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Abstract
Alzheimer’s disease (AD) is a public health priority for the 21st century. Risk reduction currently revolves around
lifestyle changes with much research trying to elucidate the biological underpinnings. We show that self-report of
parental history of Alzheimer’s dementia for case ascertainment in a genome-wide association study of 314,278
participants from UK Biobank (27,696 maternal cases, 14,338 paternal cases) is a valid proxy for an AD genetic study.
After meta-analysing with published consortium data (n= 74,046 with 25,580 cases across the discovery and
replication analyses), three new AD-associated loci (P < 5 × 10−8) are identified. These contain genes relevant for AD
and neurodegeneration: ADAM10, BCKDK/KAT8 and ACE. Novel gene-based loci include drug targets such as VKORC1
(warfarin dose). We report evidence that the association of SNPs in the TOMM40 gene with AD is potentially mediated
by both gene expression and DNA methylation in the prefrontal cortex. However, it is likely that multiple variants are
affecting the trait and gene methylation/expression. Our discovered loci may help to elucidate the biological
mechanisms underlying AD and, as they contain genes that are drug targets for other diseases and disorders, warrant
further exploration for potential precision medicine applications.

Introduction
The genetic epidemiology of late-onset Alzheimer’s

disease (LOAD) has advanced over the last decade1, with
>20 independent loci associated with the disease in
addition to APOE2. Presently, the largest meta-analytic
genome-wide association study (GWAS) for LOAD
employed a two-stage study design. First, 17,008 cases
were compared to 37,154 controls. A total of 11,632
single-nucleotide polymorphisms (SNPs) with P < 1 ×
10−3 from this meta-analysis were included in the second
stage that compared 8,572 cases to 11,312 controls. A
meta-analysis of the SNPs included in stages 1 and 2 was
also performed3.

One difficulty in traditional studies of AD is case
ascertainment4—either directly for prevalent cases or
indirectly through prospective cohort studies for incident
cases. A recent GWAS study on a subset of the UK Bio-
bank cohort used information from family history (parent
or first-degree relative with AD or dementia) as a proxy-
phenotype for the participants5. When meta-analysed
with the GWAS summary data highlighted above3, four
new loci were identified.
The UK Biobank proxy-phenotype AD question, which

is used here, does not incorporate biomarker data that are
required for a clinical diagnosis. However, it is easy to
administer at scale and we show that it has a near-unit
genetic correlation with the AD results from the LOAD
meta-analysis3, where many of the samples also lacked a
confirmed diagnosis by biomarker levels or autopsy.
In the present study, we related proxy-phenotype

information on dementia (i.e., reporting a parent with
Alzheimer’s dementia or dementia) to genetic data from
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314,278 individuals from the UK Biobank cohort to
identify new AD-associated loci. This sample includes
individuals from the previous proxy-phenotype AD study
by Liu et al.5 GWA studies were conducted separately for
maternal and paternal AD due to a 1.7-fold difference in
disease prevalence—9.6% and 5.5%, respectively. The
summary statistics from these models were meta-analysed
with those from the largest publicly available case–control
study3. Sensitivity analyses showed that an overlap of
controls in the maternal and paternal GWAS did not bias
the results. Genetic correlation analysis showed the self-
reported measure of parental AD to be an accurate proxy
for clinical diagnosis, validating the global meta-analysis.
In addition, we tested for causal evidence of our SNP–AD
associations being mediated through gene expression and
DNA methylation in the prefrontal cortex.

Subjects and methods
UK Biobank cohort
UK Biobank data6 (http://www.ukbiobank.ac.uk) were

collected on over 500,000 individuals aged between 37
and 73 years from across Great Britain (England, Wales
and Scotland) at the study baseline (2006–2010), includ-
ing health, cognitive and genetic data.
The Research Ethics Committee (REC) granted ethical

approval for the study—reference 11/NW/0382—and the
current analysis was conducted under data application
10,279.

