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Abstract Utility-based shortfall risk measures (SR) have received increasing
attention over the past few years for their potential to quantify the risk of
large tail losses more effectively than conditional value at risk. In this pa-
per, we consider a distributionally robust version of the shortfall risk measure
(DRSR) where the true probability distribution is unknown and the worst
distribution from an ambiguity set of distributions is used to calculate the
SR. We start by showing that the DRSR is a convex risk measure and un-
der some special circumstance a coherent risk measure. We then move on to
study an optimization problem with the objective of minimizing the DRSR
of a random function and investigate numerical tractability of the optimiza-
tion problem with the ambiguity set being constructed through ¢-divergence
ball and Kantorovich ball. In the case when the nominal distribution in the
balls is an empirical distribution constructed through iid samples, we quan-
tify convergence of the ambiguity sets to the true probability distribution as
the sample size increases under the Kantorovich metric and consequently the
optimal values of the corresponding DRSR problems. Specifically, we show
that the error of the optimal value is linearly bounded by the error of each
of the approximate ambiguity sets and subsequently derive a confidence in-
terval of the optimal value under each of the approximation schemes. Some
preliminary numerical test results are reported for the proposed modeling and
computational schemes.
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1 Introduction

Quantitative measure of risk is a key element for financial institutions and reg-
ulatory authorities. It provides a way to compare different financial positions.
A financial position can be mathematically characterized by a random variable
Z :(2,%,P) = R, where {2 is a sample space with sigma algebra .# and P
is a probability measure. A risk measure p assigns to Z a number that signifies
the risk of the position. A good risk measure should have some virtues, such as
being sensitive to excessive losses, penalizing concentration and encouraging
diversification, and supporting dynamically consistent risk managements over
multiple horizons [15].

Artzner et al. [1] considered the axiomatic characterizations of risk mea-
sures and first introduced the concept of coherent risk measure, which satis-
fies: (a) positive homogeneity (p(aZ) = ap(Z) for o > 0); (b) subadditivity
(p(Z+Y) < p(Z)+ p(Y)); (c) monotonicity (if Z > Y, then p(Z) < p(Y));
(d) translation invariance (if m € IR, then p(Z + m) = p(Z) — m). Frittelli
and Rosazza Gianin [12], Heath [17] and Follmer and Schied [9] extended the
notion of coherent risk measure to convex risk measure by replacing positive
homogeneity and subadditivity with convexity, that is, p(aZ + (1 — @)Y) <
ap(Z) + (1 — a)p(Y), for all a € [0,1]. Obviously positive homogeneity and
subadditivity imply convexity but not vice versa. In other words, a coherent
risk measure is a convex risk measure but conversely it may not be true.

A well-known coherent risk measure is conditional value at risk (CVaR)
defined by CVaR,(Z) := L [* VaRx(Z)d\, where VaR(Z) denotes the value
at risk (VaR) which in this context is the smallest amount of cash that needs
to be added to Z such that the probability of the financial position falling into
a loss does not exceed a specified level A, that is, VaRy(Z) := inf{t € R :
P(Z 4+t < 0) < A}. In a financial context, CVaR has a number of advantages
over the commonly used VaR, and CVaR has been proposed as the primary
tool for banking capital regulation in the draft Basel III standard [2]. However,
CVaR has a couple of deficiencies.

One is that CVaR is not invariant under randomization, a property which
is closely related to the weak dynamic consistency of risk measurements, that

. . Z1, with probabilit

is, if CVaRq(Z;) <0, for i = 1,2 and Z := Z;: with ﬁrobabilitzllj’f »,
p € (0,1), then we do not necessarily have CVaR,(Z) < 0, see [26, Example
3.4]. The other is that CVaR is not particularly sensitive to heavy tailed losses
[15, Section 5]. Here, we illustrate this by a simple example. Let

for

100, p1 =98% 100,  p1 = 98% 100, p1 =98%
X1 :=4-100, p2=1% ,X2:=q —1, p2 =1% ,X3:=¢99, p2=1% . (1)
—200, p3=1% —299, p3=1% -399, p3=1%
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Tt is easy to calculate that CVaRg 02(X1) = CVaRg.g2(X2) = CVaRg.02(X3) =
150.

To overcome the deficiencies, a special category of convex risk measure,
called wtility-based shortfall risk measure (abbreviated as SR hereafter) was
introduced by Follmer and Schied [9] and attracted more and more attention
in recent years, see [7,15,18]. Let [ : IR — IR be a convex, increasing and
non-constant function. Let A be a pre-specified constant in the interior of the
range of [ to reveal the risk level. The SR of a financial position Z is defined
as

(SR) SR/,\(Z):=inf{t e R:t+ Z € Ap}, (2)

where Ap := {Z € L™ : Ep[l(—Z(w))] < A} is called the acceptance set
and L™ denotes the set of bounded random variables. From the definition,
we can see that the SR is the smallest amount of cash that must be added
to the position Z to make it acceptable, i.e., t + Z € Ap. Observe that when
I(-) takes a particular characteristic function of the form 1o yocj(-), that is
L(o,400(2) = 1if z € (0,+00], and 0 otherwise, in such a case SRZI;\(Z)
coincides with VaR(Z). Of course, here ! is nonconvex.

Compared to CVaR, SR not only satisfies convexity, but also satisfies invari-
ance under randomization and can be used more appropriately for dynamic
measurement of risks over time. To see invariance under randomization, we
note that SR defined as in (2) is a function on the space of random variables,
it can also be represented as a function on the space of probability measures,
see [26, Remark 2. 1] In the latter case, the acceptance set can be characterized

by N:={pe 2(C): [,l(—z)u(dzx) < A}, where Z(C) denotes the space of
probability measures Wlth support bemg contamed in a compact set C' C R. If
/L,VGN]G Jol(=z)pu(dx) < X, [, 1(—2)v(dx) < A, then for any a € (0,1),

Jol(=z)(oapu+ (1 - ) )(dgc) <A, Wthh means au+ (1 — a)v € N. Moreover,

the SR is found to be more sensitive to financial losses from extreme events
with heavy tailed distributions, see [15, Section 5]. Indeed, if we set I(z) = e*
and A = e, then we can easily calculate the shortfall risk values of X7, X5
and X3 in (1) with SR/, (X1) ~ 194, SR/, (X2) ~ 293, and SR/, (X3) ~ 393.
Furthermore, if we choose I(z) = ¢#* with 3 > 0, the resulting SR coincides,
up to an additive constant, with the entropic risk measure, that is,

SRF\(Z) = inf{t € R : Ep[e?#+0] < A} = % (
In the case when [(z) = 2%1|g «)(2) with a > 1, the associated risk measure
focuses on downside risk only and thus neglects the tradeoff between gains and
losses.

