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1 Introduction

In the past few years, there has been a resurgence in the interest paid to quantum field theo-
ries in 2+1 dimensions and the unexpected IR dualities that they can exhibit. In particular,
it has been shown in a variety of contexts that Chern-Simons theories coupled to matter
participate in bosonization-type dualities [1-4], and in the Abelian Chern-Simons matter
theories, bosonization can then be extended to a web of particle-vortex dualities [5, 6].
Apart from these curious dualities, Chern-Simons matter theories at IR fixed points are
models of critical phenomena in low dimensional condensed matter systems, capture phe-
nomena such as the fractional quantum Hall effect, and play a role in topological quantum
computing [7]. Further, there have been lessons taken from these dualities and imported
back into theories closer to ones recognizable to high energy physicists [8, 9]

More than being purely speculative relations, 2+1 dimensional bosonization and
particle-vortex dualities are now backed by significant evidentiary support. In the case of
non-Abelian Chern-Simons theories coupled to fundamental matter, the most analytically
controllable evidence comes from the large IV, large Chern-Simons level, k, fixed number
of flavors regime, e.g. [10]. Despite N = 1 lying well outside of any extrapolation from
the non-Abelian evidence, recent exact lattice [11] and quantum wire constructions [12, 13]
have given strong support of Abelian 2+1 bosonization and particle-vortex duality. All of
this evidence suggests that these dualities might play a role in real world physical systems
at criticality.



However if there is any intent on exporting the lessons from 2+1 dimensional bosoniza-
tion to inform any aspect of experimental protocol for real world samples, then it is im-
portant to understand how the dualities can be made consistent with the introduction of
a boundary. In [14], it was shown that a prescriptive method exists to assign boundary
conditions for Abelian bosonization and particle-vortex dualities. The key realization in
arriving at the correct accounting for necessary boundary conditions and edge modes in
Abelian dualities was that the Chern-Simons terms were best thought of in terms moti-
vated by their UV origins. That is, the Chern-Simons terms are replaced by a theory of
heavy, well-regulated “fiducial fermions”.

Recently, there have been proposals to explain the vast set of 2+1 dimensional
bosonization dualities as originating from a single “master” duality [15, 16]. The master
dualities generalize the original non-Abelian bosonization dualities (see [1]) to a level-rank
type equivalence between Chern-Simons matter theories with both scalars and fermions in
each theory. In addition, studying the N = k£ = 1 limit with single species of fundamental
matter can be shown to recover the known Abelian dualities.

At first glance, one might assume that the application of the fiducial fermion analysis
in Abelian dualities in the presence of a boundary would be a trivial generalization to the
non-Abelian dualities. However because both sides of the single species non-Abelian and
master bosonization dualities in [1, 15, 16] have dynamical gauge fields, the introduction
of a boundary is more subtle. As pointed out in [17], choosing certain boundary conditions
on bulk dynamical gauge fields can alter the counting of global symmetries present on the
boundary. The interplay between boundary conditions and global symmetries presents an
interesting, non-trivial extension of the study in [14] and will require a careful analysis in
order to find duality-consistent boundary conditions.

To the end of finding duality-consistent boundary conditions for the master bosoniza-
tion duality, we will organize our work as follows. In section 2, we will briefly review
the master bosonization duality and the fiducial fermion prescription. After reviewing the
preliminary information, we will construct in section 3 the consistent boundary conditions
and necessary edge modes for non-Abelian dualities with a single species of matter. Using
the method developed to address the single species non-Abelian dualities, we will show
how the new prescription works in all massive phases of the master bosonization duality
in section 4. Finally, we briefly comment on generalization to the SO and USp versions of
the master duality in section 4.1.

2 Preliminaries

2.1 Master bosonization duality

At the core of recently discovered non-supersymmetric 241 dimensional dualities is the
well-known level-rank duality,

SU(N)_j, ¢+ Ulk)y + U (kN)_, (2.1)

where U (kN)_, represents a gravitational Chern-Simons term +2kNCSgray [2]. New work
has suggested that there exists a master duality that seemingly encompasses and generalizes



all known 241 dimensional dualities built on the level-rank core [15, 16]. Schematically,
the master duality is given by an equivalence between two gauge theories with fundamental
matter sectors containing Ns (Ny) scalars, ¢ (®), and Ny (N,) Dirac fermions, ¢ (), i.e.

SU(N)_, ~ with Ny g and Ny ¢ ¢ U(k)y_n. with Ny @ and N, U.  (2.2)
e ’

This is the “master” duality in the sense that it together with its time-reversed version
encompass all of the 3d bosonization dualities of ref. [1]. Namely, the single species limits
of either Ny = 0 or Ny = 0 respectively yield

SU(N)_pwith Ny ¢ < U(k)y_n~, with N, 0, (2.3)
2

SU(N)_, w with Nyy ¢ U(k)ywith Ny @. (2.4)
T

Explicitly, while starting from different UV theories, (2.2) is a duality between the
partition functions

/D(---)efd%ﬂsv o /D(--.)efd%ﬂv (2.5)
in the IR limit. The Lagrangians are given by'

Lsu = [Dorpol + 0By, 3,0 — i (Nj=k)CSw[b] + B [ £ Trn (b-1w (Ai1+42)) )
N (cst €] + (k — Ny) (BF[/L; Ag) + csl[Ag]) + 2Nfcsgrav) Y Lo, (26)
Lo = |Desc® +iUP,, ;5 U—iN (csk[c] + BF[Txy, (c); Ay] + zkcsgrav) + L (2.7)
where the U(1) field f is a Lagrange multiplier whose precise role — as well as the moti-
vation for the notation adopted for the gauge fields listed in table 1 — will be discussed

below. For brevity, we have adopted the following notation for Chern-Simons and BF terms
for rank N gauge groups

1 2
= —Tr —i=b? 2.
CSn[b] 1 LN (bdb ng > , (2.8)
1
BF[f; Tryb] = Q—derNb. (2.9)
m
The gravitational Chern-Simons term is given by

1
CSaray = / TR AR, 2.10
/MaX & 1927 X ( )

where X is a d = 4 manifold and M is its d = 3 boundary.

!These Lagrangians are based on those in [15] with A, — NA, for simplicity of the expressions. This
amounts to saying quarks have charge 1 under U(1),, rather than baryons.



Gauge Fields Background Fields

Symmetry | U(N) | U(k) | SU(N) | SU(k) || SU(Ns) | SUWNf) | UL)mp | UD)Es
Field by Cu v, c, B, C, Ay, Ay,
Index a, B | p,o a, B P, T M, N 1,J

Table 1. Collection of notation for various gauge fields. Note that dynamical gauge fields are
indicated by lower case letters and background gauge fields by upper case letters.

For the master bosonization duality to be valid, we need to deform the theories by
adding in the following putatively relevant interaction terms [15, 16]

Ling = (M ponr)? — (0 panr) (61 Mapgr), (2.11)
Ll = ap(@P1D,)? + (TPM D, ) (0171, ), (2.12)

where o, 3 =1,...,Nand p,0c = 1,...,k are color labels, I = 1,...,Nyand M =1,..., Ny
are flavor labels, and «, is the scalar self-coupling that is tuned to o, — oo at the IR
fixed point. Upon deforming each side of the duality by the appropriate Lyt and flowing
to the IR, it is believed that there are no other relevant or marginal deformations — apart
from mass terms — that are consistent with the symmetries at the fixed point. In what
follows we will often drop the explicit indices and denote the interaction terms by, e.g.,
|p|* and WU|P|2.