Genotyping
Genotyping details for the UK Biobank cohort have

been reported previously7,8. Briefly, two custom geno-
typing arrays were utilised with 49,950 participants typed
using the UK BiLEVE Axiom Array and 438,427 partici-
pants typed using the UK Biobank Axiom Array7,8. The
released genotyped data contained 805,426 markers on
488,377 individuals. Imputed genotypes were supplied
with the UK Biobank data with the Haplotype Reference
Consortium (HRC) used as the imputation reference
panel7.
Downstream quality control steps conducted for the

current analysis included removing (1) those with non-
British ancestry based on both self-report and a principal
components analysis, (2) outliers based on heterozygosity
and missingness, (3) individuals with sex chromosome
configurations that were neither XX nor XY, (4) indivi-
duals whose reported sex did not match inferred sex from
their genetic data and (5) individuals with >10 putative
third-degree relatives from the kinship table. This left a
sample of 408,095 individuals. To remove the possibility
of double contributions from sibs, whose parents will have
the same AD status, we first considered a list of all par-
ticipants with a relative (N= 131,790). A genetic rela-
tionship matrix was built for these individuals using

GCTA-GRM9 and a relationship threshold of 0.025 was
applied to exclude related individuals. After removing one
person from each pair of related individuals, the sample
size was 332,050. Quality control thresholds applied to the
GWAS included: minor allele frequency >0.01, imputa-
tion quality score >0.3 and restriction to HRC-imputed
SNPs, leaving a total of 7,795,605 SNPs for the GWAS.

Phenotypes
Family history of Alzheimer’s disease was ascertained

via self-report. Participants were asked “Has/did your
father ever suffer from Alzheimer’s disease/dementia?”
and “Has/did your mother ever suffer from Alzheimer’s
disease/dementia?” Self-report data from the initial
assessment visit (2006–2010), the first repeat assessment
visit (2012–2013) and the imaging visit (2014+) were
aggregated with exclusions made for participants whose
parents were: aged under 60 years; dead before reaching
age 60 years; without age information. After merging with
the genetic data, this left 27,696 cases of maternal AD
with 260,980 controls, and 14,338 cases of paternal AD
with 245,941 controls. There were 314,278 instances
where AD information was available on at least one par-
ent. Given the expected difference in disease prevalence
due to sex differences in longevity—AD prevalence was
1.7-fold higher in mothers compared to fathers—GWA
studies were performed separately for maternal and
paternal AD.

Genome-wide association study
The GWA studies were conducted using BGENIE7. The

outcome variable was the residuals from a linear regres-
sion model of maternal or paternal AD on age of parent at
death or at time of the offspring’s self-report, assessment
centre, genotype batch, array and 40 genetic principal
components. The predictor variable was the autosomal
SNP and an additive model was considered.
The GWAS linear regression coefficients were con-

verted to odds ratios using observed sample prevalences
of 0.096 and 0.055 for maternal and paternal AD,
respectively10. Subsequently, the log-odds were multiplied
by two so that the effect sizes are reported on the same
scale as a traditional case–control design5. Briefly, the
conversion to odds ratios uses the following equation,
derived in Lloyd-Jones et al.10, where k= disease pre-
valence, p= population allele frequency and β= the
estimated SNP regression coefficient on the binary disease
scale from the GWAS: OR ¼ kþβ 1�pð Þð Þ ´ 1�kþβpð Þ

k�βpð Þ ´ 1�k�β 1�pð Þð Þ. SEs for
the log-odds were then calculated based on the adjusted
OR and the P-value from the initial GWAS (Supple-
mentary Note 1). The ORs and SEs were then carried
forward to a SE-weighted meta-analysis in METAL11, first
to create a UK Biobank parental meta-analysis, and then
with the stage 2 summary output from the International
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Genomics of Alzheimer’s Project (IGAP) study3 and the
stage 1 output for the SNPs that did not contribute to
stage 2. Linkage disequilibrium score (LDSC) regression
was used to estimate the genetic correlation between the
maternal and paternal AD GWAS results and to test for
residual confounding in the meta-analysis by examining
the LDSC intercept12,13.
The number of independent loci from the meta-analysis