Dunkel and Weber [7] are perhaps the first to discuss the computational
aspects of SR. They characterized SR as a stochastic root finding problem
and proposed the stochastic approximation (SA) method combined with im-
portance sampling techniques to calculate it. Hu and Zhang [18] proposed an
alternative approach by reformulating SR as the optimal value of a stochastic

logEple 7#] —log A) .
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optimization problem and applying the well-known sample average approxi-
mation (SAA) method to solve the latter when either the true probability dis-
tribution is unknown or it is prohibitively expensive to compute the expected
value of the underlying random functions. A detailed asymptotic analysis of
the optimal values obtained from solving the sample average approximated
problem was also provided.

In some practical applications, however, the true probability distribution
may be unknown and it is expensive to collect a large set of samples or the
samples are not trustworthy. However, it might be possible to use some par-
tial information such as empirical data, computer simulation, prior moments
or subjective judgements to construct a set of distributions which contains
or approximates the true probability distribution in good faith. Under these
circumstances, it might be reasonable to consider a distributionally robust
version of (2) in order to hedge the risk arising from ambiguity of the true
probability distribution,

(DRSR) SR/\(Z) :=inf{t e R:t+Z € Ap}, (3)

where Ap :={Z € L™ :suppcp Ep[l(—Z)] < A}, and P is a set of probability
distributions. Follmer and Schied seem to be the first to consider the notion of
distributionally robust SR (DRSR). In [10, Corollary 4.119], they established a
robust representation theorem for DRSR. More recently, Wiesemann et al. [27]
demonstrated how a DRSR optimization problem may be reformulated as a
tractable convex programming problem when [ is piecewise affine and the am-
biguity set is constructed through some moment conditions, see [27, Example
6] for details.

In this paper, we take on the research by giving a more comprehensive
treatment of DRSR. We start by looking into the properties of DRSR and
then move on to discuss some optimization problems associated with DRSR.
Specifically, for a loss ¢(z, £) associated with decision vector z € X C IR™ and
random vector £ € IR*, we consider an optimization problem which aims to
minimize the distributionally robust shortfall risk measure of the random loss:

(DRSRP)  min SR7;(=c(z,£)), (4)

where SRZ?)\(-) is defined as in (3). We present a detailed discussion on (DRSRP)
including tractable reformulation for the problem when the ambiguity set has
a specific structure.

As far as we are concerned, the main contribution of the paper can be
summarized as follows. First, we demonstrate that DRSR is the worst-case SR
(Proposition 1) and hence it is a convex risk measure. Second, we investigate
tractability of (DRSRP) by considering particular cases where the ambiguity
set P is constructed respectively through ¢-divergence ball and Kantorovich
ball. Since the structure of P often involves sample data, we analyse conver-
gence of the ambiguity set as the sample size increases (Propositions 3 and
5). To quantify how the errors arising from the ambiguity set propagate to
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the optimal value of (DRSRP), we then show under some moderate condi-
tions that the error of the optimal value is linearly bounded by the error of
the ambiguity set and subsequently derive finite sample guarantee (Theorem
1) and confidence intervals for the optimal value of (DRSRP) associated with
the ambiguity sets (Theorem 2 and Corollary 1). Finally, as an application, we
apply the (DRSRP) model to a portfolio management problem and carry out
various out-of-sample tests on the numerical schemes for the (DRSRP) model
with simulated data and real data (Section 5).

The rest of the paper is organised as follows. In Section 2, we present the
properties of DRSR, that is, it is a convex risk measure and it is the worst-case
SR. In Section 3, we derive the formulation of (DRSRP) when the ambiguity
set is constructed through ¢-divergence ball and Kantorovich ball and then
establish the convergence of ambiguity sets as sample size increases. In Section
4, the finite sample guarantees on the quality of the optimal solutions and
convergence of the optimal values as the sample size increases are discussed.
In Section 5, we report results of numerical experiments.

Throughout the paper, we use IR" to represent n dimensional Euclidean
space and IR} nonnegative orthant. Given a norm || - || in IR", the dual norm
| ||« is defined by [|y[l« := supy.<1(y, 2). Let d(z, A) := infyreca ||z — 2| be
the distance from a point = to a set A C IR". For two compact sets A, B C
IR", we write D(A, B) := sup,¢ 4 d(z, B) for the deviation of A from B and
H(A, B) :=max{D(A, B), D(B, A)} for the Hausdorff distance between A and
B. We use B to denote the unit ball in a matrix or vector space. Finally, for
a sequence of subsets {Sxn} in a metric space, denote by limsupy_, . Sy its
outer limit, that is,

limsup Sy := {z : Jan, € Sn,such thatzy, — xrask — oco}.
N—o0

2 Properties of DRSR

In this section, we investigate the properties of DRSR. It is easy to observe
that SRZ;\ (Z) is the optimal value of the following minimization problem:

min ¢
telR (5)
st. sup Ep[l(=Z —t)] < A
PeP
The following proposition states that the DRSR is the worst-case SR and it

preserves convexity of SR.

Proposition 1 Let SRZ?A(Z) be defined asin (3), Z € L™ andl: IR — R be a
convez, increasing and non-constant function, let A be a pre-specified constant
in the range of l. Then SRZ?/\(Z) is finite,

SRZ,DA(Z) = Sup SRl],DA(Z)a (6)
PeP

and SRZ;\(Z) is a convex risk measure.
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Proof Since Z is bounded, then there exist constants «, 8 such that Z(w) €
[a, B] for all w € 2. Thus
I(—B—1t) < sup Ep[l(—Z —t)] <l(—a—1t),Vt € R.
PeP
Since I(—8 —t) — o0 as t — —oo and I(—a — t) < X for t sufficiently large,
we conclude that the feasible set of problem (5) is bounded. To show equality
(6), we note that

t:= sup SR\ (Z) < inf sup{t e R: Ep[l(—Z —t)] < \}
pep 7 t pepP

< inf{t € R: sup Ep[l(—Z —t)] < \} = SR\ (Z) =: t*.
t Pep ’

To show the converse inequality, note that ¢ > SRl{D \(Z),YP € P. Thus
Epll(-Z —1)] < A\ VP € P,

which implies # is a feasible solution of (5) and hence t* < . O

Remark 1 It may be helpful to make some comments on Proposition 1.

(i) The relationship established in (6) means that DRSR is the worst-case SR.
This observation allows one to calculate DRSR via SR for each P € P if it
is easy to do so. Moreover, Giesecke et al. [15] showed that SR is a coherent
risk measure if and only if the loss function [ takes a specific form:

l(2) ==X —alz]l- + Blz]4, B>a >0,

where [z]_ denotes the negative part of z and [z]+ denotes the positive
part. In this case, the SR gives rise to an expectile, see [3, Theorem 4.9].
Using this result, we can easily show through equation (6) that DRSR is a
coherent risk measure when [ takes the specific form in that the operation
suppcp preserves positive homogeneity and subadditivity.