The |¢|* and |®|* are the usual interactions which are present at the Wilson-Fischer
fixed point. The effect of the scalar-fermion mixing term is to give a subset of the N (or N;)
fermions a mass when the scalars in the theory acquire a nonzero vacuum expectation
value. The additional effect of this mass from the mixing term is necessary to get complete
agreement between the two sides of the duality, and the relative sign between the mixing
terms in Ly and E{nt is important to match the phases.

In what follows, we will denote dynamical gauge fields by lowercase letters and back-
ground gauge fields by uppercase. Ordinary gauge connections will be denoted by b, B, ¢, C
and spin, connections by A, a.®> Specifically, we have denoted by b, a dynamical U(N)
gauge field, ¢, a dynamical U(k) gauge field, C, a background SU(NNy) gauge field, and B,
a background SU(Ny) gauge field. Further, the background spin,. gauge fields for U(1),,,
and U(1) g are respectively Ay, and Ay, and f, is a dynamical U(1) field, which acts as
a Lagrange multiplier. The covariant derivatives are given by

(Do4-B)u® = [0p — i (buln, + Buln)] ¢, (2.13a)
(Dyeo it = [0 =i (Bulv, + Cully = Ay, )| 0, (2.13D)
(Derc)p® = [0y — i (culn, + Culy)] @ (2.13¢)
(Desp_i,)n¥ [ —i <Cp]1N5 + Bl — 1212“]1161\75)} . (2.13d)

2 Although the mixed scalar and fermion interactions are marginal in the IR at leading order in the large
N limit, the sign of the subleading corrections are currently unknown. As in [15, 16] we will assume such
operators are at least marginal since they are vital for the consistency of the master duality.

3For a review on the subtleties of spin. connections in the context of these dualities, see [6].



1, is the n-dimensional identity matrix. Although the presence of the Lagrange multiplier
f makes coupling slightly obscure, on the U side A; only appears through a BF coupling
to the monopole current xj,, = %dTrkc, while on the SU side it couples directly to the
particle number current. The A, field is associated with a new symmetry which arises due
to the presence of both scalars and fermions on each side of the duality. With the Lagrange
multiplier, the U(1) s symmetry only couples to the fermions on each side of the duality,
although once f is integrated out it couples only to ¢ on the SU side.

In the way that we have written the fermions in (2.6) and (2.7), we have left implicit
the regularizing n-invariant terms for the Dirac fermions [18, 19]. This is the notation
established in [6]. Being very explicit, for Ny, N-component fermions we have absorbed
into the kinetic term what is often written as a half-integer Chern-Simons term that results
from integrating out heavy regulator fermions, i.e.

W Pyp — i [—];J:TrN (bdb - z‘gbiﬂ — D (2.14)

This convention is chosen such that when integrating out positive mass dynamical fermions
the hidden n-invariant term is canceled, which leaves the Chern-Simons levels unchanged.
However, when a negative mass fermion is integrated out the overall effect is to shift the
associated Chern-Simons levels by Ny. This will be the convention we use for fermions
throughout this paper.*

As we mentioned above, the SU side of the theory contains a Lagrange multiplier field
f, which effectively transforms SU(N) — U(IN) x U(1). Analyzing the symmetry breaking
pattern for U(N) x U(1) is easier than for SU(N) [2, 15, 16]. Occasionally, it will be useful
to look at the original SU Lagrangian with f integrated out,

2 _
b0 = | Dysmid | +10Byscpa, 0 — i (Ny = K)CSN[] + NCS,[C))
—i (—N(k — N§)CSy[Aq] + QNNfCSgraV) + Ling- (2.15)

Because the duality exactly at the IR fixed point is between what are in general
strongly coupled theories, the best evidence for validity of 3d bosonization dualities comes
from gapped phases where the identification can be directly verified. The dictionary for
mass terms across the master duality is given by [15]°

My > —m3, mi “ my. (2.16)

Since we have two types of matter on each side of the duality, naively one would expect there
to be four different mass-deformed phases. However, it has been shown that the interactions
of (2.11) and (2.12) separate one of these four phases into two separate phases, giving us

4This will slightly complicate things when we time-reverse the duality, because this transformation should
also flip the n-invariant term. However, we will keep the same convention whether or not we are talking
about the original or time-reversed duality. The net effect of this will mean time-reversal comes with a shift
in Chern-Simons terms as well.

5Note the opposite convention appears in [16] since it is the time-reversed version of the duality considered
in [15].
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Figure 1. Various phases of the master duality and the non-Abelian reductions. The shaded red
and blue correspond to the single-matter non-Abelian dualities.

five phases total [15, 16]. Specifically, when the scalar acquires a vacuum expectation value
the interactions give the so-called “singlet fermions”, which are neutral under the unbroken
gauge group, a mass shift.

The five massive phases are shown in figure 1. On the SU side we expect to find

I :[SU(N)_gsn; X U(NNy)_4] x SU(Ny)y x SU(Ns)g x J1, (2.17a)
I : [SU(N)_p x U(0)_;] x SU(Ny), x SU (Ns)y x Ji1, (2.17Db)
IIT : [SU (N — Ny)_ x U(0)_,] x SU(Ny), x SU(Ny)_,, x Jrrr, (2.17¢)

Va : [SU(N = Ns) gy, x UNp (N = Ny))_y]
x SU (Ng) y_n, X SU(Ns)_j, X J1vas (2.17d)

IVb :[SU(N — Ny)_ kN, x U(NNy) ] xSU(Ny)y x SU(N, )k+N X Jrvp.  (2.17e)

Meanwhile, on the U side,

I:[U (k= Np)y x URN)_y] x SU(Np) x SU(Na)g x J1, (2.184)
I [U(k)y x U (EN)_,] x SU(N}), x SU(N)y % Ji1, (2.18)
I : [U(k)n-n, X U (k (N = Ns))_4] x SU(Ny)y x SU(Ng)_, x Jrr11, (2.18¢)
Va :[U (k= Ny)y x U k(N = N,))_] x SU(Np)y_y. % SU(NS)_j % Jrva,  (218d)

IVD :[U(k = Ny)y_py, x U(EN + (Ny = k)Ns)_4]
x SU (Ny) y x SU (N;) _ kN X J1ve (2.18e)

The bracketed are level-rank dual by (2.1), while the rest of the terms are global symmetries
and should be the same on both sides. The Abelian factors unique to each phase are
given by

1 -~ -
Ji = J®%—A,dA 2.19



with a,b = 1,2, i indexing the phase {I,...,IVb}, and

JEb = <_N<k_Nf) 0) (2.20a)

0 0
. ~NE 0
J = ( 0 0) (2.20b)
. Nk [ N N,
Jitr = “N_N. (N N ) (2.20c)
N(k-N;) [ NN 00
ab ! s _
JIVa - 7]\7_ Ns (NS NS> NfNS (0 1) (220(1)
. N(k-Ns) ( N N,

Since the massive phases are dual to one another, this is taken as good evidence that
the master duality remains true at the conformal fixed point. A similar matching can be
performed on the five critical lines that separate the five phases [15, 16].

2.2 Adding boundaries

For simplicity, we will consider the theory on the half-space Ri’l with coordinates {t,z,y}
with t,z € (—00,00) and y > 0. As in the Abelian duality, the results should be largely
independent of the choice of Ri’l as our background [14]. We will use i,j = {x,t} to refer
to indices parallel to the boundary.

In this section we will start by briefly summarizing our conventions for boundary
conditions for single-component fields as prescribed for Abelian dualities in [14], which
generalize fairly trivially to non-Abelian theories. Further, we will review the impact
of the choice of boundary conditions on the presence of edge modes and anomalies in the
boundary theory. We will then review the method described in [14] for properly accounting
for edge modes by introducing “fiducial fermions”.