was determined by using the default settings in FUMA14.
Independent lead SNPs had P < 5 × 10−8 and were inde-
pendent at r2 < 0.6. Within this pool of independent SNPs,
lead SNPs were defined as those in LD at r2 < 0.1. Loci
were defined by combining lead SNPs within a 250 kb
window and all SNPs in LD of at least r2= 0.6 with one of
the independent SNPs. A gene-based analysis was carried
out on all SNP output using the MAGMA software15 with
default settings (SNP-wise (mean) model for each gene),
and assuming a constant sample size for all genes. A
Bonferroni-adjusted P-value of 0.05/18,251= 2.7 × 10−6

was used to identify significant genes. The 1000 genomes
phase 3 data16 were used to map LD in both the inde-
pendent locus and MAGMA analyses.

Summary data-based Mendelian randomisation
To test for pleiotropic associations between SNPs and AD

and gene expression/DNA methylation in the brain, sum-
mary data-based Mendelian randomisation (SMR) was per-
formed17. GWAS summary output from the meta-analysis of
UK Biobank and IGAP (sample size specified as 314,278+
74,046= 388,324) were included along with expression
Quantitative Trait Loci (QTL) summary output from the
Common Mind Consortium, which contains data on >600
dorsolateral prefrontal cortex samples, and DNAmethylation
QTL summary output on 258 prefrontal cortex samples (age
>13)18. The reference genotypes were based on the Health
and Retirement Study, imputed to the 1000 Genomes phase
1 reference panel. SNP exclusions included: imputation score
<0.3, Hardy–Weinberg P-value < 1 × 10−6 and a minor allele
frequency <0.01. Related individuals, based on a genomic-
relationship matrix cutoff of 0.05, were removed. Two sets of
eQTL summary data were considered (1) after adjustment
for diagnosis, institution, sex, age of death, post-mortem
interval, RNA integrity number (RIN), RIN2, and clustered
library batch (2) with additional adjustments for 20 surrogate
variables to account for additional possible confounders. Five
ancestry vectors were included as covariates in the eQTL
analyses. Further details are available at: https://www.synapse.
org/#!Synapse:syn4622659. Default parameters for the SMR
analysis were used and cis eQTLs/methQTLs were con-
sidered for analysis. Bonferroni-corrected P-value thresholds
were applied (P < 0.05/2011= 2.5 × 10−5 for eQTL data set 1,
P < 0.05/4380= 1.1 × 10−5 for eQTL data set 2 and P < 0.05/
54,624= 9.2 × 10−7 for the methQTL data set). The SMR P-
value highlights candidate transcripts or methylation sites

through which a cis SNP may be acting on the outcome, AD.
The heterogeneity in dependent instruments (HEIDI) P-
value indicates evidence for a single causal SNP (effect on AD
is mediated through the transcript/methylation site if P >
0.05) or different SNPs affecting AD and the transcript/
methylation site if P < 0.05.

Results
UK Biobank GWAS
There were 27,696 cases of maternal AD (260,980

controls, prevalence of 9.6%) and 14,338 cases of paternal
AD (245,941 controls, prevalence of 5.5%) in the UK
Biobank. The genetic correlation between maternal and
paternal AD was not significantly different from unity (rg
= 0.71, SE 0.43), although the SE is large. Both traits had a
high genetic correlation with the case–control summary
output from the IGAP study: rg with maternal and
paternal AD was 0.91 (SE 0.24) and 0.66 (0.39), respec-
tively, both not significantly different from unity but with
large SEs.
Prior to meta-analysing the UK Biobank parental sum-

mary statistics with the IGAP output, we investigated the
influence of overlapping proxy controls in UK Biobank.
The P-values from a single GWAS of parental AD status
(0, 1 or 2 parents with AD) correlated 0.99 with those
from a meta-analysis of separate maternal AD and
paternal AD; the regression of −log10 P-values on each
other gave an intercept of 0 and a slope of 1. A meta-
analysis of the summary statistics from the maternal and
paternal results is therefore essentially equivalent to the
analysis of parental AD status. The linear regression effect
sizes from the GWAS were converted to odds ratios prior
to the meta-analysis10.

