer (1988) is amongst those who found that the slope had no effect; however,
Sunamura and Horikawa (1974), found that the final profile shape did depend oﬁ the initial
slope. A possible explanation for such contradictions is that the initial slope may influence the
mode of wave breaking (ie spilling or plunging); hence, the critical value which determines
whether or not the beach is erosional or accretional is bridged (King, 1972). Powell (1990) has
suggested that whilst the initial slope may affect the mode of formation of the equilibrium

profile, along its active length, the final shape would be the same.

Beach material has been shown to control the angle of repose, or gradient, of the beach.
Investigations undertaken by Bagnold (1940), Meyers (1933) and Bascom (1952), all confirm
that coarser-grained material forms a steeper slope. Model experiments have examined the
response of the entire profile to differences in the mean grain size (van Hijum, 1974; van der
Meer, 1988; and Powell, 1990). The results of the model experiments have demonstrated that
mean grain size influenced the slope of the beach face and the horizontal position of the main
features (for example, the crest-line). The crest height seems to depend more upon wave
run-up than on mean sediment diameter (van der Meer, 1988). The differing effects of the
mean grain size on the profile also seem to be influenced by the wave steepness (Powell,
1990).

The equilibrium profile of a shingle beach is steeper than on sandy beaches, typically with a
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slope of 1:7 to 1:10. Incoming waves and swash percolate into the beach to a much higher
degree than on sand beaches; the result is that the backwash is weakened and shingle tends to
be pushed onshore by wave action. However, due to the low water retention exhibited by
shingle beaches, there can be a higher exfiltration during the backwash; this enhances the
offshore iransport of spherical and rod-shaped particles (Bluck, 1967).

Because shingle beaches form steeper profiles, waves tend to propogate further inshore before
breaking; consequently, breaking is then confined to a narrow zone on the beach. Further, due
to the rapid decrease in water depth experienced on shingle beaches, refraction of waves may
be incomplete at the point of breaking; breaking wave angles are, therefore, greater than those

experienced on sandy beaches where refraction occurs over a longer distance.

Shingle beaches rely on their permeability to maintain their profile shape (Nicholls and Webber,
1988). The presence of impermeable layers within the beach, can lead to destabilisation of the
beach; an extreme example of this being where a shingle beach overlies a sloping concrete or

stone apron.

Powell (1990) divided beaches into three categories, depending upon the ratio of the mean

sediment size (Ds,) to the effective depth of beach (Dy), as follows;

® D,/D,, > 100 (1.1 (2))
® 30 <Dy/D, < 100 (1.1 (b))
® D, / D, <30 (1.1 (c))

In case 1.1(a), the effective thickness of the beach is sufficient to have no influence on the
profile development, whilst in case 1.1(c) the beach structure will break down and the upper
beach layers will be eroded. In case 1.1(b), the crest is displaced horizontally in the landward

direction, depending upon the wave steepness (Powell, op cit).

Mixed beaches, due to the presence of sand infilling the voids between the shingle particles,
exhibit a lower permeability than their pure shingle counterparts. Reflection of wave energy
from a beach increases with beach slope, but decreases with increasing permeability

(Kobayashi et al, 1992). Hence, mixed beaches should be associated with a high level of
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reflected wave energy as they are both steep and have a lower permeability (Davidson et al,
1994). Powell (1988) found that reflection from shingle beaches was around 10%, regardless
of the grain size. This investigation concluded that the main cause of energy dissipation on

shingle beaches was frictional energy loss on the beach surface rather than by percolation.
1.3. Hydrodynamic Factors Acting as Process Controls.
1.3.1. Terminology.

The terminology used here to describe tidal and wave activity on a shingle beach, is shown in
Figure 1.3. The accompanying definitions are based upon those presented in the Shore

Protection Manual (CERC, 1984) and the Admiralty Tide Tables (1991).

Breaker zone: the position in the nearshore, where incoming waves become unstable and break
- if the waves are of a uniform height and period, so that the waves break in the same place,

a breaker line or point is defined.

Highest Astronomical Tide, (HAT): the highest water level which can be predicted to occur

under any combination of astronomical conditions and average meteorological conditions.

Lowest Astronomical Tide, (LAT): the lowest water level which can be predicted to occur

under any combination of astronomical conditions and average meteorological conditions.

Mean High Water Springs-Neaps (MHWS-MHWN): the average throughout the year of the
two highest tides occurring within a 24hr period, when the tidal range is at its highest / lowest.

Mean Low Water Springs-Neaps, (MLWS-MLWN): the average throughout the year of the two

lowest tides occurring within a 24hr period, when the tidal range is at its highest / lowest.
Mean Sea Level, (MSL): is the average level of the sea surface over a period of time.

Nearshore Zone: an indefinite zone extending seaward from the shoreline, to well beyond the

breaker zone.
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Offshore: the area extending to seaward of the nearshore zone, to the edge of the continental
shelf.

Surf Zone: part of the nearshore zone between the landward side of the breaker zone and the
seaward side of the swash zone - on a steep shingle beach, the breaker zone and the swash

zone lie beside each other and the surf zone is eliminated.

Swash Zone: part of the nearshore region, where the beach is alternately covered by wave

run-up and exposed by backwash.

The zones which refer to wave activity are not fixed and will vary, depending upon wave

conditions, tidal state and water level.
1.3.2. Waves and Wave - Beach Interaction
Wave Generation and Deep Water Processes

Wind blowing over a water body transfers energy across the air-water interface, which is
manifest in the generation of waves and surface currents. The waves, in turn, transfer energy
to the beach and nearshore areas inducing sediment movement. An understanding of the
processes of wave generation, propagation, and the breaking of waves; within the present
study is a necessary precursor to the examinaﬁon of regional beach and nearshore

morphological changes.

The turbulent nature of the wind, as it blows over the water surface, causes random stresses
and, hence, random pressure fluctuations on the surface of the water. The movement of these
pressure fluctuations over the surface is responsible for the early generation and growth of
waves (Phillips, 1957). Subsequent wave growth and movement is facilitated by an induced
pressure reduction at the top of, and on the downwind side of, the wave crest (Miles, 1965;
Miles, 1967). The mechanisms of wave growth are comprehensively summarised elsewhere
(King, 1972; Silvester, 1979; CERC, 1984).

In a developing sea (ie within the area of wave generation), there are a range of wave
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frequencies, heights and directions generated. The culmination of this interaction is represented
in terms of a wave spectrum. Short waves receive proportionally more energy than long waves,
because they travel more slowly and offer more resistance to the wind. Long waves derive
energy by scavenging the energy of shorter waves, in a variety of complex non-linear processes

(Longuet-Higgins, 1969; Hasselmann et al, 1973).

Waves within the proximity of their area of generation are referred to as sea, or as storm
waves if on the coastline (King, 1972). As waves propagate outside the generation area, the
wave front spreads out both radially and circumferentially; hence, the amount of energy per
unit width of the wave crest declines, in both space and time (Carter, 1989). As the wave field
develops, the nature of the wave spectrum changes in response to various wave-wave and
wave-current interactions. Long waves travel faster than short waves in déep water, so that
the various components of the spectrum begin to separate out along the line of propagation.
Short waves use proportionally more energy to overcome viscosity effects and decay more
quickly. On a coastline which is some distance from the generating site, only the iong period
low amplitude waves are experienced. Waves of this nature are referred to as swell, (King, op

cit).
Shallow Water Effects

As waves move from deep water into shallow water, they undergo a number of changes
induced by interaction with the bottom. This modification may be such that the wave
conditions experienced on the beach bear little resemblance to the deep water waves from
which they were derived. It is important to understand shallow water wave transformations:
it is the products of these which ultimately transport sediment in the nearshore and beach

environments.

Deep, intermediate and shallow water waves are defined in terms of the ratio of water depth

to wavelength, as shown in equations 1.2 - 1.4.

® deep water, d/L. > 0.5 (1.2)
® intermediate water, 0.5 < d/L > 0.05 (1.3)
® shallow water, d/L. <0.05 (1.4)
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Equations to determine wavelength and wave speed (phase velocity), derived from linear wave

theory (Airy, 1845), are presented in Table 1.2.

In intermediate and shallow water depths, interaction between wave-induced orbital velocities
and the sea bed lead to a transfer of energy from the waves to the bed. Shoaling of waves is
the change in wave height, due to the conservation of energy flux. The wave height decreases
slightly at first, then continues to increase until the point of breaking. Refraction is the bending
of the wave crests parallel with the bottom contours, occurring as the wave crest passes
obliquely over the sea bed contours. Morphological changes on the beach and nearshore areas
are related to: the effects of wave caustics, areas of crossed orthogonals which are indicative
of high wave convergence (Chao, 1970); wave diffraction, the lateral transfer of energy along
a wave crest; and wave reflection; the seaward return of a wave caused by a structure or a

sharp reduction in bathymetry. All of these factors are summarised by Carter (1989).

Wave Breaking

Wave breaking occurs when the horizontal water velocity at the crest exceeds the wave group
velocity (Carter, 1989). The criterion for breaking has been calculated from solitary wave

theory (McCowan, 1894), when the ratio of breaking wave height to water depth is 0.78.
ie. H,/d,=0.78 (1.5)

In practice, waves are found to break at a wide range of values, depending upon factors such
as the wavelength at breaking and the beach slope. The mode of wave breaking depends upon

wave height, wavelength and beach slope.
There are two parameters used to describe wave types; these are the surf similarity parameter
(), (Iribarren and Nogales, 1949) and the surf scaling parameter (€) (Carrier and Greenspan,

1958). The parameters are defined as follows (after Battjes, 1974) and (Guza and Inman,
1975), respectively:

Z=tanB/(H,/L,) (1.6)
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e=(Hb/2.0%)/(gtan’P) 1.7
where B is beach slope and o is the wave radian frequency.

Using the surf similarity index at the point of breaking (€,), a number of classes of breaking

waves can be defined.

€, <0.64 = gpilling breakers
0.64>¢,<5.0 = plunging breakers
€,>5.0 = surging breakers

A particular type of plunging breaker occurs when the front face of the wave breaks at a point

below its maximum elevation; this is referred to as a collapsing breaker.

The characteristics of breaker types has been described by Galvin, (1972), as summarised

below.

Spilling: Foam, bubbles, and turbulent water appear at the wave crest and eventually cover the
front face of the wave. Spilling starts at the crest, when a small tongue of water moves forward
faster than the wave form as a whole. In its final stages, the spilling wave evolves into a bore

or an undulatory bore.

Plunging: The whole front face of the wave steepens until vertical, the crest curls over the
front face and falls into the base of the wave; and a large sheet-like splash arises from the point

where the crest touches down.

Collapsing: The lower part of the front face of the wave steepens until vertical; this front face
curls over as an abbreviated plunging wave. The point where the front face begins to curl over

is landward of, and lower than, the point of maximum elevation on the wave.

Surging: The front face and crest of the wave remains relatively smooth and the wave slides
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up the beach, with only minor production of foam and bubbles; this resembles a standing wave.

After breaking, waves usually continue to the shoreline as small-scale surges or bores, within
the swash zone. Final energy dissipation is achieved by the run-up of the wave swash,

combined with percolation through the beach sediments.

Wave breaking on shingle beaches is confined to a narrow zone close to the shoreline; this is
due to the sharp change in slope which occurs between the steep shingle beach and the relative
flat lower foreshore. It is normal on a shingle beach to have a single line of plunging breakérs.
Because of the narrowness of the breaker zone, large amounts of wave energy are expended

over relatively short distances, resulting in a very dynamic environment.
1.4. Shingle Mobility and Transport
1.4.1. Shingle Threshold and Transport

Sediment transport can be divided into two modes: bed-load transport; and suspended-load
transport (McDowell, 1989). In the case of shingle, such transport is restricted to sliding and
rolling of pebbles and cobbles along the bottom, as bed-load.

The minimum velocity required to dislodge and move a sediment particle is called the threshold
velocity. Early studies undertaken on the threshold of sediment transport were by Hjulstrom
(1935) and Shields (1936).

Shingle movement is initiated when the stresses applied by the movement of water over the
bed exceed the forces of friction and gravity, which resist movement. The threshold of shingle
movement has been shown to depend upon the size and shape of the individual clasts, their
relationship to the neighbouring clasts and the flow characteristics (Muir Wood, 1970; Dyer
1986; and Evans and Hardisty, 1989). For a given current velocity, particles of the same shape
and size may or may not move, depending on their orientation and relative position. For
example, consider a clast resting on top of a bed of shingle. If the clast is larger than its
neighbours, it presents more surface area to the flow of water and a large drag force is applied.

The clast will tend to roll over easily, if the centre of gravity is located above the pivot about
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which the clast would rotate (Figure 1.4(a)).

If the clast is resting in a position where the neighbouring grains afford a high degree of
shelter, the drag on the clast is less. Moreover, if the clast pivot is above its centre of gravity,

stresses are transferred to neighbouring grains through the points of contact (Figure 1.4(b)).

The threshold of shingle movement, with respect to grain pivot angle and bed-slope, has been
investigated by Evans and Hardisty (1989). These experiments have shown that, prior to the
initiation of movement of a clast, instability is indicated by a high speed vibration of the grain

within its bed pocket.

In-situ’ acoustic measurements of marine gravel movement in the Solent has been undertaken
by Thorne et al (1989) and Williams et al (1989), in association with the analysis of current
data. The results of these experiments were used to demonstrate that shingle transport could

occur in deep water (20 m), under the influence of tidal currents alone.

Flow over the shingle bed was seen to be turbulent, with the intermittent development of:
sweeps ( inrushes of high velocity fluid directed towards the bed); and ejections (upwelling of
lower velocity fluid, from the near-bed region). Sweeps were shown to raise the localised shear
stress on the sea bed, to a value which was sufficient to overcome the threshold value and
initiate particle movement. Ejections were found to have little or no effect on the shingle; they

did not normally result in an exceedence of the threshold value.

The effects of waves on offshore shingle accumulations may combine with tidal currents to
exceed the threshold values (Dyer, 1986). Wave action alone is not thought to cause any
signiﬁcani movement below a water depth of 18 m. In water depths less than 18 m, the
asymmetrical nature of the wave orbits may induce a shoreward migration of shingle (Muir
Wood, 1970).

The mechanisms of shingle transport on beaches are likely to differ from those operating
offshore. The driving forces (breaking waves, swash and backwash) are processes in which
large amounts of energy are transferred to the beach, in a series of highly turbulent

interactions. In the case of plunging breakers, large amounts of wave energy are expended at
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the point of breaking. Some of this energy may be used to disturb or lift shingle-sized material
momentarily off the bottom, displacing it in the direction of the applied force. A similar
situation exists in the swash zone, where the uprush of water transports material landward and
backwash returns the material seawards. Net shingle transport in the breaker and swash zones
is related, therefore, to the direction of the highest velocities achieved which initiate movement
i.e. not in the direction of the vector, which represents the residual wave velocity combined

with the tidal current velocity (Muir Wood, 1970).

The mode of transport of shingle under wave action may take the form of a rolling, shuffling
or sliding of clasts (Muir Wood, op cit.). A situation in which the whole surface layer of the
beach is mobilised and creeps seaward has been identified, by Bluck (1967). Such motion is

controlled by water percolation and the subsequent backwash of waves.
1.4.2. Longshore Sediment Transport Formulae.

The majority of longshore transport studies have been conducted for sand-sized material
(Caldwell, 1956; Inman and Bagnold, 1963). On the basis of these studies, a variety of
longshore transport equations have been proposed, (CERC, 1984; Kamphius et al, 1986).
Van der Graaf and van Overeem (1979), have compared a number of these longshore transport

formulae, finding considerable discrepancies between the various calculations.

Transport mechanisms on shingle beaches are less well understood than their sand equivalents,
due to: (i) the rarity of shingle beaches in those countries, where the majority of beach research
has been carried out (for example, the USA and Holland); and (ii) the difficulty involved in
collecting field data on the bed-load transport of shingle in a high energy beach environment.
The measﬁrements which exist, tend to be have been undertaken over the medium-term (single
tidal cycle), or the long-term (annual accumulation rates); there is, as yet, no means of readily

recording the short-term response of shingle to wave action on beaches.

Processes on shingle beaches are very different from those which are associated with sand
beaches. For example, sediment transport is restricted to a narrow band, comprising the
breaker and swash zones; within this zone, processes are likely to be highly turbulent. In

addition, shingle transport occurs primarily as bed-load, compared to a combination of bed-
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load and suspended sediment load, typical of sandy beaches (Komar, 1978). Transport
formulae which have been derived specifically for sand beaches may not therefore, perform

well on shingle beaches.
Formulae used for estimating the longshore transport of shingle
(1) CERC Formula

Despite the differences in processes between sand and shingle beaches, one of the most widely-
used transport formula for shingle has been the CERC formula (Chadwick, 1987) (the CERC
formula is described in the Shore Protection Manual (CERC, 1984)). The CERC formula is
based upon the calculation of the empirical relationship between the amount of available
energy, from waves approaching at an angle () to the shoreline, and the resulting amount of

longshore movement.
The vqlume of material transport alongshore (Q,,) is given by:

Q, =K, P (1.8)
where the longshore component of wave energy ﬂux P, is;

P,, = (EC), (sin 20,/ 2) (1.9)

E is the wave energy flux in the surf zone,

E=pgH’C/8 (1.10)
Therefore,
P,=(pgH* C?sin2a,)/16 (1.11)

Alternatively, the wave energy flux can be related to the immersed-weight transport rate of

sediment (L,):
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I,, =K, P, (1.12)

where K, is a dimensionless coefficient. I ;, can be related to the volume of material

transported Q,, by,
Ils = (ps'p)ga’le (113)

where a’ is the pore space factor, often taken as being equal to 0.6 (Muir Wood and Fleming,
1981).

A value for K, = 0.29 is given by Komar (1989), as being typical of sand beaches. Analytical
studies (del Valle et al, 1993), have shown that calculated values of K, decrease with

increasing grain size for material with a Dy, > 0.5mm.

These studies are supported by the results of two tracer studies using aluminium pebbles,
undertaken at Hengistbury Head (Wright, 1982) and at Hurst Spit (Nicholls, 1985)'. For these
studies K, values of between 0.003 and 0.044 were obtained (Nicholls and Wright, 1991); ie
K, are 1 to 2 orders of magnitude lower that the value used on sandy beaches. Whitcombe
(1995) obtained K, values of 0.033 to 0.056 using aluminium pebbles on beaches in Hayling
Island. Comparable K, values of between 0.021 and 0.061 were obtained at Shoreham
(Chadwick, 1989). The recorded values for K, on shingle beaches compare well with the
starting value of K, (0.02), used prior to calibration in model studies (Brampton and Motyka,
1987). More recently however, van Wellan et al (1999) obtained a value of K, equal to 0.35
on a mixed sand and shingle beach at Shoreham on the south coast of England. These latter

results were based on a small tracer sample (15).

Various modifications have been made to the basic CERC formula to take account of particle

size (Brampton and Motyka, op cit; Chadwick, 1989).
(2) Kamphuis formula

Kamphuis et al (1986) have derived a formula for calculating sediment transport (Q,,), in terms
of: beach slope (P); significant breaking wave height (Hb,); grain diameter, (D); and breaking

wave angle (o ).
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Q,,=1.28 ((tan p Hb,**)/D)sin2a, (kg/s) (1. 14)
Whilst the formulae was derived for quartz sand transport, Kamphuis (1992) has suggested

that it could also be applied to coarse-grained beaches as it contained both beach slope and

grain size terms.

(3) Morfett Virtual Power Formula

Morfett (1989) has derived a shingle transport formula, based upon tracer and sediment trap
experiments undertaken on beaches in Sussex. The formula consists of two parts, the threshold

criterion and the transport equation; these are described below.

The threshold criterion, which depends upon water depth (d) and particle size (Ds,) was
derived from the laboratory data of van Hijum and Pilarczyk (1982).

H,, = 2.0 Dy, + (0.087 d,, log (1000D,,)) (1.15)
where Hy, is the critical wave height.

Morfett’s transpoi't equation was based upon the laboratory data of van Hijum and Pilarczyk
(1982) and the Shoreham trap data, Chadwick (1989):

Q=K ((pu>- pu.)"* (sin 6)*) /(g (p, -P ) Ds*) (1.16)

where K is a calibration coefficient of the order of 2.84 x 10° and; the expression (pu.’ - PU.)

is termed the virtual power (P.,).
and (u,) is given as;
u=((pg"H*)/(4H*L)/p" (1.17)

The equation is solved for all wave types present in the spectrum and, subsequently, the

resulting transport rate can be calculated.
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4. Delft Formula

The original Delft formula was derived on the basis of the dimensional analysis of laboratory
experiments using random waves (van Hijum and Pilarczyk, 1982). However, the original form
of the equation was difficult to apply (Chadwick, 1989). The results were reanalysed by both
Chadwick (1989), and van der Meer (1990). Whilst the versions of the Delft equation
produced by Chadwick (op cit), and van der Meer (op cit) are very similar, it has been the

latter version which has been used most widely:

Q, =0.0012 g Dyg T, (H, .V Cos B/Dysp) . (H,. v Cos B/ Dyyp) -11) . sin p (1.18)

where

D,s- Mso/ p, ) ‘ (1.19)
and Q,s’ isin(m®/s).
1.5. Field Measurement of Longshore Transport
1.5.1. Trapping

The principle behind trapping techniques is to collect material moving in a longshore direction.
Since relatively large robust traps are required for shingle entrapment, the trap is likely to
interfere with the prevailing hydrodynamics in the area where material is being collected.
Further, because the longshore transport component of shingle movement is small compared
to the groés component of onshore - offshore transport (Quick, 1991), the efficiency of traps

is reduced.

Since each trap can only sample at a single location, the interpretation of trap data (in terms

of the full extent of the beach) is difficult.
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1.5.2. Tracers

Tracers used in beach experiments are either natural or artificial materials; these can be
distinguished from the native beach in the experimental area. The principal of the technique is
that the tracer material can be identified aﬁér a specific period on the beach; its displacement
from the injection point is recorded, then related to wave and tidal action. By assuming that
the displacement of the tracer is representative of the displacement of the mobile beach,
sediment transport rates and directions (at least, for the duration of the experiment) can be

assessed.

In order to achieve acceptable results in such studies, a tracer should satisfy the following

criteria:

e represent the indigenous beach material as closely as possible - including the size and

grading, the shape, specific gravity and surface roughness of the beach material,
e be identifiable at low concentrations within the background beach sediments; and
® be resistant to impact and chemical reaction.

It is extremely difficult to identify a tracer method which fulfils all of the above criteria: the
final selection is dictated often by the nature and duration of the experiment (and financial

considerations).

Painted pebbles and resins are probably the simplest and most economical method of marking
pebbles, for tracing on shingle beaches (Zenkovich, 1967, Kidson and Carr, 1959; and
Caldwell, 1983). The main problems associated with the use of painted pebbles is the durability

of the paint or resin, together with the likelihood of interference from the public.

Radioactive tracers are inconspicuous and can be treated with an isotope, whose half life is
suited to the duration of the experiment. The method is best suited to sand and silt-sized
material, although Kidson and Smith (1956) have used radioactive plugs in pebbles with some

success. The main problems which arise are costs, combined with public concern over the use
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of radioactive materials.

Fluorescent pebble tracers were used originally by Reid and Jolliffe (1961). Dye was
incorporated into artificial pebbles, made of concrete and dolerite aggregate. Natural pebbles

coated with fluorescent resins were used later by Kidson and Carr (1971).

Foreign rocks and materials may be added to the natural beach; examples include broken bricks
and fireclay markers (Richardson, 1902) and natural rock of a different lithology (Carr, 1971).
The material added may be difficult to identify and problems of inadequate mixing with the

background beach material are difficult to overcome.

The most successful use of tracers have involved the use of aluminium pebbles (Wright et al,
1978; Nicholls and Webber, 1987; and Bray, 1990). The pebbles can be made to replicate the
natural beach material, in terms of their size, shape and specific gravity. As a result, good
mixing with the indigenous beach material can be achieved. Recovery of tracers, using metal
detectors, allows high recovery rates to be achieved and the vertical distribution of tracers to
be established. In addition, apart from radioactive tracers, no other tracing technique exists

which allows detection of tracers below the surface of the beach.
1.5.3. Impoundment.

Beach plan surveys can be used to calculate the volumetric changes which occur within a
specified area. In order to obtained estimates of longshore transport, it is necessary to impound
the beach material against a substantial structure, for example a pier. If there is an exchange

of sediment to / from the offshore area, then some idea of the volumes involved is required.

Beach plan surveys, carried out by experienced surveyors using electronic distance measuring
(EDM) techniques, can be carried out to a high degree of accuracy. On the other hand,
simplified techniques using measuring tapes to record distances on the beach can be fraught
with inaccuracy. Over the longer term, aerial photograph can be used to estimate volumetric
changes, Chadwick (1989).
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1.6. Regional Sediment Budgets.

A sediment budget is a sediment transport volume balance for a particular section of coastline.
Inputs or supplies to the system include: erosion of coastal cliffs or the foreshore; artificial
renourishment; and from onshore or longshore transport. Qutputs or sinks include the latter

two mechanisms, along with attrition or artificial removal of sediment (CERC, 1984).

Coastal sediment budgets have been a means of studying coastal changes, since the original
work of Johnson (1959).

Further examples include the approaches adopted by Inman and Frautschy (1965), Stapor
(1971, 1983), Vincent (1979) and Reynolds (1987). The majority of these examples are from
the USA, based upon the transport of sand-sized material. A shingle budget has been
developed by Bray (1990), for beaches in South Dorset (Figure 1.5). |

Sediment budget diagrams rely on the continuity of physical processes, over time. Secular
changes and perhaps severe storm activity can affect the derivation of any sediment budget.
Likewise, human interference, such as groyne building or the construction of sea defences, and

beach replenishment / removal can all radically alter regional sediment budgets.
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Particle Wentworth (mm) Krumbein (¢)
Boulder > 256 >-8.0
Cobble 64 10 256 -8.0t0-6.0
Pebble 4t064 -6.0t0-2.0
Gravel 2t04 -20t0-1.0
Sand 1116 -2 -1.0t04.0
Silt 1/256 - 1/16 401080
Clay <1/256 >8.0

Table 1.1. Particle Size Classification after Wentworth (1922 ) and Krumbein (1934).
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Deep Water Transitional Water Depth Shallow Water
(d/L >0.05) (0.05>d1.>0.5) (d/L <0.5)
C=gT/2n C=(gT/2n)tanh 2w /L) C=(gd)*’
L=gT?/2n L=(gT?*/2n)tanh 21 /L) L=T (gd)*
C,=(gT/2m)* C,=(gT / 2m) ((1+(20d/ sinh 20d 03 C,=(gd)*

Table 1.2. Examples of Linear Airy Wave Theory Equations, after (Carter 1989).
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Figure 1.1. Shingle Beach Structure, in terms of shingle size and shape, (Bluck, 1967).
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Figure 1.3. Terminology for Hydrodynamics on Shingle Beaches
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Figure 1.4. Influence of Particle Size and Position on Threshold of Movement: (a) large

particle protuding from the surface of the bed, subject to overturning ; (b) uniform surface
layer of particles with transfer of stresses to neigbouring grains. where G is the centre of

gravity of the particle, P is the particle pivot point and Vb is the current velocity near the bed.
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Figure 1.5. Typical Sediment Budget (after Bray, 1990)
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Chapter 2. Area Under Investigation
2.1. Location and Geographical Setting
2.1.1. A Brief Description of the Coastline

The study area (Figure 2.1), is located on the northern coastline of Kent in the south-east of
England. Like much of the rest of south-east England, the area is prone to coastal erosion due
to the exposure of soft rocks along the coastline and a sea level which is rising relative to the
land. Since Roman times it is estimated that a strip of land, up to 3 kilometres in width, has

been lost to erosion, over the study area, So (1967).

The coastal zone shows a variety of topographies and land uses, Plates 2.1 ((a) to (g)). Herne
Bay and Whitstable (Figure 2.2), are the main population centres at 35000 and 30000
respectively. The rest of the coastal zone within the study area is residential with the exception
of the east and west ends which are characterised by low-lying farmland. The central section
of the study area consists of graded clay slopes up to 30 metres in height, together with
intervening low-lying areas. Apart from a short section of coastline, 3 km to the east of Herne

Bay, the shoreline has been “fixed” by the construction of sea defences.

2.1.2. Slope stabilitiés

Instability of the coastal slopes has historically been a major problem along this particular
section of coastline (Roberts and McGown, 1987). Details of failure mechanisms, a history of
slope failures and the measures which have been undertaken to counteract slope instability are
given by Canterbury City Council, (1984). Stabilisation of the coastal slopes has a direct
impact on the coastal process in the study area as it has removed a major source of sediment

supply, Canterbury City Council, (1993a)
2.1.3. Low-Lying Coastline

Within the study area there are sections of coastline comprised of low-lying land which has in

the past been subject to erosion and flooding. These areas are protected now by seawalls and

35



beaches restrained by timber groynes. The predominantly shingle beaches themselves may be
subject to erosion in response to variable longshore transport rates or beach draw down under
wave attack however, to date there have been no investigations specifically carried out to
determine shingle beach processes in the study area. As a result of localised beach erosion,

shingle replenishment has been carried out on a regular basis.

Over the past 50 years there have been three storms which have caused severe flooding in the
low-lying areas. These occurred in 1949, 1953 and 1978. The 1953 event was the most
destructive of the three, causing widespread flooding to the commercial centres of Herne Bay
and Whitstable, where flooding up to 2 m in depth was experienced (Plate 2.2, 2.3). To the
east of Reculver, over 2000 hectares of farmland were flooded, (resulting in loss of livestock
and crops), and the main road and rail links between London and East Kent were severed,

McFarland and Edwards, (1998a).
2.2. Geology of the Study Area

The North Kent coastal zone has been recognised as a site of particular interest to geologists,
since the mid-nineteenth century. The underlying and coastal geology is also important in
coastal process studies as it controls the rates and patterns of coastal erosion, the coastal
morphology and the supply of sediment to the beaches; these, in turn, provide subsequent
controls on the regional and localised patterns of sediment transport. The geology of the area

is summarised in Figure 2.3.

2.2.1. Nature of the Coastal Outcrops

(a). Upper Cretaceous Chalk

The Upper Cretaceous Chalk (100ma to 65ma) is exposed on the foreshore approximately 100
m to the east of the study area. Whilst there are no occurrences of chalk within the study area

itself, these rocks are of great importance because they are the source of the flints, which

dominate the shingle beaches in the south of England, Whitcombe (1995).
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(b). Lower Tertiary - Sandstones

Overlying the chalks are the oldest Tertiary rocks exposed on the coastline. These deposits
consist of fossiliferous sandstones and silty sandstones of the Thanet Sands (65ma to S6ma),

the Woolwich Beds and the Oldhaven Beds (56ma to 53.5ma).

To the west of Reculver (Figure 2.2), the upper 8m of the Thanet Sands are exposed in the
cliff section and on the foreshore. The exposure is typically a fine-grained clayey sandstone
which becomes glauconitic (indicative of a marine origin) towards its upper part. A prominent
layer of calcareous cemented sandstone (Plate 2.4), provides an important marker horizon;
this lies some 4.8 m below the top of the Thanet Sands. The calcareous cemented layer is
harder than the surrounding rocks and once undermined by erosion of the softer sands, breaks
up to form large tabular blocks, typically 1 m across, which litter the foreshore west of

Reculver.

Overlying the Thanet Sands are the Woolwich Beds, a sequence of fine-grained clayey sands
and coarser shelly sands which are commonly glauconitic. The sands show cross-bedding
indicative of shallow coastal environments, possibly with a deltaic or estuarine influence. The

maximum thickness of the Woolwich Beds, at the coast is 7.5 m, Holmes (1981).

The Herne Bay member of the Oldhaven Beds is 6 m in thickness and has an erosive contact
with the underlying Woolwich Beds. The basal layer consists of well-rounded black flints
(Plate 2.5). Above the pebble ‘beds are coarse sands showing strong cross-bedding; these grade
into fine sands and, eventually, the silty clays which mark the base of the London Clay. Within
the sandstones and silty clays, there are a variety of fossil shells, sharks teeth, fish bones as well

as concretions of iron, gypsum and barite.
c. Upper Tertiary - London Clay

The coastline from Herne Bay to Seasalter is comprised of London Clay (53.5ma to 40ma),
which has been drained, graded and provided with toe protection to prevent erosion and
slippage. London Clay is exposed on the foreshore across the study area. The clay is uniform,
steel blue - grey and very stiff (where fresh). Where weathered the rock is softer and light
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brown in colour. Within the clay there are bands of calcareous concretions (septarian nodules).
Pieces of septarian nodules, which have been eroded from the clay, are often seen scattered

across the foreshore.
d. Quaternary - Glacial Deposits

Glacial deposits (1.8ma to 10,000 BP) are found at many locations along the coastline; they

are important as a potential source of sediment supply to the coastal system.

Intermediate head gravels (Wolstonian) are found in the cliffs at west of Reculver, where the
deposit is 2.5 m thick (Plate 2.6). The head gravels consists of broken angular flints, black flint
pebbles and pieces of sandstone set in a matrix of coarse sand. The deposits frequently contain
lenses of clay. Samples of head gravels from Beltinge have a coarse (shingle-sized) content of

between 5% and 35%, Canterbury City Council, (1993a).

Head Brickearths are present in the coastal sections from the 2nd and 3rd stages; these
represent deposition in the Early and Late Ipswichian interglacial period respectively (Holmes,
1981). Brickearth of the second stage is found to the west of Reculver, where it is associated
intimately with the deposits of head gravels described previously; it is typically a dense loam

with a variable content of sand and pebbles.

The Brickearths of the 3rd stage are widespread along the coast, where they tend to exist as
infill to old river channels and other shallow depressions. These Brickearths are compact

yellow loams which commonly' contain small pockets of gravel and sand (Holmes, 1981).
2.2.2. Evolution of the Thames Estuary

The North Sea is a shallow sea formed by the inundation of part of the continental shelf of
North West Europe: the Thames Estuary is an extension of this sea.

Tectonic movements in the Miocene (22.5 - 5.0 ma), resulted in the uplift of the Wealden area
of Kent, creating a system of rivers which drained off the higher ground north and east into

the present-day Thames Estuary and southern North Sea. In Kent the main rivers were the
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Medway, the Stour and farthest to the east, the Lobourg, Figure 2.4(a). The Thames flowed
further to the north. These river systems and their courses (as they existed in the Early to mid

Pleistocene, 2.5ma to 600,000 BP are shown in Figure 2.4(a).

During the Anglian glaciation (500,000 BP) the route of the River Thames was diverted to the
south and east by an ice sheet, to such an extent that it joined with the River Medway (D'Olier
1975). The lower reaches of the Medway river were also deflected to the south, probably by
the same ice sheet, Figure 2.4(b).

By the Late Pleistocene (100,000 - 10,000 BP) the River Medway was captured by a tributary
of the River Stour, causing the abandonment of the river systems farther to the north, (Figure
2.4(c)). The remains of the old Thames, Medway and Stour rivers have been located by
geophysical surveying (D’Olier, 1975) at the positions shown in Figure 2.4(c). These river
courses have since been buried beneath more recent estuarine deposits. River terraces have
also been located in the present Thames Estuary and southern North Sea, coﬁﬁrming the

proposed river system development.

Throughout this latter period, the rivers would have been eroding the bed rock. Such erosion
of the Upper Cretaceous Chalks (and the Lower Tertiary sands to a lesser extent), provided
a great deal of coarse (predominantly flint) clasts which are seen in the various river gravel
deposits, both on the present land surface and on what is now the seabed of the Thames
Estuary and southern North Sea; for example the sand and gravel deposits of Long Sand and
Margate Sand to the north-east of the study area, Figure 2.5.

Sea level rise, commencing in the Flandrian (8900 BP), resulted in the progressive flooding of
the southern North Sea and the ancient river valleys. At around 7800 BP the North Sea and
English Channel became connected as the ridge of chalk which had separated them was
overtopped and eroded. The connection of the southern North Sea and the English Channel
allowed the establishment of a new and stronger system of tides; these swept up the sediments
into large sandbanks around the mouth of the Thames Estuary, leaving the remainder of the

seabed covered by a thin layer of lag deposits.
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2.3. Oceanographic Setting
2.3.1. Bathymetry

The Thames Estuary (Figure 2.5), is broadly funnel shaped-opening into the southern North
Sea at its eastern end. The estuary becomes shallower towards the west. Two main

oceanographic consequences arise from this shape;

(i) tidal and surge waves are amplified up the estuary,
(ii) exposure to waves is likely to increase along the coast towards the east, due to the greater

fetch and water depth (see section 2.3.6).

The southern North Sea is relatively shallow, typically 20 to 25m below Chart Datum (Figure
2.5) The remnants of the Lobourg river remain as a deep channel running approximately north
- south, to the east of the present coast of Kent. The main features of the sea bed in the

Southern North Sea, are a series of long NNE - SSW orientated sandbanks.

Other long sandbanks, separated by narrow scoured channels are located towards both the
north and south banks at the mouth of the Thames Estuary. Farther into the Thames Estuary,
there is a deep channel running east - west, approximately through the middle of the estuary.

Due to the shallow bathymetry of the region and a large tidal range (see section 2.3.3),
extensive areas of the sand banks are exposed during low water. Wide stretches of intertidal

flats on both the north and south banks of the Estuary are also exposed at low water.
2.3.2. Sea Level Changes

Across the south-east of England, an underlying trend of mean sea level rise with time has been
identified, (MAFF, 1989). Pugh and Faull (1982), utilised data collected from the ports of
Sheerness and Southend, (located just to the west of the study area), to study temporal
changes in mean sea level. They concluded that mean sea level increased by 1.5 mm yr™, over
a period of 50 years (Canterbury City Council, 1993b).These changes are consistent with

estimates of epeirogenic movements (vertical land movements) associated with glacial
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rebound. No conclusive evidence of eustatic changes (changes in global mean sea level) has
yet been identified however, MAFF (1989), recommend that an additional 4.5 mm yr rise in

mean sea level should be allowed for in coastal management studies.
2.3.3. Tides
(a). Tidal height

The main tidal influence in the Thames Estuary is linked to the North Sea tidal sysfem,
although some additional tidal energy may enter from the English Channel through the Straits
of Dover. The tidal wave propagates in an anticlockwise manner (under the influence of the
Coriolis Force), moving down the east coast of Great Britain into the Thames Estuary and
along the coast of France, Holland, Denmark and Scandinavia. Within the North Sea there are
three amphidromic points around which the tidal wave moves. These “zero tidal range”

locations control the patterns of tides in the North Sea and in the Thames Estuary, Figure 2.6.

Tidal parameters for the study area have been derived by interpolation between the principal
ports of Sheerness (15 km to the west of the study area) and Margate (10 km to the east). The
results are presented in Table 2.1. This shows that there is an increase in tidal range up
Estuary. Predicted water levels display a simple diurnal cycle. The frequency distribution of

water levels in the study area is discussed in section 4.5.2.
(b). Tidal currents

Current velocities vary between springs and neaps and with proximity to the coast. Within the
Thames Estuary maximum spring and neap velocities are 1.0 m s™ and 0.8 m s respectively.
Closer to the coast the velocities drop to 0.55 m s™ for spring tides and 0.45 m s for neaps.
In the vicinity of protrusions at the coast, Hampton Pier for example, current velocities can
reach 1.0 m s”'. Within the study area, the flood tide tends to be stronger than the ebb but is

shorter.
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2.3.4. Extreme water levels

Water levels at a particular coastal site may vary from the values predicted on the basis of
astromonical tide-generating forces alone due to meteorological effects. These include surges
generated in the Atlantic Ocean and transmitted into the North Sea; and seiches generated
within the North Sea, by strong northerly winds, the inverse barometer effect and wave set-up.

These are discussed in detailed in section 4.6.
2.3.5. Wind conditions

The prevailing wind direction in the study area is from the south-west. Unlike most sites on
the south coast of England however, south-westerly winds do not contribute much to the wave
climate along the study coastline. Wind conditions in the study area are described in section
45.1.

2.3.6. Wave conditions

Wave activity which is controlled principally by wind speed and direction, wind duration,
geographical fetch, bathymetry and tidal state. In general, the stronger winds produce the
greater wave heights and the longer wave periods. The relationship between wave height,
period and the wind speed is complicated in the study area by the presence of wide areas of

shallow water, Figure 2.5.

Water depth is likely to be important within the context of wave generation processes, in that
it limits the maximum wave height and the period which can exist for a given wind speed and
direction. The water depth also controls the “nearshore” processes of wave refraction and

wave shoaling which alter waves generated in deeper water as they approach the shoreline.