Boundary conditions. From the perspective of the action, boundary conditions arise
from partial integration and demanding a well-defined variational principle. The most basic
conditions one encounters require either the variation of a dynamical variable (“Dirichlet”)
or its coefficient (“Neumann”) to vanish at the boundary. Consistent boundary conditions
for a scalar with non-derivative couplings can be either Neumann or Dirichlet,

(Dy)ydant|, =0 or  S¢an|,=0 (2.21)

where “|5” denotes an expression which holds at the boundary. Equivalent boundary
conditions hold for ®,;. In order to derive the boundary conditions for a given Dirac
fermion 1), it is convenient to decompose 1) into its left- and right-handed components, 1™,

Yt +
v={ | e wr=Puw (2.22)



The projector Py = (1 +~Y) /2 where ~¥ is the gamma matrix which is perpendicular to
the boundary. The boundary conditions are then

@bgl\a =0 or 1@18 =0. (2.23)

Equivalent boundary conditions hold for ¥,y;. The boundary conditions on the Pauli-
Villars fields follow in an analogous manner. Like [14], we chose boundary conditions for
the Pauli-Villars that will never give rise to edge modes.

The boundary conditions for gauge fields also fall into the category of Neumann and
Dirichlet boundary conditions,

Fyyl, = (8ybi — 0iby + [by,bi])|, =0,  bi|, =0, (2.24)

respectively.® In the Abelian dualities, there are only dynamical gauge fields on one side
of the duality, and thus only one boundary condition is necessary [14], which obviates the
complications in choosing consistent boundary conditions in both theories. In this work,
we will need to be more careful in choosing boundary conditions for all of the dynamical
gauge fields.

For Neumann boundary conditions on dynamical gauge fields, we will need to worry
about anomaly inflow. Note that since we do not assign boundary conditions for back-
ground fields, their corresponding Chern-Simons terms can produce anomalies. The can-
cellation of anomalies will be achieved by introducing “fiducial fermions”, which will give
rise to edge modes and will be discussed in the next section.

If we choose Dirichlet boundary conditions for the dynamical gauge fields, there is
no chiral current flow off the boundary and, hence, no anomalies. This follows from the
fact j§ o ~ Fijlo = 0. Since Dirichlet boundary conditions break the gauge symmetry
to the group that leaves the boundary condition invariant, an additional global symmetry
emerges at the boundary [20].

We will show that the only way the global symmetries are consistent with the duality
is to choose Dirichlet boundary conditions on one side and Neumann boundary conditions
on the other. These results align with those discussed in [17].

Lastly, we should mention that choosing the same boundary condition on all flavors is
necessary in order to maintain the full SU (IV,) and SU (INy) global symmetries as well as
the respective gauge symmetries. For future work, it may be interesting to consider a set of
boundary conditions that breaks the flavor symmetries or mixing Neumann and Dirichlet
boundary conditions for subsets of the gauge fields in a given theory.

Edge modes and anomalies. In studying Chern-Simons matter theories in the pres-
ence of a boundary, we must reconcile the theories against possible edge modes allowed
by the boundary conditions and any anomaly inflow. In particular, introducing gapped
fermions to a manifold with a boundary can create gapless, chiral fermionic modes local-
ized to the boundary, i.e. domain wall fermions (DWFs). If we allow the mass of the bulk

5Neumann boundary conditions can be modified by coupling boundary matter to the bulk gauge sector
by eiijy|a = jédry where jﬁdry is the boundary matter current [20]. Since we do not add any additional
charged boundary matter, we will always set j{;dry =0.



fermions to vary in the direction normal to the boundary (m(y)), then by the standard
construction [21, 22] DWFs will exist when the profile of the spatially varying mass leaves
the function

£ (y) = eI /m) (2.25)

finite for all y € Ri’l. In fact in Ri’l, any constant, non-zero mass will give a normalizable
zero mode with chirality determined by the sign of the mass. That is, we have left-moving
DWFs for sgn(m) = 41 and right-moving DWF's for sgn(m) = —1.

In addition to the possible anomalies associated with non-vanishing chiral currents on
our boundary, we also need to take care of potential anomaly inflow from the gauge sector.
Chern-Simons theories in the presence of a boundary are not a priori gauge invariant
everywhere. However, the non-trivial anomaly associated with a bulk SU(/V) Chern-Simons
term of level k can be compensated for by the chiral anomaly through the Callan-Harvey
mechanism provided [21]

kE=ny—n_, (2.26)

where k is the level of the bulk Chern-Simons theory and n4 are the number of (right-)
left-movers in the fundamental representation of SU(N) living on the boundary. This of
course generalizes to the Abelian case as well. Similarly the gravitational Chern-Simons
term with coefficient kp has an anomaly associated with diffeomorphisms, which can be
compensated for by having excess right- or left-moving (74 resp.) Majorana-Weyl fermions
satisfying

ko = %(m —i). (2.27)

Equivalently, we could use a single right- or left-moving Weyl fermion for every two corre-
sponding Majorana-Weyl fermions to accomplish the same compensation.

Fiducial fermions. Informed by lattice realization of Abelian dualities, the accounting
for edge modes above led to the prescriptive replacement of Chern-Simons terms by heavy
fermions [14]. These “fiducial fermions” act to display the UV physics captured in the IR
by the Chern-Simons terms while more directly enumerating the gauge sector edge modes.
The non-trivial IR theory left behind after integrating out heavy Dirac fermions coupled
to a background spin. connection A is CSi[A] + 2CSgray. More importantly, the fiducial
fermions give rise to DWFs which automatically render their associated Chern-Simons
terms non-anomalous. Thus, the fiducial fermion prescription reads

e:tidex(CSﬂA]-i-QCSgrav)%/DXD)\eifdsxﬁ?f[x’)"A]’ (2.28)

where
LrDoA A= Tim (Dax F Imy Xx + MDA F [ma| AN) . (2.29)

[mx,|mx|—o00

Here x is the fiducial fermion, X is the Pauli-Villars regulator field, and the their respective
masses |m,|, |my| are taken to be parametrically heavy.



This procedure generalizes to the case where B is a non-Abelian background gauge
field of SU(V) and we have

k
i [ @3z (kCS N [BI+2NkCSgrav) _/ [T PxarPAM ¢t | P L7 A, Bl (2.30)
M=1
now with
E}tf[XM,)\M,B] = lim (i)_(Mﬂ)BXM:F|mXM|XMXM +i5\MlDB)\M$|m)\M|/_\M/\M)

Imoxpr slmx [ =00
(2.31)
with xps and Ajs in the fundamental representation of SU(/N). The non-Abelian fiducial
fermion prescription requires x s and s be parametrically heavy N-component fields with
U(k) flavor symmetry.
As was done in [14], it will be useful to rewrite all BF terms as Chern-Simons terms
in order to properly account for the edge theories. For example,

NCSg[¢] + NBF[Tr(é); Aj1;] = NCSi[é + Ai1;] — NCSi[A 1. (2.32)
The right-hand side makes the assignments of fiducial fermions clearer.

Global symmetries. The global symmetries manifest in the Lagrangian as three types
of background Chern-Simons terms: (1) Abelian, namely A; and Ay, (2) non-Abelian, B
and C, and (3) gravitational. All three of these global symmetries are related to a conserved
current, which will allow us to put additional constraints on the fields.

First consider the Abelian symmetries. There is an identification between the currents
which couple to A, found via

dSulAd] "
—_, >
5 Ay () J50.0(7)

6SsulAq]
(5;1(1“(33) '

J0.a(@) (2.33)
As with the Abelian dualities, A; is associated with the flux current on U side and a particle
current on the SU side. For example, when Ny = 0 and we set Ay = 0 after variation,

Fos = 5= ATG) 6 s = Hamion (2.34)
We will show below that the A field plays a very similar role. Note that in the single
species non-Abelian dualities the Ay symmetry drops out [1], so it is only a feature of the
master bosonization duality [15, 16].