(i) The restriction of Z to L° implies that the support ! of the probability
distribution of Z is bounded. This condition may be relaxed to the case
when there exist ¢;,t, € IR such that suppcp Ep[l(—Z — ¢;)] > A and
suppep Ep[l(—Z — )] < A, see [18].

We now move on to discuss the property of DRSR when it is applied to a
random function. This is to pave a way for us to develop full investigation on
(DRSRP) in Sections 3-4. To this end, we need to make some assumptions on
the random function ¢(+,-) and the loss function I(-). Throughout this section,
we use = to denote the image space of random variable £(w) and £(%Z) to
denote the set of all probability measures defined on the measurable space
(5, %) with Borel sigma algebra Z. To ease notation, we will use £ to denote
either the random vector £(w) or an element of R” depending on the context.

1 The support of the probability distribution P is the smallest closed set C C IR such
that P(C) = 1.
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Assumption 1 Let X, I(-) and c(-,-) be defined as in (DRSRP) (4). We
assume the following. (a) X is a conver and compact set and = is a compact
set, (b) 1 is convez, increasing, non-constant and Lipschitz continuous with
modulus L, (c) c(-,§) is finite valued, convex w.r.t. x € X for each £ € = and
there exists a positive constant k such that

lc(@,€) — c(z, &) < k[l - €|l Vz € X,£,¢ € =.

The proposition below summarises some important properties of I(c(z, §) —
t) and sup Ep[l(c(x,&) —t)] — A as a function of (z,t).
Pep

Proposition 2 Let g(z,t,€) := l(c(x,&)—t) and v(z,t) := sup Ep[g(z,t,&)]—
PeP

A. The following assertions hold.

(i) Under Assumption 1 (b) and (c), g(-,-,&) is convex w.r.t. (z,t) for each
fized £ € =, g(x,t,-) is uniformly Lipschitz continuous w.r.t. & with mod-
ulus Lk, and v(x,t) is a convex function w.r.t. (z,t).

(ii) If, in addition, Assumption 1 (a) holds and X is a pre-specified constant in
the interior of the range of I, then there exist a point (xg,t0) € X X R and
a constant n > 0 such that

sup Ep[l(c(z0,§) —to)] = A < —n (7)
Pep

and (DRSRP) has a finite optimal value.

Proof Part (i). It is well known that the composition of a convex function by
a monotonic increasing convex function preserves convexity. The remaining
claims can also be easily verified.

Part (ii). Since ¢(z, §) is finite valued and convex in z, it is continuous in x
for each fixed £. Together with its uniform continuity in &, we are able to show
that ¢(z, ) is continuous over X x =. By the boundedness of X and =, there
is a positive constant a such that ¢(z,£) < « for all (z,£) € X x =Z. With
the boundedness of ¢ and the monotonic increasing, convex and non-constant
property of [, we can easily show Part (ii) analogous to the proof of the first
part of Proposition 1. We omit the details. O

3 Structure of (DRSRP’) and approximation of the ambiguity set

In this section, we investigate the structure and numerical solvability of (DRSRP).
Using the formulation (5) for DRSR, we can reformulate (DRSRP) as

i, !

) reX,te

(DRSRP) s.t. sup Ep[l(c(z, &) —t)] < A, (8)
PcP

where T is a compact set in IR which contains ¢y defined as in (7) and its
existence is ensured by Proposition 2 under some moderate conditions. Obvi-
ously, the structure of (DRSRP’) is determined by the distributionally robust
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constraint. The latter relies heavily on the concrete structure of the ambiguity
set P and the loss function .

In the literature of distributionally robust optimization, various statistical
methods have been proposed to build ambiguity sets based on available infor-
mation of the underlying uncertainty, see for instance [27,28] and the references
therein. Here we consider ¢-divergence ball and Kantorovich ball approaches
and discuss tractable formulations of the corresponding (DRSRP’).

3.1 Ambiguity set constructed through ¢-divergence

Let us now consider the case that the only available information about the ran-
dom vector £ is its empirical data and the size of such data is limited (not very
large). In stochastic programming, a well-known approach in such situation is
to use empirical distribution constructed through the data to approximate the
true probability distribution. However, if the sample size is not big enough
or there is a reason from computational point of view to use a small size of
empirical data (e.g., in multistage decision-making problems), then the qual-
ity of such approximation may be compromised. ¢-divergence is subsequently
proposed to address this dilemma.

Let p = (p1,...,pm)T € ]Rf and ¢ = (q1,...,qu)" € ]Rf be two proba-
bility vectors, that is, Zivil p; = 1 and Zf\il q; = 1. The so-called ¢-divergence
between p and ¢ is defined as I4(p, q) := Zi\il ) (%)7 where ¢(t) is a con-
vex function for ¢t > 0, ¢(1) = 0, 0¢(a/0) := alim; o ¢(t)/t for a > 0 and
04(0/0) := 0. In this subsection, we consider some common ¢-divergences
which are defined as follows.

(a) Kullback-Leibler: Iy, , (p,q) = >, pilog (Z—) with ¢ (t) = tlogt —t+1;

(b) Burg entropy: Iy, (p,q) = >, gilog (q—) with ¢p(t) = —logt +t — 1;
(©) -divergences Iy, (p. ) = u(p: = :)og (2) with ¢s(t) = (t - 1)logt;
(d) x*-distance: I, , (p,q) = E (pi=gi)” q’ ® with Py2 ( )=+t —1)%

(e) Modified x*-distance: I ) S, e q7 with ¢p2(t) = (t — 1)%
(f) Hellinger distance: I¢H(p,q) > (Vpi — \/qi) with ¢z (t) = (Vt — 1)2;
(g) Variation distance: Iy, (p,q) = >, [pi — ¢;| with ¢y (t) = |t — 1].

Lemma 1 (Relationships between ¢-divergences) For two probability vectors
p,q € ]R]f, the following inequalities hold.