There has been little research into wave conditions in the study area however, the local coast
protection Authority, have been recording waves at a site near Whitstable since 1979, see
section 3.2.5. Preliminary analysis of this wave data suggest that wave conditions are typified
by modest wave heights (generally Hs < 1m) and short periods (Tz=2to 5 s), Canterbury City

Council, (1988). An investigation of wave conditions in the study area forms a major part of
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the research. The results are reported in Chapter 4.
2.4. Sediment Distribution and Mobility
2.4.1. Offshore sediment distribution.

The sediment cover over the bed of the Thames Estuary has been investigated by the British
Geological Survey and their findings have been published in terms of a sediment distribution
map (BGS, 1990). Most of the sediments in the southern North Sea and Thames Estuary are
believed to have been eroded and deposited by the major river systems, prior to the area being
inundated as sea level rose (Greensmith and Tucker 1973). The majority of the surficial
sediment is concentrated in the large sand banks distributed over the region. These sediments

are dominated by sand-sized material although coarser material also exists.

The remainder of the sea bed is covered in a thin layer of lag deposits; these are a combination
of gravels, sands and muds. Localised erosion of the sea bed provides small quantities of
gravel-sized material, consisting of: flints from the Upper Cretaceous Chalk; rounded black
pebbles, from the Oldhaven Beds; and irregular clasts of calcite cemented sandstones, from the
Lower Tertiary outcrops. Locally, large cobbles and pebbles of calcareous mudstone are found
on the sea bed. These are derived by the breakup of septarian concretions. Sand sized material
is released due to the erosion of the Tertiary Sandstones, principally along the coasts of Essex
and Suffolk (on the north side of the Thames Estuary).

2.4.2. Beach and Nearshore Sediment Distribution

A'typicai beach located within the study area is shown in Plate 2.7. The beach consists of a
mixture of sand and shingle sediment, typically with a series of shingle beach ridges around
high water mark and a mixed sand and shingle beach face. Ridges are comprised exclusively
of pebbles having shapes comparable with the imbricated discs described by Bluck (1967). The
D,, of the ridges varies from about 5 mm to 20 mm depending on location on the beach,

Canterbury City Council, (1993a).

Seaward of the beach ridges the beach face is planar, typically with a slope of 1 in 9 to the toe

43



of the shingle beach. Surface layers of the beach face ranges from patches which are
exclusively pebbles to patches which are exclusively sand; subsurface layers always comprising
a mixture of both sand and shingle. Apart from a general trend where the surface of the beach
immediately seaward of the ridges is more likely to be sandy (the sand run), the proportion of
sand and shingle in the surface layers appears to vary in both a longshore as well as in a more

obvious onshore / offshore direction, Canterbury City Council, (1993a).

The toe of the shingle beach comprises spherical and rod shaped cobbles and pebbles infilled
with sand and some coarser material. This part of the beach broadly corresponds to the large
cobble frame and infill of Bluck, (1967). Beyond the shingle toe there is a sharp transition to
a gently sloping (=1 in 500) lower foreshore comprising a thin layer of sand and silt over

weathered London Clay bedrock.

The total volume of shingle contained in the beaches of the study area has been estimated to
be in the order of 1 x 10° m*® (Canterbury City Council (1988)). Between 1974 and 1992
approximately 0.5 x 10° m® of aggregate (from both offshore and land-based sources) has been
added to these beaches, by way of renourishment. It is evident therefore, that a large
percentage of the sediment contained within the beaches consists of material which has been

brought in artificially from a variety of sources.

Commonly-occurring beach materials, found within the section of coastline under

consideration include the following:

(a) Cobbles. These cobbles consist of well rounded or sub-rounded flints; most of these are
probably recharge material derived from land based quarries added to sea dredged aggregate
in order to increase the proportion of coarse material in the replenishment (McFarland et al,
1994).

() Flint Pebbles. Both angular and rounded varieties of flint pebbles are very common in the
beach deposits. The flints may be black, brown or yellow in colour and may have a partial or
completely oxidised dull white coating on the surface. These flints may have been derived from
the glacial deposits (head gravels) or from the ancient river deposits. Alternatively, the flints

may have been derived from sea dredged aggregates used for beach replenishment.
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(c) Black Flint Pebbles. These pebbles are very well rounded and show the same
characteristics as the black flints at the base of the Oldhaven Beds.

(d) Claystone Fragments. These fragments are yellow-brown in colour and are derived from
concretions in the Tertiary rocks. Frequently the claystone fragments are bored by marine

mollusca.

(¢) Calcium Carbonate Clasts. These include intact and broken shells, with sizes which range

from sand to pebbles. Shells are particularly common in the western part of the study area.

(f) Sand and Silt. Large quantities of sand are found, both mixed in with the shingle in the
beach ridges and spread over the foreshore. Finer sands and silt are also common on the lower

foreshore.
2.4.4. Beach and Nearshore Sediment Mobility

Beach sediment is mobile under fairly moderate wave action forming shingle ridges at the high
tide mark. There has been little work carried out into the mobility of the shingle beaches within
the study area; the main aim of the present study is therefore to gain an understanding of the
shingle beach mobility and identify patterns of longshore transport. The results of the studies

into beach mobility are presented in Chapters 5 and 6.
2.4.5. The Street and Long Rock

Of particular interest along the coastline within the study area are the features known as: (a)
the Street; and (b) Long Rock. Each of these features comprises a significant volume of sand

and shingle within the nearshore region.

The Street (Plate 2.1(b)) is a long, narrow feature extending for about three kilometres
northwards from the toe of the shingle beach. Records show that this bank has been in much
the same position, and form, since at least the early 18th Centuryv(Canterbury City Council,
1993a). The Street is strongly asymmetrical with a steep western face and a more gently

sloping eastern face.
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Sediment samples taken from the Street demonstrate that it comprises of a poorly sorted
mixture of sand, shells and shingle. At some locations, pieces of claystone (often attached to
seaweed) are found on the surface. These are derived from an outcrop of harder cemented
material within the London Clay located on the east flank of the Street. The existence of the
Street is believed to be related to this outcrop of harder material, rather than to any

archaeological relics or littoral processes (Canterbury City Council, 1993a).

Long Rock (Plates 2.1(c,d)) comprises a shingle spit, fed primarily by longshore transport of
sediment from east to west. Aerial photographs of the area, taken over a period of 30 years
demonstrates that the spit has not visibly increased in size, the main feature of note being the
diversion (man-made) of the mouth of the stream towards the west (Canterbury City Council,
1993a). The foreshore around the spit comprises a thin fringe of coarse material, probably

beach material transported offshore during periods of high stream flows.

Within the vicinity of Long Rock, there are a series of small sediment banks corﬁprised ofa
mixture of sand and shingle with a similar size and grading to the beach material. Little is
known about the mobility of these banks. Over most of the area, the surface of the foreshore
is covered with mussels and barnacles (indicative of a lack of mobility). Where the material has
been swept into banks, the sediment appears to be mobile, although there is no evidence of

mass movement based on archived aerial photographs (Canterbury City Council, 1993a).
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Location / Port Tidal Parameters and Mean Springs Tidal Range, (m AOD).

HAT MHWS | MHWN MSL MLWN | MLWS | LAT | Range
MARGATE 2.7 23 14 0.1 -1.1 -2 -2.6 43
Reculver / Minnis Bay 291 243 1.53 0.13 -1.18 -2.08 -2.71 451
East Cliff 297 2.47 1.57 0.13 -12 2.1 273 | 457
Herne Bay 3.04 2.51 1.61 0.14 -1.23 -2.13 277 | 4.64
Tankerton / Studd Hill 3.09 2.54 1.64 0.15 -1.25 -2.15 -2.8 4.69
Whitstable / Seasalter 3.18 26 1.7 0.16 -1.28 -2.18 284 | 478
SHEERNESS 35 28 1.9 0.2 -14 -2.3 -3 5.1

Table 2.1. Tidal Parameters for Coastal Locations Within the Study Area.
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48



syipo / sadors feiseo)

.wc._voom 0} suoid
pue| 3UIA] MO

wne( Heyd

...........
............

TleM 9§ WISGHON

ol
a[qeIsHy >> .\-\nn-- e

%mm SUISH \\
wﬁ \ 1|u-_u-u-n-_. \ st

.Hoﬁﬁmsom

P g
2 2%
E ©  § o
=1 3 T B
. 3
. Z

e ]

Syef ysuuayf
Arenjsy sowey],

\\\\\\\\\\\

bﬁsmm BmBm

Kaddayg Jo 91T

Figure 2.2. General layout of the study area.
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Figure 2.3. Geological Map of the Study Area, after Holmes (1981)
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a. Early to Mid Pleistocene

b. Mid Pleistocene

¢. Late Pleistocene

Figure 2.4. Pleistocene Development of River Systems in the Thames Estuary and southern
North Sea, after BGS (1990).
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1980
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Plate 2.1(a) Aerial view of the coastline to the west of Whitstable, 1991; looking west towards

Seasalter, (see Figure 2.2 for location).




Plate 2.1(b) Aerial view of the coastline around Whitstable Harbour, 1991; showing “the

Street” in the foreground, (see Figure 2.2 for location).
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Plate 2.1(c) Aerial view of the coastline around Tankerton, 1991; showing “Long Rock” in the

foreground, (see Figure 2.2 for location).
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Plate 2.1(d) Aerial view of the coastline around Studd Hill, 1993, (see Figure 2.2 for location).




Plate 2.1(¢e) Aerial view of the coastline around Herne Bay, 1991; prior to the construction of

the breakwater, (see section 6.3 for details of breakwater, and Figure 2.2 for location).
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Plate 2.1(f) Aerial view of the coastline to the east of Herne Bay; (see Figure 2.2 for location).
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Plate 2.1(g) Aerial view of the coastline around Reculver, 1991; (see Figure 2.2 for location).
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Plate 2.2. Wave Overtopping of Coastal Defences at Whitstable
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, 1949,

Plate 2.3. Flooding to Central Whitstable, 1953.
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Plate 2.4. Outcrop of “Doggers” in the Thanet Sands, Reculver.

Plate 2.5. Black pebble beds in the Herne Bay Member / Bishopstone Glen
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Plate 2.7. Typical Beach in the Study Area, (seafront, Herne Bay ).
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CHAPTER 3: Methods and Analytical Techniques

3.1. Introduction

Sediment transport processes at any particular location on the coastline are dependant upon:
tidal and meteorological conditions, the regional coastal morphology / bathymetry and on the
sediment characteristics (particle size, sorting and specific gravity). The relationships between

the primary controls and the hydraulic and sediment responses are shown in Figure 3.1.

This chart indicates that there is strong interaction between many of the processes. For
example, sediment characteristics are a principal control on the threshold of particle
movement, the longshore and on-offshore transport of sediment and thus, the evolution of the
beach plan shape and profile. Each of these processes will act, in turn, to modify the sediment
characteristics at a particular location over time. All the primary controls change with time and,
with the exception of astronomical controls, are not easy to predict. In order to take into
account this variability, long-term data sets are required. If observations are limited to short-
term data, there is a possibility that these will not be fully representative (or typical) of factors

which influence coastal change.

The approach adopted for the investigation has been to utilise simple mathematical models to
represent: wave generation; wave propagation in shallow water; and beach sediment transport.
Results obtained from the models have been compared with field measurements, at various
stages in the overall modelling procedure. The use of mathematical models, combined with
validation using such field data, is considered to be the optimum approach to gaining an

improved understanding of coastal processes within the study area.
3.2. Long-term data sets
A number of long-term data sets exist, which are relevant to the present investigation. The

general locations from which the various observations were obtained are shown in Figure 3.2.

Particulars of each data set are described below.
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3.2.1. Manston Airport (wind speed and direction)

The wind recorder at Manston Airport (Figure 3.2) is maintained by the Meteorological Office.
The wind vane is mounted at a height of 10 m above ground level, at an exposed location. The
data which are available have been compiled as hourly mean wind speeds and directions. The
data are further sub-divided into wind-directional sectors, each of 30°. Data from 1979 to
1990, inclusive, have been available for the study; these are summaries providing information
on the percentage occurrence of particular combinations of wind speed and direction, for
individual months. A limited amount of data are also available for 1970 to 1978. However,
there is some uncertainty regarding the elevation of the wind recorder vane during this earlier

period.

Additional 'real time' data have been obtained from Manston, for the purpose of calibration

between observations at Manston and Borstal Hill, Whitstable.
3.2.2. Borstal Hill, Whitstable (wind speed and direction)

The Borstal Hill wind recorder (Figure 3.2) is owned and maintained by the Local Coast
Protection Authority i.e. Canterbury City Council. The wind vane has been sited at Borstal Hill
since 1978. Wind speed and direction are recorded on a 'real time' basis and are transmitted
to the Council offices in Canterbury; here, the data are logged on chart rolls. The location of
the Whitstable recorder has been shown to be subject to (wind) funnelling and sheltering, due
to its location (Canterbury City Council, 1993b) Hence, the data collected at Borstal Hill need

to be corrected, based upon comparisons with the Manston recorder.
3.2.3. Port of Sheerness (water level data)

The Admiralty maintain a Class A tide gauge at the Port of Sheerness, on the Isle of Sheppey
(Figure 3.2). Data have been collected at Sheerness since 1835; these have been used widely
to obtain predictions of mean sea level rise, relative to the land, for south-east England

(Suthons, 1963; Blackman and Graf, 1978; and Pugh and Faull, 1982).

The data set available for the study is for the years 1978, and 1981 to 1986. The data have
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been compiled as the percentage occurrence of the predicted tides and corresponding high
water surge residuals. This data set is particularly useful for: (i) analysing surge-tide
interactions in the Thames Estuary; and (ii) for determining the return periods of extreme

events.
3.2.4. Whitstable Harbour (water level data)

Water levels have been recorded at Whitstable Harbour (Figure 3.2) since 1979, using a vented
pressure transducer. The data are collected in 'real time' and transmitted to the offices of
Canterbury City Council, where it is logged on chart rolls. Data from 1979 to 1992 are

available for use in the present investigation.

Additional water level data were available from the deployment of a self-recording (pressure
type) tide gauge (TDR-3A), for a period of 16 days, over a spring / neap cycle in March 1990.
Deployment of this recorder was part of a study undertaken by Delft Hydraulics (1990a) of
coastal defences at Herne Bay. The recording site was located approximately 5 km to the north

of Herne Bay (Figure 3.2), with the recorder deployed 0.5 m above the seabed at a depth of
2 m below Chart Datum (CD).

3.2.5. Whitstable Harbour (wave records)

Wave conditions have been recorded, at a site located 600 m to the north of Whitstable
Harbour, since 1979 (Figure 3.2). The recorder consists of a pressure transducer, which
utilises a parallel plate capacitor enclosed in a partial vacuum. As the water depth over the
transducer increases, the plates are squeezed closer together. The capacitor functions as the
tuning capacitor of an LC oscillator, which produces a frequency which is dependant upon the
water pressure. The low frequency variations in pressure, due to the tidal component and
atmospheric pressure can be filtered out; this leaves a signal which is a response to wave

activity alone.

From 1979 to March 1990, data analysis was based upon the statistical method of Tucker
(1963); this generates statistically-derived significant wave heights (H, = H,,) and zero crossing

periods (Tz). Throughout this time, the wave recorder sampled 12 minutes of data, at three-
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hourly intervals. After March 1990, the data have been analysed spectrally, producing as
output spectrally-derived significant wave heights (H, = Hm,) and periods (T,). The time
period and the frequency of sampling after March 1990 was increased to 20 minutes, every 1.5
hr. In addition, a trigger was incorporated into the software; this switches the recorder to a
continuous mode, if a threshold wave height of 0.5 m was exceeded. This was to obtain more
detailed information on wave conditions during storm conditions. Over the period 1990 to
1992, the bulk of data was not collected; this was due to a series of recorder failures, including
a severed underwater cable and a damaged transducer due to a collision with a ship. In order
to maintain the integrity of thé data set, the small amount of spectrally-processed data

collected after March 1990 has not been used in the long term data sets.
3.2.6. Beach Profile Data

Since 1974, the Coast Protection Authority has been recording beach proﬁle changes at a
number of locations within the study area. Beach profiles are recorded at quarterly intervals,
by measuring levels at points along the profile (using a dumpy level and aluminium staff). The
number of profiles recorded has varied at between 50 and 75, depending upon the degree of
monitoring considered necessary at particular times or locations. The data are stored in a
database, which also has the capability to calculate the cross-sectional area of material
contai’ned within the shingle beach profile. The database does not have any other analytical

ability; hence, it is necessary to extract data for analysis elsewhere.
3.3. Numerical modelling'
The numerical modelling was carried out in 4 stages, as shown in Figure 3.3.

Stage 1 involved the development of a model relating wind conditions to the generation of
waves within the Thames Estuary and the southern North Sea. The output from this stage of

the modelling was a description of the offshore wave conditions for the area.

Stage 2 of the modelling was to determine the propagation of waves, from offshore and in
towards the coastline. Modelling of shallow water wave processes (such as wave breaking,

shoaling and refraction) was carried out to obtain characteristic nearshore wave conditions for
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the study area.

Stage 3 involved combining the wind climate for the area with the results of the wave
modelling, to obtain a nearshore wave climate. In relation to the strong tidal influences over
the study area, it was found necessary to include the effects of water levels on the nearshore

wave climate at this stage.

Stage 4 of the modelling procedure was to predict the longshore transport patterns and rates
of movement of the beach sediments, in response to the derived wave climate. The longshore
transport model was used to obtain transport rates and directions along the whole of the length

of coastline under investigation.

Long-term data sets representing wind conditions, water levels, wave conditions and beach
area changes are all available for the area (see Section 3.2). These data, combined with field
measurements, have permitted validation to be undertaken of the mathematical models at the

following stages in the analysis:

(a) comparison of nearshore wave conditions from the model (Stage 2 output), with the wave

records collected to the northwest of Whitstable Harbour; and

(b) calibration of the sediment transport formulae, using tracer pebbles and beach plan surveys
(Stage 4).

Details of the numerical modelling results and calibration are given in Chapters 4 and 5,

respectivel,y.

3.4. Offshore Wave Generation Model (Stage 1)

3.4.1. Model Description

Several investigations have established relationships between wind conditions and the

generation of waves (for example: Darbyshire, 1963; Sverdrup and Munk, 1947; Hasselmann
et al., 1973). For the present study, the method of Sverdrup and Munk (1947), modified for
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shallow water conditions by Bretschneider (the SMB method) and as outlined in the Shore
Protection Manual (CERC, 1984), was used. This particular method is well suited to modelling

wave generation in shallow water basins such as the study area.

The equations were derived by combining two separate relationships. In the first of these
relationships, deep water wave forecasting relationships are used to calculate energy added to
the sea surface by the wind stress; in the second, the relationships developed by Bretschneider
and Reid (1953) are used to derive energy losses, caused by bottom friction and water
percolation. The final equations afe based upon a combination of these two numerical methods
and are expressed in equations 3.1 - 3.3, where Hs = Hm, = 4 m_*%, (m, is the area under the

wave spectral curve) and Tp is the wave period corresponding to the spectral peak;
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The data required as input into the offshore wave generation model, represented by the

equations is described below.

(a) U,, the wind stress factor (where U, =0.71 U "%, and Uy is the recorded wind speed in
m s™, corrected for location and elevation of the recording device). For Stage 1 of the model
construction, a range of nominal values of U, were used (0 - 50 at intervals of 5). This range
was considered to encompass all possible values of U, which were likely to occur within the

area of study.

(b) The 'geographical fetch' is the distance that the wind blows over a body of water in the
mean direction of the wind. However, since wind imparts its energy to a water body at angles
of up to 45°, to either side of the wind direction, an effective fetch (F) was determined (as
outlined in the Shore Protection Manual (CERC 1984)). In the case of northeasterly and
easterly winds, long geographical fetches are possible. In these situations, the fetch limits are
more likely to be controlled by meteorological influences such as the extent of a particular
depression system. Fetches to the northeast and east were set at 120 km; this was considered
to be consistent with a typical weather system occurring in the area. Under actual conditions,

the fetch lengths will vary; this, however, was not accounted for in the hindcast model.

(c) Water depth (d) is controlled by the bathymetry and the tidal elevation (related to phase).
Because the water depths varied in response to tidal and meteorological influences, a range of
nominal water levels, from -2.74 m AOD (i.e. equal to Chart Datum) to a maximum value of
+5.5 m AOD, were used (at intervals of 0.5 m). This range was considered to represented the

limits of all the possible water levels which were likely to occur.

@) Wind duration is defined as the length of time that the wind blows, at a more or less
constant speed and direction. For any given wind speed, there is a maximum wave height and
period which can be generated (a Fully Arisen Sea - FAS). The minimum time required (t) to
reach a FAS state was calculated using equation 3.3. Because of the relatively shallow water
and short fetches within the study area, the duration of time required to achieve a FAS was
found to be short i.e less than 3 hours, in most cases. For this reason it was assumed that, for
any combination of wind speed and direction, an FAS would have formed over the area of

investigation.
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Modifications to the SMB formulae outlined by Hurdle and Stive, (1989) were not applied,

as they are only relevant to longer fetches and greater water depths than those which occur in

the study area.

3.4.2. Directional Sectors and Coastal Units

Fetch length, together with the water depth over which the wind blew, varied with wind
direction. Therefore, values for these parameters were chosen for each of seven wind
directions. These sectors correspond to the wind-directional sectors into which the wind data,

provided by the Meteorological Office, were compiled (Section 3.2).

Along the coastline, there are variations in: the fetch length; the bathymetry; and in the tidal
elevation. In order to take account of these variations, the area was divided into six coastal
units within which each of these parameters could be considered to remain constant. The
subdivision of the research area, into longshore coastal units and directional sectors, is
summarised in Figure 3.4. The directional sectors correspond to the wind directional sectors
outlined in Section 3.2. Due to morphological changes in the nearshore area, a further
subdivision was required for the wave propagation model, providing a total of ten coastal units

/ subunits; these subunits are included in Figure 3.4.

In order to carry out all the calculations involved in the offshore wave generation model, a
spreadsheet-based computer program SHALLPRE was written. Each run of the program
solved the SMB equations (Section 3.4.1.) for the pre-defined range of wind stress factors and
water levels within an individual coastal unit and directional sector. The program was run to
solve the equations, for each of the seven directional sectors within each of the six coastal units

in tum.

3.5. Nearshore Wave Conditions (Stage 2)

Waves generated offshore are modified by interaction with the seabed, as they approach the
coastline. Computer programs available to model these processes include INRAY and
OUTRAY (Hydraulics Research), RCPWAVE (US Army), REFRACT and ENDEC (Delft
Hydraulics). Some of the models are two-dimensional (RCPWAVE, REFRACT) in character,
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whereas others are one-dimensional i.e. the wave modification calculations are carried out
along a pre-determined profile (ENDEC). In general, the two-dimensional models are superior,
in that they provide an overview of wave modifications within a defined area; likewise, they
can be used to identify areas of wave focusing along the coastline. Two dimensional models
are unreliable, however, in areas of extensive shallow water with complex bathymetry. There,
energy losses due to wave breaking and frictional losses tend to be more important that wave
refraction, (Delft Hydraulics, 1990b).

In an earlier study undertaken for the eastern part of the area under investigation, the program
RCPWAVE was used for the investigation of coastal defences (Robert West & Partners,
1993). Useful data were obtained only for high tidal conditions, when waves were approaching
the coastline at small angles. Consequently, for the present investigation no attempt was made
to use RCPWAVE or another two-dimensional model. Instead, the model ENDEC (ENergy
DECay) was used; this was considered to be the most suitable available, for modelling wave
modifications in extensive areas of shallow water. The processes considered by ENDEC, in

order of importance are:

(i) shoaling;

(ii) depth-controlled wave breaking;

(iii) bottom friction;

(iv) bottom and current wave refraction;

(v) energy gain, as a result of local wind conditions; and

(vi) water level variation, in response to radiation stresses.
The input required for the ENDEC model is as follows:

(a) "offshore" wave height (Hs);
(b) "offshore" wave period (Tp);
(c) incident wave angle (theta);
(d) local wind speed (w);

(e) bottom profile;

(f) current profile;

(g) tidal variation (eta);
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(h) PSI value;
(i) wave breaking coefficient (c);

(§) wave breaking coefficient (B); and
(k) friction factor (f).

The "offshore" wave heights and periods were derived during Stage 1 of the model
development for: (a) each of the coastal units and directional sectors: and (b) for a range of
wind speed and tidal variations. Wave periods were assumed to remain constant throughout
the wave propagation process, whereas the wave heights and wave angles were altered by

shoaling, wave breaking and the effects of bottom friction.

The incident wave angle was determined, for each sector within a particular coastal unit, by
examining the orientation of the seabed contours in relation to the prevailing wind direction.
In the majority of cases, the seabed contours are aligned from east to west. Hence, a wave ray
which is approaching from the north will have an incident wave angle of 0 (zero) degrees.
Waves originating from directions to the west of north were defined as negative angles; those

to the east of north, as positive.

Local wind speeds were included in the computations and modelling, so that energy increases

caused by a local wind field could be considered.

The sea bottom profile is a description of the variation in water depths (bathymetric) along the
wave trajectory (for this study, the profile depth was defined in relation to CD). Depths below
CD were set as positive; those above CD are presented as negative values. Separate
Bathymetric profiles were déﬁned for each sector, within each zone, using a combination of
Admiralty Collector Charts (Fair Sheets) and other local bathymetric surveys commissioned
by the Coast Protection Authority.

Water level variations (defined by eta) are controlled by tidal, meteorological and local
hydrodynamic effects and these need to be accounted for in the computations. For example,
a tide of 3.0 m AOD at Whitstable (where Chart Datum is -2.74m OD) would generate an eta
value of 5.74 m (since the bathymetric water depths are relative to CD). Additional changes

in water level, caused by wave set up / set-down, were calculated by ENDEC and added
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automatically to the defined eta value.

The variation in (tidal) current speeds and directions throughout the water column (the current
profile) was included, to determine how these variables would affect wave refraction patterns

over the area.

The optimum values of the wave breaking coefficients (« and ), which define the point at

which waves break, were calculated by ENDEC as the computations progressed.

The friction factor (f) depends upon the roughness of the seabed and, hence, the degree of
interaction with the overlying wave orbitals. A value of £=0.01, which is typical of a smooth
sandy bottom, (CERC, 1984) was used in this study.

Finally, although not listed above, the horizontal 'step-size' is a program parameter which can
be adjusted to allow a balance between the speed of calculation and the accuracy of the results.
If the minimum step size is too large the program can return errors. However, if the step size
is too short, then processing time becomes excessive with no gain in the programme accuracy.
In this study, the step size was set initially at 10 m; it was then varied, as necessary, by the

programme to provide optimum performance.

An analysis was carried out to determine how sensitive the final computer output (the
nearshore wave conditions) was to each of the input parameters described above. The effects
of each parameter was tested, over a range of tidal levels and wind stress factors. Feedback
from the sensitivity analysis was used to optimise the input data, reducing the potential for
large errors to occur. Further details of the wave model sensitivity analysis are given in
Chépter 4.

Having defined the input parameters, the program "ENDEC" was used to model changes in
wave conditions, for a range of combinations of water levels and wind conditions (for each of
the coastal units and directional sectors). The results were plotted as a series of graphs, from
which the nearshore wave conditions could be determined for any combination of wind stress

factor and water level (see Section 4.2).
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3.6. Calibration of Nearshore Wave Conditions.

Wave data obtained from the recorder sited 600 m to the north of Whitstable Harbour have
been compiled as a series of scattergraphs, in which the occurrence of combinations of wave
height and period are plotted. These data were plotted on an annual and monthly basis, to

determine how wave conditions varied (Section 4.4).

In order to calibrate the nearshore wave conditions generated by the model, a data set of actual
events was compiled (where an event is defined as having a recorded wave height of 0.5 m or

more). The data required for each event are as follows:

(a) recorded wave height (above a threshold of 0.5 m);
(b) recorded wave period,;

(c) recorded water level,

(d) recorded wind speed; and

(e) recorded wind direction.

Significant wave height and wave period, obtained from the wave records, are based upon
statistical analysis of the wave trace; therefore, they are not directly comparable to the wave
parameters generated by the wave model which are spectrally-derived. This limitation needs

to be bourne in mind when correlation of the predicted and recorded waves is attempted.

Water levels were obtained from the tide gauge (vented pressure transducer), located in
Whitstable Harbour. The wind (speed and direction) data used were collected from the wind
vane on Borstal Hill, Whitstable.

The recorded water level, wind speed (corrected) and direction were used in conjunction with
the Stage 1 and Stage 2 models, to hindcast the characteristic wave conditions for each of the
individual events. The hindcast conditions were correlated then with the actual recorded wave
conditions. Graphs of predicted and recorded wave heights and periods were plotted, with

correlation between the two data sets examined as described in Section 4.2.
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3.7. Nearshore Wave Climate (Stage 3)

The wave climate describes the wave activity which would be expected, at a particular coastal
location, in a typical or average year. The wave climate contains information on the likely
occurrences of combinations of wave height, wave period and wave angle; it is useful for
studying factors which control beach stability over longer periods of time. Such information

is particularly relevant for coastal scientific and ergineering applications.

Within the area, the effects of water level on wave generation and propagation are important
and have to be included in the analysis. A water level climate was determined, based upon
results obtained from the 16 day deployment of the tide gauge to the north of Herne Bay
(Figure 3.2). The data collected were used to produce a water level frequency distribution, or
water level climate. Since these data were relevant only to Herne Bay, the data were corrected
to provide the distribution of water levels within the remainder of the coastal units.-Correction
factors were determined, through the interpolation of the tidal parameters between the
principal ports of Sheerness and Margate (Figure 3.2). The correlation factors are reproduced
in Table 3.1.

Wind data, supplied by the Meteorological Office and collected over the period 1979 - 1989
(inclusive) at Manston Airport (Figure 3.2), were used to obtain the wind climate. These data
had been analysed previously, as the occurrence (in hours) of particular combinations of wind
speed and direction for each calender month. A wind climate was produced from the Manston
data by summing up all the hourly wind speed and direction occurrences; these were divided

then by the number of years of data used to obtain the occurrences for a typical year.

The water level climate was then combined with the wind climate, using a joint probability
approach to produce details of the likely occurrence of a range of wind and water level
conditions (a joint wind - water level climate) under which waves are generated and propagate.
The results of this analysis were used, in turn, together with the nearshore wave conditions

calculated by ENDEC to produce a nearshore wave climate.

All the calculations involved in obtaining a nearshore wave climate were carried out using a

spreadsheet computer program (COMBINER); this was written especially to undertake the
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large number of calculations involved for each of the coastal units / sub-unit.
3.8. Longshore Transport Calculations

There is a wide selection of mathematical models available for the determination of longshore
sediment transport rates; most of these have were derived for sand beaches (for example, the
CERC, (1984) formulae. For the present study, use was made of the "shingle" transport
formula derived by van der Meer, (1990) on the basis of physical model studies. This formula
was found to perform well when compared with a comprehensive data set of longshore

transport rates recorded in the field, (Schoones and Theron, 1996).
The equations used are as follows:
(a) For sand / gravel beaches (H, / A D5, > 50)

Q,, = 0.0038 H? . c,, sin 2f
(3.4

For shingle / rock beaches (10 <H, /A D, < 50)

Qy, /8. Dyso - T, =0.0012 (H,.vV CosP/D,g). ((H,.vV CosB/D,5)-11).sin B

(.5)

For coarse-grained beaches under gentle wave action, (H, / A D5, < 10) it was determined

that no significant transport would occur.

Longshore transport calculations for each coastal unit were carried out by adding a transport
module onto the wave climate spreadsheet (COMBINER). This procedure allowed the
previously-calculated nearshore wave climate to be used, as input into the sediment transport
model directly; this removed the risk of errors arising, due to transfer of the data from one

model stage to the next.
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The following input data to the longshore transport model were required:

(a) the wave height at the toe of the beach;
(b) the wave angle at the toe of the beach;
(c) the wave period,

(d) the median grain size of the sediment;
(e) the specific gravity of the sediment; and

(f) the orientation of the coastline / beach.

Wave height, wave period, and wave energy were obtained as output from the nearshore wave

climate model (Stage 3), as described earlier (Section 3.5).

The mean grain size of the sediment was determined on the basis of sediment samples collected
from the beach. In order to obtain a representative mean grain size, samples were taken at a
number of sites and along a shore normal profile at beach levels corresponding to: b(i) mean
high water springs; (ii) mean high water neaps; (iii) mid-beach; and (iv) at the toe of the beach.
Beach sample analysis, performed for an earlier coastal management study (Canterbury City

Council, 1988), were used to create a larger data base of particle size distribution data.

The specific gravity of the sediment is defined by the composition of the beach material itself.
As the beaches are dominated by flint particles, a specific gravity of 2.65 g cm™ was used for

each of the coastal units.

As the angle of orientation of the beach varies along the coastline, the sediment transport
calculations were carried out for a range of coastal orientations. A deviation of +20°, from
the main coastal orientation of east - west, was used as the upper and lower limits for the

calculations. The computations were undertaken at increments of 5°, in the coastal orientation.

Depending upon the value of H,/ A D, the appropriate transport equation (3.4) or (3.5) was
selected by the computer program. Longshore sediment transport equations were solved for
wave height, period and angle, corresponding to each combination of wind stress factor and
water level. The resulting sediment transport is output in terms of hourly rates. Annual

potential transport was obtained, by multiplying each hourly transport rate by the
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corresponding occurrence of the wave conditions; then summing the totals. The model
parameters were set up in such a way that transport from east to west is regarded as positive.
Having derived the annual transport rates, for a range of predetermined coastal orientations,

the net transport rates for the actual coastal orientations were obtained by interpolation.
3.9. Calibration of the longshore transport formulae
3.9.1. Electronic tracer pebble development

The concept of a tracer pebble, which utilises electronic tagging for the purposes of detection
and recovery (developed by the Departments of Oceanography and Electronics at the
University of Southampton), was recognised as a means for studying shingle movement in the
area. Consequently, an undergraduate project was undertaken, to fabricate a number of sample
tracers and to build a prototype detector (Prettijohn, 1992). Field trials were undertaken at
Long Beach (Whitstable), to determine if the concept was feasible in practise. As a result of
the comparative success of the first trials, a second undergraduate project was undertaken to
upgrade the electronic tracer pebble design and provide improved performance (Workman
1993). More extensive field trials of the electronic pebbles, than were undertaken in the
previous projects, were carried out at both Whitstable and at Hayling Island (southern
England) (Whitcombe 1995).

Field trials at Long Beach (Whitstable) were designed as part of the present study and were
carried out in collaboration with the undergraduate projects. The field trials are described in

this Chapter and the results, which have been largely reanalysed, are presented in Chapter 5.
3.9.2. Sediment Dynamics Experiments (Long Beach, Whitstable)

Field investigations of longshore transport, in response to waves, were undertaken; these were
in order to calibrate the predictive equation and to compare the transport rates derived using
three different types of tracer pebble (painted, aluminium and transmitting) and the results of
a beach plan area survey. Two experiments were carried out; the first in March 1992, the
second in January 1993. The Long Beach site was selected for the experiments, as it provided

a relatively long and straight beach confined at either end by major structures. Few
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obstructions to transport were present along the beach itself. The experimental set-up used

is shown in Figure 3.5.

Water levels during both of the experiments were abstracted from records obtained from the

tide gauge in Whitstable Harbour.

Waves were measured using the Canterbury City Council wave recorder (which was
operational throughout both experiments), located some 700 m to the northwest of the trial
site. Because the wave recorder was located some distance away from the experimental site,
an array of pressure transducers, located at the toe of the shingle beach, were used to provide
additional wave data. The sensors were attached to metal posts, which were inserted into the
beach so that their upper surfaces were located 20 cm above the beach sediments. An
electromagnetic current meter was used to measure the horizontal component of the flow
velocity, adjacent to one of the pressure sensors, at a height of 50 cm above the beach surface.
The data produced by the sensors were sampled over 10 min, every half hour throughout the
high tide cycle.

Measurement of the nearshore waves and their angle of approach depends upon several
factors, including: (i) the sensor array dimensions; (ii) the wave speed; (iii) the actual wave

angle; and (iv) the sampling frequency.

The pressure sensors were arranged in a square, with a base length of 10 m. This spacing was
found to be the optimum arrangement for measuring wave parameters on shingle beaches
elsewhere (eg at Shoreham (Chadwick, 1987) and at Hayling Island (Whitcombe 1995)). Wave
speed is controlled by water depth at the location of the instrument. Water depths over the
sensor head varied during the recording period, from 0.5 to 3.0 m; these relate to speeds of
between 2.5 and 5.0 ms™, on the basis of Airy wave theory. Assuming a wave period of 3 s,
the corresponding wavelengths are of the order of 6 to 15 m; consequently, a high frequency
of sampling was required. The optimum sampling frequency has been investigated elsewhere
by Whitcombe (1995). For water depths comparable to those found at Long Beach, it was
determined that a frequency of 5 Hz was sufficient (provided that the angles of wave approach

were not large).
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A beach plan and level survey was carried out using a Wild (T1000) theodolite, fitted with an
Electronic Distance Measurement (EDM) capability. The surveys were undertaken during
daytime low tides, when the entire shingle beach was exposed. A temporary bench mark
(TBM) was established, so that absolute beach levels could be recorded. The baseline for the
survey lay approximately parallel to the beach orientation. Levels were determined at a number
of profiles along the length of the beach, in order to determine volumetric changes over

different parts of the beach.

Electronic, aluminium and painted pebbles were injected into the beach and their movement
recorded. Electronic pebbles were detected using the specially-developed detector (Prettijohn,
1992; Workman, 1993). Aluminium pebbles were detected using a standard metal detector,
with a discriminator. (Painted pebbles were not utilised as tracer material during the second
study; this was due to the low recovery rates experienced during the first field trial and

problems with interference from members of the public).

The beach was scanned, for both electronic and aluminium pebbles, in longitudinal strips.
Hence, as the water level fell following high water, the search would commence, with the
detector operators following the tide down the beach. This arrangement provided a search
window of up to 10 hr (light permitting). Painted pebbles were located visually, at the same

time that the beach was scanned with the electronic and metal detectors.

The positions of the pebbles and their depth of burial (not applicable for painted pebbles) were
recorded using the EDM theodolite. In the case of the aluminium and electronic pebbles, the

individual pebble number / code was also recorded.

The aluminium tracers consisted of 6 size / shape configurations; these were the same as those

used by Wright (1982), in studies of beach shingle movement in the West Solent.

On the other hand, the electronic pebbles were cast in moulds obtained from pebbles found
on Long Beach (Workman, 1993). Other studies on pebble populations on Start Bay (Gleason
et al, 1975) have suggested that the mean pebble characteristics could be determined (within
0.2¢, at p<0.01) from a sample of 30 pebbles taken from the surface of the beach.

Consequently, samples of 30 pebbles were collected from the beach along the tracer profile,
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at 1 m intervals, from the beach crest to the beach toe (equating to 17 locations). For each
pebble within a sample, the following parameters were determined: a, b and ¢ axis; roundness;
maximum projection sphericity (MPS); and oblate-prolate index (Dobkins and Folk, 1970).
The mean and standard deviations of each of the (17) samples was determined and, in each

case, the most typical pebble within the sample was selected for moulding (Workman, 1993).

The pebble parameters for éach of the transmitting pebbles and for the six aluminium size /
shapes are listed in Table 3.2. Although the electronic tracers are coarser in grain size than the
mean composition of the beach, they may be considered as representative of the shingle
portion of the distribution. The aluminium pebbles are generally larger and represented only

the largest portion of the indigenous shingle material, (Figure 3.6).

Cores of painted pebbles were inserted into the beach at a number of locations, to determine
the depth of the mobile layer. The location of the cores were marked using a metal post.
Numbered aluminum pebbles were placed within the painted pebble core, at set levels. The
pebble nﬁmber, its level relative to Ordnance Datum and the levels of the top and bottom of
the cores themselves were noted. These combined cores, of aluminium and painted pebbles,

were used to determine the depth of disturbance of the beach sediments.
3.10 Sediment Budget.
3.10.1. Introduction.

Because of the length of the study area and the quantity of data which exists (and, therefore,
requires validation), the sediment budget analysis has been carried out for selected sections of
coéstline; these are Whitstable - Central; Herne Bay - West and at Tankerton (see Figure 6.1).
Historical beach proﬁle data, as described in Section 3.2. were used to derive volumetric

changes of the shingle beach as described below.
3.10.2. Beach management units and beach volume calculations.

For the sediment budget, each section of coastline was divided up into a number of beach

management units (BMU). Beaches within each BMU have a similar coastal orientation and
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groyne field pattern. Thus, since the beach at any part of the BMU is subjected to similar
hydraulic stresses and physical restrictions on sediment movement, it should behave in a similar

manner.