The non-Abelian global flavor symmetries also give two currents related to the SU(Nj)
and SU(Ny) symmetries on either side. These flavor currents are not just simply matter
currents because there is also flux coupling to the background C), fields on the SU side of
the duality.

Lastly, the equivalence of the gravitational currents simply identifies the stress-energy
tensors on either side of the duality. We will not make use of this identification in what
follows.

~10 -



3 Single species non-Abelian bosonization with boundaries

Before analyzing the master bosonization duality in the presence of a boundary, let us take
the step of first considering non-Abelian dualities with a single species of matter. That is,
we consider (2.6) and (2.7) setting either Ny = 0 or Ny, = 0, which correspond to one of
Aharony’s original dualities and one of the time-reversed versions [1]. Additionally, we make
connections with the Abelian limit where we take Ny =k =N =1or Ny =k =N = 1 and
find results consistent with our previous analysis in [14]. We will also discuss additional
subtleties involving the connections coupled to the fermion.

Setting either Ny, or Ny = 0 eliminates one type of matter from each side of the
master duality. This has the effect of making the additional U(1)g p symmetry redundant.
Specifically, U(1)s,r becomes a linear combination of the global U(1),,; symmetry and
the dynamical gauge group. Since U(1)g r does not appear in [1], the redundancy should
be expected. Importantly, U(1)g s becoming redundant does not amount to just setting
Ay = 0 in the master duality. We will see keeping careful track of the Ay dependence in
section 3.2 allows us to correctly distinguish ordinary and spin. connections.

3.1 Non-Abelian U + scalars <+ SU + fermions

To start studying the non-Abelian dualities, we will consider Ny = 0. This reduces (2.2) to
SU(N) oy N with Ny 9 > U(k)n with Ny @ (3.1)
—ht-

with the mass identification my <« —mé. This duality is subject to the flavor bound
Ny < kT

Explicitly, the Lagrangians for the theories on either side of (3.1) are given by
Lsy = WPy oy 4,Y — i (Ny = k)CSN[V] + NCSy, [C])
_i (—N(k: — Np)CS1[Ay] + 2NNfCSgraV) (3.2)
Ly = |Derc® + a0 —i (NCSk[c] + NBF[Try (¢); A;] + 2Nk:CSgraV> L (33)
Since the Lagrange multiplier term will not be important for this section, we have integrated
out f as in (2.15). Furthermore, in (3.3), we can split the U(k) field, ¢, into its traceless
SU(k) part, ¢, field and non-zero trace, ¢, such that

Ly = | Deyc®| + a,|®* —i (Ncsk[c/] 4 NCSR[e+ A, 14] — NECS [A,] + 2N/-ccsgm)
(3.4)

Note that mass deformations in these theories correspond to phases I and II in figure 1.
Specifically, m, < 0 and m% > 0 is Phase II, and m, > 0 and mgb < 0 is Phase 1. Also
take note of the fact the duality has no A, dependence, since the U(1)g,F duality coupled
to the fields associated with the SU(Ng) symmetry.

"There are arguments that these flavor bounds can be extended slightly [8], but we will not consider
such cases in this work.
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Let us work through the counting of fiducial fermions in detail. First consider the U
side of Phase 1T where mé > 0. Integrating out the scalars when mé > 0 is straightforward,
they are simply gapped and cause no change in the Chern-Simons terms so we are left with

iLH = NCSL[¢] + NCSi[é + A1) — NkCSi[A;] + 2NEkCSgray- (3.5)

We will start by assuming Neumann boundary conditions for the dynamical gauge fields;
all the Chern-Simons terms are anomalous in the sense that they result in a non-vanishing
current flowing onto the boundary. Fortunately, in Phase II it is straightforward to assign
edge modes to compensate for the anomalies.

To start, N right-moving k-component fiducial fermions coupled to ¢ + &+ A1, will
make NCSy[c/] + NCSg[¢ + A;1;] non-anomalous. Note that since we can shift away the
A, factor, together these terms are equivalent to a U(k)y Chern-Simons term.

Next, Nk left-moving single-component fiducial fermions will make NkCS;[A;] non-
anomalous. The newly added Nk left and N right movers respectively generate gravi-
tational Chern-Simons terms +2NkCSgray and —2NkCSgray, and hence such terms can-
cel out.

Lastly, we need to make the remaining +2NkCSg;,, term non-anomalous. We thus
introduce Nk neutral right-moving single-component fiducial fermions. Moving forward,
we note that a positive mass scalar does nothing to the Chern-Simons modes, and so, we
will always use the m3, > 0 (or mfb > 0) regime to determine the fiducial fermions on the
scalar end of the dualities.

However, there is one subtlety we have not yet mentioned: introducing the fiducial
fermions has given the theory additional symmetries on the boundary. For example, choos-
ing to add N x £;[f [/ +&4 A, 1] introduces a new global SU(N) symmetry on the boundary.
We need to be careful with how we are assigning fiducial fermions on both sides of the dual-
ity so that their associated global symmetries match. While the global symmetries coming
from the fiducial fermions for the background Chern-Simons terms trivially match, the
fiducial fermions associated with dynamical gauge fields have no analog on the opposite
side of the duality.

Taking care to assign the fiducial fermions for the dynamical gauge fields, recall that
Dirichlet boundary conditions not only enhances the global symmetry on the boundary but
also eliminates the need to make the dynamical gauge fields non-anomalous. This removes
the need to assign fiducial fermions to the dynamical gauge fields for Dirichlet bound-
ary conditions. In fact, the enhanced global symmetry from choosing Dirichlet boundary
conditions on one side of the duality exactly match the additional global symmetry from
introducing the dynamical fiducial fermions [17].

Let us demonstrate this mechanism explicitly in the present example. Table 2 summa-
rizes all the fiducial fermions we had to add on both sides of the duality. We just explained
this fiducial matter content on the U side and will turn to the SU side momentarily. There
are common Nk left-moving fermions (charged under A;) and Nk neutral right-moving
fermions on both sides. They give rise to an extra SU(Nk) x U(Nk) global symmetry
on both sides. In addition, there are N fiducial fermions on the U(k) side that have no

corresponding fiducial fermions on the SU(NN) side. We can account for the new SU(NV)
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global symmetry from these fiducial fermions by choosing Dirichlet boundary conditions
for the dynamical SU(N) gauge field b, which will produce a global SU(N) symmetry on
the boundary. More generally, choosing Neumann boundary conditions for the gauge fields
on one side of the duality is only consistent with choosing Dirichlet boundary conditions
on the other.

To complete the entries in table 2, let us analyze the fiducial matter content on the SU
side. Staying in Phase II and integrating out the Ny N-component dynamical fermions,
we pick up additional Chern-Simons terms, which reduces (3.2) to

il = —ECSy[V] — ENCS[A4]. (3.6)

At this point if we choose Dirichlet boundary conditions on b, the —kCSy[V/] term is non-
anomalous on its own. First note that we have fermions on this side of the duality and so if
we choose appropriate boundary conditions, DWFs can exists and potentially provide the
necessary edge modes for (3.6) to be non-anomalous. However, with a bit of foresight we
will choose the fermionic boundary condition which does not allow DWFs to exist in this
phase, and hence all of our anomaly cancellation must come from fiducial fermions. This
also turns out to be the right choice for matching global symmetries on the boundary.

Specifically, introducing k left-moving N-component fiducial fermions coupled to A;1
renders —kNCS;[A;] non-anomalous. To account for the gravitational Chern-Simons term
—2NECSgray from the fiducial fermions, we should also introduce Nk right-moving neutral
fermions. It is easy to see that the boundary global symmetries match the choice of
Neumann boundary conditions on the U side above.