(Z) I¢v (p, Q) < min (\/21¢KL (p,q), \/QL#B (p> \/I¢J b,q 7 I¢ 2(p7 q)’
Iy, (P, q));
(i3) Loy (P q) < Iy (P, @) < 2+4/1sy(pyq

We omit the proof as the results can be easily derived by the divergence
functions ¢.
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Let {¢!,...,¢M} C Z denote the M-distinct points in the support of &
and Z; denote the Voronoi partition of = centered at ¢? for i = 1,..., M. Let
€L, ..., &N be an iid sample of ¢ where N >> M and N; denote the number
of samples falling into area =;. Define empirical distribution

M
Pu()i= Y e l) Q

and ambiguity set

M M
i=1

i=1
where py = (%7 RN %)T Using P for the ambiguity set in (DRSRP’),
we can derive a dual formulation of (DRSRP’) as follows:
min t
zeX,teT,t,u
M
s.t. THrut+u )y [pylid*(si) < A,
i=1
(11)
s; < lim @, i=1,....,M,
t—o00 t
si = [l(e(x, (") —t) = 7)/u, i=1,..., M,
u > 0,

where py is defined as in (10) and we write [py]; for the i-th component of
PN, ¢* denotes the Fenchel conjugate of ¢, i.e., ¢*(s) = sup;~o{st — ¢(t)},
see similar formulation in [4]. Note that u Zi]\il[p]v]igb*([l(c(x, ¢H—t)—7]/u)
is a convex function of z,u, 7 and ¢, see [19]. Thus, problem (11) is a convex
program.

It is important to note that the reformulation (11) relies heavily on the dis-
crete structure of the nominal distribution. Note that it is possible to use a con-
tinuous distribution for the nominal distribution, in which case the summation
in the first constraint of problem (11) will become E[¢*([I(c(x, () —t) — 7]/u)]
(before introducing new variables s;). In such a case, we will need to use SAA
approach to deal with the expected value.

The reallocation of the probabilities through Voronoi partition provides
an effective way to reduce the scenarios of the discretized problem and hence
the size of problem (11). It remains to be explained how the ambiguity set
approximates the true probability distribution.

Let .Z denote the set of functions h : & — IR satisfying |h(&1) — h(&)| <
|€&1 — &2, and P,Q € Z(Z) be two probability measures. Recall that the
Kantorovich metric (or distance) between P and @, denoted by dix (P, @), is
defined by

dic(P,Q) = sup{ [ worao - [ h(é)Q(dé)}-

heZ
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Using the Kantorovich metric, we can define the deviation of a set of proba-
bility measures P from another set of probability measures Q by D (P, Q) :=
suppep infoeo dix (P, @), and the Hausdorff distance between the two sets by
Hg (P, Q) := max {Dg (P, Q),Dx(Q,P)}. An important property of the Kan-
torovich metric is that it metrizes weak convergence of probability measures
[5] when the support is bounded, that is, a sequence of probability measures
{Pn} converges to P weakly if and only if dix(Pyx,P) — 0 as N tends to
infinity.

Recall that for a given set of points {¢!,... (M}, the Voronoi partition of
Z is defined as M subsets of =, denoted by =1, ..., =, with | J,_; M ==

.....

and Z; C {y : [ly — ¢*| = minj=1_ar |y — 7|} - By [22, Lemma 4.9],

dig <ZP D) ) / min d(¢, ¢’ dP* (12)
M
=Y [ dte.char < pur
i=1"Y =i

where

B :Ignaxlmm d(€,¢h). (13)

Using this, we can estimate the Kantorovich distance between P and the
true probability distribution P*.

Proposition 3 Let P be defined as in (10) and P* be the true probability
distribution of €. Let By be defined as in (13) and § be a positive number
such that M6 < 1. If ¢ is chosen from one of the functions listed in (a)-(g)
preceding Lemma 1, then with probability at least 1 — MY,

D D
k(P PY) < g + 5 max{2y7, 1} +5AMLNG),  (14)

where A(M, N, ¢) := min (\F (2+ ,/2ln%) 4+ \/% (2+ 1/2111%)), D is
the diameter of =, that is, sup{||¢’ — &"| : &,&" € =}, and r is defined
as in (10). In the case when £ follows a discrete distribution with support

{¢h, ..., ¢M}, we have
k(P ,P") < 5 max{2y/r,r} + EA(M7 N, 0) (15)

with probability at least 1 — M.

Proof By the triangle inequality of the Hausdorff distance with the Kan-
torovich metric,

M
xk(PM P*) < sup dig (P > PH(E)L(- >+dIK (ZP* Dlei(-) P*).

PG'PM i=1
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By (12), dig (Zjﬁ L PH(ENL(), P*) < B Moreover, it follows by [14, The-

orem 4], the Kantorovich distance is bounded by D/2 times the total variation
distance, that is,

M DM
Observe that

M
Z|pz Pr(5;) SZ Ipi — [P il + lpn] — P(Z0)))

M

= 14y (p,PN) + Z lpn]i — P*(Z3)]

i=1

By Lemma 1,

I¢V(PJ]\\I4apN) < max{Qv I¢(P]]\\//IapN)7]¢V(P]]\\//[7pN)} < maX{Q\/F,r}.

Thus, in order to show (14), it suffices to show
ZIpN ~ P*(5))| < A(M, N, ). (16)

Let a € RM be a vector with [|alles := maxi<i<pr|a;| = 1, and ¢,(€) =
Zi]\il a;lz,(§). Then supecz [¢a(§)| < 1 and it follows by [25, Theorem 3]
that

N
1 . 1 1
— @ — Ep«[¢q <—12 2In = 17
N;wa) P+ [6a()] \/ﬁ<+ n5> (17)
with probability at least 1 — ¢ for the fixed a. In particular, if we set a = e;,
for i =1,..., M, where e; € RM is a vector with i-th component being 1 and

the rest being 0, then we obtain

|[PN]¢ -

1 N
= |5 2 e l€") —Ep [0, (9)
k=1

1 1
<N <2+\/21n5>(18)

with probability at least 1—9 for each ¢ = 1,--- , M. By Bouferroni’s inequality,

> llow) — P(E) < <2+ \/mn;) (19)

with probability at least 1 — M¢ and hence we have shown (16) for the first
part of its bound in A(M, N, 9).
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To show the second part of the bound, we need a bit more complex argu-
ment to estimate the left hand side of (16). Let A := {a € R™ : |la]s = 1}.
For a small positive number v (less or equal to 2), let Ay := {a',---,a*} be
such that for any a € A, there exists a point a;(a) € Ay depending on a such
that [la — a*(a)||ec < v, ie., Ay = {a’,--- ,a"} is a v-net of A. Observe that

M
> ol = P*(E3) = sup |pya—p T, (20)

i=1 llafleo=1

where we write p* for the M-dimensional vector with i component P*(Z}).
Then

T 1 i «T 4 * i *
pha—p 7 al < |pk(a—a'(a))| + [pha'(a) — p*Tai(a)] + [p* " a'(a) — p* " al

< 2w + [pia’(a) = p*a'(a)].