For each BMU, the volume of beach material present, over time, was calculated using the data
from the beach monitoring stations. The supply of sediment to the beach, resulting from
artificial replenishment, was also noted. In this way, temporal changes in beach volumes could
be derived for each BMU. |

Having determined the patterns of change within each individual BMU, the section of coastline
was examined as a whole, in order to produce a balanced sediment budget and identify

relationships between adjacent BMUs. The results are presented in Section 6.3.
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Location / Port Tidal Conversion Coefficients;, from
(Principal port in bold) Sheerness Margate

m c m c
Sheerness 1 0 1.223 103
Seasalter 938 -0.029 | 1.148 | 0.067
Whitstable 927 | -0.034 | 1.134 | .062
Tankerton / Studd Hill .906 -0.046 | 1.109 | 0.047
Herne Bay .895 -0.05 1.095 | 0.042
East Cliff 878 -.055 1.075 | 0.036
Reculver / Minnis Bay .865 -.063 1.059 | 0.026
Margate 817 -.084 1 0

(1). Where tidal conversion coefficients are in the formy=mx +¢

Table 3.1. Tidal Relationship Between Principal Ports and the Coastal Units within the Study
Area.
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Tracer Ref | “A” axis | “B”axis | “C” axis | Sphericity | Roundness | O-P Index
Number (cm) (cm) (cm)
1 5.1 3.4 1.4 0.48 0.38 -14
2 4.8 38 2.1 0.62 0.15 29
3 5.8 44 23 0.52 0.53 2.5
4 6.3 4.0 26 0.65 0.41 +2.94
5 6.4 43 28 0.65 0.46 +1.90
6 4.1 3.0 21 0.71 0.64 +0.97
7 6.4 34 26 0.68 0.28 +7.12
8 52 44 3.0 0.73 035 23
9 5.1 4.1 26 0.68 0.20 -1.96
10 52 3.6 29 0.77 033 +3.5
11 4.0 29 2.1 0.72 0.36 +1.5
12 49 38 2.7 0.74 0.36 +4.02
13 42 32 26 0.68 0.56 +2.01
14 43 3.0 22 0.72 0.33 +2.32
15 44 238 23 0.75 0.64 +5.01
16 40 3.0 24 0.78 0.50 +2.08
17 4.8 3.0 22 0.70 0.28 +4.19
(@
TracerRef | “A”axis | “B” axis | “C”axis | Sphericity | Roundness | O-P Index
Number (cm) (cm) (cm)
LR 5.7 49 4.4 0.88 0.31 +149
LA 7.0 6.5 35 0.68 0.37 -1.43
MR 6.1 34 3.0 0.75 0.44 7.54
MA 6.7 3.8 25 0.63 0.20 +5.10
SR 44 34 3.1 0.86 0.86 3.82
SA 58 4.5 24 0.60 0.17 -2.84
®) |

Table 3.2. Sedimentological Characteristics of: (a) Transmitting (after Workman, (1993)); and

(b) Aluminium Tracer Pebbles (after Bray, (1990)).
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Figure 3.1. Relationship Between Primary Controls and the Hydraulic / Sediment Responses.
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Figure 3.2. Location of Oceanographic Instrument Sites for the Data Sets Used in Study Area.
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Figure 3.3. Stages Involved in the Development of a Numerical Model for the Study Area.
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Figure 3.5. Experimental Setup for the Beach Process Field Study at Long Beach, Whitstable.
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CHAPTER 4: Results - Coastal Hydrodynamics Model

4.1. Introduction

Results of the first three stages of the coastal model (Figure 3.3) are presented in this chapter,

including:

e offshore wave conditions;

® nearshore wave conditions; ‘

@ calibration of nearshore wave conditions with recorded wave data;

® derivation of a wind climate;

® derivation of a water level climate;

® derivation of offshore and nearshore wave climates;

® extent of year to year and seasonal variations in wind and, hence, wave conditions; and

® the nature of extreme (storm) events water levels and waves, in the study area.

The results described in this chapter will, in turn, be used to assist in the determination of
potential longshore transport rates (Stage 4 of the coastal model), along the whole of the

coastline in the study area (Chapter 5 and 6).
4.2. Offshore Wave Conditions

The program "SHALLPRE", written to solve the equations in the SMB hindcast model, has
been used to produce offshore wave conditions for the 6 coastal units: (1) Seasalter &
Whitstable; (2) Tankerton; (3) Studd Hill; (4) Herne Bay & Hampton; (5) East CIiff; and 6)
Reculver, the Northern Sea Wall & Minnis Bay. Fetch lengths and typical water depths for
each of the coastal units and directional sectors were selected, as described in section 3.2.1.;

these are reproduced in Table 4.1.

An example of the output from "SHALLPRE" is shown in Table 4.2. These results are the
offshore wave conditions for Unit 6 (Reculver to Minnis Bay) over a range of water levels and
for wind stress factor (U,) of 25. The maximum water depths referred to in the Tables

represent the depth of water which is required so that there is no interaction between the
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generated waves and the seabed (ie deep water waves). It can be seen from the results
presented in Table 4.2. that the offshore waves generated have a high degree of interaction
with the sea bed (ie they are shallow water waves); this justifies the use of the SMB equations,

for modelling wave generation within the study area.

As expected, the offshore wave height and wave period increases with fetch length, water
depth and with the wind stress factor. Fetch lengths and water depths increase from Sector 1
(westerly winds) to Sectors 5-7, (northeasterly and easterly winds) and the offshore waves
show a corresponding increase in height and period, (Figure 4.1(a)). As the fetch and water
depths also increase from Unit 1 (in the west) to Unit 6 (in the east) there is a similar increase
in the offshore wave conditions (Figure 4.1(b)). This increase in wave activity towards the east
of the study area represents a more open marine environment, compared with the west (as

described in Chapter 2).
4.3. Nearshore Wave Conditions
4.3.1. Sensitivity Analysis

Having prepared the data required as input for the wave propagation model, ENDEC, a single
profile was selected for the sensitivity analysis; the aim of this was to determine which of the
input and processing parameters were the most important as regards their effect on the final
results. The nearshore wave computer program (ENDEC) was run a number of times, using
fixed offshore wave conditions. Each time the program was run, one of the program
parameters was changed and the effect on the results noted. The process was then repeated,

for a range of offshore wave conditions.

The results show that the nearshore wave conditions are most sensitive to: (i) water level /
tidal state (eta); (i) the bathymetric profile (Bp); and (iii) the bed friction factor, (f). The
offshore wave height (Hs,), period (Tp,) and angle () are important only when the water level
is high and the wind speeds are low. Full results of the sensitivity analysis are reproduced

elsewhere, (Canterbury City Council, 1993b).

Optimum breaking factors & and y were selected by the software, based upon the particular
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situation being modelled and on the results of laboratory tests of wave breaking with bed
slopes of 0.01 to 0.02 (Delft Hydraulics, 1990b). However, it was noted that for more gentle
slopes (0.001), wave heights after breaking may be underestimated by up to 10% when
modelling non-steep waves (Delft Hydraulics, op cit). The nearshore region within the study
area, is typified by shallow slopes however, modelling is generally restricted to steep waves
and errors related to the selection of breaking parameters are considered to be secondary to

water level, bathymetric profile and the friction factor.

4.3.2. Nearshore Wave Model Results

ENDEC was used to model the changes to waves which occur as they propagate towards the
beaches in each of the ten coastal units / sub-units. For each directional sector, the program
was run for a range of water levels (z=0,1,2,3,4 and 5 m AOD.) and a range of wind stress
factors (U, = 5,10,15,20,25,30,35,40,45 and 50). The procedure was then repeated, for each

of the coastal sub-units

The offshore wave height and period required as input were obtained from the results
presented in the SHALLPRE Tables, by reading off the values which corresponded to the wind
stress factor and water levels which were being used. Wave angles were fixed for each sector,

by assuming that the offshore wave direction corresponded to the direction of the wind.

For each scenario modelled, the wave conditions at the toe of the beach were noted. In the
case of the Whitstable unit (1B), wave conditions at the wave recorder position were also
noted. Results were then compiled in a tabular format, (see, for example Table 4.3), for each
of the coastal sub-units and directional sectors. These results are reproduced in full elsewhere;
(Canterbury City Council 1993b). From each table of results, three graphs were plotted. These
graphs show the variation of nearshore wave height, wave period and nearshore wave angle
with the wind stress factor and water level; examples of these graphs are reproduced in
Figures 4.2(a-c). Using the graphs, it is possible to hindcast the nearshore wave conditions
resulting from a combination of wind stress factor, wind direction and water level, for any of

the coastal sub-units.

Examination of Figure 4.2(a) demonstrates how the wave height increases with wind stress

94



factor for each tidal level, initially linearly; however, with increasing wind stress factor the rate
of increase reduces. This reduction is due to the limiting effect that the water depth imposes
upon the wave height. The water level limiting effect is more apparent in situations where there

are large wave heights / periods, relative to the water depth at the beach toe.

It has been assumed that the wave period remains constant during the shoaling process; thus
variation in wave period with water level and wind stress is defined in the offshore area and
is unaltered as the waves propogate towards the beach . As with the wave height, wave period

increases with the wind stress and water level, although the variation with the latter is small

(Figure 4.2(b)).

Nearshore wave angles depend upon the water depth, wave height and the initial wave angle.
In relatively deep water and with small wave heights, quite large wave angles may be
maintained up to the beach toe, (Figure 4.2(c)). With larger wave heights (associated with
larger wind stress factors) and relatively shallow water, the wave angles at the beach toe are

reduced accordingly.
4.4. Recorded Wave Data
4.4.1. Wave record analysis (Whitstable Harbour).

The follow scattergraphs have been produced from the Whitstable wave data following the
method of Draper (1967);

e yearly scattergraphs (July 1979 - June 1991),
® monthly (all years) scattergraphs;
® seasonal - summer and winter months (all years) scattergraphs; and

e summary - all data scattergraph.

Data recorded as part of a "continuous run", during a period of high wave activity, was used
only if the individual wave record coincided with the normal frequency of recording (ie once
every three hours). This approach avoided creating a bias in the scattergaphs, towards higher

wave heights.
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The summary (all data) and the seasonal scattergraphs are shown in Figure 4.3(a-c). Yearly
and monthly scattergraphs are reproduced elsewhere (Canterbury City Council, 1993b).

A total of 22396 individual wave records were used to compile the "all data" scattergraph in
Figure 4.3a. This scattergraph demonstrates the low wave energy nature of the study area (eg.
only 0.1% of significant wave heights recorded exceed 1m). Wave periods are typically in the

range of 3 to 5 seconds (Tz), rising to 5 to 7 seconds for waves with an Hs exceeding 1 m.

Waves with periods exceeding 7s rarely occur other than when associated with wave heights
of less than 20cm. Such waves are likely to represent remnants of ‘swell” waves, probably
originating from North Sea storms (as records and visual observations show that they are
dominantly northeasterly in direction) (Canterbury City Council, 1991)). As waves with longer
periods interact more with the sea bed and the study area is characterised by a wide shallow

nearshore region, the absence of larger waves with long periods is not unexpected.

Comparison of the wave records compiled for the winter and summer seasons (Figure
4.3(b&c)) show that there is more wave activity in the winter months (0.19% Hs exceeding
1.0 m) than in the summer months (0.02% Hs exceeding 1.0 m). The overall increase in wave

heights seen in the winter season is reflected by an overall increase in wave period.

Breaking down the wave data into individual months reveals the degree of variation which
occurs in wave energy throughout the year. Wave height exceedence graphs for Hs values of
0.5m, 0.75m, 1.0m and 1.25m are shown for each month, (averaged over the period 1979 to
1990), (Figure 4.4(a)). The monthly variation shows a seasonal variation, with the large waves
most likely to occur in the winter months; an exception is the month of April which has the
second greatest number of waves greater than 0.5 m, after February. Since the equivalent of
just over seven years of data is available, (67% of data successfully collected and recorded
over a period of eleven years), it would not be appropriate to draw any wide ranging

conclusions from the data set, other than the existence of a summer / winter cycle.

Wave height exceedence graphs for Hs values of 0.5m, 0.75m, 1.0m and 1.25m (Figure 4.4(b))
have also been produced for each year of records, for comparative purposes. These results

show that there is a degree of variation in the wave activity, from year to year, although the
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effects are not as pronounced as for the monthly records (Figure 4.4(a)). There does appear
to be a reduction in wave activity in the yearly graphs although, as in the case of the monthly
charts, the data set is too short and incomplete to draw any conclusions as to the nature of the

inter-annual trends in wave height exceedence.
4.4.2. Calibration of Wave Conditions with Recorded Wave Data.

From the wave data collected over the period February 1979 to December 1994, 1016 events
were noted when the recorded wave height exceeded 0.50 m. For each of these events, the
recorded wave height and wave period was noted. The wind speed and direction and the water
level for each of these events was extracted from analogue chart rolls, which contain the raw
data from the Local Authority tide and wind recorder at Whitstable (for locations see Figure
3.2). Having allowed for gaps in the wind and water level data sets, a total of 840 events were
logged,; in these all of the data required to carry out comparison between the recorded wave
conditions and wave conditions predicted by the model were available. This represents an
unusually good wave data set both in terms of the number of observations and the long period

over which the data were collected.

The data outlined above were divided into seven sets, depending upon the wind direction. The
sets corresponded to the wind directional sectors used in the study. Thus, for each sector,
there is then available a set of actual recorded wave heights and periods, accompanied by wind
speed and water levels at the time of the wave recording. As the data are not distributed evenly
throughout the seven sets, the correlation will have a greater confidence in some of the wind

directions than in others.

Tables of the available data for each sector are reproduced elsewhere (Canterbury City

Council, 1993b). The following information has been included, for each event:

® a unique event reference number;

o wind direction recorded at Whitstable;
® wind speed recorded at Whitstable;

® wind direction recorded at Manston;

e wind speed recorded at Manston;
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® corrections to Whitstable wind records;
® the calculated wind stress factor;

e recorded tide height;

® predicted wave heights;

® predicted wave periods;

® recorded wave height; and

® recorded wave period.

The data were sorted into ascending order on the basis of the recorded tidal level for each
sector. Depending upon the number of events, the data for each set were split into sub-sets;
each sub-set was made up of events with similar tidal levels. A regression analysis was then
carried out, for both the predicted and the recorded wave heights and periods for each data
sub-set to obtain a calibration coefficient. The results of this analysis are reproduced in Table
4 4. Where practical, the regression analysis has been carried out on sub-data sets defined by

tidal level (see above), to determine how the correlation varies with water depth.

Wave heights and periods derived from the hindcast procedure are determined from spectral
parameters. Hence the significant wave height (Hs = Hm,) and wave period (Tp), used in the
analysis will not correspond exactly to the significant wave height (Hs = H,,) and wave period
(TZ) obtained from the wave records (as these are obtained statistically from the wave traces

themselves).

In the case of significant wave height, the differences between Hs and Hm, are small. A
commonly-quoted relationship is Hmok= 1.05 H,,, on average (WMO, 1988). In shallow water
and with steep waves, however, Hm, becomes smaller than H,; this is due to deformation of
thé wave form (CERC, 1984). The extent of the difference was estimated for the study area,
based upon the theoretical relationship derived by Dean (1974), and field studies carried out
by Thompson and Seelig (1984), and Hotta and Mizuguchi (1980). Once again, the estimated
differences are small (ie. Hm, ~ 0.97 H,,, with the exception of very shallow water conditions

when the waves are at the point of breaking (when Hm, ~ 0.85 H,,).

Comparisons between the peak spectral wave period (Tp) and the zero crossing wave period

(Tz) are, likewise, problematical; an average correlation of Tp = 1.2Tz has been quoted by
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WMO (1988). Muir Wood and Fleming (1981), state a correlation of Tp = 1.4Tz, whilst
Chadwick and Morfett (1993), simple state that the peak frequency Tp does not have a direct

equivalent in the time domain.

The results of the regression analysis demonstrate that the correlation is dependent upon both
the directional sector and the water depth. Generally, the predicted wave heights are lower
than the recorded wave heights for the westerly directions and higher for the north and
northeasterly directions. Comparison of the wave periods shows that the predictions are lower
than the recorded values for westerly and northwesterly directions but are, on average, about

equal for the remaining directions.

If events with a water level of less than 1.0m AOD (that is less than 2m of water above the
recorder head) are ignored, then the calibration coefficients (for both wave height and period)
fall within a much smaller range. Calibration coefficients for wave height are greater in shallow
water than in deep water for directional Sector 1 - 6; there is insufficient data to identify the

same pattern for Sector 7.

The most distinctive example of wate} level affecting the calibration coefficient is for Sector
1. Figure 4.5(a) shows plots of the predicted and recorded wave heights for Sector 1, sub-
divided into four water level classes. Correlation between wave heights, for water levels in
excess of 2.0m AOD, show a good visual correlation; a calibration coefficient of 1.01 obtained
by the regression analysis supports this. With reducing water levels, the predicted wave heights
become progressively lower than the corresponding recorded values. In the case of wave
period, a plot of predicted v recorded wave periods (Figure 4.5(b)) identifies a similar water

level influence albeit less, distinct than was noted for wave height, (Figure 4.5(a)).

The entire data set is presented elsewhere (Canterbury City Council, 1993b), as a series of line
graphs showing the predicted and recorded wave heights / periods of the individual events. The
corresponding water levels and wind stress factors are also included, to illustrate how they

affect the correlation.

Whilst the correlation between predicted and recorded wave heights and periods is generally

quite reasonable, the fact that spectrally derived parameters are being compared with
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statistically derived parameters in shallow water means that the correlation factors themselves

need to be treated with some caution. This limitation is discqssed further in Section 4.4.3.
4.4.3. The Correlation between Predicted and Recorded Nearshore Wave Conditions

The available wave records have offered an opportunity to correlate the nearshore wave
heights and periods, obtained using the coastal model, with recorded data. This is an unusual
situation in coastal engineering since correlation (calibration) is often carried out at the final
stages of modelling; this tends to be based upon features such as long term sediment

accumulation against a prominent structure eg a jetty (Frihy et al, 1991).

Before selecting and applying general calibration coefficients to the coastal model it is worth
considering the attributes of the output of the wave model and of the recorded data set. Errors
and uncertainties which are likely to occur can be sub-divided into three categoriés: (i) errors
in the wave records; (ii) errors associated with the correlation data set; and (iii) coastal model

errors.
(a) Wave Record Errors

Wave records available for the study area were analysed, on behalf of the local Coast
Protection Authority by an external consultant using C90 cassette recordings of the frequency
modulation of the transducer. The analysed data is in the form of a list of tables of tide level,
wave height (Hs) and wave period (Tz). The raw data on the tapes were not stored after
analysis; consequently it has not been possible to reinspect or reanalyse the original data. The
accuracy of the recordings is quoted in the operation manual as £10%; however it is not clear

as to how this error range should be interpreted.

Wave data from pressure transducers are very sensitive to the correction of the wave trace,
for depth attenuation. Simplistically, the data collected by the pressure transducer has to be
corrected, by multiplying the wave height by a factor which depends upon the water depth and
wave period. This sensitivity is greatest when dealing with short period waves in shallow water
(Figure 4.6). For example, for a water depth of 4m and a wave period of 3s, (typical of the

study area), an error in the initial wave period calculation of only 0.2s would result in an error
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in the attenuation correction factor of around £15%.

Before March 1990, the data analysis was based upon the zero-crossing method: the significant
wave heights were corrected for attenuation, based upon a single value of Tz. After March
1990, the data were analysed spectrally. In the case of the spectral method, it was possible to
correct separately each frequency component for pressure depth attenuation. The effect of this
procedure is to provide better estimates of the higher frequency components, than was possible
with the zero-crossing method (Driver, 1992). Data analysed prior to March 1990 is likeiy to
have longer periods and lower wave heights compared with the same data could it be

reanalysed spectrally (Driver, 1992).

The bulk of the analysed wave data probably underestimated the significant wave height and
overestimated the wave period, as a result of depth attenuation corrections. The extent of these
errors cannot be ascertained, without obtaining the original raw data. Since the extent of the -
analysis errors varies with wave period, the difference in calibration coefficients between
westerly (shorter wave periods) and northeasterly sectors (see above) could, at least in part,

be a consequence of the data analysis technique.

The problem of correlating the statistically-based parameters from the wave records with the

spectral wave parameters from the model has already been noted in Section 4.4.2.

The frequent breaking of waves, either on or in the near vicinity of the instrument head during
a recording period, would adversely affect the results of the wave recording. This phenomena
is more likely to occur at low water levels. Having examined the data sets it was considered

prudent to exclude data for the correlation analysis where the still water level was below a
nominal 1.0m AOD.

(b) Correlation Data Set Errors / Bias.

In selecting to use only data for which the recorded wave heights were greater than 0.5m,
other events during which wind and water levels conditions would have led to predicted waves
greater than 0.5m (but were recorded as being below the threshold level) are neglected. This

approach would have had the effect of providing higher calibration coefficients, than would
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be the case if all the recorded data were used. Ideally, the correlation should be carried out
using the entire wave data set. However, due to the method of data logging, digitisation of the

entire data set was not feasible.

(c). Wave Model Errors.

It was noted, for Sectors 5 and 6 in particular, that the same values of wind stress and water
level were associated with a range of values of recorded wave heights and periods. The
variation was considerably less in Sectors 1, 2 and 3. This difference may be attributed to the
difficulty encountered in defining a representative fetch length, for the sectors which are
"open" to the North Sea. The effective fetch will be controlled by the prevailing weather
systems and, as such, could be either longer or shorter than the representative fetch which has
been selected. The assumption that, for all of the events, the sea will be in a fully arisen state

is less likely to be valid for the northern and eastern sectors.

According to the sensitivity analysis described in Section 4.3.1, errors in the sea bed friction
factor and the wave breaking factors (used in the nearshore wave model) could result in errors
of up to +15% and +5% respectively in the wave heights; however they would have little effect
on the wave period. These errors are the main ones for which the calibration procedure was
intended to compensate. Whilst errors in these parameters would affect wave heights in all the
directional sectors, the effects may vary from sector to sector; this is related to the changes in
the bathymetric profile and/or water depth.

The results of the correlation exercise describe above, demonstrate that the model predictions
for wave height and period fall within the error ranges, normally associated with mathematical
modelling (Soulsby, 1997). In terms of consistency, the model presented in the present study,
performs well in comparison to many other studies, eg Henderson and Webber (1978)
considering many of these studies were rather selective in the data sets chosen for evaluation.

Model performance is considered further in the Discussion, (Chapter 7).
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(d). Selection of Calibration Factors

Due to the changes in the wave field, for example brought about by refraction and diffraction,
nearshore wave conditions will vary over short distances. Waves recorded at a particular point
will not necessarily be the same as those contemporaneously recorded in similar water depths
a short distance along the coast. Hence, the calibration coefficients obtained by the method
outline previously (section 4.4.2) must be treated with some care, as there may be site-specific

influences at the point of the recording.

The long length of the wave record data set, and the ability to carry out a directional
comparison between hindcast wave conditions and recorded data, close to the shoreline,
provides a high level of model validation. There are however, limitations upon both, the model
itself, and the recorded wave data (as described in (a) to (c) above). It was decided not to
correct the predicted waves to their exact recorded equivalents. Instead; calibration
coefficients were selected which reflected the general trends in correlation with wind direction
(Table 4.5).

In the short-term the calibration coefficients may be checked by collecting data on sea and
weather conditions, over a period of a few days. During such a period the data collected from
existing recording devices can be controlled and where possible, supplemented with additional
recording methods. An example of an approach of this type is included in Chapter 5, as part
of the Long Beach Study.

In the longer-term it would be desirable to up-date the existing instrumentation and analysis
techniques, to provide better quality data sets for correlation purposes; this is discussed further
in Chapters 7 and 8. Ideally, wave conditions at several sites in the study area would be
recorded over a period of a number of years, to allow more effective calibration of the model;

however, this is likely to prove prohibitively expensive.
4.5. Derivation of the Wave Climate

The derivation of the wave climate has been achieved by combining the calibrated nearshore

wave conditions, with the wind and water level climates for each coastal unit (as described in
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Chapter 3). The results from each stage of the procedure are presented and discussed in this

Section.
4.5.1, Wind Climate

The hourly- averaged wind data obtained from Manston Airport, over the period January 1979
to December 1989, has been compiled and analysed to provide the likely occurrence of each
combination of wind speed (Beaufort Scale) and wind direction in an average year. These
results are presented in Figure 4.7(a). The likely occurrences of the stronger winds are low,
and hence, wind speeds have been plotted on a logarithmic scale. Winds blowing from
directions other than those defined by the directional sectors, accounting for 54.2% of

occurrences, are not included.

The results presented in Figure 4.7(a) show that winds from the west (Sector 1), northwest
(Sector 2 and 3) and northeast (Sector 5) are more frequent and tend to reach higher speeds
on more occasions. Winds from the north (Sector 4) and from the east (Sector 6 and 7) are
less common. This pattern gives a distinct asymmetry to the wind climate for the area, with the
implication that locallngenerated waves will be experienced more frequently as a result of

westerly and northwesterly winds than with easterly and northeasterly winds.

The variation in the occurrence of the wind speed and direction, between summer and winter
months, is demonstrated in Figure 4.7(b and c). The majority of the more extreme winds ( Ws
>force 7 (ie. >14.1ms™)), occur in the winter period, (Figure 4.7(b)). The winter period also
shows a dominance of westerly and northwesterly winds (Sectors 1 to 3). The main feature of
the summer data set is that northeasterly winds (Sector 5) are the most common (Figure 4.7c¢).
From the ten years of data available there would appear therefore to be a seasonal effect; in
this, the onshore winds in winter are dominated by westerly winds, whilst those in summer are

more likely to be northeasterly.
4.5.2. Water Level Climate

The results of the water level recordings carried out near Herne Bay, over two tidal cycles in

March 1990, have been analysed to produce a water level distribution (or climate), (Table 4.6).
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These data show the likelihood of exceeding each of the water level classes, for each of the
coastal units. For units other than Herne Bay, the distribution was obtained by correcting the
recorded water levels, based on the interpolation of tidal parameters between the principal

ports of Sheerness and Margate (as described in Table 3.1).
4.5.3. Offshore Wave Climate.

Wave conditions for each combination of wind speed, wind direction and water level have been
extracted from the tables produced by "SHALLPRE"; their likely occurrence is taken from the
wind climate data. By summing all the occurrences of wave height and direction classes, an
offshore wave climate can be produced for each of the coastal units. The results are shown in

Figure 4.8 (a) and (b) for Unit 1 (Seasalter / Whitstable) and Unit 6 (Reculver to Minnis Bay).

Maximum offshore wave heights are generally quite small (not exceeding 3.0m) compared with
similar studies (eg Whitcombe 1995), who found offshore wave heights of up to 10m
(hindcast) off Hayling Island, Southern England. This suggest, that in contrast to sites along
the south coast of England, coastal processes will be subjected to a wave climate containing

considerably less energy; consequently sediment transport rates and their frequency of |
occurrence will be lower. The offshore wave climate results compare well with Delft
Hydraulics studies undertaken for Herne Bay (Delft Hydraulics, 1990(a)), except that slightly
higher wave heights were found in the northeasterly and easterly sectors; this is due to the
longer fetches and deeper average water depths being used by Delft, for the offshore wave
generation calculations. As shown in the sensitivity analysis, such differences in the offshore
waves heights are unlikely to be reflected in the nearshore wave conditions. Hence, the
differences between the studies is not considered to be significant in terms of the eventually
wave conditions which are experienced on the shoreline and the subsequent transport of beach

material.

The inequality between wave heights in the west and north, compared with the northeast is
apparent in all of the offshore wave climates. Since the wave period tends to be larger
associated with northeasterly and easterly winds, the inequality in terms of wave energy would
be even more pronounced. Wave heights, in general, increase from Unit 1 (in the west) to Unit

6 (in the east); this reflects the increasingly open marine environment, with longer fetches and
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deeper water. The increase in wave heights with respect to unit is most strongly marked with
westerly and northwesterly winds. This relationship gives the impression that there is a
reduction in the inequality of wave energy due to westerly / northwest and easterly /
northeasterly winds, from Unit 1 (Seasalter) (Figure 4.8(a)), towards Unit 6 (Reculver to
Minnis Bay), (Figure 4.8(b)).

4.5.4. Nearshore Wave Climate

The nearshore climates can be obtained using the wind speed, wind direction and water level
occurrences, in combination with the results of the wave model results (section 4.3). For each
combination of wind and water level conditions, the wave height, wave period and wave angle
can be obtained from the graphs (as described in section 4.3.2). A nearshore wave climate can
then be built-up in a similar fashion to the offshore wave climate. The nearshore wave (height)

climate for Whitstable (Unit 1B) and Reculver (Unit 6A) are shown in Figure 4.9(a) and (b).

The nearshore wave climate shows that the directional inequality, in terms of wave height, has
been reduced significantly - although waves from the north - northeast remain dominant. As
in the case of the offshore wave climate, wave period has not been considered. Since northerly
and easterly wind generated waves have the longest period, these directions are likely to

remain dominant in terms of wave energy.

The maximum significant wave heights shown in Figure 4.9 are between 1.25 m and 1.5 m,
(Hs), as would be anticipated from examination of the “all data” wave record scattergraph
(Figure 4.3(a)). However it is important to remember that the results presented in Figure 4.9
are based upon what may be considered as “typical” water level conditions only. During storms

the actual water levels are observed frequently to be elevated above 3.0m AOD.

Based upon the results of the nearshore wave modelling (for example, Figure 4.2), the main
effect of these higher water levels would be to allow larger waves and / or waves with larger
wave angles to reach the beach. Although such events are, by definition, infrequent, there is
the potential to move large volumes of sediment in a short time period. Extreme events are

considered in more detail, therefore, in the next section.
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4.6. Extreme Events

During an extreme event, strong winds generate large waves which are incident upon the
coastline. Storms within the area of study are associated frequently with an elevation of the still
water level, above its normal tidal height. The effect of this water level elevation is two-fold,
as far as shingle beach dynamics is concerned: (a), a larger area of beach is exposed to wave
activity over the tidal cycle; and (b), larger nearshore wave heights and angles are possible, due
to the increased water depth (see wave model results (section 4.3.2)). Thus, extreme events
provide the potential to transport relatively large volumes of material over short periods of

time compared, with the net annual drift (Seymore et al, 1990; Brampton 1993).

A full understanding of the nature of extreme events in the area is outside the scope of this
study, but it important that the potential effect of such events on beach processes is considered
and, if possible, quantified in some way. Indeed it may be that extreme events are an important,

perhaps even controlling factor in the sediment dynamics of the region.

Six extreme events are to be considered and have been defined by their return periods; they
are described asthe 1in 1, 1in 5, 1in 10, 1in 20, 1in 50 and 1 in 100 year events. Each event
can be characterised by a series of nearshore wave heights, periods, angles and still water

levels, throughout a tidal cycle.
4.6.1. Extreme Wind Conditions

Ten years éf available wind data (mean hourly wind speed and direction), obtained from the
Meteorological Office recorder at Manston Airport, have been fitted to a probability
di#tn'bution. These results have been extrapolated to extreme return periods; the results, which
are presented in Table 4.7, have been corrected for the inland location of the monitoring

station following the procedures outlined in the Shore Protection Manual (CERC, 1984)
4.6.2. Extreme Water Levels

The water level z(t), observed at any location and time, can be described by the following

equation:
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z(t) = zo(t) + x(t) + y() + xy(t) “4.1)

where zo(t) is the mean sea level, x(t) is the astronomical tidal component, y(t) is the
meteorologically-induced surge component and xy(t) represents the surge - tide interaction.
The term ‘surge’ is used to describe any deviation from the normal astronomical tide, which
has resulted from weather conditions. Such deviations include barometric effects, external
surges generated in the North Atlantic, internal surges generated in the North Sea (in response
to either northerly or easterly winds, and wind-wave setup (Canterbury City Council, 19.93b).

The southern North Sea and Thames Estuary are particularly prone to large surges (Pugh,
1987). Such large surges result from an increase in tidal energy, over dissipative losses, as the
surge wave propagates down the eastern coastline of Britain, encountering increasingly

shallow water depths.

The degree of interaction between the astronomical tide and the surge component (xy(t))
varies from site to site. In deep water areas, surge - tide interactions have not been observed
(Pugh, 1987). In the study area, there is evidence of a strong interaction, which acts to reduce
the size of the surge residual over the period of predicted high water. Examination of the
distribution of larger surges (> 0.6 metres) at Southend (Figure 4.10). shows that they tend
to "avoid" high water with most occurring a few hours before predicted high water. Pugh
(1987) has also noted that the extent of the surge-tide interaction increases with the total water

level.

In order to determine extreme water levels, the joint probability method of Pugh and Vassie
(1979) was used. This approach is based on separating the water level into the tidal component
x(t) and the surge component y(t). Separate probability distributions are fitted to each
component; these are extrapolated to extreme values and recombined. Early joint probability
studies carried out for ports in the southern North Sea and Thames Estuary were considered
as suspect, due to the presence of the surge - tide interaction (Pugh, 1987). In order to reduce
the effects of the surge - tide interaction, the analysis used in this study was based upon data
récorded at the time of high water, ie the predicted high tide and the high water surge residual
(Hydraulics Research 1981; 1985).
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No suitable water level records existed within the study area, which could be used for the joint
probability analysis. Therefore, data collected at the port of Sheerness, during 1978 and 1981
- 1986, were used. The distribution of high tides and the high water surge residual for
Sheerness are shown in Table 4.8. Having extrapolated the distribution of the high water surge
residual, the two data sets were recombined using a spreadsheet program "JOINTPRO", to
provide the distribution of the maximum water levels at Sheerness. Using the conversion
factors derived in Table 3.1, the high tide level distributions at coastal sites within the study

area were obtained from the Sheerness data set. The results are presented in Figure 4.11.

Extreme water levels for Whitstable, obtained using the joint probability technique, were
compared against actual data recorded at Whitstable Harbour. These results are presented in
Table 4.9.

4.6.3. Extreme Wave Conditions.

The use of short term data sets to obtain extreme (storm) conditions has been applied to a
number of studies. The most common technique which has been used involves fitting existing
data into an established statistical distribution, which is then extrapolated to obtain the

characteristics of more rare occurrences.

Le Mehaute and Wang (1984), have identified three types of errors which could lead to large
uncertainties in predicting extreme wave conditions: (i) errors in measurement
(instrumentation), (ii) errors resulting from a lack of knowledge on the functional relationship
characterising the "true" long-term underlying distribution, particularly at low probability
levels; and (iii) errors due to climatological variations or cycles related to the extrapolation of

a small sample, to extreme events of low probability.

Whilst account could not be taken easily of the climatological / cyclic errors, Le Mehaute and
Wang (op cit) derived formulae to quantify the errors related to instrumentation and the long-
term distribution. Table 4.10, derived from the formulae of Le Mehaute and Wang (op cit),
was constructed to relate the standard deviation of the recording method, the return period (T)
and the standard deviation of T obtained for the number of years of data available. Assuming

a standard deviation of 0.05 in the recording method and analysis, the data which are available
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are sufficient to predict the 20 year wave with a standard deviation of 0.15; similarly the 50
year wave with a standard deviation of 0.20. The standard deviation of the 100 year wave

would be in excess of 0.20.

The available significant wave height data and its likely probability of being exceeded were
plotted as a number of distributions including the Weibul, Gumbel and Log normal
relationships. The ‘best-fit” was found by plotting the wave height on a linear scale against the
probability 6f exceedence on Napier log scale (Figure 4.12). From the graph an equatioh was
derived from which the significant wave height, Hs, with a probability of being exceeded once
in a given period (T) could be found.

Hs = 15.1422 . In (p) - 7.3784 (4.2)

Values of Hs with return periods of 1, 5, 10, 20, 50 and 100 years were derived ffom equation
4.2; these are reproduced in Table 4.11. The corresponding wave periods were estimated by

examination of the pattern of larger waves in the "all data" scattergraph (Figure 4.3(a)).
4.6.4. Interdependence of Water Level - Wind / Wave Conditions.

A number of studies (Ackers, 1972; Hydraulics Research 1985; and Canterbury City Council,
1994a), have identified a relationship between the height of surges and the wind speed and
direction in the Thames Estuary.

If surge heights were independent of the wind speed, then the joint probability (Pewszy) of
extreme winds occurring at the same time as an extreme water level is equal to the sum of their

individual probabilities,

Py =P wy - P 4.3)

Alternatively, if the still water level and wave heights are fully dependant, then the joint
probability will be equal to the probability of either of the two single probabilities,

Pwsy =P wey = Py 4.4
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Insufficient data are available to carry out a full examination of the degree of dependency
between wind speed, wind direction and water levels in the study area. However, data from
a number of sources have been used to carry out a qualitative assessment of the levels of

dependency. The sources used are as follows:
(i) wind data from Shoeburyness and surge data from Southend, (1929 - 1968) (Ackers, 1972);

(ii) wind data from Shoeburyness and surge data from Sheerness (1963 - 1979) (Hydraulics
Research, 1985),

(iii) recorded wind and water level data at Whitstable (1979 - 1993) (Canterbury City Council,
1994).

Ackers (1972), correlated wind direction with surge residuals at Southend. The results are
reproduced in Table 4.12(a); these show clearly a strong relationship between wind direction
and surge height. Large surges are most likely to occur associated with westerly or

northwesterly winds, than with northerly or northeasterly winds.

The relationship between wind speed and surge height was also examined by Ackers (op cit);
these results are summarised in Table 4.12(b). This analysis shows that strong winds are more
likely to be associated with larger surges. Wind speeds equal to or greater than force 7 occur
for less than 7%of the time; this is associated with over 14% of surges of between 0.6 and

0.9m and over 22% of surges greater than 0.9m at Southend.

Hydraulics Research (1985) carried out a study into the dependency of wind conditions and
water levels for Whitstable. Examination of the frequency distribution of wind speeds for
various surge residuals gave similar results to those of Ackers (op cit), in that large surges

were more commonly associated with stronger winds.

With regard to wind direction and the surge residual, the Hydraulics Research (op cit) surge
data was divided into four sets, depending on the wind direction (north west, north, north east

and “other” winds). For each wind direction set, a high water surge height exceeded - return
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period graph was plotted. The data were corrected using the factors obtained in Table 3.1, to
provide the equivalent water levels at Whitstable. Finally, regression analysis was carried out
on these data sets so that they could be extrapolated to greater return periods. The results are

presented in Figure 4.13.

The results illustrate the dependancy of high water surge residuals on wind direction. From the
graph, the high water surge residuals of various return periods for each wind direction can be

obtained.

The final approach to the examination of the dependency between wind, water levels and
waves is to examine actual storm events over the study area. However, as the Whitstable wind

and tide data is not in a digital format, only specific storm events can be considered.

Examination of flood warning records for Whitstable, obtained between 1978 and 1993, lead
to the identification of a number of events where the high water surge residual was in excess

of 0.5m. For each event, subject to availability, the following were determined:

« recorded maximum water level;
» recorded surge residual;

» recorded wind speed;

» recorded wind direction;

» recorded wave height;

« recorded wave period;

» predicted wave period; and

» predicted wave height.

The results are reproduced in Table 4.13. All the events have recorded surge residuals greater
than 0.5m and all (except for the 19/09/90 event), are accompanied by westerly or
northwesterly winds. With the exception of the 11/01/93 event, the surges were accompanied

by moderate to strong wave activity.

Examination of the individual return periods for the still water level, wind conditions and wave

heights during the February 1953 event (which has also been included in Table 4.13),
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demonstrates that all three parameters have low probabilities of occurrence, which may be

interpreted as evidence of dependancy.

Due to the infrequent nature of extreme events, insufficient recorded data is available to
quantify the interdependence of wind speed and direction on surges, maximum still water levels
and wave conditions. Nevertheless, the evidence which is available suggests that
interdependency does exist and should be taken into account when determining the frequency

of storms, at any location within the study area.

As the purpose of the investigations into extreme events was aimed at examining the resulting
longshore transport rates, a series of data sets of water level and neafshore wave conditions
at the wave recorder has been compiled, for each of the storm return periods (Table 4.14).
Because the water level - wave dependency data are based upon only three wind directional
sectors (north-westerly, northerly and northeasterly), the same three wind direction sectors

have been used.
The main observation which can be derived from the results presented in Table 4.14 is that the

still water levels are significantly higher for northwesterly events; likewise, that this allows

larger waves to reach the coastline, (see section 4.3).
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Unit 1, Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

Sectorgy | Fgy | Dy | F | D |F Dp|F|D|F|DJ|F|D
1 8 o lw /|1 Jusp 1 |82 |25)2 ] 2]|:2
2 101 | 2|2 |25]3 |24 |3]6/|33]|6s
3 26 | 4 |27 4 |31 |5 |35 |4a2|e6|4a]s
4 45 | 6 |5s | 6 |eo | 7 |6s | 7 |65 | 7 |65 |7
5 100 8 |10} 9 |1ww0] 9 [100f 10 j100] 10 |120] 10
6 100 8 |100| 9 J100]| 9 [100]| 10 |100] 10 |120] 10
7 100 | 8 f100| 9 00| 9 {100 | 10 |100] 10 |120] 10

Where (1) F is the fetch length in kilometres and D is depth of water in metres (below Chart Datum);
(2) Refer to Figure 3.4 for location of sectors and units.