We have completed our first complete dual pair. As pointed out in [17], we have seen
that the duality-consistent boundary conditions for dynamical gauge fields are Neumann
on one side of the duality and Dirichlet on the other with the freedom to assign which side
sees which boundary condition.

There is a second dual pair with the same gauge groups and matter content where we
choose Dirichlet boundary conditions on the U side and Neumann boundary conditions on
the SU side. We can work out the fiducial fermion content in this pair following the same
logic as above.

Staying in Phase II, on the SU side we now need to assign fiducial fermions to make
both terms in (3.6) non-anomalous. Fortunately this isn’t much different from the case
considered above, and simply requires the k left-moving N-component fiducial fermions be
coupled to b’ + A1y instead of just A;1y. This renders both —kCSN[V] — kNCSl[Al]
non-anomalous.

Now, consider imposing Dirichlet boundary conditions on the U side in Phase II.
Above, we saw that Neumann boundary conditions required three types of fiducial fermions
to render all the terms in (3.5) non-anomalous. However, chosing Dirichlet boundary
conditions for ¢ means that we no longer need to worry about canceling the anomaly
associated with its Chern-Simons term. In this case the anomalies of NCS;[é+ A;1;] and
—NkCS;[A;] actually cancel, and this means that we only need the fiducial fermions that
made the gravitational term non-anomalous.
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SU(N) + fermions U(k) + scalars
Boundary Conditions Y.loa=0 ®,r: Dirichlet
b': Dirichlet ¢: Neumann
Additional Edge Modes — N x E}rf [/ + &+ Aply]
Nk x L7 [A]] Nk x L [A]]
Nk x L[0] Nk x L7 [0]
SU(N) + fermions U(k) + scalars
Boundary Conditions Y rlo=0 ®,;: Neumann
b': Neumann ¢: Dirichlet
Additional Edge Modes | k x L[t + Ay —_—
NE x L,[0] NE x L,[0]

Table 2. The top (bottom) table counts the additional edge modes when choosing Neumann and
Dirichlet boundary conditions on the dynamical gauge fields in U (SU) and SU (U) side respectively
when N, = 0.

Having established the fiducial fermion spectrum in Phase II, let’s now check that
the assignments work to make Phase I non-anomalous as well. For the SU + fermion
theory, integrating out the fermions in (3.2) cancels the n-invariants, which leaves the
Chern-Simons levels unaffected,

iLy = (Ny — k)CSn[V] — (k — Np)NCS1[A1] + NCSy, [C] + 2N N;CSgray . (3.7)

However, it will be helpful to view iﬁéU as coming from zﬁéﬂ in order to show that (3.7)
is non-anomalous. Comparing to (3.6),

iLy =1L, + NyCSn([V] + NN;CS1[A1] + NCSy,[C] + 2NN;CSgrav.  (3.8)

In order to get a non-anomalous theory, we can take advantage of the fact that the
fiducial fermions that we have already assigned rendered zEé{I non-anomalous. It remains to
be shown that the additional Chern-Simons terms in (3.8) are non-anomalous. Fortunately,
we have chosen the boundary condition on the dynamical fermion such that we allow the
DWFs to live for m, > 0. From (2.15), the dynamical fermions couple to b1y, + Cly +
Al y Ny, and hence the DWF's are exactly the edge modes needed to cancel the residual
anomalies of (3.8).

The cancellation of the edge modes happens analogously to the cancellation of the
Chern-Simons terms. In the end, we have k— N left-moving N-component fiducial fermions
coupled to & + A1y, and N right-moving N y-component fiducial fermions coupled to C
to cancel the background SU(Ny) and gravitational Chern-Simons terms.

To complete the duality in Phase I, we need to consider the scalar side in the Higgs
regime (m% < 0). Following [15, 16], we will assume that the Ny scalars maximally Higgs
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the U(k). The breaking pattern is then U(k)_n — U (k — Ny)_, x SU(Ny)_; resulting
in a Lagrangian

icl — N(csk_Nf ('] + CSk_n, [6 + ATy, ]+ CSn, [C]— (k — Np)CS1[A)] + 2kcsgm) .
(3.9)

Since there are fiducial fermions which couple to U(k), the spontaneous breaking separates
each of the k-component fiducial fermions into broken and unbroken parts, namely

N x E;ff[c’ +c+ jll]lk_Nf] (unbroken)

5 . (3.10)
N x L,[C+ Aly,] (broken)

N x E}rf[c/—{—é—i—;h]lk] — {

Note that the A; part of the N N s-component fiducial fermions from the broken sector
combines with the opposite chirality Nk modes coupled to Ay leaving a total of N (k—Ny).
The number of gravitational Chern-Simons terms is unchanged — we still have the same
net number of modes. A straightforward check shows these edge modes render (3.9) non-
anomalous.

Comparing the boundary spectra for mass deformations of the single species non-
Abelian duality, we can match the degrees of freedom in kind. Thus, we see that

£l cly (3.11)
£ ol (3.12)

indicating a consistent duality in the bulk. We outline both instances of duality consistent
boundary conditions and the additional edge modes in table 2.

The last remaining question we have to address is how to identify boundary conditions
for the scalar fields. Following a similar procedure used in [14], let us reinterpret the effect
of anomaly inflow when we choose Neumann boundary conditions on the U side. Alone, a
Chern-Simons term is anomalous on the boundary due to a non-trivial current divergence.
Since the associated current is not conserved, we can think of this as meaning the U(1),,
symmetry is broken on the boundary. When we introduce edge modes on the boundary,
there is a compensating term for the current flowing onto the boundary. In other words,
if we identify the U(1) axial symmetry on the boundary with the U(1),, symmetry in
the bulk, we have a restored U(1) symmetry everywhere. This is consistent with the SU
side of the theory where there is no anomalous term and thus the U(1), symmetry exists
everywhere.

If we choose Neumann boundary conditions for ¢ on the U side of the duality, this
amounts to the constraint that Fy|s = 0, with F the field strength of c¢. Since the flux
current is j§ ~ €*?F,,, Neumann boundary conditions automatically imply any flux cur-
rent on the boundary must vanish. This is consistent with the U(1) boundary symmetry
being provided by the edge modes, rather than the flux current. The Neumann bound-
ary condition on the gauge fields is also inconsistent with having a scalar current on the
boundary since such a current is charged under the dynamical gauge field. Additionally,
recall that the bulk equations of motion relate bulk flux and matter currents; schematically,
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I8 atter ~ Jhusx- Although such equations do not apply on the boundary, allowing for scalar
current to flow on the boundary would be inconsistent with the continuity of the current
and also have no compensating current on the SU side. Therefore, we choose Dirichlet
boundary conditions for the scalar which kills off the scalar current on the boundary.

Now consider Dirichlet boundary conditions for c¢. Although ¢;|9 = 0, this does not
necessarily imply Fy;|p = 0 since 0;¢y|g # 0 (although it does imply Fjj|g = 0). By the same
reasoning above, this means we can have a nonzero flux current on the boundary. Such
boundary conditions are consistent with there being matter charged under the dynamical
gauge field on the boundary. The only boundary condition that is consistent with this is
Neumann boundary conditions for the scalar. Again via the identification of global sym-
metry currents, we see that this is consistent with choosing Neumann boundary conditions
for bL since we have a nonzero edge modes coupling to Ay on the SU end now.