UK Biobank paternal and maternal meta-analysis
Six genome-wide significant loci were identified in the

UK Biobank paternal and maternal GWAS meta-analysis
(Supplementary Table 1, GWAS summary statistics
available at www.ccace.ed.ac.uk/node/335). All were
located in established AD loci. The top lead SNPs were
rs679515 (P= 5.3 × 10−9, chr1, CR1 locus), rs6733839 (P
= 1.1 × 10−27, chr2, BIN1 locus), rs7384878 (P= 1.3 ×
10−10, chr7, PILRA locus), rs3851179 (P= 1.8 × 10−12,
chr11, PICALM locus), rs3845261 (P= 4.0 × 10−8, chr17,
ZNF232 locus) and rs10119 (P= 1.1 × 10−307, chr19,
APOE/TOMM40 locus). The chromosome 17 locus is
~100 kb from the SCIMP gene-variant identified by Liu
et al.5

UK Biobank parental and IGAP meta-analysis
The meta-analysis of the maternal and paternal AD

history in UK Biobank with the IGAP data identified 69
lead SNPs and 218 independent significant SNPs with P <
5 × 10−8 from 21 genomic risk loci. The majority (n= 42)
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of the lead SNPs were located in the gene-dense APOE/
TOMM40 locus on chromosome 19 (Fig. 1 and Supple-
mentary Tables 2 and 3; GWAS summary statistics are
available for the 7,795,605 meta-analysed SNPs online:
www.ccace.ed.ac.uk/node/335). The LDSC regression
intercept term from the meta-analysis summary output
was 1.021 (SE 0.0099), and around 85% of the genomic
inflation (λ= 1.09) was due to the polygenic signal, rather
than sources of confounding including population strati-
fication and cryptic relatedness.

Novel genome-wide significant loci
Of the 21 significant risk loci, three were novel

(Table 1 and Supplementary Figures 1–3). The top
lead SNPs were: rs593742 (ADAM10, locus
chr15:58873555–59120077); rs889555 210 (BCKDK/
KAT8, locus chr16:30916129–31155458); and rs6504163
(ACE, locus 211 chr17:61545779–61578207).

Replication of IGAP SNPs
Fifteen of the 21 previously reported SNPs3 associated

with AD were genome-wide significant (P < 5 × 10−8) in

the current meta-analysis, with four other SNPs
(rs2718058, rs10838725, rs17125944 and rs10498633)
having P < 1 × 10−5 (Supplementary Table 4). The MEF2C
variant, rs190982, had a meta-analysis P-value of 7.2 ×
10−3 and rs8093731 (a DSG2 variant), which was genome-
wide significant in stage 1 but not stage 2 of IGAP, had a
meta-analysis P-value of 0.07. There was complete sign-
concordance between UK Biobank and IGAP for all 21
SNPs (Supplementary Table 4). The odds ratios between
the maternal and paternal analysis for the top 21 IGAP
SNPs were correlated r= 0.91. Both also correlated highly
with the effect sizes reported in the IGAP analysis (r=
0.87 and 0.84, respectively).