Table 4.1. Summary of Fetch Water Depths Used in the Offshore Wave Model.

Reculver to Minnis Bay (Unit 6). Wind Direction  345-015  (Sector 4).
Fetch (metres) 65000
Water Depth (metres BCD) 7
Wind Stress Factor (Ua) 25
Tide Depth of Wave Wave Minimum | Max Water | Wave Type
Height Water Height Period Duration Depth (Shallow
(mAOD) (m) (m) (s) (hrs) (m) or Deep)
-2.7 7.0 172 5.35 2.1 36.7 Shallow
-2.0 7.9 1.832 5.44 2.2 379 Shallow
-1.5 82 1.88 5.50 2.3 38.7 Shallow
-1.0 8.7 1.94 5.55 2.3 394 Shallow
-0.5 9.2 2.00 5.59 24 40.1 Shallow
0.0 9.7 2.05 5.64 24 40.8 Shallow
0.5 10.2 2.10 5.68 25 414 Shallow
1.0 107 2.15 5.72 2.5 41.9 Shallow
1.5 11.2 2.20 5.75 25 41.9 Shallow
20 11.7 224 5.79 25 42.5 Shallow
25 12.2 228 5.82 2.6 43.0 Shallow
3.0 12.7 231 5.85 26 434 Shallow
35 13.2 235 5.88 26 43.9 Shallow
4.0 13.7 2.38 5.90 2.7 443 Shallow
4.5 14.2 241 5.93 2.7 447 Shallow
5.0 147 244 595 28 45.1 Shallow
55 152 247 598 28 457 Shallow

Offshore Wave Hindcast Spreadsheet (Shallpre ver 1.3)

where; Unit 6 (Reculver to Minnis Bay) and Sector 4 (Northerly Wind direction) are shown in Figure 3.4.

Table 4.2. Example of SHALLPRE Output: Unit 6; Sector 4.
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Wind Tide Offshore Offshore Wave Wave Beach Beach
Stress Height Wave Wave Height at Angle at | Toe Wave | Toe Wave
(Ua) (m. Height Period Recorder | Recorder Height Angle
AOD). (Hs, m) (Tp, ) (Hs, m) (o) (Hs, m) ()
5 -1 .55 3.05 28 23 23 14
10 -1 1.14 4.35 .29 17 24 11
20 -1 1.92 5.66 30 14 25 10
30 -1 2.48 6.48 31 13 25 9
40 -1 2.93 7.10 32 13 25 9
50 -1 3.31 7.61 32 13 .26 9
5 0 .56 3.07 .50 25 40 20
10 0 1.18 4.40 .54 20 45 16
20 0 2.02 5.75 .55 17 A7 14
30 0 2.62 6.59 .56 16 48 13
40 0 3.12 7.23 .57 16 A48 13
50 0 3.54 7.74 .57 16 48 13
5 1 .56 3.09 .55 26 49 22
10 1 1.21 4.45 .69 22 .62 19
20 1 2.10 5.83 79 19 .68 17
30 1 2.76 6.69 .82 18 72 16
40 1 3.29 7.34 .83 18 .73 15
50 1 3.75 7.87 .83 18 73 15
5 2 .57 3.11 .56 27 .50 24
10 2 1.23 4.49 .85 24 76 21
20 2 2.18 5.90 1.04 21 .94 19
30 2 2.88 6.77 1.08 20 .97 18
40 2 3.45 7.43 1.10 19 .98 17
50 2 3.94 7.97 1.11 19 .99 17
5 3 .57 3.13 .57 28 .50 27
10 3 1.26 4.53 1.00 25 .89 24
20 3 2.24 5.96 1.28 22 1.17 21
30 3 2.99 6.85 1.36 21 1.24 19
40 3 3.61 7.52 1.38 20 1.26 18
50 3 4.13 8.07 1.39 20 1.27 18
S 4 .57 3.14 .57 29 .50 29
10 4 1.28 4.57 1.04 26 .93 26
20° 4 231 6.02 1.45 23 1.36 23
30 4 3.10 6.92 1.61 22 1.48 21
40 4 3.75 7.60 1.67 21 1.53 20
50 4 4.31 8.16 1.71 21 1.56 19
5 5 57 3.16 .57 30 .50 30
10 5 1.29 4.60 1.09 27 1.05 27
20 5 2.36 6.07 . 1.62 24 1.50 24
30 5 3.19 6.99 1.86 23 1.74 22
40 5 3.88 7.68 1.94 22 1.81 21
50 5 4.47 8.24 1.97 22 1.83 20

where; Unit 1B (Whitstable) and Sector 5 (Northeasterly Wind direction) are shown in Figure 3.4.

Table 4.3. Example of Endec Results for Unit 1B; Sector 5.
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Directional Water Level Calibration Coefficients Number of
Sector Class, (m Observations
AOD) Wave Height Wave Period
Coefficient (cHs) | Coefficient (cTp)
1 <l1.1 1.55 (.09)q, 1.12 (.03)g, 27
1.0-20 1.13 (.03) 1.13 (.02) 2
>19 1.01 (.02) 1.16 (.02) 34
2 <1.0 1.24 (.06) 1.14 (.04) 12
>1.0 1.10 (07) 1.26 (.04) 15
3 <11 1.03 (.04) 1.03 (01) 32
1.0-2.0 .86 (.02) 1.10 (01) 59
>1.9 85 (.02) 1.15 (.01) 63
4 <1.1 87 (.02) 91 (.02) 32
1.0-2.0 .80 (.01) 1.02 (01) 61
20-25 79 (.02) 1.09 (.02) 49
>2.5 .76 (.02) 1.11 (.02) 38
5 <11 87 (.02) 88 (01) 65
1.0-2.0 76 (01) .96 (01) 109
20-25 76 (.02) 1.06 (.02) 90
>2.5 77 (01) 1.02 (01) 49
6 <1.5 .89 (.03) .92 (.03) 36
1.0-2.0 83(.02) .98 (.03) 35
>1.9 .80 (.02) 1.09 (.03) 44
7 all 1.14 (.03) .98 (.03) 22

where (1) Directional Sector is defined in Figure 3.4;
(2) Calibration coefficients are calculated by regression analysis;
(3) Numbers in brackets are the standard errors for the calibration coefficients; and
(4) Recorded Hs or Tp = predicted Hs or Tp multiplied by ¢Hs or cTp

Table 4.4. Correlation Statistics of Predicted / Recorded Wave Heights and Periods.
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Directional Calibration Coefficient
Sector ¢ - j
Wave Height Coefficient Wave Period Coefficient

1 1.15 1.15

2 1.15 1.15

3 95 1.05

4 .85 1.05

5 .80 1.0

6 .85 1.0

7 1.15 1.0

where (1) Directional Sector is defined in Figure 3.4;
(2) Calibration coefficients are calculated by regression analysis;

(3) Recorded wave height / period = predicted wave height / period times calibration coefficient

Table 4.5. Calibration Coefficients to be used with the Nearshore Wave Model.

Still Water Percentage Exceedence of Still Water Level Range.
Level Range
(zm Seasalter / Tankerton / Herne Bay / Reculver -
AOD). Whitstable Studd Hill East CIiff Minnis Bay
(Unit 1). (Units 2&3). | (Units 4&5) (Unit 6)
>3.0 | 0 0 0 0
25t03.0 4 3 2.1 1.5
20t025 12 10.3 8.5 7.0
1.5t02.0 23 219 20.6 19
10tol5 34 33.1 32.1 31
05t 1.0 44 433 42.6 42
0.0100.5 52.5 52 515 51
-0.5t0 0.0 65.5 64.9 64.4 63.5
-1.0t0-0.5 77 77.4 71.7 78
-1.5t0-1.0 86 86.8 87.4 88.5
-20t0-1.5 95 95.5 96.2 97
-25t-20 98.5 98.8 99.1 99.5
-3.0t0-2.5 100 100 100 100

Table 4.6. Still Water Level Frequency Distribution for the Study Area.
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Return Period Wind Directional Sector
(rs) of
Esm (I‘?’ls“};i 1 2 3 4 5 6 7
1 23 22.1 219 18.4 20.1 19.2 18.6
5 25 234 23.8 20.7 219 216 204
10 26.3 24.1 25 - 213 23 222 216
20 27 247 25.6 224 236 228 222
50 27.7 254 26.9 23 242 234 234
100 29.0 26.7 28.1 236 247 24.6 24

where; wind speeds are statistically extrapolated from 10 years of recorded wind data at Manston Airport and -
are location corrected based on the SPM ( CERC, 1984); see section 4.6.1 for details.

Table 4.7. Occurrence of Extreme Wind Conditions at the Coastline in the Study Area.

Predicted High Water Level | Percentage Recorded High Water Surge Percentage
Occurrence Residual Occurrence
of of Surge
Lower limit | Upper limit Predicted Lower limit Upper limit Residual
of Range (m | of Range (m | High Water || of Range (m) | of Range (m)
AQOD) AOD) ,
1.0 1.25 0.03 -1.5 -1.25 0.063
1.25 1.5 1.22 -1.25 -1.0 0.081
1.5 1.75 595 -1.0 -0.75 0.252
175 2.0 10.9 0.75 0.5 1.24
20 2.25 15.9 -0.5 -0.25 8.91
2.25 2.5 19.0 -0.25 0.0 41.37
2.5 2.75 21.8 0.0 0.25 40.92
275 3.0 16.8 0.25 0.50 5.96
30 3.25 7.87 0.50 0.75 0.99
3.25 35 0.53 0.75 1.0 0.117
35 3.75 0 10 1.25 0.099

Where; the Predicted High Water Levels and Recorded High Water Surge Residuals at Sheemess are after
Hydraulics Research, 1984).

Table 4.8. Frequency Distribution of Predicted High Water Levels and High Water Surge
Residuals At Sheerness, (1978, 1981-1985).
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Date of Recorded Still Water Level (, Retum Period g,
Event (m AOD) (yrs)
01/11/86 3.544 23
24/12/88 3.388 0.8
26/02/90 3.285 0.4
27/02/90 3.385 0.6
28/02/90 3.485 1.7
19/09/90 3.485 1.7
21/09/90 3.285 0.4
07/10/90 3.585 2.9
12/12/90 3.285 0.4
25/12/92 3.273 0.4
11/01/93 3.467 13
25/01/93 3.667 5.9
21/02/93 3767 8.3
311278 4.206 33.7
01/02/53 4.764,, 136.3

Where (1) water levels are corrected to 1982 equivalent values for isostatic sea level rise.
(2) 1953 water level is visually observed
(3) Return periods of extreme water levels are based on figure 4.11.

Table 4.9. Extreme Water Levels Recorded At Whitstable Harbour.

Return Period Standard Standard Deviation of Recording Method
Greers) Dgsi:‘;r;:f 0.05 0.10 0.15
Number of years of records required
100 0.20 18 23 40
100 0.15 40 - -
50 0.20 9 12 22
50 0.15 - 21 35
20 0.20 4 7 12
20 0.15 8 11 17
20 0.10 25 - -

after the method of Le Mchaute and Wang (1984).

Table 4.10. Theoretical Accuracy of Extreme Wave Predictions.
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Return Period Significant Wave Wave Period ()
(yrs) Height ., (Hs) _ (T2)
1 1.13 (0.6) 5.5
5 1.38 (£0.6) 6
10 1.48 (0.7) 6
20 1.58 (0.7) 6.5
50 1.72 (£0.7) 6.5
100 1.83 (20.7) 7.0

Where, (1) extreme wave heights are derived from a statistical fit for data recorded at Whitstable Harbour (1978
to 1990) (figure 4.12); and

(2) associated wave periods are obtained from the wave height / period scattergraphs, Figure 4.3(a)

Table 4.11. Extreme Wave Conditions at Whitstable based on Statistically Extrapolated
Recorded Data.
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Wind Direction Sector

1 2 3 4 5 6 7 Other

All Tidal 7.268 8315 6.435 6.056 8.004 6.117 4818 52.969

With High 16.1 14.6 10.9 6.9 4.5 5.8 36 37.6
Water Surge
Residual
0.6 -0.9m

With High 18.2 23.7 20.7 56 1.5 1.5 0.5 283
Water Surge
Residual (;,
>0.9m

Where (1) Wind Direction Sector is shown in Figure 3.4 and is recorded at Shoesburyness; and
(2) Water Levels / Surges are recorded at Southend.

Table 4.12(a). Percentage Occurrence of High Water Surge Residuals (Southend) by Wind
Direction (after Ackers, 1972). ’

Wind Speed, Beaufort Scale

1 2 3 4 5 6 7 8 9 10

High Water 932 448 | 189 | 035 | 003
Surge
Residual
<0.6m

High Water 0 0.52 5.57 272 312 213 9.98 3.47 63 0.11
Surge
Residual
0.6 -0.9m

High Water 0 .76 2.53 20.2 283 26.0 152 4.80 1.77 0.51
Surge
Residual 4,
>0.9m

Where (1) Wind Direction Sector is shown in Figure 3.4 and is recorded at Shoesburyness; and
(2) Water Levels / Surges are recorded at Southend.

Table 4.12(b). Percentage Occurrence of High Water Surge Residuals (Southend) by Wind
Speed (after Ackers, 1972).

121



‘SUONBAIDS]O [ENSIA UO Paseq a8 £661 ATBNIqa,] J| 9} JoJ SUODIPUOD JABA PUR ‘spoaa] 1098 M (9)

pue 7 [ 8m814 / 7't Uonenba ur poyussaid synsax uo poseq spotsad wmyax yyB1ay sasm yeoyMIBIS ()

‘ ‘/'p 9]qe], W payussaxd symsal uodn paseq o1 sporiad winjar paads pup (1)

11y omB1 ur pajussaid synsa uodn paseq a1e spoLiad WiNGRI [9A3] 13EM T[S (©  ‘o1quIsmym ITH [e1sIog] 18 POPIOOAT 218 SUONIPUOS PUIM )
‘o511 [oAS] BSOS ONyRISOST JOF SONJBA WSBAMbS 74T 01 PAIILIOD USD] SARY PUB INOGIBH SIGEISHUA 18 P3pIO33T aI8 s[aAa] 1o1eM NS (1) fateym

st o A 08 ) 81 0§ 73 (4 £981 A £6/20/10
0's ¥s 8€'l 8's or'y vt | (0 £ 91 €8 LL'E £6/20/12
- SE 690 - 96°€ 99'0 > v 8 6 L€ £6/10/ST -
- - - - 0£'E 0£0 > - €l €1 L¥'E £6/10/11
§0 £F o'l sT 00 or'l > £ Al 0 LTE T6ITIST
oS 0s 8€'1 - - - L I 61 0 6T€ 06/TL/Tl
zo 8'€ 580 - - - > 1 ot 6C 65°€ 06/01/L0
- §T $9°0 .- - . > s €1 o 6C€ 06/60/1T
§0 5SY w1 - - - > 3 3 L1 6v'E 06/60/61
s'C Ly 9’1 o - - 01 1 Ll Lt 6v'e 06/20/8C
- 8T vL'0 zo0 K137 $8°0 > 1 z 90 6£°€ 06/20/LT
zo re 98°0 A 6TV 80 ol 1 Ll v0 (743 06/20/9T
- v 34 - - - > I L 80 6£€ 88/TIVT
£0 vy L60 - - - > £ 11 x4 ¥S'E 98/11/10
0 T @ @ | Gowen) | (w =0
© pouagd (G2 © ponag GH ®pousg | uonsang peads ©popsd | oYW
wnpy | (zDpousd | WBIH wopy | (zDpousd | uBH wney puim PUIM wnay JoAY]
parewnsy oABM aABM pajewnsg oABM anepm poumsg | popioooy | popiossy | perwwmsy | I118M NS !
. InogIeH oqIBH S[qEISIYM @ qmsHm ©-snoqusH SquSIUM wo% ss“wm |
| sEsmm suomipuo) aaepm pasoIpold SUORIPUOY) 2ABM PaPIOOY SUOBIPUOD PUIM 1A 3018 M IS

Table 4.13. Recorded Maximum Still Water Levels and Wind / Wave Conditions for Storm
122

Events at Whitstable.



€'} UONOAS Ul paqLIoSSp Jndhno [opoUll [81SE0D St} UO Paseq 218 SUONIPUOD 3ABM PAJOIpald (€£)
pue ¢/ o[qe L, ur pajussald s)nsal uo paseq axe spaads purp (7)
‘b1 2mB1,] ur pajuasaid s}NSal Ay} WOLJ PaulR)qo SI8 S[2AJ] Jojem [[I)s WUIIXe]N ([) ‘Ioym

€ VL S9'1 LYT 86'€ 001 -
€7 €L 651 Tre ILe 0S
(44 TL £€6°1 9'€T 43 0T
(44 0L 0S'1 0'€T 8€'€ 01
(44 69 Syl 612 17€ S Ap32158aYLON
K44 L9 ov'l 10T 60°€ I
0 09 91 9€T 86'€ 001
0 6 95'1 0€T e 0S
0 8'S IS’ yT 7s°€ 0T
0 96 Sh'1 €17 8€'€ 01
0 S'S 6€1 Loz 17°¢€ S ApoyquoN
0 ¥'S €1 '8l 60°€ I
vT- 96 781 18T 6S¥ 001
vT- Y €L'1 697 1§87 0S
- 'S S9'1 96T SOy 0z
£2- € LS'1 0T 98°€ 01
€z Ts 05’1 8'€T 99°¢ S Ajo1samILIoN
£7- 0 €1 612 Iv'E I
(govw)
(,0) “©opduy (s‘d1) @pouag | (wsH) © By (sw) ‘O oaa] M (1) ‘pouagd
KB\ PIRIPRL] OAB | PaYIpaI] AABA\ pajoIpal] © paodg puty [(NS WnwIxep Wy U UonOI(T PUIM

Table 4.14. Extreme Event Criteria derived for the Whitstable Wave Recorder Site for

Northwesterly, Northerly and Northeasterly Winds.
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(calculations for a tide of 3.0 m A.O.D, at Whitstable (Unit 1).

|

Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6 Sector 7
Directional Sector

>

|

~N

Offshore wave height (Hs, m)

=3
|

Wind Stress Factor
Oso W4 WMo B s Hs W2z EH2o B W1 Bs

Figure 4.1(a). Comparison of Offshore Wave Heights for the Various Directional Sectors

. (calculations for a tide of 3.0 m A.O.D. and winds in sector 2.

Offshore wave height (Hs, m)

Whitstable Tankerton Studd Hill Heme Bay East Ciff Northem Sea Wall
Coastal Unit

Wind Stress Factor '
Oso M4 WMo W3 o B2 B2 Bis Bo Hs ‘

Figure 4.1(b). Comparison of Offshore Wave Heights for the Various Coastal Units.
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Whitstable Harbour Recorder (for Sector 1), Showing the Effects of Water Level.
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(based upon Airy wave theory).
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Figure 4.6. Depth Attenuation of Surface Waves with Wave Period and Water Depth.

(a) Hourly averaged data from Manston, (1979-1989).
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Figure 4.7(a). Annual Wind Climate At Manston Airport (1979 to 1989).
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Wind Directional Sector (see figure 3.4)

(b) Hourly averaged data from Manston, Winter Months (1979-1989).
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Figure 4.7(b). Winter Wind Climate At Manston Airport (1979 to 1989).
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(C) Hourly averaged data from Manston, Summer Months (1979-1989).
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Figure 4.7(c). Summer Wind Climate At Manston Airport (1979 to 1989).
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(a) Whitstable / Seasalter
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Figure 4.8(a). Offshore Wave Climate for Seasalter / Whitstable (Unit 1), (1979 to 1989).
(b) Reculver to Minnis Bay
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Figure 4.8(b). Offshore Wave Climate for Reculver / Minnis Bay (Unit 6), (1979 to 1989).
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(2) Whitstable
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Figure 4.9(a). Nearshore Wave Climate for Whitstable (Unit 1A), (1979 to 1989).

(b) Reculver
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Figure 4.9(b). Nearshore Wave Climate for Reculver (Unit 6A), (1979 to 1989).
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Figure 4.11. Extreme Still Water Level Distributions in the Study Area (Based on Data
From Hydraulics Research (1981, 1985)).
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Figure 4.13. Dependency Between the Return Period of Extreme Still Water Levels on
Wind Direction (Based on Data From Hydraulics Research (1981, 1985)).
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Chapter 5: Results - Sediment Transport Studies

5.1, Introduction

In this Chapter, the nearshore wave climate, derived for each of the ten coastal units / sub-units
(as described in Chapter 4), has been used to determine the averaged annual potential
longshore transport rates on beaches within the study area. As described in the Literature
Review (Chapter 1), existing longshore transport formulae may be unreliable (Greer and
Madison, 1978). This is due to a lack of the detailed understanding of processes occurring on
shingle beaches, particularly beaches of a mixed sand and shingle type (Kirk, 1980), which are

characteristic of the study area.

For this reason an attempt has been made to determine actual shingle transport rates in the
field, over a short time period (2-3 days). The site chosen for the field trial was at Long Beach,
Whitstable (Figure 5.1), the nature of which is described in Section 5.2. Transport rates of
beach material have been determined at the trial site, using tracer techniques and beach profile
surveys. Calculated transport rates based on the prevailing sea conditions (which were
recorded using pressure sensors and current meters), were compared then with the measured
transport rates in order to assess the performance of the equations for longshore sediment

transport.

Averaged annual potential longshore transport calculations have then been compared also
against estimated long-term accumulation rates of the beach against large coastal structures
to investigate the longer-term performances of the model (Chapter 6). Finally, the longshore
transport model has been used to examine the effects of both the seasonal variations in the

wave climate and storms, on shingle transport patterns.
5.2. A Description of the Long Beach Study Site

The field study beach is 440m in length with a predominant orientation of 3° clockwise of east
- west. The beach is retained at the western end by the East Quay of Whitstable Harbour; at
its eastern end by the first in a series of large timber groynes, constructed in 1989 as part of -

the Whitstable Sea Defence project, (Plate 5.1). Apart from a small quantity of shingle which
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bypasses the quay at the west end, coarse material is retained generally between the two end
structures. There are three small intermediate groynes at each of the east and west ends of the
beach leaving a central section (260m in length), where there are no structures to interrupt
longshore transport. There is also a boat launching ramp, adjacent to one of the groynes at the

east end.

The beach consists of a mixture of sand and shingle sediment, typically with a series of shingle
beach ridges located around high water mark and a mixed sand and shingle beach face.
Towards the eastern end of the beach the upper storm ridge intersects the seawall; this
demonstrates that, during storms, wave action reaches the seawall. The width of the non-active

beach behind the upper storm ridge, increases westward.

At the time of the second field trial, two prominent beach ridges were present. The landward
ridge consists exclusively of pebbles having shapes comparable with the imbricated discs
described by Bluck (1967). The surface layer of the seaward ridge contained pebbles of a
similar shape to the upper ridge; however, the individual pebbles were on average smaller.
Beneath the surface layers, sand was present in the interstices between the pebbles. Sediment

in the beach ridge can be described as well sorted.

Seaward of the beach ridges the beach face is planar, typically with a slope of 1 in 9 to the toe
of the shingle beach. Surface layers of the beach face range from patches which are exclusively
pebbles, to patches which are exclusively sand; sub-surface 'layers always consist of a mixture
of both sand and shingle. Apart from a general trend where the surface of the beach lying
immediately to seaward of the ridges is more likely to be sandy (the sand run), the proportion
of sand and shingle in the surface layers varies in both a longshore as well as in a more obvious

onshore / offshore direction.

The toe of the shingle beach consists of spherical and rod-shaped cobbles and pebbles, infilled
with sand and some coarser material. Here, the beach was more compact and digging, to
recover tracers or take beach samples for example, was difficult. Further, during searches for
tracer pebbles it was noted that the sediment retained a significant amount of water, even after
the falling tide had exposed the toe two or three hours earlier. This part of the beach
corresponds broadly to the large cobble frame and infill of Bluck (1967).
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Beyond the shingle toe, there is a sharp transition to a gently sloping (=1 in 500) lower
foreshore; this consists of a thin layer of sand and silt over weathered London Clay bedrock.

There are also isolated patches of pebbles, cobbles and shells.

A particle size distribution curve for locations down a shore-normal profile at Long Beach is
reproduced in Figure 5.2. Profile locations, shown on Figure 5.2 are described as: ((1)) upper
ridge; (i) lower ridge; (iii) sand run; (iv) mid-beach; and (v) toe. The particle size distribution
graphs demonstrate the extent of the variation up the profile, together with the problem of
selecting a nominal mean grain size for transport calculations. A sixth particle size distribution
curve (the weighted average) has been included in Figure 5.2. This curve has been derived by
‘mixing’ the other five distributions together, in proportion to the approximate amount of time

that the breaking / surf zone is active within each area of the beach.

A further feature of interest is that along the length of the beach there are angular kelp-rafted
"clay stones" of local origin. The most likely source of these stones is an outcrop on “the
Street” (see section 2.4), located about 600 m to the east, Figure 5.1. Kelp rafting is not
thought to contribute a major input into the beach, as the clay stones are quite soft and are

soon eroded as a result of abrasion with the flint particles (Canterbury City Council, 1993a).

The experimental set-up for the Long Beach experiment is shown in Figure 5.3; it should be
noted that the beach has been sub-divided into 5 cells. These cells, which vary in width from
27.5m to 50.5m, are defined on the basis of the presence of existing structures located on the
beach and the orientation of the beach itself This sub-division was created following

completion of the field studies, for the purpose of interpretation of the field study results.

The pressure sensors were arranged in an array, with one sensor inserted at each corner of a
ten metre square located just beyond the toe of the shingle beach. Two electromagnetic
current meters were deployed, to measure longshore and on-offshore currents (Plate 5.2). One
of the current meters was placed adjacent to the inshore pressure sensor; the second was
placed adjacent to the pressure sensor furthest from the beach toe. Because the sensors were
deployed seaward of the shingle beach, problems of sensors burial which had occurred during

similar experiments at Hayling Island (Whitcombe, 1995) were not experienced.
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S.3. Initial Field Study At Long Beach (16th to 18th March, 1992)

An initial field study was carried out between the 16th and 18th March 1992, to determine the
effects of waves and currents on the mode and transport rate of shingle size material. The
weather forecast on the 14th March 1992 had predicted moderate to strong winds, from the
north-east during the course of the field trial; however, these did not occur. As a result, during
the period when the instrumentation was on site (16/3/92 - 18/3/92), only light wave activity

was recorded.

During the three days of the field trial, wave and current data were recorded successfully;
however, the wave activity was not sufficient to cause notable transport of tracers.
Consequently, no effort was made to check the transport formulae which was being used in
the present study. Wave conditions peaked, with a Significant Wave Height (Hs) = 0.18m and
Zero Crossing Period (Tz) =2.4s on the morning of 18th March 1992. Longshdre and onshore
currents measured at the beach toe reached maximum values of 0.06 ms™ and 0.04 ms™ on the

same morning, (Prettijohn 1992).

Between 18/3/92 and 31/3/92 the wind backed to the west and increased in speed; it reached
a maximum of force 8 (Beaufort) scale, on the 27/3/92. This change resulted in wave action
which caused significant beach movement, from the west to the east, over that period. Based
upon a limited number of beach profiles measured between the 16th and 3 1st March, it was
estimated that between 2000 and 3000 m® of beach material was transported into the eastern
100 m length of the study beach. Beach levels rose by an average of 1.1 m, against the terminal
groyne. Unfortunately, the pressure transducers and current meters had been deployed
elsewhere; hence, no wave or current data were collected during this period. Wave data
collected by the Whitstable Harbour recorder over the period 15/3/92 to 31/3/92 are
reproduced in Figure 5.4(a) (Hs) and Figure 5.4(b) (Tz).

Sixty numbered aluminium and 140 painted tracers were deployed, to allow the volume of
shingle transport to be calculated. Three prototype electronic pebbles were also deployed, to

determine their performance in the field relative to conventional tracing techniques.
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Tracers were deployed at low tide, on the afternoon of 16/3/92. The painted pebbles were
introduced on the beach surface, along a profile normal to the beach crest at intervals of 0.15m
between the high water mark and the beach toe. The aluminium tracer pebbles were introduced
along two profiles parallel to, and 1m to either side of, the profile containing the painted
pebbles. The spacing between the aluminium tracer pebbles along the profile was 1m. Most
of the aluminium tracer pebbles were buried to a depth of 0.05 m. However, at two points
along the profile which corresponded to MHWN and MSL, tracers were introduced at various
depths up to 0.4 m, to form a "column" of pebbles. The column of pebbles was designed to

assist in the calculation of the mobile layer thickness (Nicholls, 1985).

Tracers were located on the afternoons of the 17/3/92 and 18/3/92: no significant movement
was noted on 17/3/92. Some movement had occurred by the 18/3/92; however, most tracers
remained stationary or moved by a few metres only. Movement of the aluminium tracers,
occurring between the 16/3/92 and 18/3/92, are shown in Table 5.1. The maximum
displacement of a painted pebble during this period was 2.5 m, with the mean (longshore)
displacement being 1.1m. For the aluminium pebbles, the maximum and mean displacements
were 3.12m and 0.17m, respectively. The greater average displacement of the painted pebbles
is considered to be due to the fact that they were introduced on the beach surface; they were,

therefore, immediately available for transport.

On 31/3/92, a final search for tracers resulted in the recovery of 8 aluminium pebbles and 3
painted pebbles; this corresponded to recovery rates of 13% and 2.5%, for aluminium tracers
and painted pebbles, respectively. The low rates of recovery were attributed to "deep" burial
resulting from a progressive build-up of sediment against the terminal groyne at the eastern end

of the study area.

The electronic pebbles were deployed during the period 16/3/92 to 18/3/92 only. All three
pebbles were recovered with ease; however, these had not been displaced more than 1m by the

wave activity. -

Only after the instruments were removed did conditions persist which transported significant
volumes of shingle and tracer. Prettijohn (1992) attempted to quantify the longshore transport

rates between 16th and 31st March 1992; however, it was concluded that insufficient data
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were available to provide any meaningful results.

Despite the failure of the initial field study, to provide any useful data for calibrating the
longshore transport formulae, a number of observations were made which were used to refine
the experimental set-up prior to use in the main field experiment. These observations are

summarised below.

® Thresholds for the movement of tracers were lower than expected, with tracer movement
occurring in response to wave heights less than 0.2m (Hs).

® Tracer movement was greater when the pebbles were placed on the beach surface.

@ Tracers located initially on sandy patches on the beach face were more likely to move (Plate
5.3).

® Currents are low, with recorded current velocities not exceeding 6cms™ over the 3 day
survey period. ’

® Painted pebble recovery rates declined markedly, as mixing commenced with only 2.5% of
pebbles located on the 31st March.

® The aluminium tracer recoveries also declined markedly (13%, on 31st March), as they
became progressively more deeply buried under the shingle accumulating at the terminal
groyne.

® Metallic debris on the beach severely hindered the rate of progress, when searching for the
aluminium pebbles.

® The electronic pebbles could be found much more rapidly than their aluminium counterparts.
® Beach profile survey data could provide a valuable data source, for studying the overall

transport behaviour of the beach on a daily basis.
5.3. Main Field Study At Long Beach (23rd to 26th January, 1993).

The experimental set-up for the second field trial was identical to that used in the previous
experiment, apart from the number of tracer pebbles deployed. For this second study, 17
transmitting pebbles were deployed, together with 80 aluminium pebbles. Painted pebbles were
used as beach cores, only in an attempt to record the depth of disturbance. As described in
Chapter 3, the transmitting pebbles casings were cast in moulds made from pebbles taken from

the experimental beach.
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S.3.1. Weather Conditions, 23rd to 26th January, 1993

Wind speed and direction were recorded throughout the experiment at Borstal Hill, Whitstable.
The wind speed and direction data extracted from the recorder chart rolls for the period of the
field study, are reproduced in Figure 5.5(a) (wind speed) and Figure 5.5(b) (wind direction).

Wind speed has been corrected for the location of the recorder.

In the two days prior to the study commencing, winds were recorded as westerly to
southwesterly, with wind speeds peaking at 14.4 ms™ on the evening of the 21st January. By
the morning of the 23rd January, when the instrumentation arrived on site, the wind speed had
dropped to around 4ms™ from the south-west. During the afternoon of 23rd January, wind

speeds increased sharply, to a peak of 17.2ms™ at midnight and the wind veered to the west.

Over the course of the field trials, the wind direction became progressively more northerly,
until the morning of the 26th January; at this time, the wind backed to the west - southwest.
The wind speed dropped off gradually, until the morning of the 26th January, when the

experiment was terminated.
S.3.2. Water Levels, 23rd to 26th January, 1993

The still water levels recorded using the pressure sensor at Whitstable Harbour are shown in
Figure 5.6. Also shown on the Figure is the predicted tide for the same period and the
calculated surge residuals. Of particular interest in these water level records is the frequent
deviation from predicted tides, due to a series of large meteorological surge residuals. The
most prominent of these surges is the large positive surge occurring on the afternoon of the
25/1/93; this resulted in a high water of +3.7m AOD at Whitstable Harbour (return period of
5.9 years (Table 4.9)). The peaks of the surge residuals tend to not coincide with high water,
as demonstrated by Pugh (1987) for Southend (see also section 4.6.2).

5.3.3. Wave Conditions derived from the Whitstable Harbour Wave Recorder

Wave conditions were recorded using the Local Coast Protection Authority wave recorder,

situated approximately 1 km to the north-west of the Long Beach (Figure 5.1). Waves were
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recorded for 20 minutes, at intervals of 1% hours. Wave heights (Hs) and periods (Tz) derived
from the Whitstable Harbour wave recorder, over the period 21/1/93 to 26/1/93, are shown
in Figure 5.7.

Recorded wave heights remained generally below 0.5m (Hs), until the morning high tide on
the 24/01/93. During this high tide and for the following two high tides, the maximum
significant wave heights recorded were Hs = 1.1m. This pattern is consistent with the period
of strong wésterly to north-westerly winds. Wave heights decreased from the afternoon of the
25/01/93 to the morning of thé 26/01/03; once again, this is consistent with the more moderate

wind conditions.

Wave periods varied between 2.5 and 4.5s, (some longer wave periods were present; however,
these tend to coincide with small wave heights during low water), with a slight increase in

average wave periods from the morning of 22/01/93 to the evening of 25/01/93.
5.3.4. Visual Observations of Wave Conditions at Long Beach, Whitstable

Throughout the duration of the field study, hourly visual observations of waves were made.
Wave heights were determined over a period of 2 minutes at the eastern limit of Long Beach,
where they could be calculated based on the number of groyne planks exposed. A correction
was then applied, to obtain the equivalent heights along the length of beach in the immediate
vicinity of the instrumentation site. Generally, it was found that wave conditions did not vary
noticeably along the 250m of frontage examined. Waves were also observed for 2 minutes to
determine the average wave crest orientation at the point of breaking. The wave angles were
then recorded, using a compass to determine the angle between the wave crests and
geographical North. The results of the visual wave observations, for the 23/1/93 (pm) to
25/1/93 (am), are shown in Table 5.2.

Generally, the wave angles were difficult to determine, as breaking occurred over a range of
wave angles. On the mornings of the 23/01/93 and 25/01/93, it was possible to estimate two
wave angle components in the wave field; these are described in Table 5.2 as wind and swell
components. Whilst it was also possible to estimate heights associated with the two

components on 23/01/93, wave conditions were too confused on the 25/01/93 to establish the
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separate wave heights. No wave height data were recorded at night, due to a lack of light.
Wave angle data could only be obtained with the assistance of a flashlamp; consequently, the
uncertainty associated with readings taken at night is higher. All the measurements taken refer

to the height and angle of the waves, at the point of breaking.
5.3.5. Data obtained from the Long Beach Array

Once the instrumentation had been installed a number of problems arose with the equipment.
Two of the pressure sensors were found to be not functioning and a third failed after only a
few hours of use. Only one pressure sensor was available therefore, for the duration of the
study period. In addition, both of the EM current meters failed within a few hours of

commencing the field experiment.

Although one pressure sensor is sufficient to provide useful data on the wave heights and
periods (for example), it is not possible to calculate the wave angle. Twenty six records of the
wave conditions were made during the period, with each record consisting of a 20 min
sampling period, at a frequency of 5 Hz. The wave conditions were recorded at intervals of
1 hr.

Before analysis, the absolute pressure variations from the pressure sensor were converted to
equivalent water level variations. Each data set was then plotted as a time-series and any
'spikes' in the data removed. These anomalies were replaced by interpolating between the
adjacent values. Since the pressure sensor data were recorded during either a period of a rising
or falling tide, it was necessary to remove this low-frequency background variation. This
modification was accomplished by obtaining the average water level, during the first and last
3 min of the records; then calculating the rate of change in tidal height, with time, to obtain a
tidal gradient. Upon removal of the tidal contribution, only variations in the wave amplitude

then remained.
Time Domain Analysis of Wave Records, 23-25th January 1993

Representative 5 min samples of the variation in wave amplitude and velocity, for each of the

data sets, are shown on Figure 5.8 (a) to (e).
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Data for the moming of 23/1/93 (Figure 5.8(a)) shows a gradual increase in wave activity, in
response to strengthening wind conditions. The traces are dominated generally by low
(<10cm), short period (=1s) wave activity. In the traces for 1115, 1315 and 1415, however,

there is evidence for a low, longer period (8 - 10s) variation representing a gentle swell.

For the evening of 23/1/93 (Figure 5.8(b)), the data show further development of wave
conditions with increasing wave heights, longer periods and the organising of the waves into

groups (with a group period of around 30s).

Data recorded during late morning and early afternoon on 24/1/93 (Figure 5.8(c)), show a
similar pattern to the previous evening; however, there is a general decrease in wave heights

and a less regular pattern to the wave groups.

From the wave traces obtained, the largest waves were recorded during the evehing of 24/ 1/93
and the early morning of 25/1/93 (Figure 5.8(d)). Unfortunately, problems with the
instrumentation resulted in the loss of 3 data sets for the falling tide. The traces show longer
wave periods (= 3.5s), than were previously recorded, together with the presence of wave

groups with a (group) period of approximately 35s.

Data recorded on the late morning and early afternoon on the 25/1/93 (Figure 5.8(e)), show
a definite increase in wave periods and an increase in irregularity of the wave traces; this is
possibly due to the interference of two or more discrete frequencies. The trace recorded at
1415, for example, seems to be dominated by a wave component with a 'period up to 10s.
Although this component appears to be present in some of the other traces (1515, 1215 and,

perhaps, 1615) the wave traces are dominated by a higher frequency component (= 0.2s™).

Significant wave heights (Hs ) and zero crossing periods (Tz) were calculated using the Tucker
method (1963). The wave heights were corrected for the number of waves in the record
(WMO, 1988) and for depth attenuation (Draper 1967). The results of this analysis are shown
in Table 5.3.
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Frequency Domain Analysis of Wave Records, 23-25th January 1993

The wave traces were analysed in the frequency domain, using a Fast Fourier Transform
technique (Teukolsky et al, 1992), to produce a series of spectral energy density curves

(Figure 5.9 (a) to (2)) for each of the recording periods.

On the morning of 23/01/93, the wave energy is very low; the most prominent feature is the
appearance of a spectral peak, with a frequency of 0.13 Hz (Tp =~ 8secs), which later becomes
dominated by a higher frequency component (also of low energy). The low frequency peak is
most likely to be the remains of a swell component; the higher frequency component probably

corresponds with the onset of westerly winds.

By the evening of 23/01/93, a prominent spectral peak is present; this represents waves with
a dominant period of around 3.5s. The energy in this band reaches a peak around high tide;
thereafter, the spectral form becomes broader with a shift to spectral peaks of higher
frequency.

The same pattern is continued into the next tide (the morning of 24/01/93), with a spectral
peak at a frequency of 0.3Hz up to high tide; this becomes broader on the falling tide. By the
evening tide on the 24/01/93, the spectral peak which develops to high water is of lower
frequency (~0.25Hz) and of greater magnitude (0.36m? Hz™). No data related to the falling

tide were available.

During the last tide for which data were recorded at Long Beach (am on 25/01/93), the wind
veered around to the north, coinciding with the appearance of the large positive tidal surge.
The wave energy spectra for this tide commences in a similar manner to the previous tides,
with a near symmetrical spectral form of peak frequency (equal to 3.5Hz). As high water is
approached, two separate spectral peaks arise, with frequencies of =0.15Hz and ~0.3Hz. The
higher frequency component is dominant in terms of wave energy; except for the high tide

record, where the low frequency component dominates.