Abelian reduction. Let’s apply a consistency check on our new non-Abelian prescrip-
tion. We will take the limit Ny = N = k = 1, and choose Neumann boundary conditions
for ¢ on the U side to compare to the boundary analysis of the Abelian dualities [14].
Affecting this limit in (3.2) and (3.3) gives

Lsy = ipPz ¥ — i (2CSgray) (3.13)
Ly = |Ds®)* + o @4 — (081[6 + Ay +CSy[E] + Qngrav) , (3.14)

which is similar to the Abelian “scalar + flux = fermion” considered in [14], up to the
additional 2CSgyay, terms.

Now, taking the Abelian limit of the tallied boundary modes in table 2, we find that
one fiducial fermion is needed on U side to be coupled to ¢+ A; and, on both sides of the
duality, we need one left-mover coupled to A; and a neutral right-mover.

Due to certain subtleties with the non-Abelian case, our convention has changed
slightly as compared to [14] where the opposite boundary conditions on the dynamical
fermions were chosen and gravitational Chern-Simons terms were absent. Without grav-
itational Chern-Simons terms present we do not need the right-moving neutral fiducial
fermions on both sides of the duality. Choosing opposite boundary conditions on the dy-
namical fermions makes the my < 0 regime consistent via a fiducial fermion rather than a
dynamical fermion. This is why in the present analysis we find an additional left-moving
fiducial fermion coupled to A; on the fermion side of the duality. Choosing Dirichlet bound-
ary conditions on the scalar was also found for a similar reason. Thus, the number of edge
modes is consistent modulo conventions.

Notice that the fermions couple to the background U(1),, spin. connection, A;. The
analysis in [14] requires that in order for the “scalar+flux = fermion” duality to be con-
sistent in the presence of a boundary A; must be a spin. connection and not an ordinary
U(1). Meanwhile, ¢ was required to be an ordinary connection. Indeed, both of these
requirements are consistent the Abelian limit.
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3.2 Non-Abelian U + fermions <+ SU + scalars

Now let us consider the other type of single species non-Abelian duality in [1] — rather its
time reversed version — by setting Ny = 0 such that (2.1) reads

SU(N)_pwith Ny ¢« U(k)y_n~, with N, . (3.15)
2

with the mass identification mi < my. In this case the flavor bound is given by Ny <
N [15, 16]. The explicit Lagrangians for the theories on each side of the duality are given by

Lsu =Dyl + aplgl* — i (~kCSx[b] + BF[f: Try (5) = N )
— (NkCSl[B] - NkCSl[th , (3.16)
Lo=iUD, 4,5V —i (NCSk[c] + NBF[Try (c); A;] + 2Nkcsgm)

— iUV — i (NCSk[c’] + NCSpa + Bly] — NkCS;[A1] + szcsgrav) . (3.17)

Setting Ny = 0 has eliminated one of the gravitational Chern-Simons terms, and in the
last line of (3.17) we defined the ordinary connection B = fh + 1212 and spin, connection
a = ¢ — Ayly. Note that B is now the background gauge field associated with the global
U(1)y,,» symmetry. We have also used

BF[Al; Ag] + CSl[AQ] = CSl[B] — CSl[fll] (3.18)

For this dual pair, mass deformations correspond to Phase II (mg) > 0 my >0 ) and Phase
11 (m?5 < 0 my < 0) — see figure 1. As with the Ny = 0 case, we can find the fiducial
fermion spectrum by looking at Phase II.

As with the last duality, we will find the boundary symmetries to be consistent only
if we choose Neumann and Dirichlet boundary conditions for the dynamical gauge fields
on opposite sides of the duality. Nevertheless, we will first proceed with the analysis for
Neumann boundary conditions on both sides of the duality; generalizing to Dirichlet is
straightforward. For the SU + scalar theory in (3.16) with Neumann boundary conditions
for the dynamical gauge fields, integrating out the Lagrange multiplier gives

iLLl = —kCSN[V] — ENCS[A4]. (3.19)

k left-moving N-component fiducial fermions coupled to ¥ + A1y compensate for the
anomalies generated by —kCSy[b'] — kNCS{[A;]. We also need Nk right-moving neutral
fiducial fermions to cancel the gravitational term.

The U side of the duality is also easy to analyze with Neumann boundary conditions.
Despite the new definitions of B and &, the anomaly spectrum of (3.17) is identical to that
of (3.5). We can choose exactly the same fiducial fermions for the U + fermion side of the
duality that we did for U + scalar with Neumann conditions in table 2.

Having quickly read off the fiducial fermions in Phase II, we should check that the
assignment holds for Phase III. In Phase III for the U + fermion theory myg < 0, and
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so0, integrating out the dynamical fermions shifts the Chern-Simons levels relative to their
Phase II values:

iLH — il — NyCSi[c] — NskCS1[As] — kCSy., [B] — 2Nk CSgray- (3.20)
Using the first line of (3.17), the Lagrangian for the U + fermion theory becomes

iLHT = (N — N,) CSi[c] — kCSp,[B] + NBF[Tr () ; Aj1]
— NskCS1[As] + 2k (N — Ny) CSgray- (3.21)

Rewriting the BF term as a sum of Chern-Simons terms, we find

N — N;

—k <CSNS B] + NCS1[Ay] + WN_AZSV)CSJBQ -

iLHT = (N — N,) (csk[cq + CSy [é + Alnk] + 2kcsgm>

(3.22)

So long as we choose the boundary condition such that dynamical DWF's are allowed for
my < 0, the U + fermion theory in Phase III non-anomalous theory. This follows for the
same reason we saw in Phase I of the SU side in section 3.1: from (3.20) i£{f is already
non-anomalous due to the fiducial fermions and the dynamical DWF provides the rest of
the edge modes to render the whole expression non-anomalous. Thus, the fiducial fermion
assignment for Phase II works in Phase III, and the U + fermion theory is non-anomalous.
While it may be hard to see that (3.22) is non-anomalous, the cancelling of the edge modes
can be seen directly from the cancellation of the Chern-Simons terms. Finally, note when
one expands out B in (3.22) this reproduces the stated background terms of (2.20c), as
it should.

The SU + scalar theory in Phase III (mé < 0) is complicated slightly due to the
Lagrange multiplier — which changes SU(N) — U(N) x U(1) and makes the breaking
pattern clearer. We do not want to treat the BF terms containing the Lagrange multiplier
as additional Chern-Simons terms. We will be more concerned with analyzing the behavior
of the edge modes after the breaking has occurred as above on the U side.

After spontaneously breaking U(N) — U(N — Ng) x SU(Ns), N — N, scalars remain
coupled to b + yB]l N—N,- The Ng-components corresponding to the broken part of the
gauge symmetry have no coupling to any part of ¥ but do couple to the SU (Ny) flavor
symmetry. The factor y is a rescaling of the Abelian coupling implemented by the Lagrange
multiplier that is novel to this theory. Explicitly, the coupling of the N — Ng modes now

becomes
v +yB1 v Bly_n,. 3.23
tyBly b+ e By, (3.23)
Thus, when one integrates out the k fiducial fermions, they give
A ITT / N >
iLsy O —k | CSy_n, U]+ CS:[B] ), (3.24)
N — N;

which will combine with the existing background terms to reproduces the Abelian factor
in (3.22).
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Let us choose Neumann boundary conditions for . The dividing of the fiducial fermion
that we would assign occurs analogously to the breaking of the Chern-Simons terms:

k x L’}'f b+ N,L]X;SB]IN—NS (unbroken)

kx L[V + B] — g’
kx LB (broken)

(3.25)

There are still Nk total fermion components; Nk of which couple only to the flavor
symmetry. Thus, we still have the same number of gravitational Chern-Simons terms as in
Phase II. The full Lagrangian for the SU side of Phase III is then

ATTT / i NN 5

ZESU = —kCSN_Ns [b] -k (CSNS [B] — NCSl[Aﬂ + MCSI[B]> , (3.26)
which is rendered non-anomalous by the edge modes from the fiducial fermions as assigned
in Phase II.