By (h),f()I‘ eaclla,’l— s ]{j
|p a’l p al‘ < — 2 —|— 21[ —1 ( )

with probability at least 1 — 4, thus inequality (21) holds uniformly for all
i=1,---,k with probability at least 1 — k§. This enables us to conclude that

allee=1

1 1
<2 — | 2 -
< V+\/N< + 21115) (22)

with probability at least 1 — kd. Since when v = 2, Ay, will be a trivial v-net,
then we can set k = M and obtain from (22) that

M
S llpali = PR = swp [pka—pTal
=1

- 1 I
D llpwli = PH(E) <4+ Vo <2+ 2In 5) (23)

i=1

with probability at least 1 — M¢. This completes the proof of (16) and hence
inequality (14).
In the case when ¢ follows a discrete distribution with support {¢1, ..., (M},

M

* D -

Hy (P, P*) < sup > <I¢V(P7pN)+Z[pN]i_P (:i)|>-
pepyf i=1

The rest follows from similar analysis for the proof of (14). O
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It might be helpful to make a few comments on the above technical results.
First, if we set § = 557, then 1 — §M = 90% and the third term at the right
hand side of (14) is

gmin (M (2+\/W>,4+

o 24 VEWION) ) (20

1
7w (
In order for the first part of (24) to be small, N must be significantly larger
than M. The approach works for the case when there is a large data set
which is not scattered evenly over =, but rather they form clumps, locally
dense areas, modes, or clusters. In the case that N is less than (M — 1), the
second part of (24) is smaller than the first part, which means the second part
provides a lower bound. Second, the true distribution in the local areas may be
further described by moment conditions, see [20,27]. Third, Pflug and Pichler
proposed a practical way for identifying the optimal location of discrete points
¢t ..., ¢M and computing the probability of each Voronoi partition, see [22,
Algorithms 4.1-4.5]. Forth, the inequality (14) gives a bound for the Hausdorff
distance of the true probability distribution P* and the ambiguity set P, it
does not indicate the true probability distribution P* being located in P3!.

Since the ambiguity set P4 does not constitute any continuous distribu-
tion irrespective of r > 0, then when the true probability distribution P* is
continuous, P* lies outside PA/ with probability 1. If the true probability
distribution P* is discrete, Pardo [21] showed that the estimated ¢-divergence
¢?,—](\[1)I¢(p*, pn) asymptotically follows a x%, ;-distribution with M — 1 de-
grees of freedom, where p* denotes the probability vector corresponding to
probability measure P* and M is the cardinality of = (the support of P*),
which means if we set

/! 1
¢2](V)X?\4—1,1—6» (25)

then with probability 1 — 6, I4(p*,pn) < r. The latter indicates that the
ambiguity set (10) lies in the 1 — ¢ confidence region.

For general ¢-divergences, we are unable to establish the quantitative con-
vergence as in Proposition 3. However, if P* follows a discrete distribution
with support {¢!,..., (M}, the following qualitative convergence result holds.

Proposition 4 [19, Proposition 2] Suppose that ¢(t) > 0 has a unique root
at t =1 and the samples are independent and identically distributed from the
true distribution P*. Then Hy(PY,P*) — 0,w.p.1, as N — 0o, where r is
defined as in (25).

Note that in [19, Proposition 2] the convergence is established under the
total variation metric, since the probability distributions here are discrete,
the convergence is equivalent to that under the Kantorovich metric. We refer
readers to [19] for the details of the proof.
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3.2 Kantorovich ball

An alternative approach to the ¢-divergence ball is to consider Kantorovich
ball centered at a nominal distribution, that is,

Py ={P € Z(Z):dg(P,Py) <r}, (26)

where Py () = % Ef\il Lei(-) with &, ..., &Y being iid samples of ¢. Differing
from the ¢-divergence ball, the Kantorovich ball contains both discrete and
continuous distributions. In particular, if there exists a positive number a > 0
such that

6= / exp([[€]]) P* (de) < oo, (27)

then for any r > 0, there exist positive constants C; and Cy such that

o exp(—CzNTmaX{k*Q}) ifr <1,

exp(—CyNr?) ifr > 1, (28)

Prob(dig (P*,Py) > r) < {

for all N > 1, k # 2, where Cy and Cy are positive constants only depending
on a, 6 and k, “Prob” is a probability distribution over space = x - -+ x = (N
times) with Borel-sigma algebra Z® ---® %, and k is the dimension of £, see
[11] for details. By setting the right hand side of the above inequality to ¢ and
solving for r, we may set

)

log(Cro—1y V/maxtk.2} log(C1 6~
( g(C;N )) it N > g(ol2 )

—1\\ 1/a -1
log(C16 . log(C16
( g(CglN )) N < g( 012 )

ry(0) = (29)

)

and consequently the ambiguity set (26) contains the true probability distri-
bution P* with probability 1 — d when r = rx(9).

In [8,13,29], the dual formulation of distributionally robust optimization
problem with the ambiguity set (26) has been established. Based on these
results, the dual of (DRSRP’) can be written as

min t
zeX,teT,n,s
1 N
st.  nr+ N Z 5; <A, (30)

i=1

ten [Ue(z, &) —t) —nllE¢ —€'|]] <spi=1,...,N.

In the case when ¢(z,&) = —27¢, & = {¢ e R" : G¢ < d} and

We(z,8) —t) = jnax aj(—xTE —t) +b; = jZI?aXK(—ajx, &) —ajt + by,

.....
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problem (30) can be recast as

min t
z€X,teT,n,s,7ij;
1
s.t. 777"+N25i§)\,
i

bjfajt:<aj:r,§i>+<%‘j,d7G§i)§si,i:1,...7N7j:1,...
IGTvij + ajzl|s <n,i=1,...,N,j=1,...,K,
’}/UZO,Z:L7N7‘]:1,7K

The proposition below gives a bound for the Hausdorff distance of Py and P*
under the Kantorovich metric.

Proposition 5 Let Py be defined as in (26) and P* denote the true probabil-
ity distribution. Let vy () be defined as in (29). If the radius of the Kantorovich
ball in (26) is equal to rn(05), then with probability at least 1 — 6,

Hg (Pn, P*) < 2rn(0). (31)
Proof We first prove that
Hy (Py, P*) < digc(Py, P*) + 1 (32)
To see this, for any P’ € Py, we have
dig(P', P*) < dig (P, Py) + dig (Py, P*) < r +dig(Py, P¥),
which implies Dg (Pn, P*) < r + dig(Py, P*). On the other hand,
Dk (P, Pn) = QiEHgN di (P*,Q) < dig(P*, P') < 7 +dix (P, P7).
A combination of the last two inequalities yields (32).
Let us now estimate the first term in (32), i.e., dig(Pn, P*). By the def-

inition of ry (), we have with probability 1 — §, dig(Py, P*) < rn(0). The
conclusion follows. O

In the case when the centre of the Kantorovich ball Py in (26) is replaced
by that defined as in (9), we have

Hg (Pn, P*) < Buv + 7+ A(M, N, 6) (33)

with probability at least 1 — M ¢, where A(M, N, 0) is defined as in Proposition
3. To see this, we can use the triangle inequality of the Hausdorff distance with
the Kantorovich metric to derive

Hg (P, P*)
M M
< sup dig [P PH(ENLG () | +dik [ D P(E)NLe (), P* ] . (34)

PEPN j=1 j=1

K,
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Since
M M
dg [P PH(5)1e() | <dk (P, Py)+dik | Py, Y P*(55)Le()
j=1 j=1
D M
ST+§Z|[pN]j—P*(5j)|, (35)
j=1

we establish (33) by combining (34), (35), (19) and (22).