The bimodal spectral peaks exhibited on the 25/01/93 may be the result of either: (a) two wave

fields being present which are arriving from different directibns; or (b) some form of resonance
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resulting from wave energy being reflected from the beach or nearby structures.

A description of the wave spectra in the form of wave parameters (H,e» H,,, and Tp) can be
obtained by following the procedures in WMO (1988). H,, is the height of a single sinusoidal
wave having the same energy as the spectrum. H,, is the equivalent to the time domain
significant wave height (H,) and is equal to v2.H,,,, and 4(mo)**, where m, is the 'area’ under

the spectral curve.

In theory, the relationship H,,, = H,, applies only in deep water with a narrow spectrum;
however, the differences are small. A commonly quoted relationship is Hm, = 1.05 H,,, on
average (WMO, 1988). In shallow water and with steep waves, however, Hm, becomes
smaller than H,, due to deformation of the wave form (CERC, 1984). The extent of the
difference was estimated for the study area, based upon the theoretical relationship derived by
Dean (1974) and field studies carried out by Thompson and Seelig (1984)A and Hotta and
Mizuguchi, (1980). Once again, the estimated differences are small (Hm, ~ 0.97 H,;), with the

exception of very shallow water conditions (when Hm, ~ 0.85 H,).

Derivation of wave periods is more difficult, due to the variety of spectral shapes which occur;
these include multiple peaks, as illustrated in the data for 25/1/93. The period of the peak wave
energy Tp (equivalent to Fp™', where Fp is the wave frequency corresponding to the peak
frequency) was obtained. The results of the frequehcy domain analysis are presented in Table
5.3.

Comparison of the wave heights derived by time domain analysis, with those derived in the
frequency domain, shows a higher than expected level of variation; this can be attributed to the
generally shallow water and short wave periods. Overall, it was found that H,, = 0.92H,,

which is considered fairly typical of shallow water .

Wave periods derived by time domain analysis are shorter than those derived in frequency
domain, although this is exaggerated where there are bimodal spectra. Ignoring data from the
morning of 23/01/93, when the total energy was very low, the relationship Tp = 1.07Tz was
established. Including data from the morning of 23/01/93 leads to Tp = 1.25Tz.
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5.3.6. Wave Conditions from Model and Comparison with Wave Records

In Chapter 4, the development of a wave model for the north Kent coast was described; this
enabled the wind and water level data, collected at Whitstable, to be used to produce wave
conditions at any location along the coastline. The model was calibrated using data from the
(Whitstable Harbour) wave recorder. Using the same approach, the wind and water level data
collected during the Long Beach field trial were used to obtain the wave conditions at both the
Local Authority wave recorder site and at the toe of the shingle beach (ie where the pressure
sensors were deployed). The results of the hindcasting are shown, together with the recorded

data, in Figure 5.10 (a to e).

Significant wave heights hindcast for the wave recorder site over the duration of the field trial
are shown in Figure 5.10(a). During the two tides on the 23/01/93, winds were blowing from
the west and southwest such that sometimes the wind direction was classified as directional
Sector 1; at other times, as an offshore wind, since the mean wind direction was marginally to
the south of Sector 1. Offshore winds, by definition, will not generate wave activity which

impacts on beach processes.

In reality, the wind direction is such that it is within a few degrees of Sector 1 and wave
conditions for these winds have been determined as if they were all relating to Sector 1. This
assumption, it was considered, would lead to predicted wave heights and periods which were
larger that those recorded on some occasions. There is some indication that this may be the
case on the morning of 23/01/93; however, by the evening, the reverse was true with the

recorded waves greatly in excess of the predictions.

During the morning tides on 24/01/93 and 25/01/93, the predictions are similar to, or
marginally higher than, the recordings; however, there are only a few points where there is a
large variation. This variation could be attributed to differences in timings for the data sets. For
example, the wind speed and directions used in the hindcasting, represent conditions over 5
to 10 minutes either side the hour (1150 to 1210, for example), whereas the wave records are

averaged over a 20 min period commencing on the hour.

The data set for the evening of the 24/01/93 shows recorded wave conditions in excess of
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predictions, although to a lesser extent than the previous evening,.

A common correction applied to the wind speed, when hindcasting waves, is the “Stability
Correction Factor, R;” (Resio and Vincent, 1977); this allows for the difference in temperature

between the air and sea. The factor is a measure of the effectiveness by which wind energy is

transferred to waves.

If the air temperature is low relative to that of the sea (Rt >1.0), the air / sea interface is less
stable; it has a lower difference in viscosity and more energy is transferred to the sea in the
form of waves; the opposite is true if the air is warmer than the sea. The field trial was carried
out in late January, when air temperatures at night are likely to be well below sea temperature.
For example, if the air témperature were 10°C lower than the sea temperature, the value of
Ry would be 1.18 (based upon the Shore Protection Manual, CERC (1984)). For a wind speed
of 10ms™, the increase in U, is 22%; this leads to increases in wave height aﬁd period of up
to 20%, depending upon the water level. Much of the discrepancy between the recorded and
predicted wave heights, in the night-time records, could be attributed to the temperature
differential. During the day time recording period, air and sea temperatures are likely to bé

close and R, =1.0.

In the case of the data sets for the 23/01/93, another factor may be introduced. If winds are
blowing from the boundary between Sector 1 and a south-westerly (offshore), direction
towards the wave recorder site, the presence of the Swale Estuary (ignored in the calculations
of fetch length and water depth, in Chapter 4) effectively increases the fetch léngths over which
waves are generated. With the exception of a short stretch of beach to the west of the harbour,
waves' generated in the Swale Estuary are unlikely to be important in the study as they are
propagating largely parallel to the coastline. Due to its location, the wave recorder is ideally
placed to measure these waves. Together with the temperature / stability effects, described
earlier, this could help explain why the recorded waves are much higher than those which

were hindcast from wind conditions during the two evening high tides.

Comparison between hindcast waves and records obtained at Long Beach itself (Figure
5.10(b)), shows a very similar pattern to the wave recorder site, although the significant wave

heights are lower as would be expected in the shallower water. The discrepancy between
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predicted and recorded wave heights on the evening tides is still present. Notably, the
differences on the evening of 23/01/93 are less than they were, for the same time, at the wave
recorder. Less energy from waves generated in the Swale Estuary would be expected at Long
Beach, than at the recorder; this is due to the effects of wave refraction and sheltering. Figure
5.10(c) shows the revised, hindcast wave conditions obtained at Long Beach, allowing for a
the temperature stability correction (R; = 1.18), (based upon the Shore Proteétion Manual,
CERC 1984).

Hindcast wave periods are shown in Figure 5.10(d) together with recorded data from both
Whitstable Harbour and the Long Beach sensor. With the exception of the morning of
23/01/93, when the wave energy levels were low, wave periods from the three data sets are
very similar. The relatively low spectral peak period, identified in the wave records at Long
Beach on the morning of 25/01/93, does not appear in the records at the recorder site. This
absence lends support to the idea that the phenomena may be related to local Wave reflections
at Long Beach itself. However, without spectral energy density graphs for the Harbour site it

is impossible to be certain of this relationship.

Hindcast wave angles are shown in Figure 5.10(¢). As expected, the wave angles relative to
the beach orientation decrease from the Whitstable Harbour recorder site, towards Long
Beach. A reduction in wave angles, on the evening of the 24/01/93 and morning of 25/01/93,
is also apparent; this represents the change in wind direction. Unfortunately, there are no

instrumentally recorded wave angles for comparison.

5.3.7. Transport Rate Calculations from Wave Conditions.

(a). Available wave data sets

Several data sets on wave conditions are available, including three sets at the experimental site:
these are (1)) the visually observed wave heights and angles; (ii) the recorded wave heights

and periods; and (iii) the model hindcast wave heights, periods and angles.

Visually-recorded wave data incorporates a high degree of uncertainty, due to dependance on

the observers judgement on wave conditions. The problem is particularly acute at night, when
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waves can only be measured with the aid of a flashlamp.

The recorded data lacks any indication of the wave angle which is required for the longshore
transport calculations. On some occasions, the data set is incomplete due to technical problems
with the equipment; for example, only three (hourly) wave data sets out of a possible eight

were recorded on the evening of the 24/01/93.

The hindcast wave data consists of wave heights, wave periods and wave angles, for each tidal
cycle throughout the duration of the field study; as such they represent the most complete data
set. In Section 5.3.6, a comparison between the hindcast waves and the recorded data was
discussed. This comparison showed that the hindcast data provided a good match with the
recorded data for all the tidal cycles; an exception was the evening of 23/01/93, when hindcast

wave heights were, on average, 20% less than those recorded.

For the purposes of calculating longshore transport rates associated with the field studies, the
hindcast data set has been used. Wave heights for the evening of 23/01/93 have been divided

by 0.8, to produce wave heights equivalent to the recorded wave conditions.
(b). Beach data sets

To complete the data required for calculating longshore transport rates, the orientation of the
beach and the nominal mean grain size (Dny,) are required. However, both of these vary,
depending upon location within the field study area. To the east of the instrumentation array,
the orientation of the beach itself changes gradually towards the terminal groyne, from its
typical east - west orientation to an east-northeast / west-southwesterly orientation (Figure
5.3). The angle which the waves are incident upon the beach alter accordingly. Because of this
change in orientation of the beach, and, hence the incident wave angles within the field study
area, calculations of longshore transport rates were repeated for a series of incident wave

angles.

Examination of the particle size distribution graphs for the field study area (Figure 5.2) shows
the variation in nominal mean grain size of the surface layer of particles, up the face of the

beach. As the water level rises and falls during a tidal cycle, different sediment distributions
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are available for transport. However, in the present study, no attempt has been made to use
different particle sizes for the transport calculations in different vertical zones in the beach face,

Instead, the Dny, of the weighted mean grain size, (=6.5 mm) has been used (Section 5.2).

Transport rates calculated for each tidal cycle, for each day and for the duration of the
experiment are given in Table 5.4. These results shows that negligible transport occurred
during the morning of the 23/01/93 and the evening of the 25/01/93 whilst transport rates over
a tidal cycle reached a peak during the evening of 24/01/93. Transport rates calculations vary
between cells (see Figure 5.3); this is due to the change in the orientation of the beach and,

hence, the angle of breaking waves.

It has been assumed in the calculations that there are no barriers to longshore transport in any
of the cells, which would affect the transport processes. The presence of groynes within Cells
A, B and at the eastern side of C would result in the reduction of transport rafes, from those
calculated. Further, close to the large terminal groyne at the eastern side of Cell A, there is the
likelihood of waves being reflected off the structure, before they break on the beach; thus the

transport calculations could be not only incorrect in quantity, but also in direction.

Due to the presence of the groynes in Cells A to C, it is considered that only the transport rates
calculated for Cells D / E are likely to fulfill the criteria of no interference from coastal
structures. Therefore, net longshore transport rates for the 3 day duration of the field
experiment are calculated to be in the order of 450 to 500 m® in an easterly direction based

upon the calculations at Cells D / E.
S.4. Transport Rate Calculations based on Tracer Pebbles.

Both the electronic and the aluminium tracer pebble aspects of this study have been described
in detail by Workman (1993) (electronic pebbles) and Bland (1993) (aluminium pebbles).
Therefore, the following is a summary of the tracer deployment, search techniques and the
resulting displacement of tracers. The majority of the data which were collected has been
reanalysed however, to improve its applicability for the estimation of longshore transport rates

over the duration of the experiment.
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S.4.1. Tracer pebble deployment.

A review of tracer pebble experiments reveals that tracers have been deployed at various
locations on the beach profile, depending upon the aim of a particular experiment. For
example, Caldwell (1983), introduced tracer material (painted cobbles) at a single point on the
beach ridge, close to the main storm ridge. No movement of the tracer pebbles occurred for
9 days until spring tides were approached. Wright et al (1978) introduced aluminium tracer
pebbles at ‘the foot of the shingle scarp face of the backshore zone’; the site was chosen as the
indigenous material most closely resembled the size and shape of the injected tracer. When
aluminium pebbles were used on Hurst Spit (Nicholls and Webber 1987), the tracers were
introduced in three identical sets: one on the upper foreshore; the second on the middle
foreshore; and the final set on the lower foreshore. The injection point was found to influence
the subsequent recovery rates and positions for about the next four tides Nicholls and Webber

(op cit).

Regarding the depths of tracer injection, most studies have placed the tracers on the surface;
this was because visual identification of most types of tracer is required for recovery. In the
case of the aluminium tracers, the standard practice adopted has been to bury the pebbles to

a depth of about 5 to 10 cm (Wright et al, 1978; Nicholls and Webber, 1987).

For the Long Beach study, the electronic pebbles were placed in a line normal to the beach
ridge line, at an equal spacing down the beach face, as far as the toe. Pebbles were placed in
numerical order, such that individual pebbles were placed at a position in the profile
corresponding to the location where the pebble used for the tracer mould was collected. All
the pebbles were buried to a depth of 5 cm below the surface. Placement of the pebbles
occurred as the tide was rising up the beach, on the morning of 23/01/93. The intention of the
experimental procedure adopted was to provide coverage of the transport rates occurring over

the entire beach profile.

Aluminium pebbles were scattered on the surface of the beach at a point immediately seaward
of the beach ridge, corresponding to the previous high tide in a similar position to that used
by Wright et al (1978). A total of 80 pebbles were deployed; 60 of these were deployed on the

morning of 23/01/93 (at the same time as the transmitting pebbles), the remaining 20 were
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deployed prior to the evening high tide on the 24/01/93. A negative surge coincided with the
first high water following deployment of the initial batch of tracers; these were then mostly

mobilised on the following high tide.
5.4.2. Tracer Search and Recovery

Search techniques used for tracer experiments depend upon the number of personnel (or
detectors) available, the dispersion of the tracers and the time available. For aluminium pebbles
Wright (1982), identified that one person with a single metal detector could carry out a
thorough search of approximately 1250m? of beach in 3 hours. Where searches over larger
areas are required, the services of local treasures seekers clubs have been required (Nicholls,
1985). Where this is not possible, Nicholls and Webber (1987) have suggested that a search
could be carried out over a period of several tidal cycles, provided that wave conditions were
less than that which is required to remobilise the tracers further. Nicholls and Webber (op cit)
suggest a wave height threshold of 0.5m for movement to occur. However, the studies at Long
Beach in Whitstable (Prettijohn (1992); Workman ( 1993)) demonstrate that movement of

tracers will occur for wave heights in excess of only 0.2m.

As the tide receded, the search for electronic pebbles at Long Beach commenced. The detector
operator proceeded to scan the beach, in longitudinal strips, effectively following the contours
of the beach. The first area to be uncovered by the falling tide was the beach ridge; hence this
was the first area to be searched. Searches then continued in parallel lines down the beach

following the falling tide.

On the first two tides after injeétion of the tracers, the area searched was approximately
1500m? a thorough search of this taking about 4hrs. Later in the experiment, the search area
was increased to 3000m’ as the dispersion of the electronic pebbles reached its peak. By
dividing the search area into two parts (east and west) and searching one part on the falling
tide and the second area on the next rising tide (searching from toe to ridge, as the water level
rose), the entire area was covered easily by a single operator in the time available. Searches

undertaken during the night were carried out with a second searcher carrying a torch.

Recovery rates for the electronic tracers are shown in Table 5.5. Tracers which were not
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mobilised, as a result of being located to landward of the high tide mark, were not included in
the calculation of recovery rates; these would have biased the results towards higher recovery
rates. The results show recovery rates in excess of 80%, for all the tides except for the evening
of the 25/01/93 when a combination of darkness and difficult operating conditions (high winds

and rain) reduced the recovery rate to just 63%.

Importantly, pebbles not found- in a particular search were normally found on the subsequent
search; this indicates that they had remained within the area surveyed and their non-detection
was due to shortcomings in the search procedures; this is apparent from examination of the
cumulative recovery rates (Table 5.5). The rates of recovery are considered to be very
satisfactory; only Bray’s (1990) results obtained from beaches in South Dorset and where

recovery rates of 22% to 86% were obtained, are comparable.

The search for aluminium pebbles was carried out at the same time and in the same manner as
for the transmitting pebbles, except that the special detector was replaced with a standard

“treasure seekers” device.

Searches for the aluminium pebbles were hampered severely by the presence of a large amount
of aluminium debris (mainly drinks can ring pulls); these had to be located and disposed of,
since the signal these items produced was identical to that given by the aluminium pebbles.
Over the course of the experiment, approximately one contact in three proved to be “trash”.
Due to the presence of this ‘trash’ it was found to be impossible to search the beach properly,
at the rate of over 400m’ hr suggested by Wright (1978). Search and recovery of aluminium
pebbles during night-time low waters was particularly difficult, even when an assistant was
available (this was due to the difficulty in identifying whether a contact was a tracer pebble or

a small item of ‘trash’).

The rates of recovery for the aluminium tracers (also shown in Table 5.5) are much lower than
for the electronic pebbles, ranging from 26% to 49%. The lower recovery rates, compared
with the electronic tracers, can be attributed to: (a) the inability to thoroughly search the whole
area over which tracers were dispersed, in the time available; and (b) apparent limitation on
depth of detection, when using the metal detector (20cm for the deepest buried aluminium

tracer, compared with 35cm for deepest buried transmitting pebble). The maximum depths of
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recovery for the aluminium pebbles, at 20cm, is significantly less than that achieved by Wright
et al (1978) - 0.4m, Nicholls and Webber (1987) - 0.33m; and Bray (1990) - 0.45m.

Recovery rates for the aluminium tracers used in this experiment are lower than those achieved
by Bray (1990) (16 - 99%), but compare favourably with the results of Wright et al (1978),
(27 - 63%), Nicholls and Webber (1987), (1 - 25%) and Bland’s (1993) results from a similar
study at Hayling Island, (8 - 22%). Recovery rates would have improved if an additional

detector and operator were available, for the duration of the experiment.
5.4.3. Tracer Displacement
a. General Comments

A good mixing condition is required, if the movement of tracers is to accufately reflect the
behaviour of the beach material. Poor mixing occurs if the tracers are unrepresentative of the
indigenous particles in terms of size, shape and specific graﬁty; the electronic pebbles were
moulded from actual Long Beach pebbles, to improve the chances of a good mixing condition
occurring. Powell (1990) has noted a rapid dynamic response of shingle beaches in response
to wave action (such that changes in profile would occur with a relatively small number of
waves). On a tidal beach such as Long Beach, the whole profile will be reshaped as the tide
rises and falls again. Hence providing the tracers are compatible with the indigenous material,

they will become mixed within the beach rapidly, probably within a single tide.

Unrepresentative pebbles tend to be rejected from the body of the mobile beach (Moss, 1963)
and become concentrated on the beach surface. Such concentration leads to large
displacements, as the tracers are retained at a location where the transport is at a maximum.
In the case of the Long Beach experiment, the aluminium pebbles represent only the most

coarse part of the indigenous sediment and therefore, are most likely to be rejected.

There are many different measures of tracer movement, with the type used being often
dependant upon the aspect of longshore transport intended for a particular study. Where the
aim is to estimate transport rates, these can be determined using all the tracers recovered or

particular sub-populations (sub-groups) of tracer. For example, Wright (1982) and Nicholls
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(1985) calculated tracer centroids relating to every search. Neither researcher distinguished
between sub-populations of, for example, mobile and non-mobile tracers; this leads to the
concept of tracer availability (Bray, 1990). If a tracer is buried too deeply to become part of
the mobile layer, or it is located too far landward to be affected by wave action, consideration
should be given as to whether or not its location should then be used in the calculation of the

tracer displacement over that particular period of time.

Bray’s (1990) concept of tracer availability has to the identification of five separate sub-groups

of tracer:

(a) the entire recovered sub-group (all);

(b) the moving tracer sub-group which has spent at least some time in the mobile layer since
the previous search (move);

(c) a second moving tracer sub-group, where the tracers have been recovered also in the
prgvious search so that displacement over one tide cycle can be made (prmove);

(d) stationary tracers above the high tide mark, not available for transport; and

(e) stationary tracers which are buried below the mobile layer and are not available for

transport.

The “prmove” sub-group was considered by Workman (1993) to be the best for use in
determining tracer displacement; this is because all tracers not available for transport, or whose
position at the beginning of the tidal cycle is not known, are ignored in the displacement

calculations.
'For the present study, three further sub-groups have been defined:

(D) that part of the prmove sub-group which have moved for the first time (prfmove);

(g) that part of the prmove sub-group which have moved on at least one previous location
following injection '(prpmove); and finally

(h) that part of the prmove sub-group for which the individual tracers have not been directly
affected by the presence of groynes, ie are located on an “open” section of the beach

(promove).
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Sub-groups (f) and (g) were defined so that the effectiveness of mixing of tracers, with
indigenous beach material after a single tide, could be assessed. The latter sub-group (h) was
defined so that the transport rates of beach material, unaffected by groynes or other structures,

could be defined; this is important for assessing the transport formulae used in the coastal

model.
b. Electronic Pebbles

Electronic tracer pebble displacements, throughout the experiment are shown in Figures 5.11
(a to ). Because the beach orientation varies within the experimental study area, the beach
crest and toe are not parallel to the survey base-line. The consequence of this arrangement is
that as tracers move to the east, the distance from the survey base-line will decrease éven if the
pebbles maintain an equivalent position on the beach profile. The opposite occurs (apparent
increases in distance from the baseline), if the tracers move towards the west. The survey co-
ordinates need to be corrected, therefore, such that both offshore and alongshore pebble
positions are known relative to the beach ridge. Having corrected the pebble positions in this
manner, it is then possible to assess the onshore - offshore and alongshore displacement of

tracers. The results are presented in Table 5.6.

Onshore movement of the electronic tracers (30m over the period of 3 day experiment) was
described by Workman (1993), based upon the same data reported in this study. Workman (op
cit) neglected, however, to correct the survey data for the changing orientation of the beach.
Having corrected the data, a different pattern emerges. For the first two tides after significant
movement first occurred, the mean position of the tracers remains within a band less that 1m

to either side of the mean offshore / onshore position at the time of injection.

Only after the bulk of the tracers have reached the groyned area of the experimental beach (on
the morning of the 25/01/93) does a small offshore movement of the mean position occur. The
mean offshore displacement of the mobile tracers (prmove) during the last 3 tides of the
experiment, varies from 2.6m to 4.6m per tide. A cumulative mean offshore displacement of
7.2m, for the mobile tracers, occurs over the duration of the experiment. All of this movement
occurred in the area where the beach movement was affected by the presence of artificial

structures, such as groynes. Hence, it is not possible to draw any conclusions about the
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onshore - offshore movement of tracers, relative to the natural beach material.

Workman’s (1993) failure to correct the pebble positions for changing beach orientation, as
described above, is less significant in the case of longshore displacement; this is because

longshore displacements are large, compared with the correction which needs to be applied.

Longshore displacement of the electronic tracer pebbles, following the high tides on the
evening of 23/01/93 and the morning and evening tides of 24/01/93, demonstrate comparable
mean longshore displacements of the mobile tracer pebbles (prmove) of between 20 and 35m
towards the east. Thereafter, tracer movement is negligible as a consequence of the combined
effects of the change in beach orientation (which results in smaller wave angles, at breaking)

and the trapping effect of the groynes.

An interesting observation is the comparison of the mean displacements of the prpmove
(tracers which have moved on the previous tide, together with (at least) one other occasion)
sub-group and the prfimove (tracers which have moved for the first time on the previous tide)
sub-group for the evening search on the 24/01/93. The prfmove subgroup has a mean
longshore displacement which is 50% greater than the prpmove sub-group. As the prfmove
sub-group, in this case, is located higher up the beach than the prpmove sub-group, the greater
displacement may be due to: (a) the greater wave energy which occurs at this point on the
profile, as a result of deeper water in the nearshore area; or (b) the fact that the prfmove
pebbles were located on the sand run, where transport rates would be expected to be larger
(Bluck, 1967). The fact that the difference between the two sub-groups is not larger suggests
that mixing between the tracers and the indigenous sediments occurs very rapidly, under the

wave conditions encountered at Long Beach during the experiment.

In order to allow time for mixing of the tracers and indigenous beach material to occur,
Workman (1993) rejected data collected during the first two searches after the initial injection.
Only data derived from the 3rd to 6th searches (evening of 24/01/93 to morning of 26/01/93)
were used in the calculation of longshore transport rates. The results presented in Table 5.6
suggest that it would also be reasonable to utilise data from the 2nd search after injection

(morning of 23/01/93), as mixing appears to have occurred very rapidly.
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(c) Aluminium tracers

Because of the lower recovery rates associated with the aluminium pebbles and the absence
of any data for the evening of 25/01/93, it was not possible to divide the recovered pebbles
into sub-groups for analysis. The results for the aluminium pebble displacements (Table 5.6)
are presented, therefore as the mean onshore - offshore and alongshore positions of all the
tracer pebbles which were recovered which had moved since injection; they are comparable,

therefore, to the “all” sub-group of the electronic pebbles.

The onshore - offshore displacements of the aluminium pebbles represents that which occurred
with the electronic tracers. Initially, there was no apparent onshore - offshore movement of
the tracers recovered. However, upon reaching the groynes at the eastern end of the site, a net

offshore displacement of 6.4m (from injection) occurred.

The mean longshore displacement of the aluminium pebbles differs from that displayed by the
electronic tracers, in that the initial displacement of the aluminium tracers on the evening of
23/01/93 was almost 70% greater than for the electronic pebbles. Because of this high initial
rate of transport, the tracers tended to reach the boat ramp and groynes before the transmitting
pebbles (the retarding effect on the tracer displacement, at these structures, has been noted

previously).
5.4.4. Mobile Layer Calculations
(a). General Observations

In order to convert the displacement of the tracer pebbles into transport rates, it is necessary
to define the extent of the material which is mobile (the mobile layer), in terms of both its
width and its depth. The two main methods utilised have been: (a) insertion of beach cores
(Nicholls, 1985); and (b) the analysis of the depths of burial of tracer pebbles themselves Bray,
1990).

For shingle beaches, the width of the mobile layer is quite narrow at any one time; it is

restricted to a band a few metres wide, between the breaker and swash zones. However, as
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tracer displacement can only be averaged over a tidal cycle, it is practical to consider the width

of the mobile layer in a similar manner ie over a tidal cycle.

Using the same data as utilised in this study, Workman (1993) defined the width of the mobile
layer on the basis of the tracer; which was located farthest up the beach, and which was known
not to have not moved during the previous tide. As the maximum number of tracers available
was only 17, the likelihood of the uppermost tracer representing the full extent of the mobile
layer could be questioned. Therefore, in the present study, the mobile layer width is defined
as the distance from the beach crest formed by wave run-up to a point 2 m from the shingle
toe of the beach (the lower 2m of the beach is effectively immobile, due to depth limitations

on wave heights). Mobile layer widths for the duration of the study are given in Table 5.7.

Definition of the depth of the mobile layer is more complex. Generally, it has been assumed
that the depth of the mobile layer is equal to the depth that sand mixes verfically within the
beach Kraus (1985). King (1961) used dyed sand, in cores, to show that the depth of
disturbance increased with wave height at the rate of 1cm disturbance depth to 30 cm increase
in wave height. Virtually all investigations undertaken into depths of disturbance have been
related to sand beaches, where wave breaking and resulting sediment response processes are

likely to be different.

For shingle beaches, all the information available on the depth of disturbance is based upon the
analysis of the depths of burial of mobile and, in the case of Bray (1990), non-mobile tracer
pebbles. The most recent and comprehensive treatment of determining mobile layer depths,
from burial depths of tracers, is based upon studies undertaken of beaches in South Dorset
(Bray, op cit). This investigation found that, whilst breaking wave heights did indeed control
the thickness of the mobile layer, the actual depths of disturbance were approximately 3 times

greater than those for sand beaches.

Previous investigators, Wright (1982) for example, have estimated the mobile layer thickness
on the basis of the depth of the deepest buried tracers. However, use of this method tends to
overestimate the actual depths, as the deepest buried tracers may have been stranded by
infrequent (but large) waves (Whitcombe, 1995); or simply by being buried below the mobile

layer by natural sediment accretion.
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Bray (1990) attempted to solve this particular problem, by defining the depth of the mobile
layer as “the average of the mean depth of the deepest buried 50% of mobile tracers and the

mean depth of the upper 50% of non-mobile tracers”.

Nicholls and Wright (1991) reported mixing layer depths of between 9 and 19¢cm based upon
an aluminium tracer experiment carried out at Hurst Castle Spit; breaking wave heights during
this experiment peaked at around 1.3m, but were typically in the order of 0.3 to 0.7m ie
similar to the present study. Wave periods were in the order of 4 to 8s, which is longer than
those of the present study. A depth of disturbance of 17cm was typically found on beaches in
South Dorset (Bray, 1993), for wave heights of around 1m.

Burial of a tracer due to natural sediment accumulation can lead to overestimates of the depth
of the mobile layer. Such a situation is most likely to arise where sediment is moving in the
vicinity of groynes, or other features which interrupt longshore drift. An aiuminium tracer
experiment was carried out within the study area at Tankerton, in 1991, to track the dispersal
of shingle-sized material within a groyne field following a beach replenishment scheme
(Canterbury City Council, 1991). It was noted that aluminium tracers becoming trapped
against groynes would be buried by up to 1m of shingle in a single tide, even thought, the

mobile layer was estimated to be between 10 and 20cm.

Whitcombe (1995), in a similar study (to the present Long Beach study) carried out at Hayling
Island, chose to calculate the mobile layer thickness from cores of aluminium pebbles inserted
into the beach; this was rather than determine the depth from tracer burial depths. Tracer
recovery rates at Hayling Island were low, due to limited exposure of the beach; this probably

contributed to the decision.

Depths of the mobile layer, calculated from the electronic pebble data set, are reproduced in
Table 5.7. These results have been calculated on the basis of Bray’s (1990) formulae (average
of upper 50% non-mobile and lower 50% mobile tracer formula (as described earlier)). The
exception is the mobile layer depth for 24/01/93 am search, when no pebbles were stranded
below the mobile layer. The majority of the pebbles were located in the upper 5 to 10 cm of
the beach; however, a single tracer was located at a depth of 30cm. The estimated mobile layer

depth (n = 15cm) for this occasion was selected on the basis of comparison of the mobile layer
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depths for other searches and the wave heights on the tide previous to the search (as the depth
of disturbance depends upon wave height, Section 5.4.4)). Wave heights recorded at Long
Beach on the evening of the 23/01/93 were only slightly lower than on the next evening (when
n = 16cm); they were noticeably higher than on the high tide on the moming of 24/01/93
(when n - 12cm). The mobile layer depth on the evening of 25/01/93 was only 10cm, despite
following a tide during which the largest waves of the experimental period were recorded.
However, by this stage, the majority of the tracers were located within the groyned section of
beach. Here, localised accretion and erosion would further confuse the interpretation of the

relationship between depths of burial of the tracers and the calculation of the extent of the

mobile layer.

Burial depths for the aluminium tracers was less than those obtained for the electronic pebbles,
as noted in Section 5.4.2. This difference may be due to either: (a) a higher level of rejection
of the coarser aluminium pebbles (Moss, 1963); or (b) a reflection on the limitations on the
depth of tracer pebble recovery, achieved by the metal detector / aluminium pebble system.
Bland (1993) assumed that the reduced depths of burial were attributed to the second factor,
utilising instead the mobile layer depths calculated for the transmitting pebbles (Workman,
1993). However, if the reduced burial depths of the aluminium pebbles is related to greater

rejection, than for the electronic pebbles, the resulting estimates of longshore transport will be
too high.

Results of the deployment of 3 cores of pebbles in the beach, on the morning of 24/01/93 were
inconclusive. Depths of disturbance of 1, 4 and 6cm were obtained from the cores, (Bland,
1993); nonetheless several electronic pebbles were buried to depths of greater than 10cm, in
the close vicinity of the cores. The small depths of disturbance recorded by the cores is
attributed to the cores becoming buried, with mobile material moving landward as the tide
rises. Due to a lack of confidence in the first set of results from the cores, together with the
lack of time to undertake core studies (in addition to tracer searches, beach plan surveys and

instrument maintenance) the cores were not replaced after the first attempt.

As noted by Greer and Madsen (1978), there does not appear to be a satisfactory method of
determining the depth of the mobile layer and its variability both throughout the tidal cycle and

across the beach profile. Further, the limited number of tracers available for use means that
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there is likely to be poor statistical significance associated with the mobile layer calculations.
Nevertheless, the mobile layer thickness calculated from the recovered electronic tracer
pebbles, utilising Bray’s formula, are consistent with the observations of other similar studies.
In addition, the increase in the wave height on the beach during the previous high tide is
generally reflected in an increased depth of the mobile material. The mobile layer depths
presented in Table 5.7 are used, therefore, in the transport rate calculations (Section 5.4.5));

they are considered to be the best available estimates.
S.4.5. Transport rates based upon tracer movement

Calculation of the longshore transport rates depends upon the tracing technique which is
applied. For the present study the quantity of material transported alongshore, during each

tidal cycle (Qt), has been calculated using;
Qt = U(sg).m.n ‘ 6.1

where U(sg) is the mean longshore displacement of a particular tracer sub-group over the tidal

cycle; m is the mobile layer width; and n is the depth of the mobile layer.

Longshore transport estimates, based upon the electronic pebble sub-groups, are available for
5 tidal cycles; the results are presented in Table 5.8. Estimates of longshore transport, using
a combination of the mean longshore displacement of all the recovered aluminium pebbles and
the mobile layer depths calculated for the electronic pebbles, have been included for

comparison.

As expected, the largest estimates are obtained using the promove sub-group; this excludes
both non-mobile tracers and those tracers where displacement has been retarded by the boat
ramp / groynes at the eastern end of the system. Longshore transport rates, for this sub-group
range from 80 to 130m” per tidal cycle. The lowest transport rates are obtained using the “all”
sub-group, which includes both mobile and non-mobile tracers. For the first three tidal cycles,
the estimated transport rates range between 50 and 80m® per tidal cycle. For the two remaining
tidal cycles, negligible transport rates are obtained as the tracers are all located between the

boat ramp and terminal groyne at the eastern end.
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Interpretation of the results for the aluminium pebbles is difficult because: (a) not all the tracers
were mobilised by the morning of 24/01/93, as the previous high tide did not extend far enough
up the beach; and (b) the second injection of 20 tracers, following the evening search on the
24/01/93, meant that there were two distinct populations of aluminium tracers on the beach.
By combining these two populations of aluminium tracers, when calculating the mean tracer
displacement, an anomaly will occur in the search carried out immediately after the second
injection. This explains why, on the morning of 25/01/93, the estimated longshore transport
rate using aluminium pebbles is only 13.6m’; this compares with 77m’, when the electronic

pebbles (all sub-group) is used.
5.5. Beach survey and analysis

Beach surveys were undertaken using an EDM theodolite, on each of four daylight low tides
on the 23 - 26/1/93. The beach is fully exposed at low tide, so that surveys could be carried
out along the full extent of the beach from the crest to the toe. The beach area surveyed was

closed to shingle transport towards the east, by a large timber groyne.

The major problem associated with determining the rate of longshore transport, from a series
of profiles or beach plans, is often that of closing the system. Whitcombe (1995) reported this
problem in a parallel study carried out on Hayling Island. However at Hayling Island it was not
possible to survey the tde of the shingle beach, which was located well below low tide level.
Also, there were no cross-shore structures which could act as a barrier to longshore transport.
The difficulties experienced in closing the shingle system at Hayling Island do not occur on

Long Beach.

In some similar studies (for example, Workman 1993), the beach level data has been analysed
using the “Surfer” package. However, the method of analysis used by the package is not suited
to data sets collected on steep “shingle” beaches. Instead, the data was converted into 8 cross-
shore profiles; these are also shown on Figure 5.3. The changes in each of the 8 profiles, over

the 4 day period, are illustrated in Figure 5.12 (a to h).

Moving from east to west there is a decrease in the level at the toe; this drops from

approximately 0.0m AOD at Profile 1, to -0.7m AOD at Profile 8. The profile also becomes
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longer, partially due to a decrease in toe level and partial due to an increase in the width of the
beach berm. The gradient of the beach face varies between 1 in 7 and 1in 9. The beach face
in Profiles 1-3 slope at approximately 1 in 8, compared with Profiles 6-8 which are steeper at
approximately 1 in 7.5. All the profiles show a general steepening of the beach face from 23 -
26/1/93, increasing in slope from about 1 in 8.3 to 1 in 8.0, at the western end, and from 1 in
7.7to 1in 7.5, at the eastern end. A notable feature of all the profiles are the effects of the
storm surge occurring on the afternoon of 25/1/93. Within each of the 8 profiles, the surge
resulted in the accretion of a pronounced storm crest, with the movement of a significant

amount of shingle above the +4.0m AOD contour.

For each profile, the cross-sectional area was determined,; these, in tﬁm, were used to calculate
the total volume of beach material within the 5 cells for each morning. Daily volumetric
changes for the cells were then calculated over the four day period (Table 5.9). All five cells
increased in volume, from the 23/01/93 to 24/01/93. However, only Cells D & E continued
to accrete for the duration of the study. Net losses occurred in Cell A between 24/01/93 and
the 25/01/93 and in Cells A, B and C on the following day.

Because the system is closed to shingle transport at its eastern end, it should be possible to
determine not only the volume of material which is added to, or removed from, each cell but
also where sediment originates or where it is transported to . Assuming that the large terminal
groyne at the eastern end of Cell A effectively closes the system, any net build-up of material
in Cell A must have been transported alongshore from Cell B. Likewise, a loss of material in
Cell A would have to be balanced with longshore transport, into Cell B. Progressing
westwards, this sediment budget balancing approach can be applied to the remaining cells, to

‘determine longshore transport at the boundaries between each cell (Table 5.9).

Longshore transport rates, determined from the volumetric analysis (Figure 5.12), show that
neither the calculated rates of transport nor the direction of net transport are consistent
between individual cells. Between the 23/01/93 and the 24/01/93, there is a steady decrease
in the longshore transport rates, from the east to the west. This pattern is consistent with the
change in orientation and increasing depth of water, towards the west. A very similar pattern
is seen between the 24/01/93 and 25/01/93, although the estimated transport rates are lower

and show a reversal in direction at the western end.
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Net sediment movement into the study area as a whole is much reduced between 25/01/93 and
26/01/93 (62m’, compared with 265 & 307m® on previous days); likewise the variation in

transport rates between cells is more irregular.
There are two factors which could lead to errors in the above analysis, as outlined below.

(1) The small groynes and boat ramp, whilst buried for much of their length, were noted to
have “trapped” some of the aluminium and transmitting pebbles; this indicates that some

retardation of longshore transport was likely, in the vicinity of these structures.

(i) The foreshore beyond the shingle toe, at the eastern end, was noted to become sandier as
the experiment progressed; this indicates that the system may “leak” sand-sized material at this

location. There was no evidence of shingle moving in the same direction.

Best estimates of the longshore transport rates are likely to be those determined for the
western part of the study area, where there were no structures to impede longshore transport,
and there was a plentiful supply of shingle up-drift. If sand-sized material moves offshore at

the eastern end of the study area, then the calculated transport rates will be underestimated.

Finally, the transport rates calculated on the basis of volumetric analysis represent total
sediment transport rates, of both sand and shingle. This interpretation is in contrast to the

tracer method, where the transport rates of the coarse shingle fraction is being measured.
S.6. Comparison of Transport Rate Calculations
5.6.1. Summary of Data Collected

The main data sets collected for the Long Beach Study are summarised in Table 5.11 and

include:

(a) wind data recorded at Borstal Hill, Whitstable ( showing maximum average wind speeds
and direction, over a tidal cycle);

(b) water level data at Whitstable Harbour (showing still water level at high water and time of
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high water);

(c) wave records from the Whitstable Harbour wave recorder (showing maximum recorded
significant wave height (Hs) and wave period (Tz), over a tidal cycle);

(d) wave records from a pressure transducer at Long Beach (showing maximum recorded
significant wave height (Hs) and wave period (Tp), over a tidal cycle);

(e) visual wave records at Long Beach (showing maximum significant breaking wave height
(Hsb) and breaking wave angle (=<b), over a tidal cycle);

(f) maximum significant wave height (Hs) and wave period (Tp), over a tidal cycle at Long
Beach, based upon the output from the wave model;

(g) percentage recovery of electronic and aluminium pebbles; and

(h) the day-time low waters, during which time the beach plan surveys were undertaken.

Table 5.11 provides limited details of the data collected; full details of the data sets are

reproduced in the relevant Sections of this Chapter.