Thus far, we have only considered Neumann boundary conditions for the dynamical
gauge fields. To generalize these results to the Dirichlet case is straightforward: simply
remove the coupling of the fiducial fermion to the dynamical field whose Chern-Simons
terms is no longer anomalous on the boundary. Table 3 summarizes our results for this
duality. Note once again a nice cancellation between anomalous terms occurs on the U side
with Dirichlet boundary conditions.

Finally, consider the boundary conditions on the scalar fields. Again, we use fact that
Neumann boundary conditions imply any flux current on the boundary must vanish and
that the variation of /Nh relates the scalar matter current on the SU side to the flux current
on the U side. Since there can be no flux current on the boundary, there can be no scalar
current on the boundary as well. Hence we must choose Dirichlet boundary conditions in
this case, ¢anr|o = 0.

As we argued earlier, for Dirichlet boundary conditions on ¢ we can have a nonzero
flux current on the boundary. Again using the identification of global symmetry currents
we can also have a nonzero scalar current on the SU side of the duality. Thus, we must
choose scalar boundary conditions which allow for a nonzero boundary current, which
means Neumann.

Abelian reduction. Finally, let us check that this is consistent in the Abelian limit by
setting N = k = N, = 1, choosing Neumann boundary conditions for ¢, and moving all
background terms to the fermion side. Affecting this limit, we find

2
Lsy = [Dpo|" + aglol* (3.27)
.z (1 L o=
where we have canceled the two —CS;[A;] terms. This expression should be equivalent
to the time-reversed fermion, but with the understanding that in [14] the time-reversed

fermion came with an opposite sign Pauli-Villars regulator as well; our conventions for
the n-invariant are different here. Accounting for this difference of convention, we pick up
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SU(N) + scalars

U(k) + fermions

Boundary Conditions

danr: Neumann

b’: Neumann

Uhlo =0

c: Dirichlet

Additional Edge Modes

k x ﬁ;f[b/ + /Nh]lN]

Nk x L[0]

Nk x L7 [0]

SU(N) + scalars

U(k) + fermions

Boundary Conditions

¢anr: Dirichlet
b’: Dirichlet

Uiyl =0

¢: Neumann

Additional Edge Modes

— N x L} +ad+ Bly)
= N x L] + &+ Ailly]
NE x ﬁ;f[Al]

Nk x L7 [0]

Nk x L;[A)]
Nk x L[0]

Table 3. The top (bottom) table counts the additional edge modes when choosing Neumann and
Dirichlet boundary conditions on the dynamical gauge fields in SU (U) and U (SU) side respectively
when Ny = 0.

an overall shift by —CS;[a] — 2CSgray on the fermionic side of the duality and change the
fermionic boundary condition. We end up with the dual theories being given by

Lsy = \Dg¢\2 + aglol,
EU:iiwaW—w(CSﬂa+iﬂ—CSﬂﬂ>.

Per our fiducial fermion choices shown in table 3, we should have a single right-moving
fiducial fermion coupled to @+ B. Note the fermions associated to B and neutral fiducial
fermions on both ends of the duality cancel one another out.

Once more we see a nice consistency with our previous analysis: a = ¢ — Ay is a spin,
connection, and the background field B = A;+ A, is an ordinary U(1) connection. Thus, we
can start from the master bosonization duality, demand that a subset of Abelian factors
be either ordinary or spin. connections, and consistently arrive at both known Abelian
bosonization dualities with the correct coupling of gauge fields to matter. This is also
consistent with the process of promoting background fields to dynamical and coupling to
new background fields followed by integrating out the old dynamical fields [5, 6].

3.3 Discussion

Before turning back to the master bosonization duality, let us take stock of how the phases
and edge modes changed when we moved to negative mass deformations for the fermions
and scalars:
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e Fermion Deformations: Given our choice of fermionic boundary conditions, the dy-
namical DWF's only existed when my, > 0 or my < 0. In the corresponding my, < 0
and myg > 0 phases, we found that the additional Chern-Simons terms were ren-
dered non-anomalous by the dynamical DWFs. Since the my > 0 and myg < 0
phases were non-anomalous due to the fiducial fermions, the resulting theory was
non-anomalous. Furthermore, the same mechanism that rendered the Chern-Simons
terms non-anomalous can be used to argue that — despite some simplified forms
of the theories appearing to have extraneous edge modes — that edge modes are
cancelled.

e Scalar Deformations: in the spontaneously broken phase, mi < 0 or mé < 0, the
dynamical gauge groups are split up into smaller dynamical groups and gave rise to
new non-Abelian flavor symmetries. Additionally for SU 4+ scalars, the background
Abelian coupling was rescaled. The couplings of the fiducial fermions were changed
according to the breaking pattern for the Chern-Simons terms. The fiducial fermions
then split into parts, which couple to the broken and unbroken parts of the gauge
group. The remaining dynamical and new flavor Chern-Simons terms are rendered
non-anomalous by this set of fiducial fermions.

Although the master duality is slightly more complicated due to two independent mass
deformations, we will see that the same mechanisms that lead to non-anomalous theories
in both phases of the single-species non-Abelian cases completely generalize. Since the
fiducial fermions make the positive mass phase non-anomalous and the fiducial/dynamical
fermions — including the singlet — continue to work after Higgsing or integrating out
negative mass fermions, all five phases of the master duality continue to be non-anomalous.

4 Master duality with boundaries

Now that we have firmly established how to derive the correct set of boundary conditions
and assignments of fiducial fermions in order to render boundary theories non-anomalous in
the single-species non-Abelian dualities, we can analyze the two-species master bosonization
duality. Having made the assignments in the common Phase II region, the fiducial fermions
of the two single-species non-Abelian cases considered are consistent with one another —
see tables 2 and 3. We can then combine the two prescriptions and check their compatibility
across all five mass deformed regions in figure 1.

We will analyze the phases on the U and SU sides roughly in order of increasing
difficulty. The discussion will be kept brief for phases where cancellation is a straightforward
generalization of what we have already observed in the single-species non-Abelian cases of
section 3. In the following analysis, we are interested in the assignments that render
the theories non-anomalous, and so we will assume Neumann conditions on the dynamical
gauge fields throughout. Although Neumann boundary conditions on both dynamical gauge
fields does not yield a consistent duality, generalization to Dirichlet boundary conditions
for one of the dynamical gauge fields is straightforward, see section 3.2.
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SU(N) Side U(k) Side

Boundary Conditions Y.loa=0 \I/:M|a =0
Garr: Neumann ®,r: Neumann
b': Neumann ¢: Dirichlet

Additional Edge Modes | k x L[/ + Al y] S

NE x L7[0] Nk x L7[0]
SU(N) Side U(k) Side
Boundary Conditions Yo lo=0 \I/;rM|3 =0
¢anr: Dirichlet ®,;: Dirichlet
b': Dirichlet ¢: Neumann
Additional Edge Modes  — N x E?f [ + &+ A1y
Nk x L7 [A]] Nk x L7 [A]]
NE x L,[0] NE x L,[0]

Table 4. The top (bottom) table counts the additional edge modes when choosing Neumann and
Dirichlet boundary conditions on the dynamical gauge fields in SU (U) and U (SU) side respectively
when Ny # 0 and N, # 0.

Phase 11

This phase corresponds to m, < 0 and mi > 0 on the SU side and mg > 0 and m%{, >0
on the U side. Starting from (2.6) and (2.7), after integrating out all of the matter fields,
we find that

il = —kCSy[b] + BF[f; Try (b) — NA; — NAy] + NEBF[Ay; Ay] + NkCS1[As], (4.1)
After some simplification, (2.6) and (2.7) reduce to

iL§, = —kCSN[V] — NKCS:[Ay], .
iL{] = NCSk[c] + NCSy[é + Ai1g] — NECS1[A1] + 2NECSgyay.