Before concluding this section, we note that it is possible to use other sta-
tistical methods for constructing the ambiguity sets such as moment conditions
and mixture distribution, we omit them due to limitation of the length of the
paper, interested readers may find them in [16] and references therein.

4 Convergence of (DRSRP?’)
In Section 3, we discussed two approaches for constructing the ambiguity of

the (DRSRP’) model, each of which is defined through iid samples. Let us
rewrite the model with P being replaced by Py

(DRSRP-N) x&Xer ! (36)
) st.  sup Ep[l(e(x,&) —t)] < A,
PePN

to explicitly indicate the dependence of the samples. In this section, we investi-
gate finite sample guarantees on the quality of the optimal solutions obtained
from solving (DRSRP’-N), a concept proposed by Esfahani and Kuhn [8], as
well as convergence of the optimal values as the sample size increases.

Let zy be a solution of distributionally robust shortfall risk minimiza-
tion problem (DRSRP’N). The out-of-sample performance of =y is defined as
SRf;(fc(xN,f)), where P* is the true probability distribution. Since P* is
unknown, the exact out-of-sample performance of zy cannot be computed,
but we may seek its upper bound ¥ such that

Prob(SR{\ (—c(z,€)) < ¥n) > 136, (37)

where § € (0,1). Following the terminology of Esfahani and Kuhn [8], we call
0 a significance parameter and ¥y the certificate for the out-of-sample perfor-
mance. The probability on the left-hand side of (37) indicates ¥ ’s reliability.
The following theorem states that the finite sample guarantee condition is ful-
filled for the ambiguity sets discussed in Section 3, that is, when the size of
the ambiguity sets are chosen carefully, the certificate ¥ can provide a 1 — ¢
confidence bound of the type (37) on the out-of-sample performance of x .

Theorem 1 (Finite sample guarantee) The following assertions hold:
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(i) Suppose the true probability distribution P* is discrete, i.e., = = {¢, ..., ¢M}.
Let P be defined as (10) with r being given as (25), then with Py = PM,
the finite sample guarantee (37) holds.

(i) Let Pn be defined as in (26) with v = rn(0) being given in (29). Under
condition (27), the finite sample guarantee (37) holds.

Proof The results follow straightforwardly from (25), (28), (29) and the defi-
nition of finite sample guarantee. O

We now move on to investigate convergence of ¥ and Sy. From the dis-
cussion in Section 3, we know that Hy (Py, P*) — 0. However, to broaden the
coverage of the convergence results, we present them by considering a slightly
more general case with P* being replaced by a set P*.

Theorem 2 (Convergence of the optimal values and optimal solu-
tions) Let P* C P(Z) be such that limy_, o Hg (P, P*) = 0. Let 9* denote
the optimal value of (DRSRP’) with P being replaced by P*. Let S* be the
corresponding optimal solutions. Under Assumption 1,

2Dx L
Wy = 9] < S22 HK (P, P) (38)
for N sufficiently large and
limsup Sy = S*, (39)
N—o0

where Dx denotes the diameter of X, n is defined as in Proposition 2, and
L.k are defined as in Assumption 1.

Proof Let v*(x,t) := suppep- Ep[l(c(z,§) —t)] — X and vy (z,t) := suppep,
Epli(c(z,&) —t)] — A Let g(z, ¢, &) :=l(c(x,§) — t). By the definition,

UN(xat) - U*(Iat) = Ssup Ep[g(l’,t,f)} — Sup EQ[Q(IE,t,g)]
QeP*

PePN

= sup inf (Eplg(z,t,€)] —Eqly(,t,€)])
PcPy QEP

< sup mf Lrdig (P, Q) = LEDk (PN, P*),
PcPy QEP

where the inequality is due to equi-Lipschitz continuity of ¢ in & and the
definition of the Kantorovich metric. Likewise, we can establish

v*(z,t) —on(z,t) < LDk (P*, Py).
Combining the above two inequalities, we obtain

sup |on(z,t) —v*(x,t)| < LkHg (Pn, P*). (40)
rzeX teT
Let F* :

= {(z,t) € X xT: *(xt)</\}and]:N:—{(xt)€X><T
un(2,t) < A}

By Proposition 2, v* and vy are convex on X xT'. Moreover, the
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Slater condition (7) allows us to apply Robinson’s error bound for the convex
inequality system (see [23]), i.e., there exists a positive constant Cy such that
for any (z,t) € X x T, d((z,t), F*) < Ci[v*(x,t) — A]+. Let (z,t) € Fn. The
inequality above enables us to estimate
d((x7t)7~/—:*) <G [’U*(]"7t) - /\]‘f‘

< Ci(jv*(z,1) — o (@, )] + [ow (@, 1) — Al4)

= Ci|v*(z,t) — vn(z,t)| < C1LEHK (PN, P¥). (41)
The last inequality follows from (40) and Robinson’s error bound [23] ensures

that the constant C; is bounded by Dx /n, where Dx is the diameter of X.
This shows D(Fn, F*) < %HK (P*,Pn). On the other hand, the uniform
convergence of vy to v ensures vy (xg,to) — A < —n/2 for N sufficiently large,
which means the convex inequality vy (x,t) — A < 0 satisfies the Slater condi-
tion. By applying Robinson’s error bound for the inequality, we obtain

d((z,t), Fn) < Co|v*(z,t) — vn(z,t)| < CoLKHK (PN, P™) (42)

for (z,t) € F* and N is sufficiently large, where Cs is bounded by 2Dx /7.
Combining (41) and (42), we obtain

2DXLI€

H(Fn, F*) < Hg (P, P*). (43)

Let (z*,t*) be an optimal solution to (DRSRP’) with P being replaced by
P* and (zn,tn) the optimal solution of (DRSRP’-N). Note that Fy,F* C
X xT. Let IIpF := {t € T : there exists x € X such that (z,t) € F}. Since
ty =min{t: ¢t € IpFy} and t* = min{t : t € IIpF*}, then
[ty — t*| < H(IIp Fn, O F*).