Recordings of the forcing parameters (wave conditions) are made around high water, whilst
recordings of the>resulting transport of material relate to the following low water. In order to
avoid confusion in the subsequent discussions, successive data sets recorded during each tidal
cycle are labelled “as number of high waters since tracer injection”. For example, (i) + 1,
represents the high water immediately after tracer injection and also the following low water;

during this time, beach changes or tracer displacements are recorded.
5.6.2. Summary of Results

- The results of the various longshore transport estimations are summarised in Table 5.12. All
the quantities presented refer to net longshore transport rates over a tidal cycle and are given
in cubic metres; negative quantities represent transport from west to east. Where the estimate
of transport rates have been determined for different séctions of the beach (Cells A to E (see
Figure 5.3)); this is shown in Table 5.12.

A pattem common to each of the three sets of results is the reduction of westerly to easterly
transport, which occurs as the terminal groyne at the eastern end is approached. In the case

of the estimates based upon the coastal model (modelled wave conditions and longshore
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transport rates, using the “Delft” equation). This reduction is due to the change in beach
orientation and, hence, breaking wave angle along the experimental beach. However, in the
case of the estimates based upon the displacement of tracers and the beach volumetric changes
(determined from the beach plan surveys), the retarding effects of the groynes and boat ramp
also influence the system. This effect is in addition to any modifications of wave conditions

which may occur, due to the presence of these structures and the terminal groyne itself.

Because the model results ignore the effects of the boat ramp and groynes at the eastern end,
the only results which are directly comparable for all three methods of estimating longshore
transport are those which are calculated for Cells D and E. These two cells are located on a
section of beach, which is located sufficiently far away from the effects of cross-shore

structures.

In order to compare the results based upon both the coastal model aﬁd upon tracer
displacement, with the transport rates obtained from volumetric changes, it is necessary to sum
the results for the two tidal cycles for each day. This approach is because beach plan surveys
were only undertaken on one low water each day; this is due to the requirement for light, to
be able to use the EDM. Daily transport rates are shown in Table 5.13. These transport rates
are for Cells D and E; in the case of longshore transport estimates from volumetric changes,
the average of the rates calculated for cells D and E has been used. Cumulative daily longshore

transport rates are listed also in Table 5.13.
5.6.3. Comparison of Longshore Transport Rates: 23rd to 26th January 1993

Comparison of transport rates is described below on: (a) a daily basis; and (b) over the
duration of the whole experiment. In each case, the promove tracer subgroup has been used
for the calculation of transport rates from tracer displacement; this neglects results from tracers

which have been influenced by the groynes.
(a) 23rd January 1993 to 24th January 1993 (((i) + 1), (() + 2))

Wave conditions were such that no significant transport occurred during the (@) + 1) period

and the bulk of the transport for this period can be attributed to the waves during the evening
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high water ((i) + 2). Transport rates derived from the model and from the displacement of
tracers are very similar, at between -100 and -110 cubic metres towards the east. However the

longshore transport rate based upon volumetric changes is greater, by a factor of greater than
2.

(b) 24th January 1993 to 25th January 1993 (@ +3), () +4)

On the second day of the experiment, significant wave activity occurs over both tides, with the
result that net longshore transport rates calculated from both the tracers and from the coastal
model are double those of the previous day, at -210 and -270 m? (from west to east),
respectively. The transport rate derived from the volumetric changes are also in the order of
-210 m’ ie towards the east; this demonstrates a high degree of similarity between the different

methods of estimation.
(c) 25th January 1993 to 26th January 1993 ((G) + 1), ((i) + 2))

Because all of the tracers were trapped arhongst the groynes, no results for the open part of
the beach were available. Results were obtained from both the model and the volumetric
analysis techniques. Longshore transport estimétes of -103 and -33 m’ (west to east) were
obtained, from the model and the volumetric changes, respectively. On the basis of records of
weather and wave conditions, it can be concluded that the bulk of this movement occurred
during the morning high tide. Although the morning high water coincided with a large tidal
surge (resulting in a high tide level, with a return period of around 5 years, (see Figure 5.6)),
transport rates appear to have been similar to those which were associated with the previous
4 high tides.

(d) 23rd January 1993 to 26th January 1993(((i) + 1) to ((i) + 6))

Longshore transport over the three day period is estimated to be between -450 and -550 m’,
based upon both the results of the coastal model and the volumetric changes derived from the
beach plan surveys (Table 5.14). No longshore transport rates (for the open beach) were
available from the tracer displacements on the final day of the experimeht; hence, a cumulative

3 day transport rate cannot be determined. However, after the end of the second day, a
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cumulative longshore transport rate of -310 m® was obtained (compared with -370 and -480

m’ for the wave model and volumetric analysis, respectively (Table 5.13).

Longshore transport rates obtained from the coastal model compare very well with the two
methods used to directly measure transport quantities, over the three day experimental period.
Whilst the performance of the model over this period is satisfactory, the short duration of the
experiment provides no guarantee that it will perform equally well over the longer term.

During the three days, only waves from the west and northwest were encountered.

On the evenings of both the 23/01/93 and 24/01/93; the predicted wave heights were lower
than those which were recorded and had to be corrected (probably for air / sea temperature
differences). When compiling longer-term transport rates (annual, for example); it is not
possible lto record wave conditions at the beach toe along the whole length of coastline; in this
way the model could be checked and corrected, if necessary. Therefore, whilst ‘the Long Beach
experiment suggests that no calibration factors need to be applied to the transport module of
the coastal model, the performance of the model needs also to be checked over the longer

term.
3.7. Calculation of Potential Annual Net Longshore Transport Rates

The approach for determining net annual potential longshore transport rates, from the
nearshore wave climate, has been described in Section 3.8. Calculations are based upon the
annual wind climate (derived from data collected at Manston Airport, between 1979 and 1990
(Figure 4.7 (a to c)), together with the frequency distribution of still water levels recorded at
“Herne Bay in March 1990 (Table 4.6)).

Potential net longshore transport rates have been determined, for a range of coastal
orientations, in 9 of the 10 coastal sub-units in the study area (Table 5. 14); these are Seasalter,
Whitstable, Tankerton, Studd Hill, Herne Bay, East Cliff, Reculver, Northern Sea Wall and
Minnis Bay (for locations see Figure 3.4). These results do not allow for the presence of
structures, such as groynes, which would disrupt longshore transport. (No results have been
included for Hampton Pier Avenue (sub-unit 4A), because there is no beach present over this

particular section of coastline. The foreshore along the whole length of the sub-unit i, instead,
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protected by rock armour). An example of the results is shown in graphical form; Figure 5.15.

For each of the graphs presented in Figure 5.15, it can be seen that there is a particular angle
of the coastal orientation at which the longshore transport is zero; this represents the stable
or equilibrium orientation, where gross transport rates in opposite directions are equal. There
is, therefore, no net annual longshore transport. This angle represents the orientation at which
natural processes will work to establish as the ‘normal’, on an ungroyned beach. The angles
of coastal orientation, at which transport equilibrium is achieved for each coastal section, are
given in Table 5.15. Deviations of the actual coastal orientation angle, from these equilibrium
values, will result in a net annual longshore transport; the extent and direction of this transport
can be obtained from Table 5.14, or from graphs, such as Figure 5.15, for example.
;

Examination of the equilibrium angles shows that, between Whitstable and Reculver, there is
a general change in the equilibrium angle along the coastline. At Whitstablé, equilibrium is
achieved with an orientation of -10° (that is 10° clockwise, from east to west), compared with
0° (east to west orientation) at Reculver. In Section 4.5.5, it was noted that there was a
reduction in the directional asymmetry in the nearshore wave climate between Whitstable and
Reculver. The change in equilibrium angle described above is a representation of the changes
in the wave climate. At Reculver and East Cliff, the effect is enhanced, probably due to the
presence of sediment banks to the north and east of Reculver; these will reduce wave energy

from northeasterly directions.

Equilibrium angles at Seasalter, the Northern Sea Wall and at Minnis Bay do not follow the

general trend (see below).

At both the Northern Sea Wall and Minnis Bay, the offshore sand-banks provide some degree
of sheltering from wave action from all directions; this is in comparison to Reculver and East

CLiff, where there is a clear directional sheltering effect

Seasalter is a very sheltered site, located on the south “bank” of the Swale Estuary. Typically,
the beach toe is at or above +1.0 m AOD. Wave action can only reach these beaches for two
or three hours around high tide; likewise, wave energy which reaches the beaches will be much

reduced. The model output reflects the strong sheltering from wave action which occurs at
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Seasalter however, it does not take account of the small (but significant) amount of wave

energy generated within the Swale Estuary itself,

An assessment of the model predictions is described in Chapter 6, in terms of (a) the

equilibrium angles; and (b) the potential net annual transport rates
S.8 Seasonal Variations in Potential Net Longshore Transport Rates

It is possible to determine the seasonal (winter / summer) variation in longshore transport
potentials, using the coastal model. This calculation has been carried out by replacing the input
data from the average annual wind climate data (Figure 4.7(a)), with data averaged over the

winter (Figure 4.7(b)) and summer (Figure 4.7(c)) periods.

A seasonal variation in wind conditions (recorded at Manston Airport (1979 to 1989)), has
already been described in Chapter 4 (Section 4.5. 1). The winter period is more likely to be
dominated by westerly and northwesterly winds; during summer, wind speeds are generally

lower and winds from the northeast are more common,.

Potential net longshore transport rates determined for Long Beach, Whitstable, over the
summer and winter seasons are reproduced in Figure 5. 16; the annual averaged transport rate
is shown also, for comparison. It should be noted that the time-scale for the annual transport

rate is 12 months, compared with just 6 months for each of the two seasonal transport rates.

Using the central section of Long Beach as an example (where the coastal orientation is +3°),
net potential longshore transport quantities of +320, -1200, and +1520 m® are derived for the

annual, winter and summer periods, respectively (where transport from west to east is -ve).

Net annual transport rates at Long Beach have been estimated at +250m?, on the basis of the
quantity of material which by-passes the east quay of the harbour and is removed by dredging
(Canterbury City Council, 1988).

Averaging data over several years to produce a “typical” year, disguises much of the variation

which occurs over the shorter term. For example, reference to Section 5.6 demonstrates that
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over a period of effectively four tidal cycles (the evening of 23/01/93 to the morning of
25/01/93), an estimated 500 m® of beach material was transported from west to east during a

“fairly modest” storm. This value represent a transport quantity which is doublé the modelled

annual averaged quantity.

Examination of the modelled transport rates for the summer and winter seasons demonstrates
that the annual transport rate at Long Beach is made up of a summer component (1520 m®
transported east to west), and a winter component (1200 m? transported in the opposite

direction, west to east). Both are in excess of the modelled annual net transport quantities.

Further dissection of wind condition into smaller clusters of time will inevitably produce a
situation where significant volumes of material are seen to be transported in opposite directions
at Long Beach over periods of days or weeks. Over a period of one “average” year all the
transport quantities will tend to balance out to produce a small net transport .rate predicted by

the model.
3.9. Impact of Climatic Anomalies on Potential Net Longshore Transport Rates.

Clearly transport rates determined from “averaged” data (whether annual or seasonal as used
in the previous section) will disguise much of the variation in longshore transport which occurs
over shorter time periods. For example, the effects of storms (extreme events) may last for

only a few hours, but during that period, significant volumes of transport may occur.

At the other end of the scale, changes to weather patterns (and hence patterns of longshore
~ transport), caused by climate change, occur over a timescale of years. Since the minimum
timescales considered in the design and management of the coastline is now 50 years (MAFF,

1997), the impact of climate change does therefore need to be taken into account.

For the Long Beach site, the effects of a number of climatic anomalies have been assessed. The
assessment has been divided into three sections, depending on whether the timescale is
considered to be short term (hours / days); medium term (weeks / months) or long term

(years).
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(@) Extreme events, (short-term efffects)

Extreme events describe relatively short periods of time, during which wave energy on the
beach is well in excess of “normal” levels, From the discussion presented at the end of Chapter
4, these events are associated commonly with still water le\}els which are also raised above
normal levels. The raised water levels, in turn, allow larger waves to reach the beaches.
Although extreme events are rare, by definition, they have the capacity to transport large

volumes of sediment over relatively short periods of time.

The most valuable information which can be obtained on transport rates during extreme events
can be derived by modelling real events. Three storm events were selected for the study of
resulting longshore transport rates: (a) 12th December 1990; (b) 20th February, 1996; and (c)
Ist February, 1953.

Wind conditions, water levels and the resulting (modelled) wave conditions for the three events
(at Long Beach, Whitstable) are listed in Table 5.16. Also shown are the longshore transport
quantities for the open section of Long Beach, based upon the modelled wave data and the
“Delft” longshore transport equation. In each case, only a single tidal cycle has been modelled.
However it should be noted that high levels of wave energy may be experienced for a number

_of tides, either preceding or succeeding the modelled period.

The storm which occurred in the early morning of 1st February 1953 caused devastating
flooding across the east coast of the UK and northern Europe. As can be seen from Table 5. 16,
such a storm, has the capacity to transport an estimated 1000 m® (at 2 maximum hourly rate
- of 172m’) of beach material in a longshore direction at Long Beach, over the passage of a
single tidal cycle. The transport rates (and directions) at other locations along the coast will

vary, depending primarily upon the coastal orientation.

A storm of lesser intensity, in terms of still water level and significant wave height, occurred
on 20th December 1990. This event resulted in minor flooding to coastal roads, but little
damage throughout the study area. During the storm, winds were blowing from the west
(Sector 1). The estimated transport rate over a tidal cycle, for this event, is around 640 m® at

Long Beach; with a maximum hourly rate of 109 m’.
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Since 1978, only the storm which occurred on the morning of the 20th February 1996, has
resulted in flooding to coastal properties in the study area. The still water level reached an
upper level of 3.7m AOD, giving a high water surge residual of 0.8m. The wind direction was
north-northeasterly. The return period of a surge of this level is approximately 1 in 30 years,
when associated with northeasterly winds (Figure 4.13). High water surge residuals of this
level are more common with north-westerfy winds where the return period would have been

just 1in 1 year.

Total longshore transport at Long Beach, during the morning of 20th February 1996, is
estimated to be around 280 m? this is less than half the quantity which occurred in the case of
the previously described lesser storm. The reason for this difference is that waves break at a
smaller angle on the beach and consequently, there is less energy expended in a longshore
direction. The extent of transport which occurs during a storm depends not only on the still
water level, the wave height and the wave period, but also upon the wave.angle; this is, in

fact, evident from the transport equations.’

Breaking wave angles at Long Beach, during this latter storm, were in the order of 6 to 8°
allowing for the - 3° orientation of the coastline itself. At other locations within the study area,
where the coastal orientation would have resulted in larger breaking wave angles, there would
have been larger quantities of material transported alongshore. For example, had the
orientation at Long Beach been +5°, then the resulting transport rates for the three events
would have been: -490 m® (1st February 1953); -580 m? (12th December 1990); and +570 m?
(20th February 1996).

~ (b) Atypical weather conditions (medium-term weather pattern changes)

Significant volumes of material may be transported in one particular direction, as a result of
weather conditions; these produce winds blowing from a more or less constant direction, over
a long period of time. Such an event occurred during the winter of 1995 / 1996, when the
normal pattern of domination of westerly and northwesterly winds, over easterly and

northeasterly winds, was reversed, F igure 5.17.

The occurrence of wind speed and directions (monthly-averaged), for the period September
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1995 to April 1996, is shown in Table 5. 17(a to h). Examination of these data show a high
level of variation between the individual months. For example, during October 1995, wind
speeds are low (maximum hourly-averaged wind speed of Force 4 (Beaufort Scale)); similarly
there is no strong asymmetry in wind direction. This pattern is in contrast to that observed in
January 1996, for example, when there was a strong bias towards the northeasterly and
easterly wind directions; hourly-averaged wind speeds for the northeasterly directions are also
higher. The strongest winds occurred in February 1996, when hourly—averaged wind speeds
of Force 8 were recorded; however during the month of February as a whole, there is a more
even distribution of wind direction occurrences, than in many of the other monthly periods

shown.

Net potential longshore transport rates have been calculated for each month, between

September 1995 and April 1996; the results are reproduced in Table 5.18.

The highest estimated monthly net longshore transport rate (+2160 m®) occurred during
December 1995, when the net transport was in a westerly direction. The following month, a
further 1690 m* of material moved in the same direction. A reversal in this pattern (1100 m®
towards the east) occurred during February 1996; this was a month which was noted for a
series of minor storms. A major storm (described in Section 5.9 (a) above), also occurred on
the 20th February 1996. Interestingly, transport during this storm event was in the opposite
direction to the monthly average, emphasising the variability which occurs over short time-
scales. During March and April 1996, there was a return to westerly transport, with a net

+1290 m* transported in March and +1030 m® in April.

Over the winter of 1995 / 1996, the normal dominance of westerly over easterly winds was
reversed. This change results in a net averaged winter months transport of +3170 m>; this
compares with the 1979 to 1989 averaged “winter months” transport quantity, of -1200 m>.
Some consequences of this reversal are described in the Discussion (Chapter 7).

(¢) Climate change (long-term shifts in weather patterns)

There are two main reasons why long-term shifts in weather patterns need to be taken into
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account;

(a): if, for example, the long-term shifts occur in cycles with periods of several decades or
more, then the approach adopted in this study (of producing an average year from ten years

of wind data) will in fact only be representative of part of the climate cycle; and

(b): a shift in climate pattern, which leads to a long-term or permanent change in the
equilibrium angle of the coastline, could lead to sea defences, which are designed based upon
beach and groynes systems being misaligned for the changed (wave) climate regime. This is

also an important observation in coastal process scientific studies.
Insufficient data are available from this study, to attempt to assess whether long-term changes

in wind conditions are likely to occur. This particular topic is addressed in the Discussion
Chapter 7.
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Date 16TH MARCH 1992 18TH MARCH 1992 30TH MARCH 1992

Position Y (m) X (m) d (cm) Y (m) X (m) d (cm) Y (m) X (m) d (cm)

co 45.01 1.00 s 45.01 1.40 3

c1 32.10 -1.00 20 32.10 -1.00 20

2 31.11 1.00 5 31.21 1.35 s 36.80 -58.08 25
c3 45.01 -1.00 25 44.91 -0.80 20

c4 49.97 1.00 5 50.07 1.40 3

cs 2912 -1.00 5 2912 -1.10 1 2805 6741 5
c6 38.06 -1.00 5 38.06 1.50 2

c7 40.04 1.00 5 40.04 1.40 2

cs 42,03 1.00 s 42.03 0.80 0

co 45.01 -1.00 5

Do 43.98 1.00 s 49.68 -1.90 o

D1 3210 -1.00 40 3210 -1.00 40

D2 44.02 1.00 5 44.02 1.40 4

D3 53.95 1.00 5 5414 0.90 0

D4 46.00 1.00 5 46.10 1.20 2

D5 46.00 -1.00 s 46.20 -1.00 0

D6 33.09 -1.00 5 35.58 -0.60 0

D7 46.99 1.00 s 46.99 1.30 3

DS 47.99 1.00 5 48.09 1.40 2

Do 48.98 -1.00 5 49.18 -0.50 0

B0 34.09 -1.00 5 3478 -1.75 0

Ei 3210 -1.00 10 32.10 -1.00 10

E2 32.10 -1.00 s 33.69 -2.00 i

B3 41.04 1.00 5 41.04 1.35 10

E4 38.06 -1.00 5 38.06 -0.80 1

ES 35.08 1.00 5 34.98 1.60 2

ES 44.02 -1.00 5 44.02 -1.30 0

E7 30.11 -1.00 5 30.11 -1.10 5

E8 37.07 -1.00 5 37.07 -0.90 3

ES : 43.02 1.00 5 4322 1.20 4 43.79 -68.29 15
FO 52.95 -1.00 5 52.95 -0.90 3

F1 35.08 -1.00 5 35.38 -1.00 s

F2 30.11 1.00 s 30.21 1.10 4

F3 39,05 1.00 5 3915 -1.50 2 32.83 65.16 20
F4 51.96 -1.00 s 51.76 0.50 ]

F5 33.00 1.00 5 32.99 1.20 4 29.02 -90.80 0
F6 50.97 1.00 5 50.87 1.30 0

F7 37.07 1.00 5 37.07 1.60 5

F8 50.97 -1.00 5 51.07 -1.50 0

) 3210 -1.00 30 32.10 -1.00 30

ao 31.11 -1.00 5 3111 -1.00 3 23.60 -66.87 s
a1 32.10 1.00 s 32.00 1.20 6

G2 46.99 -1.00 s 47.09 0,70 3

G3 2912 1.00 5 35.58 1.70 2

G4 43.02 -1.00 5 43.02 -0.90 0

G5 53.95 -1.00 5 53.65 0.90 0

G6 4501 -1.00 15 4491 0.80 10

G7 51.96 100 s 51.76 0.40 1

G8 39,05 -1.00 5 39.05 0.90 1

a5 34.09 1.00 5 34.78 1.30 3

HO 42.03 1.00 5 42.03 1.20 [

Hi 49.97 -1.00 5 51.07 -4.10 2

H2 47.99 -1.00 s 47.99 -1.00 3 4516 -75.23 5
H3 36.07 1.00 5 35.87 1.50 1

H4 36.07 -1.00 5 36.07 -0.90 2

HS 40.04 -1.00 10 40.14 0.80 20

H6 45.01 -1.00 5 44.91 -0.80 0

H? 52.95 1.00 5 5295 1.10 2

HE 45.01 -1.00 20 44,91 -0.80 15

HO 41.04 -1.00 5 41.14 -0.80 o

where: y is the offshore &slemt; X is the longshore displacement; and d is the depth of burial.

Table 5.1. Aluminium Tracer Displacements at Long Beach, Whitstable, 16/03/92 to 31/03/92.
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Date Time (GMT) Hb (m) Angle « (°) WavZ)Type
23/01/93, 1015 0.05 -35to 45 wind
(am) 1115 0.15 0to-10 swell
0.05 -35 1045 wind
1215 0.15 0to-10 swell
0.05 -35t0 45 wind
1315 0.1 -35t0-45 wind
1415 0.15 -35 to -45 wind
1515 0.15 -35to 45 wind
23/01/93, 2215 - -251t0-35 wind
(pm) 2315 ; 2510-35 wind
0015 - 251035 wind
0115 - 251t0-35 wind
0215 - 251035 wind

24/01/93, 1115 03 2510-35 wind

(am) 1215 0.4 251035 wind
1315 0.6 251t0-35 wind
1415 0.6 <25 t0 -35 wind
1515 0.5 -2510-35 wind
1615 0.3 25 t0-35 wind
24/01/93, 2215 - -20 to -30 wind
(pm) 2315 . 20t0-30 wind
0015 . -20 t0-30 wind
25/01/93, 1015 0.6 151025 wind
(am) 1115 06 -100 20 wind
1215 0.7 -10 to 20 wind
1315 08® -10t0 -20 wind
08® 0to-10 swell
1415 08® -10 to -20 wind
08® 0t0-10 swell
1515 06® -10t0-20 wind
06® Sto-10 swell
1615 0.5® -10t0 -20 wind
05® 5to-5 swell

(a) wind waves are steep, T =3 to 4 sec; swell waves have T > 8 sec: (b) not possible to defined
separate wave heights for “wind” and “swell” waves on 25/01/93.

Table 5.2. Visual Observations of Wave Conditions at Long Beach, Whitstable: 23/01/93 to
25/01/93.
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Date Time Water Time Domain Frequency Domain

Recording (GMT) Depth

Starts m AOD H,=H, Tz Hyus H,=H,, Tp

(m) (sec) (m) (m) ®

23/01/93, 1015 1.62 016 | 233 0.05 0.08 731

morning 1115 2.60 0.13 3.85 0.05 0.08 8.53

1215 3.25 016 | 6.07 0.10 0.14 8.53

1315 3.10 0.20 2.92 0.10 0.14 8.53

1415 2.20 0.19 2.09 0.09 0.13 2.05

1515 0.25 0.31 1.94 0.15 0.21 1.46

23/01/93, 2215 0.65 0.29 2.83 0.26 0.37 3.10

evening 2315 1.65 0.56 3.38 0.37 0.52 3.79

0015 235 0.58 3.52 0.43 0.61 - 366

0115 225 0.59 3.36 039 | 055 3.41

0215 1.65 0.55 3.10 0.40 0.57 330

24/01/93, 1115 1.70 0.46 3.25 0.37 0.52 3.53

morning 1215 2.95 0.49 3.62 0.38 0.54 3.66

1315 3.55 0.68 3.37 0.33 0.47 3.20

1415 3.05 0.59 3.18 0.33 0.46 3.01

1515 2.25 0.52 291 0.26 0.37 2.63

1615 1.30 0.40 2.67 0.26 0.37 2.84

24/01/93, 2215 1.95 0.44 3.15 0.30 0.42 3.10

evening 2315 2.70 0.66 3.82 0.54 0.76 427

0015 335 0.75 3.76 0.50 0.70 4.10

25/01/93, 1015 1.55 0.43 2.99 0.33 0.46 341

morning 1115 2.65 0.50 3.26 0.32 0.46 3.41

1215 | 375 0.58 3.64 0.34 0.49 3.30

1415 435 0.70 499 0.48 0.68 8.53

1515 3.70 0.67 4.90 0.49 0.69 4.10

1615 2.55 0.46 3.62 0.33 0.47 4.10

See text for terminology and details of methods of analysis

Table 5.3. Analysis of wave data, (time and frequency domain), Long Beach, Whitstable:
23/01/93 to 26/01/93
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Dates of CellD/E Cell C CellB Cell A
Transport Transport Rate Transpoﬁ Rate | Transport Rate Transport Rate
(m’) (m’) (m’) (m’)
Transport Rates per Tidal Cycle
23/01/93 (am) -6 -5.7 5.1 -4.2
23/01/93 (pm) -101.2 -88.9 -72.8 -52
24/01/93 (am) <713 -67 -59.8 -49.1
24/01/93 (pm) -193.8 -164.3 -130.2 -89
25/01/93 (am) -97.8 -61.8 -23.1 16.4
25/01/93 (pm) -5.4 -5.1 -4.4 -3.4
Summed Daily Transport Rates
23/01/93 -107 -95 -78 . =56
24/01/93 -265 : -231 -190 -138
25/01/93 -103 -67 -28 +13
Total Transport During Experiment
23 -25/01/93 -476 -393 -295 -181

where, (a) -ve rates indicate transport from west to east; (b) location of cells is shown in F igure 5.3.

Table 5.4. Longshore Transport Rates calculated using the “Delft” formula and wave model
output.

Date / Time of Aluminium Pebbles Electronic Pebbles Cum. Recovery (%)
Searching Recovery (%) Recovery (%) (Electronic pebbles)
24/01/93 (am) 43 §O 90
24/01/93 (pm) 26 80 100
25/01/93 (pm) 49 86 88
25/01/93 (am) no search 69 94
26/01/93 (pm) 42 88 100

Table 5.5. Recovery Rates of Tracers, Long Beach, Whitstable: 23/01/93 to 26/01/93.

183



Tracer 24/01/93 (am) 24/01/93 (pm) 25/01/93 (am) 25/01/93 (pm) 26/01/93 (am)
Sub-group X© Y© X Y X Y X Y X Y
All® -19.15 -0.57 -18.75 0.74 -19.42 247 0.26 0.88 -1.18 1.03
All (cum) -19.15 -0.57 -37.90 0.17 -57.32 2.64 -57.06 3.52 -58.24 4.56
Prmove @ -34.05 057 | -22.15 0.72 -27.85 3.58 0.17 1.88 -2.40 1.58
Prmove -34.05 -0.57 -56.20 0.16 -84.05 3.74 -83.88 5.62 -86.28 7.20
(cum)

Prpmove ® 0.00 0.00 -18.38 -0.13 -27.85 3.58 0.17 1.88 --2.40 1.58
Prfmove @ -34.05 -0.57 -26.68 1.74 na na na na na na
Promove ® | -34.05 -0.57 -28.58 1.36 -32.48 3.79 na na na na
Aluminium -10.54 0.87 -22.82 3.22 -3.51 0.05 * * -12.5® 2.159

where, (a) tracer sub-groups are defined in the section 5.4.3; (b) displacement over two tides; (c) x and y are the

longshore and on-offshore displacements of the tracers (see Figure 5.3), and;

to east.

-Ve rates represent transport from west

Table 5.6. Displacement of tracer pebbles, Long Beach, Whitstable: 23/01/93 to 26/01/93.

24/01/93 24/01/93 25/01/93 25/01/93 26/01/93
Mobile Layer Depth (n) 0.15® 0.12 0.16 0.10 0.09
Mobile Layer Width (m) 20.0 24.0 24.8 294 21.6
Volume Mobile Layer 3.00 2.88 3.97 2.94 1.94

where, (a) estimated mobile layer based on wave height (see section 5.4.4).

Table 5.7. Estimation of extent of mobile layer, Long Beach, Whitstable: 23/01/93 to 26/01/93.

24/01/93 24/01/93 25/01/93 25/01/93 26/01/93
Qt (All) -57.5 -54.0 -77.1 0.8 -2.3
Qt (Prmove) -102.2 -63.8 -110.6 0.5 -4.7
Qt (Prpmove) na -52.9 na na na
Qt (Prfinove) -102.2 -76.8 na na na
Qt (Promove) -102.2 -82.3 -129.0 na na
Qt (Aluminium) -31.6 -65.7 -13.9 -30.5®

where, (a) transport rate over two tides, and; -ve rates represent {ransport from west to east.

Table 5.8. Longshore transport rates based on displacement of tracer pebbles, Long Beach,
Whitstable: 23/01/93 to 26/01/93.
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Profile / Cell Date of Surveying, (all morning low water surveys)
Reference No. 23/01/93 24/01/93 25/01/93 26/01/93
Profile ® Profile Cross Sectional Area (m?)
Profile 1 95.83 95.81 92.04 91.67
Profile 2 86.49 - 91.38 91.92 . 91.03
Profile 3 85.26 89.23 87.28 ‘ 86.75
Profile 4 112.34 110.28 ‘ 114.75 114.50
Profile 5 122.16 12286 123.73 120,51
Profile 6 165.47 167.87 169.67 171.12
Profile 7 218.89 219.53 221.82 224 .34
Profile 8 280.48 283.16 286.62 287.03
Cell® | Width, m Volume of Beach Material (ms), change from previous survey m brackets
Cell A 275 2507 2574 (67) 2529 (-44) 2512 (-17)
CellB 355 3507 3541 (34) 3586 (45) 3572 (-14)
CellC 50.5 7262 7341 (79) 7708 (67) 7364 (-45)
CellD 40 7687 7748 (61) 7830 (82) 7909 (79)
CellE 40 9987 10054 (66) 10169 (115) 10227 (59)

where, (a) profile and cell locations are shown on Figure 5.3.

Table 5.9. Beach Profile Cross Section Areas and Volumetric Changes, Long Beach,
Whitstable: 23/01/93 to 26/01/93.

Dates of CellE CellD CellC CellB Cell A

SUVeying | prit | 8Vol | Drit | Vol | Drift | 8Vol | Dritt | 8Vol Drift | &Vol
(m®) m?) (m®) (m?) () (m?) (m?) (m*) ) (m®)

23-24/01/93 | 307(E) | +66 | 241(E) | +61 180(E) | +79 | 101(E) | +34 | 67(E)® | +67

24-25/01/93 | 265(E) | +115 | 150(E) | +82 68(E) +67 I(E) +45 | 44(W) -44

25-26/01/93 | 62(6) | +59 | 3@® | +79 | 76(W) | 45 | 31wy | 14 | a7rwy | a7

where, (a) (E) represents transport rate towards the east, and (W) vice versa, and; profile and cell locations are
shown on Figure 5.3.

Table 5.10. Longshore Transport rates based on beach volumetric changes, Long Beach,
Whitstable: 23/01/93 to 26/01/93.
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Table 5.11. Summary of Data collected during field experiment at Long Beach, Whitstable:

23/01/93 to 26/01/93

186



Date of Recording / Technique Used

Part of Experimental Beach (See Figure 5.3)

CellE CellD CellC Cell B Cell A
Delft Formula and Wave Conditions® Based Upon Wave Model Output Calibrated by Wave Records
23/01/93¢ am (I+1)® -6© -5.7 -5.1 -4.2
23/01/93 pm (I1+2) -101.2 -88.9 -72.8 -52
24/01/93 am (I +3) -71.3 -67 -59.8 -49.1
24/01/93 pm (1 + 4) -193.8 -164.3 -130.2 -89
25/01/93 am (I + 5) -97.8 -61.8 -23.1 16.4
25/01/93 pm (I1+6) -5.4 5.1 -4.4 -34

Electronic Tracer Displacement

Based upon Prmove® (and Promove in brackets) Sub-groups of Tracers

23/01/93 pm (I1+1)

negligible tracer displacement / mobile layer depth

24/01/93 am (I +2)

-102.2 (-102.2)

na

24/01/93 pm (1 +3) -63.8 (-82.3) na
25/01/93 am (I + 4) -110.6 (-129.0) na
25/01/93 pm (I +5) na +0.5
26/01/93 am ( 1+ 6) na -47
Beach Profile Analysis Based on Volumetric Changes from Beach Plan Surveys
23 t024/01/93 (I+1 & 1+2) -307 -241 -180 -101 -67
241025/01/93 1+3 &1+4) -265 -150 -68 -1 +44
251026/01/93 (I1+5 & I1+6) -62 -3 +76 +31 +17

where, (a)wave conditions are from coastal model; (b) (I +n) refers to the number of the High Waters or Low
~ Waters following tracer Injection, see Table 5.1 1; (c) (-ve) rates represent transport from west to east; (d) for sub-
group definitions see Section 5.4.3, and; all transport rates are in m’.

Table 5.12. Comparison of longshore transport rates determined for Long Beach, Whitstable:

23/01/93 to 26/01/93.
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Date of Recordings

Method of Estimation Used / Transport Volume (m®)

Daily Transport Rates Model Results Electronic Tracers Volumetric Changes
23t024/01/93(0+1&1+2) -107 -102 -274
24t025/01/93 I+3 &1+4) -265 2211 -208
251026/01/93 1+5&1+6) -103 na -33
Cumulative Transport Rates Model Results Electronic Tracers Volumetric Changes
231024/01/93 (I1+1 & 1+2) -107 -102 -274
231025/01/93 I+1to1+4) -372 -313 -482
231026/01/93 (I+1to1+6) -475 na -515

where, (-ve) rates represent transport from west to east.

Table 5.13. Summary of longshore transport rates determined for Long Beach, Whitstable:

23/01/93 to 26/01/93.
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Table 5.14. Average annual potential net longshore transport rates for the Study Area.
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Unit / Sub-unit Location Equilibrium Orientation ®
(see Figure 3.4) (see Figure 3.4)
1A Seasalter -4
1B Whitstable -10
Tankerton -7
Studd Hill -5
4B Herne Bay -5
5 East CIiff 0
6A Recuiver 0
6B Northern Sea Wall -2
6C Minnis Bay -3

where, (a) equilibrium orientations are angles in degrees (see section 5.7 for details)

Table 5.15. Transport Equilibrium Orientations for beaches in the Study Area.
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Timeto/ | Still Water Wind Wind Significant Wave Wave Transport
fromHigh | Level (m, Speed Directional Wave Period Angle « Quantity
Water AOD) (ms™) Sector® Height (Tp, s) (° relative (m® hr')
(hrs) (Hs, m) toE - W)
(a) 1st February 1953
-4 1.1 21 3/4 8 5.6 -10 -34
-3 25 21 3/4 1.17 58 -11 -80
-2 3.6 21 3/4 1.39 59 -12 -122
-1 4.4 21 3/4 1.52 6.0 -13 -157
0 4.7 21 3/4 1.58 6.1 -13 -172
1 4.5 21 3/4 1.56 6.0 -13 -165
2 3.7 21 3/4 1.41 5.9 -12 -125
3 3.0 21 3/4 1.29 59 -11 -98
4 1.7 21 3/4 98 5.7 -10 -51
TOTAL -1004 m® tide™
(b) 12th December 1990
-4 1.1 19 1 0.71 4.0 -32 -40
-3 20 19 1 0.82 4.2 -34 -58
-2 25 19 1 0.98 43 -36 -86
-1 29 19 1 1.04 4.3 -38 -98
0 32 19 1 1.08 44 -38 -109
1 3.0 19 1 1.06 4.4 -38 -105
2 26 19 1 1.00 43 -37 -90
3 1.3 19 1 0.78 4.1 -33 -51
TOTAL -637 m® tide™
(c) 20th February 1996
-3 L5 18 4/5 .81 6.1 +9 18
-2 2.6 18 4/5 1.06 6.1 +10 35
-1 33 18 4/5 1.25 6.2 +10 50
0 3.7 18 4/5 1.34 6.2 +11 66
1 34 18 4/5 1.28 6.2 +10 52
2 2.7 18 4/5 1.09 6.1 +10 37
3 1.6 18 4/5 .83 6.1 +9 19
TOTAL +277 m?’ tide™

where, (a) for details of wind directional sector, see Figure 3.4, and; -ve rates represent transport from west to east.