Gene-based analysis
A total of 92 genes were significant at a Bonferroni

threshold of P < 2.7 × 10−6 (Supplementary Table 5). Gene
ontology analysis, using a Fisher exact test to compare the
number of significant genes in each gene set with the
expected number, showed significant enrichment for 46
gene sets, including those linked to the regulation of
amyloid-beta, neurofibrillary tangle assembly, immune

Fig. 1 Manhattan plot for the meta-analysis of maternal and paternal Alzheimer’s disease in UK Biobank and the results from stage 1 and
stage 2 of IGAP3. The red line indicates P= 5 × 10−8 and the blue line indicates P= 1 × 10−5. P-values truncated at 1 × 10−20

Table 1 Novel SNPs (P < 5 × 10−8) from the meta-analysis of UK Biobank parental history of Alzheimer’s disease with
results from IGAP

Locus Chr Lead SNP A1 A2 BP Freq Locus start Locus end OR 95% CI P Directiona

1 15 rs593742 A G 59045774 0.69 58873555 59120077 1.06 (1.04, 1.07) 6.20E−11 ++?+

2 16 rs889555 T C 31122571 0.29 30916129 31155458 0.95 (0.94, 0.97) 3.20E−08 −−?−

3 17 rs6504163 T C 61545779 0.63 61545779 61578207 1.05 (1.03, 1.07) 5.40E−09 +++?

Chr chromosome, BP base pair, Freq frequency of allele A1, OR odds ratio and 95% confidence interval
aUK Biobank maternal AD, UK Biobank paternal AD, IGAP stage 1, IGAP stage 2
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response, and cholesterol and lipid transport (Supple-
mentary Table 6).

Summary data-based Mendelian randomisation
Pleiotropic associations between AD and gene expres-

sion in the brain were tested using SMR17. GWAS sum-
mary data for AD were taken from the UK Biobank and
IGAP meta-analysis. eQTL summary data came from the
Common Mind Consortium (n > 600 dorsolateral pre-
frontal cortex samples: data set 1 adjusted for age at death,
sex and institution; data set 2 made additional adjust-
ments for 20 surrogate variables). MethQTL data came
from 258 dorsolateral prefrontal cortex samples (partici-
pants aged 13 years and older—adjustments were made
for the first 5 genetic MDS components and first 11
methylation PCs)18. We found evidence of brain expres-
sion and DNA methylation associated with AD in the
TOMM40 gene (part of the APOE/TOMM40 cluster on
chromosome 19) in both the second eQTL model and
also in the methQTL model (Supplementary Tables 7–9).
However, the HEIDI P-values were <0.05 for both ana-
lyses, indicating that the associations were unlikely to be
driven by a single causal variant affecting both expression/
methylation and AD.
Different top QTL SNPs in TOMM40 were identified in

the two analyses: rs760136 and rs7259620 although they
were in perfect LD in European samples19,20 (R2= 1.00).
The SNPs have differing LD patterns with the APOE allele
defining SNPs, rs7412 (R2= 0.001, D′= 0.03) and
rs429358 (R2= 0.15, D′= 1.0). A significant SMR asso-
ciation with HEIDI P-value >0.05, indicating pleiotropy,
was observed for KAT8 in the eQTL analysis (Supple-
mentary Table 8 and Supplementary Figure 4) and for
EXOC3L2 (chr19, APOE/TOMM40 locus) and STAG3
(chr7, PILRA locus) in the methQTL analysis (Supple-
mentary Table 9 and Supplementary Figures 5 and 6).

Discussion
Using recently established proxy-phenotype methods

for case ascertainment, we show this approach to be valid
in GWAS of AD. Meta-analysing the proxy-phenotype
summary statistics from UK Biobank with those from a
case–control study (IGAP), we identified three new
genome-wide significant loci that contain several relevant
genes.
ACE determines levels of angiotensin II, which has

trophic actions within the brain and contributes to the
regulation of cerebral blood flow21. Previous meta-
analyses of candidate gene studies identified variants
within ACE to be associated with AD, though not at
genome-wide significance22,23. ACE variants have also
been linked to atrophy of the hippocampus and amyg-
dala24, and CSF-ACE protein levels correlate with CSF tau
and phosphorylated tau25,26.