Thus

[Wn — 0| = |ty — t*| < H(IpFy, OpF*) < H(Fn, F),
which yields (38) via (43).

Now, we move on to show (39). Let (zn,tn) € Sy. Since X and T are

compact, there exist a subsequence {(xn,,tn,)} and a point (£,¢t) € X x T
such that (zn,,tn,) — (&,7). It follows by (43) and (38) that (#,7) € F* and
t = ¥*. This shows (,1) € S*. O

Theorem 2 is instrumental in that it provides a unified quantitative con-
vergence result for the optimal value of (DRSRP’-N) in terms of Hg (Py, P*)
when Py is constructed in various ways discussed in Section 3. Based on the
theorem and some quantitative convergence results about Hg (Py,P*), we
can establish confidence intervals for the true optimal value ¥* in the follow-
ing corollary.

Corollary 1 Under the assumptions in Theorem 2, the following assertions
hold.
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(i) If P* comprises the true probability distribution only and Py is defined by
(10), then under conditions of Proposition 3, ¥* € [In — ©,9x + O] with
probability 1 — M, where

- 2DXLI<J

B+ 5 (max{27, 7} + A(M, N, )]

with A(M, N, §) = min (% (2+ 1/21n§) A+ e (2+ ./21n§)), 3 be-
ing defined as in (13) and D being the diameter of =.

(i) If P* comprises the true probability distribution only and Py is defined by
(26), then under conditions of Proposition 5,

ADx L ADx L
9" € {mv _ SN STN(‘S),ﬁN XN ””N(‘S)]

o :

with probability 1 — 9.

4.1 Extension

Now we turn to extend the convergence result to optimization problems with
DRSR constraints:

(DRSRCP) niy /() (44)
s.t. SR\ (—c(x,€)) < 7,

where decision maker wants to optimize an objective f(x) while requiring the
DRSR risk level to be contained under threshold . By replacing P with Py,
we may associate (DRSRCP) with

(DRSRCP-N) rip f@) (45)
s.t. SRff(—c(x,{)) <.

Tractable reformulation of problem (DRSRCP) or (DRSRCP-N) may be de-
rived as we did in Section 3. In what follows, we establish a theoretical quan-
titative convergence result for (DRSRCP-N).

Let F, S and ¥ denote respectively the feasible set, the set of the optimal
solutions and the optimal value of (DRSRCP). Likewise, we define Fy, Sy
and 9y for its approximate problem (DRSRCP-N).

Theorem 3 Let Assumptions 1 hold. Suppose that there exists xog € X such
that

SRZ,),\(*C(IO,S)) <7
and Hg (Pn,P) — 0 as N — oo. Then the following assertions hold.
(i) There is a constant C > 0 such that
H(Fy,F) < CHk(Px, P)

for N sufficiently large.
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(i) hm In = 9 and hmsupSN =8S.
N —o0
(iii) If, in addition, f is Lipschitz continuous with modulus 3, then

[dn — 9| < BH(Fy, F). (46)

Moreover, if (DRSRQP) satisfies the second order growth condition at the
optimal solution set S, i.e., there exist positive constants a and € such that

f(x) =0 > ad(z,5), Vo € FN (S +eB),

then

D(Sw, §) < max {2C, \/5CB/a | v/Hk Py, P) (47)
when N is sufficiently large.

Proof Part (i) can be established through an analogous proof of Theorem 2.
We omit the details.
Part (ii). First we rewrite (DRSRCP) and (DRSRCP-N) as

inf f(x) = f(z)+dz(x) and inf fn(x) = f(z) + 6z, (2),

zelR™ z€IR"

0, ifreF

." Note
o0, ifz ¢ F.

where 6 z(z) is the indicator function of F,ie., d7(x) = {
that the epigraph of d (-) is defined as

epidz(-) == {(x,0) : 0z(x) < a} = F x Ry.

The convergence of Fy to F implies ]\}im epidz (-) =epidz(+), and through
—00
24, Definition 7.39] that 0z _(-) epiconverges to §z(-). Furthermore, it follows

from [24 Theorem 7.46] that fn epiconverges to f. Since f is continuous and
F and Fy are compact set, then any sequence {a: N} in Sy has a subsequence
converging to Z. By [6, Proposition 4.6], hm Iy=">Jandz € S.

In what follows, we show Part (111) Let zy € Sy and z* € S. By the

definition of D(Fy, }') there exists 'y € F such that d(zx,2’y) < D(Fy, F).
Moreover, by the Lipschitz continuity of f, we have

f@") < f(ay) < flzn) +1f(@n) = f@)] < flan) + Blan — i
< f(zn) + BD(FN, F).

Exchanging the role of zy and z*, we have f(zy) < f(z*) 4+ SD(F, Fn). A
combination of the two inequalities yields (46).

Next, we show (47). Let zny € Sy and T € S. By the second order growth
condition,

=
5
z
\
=
|
N
5
z
Il

flan) = (@) = (f(g(zn)) — ()
< fllg, () = () - ad(Lg(2n), 5)?,



DRSR Model and Its Approximation 21

where II¢(a) denotes the orthogonal projection of vector a on set S , that is,
lg(a) € argmin, g [|s — al|. By the Lipschitz continuity of f, the inequality
implies

AUz (wx), 8) < \/(8/@)(I1Ls,, (@) = 7| + [TLg(an) — 2w ).
Therefore,
d(ay, ><HxN—H < N+ d(Lg(xn), ) (48)
< Jlaw = Wpan)l 4+ /(8/a) MLz, (@) - 7| + [TLg(zn) — w):

Since max {maXZNESN [zn —g(zn)], maxge g [z (T) —EH} < H(Fy,F),

we have from inequality (48) and Part (i),
d(zn, 8) < maX{C \/205/04} [HK Pn,P) + HK(PN,P)] .

The last inequality implies (47) in that zx is arbitrarily chosen from Sy and
Hg (Pn,P) < /Hg (Pn,P) when N sufficiently large. O

Analogous to Corollary 1, we can derive confidence intervals and regions
for the optimal values with different Py .

5 Application in portfolio optimization

In this section, we apply the (DRSRP) model to decision-making problems
in portfolio optimization. Let &; denote the rate of return from investment
on stock i and x; denote the capital invested in the stock ¢ for ¢ = 1,...,d.
The total return from the investment of the d stocks is 7€, where we write &
for (£1,&s,...,&4)T and x for (w1, 72,...,24)T. We consider a situation where
the investor’s decision on allocation of the capital is based on minimization of
the distributionally robust shortfall risk of 27¢, that is, SR} (z7€) for some
specified [, A and P, that is, the investor finds an optimal decision z* by solving

Pyt

x s

st sup Epfl(—2T¢ — )] < A. (49)
PeP

We have undertaken numerical experiments on problem (49) from different
perspectives ranging from efficiency of computational schemes as we discussed
in Section 3, the out-of-sample performance of the optimal portfolio and the
growth of the total portfolio value over a specified time horizon using different
optimal strategies.