Table 5.16. Longshore transport rates for extreme events at Long Beach, Whitstable: (a) 1st

February 1953; (b) 12th December 1990, and (c) 20th February 1996.
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September 1995

Beaufort - Wind Directional Sector (see Figure 3.4)

Force 1 2 3 4 5 6 7

calm 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1-3 0.69 0.83 0.56 0.56 0.14 0.97 0.14
4-6 1.81 1.67 1.25 0.69 0.56 0.83 0.42

7-10 4.58 2.36 431 1.81 1.94 1.81 1.67

11-16 2.50 2.36 1.67 1.11 0.56 0.28 1.25

17-21 1.11 1.94 0.14 2.08 0.56 0.00 0.14

22-27 0.00 0.00 0.00 1.11 0.00 000 | 0.00
28-33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
34-40 0.00 0.00 0.00 0.00 0.00 0.00 0.00
41-47 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Totals 10.69 9.17 7.92 7.36 3.75 . 3.89 3.61
October 1995
Beaufort Wind Directional Sector (see Figure 3.4)

Force 1 2 - 3 4 5 6 7
calm 0.00 0.00 0.00 0.00 0.00 0.00 ‘| 000
1-3 0.67 0.81 0.13 0.40 1.75 2.28 0.27
4-6 0.94 0.54 0.94 0.54 1.21 1.75 1.21

7-10 0.40 0.40 0.27 0.27 0.54 0.13 1.34

11-16 0.13 0.00 0.00 0.00 0.40 0.00 0.00

17-21 0.00 0.00 0.00 0.00 0.00 0.00 0.00

22-27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
28-33 0.00 0.00 0.00 0.00 0.00 0.00 0.00

34-40 0.00 0.00 0.00 0.00 0.00 0.00 0.00
41-47 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Totals 2.15 1.75 1.34 1.21 3.90 4.17 2.82
November 1995
Beaufort Wind Directional Sector (see Figure 3.4)
Force 1 2 3 4 5 6 7

calm 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1-3 1.25 0.56 0.14 0.00 0.14 0.14 0.14
4-6 5.00 0.28 0.00 0.00 0.00 0.28 0.42

7-10 2.36 1.53 0.28 0.00 0.28 0.28 0.69

11-16 1.67 4.72 5.69 1.53 0.14 0.00 0.97

17-21 0.00 1.11 0.69 0.28 0.00 0.00 0.14

22-27 0.00 0.14 0.28 0.00 0.00 0.00 0.00

28-33 0.00 0.00 0.00 0.00 0.00 0.00 0.00

34-40 0.00 0.00 0.00 0.00 0.00 0.00 0.00

41-47 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Totals | 10.28 8.33 7.08 1.81 0.56 0.69 2.36

Table 5.17. Wind Speed and Direction Occurrences at Manston Airport: (a) September 1995 ;
(b) October 1995, and; (c) November 1995
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December 1995

Beaufort Wind Directional Sector (see Figure 3.4)

Force 1 2 3 4 5 6 7

calm 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1-3 1.48 1.88 0.94 0.27 0.81 1.75 0.81
4-6 2.28 0.40 0.00 0.40 1.34 4.57 4.17

7-10 1.21 0.81 0.54 1.88 4.17 3.09 6.85

11-16 0.54 2.82 0.54 1.34 1.88 6.05 8.20

17-21 0.00 0.00 0.00 0.00 0.27 242 0.81

22-27 0.00 0.00 0.00 0.00 0.67 1.75 0.00

28-33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
34-40 0.00 0.00 0.00 0.00 0.00 0.00 0.00
41-47 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Totals 5.51 5.91 2.02 3.90 9.14 19.62 20.83

January 1996
Beaufort Wind Directional Sector (see Figure 3.4)
Force 1 2 3 4 5 6 7
calm 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1-3 0.54 1.21 0.81 0.67 1.08 0.94 0.40
4-6 0.00 0.00 0.13 0.81 1.48 3.23 1.08
7-10 0.00 0.00 0.00 0.00 2.02 363 4 242
11-16 0.00 0.00 0.00 0.00 1.48 12.50 8.60
17-21 0.00 0.00 0.00 0.00 1.61 3.23 0.40
22-27 0.00 0.00 0.00 0.00 0.00 0.00 0.60
28-33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
34-40 0.00 0.00 0.00 0.00 0.00 0.00 0.00
41-47 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Totals 0.54 1.21 0.94 1.48 7.66 23.52 12.90
February 1996
Beaufort Wind Directional Sector (see Figure 3.4)
Force 1 2 3 4 5 6 7
calm 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1-3 0.72 2.01 1.01 0.43 0.57 0.57 '1.58
4-6 0.72 1.58 1.58 1.15 1.44 1.15 0.72
7-10 1.15 1.01 3.02 1.15 1.72 0.14 1.01
11-16 2.16 1.15 2.01 2.30 3.59 0.00 0.29
17-21 1.87 0.86 0.57 3.02 0.29 0.00 0.29
22-27 0.00 0.29 2.01 2.01 0.72 0.00 0.00
28-33 0.00 0.00 1.44 2.16 0.86 0.00 0.00
34-40 0.00 0.00 0.00 0.29 0.29 0.00 0.00
41-47 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Totals 6.61 6.90 11.64 12.50 9.48 1.87 3.88

Table 5.17(cont). Wind Speed and Direction Occurrences at Manston Airport: (d) December
1995; (e) January 1996, and; (f) February 1996.
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March 1996

Beaufort Wind Directional Sector (see Figure 3.4)
Force 1 2 3 4 5 6 7
calm 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1-3 0.27 1.34 1.61 0.67 2.28 2.28 0.94
4-6 1.21 1.61 2.15 2.42 3.49 2.82 1.75

7-10 0.67 0.94 497 3.36 4.44 5.65 3.76
11-16 1.08 0.27 2.82 1.75 2.15 2.55 5.65
17-21 0.00 0.00 0.00 0.13 228 0.54 0.94
22-27 0.00 0.00 0.00 0.00 0.40 0.54 0.00
28-33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
34-40 0.00 0.00 0.00 0.00 0.00 0.00 0.00
41-47 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Totals 3.23 4.17 11.56 8.33 15.05 14.38 13.04
April 1996
Beaufort Wind Directional Sector (see Figure 3 4)
Force 1 2 3 4 5 6 7
calm 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00
1-3 0.69 2.08 1.11 0.97 0.69 0.42 0.69
4-6 0.97 2.50 1.11 2.08 3.75 1.11 1.67

7-10 0.42 0.42 0.14 3.33 4.58 2.64 0.56
11-16 0.42 0.00 0.42 1.39 5.83 4.17 2.22
17-21 0.00 0.00 0.00 0.00 0.83 0.00 0.00
22-27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
28-33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
34-40 0.00 0.00 0.00 0.00 0.00 0.00 0.00
41-47 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Totals 2.50 5.00 2.78 7.78 15.69 833 5.14

Winter Months, (1995 - 1996)

Beaufort Wind Directional Sector (see Figure 3.4)

Force 1 2 3 4 5 6 7
calm 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1-3 0.82 1.50 0.93 0.50 0.93 1.02 0.75
4-6 1.68 1.05 0.82 1.14 1.91 2.21 1.64
7-10 0.96 0.77 1.48 1.62 2.87 2.60 2.57

11-16 0.96 1.48 1.89 1.37 2.48 4.26 4.37

17-21 0.30 0.32 0.20 0.55 0.89 1.05 0.43

22-27 0.00 0.07 0.36 0.32 0.30 0.39 0.00
28-33 0.00 0.00 0.23 0.34 0.14 0.00 0.00
34-40 0.00 0.00 0.00 0.05 0.05 0.00 0.00
41-47 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Totals | 4.71 5.19 5.92 5.87 9.56 11.52 9.77

Table 5.17(cont). Wind Speed and Direction Occurrences (%) at Manston Airport: (g) March
1996; (h)April 1996, and; (i) summation of winter months (October 1995 - March 1996).
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Month / Year Monthly Cumulative
Transport @ (m®) Transport ® (m*)

September 1995 -290 -290
October 1995 +63 -227
November 1995 -932 -1158
December 1995 +2157 +999
January 1996 +1691 +2690
February 1996 -1100 +1590
March 1996 +1293 _ +2883
April 1996 1031 +3914
Net Transport +3914 +3914

where (a). transport rates based on coastal model and wind data from Manston

Table 5.18. Monthly Variation in Longshore Transport Rates, September 1995 to April 1996
at Long Beach Whitstable.
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Figure 5.1. Location of Long Beach Whitstable

23/01/93 to 26/01/93.
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Figure 5.9(a-f). Spectral energy density for wave conditions recorded at Long Beach
Whitstable: 23/01/93 (am) (vertical scale exaggerated compared to succeeding graphs)
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Figure 5.9(1-q). Spectral energy density for wave conditions recorded at Long Beach
Whitstable: 24/01/93 (am)
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Figure 5.9(r-t). Spectral energy density for wave conditions recorded at Long Beach
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Figure 5.9(u-z). Spectral energy density for wave conditions recorded at Long Beach
Whitstable: 25/01/93 (am)
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214



sukoub |pulwis]

_
N
wn
@
-
)
Q
£
(@
[42]
O
-
>
O
..
(@)

promenade

Figure 5.11(c) of electronic tracer pebbles at Long Beach, Whitstable: 24/01/93 (pm)
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216



sukoJb |pulwia)

2?

metres

groynes

promenade

Figure 5.11(e) Location of electronic tracer pebbles at Long Beach, Whitstable: 25/01/93 (pm)
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Figure 5.12(g) Beach changes at Profile 7: Long Beach, Whitstable: 23/01/93 to 26/01/93.
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Figure 5.12(h) Beach changes at Profile 8: Long Beach, Whitstable: 23/01/93 to 26/01/93.

222



120

—_

S

o
|

Net Change in Beach Volume (m3)

23-24/1/93 | 24-25/1/93 I 25-26/1/93

B cia B ceus i ceuc Cell D [ Cell E
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Figure 5.16. Seasonal variation in average annual potential net longshore transport rates at
Long Beach, Whitstable

224



Winter Months (October to March)

Percentage Occurrence

N

NN
N\

1 2 3 4 5 6 7
Directional Sector (see Figure 3.4)

. 1979 / 1989 - 1995 / 1996

Figure 5.17. Comparison of wind speed and direction occurrences for the ‘winter’ period
1995/1996, and the average of ‘winter’ periods between 1979 to 1989: (data obtained from
Manston Airport).
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Plate 5.1. Aerial view of the field study site, Long Beach, Whitstable.
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Plate 5.2. Movement of painted tracer pebbles across the ‘sand run’ under very low energy
conditions at Long Beach, Whitstable: 16/03/92.

Plate 5.3. Pressure transducer and EM current meter, Long Beach, Whitstable: 23/01/93
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Plate 5.4. Typical wave conditions, Long Beach, Whitstable: 25/01/93 (am).
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Chapter 6: Results - Sediment Transport Studies

6.1. Introduction

In this Chapter the results of the coastal model (potential net annual longshore transport rates,
as presented in Section 5.7) are used, in combination with the results of long-term (5 to 20

years) measurements of beach profiles, to develop an understanding of the patterns of stability

of beaches in the study area.

Using the output from the coastal model, the potential net annual longshore transport rates
have been determined for the whole of the study coastline; these are described in Section 6.2.
Due to the presence of coastal structures, designed to restrict longshore movement, the actual
transport rates will deviate from the calcglated potentials in quantity and, in some cases,
direction. A qﬁalitative assessment can be made simply by estimating the relative efficiencies
of the various sets of control structures along the coastline. In order to carry out a quantitative
assessment of the impact of control structures, however, it is necessary to resort to measuring

actual changes in the field.

As described in Chapter 3, the Coast Protection Authority have collected beach profile data
from 72 beach monitoring stations located along this particular section of coastline. The
majority of the data sets date from 1974, with changes at each location recorded on a quarterly
basis. These data sets, together with details of changes undertaken to coastal defences, and the
available information on the quantity of beach material added as beach replenishment, can be

used to construct a sediment budget for the study area.

Because of the length of the study area and the extensive quantity of data which exists (and,
therefore, requires validation), the analysis has not been carried out for the whole of the
coastline; instead three representative examples of the application of the budgetary approach
are included: Whitstable Central; Herne Bay West; and Tankerton, Figure 6.1. Details of these

budget analyses are reproduced in section 6.3.
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6. 2. Discussion of Results for Individual Coastal Sections.

Potential net annual longshore transport rates, obtained from the results presented in Section
5.7, are shown in Figure 6.2. It should be noted that these potential net annual longshore
transport rates assume that there is an unrestricted supply of sediment, both within the section
of coastline under consideration and between adjacent lengths of coastline. In addition to

Figure 6.2, reference is made to aerial photographs of the coastline, Plates 2.1 (a-g).

All the transport rates are presented in cubic metres per year (m® yr'); positive values represent
transport from east to west, whilst negative values represent transport from west to east. A
coastal orientation of 0° represents an east - west aligned coastline. Positive angles represent
a coastline which is orientated towards a northeast / southwest direction, with negative angles

representing a coastline tending towards northwest / southeast.
6.2.1. Unit 1: Seasalter.

Seasalter is located at the western end of the study area and forms a sheltered embayment at
the mouth of the Swale Estuary. The level of the beach toe is around +1.0m AOD, which is
much higher than the typical toe levels over the remainder of the coastline. The foreshore at
the east-end of Seasalter and at Whitstable have been subjected to high rates of erosion over
the past 100 years. Based upon old Ordnance Survey maps (dated 1872 and 1896), the high
water mark at Seasalter retreated to landward by some 150 m in 24 years, as the protective
saltmarsh has been eroded (Canterbury City Council, 1993a). At present, the shoreline has
been stabilised by the construction of seawalls and groynes. However, erosion of the alluvium

and clay on the foreshore, beyond the toe of the shingle, is an on-going problem.

The potential net annual transport values predicted by the coastal model for Seasalter are
shown on Figure 6.2. Net transport is from east to west, decreasing from 2500 m® at Seasalter
slopes (v), to 1000 m® at the “Oaze” (iv) and 200 m” (jii) by the caravan and chalet site. This
reduction in transport rate reflects the change in the orientation of the beaches along this
particular section of coastline. Beyond the Red Mouth outfall (ii), there is a short section of
coastline where the net transport rate reaches 2500 m®> yr . Further to the west, there is an

accumulation of shingle (i), whose orientation is equal to the predicted equilibrium angle;
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therefore it has zero net annual transport.

The model has not been extended further up into the Swale Estuary, due to the increased
sheltering provided by the Isle of Sheppey.

6.2.2. Unit 1B: Whitstable.

The beaches located to the west of Whitstable Harbour (Figure 6.2) are orientated northeast
to southwest (+50° - +55°). This orientation is largely a result of human interference, as
defences have been erected in a somewhat ‘haphazard’ fashion since the 13th Century (Bowler,
1985). The result of this acute orientation in relation to the direction of wave approach, is that

the whole coastline is heavily groyned.

The particular orientation of the coastline at Whitstable requires the model to be re-run; this
was because the original model runs were undertaken with the assumption that the shoreline
had an approximate east - west orientation. The results of the model re-run (Figure 6.3)

demonstrate a revised equilibrium coastal orientation of +29°.

According to the coastal model, longshore transport along the Whitstable Central frontage (vii,
viii) would be in the order of 5800 m*yr”, if no control structures were present. The transport

rate decreases to 5200 m*yr, by the Railway Wall (vi).

The sea defences at Whitstable were upgraded in 1989, with the construction of a large angled
groyne system. The large size and narrow spacing of the new groynes is such that the actual
longshore transport rates are much reduced. In Section 6.3.1, beach profile data is used to

assess the impact of the new groynes on the predicted longshore transport rates.

To the east of Whitstable Harbour (ix) the harbour quay acts as a terminal groyne; against this,
a stretch of lightly-groyned beach has accumulated. (This is Long Beach, Whitstable where the

field experiments to determine “short-term” longshore transport rates were carried out
(Chapter 5)).

The orientation of this particular beach is -4°; here the coastal model predicts a net potential
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annual longshore transport rate of +2000 m*. Based upon records of the volume of material
dredged from the Harbour entrance, Canterbury City Council (1988) concluded that
approximately 250 m® of shingle by-passed annually the eastern quay of the Harbour. This data
suggests that the groynes at the western end of Long Beach reduce the annual longshore

transport rate, by around 75 to 90%.
6.2.3. Unit 2: Tankerton.

The coastline at Tankerton (Figure 6.2) forms an embayment between the headlands of Long
Rock (xv) and Tower Hill, Whitstable (x); the equilibrium coastline is -7°.

A strong easterly to westerly drift, of 8000 m® yr, is predicted to occur at the western end of
the site, between Cliff Road and "The Street" (xi). To the east of Cliff Road (xii), the coastal
orientation is such that zero net transport occurs. This result appears reasonable, since the
orientation of the beach crests within the groyne bays is parallel to the seawall. To the east of
St Annes Road (xiii), the coastal orientation again changes and results in a westerly transport,

of around 6000 m® yr' to 7000 m® yr™.

Beyond the Sailing Club (xiv), the coastline begins to turn towards the northeast. The coastal
model suggests increased transport rate to the west; however, the sheltering effects of Long
Rock have to be considered. To the west of the Sailing Club, the beaches are open to waves
from the northeast. To the east of the Sailing Club however, the coast is partially sheltered
from waves approaching from the northeast; this is related to the presence of Long Rock itself
and the sediment banks lying offshore. Waves from the northeast, which reach the beach, have
lost much of their energy; this is due to wave breaking over the banks and refraction such that
the wave angles on the beach are less oblique than those predicted by the model. This results
in a reduction in the amount of material transported to the west. Waves from the northwest,
at the same site, do not suffer from sheltering; thus, the gross transport from west to east is
not affected. Examination of the site itself has suggested that sheltering from the northeasterly
wave action may be sufficient to cause a reversal in the direction of the net longshore

transport.

In order to understand processes at East Tankerton, it is necessary to resort to a budgetary
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analysis based upon recorded data (see Section 6.3.3).

6.2.4. Unit 3: Studd Hill.

The coastline at Studd Hill (Figure 6.2) forms another embayment between the headlands at
Hampton Pier (xx) and Long Rock (xv). The beach at Swalecliffe (xvi) should, according to
the model, show a small net transport from east to west of about 1000 m’yr™'. In the central
part of the bay the predicted net potential longshore transport varies from 2500 (xvii), to about

7000 m®yr! (xviii), from east to west.

At the eastern end of the bay (xix) adjacent to Hampton Pier, a similar problem occurs to that
at the eastern end of Tankerton, in that the beaches are sheltered from waves approaching from
the northeast. The coastal model does not account for this sheltering and therefore, derivation

of the transport potentials is not practical.
6.2.5. Unit 4B: Herne Bay.

Delft Hydraulics (1990) carried out a study at Herne Bay to determine the causes of beach
erosion in Herne Bay Central Area (xxiii). This investigation identified that longshore transport
was from east to west; it increased from 3000 m® yr to the east of the Neptune Jetty (xxiv),
to 8000 m*yr” along the seawall in the Central Area (xxiii). To the west of the pier (xxii) the
transport rate was reduced to 3000 m® yr!. The variation in longshore transport rates was
caused by a change in the orientation of the seawall from approximately east - west (0°) along
the frontages from Lane End (xxii) to Hampton Pier (xx) and Coopers Hill to Neptune Jetty
(xxiv) to an angle of +18°(northeast to southwest) in the central area. The equilibrium
coastline for this particular region, as determined by Delft, using the UNIBEST model was
-15° (northwest to southeast) (Delft Hydraulics, 1990b).

The model developed for this present investigation has been used also to determine transport
rates in Herne Bay (Figure 6.2); these can be compared with the results of the Delft Hydraulics
study. '

The transport rate along Coopers Hill (xxiv) is predicted to be 4000 m® yr'!, from east to west.
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Along the central area frontage, the transport rate increases to 12000 m® yr'! (xxiii). West of
the pier, between Lane End and Spa Esplanade (xxii), the model predicts a transport rate of
4000 m*yr™ (again from east to west); farther west (xxi), this reduces to 2000 m*yr?, with an

eventual zero net annual transport at Hampton Pier itself.

The orientation of the beach at Hampton Pier is -6°, which corresponds to the equilibrium
coastline predicted by the coastal model used in this study. Given that the beach at Hampton
Pier is stable and is not accumulating (see Section 6.3.2), it is suggested that an equilibrium
angle of -6° is more likely than the -15° (Delft Hydraulics, 1990), predicted by the UNIBEST

model.

The section of coastline between Herne Bay Pier and Hampton Pier has been subjected to a

budgetary analysis as part of the present study. The results are presented in Section 6.3.2.
6.2.6. Unit 5: East CIiff.

The East Cliff coastal section runs from around the Kings Hall Pumping Station (xxv), to the
eastern end of the eroding cliffs near Reculver (xxix). At the western end of the section, a
seawall protects slopes of graded London Clay. At the eastern end there is no seawall and the
coastal cliffs are allowed to erode freely. These cliffs are composed of Tertiary sandstones
overlain, by London Clay. Erosion of these cliffs releases approximately 4000 to 5000 m* of
sediment into the coastal system on an annual basis. The bulk of this material is fine sand and
silt. The pebble and cobble content is estimated to be less than 0.5% (Canterbury City Council,
1993a). On an annual basis, this equates to less than 25 m®, which is not significant in the

annual budget calculations.

The longshore transport model for East CIiff predicts an equilibrium coastline of 0°. The
change to an east - west orientation over this section, compared with equilibrium coastlines
in the sections to the west, is brought about by the increase in wave energy from the
northwest; this, in turn, is due to the increase in fetch lengths and water depths available for
the generation of waves. Additional energy losses of waves from the northeast as they pass
over the Margate Sands (Figure 2.5), would also contribute to the change in the equilibrium

o

orientation.
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At the western end of East Cliff, between Kings Hall and the Hundred Steps (xxv), the
potential net annual longshore transport rate has been calculated at 4000 m® yr*!, from east to

west. Farther to the east, at Bishopstone Glen (xxvi), this rate increases to 5000 m®yr.

Beyond Bishopstone Glen, a dramatic change in the foreshore levels occurs from
approximately -1.0 m AOD, to the west of Bishopstone Glen (xxvii), to a level of +1.7 m AOD
adjacent to the Coastguard Lookout Post (xxviii). This rise in the foreshore levels is caused
by the gentle east to west dip of the Tertiary sandstones. Within the Tertiary sandstones, there
are bands of stiff silty clay which are more resistant to erosion than the sandstones. At the
Coastguard Lookout, these more resistant layers form the foreshore; because they are more

resistant than the overlying sandstones, they cause a local rise in the foreshore levels.

These changes in the foreshore levels affect the height and angle of waves which approach the
shoreline. The net effect is to reduce longshore transport into the Bishopstone Glen (xvii) area;

this results in a net loss of beach material at this latter location.
6.2.7. Unit 6(A to C): Reculver, Northern Sea Wall and Minnis Bay.

The coastline between Reculver and Minnis Bay (Figure 6.2) is a relatively recent feature
(McFarland and Edwards, 1998). During Roman times this particular location was the site of
the northern entrance to the Wantsum Channel; this linked the Outer Thames Estuary to the
southern North Sea, via the east coast of Kent. Closure of the channel did not occur until the
late 18th Century, when the original ‘Northern Sea Wall’ was completed. Reculver itself is
the site of a Roman Fort (xxxi) of great archaeological importance; it is protected by a large
stone apron, dating from late-Victorian times. The apron forms a prominent headland, which

acts as a significant barrier to longshore transport.

To the west of Reculver Towers (xxx) the coastal model predicts a potential net annual
longshore transport rate of 6000 m* yr'! along the seawall, in an east to west direction. This
rate of transport combined with the effectiveness of the stone apron as a barrier to transport
from the east, is consistent with the observation that there is no beach present on this section
of the foreshore. Immediately to the east of Reculver (xxxii), the model predicts a longshore

transport rate of 1500 m*>yr, also in a westerly direction.
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Between 1km and 2km (xxxiii) to the east of Reculver, the coastal model predicts a reversal
in the direction of shingle transport. Farther east (xxxiv) the net volume of transport is
relatively low at -800 m® yr! (ie west to east). The beach along this length of the seawall is
fairly stable as is shown by the large ungroyned shingle barrier at Cold Harbour Sluice (xxxv).

However, some beach recycling is undertaken to maintain the shingle barrier.

At the eastern end of the Northern Sea Wall, at Plumpudding Island (xxxviii), a net annual
longshore drift of 5000 m® yr™ is predicted by the model. Farther to the east of Plumpudding
Island, the shingle beach ends abruptly at Minnis Bay (xxxix) and sand beaches dominant.
There have been problems of shingle "contaminating” the sand beaches here, which has led to
the belief that the net shingle movement is from west to east. The shingle "contamination” is
most likely a response to the action of northwesterly storms, which transport shingle east into
Minnis Bay; this then becomes "trapped' on the sand beaches and is unable to move back
towards the west during the dominant northeasterlies. Beach material from Plumpudding
Island is lost, therefore, both to the west and, to a lesser extent, to the east. The result of this
pattern of movement is an acute erosion on the beaches at Plumpudding Island; this has been
confirmed by observations, and by the Environment Agency who are responsible for

maintaining the beach.

Transport patterns of shingle are somewhat complicated along the Northern Sea Wall, as a
result of the presence of the offshore banks (Figure 2.5). The large shingle beach at St
Augustine’s Bank (xxxvii) would appear to be an important sink for shingle, which is
transported into the area from Plumpudding Island (and, probably, also from the beaches

located to the east of Reculver).

Despite the uncertainties in the modelling of this particular length of the coastline, the patterns
of shingle movement which are predicted are consistent with the observations in the field. For
example, the model predicts strong beach erosion at two locations; at Plumpudding Island and
a second approximately 1 km to the east of Reculver. Indeed the Environment Agency (Alder,
pers comm) confirm that beach replenishment is undertaken at both of these sites, at regular
intervals. The modelling undertaken predicts also an accumulation of shingle at St Augustine’s
Bank (xxxvii), which is supported by the presence of a large ungroyned beach.

9
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6.3. Sediment Budget Analysis for Specific Coastal Sections
6.3.1. Whitstable, Central
Description of the Site

Whitstable Central (Figure 6.4) represents a section of coastline which relies entirely on the
presence of a large groyne field to stabilise the shingle beach. Historically, Whitstable has
suffered from serious flooding on a number of occasions (most recently, 1949 and 1953), as
a result of beach levels being too low to accommodate extreme still water levels and wave
conditions. As discussed previously (Section 6.2.2), the model predictions demonstrate that

there is large potential net longshore transport of shingle towards the southwest.

The construction of the existing defences was completed in 1989, when 115,000 m* of
replenishment material was placed in a new enlarged groyne field. The budgetary analysis for
Whitstable covers the period 1989 to 1994 and, therefore, describes the behaviour of the beach

replenishment following completion of the scheme.

The Whitstable Central Area is 1095 m in length. Based upon the orientation of the beach and
the spacing of groynes, 4 beach management units (BMU) have been defined; these are shown

in Figure 6.4.
Beach Monitoring Stations

Data from 8 BMS are available over the period of the investigation, with each station having
been monitored 4 times a year. The location of the BMS are shown in Figure 6.4. A regression
analysis has been carried out for the change in cross-sectional area of the beach profile, at each
of the monitoring stations, over a 5 year period, to determine the average annual rate of
change in cross-sectional area. The changes in cross-sectional area with time (trends) are
presented in Table 6.1. Table 6.1 also shows the standard error in the trend, and the cross-
sectional area immediately following the beach recharge (1989). Plots of the change in cross-

sectional area, with time, are reproduced in Figure 6.5 (a-h).

b
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Sediment Budget

Depending upon their location, each of the BMS has been allocated to one or more of the
BMU. Each profile cross-sectional area is then multiplied by the length of coastline, of which
it is representative. The process is repeated for other monitoring stations in the same
management unit and the resulting volumes are summed, to provide the total volume of
material present at any particular recording occasion. A regression analysis has then been
undertaken for each of the BMU, to determine their erosional / depositional trends. The results

of these calculations are presented in Table 6.2.

In Table 6.2., BMU are defined as ‘stable’ if the trend (having éllowed for the standard error)
is neither one of accretion or erosion. If there is a definite negative trend (trend + standard
error is negative), then the beach management unit is defined as ‘eroding’. A definite positive
trend indicates a beach which is ‘accreting’. On this basis the two central beach management

units (B and C) are eroding whilst those at either end (A and D) are considered to be stable.

Combining the quantities of beach material in each of the management units provides an
estimate of the total volume of beach material within Whitstable Central (Table 6.2).
Regression analysis was applied to the variation of this total quantity, with time, to provide an

overall trend. The results of this analysis are presented in Table 6.2.

Based upon the five years data used in the analysis, the overall volumetric change in Whitstable
Central represents a loss of beach material at a rate of between 300 m® yr and 900 m® yr™.
This figure represents a loss of total beach volume of approximately 0.5 m* m™ yr!. It is likely
that losses of this quantity can be attributed to the winnowing of fines from the replenishment
material (CUR, 1987). The minimum recorded volume of beach material in Whitstable Central
occurred during the latter part of 1990 (Figure 6.6). During the same period, there were a
series of modest storms experienced on the North Kent coast (see Table 4.13). Most of these
storms resulted from strong westerly winds; wave action during these events was typically of
a high frequency (0.3 to 0.25Hz), with significant wave heights of around 1.0 m (Canterbury
City Council, 1993b), ie steep waves. Vincent (1979) has described how steep waves result
in the movement offshore of sand-sized sediment, at sites in East Anglia. It is possible that the

reduction in beach volume during the latter part of 1990 was linked to a loss of fine-grained
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material during these storm events, which were dominated by steep waves.

Examination of the beaches at Whitstable Central confirms that, due to the large size of the
groynes, no shingle can be exchanged between the individual groyne bays. Likewise, no shingle
can be transferred to the adjacent beach management units down-drift, ie towards the
southwest. Therefore, the groynes have effectively halted all of the longshore transport
(potentially, around 6000 m® yr*) (net) predicted by the model. Only transport of finer-beach
material in an onshore / offshore direction is possible. The quantity of material lost from the

beach equates to around 0.5 m* m™ yr.

6.3.2. Herne Bay, West

Description of the site

Herne Bay West extends from Hampton Pier to Neptune Jetty, (Figure 6.7). Within this area,
there is known to be a net transport of coarse-grained sediment from east to west. This pattern
is shown by the build-up of sediment on the eastern sides of Hampton Pier and Neptune Jetty.
For this study, five beach management units (BMU’s) have been defined, as shown in Figure
6.7.

In 1991-1992, a rock breakwater was constructed across (BMU E) to prevent flooding in the
town of Herne Bay, during storms. The breakwater is attached to the shoreline at Neptune
Jetty and forms an ‘arm-like’ structure, running across the central area; this approximately
follows the orientation of the coastline, immediately to the east and west. The construction of
the breakwater has affected the coarse sediment transport within the region, in various ways

(as outlined below).

® A complete cessation of shingle-feeding into Herne Bay Central (BMU E) from the east. The
quantity of shingle which would have passed Neptune Jetty prior, to construction of the
breakwater, can be estimated by calculating the build-up of beach which is presently found on
the seaward side of the breakwater. Based upon surveys undertaken following construction
of the breakwater in 1991, approximately 150 m® of shingle by-passes the jetty on an annual

basis. K

239



® The protection provided to the new beach, by with the breakwater, is very effective; it has
reduced significantly the mobility of the shingle beach which it protects. Prior to the
construction of the breakwater, beach replenishment material supplied to this area was rapidly
transported the west, feeding the beaches at Lane End and beyond. Such indirect replenishment
of the beaches, between Lane End and Hampton Pier, was halted as a result of the breakwater
construction. Details of beach replenishments carried out in Herne Bay West, since 1974, are
shown in Table 6.3.

Coastal Model Results

The existence of a net easterly to westerly drift is supported by the findings of the coastal
model (Section 6.2). At Herne Bay Central, the orientation of the coastline is such that, in the
absence of control structures, 12000 m® of beach material would be lost from the area every

year (less the small quantity of material which may be transported in from the east).

Towards Hampton Pier, there is a reductibn in the lor{gshore transport rates, as far as
Hampton Pier itself (Figure 6.2.5). The coastal model predicts that the beach immediately to
the east of Hampton is stable, ie the coastal orientation is equal to the equilibrium coastline.
The consequences of a reduction in transport rate along the coast would be seen as erosion in
BMUEE, and a gradual accretion of beach in the each of the four other BMUs. Actual rates of
beach volume changes would be lower than predicted in the coastal model due to the presence

of groynes, along most of the frontage.
Beach Profile Changes

There are 5 beach monitoring stations (BMS) located within the Herne Bay West system
(Figure 6.7), at which beach profiles have been levelled since 1975. A study of the changes in
the beach profiles, at each of the locations, can provide valuable information; this includes

whether the beach is stable, eroding or accreting.

The variation in cross-sectional areas for these stations are shown in Figures 6.8 (a-e). A
regression analysis was carried out for each station for: (a) pre-breakwater construction (1975

- 1992); and (b) post-breakwater construction (1992 - 1995). The results of the regression
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analysis are reproduced in Table 6.4. A description of the changes in cross-sectional area, with

time for each of the beach monitoring stations is presented below.

BMS 33 (Figure 6.8(a)): the cross-sectional area varies between 154 m? and 192 m?, over the
19 years when nionitoring has been undertaken. Based upon the regression analysis, the beach
is accreting at this point at the rate of approximately 0.5 m*yr”. However, this pattern masks
a more complex profile development, in which the beach displays a strong accretionary
tendency (between 1975 and 1980); this is followed by a sharp reduction in levels over a one
year period. Further erosion of the profile occurs, albeit at a reduced rate, until 1985. Over the

next decade, a very similar pattern emerges, with accretion followed by a period of erosion.

BMS 34 (Figure 6.8(b)): this shows a steady increase in the profile cross-sectional area (0.8

m’ yr), over the 20 year period. There is no indication in the data of the more irregular trend
exhibited by BMS 33.

BMS 35 (Figure 6.8(c)): the beach profile at particular location shows an erosional tendency
(up to 1985), although there is considerable variation from the general trend. Between 1985
and 1986, a large increase in the cross sectional area occurred, with these levels being
maintained generally until 1995, The regression analysis suggests accretion at the rate of
around 0.5 m® yr, over the 20 year period; however, as was the case for BMS 33, this masks

a more complex history of profile change.

BMS 36 (Figure 6.8(d)): following a severe storm in 1978, beach recharge was carried out at
a number of locations along the North Kent coastline. The beach in the vicinity of the
monitoring station received approximately 1600 m® of material; this recharge shows up (Figure
6.8(d)) as a sudden increase in the profile cross-sectional area, from 48 m* to 59 m?. Between
1978 and 1992, the profile changes are erratic but remain mostly within the range of 45 m* to
60 m”. The regression analysis shows that there was no overall change in beach levels, between
1978 and 1992.

Since 1992, the beach levels at BMS 36 display a strong erosional tendency. A regression
analysis carried out on the data obtained between 1992 and 1994 shows an approximate rate
of loss of 6 m* yr (Table 6.4).
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Station 37 (Figure 6.8(e)): profile cross-sectional areas are highly erratic at this location. There
have been four beach recharges here (excluding the major recharge carried out following
construction of the breakwater), over the 16 year period between 1975 and 1991, (Table 6.3).
The largest of the replenishments was carried out in June 1978, following the January 1978
storm. For approximately one year following this recharge, beach profile cross-sectional areas
were maintained at around 35 m?, after a further year, the cross-sectional area was halved to

18 m?, by erosion.
Sediment Budget Analysis

Using the data derived from the beach profiles, the changes in the volume of beach within each
BMU, over time, was determined. The results are shown in Table 6.5. It should be noted that

no estimates were made for BMU E, for the reasons outlined below.

(a) The bulk of the beach material introduction at the monitoring station has been as the result
of replenishment. Whilst the replenishments were successful in increasing the beach levels in
the short-term, there has been no net gain in beach volume in the longer-term. It has been
assumed, therefore, that material added to BMU E, eventually ends up along the coast,

between BMU D and BMU A, due to longshore transport.

(b) Since the construction of the breakwater, BMU E can be considered as a separate sediment

cell, which has no significant interchange of shingle with the adjacent units.

The average annual increase in beach volume in BMU A to D is calculated at 810 (+130) cubic
metres per year, over the 18 year period. It is possible to balance this accumulation with beach
replenishments carried out over the same period, the natural feed of material in or out of the

area and offshore losses.

Hampton Pier forms an effective barrier to the westerly transport of shingle. Offshore losses
of shingle are also considered to be negligible, as there is no evidence of offshore transport
pathways during inspections of the site at low tide. With respect to the sand-sized fraction of

the beach, onshore-offshore transport may occur; however, this is difficult to quantify.

5
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A balanced sediment budget for Herne Bay West, prior to the breakwater construction is
presented in Table 6.6(a). The budget compilation was constructed, on the basis of progressing
easterly from Hampton Pier, by calculating the quantity of material required to be feed
alongshore into each BMU to balance: (a) the feed of material out of the BMU; (b) volumetric
changes in the BMU itself;, and (c) onshore - offshore transport.

The onshore - offshore transport rates were determined retrospectively, by assuming that any
net losses or gains to the area as a whole were the result of onshore - offshore transport. The
budget shows net losses of 1091 m’ offshore; this is equivalent to around 0.5 m* m™ yr!, which

is the same rate of loss as at Whitstable Central (Section 6.3.1).

The sediment budget can be used also to determine ‘actual’ longshore transport rates.
Transport rates out of BMU E, are of the order of 1500 m® yr, compared with the model
predictions of 4000 to 12000 m3 yr”'. Towards Hampton Pier, longshore transport rates based
upon the budgetary analysis, decrease from 1300 to 100 m® yr'; these compared with 4000
m’yr’ to zero, predicted by the model. The differences can be attributed to the retarding

effects of the groynes.
Effects of Breakwater Construction

Since the construction of the breakwater, no natural feed now enters the area. Further, the
longshore feeding, from BMU E to the other units, has also been arrested. A second sediment
budget has been compiled, assuming that the longshore and onshore - offshore transport

patterns in the remaining four BMUs is unchanged (Table 6.6(b)).

This interpretation shows that to maintain existing patterns of transport and accumulation,
estimated losses of 1465 m® of beach material needs to be compensated for by recharging at
BMU D. Otherwise, erosion will occur at an average-annual rate equal to this particular

replenishment requirement.

Examination of the actual changes in beach volumes, post-breakwater construction (Table
6.5), confirm generally the predicted budget presented in Table 6.6(b). Although the data set

is somewhat limited with a high degree of uncertainty, there is a net loss of 700 m®yr from
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BMU A to D; of this approximately 1800 +300 m*yr™ occurs in BMU D. Therefore, it would
appear that the budgetary analysis undertaken for Herne Bay West, provides a useful tool for
predicting future coastal changes. This is discussed further in Chapter 7.

6.3.3. Tankerton
Description of the Site

Tankerton is the section of coastline between Whitstable Harbour and Long Rock (Figure 6.9).
Timber groynes of various lengths, heights and ages have been constructed along the entire
coastline, to reduce longshore shingle transport. Beach recharges have been carried out, on
a more or less annual basis, along the whole 3 km length of coastline. Details of the recharges

carried out between 1980 and 1994 are shown in Table 6.7.

In 1994, Tankerton was the subject of a study undertaken by Delft Hydraulics (1995), as part
of planned upgrading of the sea defences. A sediment budgetary analysis was carried out by
Delft Hydraulics, using the beach profile data supplied by the Coast Protection Authority; the
results are shown in Figure 6.10. The beach management units adopted by Delft Hydraulics

are shown in Figure 6.9.

Delft Hydraulics (op cit) conclude, from their budgetary analysis, that over the main part of
the Tankerton frontage, net longshore transport of the beach material is from west to east. A
drift divide is located towards the western end of the study area (BMU B), with east to west

transport occurring west of the divide.

A study undertaken at East Tankerton (Canterbury City Council, 1992), to assess the
performance of a small beach replenishment scheme, presented an hypothesis concerning the
location of a drift divide (towards the eastern end of Tankerton, in the vicinity of beach
monitoring BMS 24 to 25 (Figure 6.9). The coastline, at these two stations has been identified
as being the most erosive section of the Tankerton coastline over the period 1977 and 1992
(Canterbury City Council, 1992). A volumetric analysis of the East Tankerton area concluded
that there was a net “loss” of about 1000 m® yr” of beach material, between BMS 23 and 27.
It was proposed that this‘material was lost to both the east (onto Long Rock) and to the west.
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It has been concluded previously (Canterbury City Council, 1992), that the reason for the drift
divide was the sheltering from northeasterly waves, provided to the shoreline to the east of
BMS 24, by the Long Rock headland. This explanation was supported by the observation that
in the three months following the replenishment, aluminium pebbles placed at BMS 24 were
found in groyne bays to the west only; in contrast, those pebbles placed at BMS 25 were found

to have moved only towards the east.

Beach Profiles

For the budgetary analysis undertaken for Tankerton, data from 17 BMS were available
between 1980 and 1995. The locations of these stations is shown in Figure 6.9. The results of
the regression analysis for the change in beach cross-sectional area is reproduced in Table 6.8.
On the basis of the data presented, it can be seen that most of the monitoring stations display

erosive trends, since 1980.

Budgetary Analysis

The budgetary analysis for Tankerton (see above) has been re-examined in an attempt to
determine whether a drift divide exists; if so, whether it is located to the east or west of
Tankerton Bay. The data set used in this study is the same as that provided (by the author) to
Delft Hydraulics, for their own budgetary analysis; however, there are some differences in the

assumptions made (as outlined below).

Loss of fines from the replenishment material.

Delft Hydraulics (1995) carried out their budgetary calculations assuming that either: (i) there
was a 15% loss of fine materials from the beach replenishment, “very soon” after the
replenishment was undertaken; or (ii) that there was no loss of fines from the replenishment

material. The results derived on the basis of both these assumptions are presented in Figure
6.10.

Beach replenishments carried out at Tankerton Bay, between 1980 and 1992, were subject to

a grain-size specification distribution curve which did not allow for the grading of the
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replenishment material from being finer than that of the natural beach. For this reason, it is
assumed in the present study that there is no loss of fine material from any of the replenishment
added to the beach. It should be noted that, in the case of the replenishment material added in
1992, a survey undertaken of the beach three months after replenishment showed that there
was an actual increase in the beach volume. This increase was in spite of evidence (aluminium
pebble displacement) to suggest that the only material transferred between the various groyne
bays, by.longshore transport, was a small quantity out of the area. The increase in volume was
attributed to sorting of the upper layer of the beach, which led to a decrease in the placed
density of the replenishment material area (Canterbury City Council, 1992).

(b) Definition of Beach Management Units.

The BMUs defined by Delft Hydraulics (1995) are considered adequate here, except that
Delft’s Unit D has been sub-divided into two separate BMUs, (D and E), for this study (Figure
6.9). There are two reasons for this division: firstly, the groynes in BMU E are much smaller
than those in BMU D (Plate 6.1); and, secondly the shoreline in BMU E is sheltered from

waves generated by northeasterly winds.
(c). Offshore Losses.

The budgetary analysis for both Whitstable and Herne Bay have demonstrated that a balanced
budget required a net loss of material offshore. In both cases, this loss was estimated at 0.5 m®
m™ yr’. Because the Tankerton budget cannot be closed at each end, (see section (d) below),
it is not possible to estimate these offshore losses. Delft Hydraulics (1995) made no allowance
for such offshore losses in their analysis. The sediment budget analysis carried out in relation
to the present study, presented in Table 6.9(a), assumes that offshore losses of the quantities
estimated for Herne Bay and Whitstable will occur. Table 6.9(b) shows the effects of assuming

that there will be no offshore losses, from the sedimentary budget system.

(d) Budget Closure

In the previous examples of sediment budgets carried out at Herne Bay and at Whitstable,

longshore transport closure of the area under investigation was possible for both ends of the
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system. Closure of the Tankerton study area cannot be undertaken so readily.

At the eastern end, Long Rock (Figure 6.9), consists of a stable accumulation of shingle; this
is considered to receive a shingle feed from both Tankerton and Studd Hill (Section 6.2). No
monitoring has been undertaken at Long Rock; it is therefore not possible to assess the
volumetric changes at the site, with time. Further, as a result of the stream which exits from
the bank, shingle-sized material is thought to be transported offshore during periods of high
stream flows. This material forms a series of shingle banks located to the north of Long Rock;

the shingle can also be seen to spread over the foreshore, beyond the toe of Long Rock itself,

(Plate 2.1(c)).