ADAM10 is involved in the cleavage of amyloid-beta
precursor protein27, which is involved in the deposition of
amyloid beta, a major neurological hallmark of AD.
ADAM10 has been proposed as potential therapeutic
agent in AD therapy27,28. Rare variants in ADAM10 have
also been linked to LOAD29.
The BCKDK/KAT8 locus contains the VKORC1 gene,

which was a genome-wide significant gene-based finding
(P= 3.4 × 10−8). The VKORC1 variant, rs9923231, whose
T allele was suggestively associated with an increased risk
of AD (P= 6.9 × 10−8), is strongly associated with the
need for a reduced dose of warfarin anticoagulation30,31.
KAT8 is regulated by KANSL1, which has been linked to
AD as a genome-wide significant finding in APOE e4-
negative individuals32.
Our cutoff for relatedness of 0.025 in UK Biobank was

very stringent, in particular since disease status was on
parents of genotyped individuals, so that correlations in
proxy-phenotypes from relatives (e.g., cousins) are likely
to be very small. When we used a more relaxed threshold
of 0.4 (excluding first-degree relatives only), we increased
our sample size to 385,869 and found four additional loci
and top lead SNPs: rs4575098, P= 2.7 × 10−8, ADAMTS4
(chr1:161097241–161156033); a gene desert on chr4
(rs6448453, P= 1.2 × 10−9, chr4:11026028–11040406)
that is ~400 kb from the CLNK gene; in CCDC6 on chr10
(rs1171812, P= 3.5 × 10−8, chr10:61631416–61710540);
and in a poorly annotated region on chr16 (rs12444183, P
= 5.3 × 10−9, chr16:81773003–81773816), proximal to the
PLCG2 gene. The corresponding P-values for these four
lead SNPs in the GWAS meta-analysis with the more
stringent relatedness cutoff were P= 8.4 × 10−8, 5.9 ×
10−8, 5.7 × 10−7 and 7.4 × 10−8, respectively.
The gene-set enrichment analysis implicated pathways

involved in AD neuropathology (amyloid and neurofi-
brillary tangles) in addition to immune response, lipid and
cholesterol metabolism, as previously reported in a gene-set
analysis on the IGAP data33. A separate gene-set analysis on
the meta-analysed paternal and maternal summary statistics
from UK Biobank showed a highly overlapping set of
enriched pathways (Supplementary Table 10).
An integrative analysis of eQTL and methQTL with the

GWAS summary data identified one previously identified
AD gene, TOMM40, as having its gene expression and
methylation levels associated with AD. The most parsi-
monious explanation of these results is the existence of
multiple causal variants, some affecting AD and others
affecting expression or methylation. A previous SMR
analysis of AD and LDL cholesterol identified evidence of
16 pleiotropic SNPs, 12 of which were located in the
APOE region34. Given the involvement of immunity in the
aetiology of AD, as highlighted by the pathway analysis, it
may be relevant to consider immune cells, such as
monocytes, for the SMR analysis.
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The main strength of the study is the proxy-phenotype
approach, which resulted in over 42,000 proxy cases for
the GWAS analysis. However, the question used to
determine parental AD status may have resulted in some
responders being unable to discriminate Alzheimer’s
disease and dementia from other dementia sub-types,
which have different presentations and genetic archi-
tectures35,36. This method of proxy-case ascertainment
may have influenced the loci uncovered. Parental
dementia status is partly dependent on longevity, with age
being the biggest risk factor for AD. We partially con-
trolled for this by excluding participants whose parents
were younger than or died prior to reaching the age of 60
years when AD incidence is extremely low. The mis-
classification of case status via incorrect informant
reporting will have reduced the power to detect true
effects. This, along with a possible winner’s curse effect
for the IGAP study, might explain the reduction in the
meta-analytic odds ratios compared to those previously
reported3.

Conclusion
We identified three new AD-associated loci that have

known and putative biological processes associated with
Alzheimer’s disease. These findings help to elucidate the
biological mechanisms underlying AD and, given that
some loci (VKORC1, ACE) are existing drug targets for
other diseases and disorders, warrant further exploration
for potential precision medicine and clinical trial
applications.
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