Our main numerical experiments focus on problem (49) with the ambigu-
ity set being defined through the Kantorovich ball. We report the details in
Example 1.
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Example 1 Let €',..., 6N be iid samples of ¢ and Py be the nominal distri-
bution constructed through the samples, that is, Py () = & Zf\il Lei(+). The
ambiguity set is defined respectively as

Py ={P e Z2(RY) : dig(P, Py) <7} (50)

To simplify the tests, we consider a specific piecewise affine loss function I(z) =
max{0.05z+1, 24+0.1,4z+2}. We set A = 1 and let the total number of stocks
d be fixed at 10. We follow Esfahani and Kuhn [8] to generate the iid samples
by assuming that the rate of return §; is decomposable into a systematic
risk factor ¥ ~ N(0,2%) common to all stocks and an unsystematic risk
factor ¢; ~ N (i x 3%,1 x 2.5%) specific to stock i, that is, & = o + (;, for
¢ = 1,...,d. Based on the discussion in Section 3.2, problem (49) can be
reformulated through dual formulation as

= i t
INUY=
| X
s.t. nr + N ;sz <1, (51)
bj —ajt — (ajz,&%) <s;, fori=1,...,N,j=1,2,3,
||aj‘r||* <, fOI‘j =1,2,3.
We use || - || to denote 1-norm and thus || - || is the co-norm. Following the

terminology of Esfahani and Kuhn [8], we call Jy(r) the certificate.

In the first set of experiments, we investigate the impact of the radius of the
Kantorovich ball » on the out-of-sample performance of the optimal portfolio.
For any fixed portfolio zx(r) obtained from problem (51), the out-of-sample
performance is defined as J(xn(r)) = SRZ{D; (zn(r)T¢), which can be com-
puted from theoretical point of view since the true probability distribution P*
is known by design although in the experiment we will generate a set of valida-
tion samples of size 2 x 10° to do the evaluation. Following the same strategy
as in [8], we generate the training datasets of cardinality N € {30,300, 3000}
to solve problem (51) and then use the same validation samples to evaluate
J(xzn(r)). Each of the experiments is carried out through 200 simulation runs.

Figures 1 depict the tubes between the 20% and 80% quantiles (shaded
areas) and the means (solid lines) of the out-of-sample performance J(xn(r))
as a function of radius r, the dashed lines represent the empirical probability
of the event J(xn(r)) < Jy(r) with respect to 200 independent runs which
is called reliability in Esfahani and Kuhn [8]. It is clear that the reliability is
nondecreasing in r and this is because the true probability distribution P* is
located in Py more likely as r grows and hence the event J(xn(r)) < Jn(r)
happens more likely. The out-of-sample performance of the portfolio improves
(decreases) first and then deteriorates (increases).

In the second set of experiments, we investigate convergence of the out-of-
sample performance, the certificate and the reliability of the DRO approach
(51) and the SAA approach as the size of sample increases. Note that SAA
corresponds to the case when the radius r of the Kantorovich ball is zero.
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Fig. 1 Out-of-sample performance J(zn (7)) (left axis, solid line and shade area) and relia-
bility Prob(J(zn (7)) < Jn(r)) (right axis and dashed line) based on 200 independent runs.
(a) N = 30 training samples, (b) N = 300 training samples, (¢) N = 3000 training samples.

In all of the tests we use cross validation method in [8] to select the Kan-
torovich radius from the discrete set {{5,6,7,8,9} x 1073,{0,1,2,...,9} x
1072,{0,1,2,...,9} x 1071}. We have verified that refining or extending the
above discrete set has only a marginal impact on the results.

Figure 2 (a) shows the tubes between the 20% and 80% quantiles (shaded
areas) and the means (solid lines) of the out-of-sample performance J(zx) as
a function of the sample size N based on 200 independent simulation runs,
where xy is the minimizer of (51) and its SAA counterpart (r = 0). The
constant dashed line represents the optimal value of the SAA problem with
N = 10 samples which is regarded as the optimal value of the original problem
with the true probability distribution. It is observed that the DRO model (51)
outperforms the SAA model in terms of out-of-sample performance. Figure 2
(b) depicts the optimal values of the DRO model and the SAA counterpart,
which is the in-sample estimate of the obtained portfolio performance. Both
of the approaches display asymptotic consistency, which is consistent with
the out-of-sample and in-sample results. Figure 2 (c¢) describes the empirical
probability of the event J(zy) < Jy with respect to 200 independent runs,
where xy is the optimal value of the DRO model or SAA model, and Jy are the
optimal value of the corresponding problems. It is clear that the performance
of the DRO model is better than that of the SAA model.

Example 2 In the last experiment, we evaluate the performance of problem
(49) with the ambiguity set being constructed through the KL-divergence ball
and the Kantorovich ball, we have also undertaken tests on problem (49)
with 10 stocks (Apple Inc., Amazon.com, Inc., Baidu Inc., Costco Wholesale
Corporation, DISH Network Corp., eBay Inc., Fox Inc., Alphabet Inc Class A,
Marriott International Inc., QUALCOMM Inc.) where their historical data are
collected from National Association of Securities Deal Automated Quotations
(NASDAQ) index over 4 years (from 3rd May 2011 to 23rd April 2015) with
total of 1000 records on the historical stock returns.

We have carried out out-of-sample tests with a rolling window of 500 days,
that is, we use the first 500 data to calculate the optimal portfolio strategy for



24 S. Guo, H. Xu

o
N

o
>

—==True 0.15
e

|
0.05 —e—Kantorovich
——SAA .
—-=-True
0 0

.2 1
—e—Kantorovich 0 —e—Kantorovich
——SAA ——SAA

0

Certificate

Out-of-sample performance
o
>

0.14
012
10" 10% 10° 10' 10% 10° 10' 10% 10°
N N N
(a) (b) (c)

Fig. 2 (a) Out-of-sample performance J(zy), (b) certificate Jy, and (c) reliability
Prob(J(zn) < Jn) for the Kantorovich and SAA solutions of N.

1.15 -
——Wassertein

0 100 200 300 400 500
Trade times

Fig. 3 Wealth evolution with the trading times.

day 501 and then move on a rolling basis. The radiuses in the two ambiguity
sets are selected through the cross validation method. Figure 3 depicts the
performance of three models over 500 trading days. It seems that the KL-
divergence model and SAA model perform similarly, whereas the Kantorovich
model outperforms the both over most of the time period.
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