Whilst complete closure of the Tankerton budget is not possible at the western end, it is known
that 250 m® of shingle by-passes the harbour quay, on average, every year. Therefore, it is
possible to utilise the harbour quay as a starting point for the budget compilation, on the basis
of a knowledge of the quantity of material which is lost to the west.

Approximately 700m to the east of the Harbour, however, lies the “Street” (Figure 6.9). This
is a narrow, approximately shore-normal sediment bank which extends for over 3km to
seaward. The bank consists of a mixture of sand, shells and shingle, of up to 10mm (D) in
diameter, (see Section 2.4; Canterbury City Council, 1993a). The Street is joined to the shingle
beach at its toe. No studies have been undertaken to assess whether or not material is
transferred from the shingle beach to the Street, or vice-versa. The likelihood of beach material
being transported onshore - offshore means that the sediment budget cannot be effectively

closed.

The budget analysis has been repeated, assuming that offshore losses increase to: (a) 1 m*> m™
yr''; and (b) 2 m®* m? yr! in BMU B, due to the presence of the Street. The results are
presented in Table 6.9 (c) and 6.9 (d). The main impact upon the sediment budget of these
additional offshore losses is to “shift” the position of the drift divide in an easterly direction.
For example, if there are no additional losses to the offshore as a result of the Street, the drift
divide is located in BMU B. The position of the drift divide shifts to BMU C (for losses of 1
m® m* yr! in BMU B), and to BMU D (for losses of 2 m* m™ yr! in BMU B) as the assumed

offshore losses to the Street increase. A second effect of the increased offshore losses at the

247



Street is to reduce the quantity of material fed to Long Rock, from Tankerton.

The sediment budget, based upon an assumed loss of 2 m* m* yr? in BMU B, is consistent
with the findings of the studies at East Tankerton (Canterbury City Council, 1992). However,
as the volume of beach lost to, or gained from, the Street and the Long Rock area cannot be
quantified, it is not possible to balance the budget with any confidence. Further studies on
sediment transport and additional monitoring at these two areas will be required, if the

budgetary approach is to succeed at Tankerton.
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BMS® 9.2 9.5 9.9 10.5 11.5 12.1 12.2 12.3

Distance to Harbour 1080 940 800 630 385 195 165 135

(m)
BMU® D D D C B AB A A
XSA® Recharge (m?) 58 118 75 200 87 77. 113 88
Trend (m* yr') 0.44 1.37 -0.22 -1.85 -1.62 -0.42 -0.42 0.58

Std Error in Trend 0.15 038 0.29 0.57 0.48 0.29 0.21 0.18

Beach Stability A® A S@ E® E E E A
where: (a) Beach Monitoring Station; (b) Beach Management Unit; (¢) cross-sectional area; (d) accreting; () stable;
(D); eroding; see Figure 6.3 for locations.

Table 6.1 Details of Beach Monitoring Stations at Whitstable Central and results of regression
analysis.

BMU D C B A Total AtoD
Length (m) 465 185 250 195 1095
Volume Recharge (m?) 18070 20500 26548 52429 117547

Trend (m® yr') 4 242 316 -36 -591

Std Error in Trend 31 85 77 114 267

% Change in Volume 0.0 -1.2 -1.2 -0.1 -0.5

per Annum +0.2 +0.4 £0.3 +0.2 +0.2
Beach Stability s® E® E N E

where: (a) Beach Management Unit; (b) stable; (¢); eroding; see Figure 6.3 for locations.

Table 6.2 Details of Beach Management Units at Whitstable Central and results of regression
analysis. >

249



Date BMU® Volume Added (m®)
May 1978 E 7804
Jun 1978 D 1624
Jun 1978 E 11205
Jan 1985 E 2835
Jan 1986 E 3550
Feb 1987 E 1944

where: (a) Beach Management Unit; see Figure 6.7 for locations

Table 6.3 (a) Details of beach replenishments carried out at Herne Bay West: 1975 - 1994

BMU® Volume Added Net Added Annually
A 0 0
B 0 0
C 0 0
D 1624 98
E 27338 1657
Total 28962 1755

where: (a) Beach Management Unit; see Figure 6.7 for locations

Table 6.3 (b) Annually-averaged replenishment, added to each Beach Management Unit at
Herne Bay West: 1975 - 1994
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BLS® 33 34 35 36 37
Distance to Hampton Pier 130 300 735 1310 1705
BMU® AB B B,C D E
Pre-breakwater construction
XSA® 1975 (m?) 158 132 116 51 17
Trend (m? yr) 0.5 0.8 0.5 -0.1 0.2
Std Error in Trend 0 0 0 0 0
Beach Stability - A@ A A s@ - S
Post-breakwater construction
XSA 1992 (m?) 158 145 129 52 na
Trend (m? yr) 0.7 2.2 25 -5.9 na
Std Error in Trend 15 | 20 2.4 1.0 na

where: (a) Beach Monitoring Station; (b) Beach Management Unit; (c) cross-sectional area; (d) accreting; (e) stable;
see Figure 6.7 for locations.

Table 6.4 Details of Beach Monitoring Stations at Herne Bay West and results of regression
analysis for data collected between 1975 and 1994

BMU® A B C D E AtE
Length 125 455 580 300 605 2065
Pre-breakwater construction
Volume 1975 (m®) 19800 61300 67300 15300 10380 174080
Trend (m® yr') 62 326 310 108 na 813
Std Error in Trend 25 39 96 42 na 132
% Change in Volume 0.3 0.5 0.5 0.7 na 0.5
per Annum +0.2 +0.1 +0.3 +0.4 +0.1
Beach Stability A® A A A na A
Post-breakwater construction
Volume 1992 (m?) 19750 66120 74820 15600 72000 248290
Trend (m? yr'") 91 -471 1462 -1780 na na
Std Error in Trend 191 675 1401 296 na na

where: (a) Beach Management Unit; (b) accreting; see Figure 6.7 for locations.

Table 6.5 Details of Beach Management Units at Herne Bay West and results of regression
analysis for data collected between 1975 and 1994
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Table 6.6 Annual-averaged sediment budget for Herne Bay Central showing situation: (a) pre-

breakwater construction (1975 - 1991); and (b) post-breakwater construction (predicted)
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Year BMU® Quantity (m*)
1981 B 26
1981 C 1585
1981 D 13585
1982 E 1337
1984 D 3215
1985 B 2444
1985 C 4388
1985 D 360
1988 D 2347
1988 E 2347
1990 D 1697
1990 E 1448
1991 D 4444
Total All BMU 39223

where: (a) Beach Management Unit; see Figure 6.9 for locations

Table 6.7 Beach Replenishments carried out at Tankerton: 1980 - 1994
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Table 6.9 Sediment budget for Tankerton based upon beach profile data collected between

1980 and 1994

(a) offshore losses of 0.5 m® m™ yr’; (b) no net offshore losses

o
, assuming:
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Table 6.9 (cont) Sediment budget for Tankerton based upon beach profile data collected

between 1980 and 1994, assuming: (c) offshore losses of 0.5 m* m™ yrl, and additional losses

of 0.5 m* m™yr "to the Street from. BMU B; (d) offshore losses of 0.5 m ’m yr 7 and

additional losses of 1:5 m* m? yr to the Street from BMU B
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Figure 6.1. Location of sites where the sediment budget has been assessed
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Figure 6.2. Net annual potential longshore transport rates for the study area




& L) &
B e o0
R SAAAxL,
£ >

000t

‘apedte U § 2ERY o

Japew aq Aew sadiod JAIn) 0U Awo Sasadnd aXRBRJ J0J
“66ELLOY O 3R] PUN0) Al AngBiue)

'sHUpea0Jd 1D J0 URIrDeso.d

0] pes) hew pue wukdoy sabuUI UD|NpoUda) PasLDURELT
‘Wbuddas wosy @ ax rels s,Aisaley| J9H 0 RI0JI0)
aul o vosswsd 2l U Dux Aeas aaueupy) 2Ul uodn pIseq

ou

A\

I

X

0

u

ITIX
-¢
000L

|.W
0009

—

v

0

0008

X

I

I|W
0002

(W) m_oum
00S

0086

W

Figure 6.2 (cont) Net annual potential longshore transport rates for the study area
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Figure 6.2 (cont) Net annual potential longshore transport rates for the study area
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Figure 6.2 (cont) Net annual potential longshore transport rates for the study area
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Figure 6.3. Variation in net annual potential longshore transport rates for beaches in Whitstable
Central (based upon coastal model, see section 6.2.2).

263



0 500

[ N

m Scale (m s
~J

Figure 6.4 Extent of sediment budget study at Whitstable Central, showing location of Beach
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Figure 6.5(a) Variation in cross-sectional area of beach, BMS 9.2 (Whitstable): 1989 - 1994
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Figure 6.5(b) Variation in cross-sectional area of beach, BMS 9.5 (Whitstable): 1989 - 1994

265



~3
N

e

_272 \

;gss \ 7Z

O \ /
66 \/

1989 1990 1991 1992 1993 1994 1995
Year

Figure 6.5(c) Variation in cross-sectional area of beach, BMS 9.9 (Whitstable): 1989 - 1994

116 7:

ot

—

w
el
/

1
17
Pammiw

/I/

[
e
38

I

Cross Sectional Area, (m2)
/—l/

[

e

[y
{1
.

110 y

1989 1990 1991 1992 1993 1994 1995
Year

Figure 6.5(d) Variation in cross-sectional area of beach, BMS 10.5 (Whitstable): 1989 - 1994
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Figure 6.5(¢) Variation in cross-sectional area of beach, BMS 11.5 (Whitstable): 1989 - 1994
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Figure 6.5(f) Variation in cross-sectional area of beach, BMS 12.1 (Whitstable): 1989 - 1994
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Figure 6.5(g) Variation in cross-sectional area of beach, BMS 12.2 (Whitstable): 1989 - 1994
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Figure 6.5(h) Variation in cross-sectional area of beach, BMS 12.3 (Whitstable): 1989 - 1994

268



120
g
T 1151
g
§ 3
BE
kS
§ 110 A
S

105 T T T T T T T T T T T T T T T T T T T T

1989 1990 1991 1992 1993
Year
—m— beach volume ——— 'best fit' trend line

Figure 6.6 Variation in the total volume of beach material at Whitstable Central: 1989 - 1994

]

269



}/xpuamﬂ. mcswqmz
\\\\\N\\.

A

oy mne

GE

=Ny 3 U0Y]

Ay o

1

Aoy owsmr-

123

gendde o £ AP0 .
«pew 20 Aew SadD) JSulNy DU Awo ses0dund SRRRI 104
BEELLOV) DN aaX) 1wn) A Angsaiue)
- ,Egsﬁsu“ﬂ

o) pea) Aew pue ubuAdm seuup UDHonpoda. SOy
Wikt mas) ﬂi_.m-h_u_m s Aissey Y 0 JIIU0Y
!ug!!.ciﬁﬁlggga_g

dog s

(W) 81038 g

00S

lo_<

Figure 6.7 Extent of sediment budget study at Herne Bay West, showing location of Beach

Monitoring Stations and Beach Management Units

270



200

. A s
Fol ) A, \ -
vnl\l N M

1975 1980 1985 1990 1995
Year - | o

Figure 6.8(a) Variation in cross-sectional area of beach, BMS 33 (Heme Bay; 1975 - 1994)

160

[y
(¥
W
—

[

W

(=]
B
[SE———

[oy
P-3
(V]

T/ VY MY
T

[
[
w

il
I

—
w
<o

CrossSectional Area (sq.m).
=
o

e

[

W
/

120

1975 1980 1985 1990 1995
: Year

Figure 6.8(b) Variation in cross-sectional area of beach, BMS 34 (Herne Bay; 1975 - 1994)

271



130

|
i AT
2 115 J\ 1
e
AR WL

95 | \N//

Figure 6.8(c) Variation in cross-sectional area of beach, BMS 35 (Herne Bay; 1975 - 1994)

[=a)
w

2624

-
S
e

NI
il A,
Vit

R

L

Lh
w

W
[~

P
(¥

Cross Sectional Area (m2)

p-3
(=]

(%3]
wv

1975 1980 1985 1990 1995
Year

Figure 6.8(d) Variation in cross-sectional area of beach; BMS 36 (Herne Bay; 1975 - 1994)

272



1900

45 18000 3‘600
%: \/\\ 2800 ix
2., \ \ I VI*I
1. UL,
%m - \\Av/\ v | \ | Xv—\
Uls Jv\/\y

10

1974 1976 1978 1980 1982 1984 1986 1988 1990 1992
“Year

S

Figure 6.8(e) Variation in cross-sectional area of beach, BMS 37 (Herne Bay; 1975 - 1994) ’

273
Dy



wih the permission of e
© Crown capyright.

ce

copyright and may lead lo

e

Civi proceedings.

For reference purposes only no furlher copes may be made.*

Based upon the Ordhance Survey

Conlraller of Her Maesly's Stali

Cantertury City Council Licence No LAD77393.
* Detele i noi applicadle.

Unauthorised
prosecudion of

Long
Rock

E

o

i
Ji

ey

0'61
0'81

e

200

Terserton By

The street

LT

p—

0'91

0'ST

e

Scale (M)

8'21

Suterin By

Figure 6.9 Extent of sediment budget study at Tankerton,

Monitoring Stations and Beach Management Units

274

showing location of Beach




(souy jo ssoj ou) pueg pue I[Fumys

(sauy Jo $50[ %07~) AUO dISulS .w

7

(,.1K Ju ut SoWINjOA)

poppy Juswysiuajday w

(oovL) 6vLL (99¢) 8S+ (gGL) 16L (0) ¢
v v v ’
| z60l)osLl 9z _0%T
——> Aww@mk@mmmm,l@mm:@mtwilA Alw! clg— <—f— VLC —>

v_oonan a o) q v x

N\

yuQ) Juswaeuey yoeog
Lz 1z Ll §€l

AN

uonyels SuLioyuoy yoeeq

1994, after

Figure 6.10 Sediment Budget for Tankerton based on beach profile data, 1980

" Delft Hydraulics (1995)

275






Chapter 7: Discussion.
7.1. Introduction.

Within the UK, the emphasis on the management of the shoreline (for flood and coastal
protection purposes) has shifted from addressing particular erosion problems on individual
sites to a more strategic approach. This involves consideration of the whole coastal
environment over longer time scales (typically 50 years) and upon a regional basis (for
example, Shoreline Management Plans (MAFF, 1995) and Strategy Plans (MAFF, 1997).
Within the context of such a strategic approach the importance of natural coastal processes

cannot be overstated, (McFarland and Edwards 1998b).

The hydrodynamics of the shingle beaches along the North Kent coastline are not well
understood, having failed to attract the same level of scientific interest, as their coarse clastic
equivalents along the coastlines of Southern England, (Carr, 1983 ), Ireland (Carter and co-
workers) and New Zealand (Kirk and co workers). Further, processes active on the North
Kent beaches are likely to be distinct from those which are experienced at the locations noted
earlier. This is due to the mixed sedimentological nature of the beaches and the particular wave

climate which operate as a result of the presence of a wide and shallow nearshore region.
7.2. Hydrodynamics of the Study Area
7.2.1. General Points.

Wave conditions along the North Kent coast are characteristically low in amplitude. This is
illustrated in the scattergraph compilation of over seven years of recorded wave data at the
Whitstable Harbour site, (Figure 4.3(a)) and from the exceedence of recorded wave heights,
Figure 4.4(a,b). Only 0.1% of waves recorded at Whitstable Harbour exceed 1.0m (Hs); 2.4%
of the recorded waves exceed 0.5m (Hs). Interestingly, a significant wave height of 0.5m is
equivalent to the threshold of movement for shingle beaches under wave action (Brampton and
Motyka, 1987); this implies that beaches within the study area will be mobile for just over 2%

of the time.
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It was also noted from the wave records (Figure 4.3(a)), that for 56% of the time, significant
wave heights recorded at Whitstable Harbour were less than 0.05m. Whilst this is partly a
result of (tidal) water level variations (see section 7.2.2), it is also a reflection on the low wave

energy nature of the site.

As well as being of low amplitude, the waves tend also to have short periods, (Figure 4.3(a)).
For example, recorded waves with a significant wave height of greater than 0.15m are rarely
associated with periods (Tz) greater than 6.5s. The mean wave period from the wave records

is in the range 3.5 to 4.5 seconds; consequently, waves within the study area are steep.

The absence of a significant swell wave component (>0.15m) has already been noted. This is
due to the high level of energy dissipation which occurs over (i) the numerous sediment banks
located around the mouth of the Thames Estuary (Figure 2.5) combined with the wide area of

shallow water (the Kentish Flats) which comprises the nearshore region.

The tidal range at Whitstable is approximately 6m. Over the duration of a tidal cycle, wave
action takes various forms. Around low water, wave energy is expended in the shallow water
of the Thames Estuary and over the extensive intertidal areas. Around high water, less wave
energy is expended in the nearshore area and consequently is incident upon the beaches. A
dramatic change in slope from the lower foreshore (typically 1 in 1000) to the steep shingle
beaches (typically 1 in 8) results in plunging breakers. These waves expend high levels of wave

energy over the narrow breaker and swash zones (Carter, 1990).

7.2.2. Coastal Hydrodynamics Model

The hydrodynamics in the study area have been investigated using a coastal hydrodynamics
model (Chapter 4). The model comprises: (i) hindcasting of ‘offshore’ wave conditions from
local wind data; (i) transforming waves onto the beaches using a commercial wave
propagation package (ENDEC) and, (iii) derivation of nearshore wave climates based upon
the wave model results and the joint probability of occurrence of wind direction, wind speed

and water level.

The wave propagation model used is one dimensional; it calculates wave modifications along
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a pre-determined profile. The model was designed to operate in extensive areas of shallow
water where wave breaking and frictional losses tend to be more important than wave
refraction (Delft Hydraulics 1990b).

Whilst the model was found to perform well in general, there were difficulties associated with
its application to those sections of the coastline which deviated from the general, uniform, east
- west orientation. For example, at Long Rock (Plate 2.1(c)) refraction of waves is likely to
be important in determining the patterns of wave energy which is incident along the beach in

the local area.

The most sensitive parameters in the wave model were found to be the bottom friction factor
and the overall depth of water. The friction factor can be varied to provide a better correlation
with recorded data (Delft Hydraulics, 1990b) however, in the present investigation, it was not
found to be necessary to adjust this from the initial value of 0.01 (typical of a sandy bottom).

Due to the shallow nature of the nearshore region, relatively small variations in the water level
were found to have a major impact on the modelled waves, particularly under moderate to high
wave energy conditions. The most dramatic example of this is around the time of low water
when no wave action is able to reach the beaches. Because of the importance of water level
on wave generation and propagation, a wide range of water levels were included at the
offshore wave hindcasting stage. The water level was taken into account, at the wave
propagation stage, by the inclusion of the water level distribution in the joint probability

analysis to derive the nearshore wave climates.

Similar studies (Delft Hydraulics 1990a, 1995) have used just one or two water level scenarios
to model the wave conditions and, ultimately sediment transport patterns, within the study
area. Due to the sensitivity of the wave propagation to wave level, this approach would have

lead to an over-simplification of the sediment transport processes.

Neither the offshore wave conditions nor the tidal currents were found to have a major
influence on wave conditions ultimately experienced on the shoreline. Offshore waves tended
to be modified by shoaling and wave breaking in the shallow water areas such that the final

product of wave propagation was depth limited wave conditions. Tidal currents of greater than
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1 to 2 ms™ will have significant influence on wave heights and angles experienced at the
coastline (Al-Mansi, 1990). Generally, tidal currents in the study area are below 1ms™ in

velocity.

The performance of the wave model was compared to actual recorded waves at Whitstable
Harbour for a total of 840 “events”. Overall the model performed well. For example, the
percentage exceedence of significant wave heights of 1.0m (0.2%) and 0.5m (2.9%), derived
from the coastal model were similar to those recorded at Whitstable Harbour (0.1% and 2.4%
respectively).

A comparison between recorded and predicted wave conditions was also carried out for
individual events when the recorded Hs exceeded 0.5m. The available data were subdivided
into wind direction sub-sets and the relationship between recorded and predicted waves
derived (Table 4.4). This shows that there is a tendency to over-predict the significant wave
height of waves generated by winds from northerly and northeasterly directions, by about 15%.

For water levels below +1.0 m AOD, the comparison between predicted and recorded waves
was less encouraging; the results for Sector 1 being particularly poor (Table 4.4; Figure
4.5(a)). This however was attributed to the difficulties in collecting wave data in shallow water
when there was the likelihood of waves breaking over the recorder head. For water levels

greater than 1.0m AOD the model results were more consistent with the recordings.

Comparison of the coastal hydrodynamics model with recorded wave data at Whitstable
Harbour and at Long Beach, Whitstable was undertaken as a part of the field studies into
longshore transport processes described in Chapter S. Comparison of the coastal
hydrodynamics model with the wave conditions recorded over the three day duration of the

field trial demonstrated some variation between recorded and modelled wave conditions.

A reasonable correlation was obtained for the data sets collected during the day-time however,
for the two evening recording periods, the model significantly underestimated the recorded
wave conditions (by approximately 20 - 30%) in the evening. As these recordings were made
in the winter-time, it is suggested (section 5.3.6) that the discrepancies may be due to the

temperature effects on the relative viscosity between the surface of the sea and the air (Resio
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and Vincent, 1977).

It was also noted during the field study that the local generation of waves within the Swale
Estuary (Figure 2.5) may be important along the coastline to the west of Whitstable Harbour.
Wave conditions recorded at Whitstable Harbour, during a period of west-southwesterly
winds, were much larger (Hs = 1.0m) than predicted. By contrast, at Long Beach, which is
partly sheltered from the Swale Estuary by Whitstable Harbour, the predicted wave conditions
were more accurate. The greater wave heights recorded by the Whitstable Harbour recorder
are attributed to the local generation of waves within the Swale Estuary. The Harbour recorder
is ideally suited to record these waves as it faces directly into the channel of the Swale Estuary;

the impact of this wave action on the coastline is limited to area west of the Harbour.

Unfortunately, no instrumental recorded wave angle data is available for either the long term
data set at the Harbour nor from the Long Beach arrays. It is not possible therefore to assess

the performance of the wave model in this respect.

Typical uncertainties for recorded wave conditions are given by Soulsby (1997). For Hs and
Tp, Soulsby (op cit) considers that the errors are in the order of 10%. For wave angle, a 15%

error can be expected.

7.2.3. Hydrodynamic characteristics of the study area

A combination of extensive areas of shallow water over the whole of the nearshore region in
the study area, combined with the limited fetch lengths and depths, leads to a wave climate
within the study area which is characterised by relatively low significant wave heights and short
periods. The wave climate is dominated by steep waves which are locally generated. This is
in contrast to sites on the south coast of England, where ‘low energy’ swell waves have been

found to dominate the coastal processes regime (Whitcombe 1995, Powell 1996).

Onshore winds in the study area are dominated by those which blow from the west or
northwest however, due to the shorter fetches and shallower water to the northwest, waves

which are generated by, the less common, northeasterly and easterly winds tend to have larger
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wave heights and longer periods (Figure 4.8, Figure 4.9).

Wave heights and periods experienced on the beaches in the study area, generally, increase
from west to east, reflecting the more open marine conditions which persist in the eastern part
of the Thames Estuary. Whilst waves conditions generated by winds blowing from each of the
onshore directional sectors increase towards the east, there is an indication that this increase
in wave conditions is larger for westerly and northwesterly winds. This results in a reduction
of the directional inequality in wave energy towards the east (Section 4.5.4). This has

important consequences for the equilibrium angle of the coastline (Section 5.7).

Based upon 10 years of wind data at Manston Airport, there is evidence of a seasonal variation
in the wind climate. During the winter months, the dominant onshore winds are from the west
and north-west. By contrast in the summer months, winds from the north-east are more
common (Figure 4.7(b&c)). Again, this has important implications for the equilibrium angle
of the coastline (Section 5.8).

The winter months tend also to have more strong winds; this in turn leads to a increase in
recorded wave activity over the same period (Figure 4.3(b&c)). The increase in wave energy
experienced during the winter months may be enhanced by the (temperature-related) stability
effect described earlier (Resio and Vincent, 1977).

Despite the relatively moderate wave climate experienced in the study area, the low-lying
coastal regions have been subject to severe flooding in the past. The reason for the intensity
of these flooding events can be attributed to the elevation of still water levels as a result of

meteorological conditions - surges and seiches (section 4.6.2).

Examination of the these ‘storm’ events, demonstrates that the predicted (astronomical) high
water levels may be exceeded by a considerable amount. For example, during the storm which
occurred on 1st February 1953, still water levels were over 2m higher than expected, at the
time of high tide. Examination of Table 4.13, which gives details of the storm events recorded
at Whitstable between (1986 and 1993), shows that the Highest Astronomical Tide of +3.1m
AOD is exceeded on a regular basis. These large deviations from the predicted tidal levels are

a further consequence of the shallow water nature of the study area, as water level variations
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occurring in the southern North Sea are enhanced up the estuary, (Pugh, 1980).

A tendency for extreme water levels to coincide with strong, northwesterly winds was noted
by Ackers (1972), (Table 4.12(a,b)). Data recorded at Whitstable during storm events (Table
4.14) tends to confirm Ackers (op cit) findings. Based upon water level data obtained from
Sheerness, and wind data from Shoeburyness, Hydraulics Research (1981, 1985) described

also, the interdependency between water level and wind conditions which exist in the present

area of investigation.

Figure 4.13, which is based on the data collected by Hydraulics Research (op cit) demonstrates
clearly the dependency between the wind direction and the high water surge residual. For
example, a high water surge residual of +0.8m is three times more likely to occur in
conjunction with northwesterly winds than with any other wind direction. At lower levels of
probability, the effect is more pronounced; a high water surge residual of +1.4m at Whitstable
has a return period of 40 years, when in association with north-westerly winds, compared with

a return period of 600 years for any other wind direction.

The impact of the elevated water levels upon the beaches is three-fold: (i) the wave breaker
zone is pushed further inshore; (ii) due to the increased water depths, larger wave heights and
angles can be sustained up to the point of breaking; (iii) the beach tends to be exposed to wave
activity for a longer period of time. From a coastal processes point of view, the beach is
exposed to a higher level of wave energy for a longer period of time. This increases the
potential longshore transport rate and allows wave run-up to extend further up the beach; both

of these factors could lead to enhanced erosion and beach destabilisation.

Enhanced erosion may also occur as a result of ‘climatic anomalies’ in which weather
conditions deviate markedly from the ‘normal’ conditions. Comparison between the wind
speed and direction occurrences for the winter of 1995 / 1996 (October 1995 to March 1996)
and the average winter conditions for 1979 / 1989, is summarised in Figure 5.17. This
demonstrates that during the winter of 1995 to 1996, a reversal in the average winter wind
patterns occurred. Typically the winter period is dominated by westerly and northwesterly
winds (as described earlier) however, during the winter of 1995 - 1996, northeasterly and

easterly winds were dominant. The occurrence of deviations of this type and duration may
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have major impacts on coastal sediment processes as described later.
7.3. Sediment Dynamics of the Study Area.

7.3.1. General.

Beaches in the study area are characteristically ‘mixed’ in nature, comprising sand and shingle-
sized material in varying proportions; in this respect they are similar to the beaches described
by Mason et al (1997). Sediment type on the surface layers of the beach varies both temporally
and spatially. A typical variation in the distribution of sediments along a shore-normal profile
is shown in Figure 5.2. Although the sediment distribution will deviate from this particular
example, there is a distinct onshore - offshore zonation of the beach as follows: (i) coarse-
grained beach ridges around the high water mark; (ii) a sandy strip of variable width
immediately to seaward of the coarse-grained ridges; and (jii) a poorly-sorted mixture of sand

and shingle extending to the beach toe.

Within the study area, the transport of shingle is dominated by bed-load transport under
plunging waves. Due to the steepness of the beaches, wave energy is expended in a narrow
band encompassing the breaker and swash zones (Carter, 1989); hence this is where the bulk
of sediment transport tends to occur (Muir Wood, 1970). Intense bed-sheer stresses and
turbulence occur within this zone leading to grain-grain collisions and often ejection of

particles from the water (Carter and Orford, 1993).

Wave energy dissipation on shingle beaches occurs through wave breaking and frictional
losses, Powell (1988). In this respect the roughness of the surface of the beach is important.
Additional energy dissipation may occur within the body of the beach as a result of percolation.
This mechanism is important in the swash zone, where the wave run up is attenuated by the
percolation of water into the sediments, provided that the water table within the beach is not
high. |

The threshold of movement of coarse grained material was considered by Brampton and
Motyka (1987) to occur when the significant wave height exceeded 0.5m. Within the present
study, the movement of beach sediments has been noted under significantly lower wave heights
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(=0.2m) (see for example Plate 5.2).

Sediment transport on shingle beaches occurs in several modes depending upon factors such
as wave conditions and the sediment grading. For example, Carter and Orford (1993) describe
situations where shingle beaches develop transport resistant structures where groups of
similarly-sized pebbles aggregate; interaction between the pebbles produces an armouring

effect which resists movement.

In contrast, individual pebbles may be incompatible with the surrounding sediment and are left
exposed on the surface of the beach; this process of clast rejection has been described by Moss
(1963). Clasts which are rejected are subjected to current and wave action leading to
potentially high transport rates. Once mobile, the pebble will continue to move rapidly until
either it moves out of the area where it is subject to current and wave action, or until it reaches
an area of beach where the particles are of a similar size and shape. In the latter case the pebble
will be incorporated into the bed. Once rejected, larger clasts tend to be transported further
as they are less likely to become trapped within a bed of finer material (Muir Wood, 1970).

The size / shape sorting mechanisms described above are responsible for: (i) the organisation
of particles into alongshore facies assemblages; (Carter and Orford, 1993) and; overestimation
of longshore transport rates derived from tracer pebbles, particularly if recovery depends upon
visual recognition (Whitcombe, 1995). The transport of painted tracers across the sand run at
Long Beach, Whitstable under low energy wave condition (Plate 5.2) is an example of particle

rejection.

7.3.2. Longshore Transport Model.

The longshore transport model is based upon the modelled wave climate and the “Delft”
longshore transport formula. The “Delft” formula was developed primarily from laboratory
experiments and then relating the measured transport rates to the measured hydraulic
parameters. The formula is derived by determining the mathematical relationship between
groups of dimensionless variables. As the formula is derived empirically and is not processes
based, the method of calculation of longshore transport ignores the different transport

mechanisms which occur.
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Further, as a result of scale effects, it has been suggested (Brampton and Motyka, 1987) that
coarse-grained laboratory experiments provide an overestimate of the rate of longshore
transport. This suggestion has been supported recently by van Wellan et al (1999), who found
that the “Delft” formula overestimated longshore transport by a factor of 6 when calculating
transport rates at Shoreham in southern England. In contrast, Schoonees and Theron (1996)
assessed 52 longshore transport equations against a data base of field measurements from
around the world and found that the “Delft” formula (along with the formula of Kamphius

(1992)) provided the best estimate of longshore transport over a range of conditions.

Field studies have been carried out into longshore transport at Long Beach, Whitstable, as part
of the present investigations (Chapter 5). It was found that predictions of longshore transport
obtained using the “Delft” formula compared well to transport rates based upon beach plan

surveys and the displacement of electronic tracer pebbles.

Over the three day period of the experiment at Long Beach, the “Delft” formula predicted a
net longshore transport rate of 475m®, which is comparable to the rates obtained by the
displacement of electronic tracer pebbles (313m® - over two days) and the analysis of
volumetric changes in the beach plan surveys (515m’). Whilst comparison between the
transport rates summed over the three day period are in close agreement, this masks
considérable variation in the daily transport rates. For example, longshore transport rates
determined from the volumetric changes on 23/01/93 were greater than the rates determined
from both the electronic tracer displacements by a factor of almost 3. For the two succeeding
days, the rates determined from volumetric changes were lower than those determined by the

two alternative methods.

Each method of determining the longshore transport rate is subject to limitations as described

below.
longshore transport model

® calculations are based upon a mean grain size of 6mm. During the tidal cycle, different parts
of the beach will be subjected to wave forces and hence the grain-size of material in transport
will alter. Muir Wood (1970) noted that the bulk of transport occurs in the upper beach; hence
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the grain-size used in calculations may be too small.

® the “Delft” formula was derived for ‘gravel’ beaches, not for mixtures of sand and shingle.

® longshore transport formula are very sensitive to variations in wave angle. The calculations
used in the present investigation are based upon the output of the wave model which has not

been calibrated against instrumentally recorded data.

® no account has been taken of the effect of currents on longshore transport. Mason (pers
comm) has found that currents should be considered when calculating sediment transport on

tidal beaches of mixed composition.

tracers

® although high recovery rates of the electronic pebbles were obtained, throughout the
duration of the experiment, the small number of tracers used introduces a high level of

uncertainty into the calculations.

® the calculation of the depth and width of the mobile layer over a tidal duration is suspect;
this is because the depth of disturbance derived from measurement of tracers represents the
maximum depth of disturbance which has occurred at some point during the tidal cycle; it does
not represent the average depth of the mobile later over the duration of the experiment. Recent
studies at Lancing, southern England suggest that transport rates calculated using tracer-

derived mobile layer volumes may overestimate the transport rates by a factor of 2 (Stapelton
et al, 1999).

® under the wave conditions experienced throughout the field trials at Long Beach, it is
believed that mixing of tracers with the indigenous material occurred rapidly. However, those
tracers located initially on the sand run may have been subjected to high transport rates before

mixing occurred. Again this would lead to an overestimate of transport volumes.

® low recovery rates for aluminium tracers are attributed to the low efficiency of the search

procedures due to the combined effects of a large number of items of trash, low depths of
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detection and inability to cover the whole search area during a single tide. As a result, the

aluminium tracers have not been used for transport calculations:

profiles

® whilst surveys undertaken using the EDM theodolite can be carried out to a high degree of
accuracy, the extent of coverage of the survey and the profile lines in particular, may not be
at a high enough resolution to accurately determine volumetric changes. Averaging of data

over several surveys tends to reduce these errors.

® loss of the sand fraction to the offshore may occur during periods of moderate to strong
wave activity. This leakage of sand-sized material would lead to underestimates of the

longshore transport rates derived on the basis of volumetric changes.

general comments

Each of the three estimates of longshore transport described are based upon different
assumptions of what material is being transported. The movement of the coarsest fraction of
the sediment distribution is determined using the electronic tracers. Analysis of volumetric
changes determines the transport of both sand and shingle-sized material present on the beach.
As described earlier, the longshore transport model is based upon 6mm shingle, and may not
accurately represent transport rates on a beach of mixed composition where the transport

mechanisms are likely to be different.

7.3.3. Sediment Dynamic Characteristics of the Study Area

The wave climate was used in conjunction with the longshore transport formula, to assess the
potential longshore transport rates at various locations in the study area. The wave model

calibration factors (Table 4.4) were applied. The results are discussed, critically in Section 6.2.

A number of observations on the nature of processes in the study area can be made based upon

the coastal model.
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® towards the east, the increasing importance of the westerly / northwesterly component of
the nearshore wave climate (Section 7.2.3) is manifest as an anticlockwise rotation of the

predicted equilibrium coastal orientation towards an east - west alignment.

® the winter - summer variation in wind direction is reflected in the respective longshore
transport potentials. At the Long Beach site, this was reflected in a reversal of the net transport

direction between winter and summer seasons.

® storm events can result in large volumes of longshore transport over a single tidal cycle. For
example, at Long Beach, Whitstable, the estimated longshore transport rate during one tidal
cycle at the peak of the 1st February 1953 storm event was in the order of 1000m®. The net

annual potential longshore transport rate at the same location is just +320m’.

® the volume of material transported alongshore during a storm event depends more on the

incident wave angle on the beach, than on the wave height, period or still water level.

® periods of time characterised by winds blowing from more or less the same direction have
the ability to transport large quantities of beach material in one diréction. For example the
impact of the anomalous wind conditions experienced during the winter of 1995 / 1996 (F igure
4.17) resﬁlted in failures of seawalls at Reculver and undermining of sea defences at

Tankerton.

® the averaging of transport rates over a period of several years can mask the dramatic impacts

of events which occur over shorter time periods.

® the averaging of transport rates over a period of several years will not account for longer-
term variations in the wind directions. Such variations can lead to shifts in the ‘annual’ wave

climate and hence equilibrium orientation of the coastline.

An assessment of the sediment budget based upon archived beach profile data can provide
important information on the longshore and on-offshore transport processes. Provided that
losses and gains from longshore transport and beach replenishment are known, the budget can

be balanced by exchanges to the offshore area.
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At Whitstable Central, no longshore transport was possible as a result of the large closely
spaced groynes. A net reduction in the volume of beach within this area was attributed to

offshore loss of fines in the order of 0.5 m* m™ yr™.

At Herne Bay West, closure of the budget at both ends of the beach management unit was
possible. Net losses of fines to the offshore at the rate of around 0.5 m* m™ yr was similar to
that obtained at Whitstable. The sediment budgét at Herne Bay West was used to: (i) estimate
actual (average annual) longshore transport rates in the BMU; (ii) based upon (i), estimate the
impact of the existing groynes on the potential net annual potential longshore transport rates
obtained from the model; (iii) assess the impact of the construction of the Herne Bay
breakwater on patterns of erosion within the BMU and (iv) assess the requirements for future

beach recharge and recycling projects in the BMU.

In the case of the Tankerton budget, closure to longshoretransport was possible at the west
end only. Attempts to balancé the budget at this location, lead to uncertainties as to the actual
transport patterns in the area, in particular; (i) the quantity of beach méterial which is
transported inéb' the Long Rock area from Tankerton; (ii) the extent of offshore losses/gains
with particular respect to the Street and; (iii) the location of the sediment drift divide,
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Chapter 8: Conclusions and Recommendations for Further Research

8.1. Conclusions
The following conclusions can be ascertained from the present investigation:

® wave action in the study area is characterised by low amplitude, short period waves;

® the beaches are macrotidal and water level variations impose a major control on the wave
climate and hence patterns of shingle mobility;

® output from the wave model provides a reasonable comparison with recorded wave data
collected over a 10 year period;

® there is an inequality in the wave energy incident on the beaches, in which waves generated
by northeasterly and easterly winds dominate. The inequality in wave conditions decreases
towards the east;

® significant elevation of water levels in the study area occurs as a result of storm surges - this
allows larger waves with greater wave angles to reach the beaches;

® there is an interdependency between extreme water levels, wind speed and wind direction
which means that wave action generated by northwesterly winds is more likely to accompany
the elevated water levels;

© the ‘Delft’ formulae for longshore transport of gravel was found to give a good estimation
of the longshore transport rates in the study area;

® shingle is mobile under low energy wave conditions (Hs = 0.2m) perhaps as a result of the
inclusion of a significant proportion of sand in the beaches;

® net annual longshore transport of shingle is generally from east to west along the coastline
although variations occur due to geomorphological features eg Long Rock;

® extreme events can led to large volumes of beach material being transported alongshore in
a short time scale. Under storm conditions, the angle of wave incidence on the beach is more
important than wave height in transporting the maximum volume of beach material alongshore;
® climatic anomalies such as periods of time during which winds are dominant from one
direction can led to severe erosion problems;

® sediment budgets, based on archived beach profile data can provide an effective tool for

assessing transport patterns, provided adequate closure can be obtained.
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8.2. Recommendations for Further Research

With respect to the numerical modelling;

® development of the model to account for wave refraction patterns around minor coastal
features such as Long Rock;
® development of the model to take into account the effects of currents on sediment transport

processes.
With respect to coastal monitoring:

® update the coastal environmental instrumentation to allow digital logging of wind, water
level and wave conditions;

® obtain measurements of wave conditions, in particular wave angles, at several locations
along the coastline;

® extend the existing beach monitoring programme to include Long Rock and the beaches at
Reculver to Minnis Bay and at Seasalter;

® monitor lower foreshore levels since it appears that a high level of erosion is occurring at
some localities. This will led to deeper water at the toe of the shingle beaches, and

subsequently, higher mobility of beach material due to increased wave activity;

With respect to the mixed composition of the beaches, in particular those which have been

recharged with marine-dredged sediments:

® investigate the impact of an increase in the quantity of fine-grained material on the beaches
in terms of wave energy dissipation and the formation of ‘cliffing’;
® determine how the fine-grained fraction in the beaches will impact upon beach slope under

the influence of storms.
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Finally, with respect to the regional coastal processes:

® assess the potential for coarse-grained material to move between the beaches and nearshore

features at the Street and at Long Rock;

® determine the extent to which finer sand-sized material is exchanged between the beaches,

the nearshore area and the offshore sediment banks (eg Margate Sands).
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