Since this was the phase of the duality where we chose all of our fiducial fermions such
that the theory was non-anomalous, no further analysis is needed, and the assignments are
listed in table 4.

Phase I

This phase corresponds to m, > 0 and mi > 0 on the SU side and myg > 0 and m?b <0
on the U side.
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U side. For my > 0, the Chern-Simons levels are unaffected when integrating out the
fermions. However because mé < 0, the theory is in a spontaneously broken phase

il =N (csk,Nf (] + CS, [C] + CSpn, [6+ Ar 4] — (k — Ny) CS1[A)] + 2kcsgm)
(4.4)

As with the single-species non-Abelian case, the edge modes automatically split up to make
the new Chern-Simons modes non-anomalous. The original N right-moving k-component
fiducial fermions break in a manner completely analogous to (3.10). The modes coupling
to the unbroken U(k — Ny) render N(CSy,_n,[¢'] +CSy_n, [+ A;1}]) non-anomalous. The
parts of the INy-component modes coupling to A; can cancel with the fiducial fermions
of opposite chirality which only couple to Aj, leaving only the C' coupling. Hence, the
NCSn,[C] and =N (k — Ny) CS1[A;] terms are also non-anomalous. Since the number of
fiducial fermions hasn’t changed at all, the gravitational Chern-Simons term is also still
non-anomalous.

SU side. On this side of the duality, we have m, > 0 and mi > 0. Neither the scalar
nor the fermion change the Chern-Simons terms when integrated out. Note that we have
chosen the boundary conditions on the dynamical fermion such that we let the ¢v DWFs
exist in this phase.

The fact that the theory is non-anomalous, however, should be evident if we rewrite
EéU in terms of Eé{J,

iLy =L + NyCSy (V'] + NCSn, [C] + NN;CS1[A1] + 2NN CSgrav
= —(k — Ny)CSn[b'] + NCSy,[C] — N(k — N;)CS1[A1] + 2N NCSgrav.  (4.5)

We already have assigned the fiducial fermions so that the zﬁéﬁ is non-anomalous. Pro-
vided that the dynamical DWFs are enough to make the new Chern-Simons terms non-
anomalous, the entire Lagrangian in (4.5) will be non-anomalous. Since the dynamical
fermions couple to & + C + A; this is indeed the case. The DWFs cancel with the existing
Ny fiducial fermion edge modes, making (4.5) non-anomalous.

Phase II1

This phase corresponds to my < 0 and m% < 0 on the SU side and myg < 0 and m?{, >0
on the U side.

SU side. The gauge group is spontaneously broken in this phase, but since m,, < 0 we
have no additional shift of Chern-Simons terms due to integrating out the fermion, relative
to our fiducial fermion assignments of Phase II. Spontaneously breaking SU(/N) causes the
Lagrangian to be modified to

iLi] = — kCSN_n,[b] + BF[f; Trn_n, (b) — NA; — NAy] — kCSn,[B]  (4.6)
+ NEBF[Ay; Ay] + NECSy[Ay),
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After integrating out the Lagrange multiplier, we are left with

il = — kCSn_n, V] — kCSn, [B] (4.8)
_ Nk (NCS1[A1] + NBF[Ay; A3] + N,CS)[43)) (4.9)
N _ NS 1 1 s 1,412 s 11432 . .

The fact that we get such complicated Abelian Chern-Simons terms can be explained in a
manner analogous to the non-Abelian SU Higgsing discussed earlier. Indeed, as we should
expect, this expression matches (3.26). More precisely, the complicated breaking of the
SU(N) field can be simplified by transforming into a U(NN) x U(1) field and breaking down
the U(V) field, and the Lagrange multiplier encodes a change in coupling to both Abelian
factors A; and A,. The splitting of the fiducial fermion modes once more occurs in a
manner analogous to (3.25).

U side. Since m%{, > 0 the U(k) symmetry remains unbroken, but the dynamical fermions
change the Chern-Simons terms. The change in Chern-Simons terms and edge modes
follows in a manner practically identical to (3.22).

Phase IVb

This phase corresponds to my, > 0, m?b <0, my <0, and mgb < 0. Additionally, this will
be the first phase where we have to worry about singlet fermions, and we have mgs; > 0 in
both theories.

SU side. Similar to Phase III, the gauge group is spontaneously broken in this phase and
this is slightly complicated by the fact this is the SU side. Additionally, the dynamical and
singlet fermions contribute additional Chern-Simons terms relative to Phase II, but they
also contribute dynamical DWF's which makes said terms automatically non-anomalous.

U side. Here the U(k) symmetry is spontaneously broken to U(k — Ny) x SU(Ny), but
the dynamical fermion behavior is the same as that of Phase II. However, the singlet
fermions have positive mass and thus shift a subset of the Chern-Simons level relative to
that of Phase II. Although this is the first time we have seen the singlet fermion behaving
differently from the dynamical fermions, there is nothing different about the way we end
up at an non-anomalous theory. The singlet fermions give rise to DWFs which exactly
compensate for their shift of the Chern-Simons levels in the bulk.

Phase I'Va

This phase corresponds to m, > 0, mi < 0, and ms < 0 on the SU side and myg < 0,
m?{, < 0, and mg < 0 on the U side. Again, this phase is a repeat of what we have already
looked at in Phase IVb but with negative mass singlet fermions. For the U side, the singlet
fermions have the same sign mass as the dynamical dynamical fermions and hence both
contribute a shift to the Chern-Simons terms, but the different masses break the flavor
symmetry between the two.

Lastly, let us comment on the scalar boundary conditions for the master duality. As
with the single species non-Abelian cases considered above, we can deduce whether ¢ and
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® obey Neumann or Dirichlet boundary conditions by comparing the global symmetry
currents. Recall that when N, = 0 the Ay coupling vanished and the A; global symme-
try could be attributed to the U(1),,; symmetry. Meanwhile, when we took Ny = 0 in
section 3.2, fll and flg could be combined into a new background field B which was then
associated with its own U(1),,; symmetry. For the case when both Ny and Ny # 0, the
Ay and Ay background fields play the same roles. The combinations A; and A; + A, are
associated with two U(1),,, symmetries, one whose U(1), part is the ¢) matter, and the
other, the ¢ matter. As such, all arguments of identifying global symmetries on either side
of the duality to impose scalar boundary conditions still hold for the master duality, and
so we find the same results, as shown in table 4.

4.1 Generalization to SO and USp

Finally, we will briefly comment on the generalization of our methods to the versions of
the master duality for the SO and USp groups in the presence of a boundary. In the bulk,
these dualities are given by [15, 16]®

SO(N) s s with Ny ¢ and Ny ¢ <« SO(k),_n~. with Ny & and N, ¥ (4.10)
—k+ L !

USp(2N) s s with Ny ¢ and Ny ¢ <> USp(2k),_~. with Ny ® and N; ¥. (4.11)
—k+ 2t )

Here, the matter is still in the fundamental representation of the respective gauge groups.
The difference now is that the scalars are real, and the fermions are Majorana. There are
five massive phases following the same pattern as those considered for the U/SU master du-
ality. Note that the mass deformed phases match under the level-rank dualities generalized
to the SO and USp cases [3],

SO (N)_,, » SO (k) x SO (kN)_, (4.12)
USp (2N)_,, ¢ USp (2k)y x SO (4kN)_, . (4.13)

Accounting for the change to real fermions and scalars, there are half as many matter
degrees of freedom as compared to the U/SU dualities, which can most easily be understood
by starting with complex scalars and Dirac fermions and imposing a reality condition [3].
Explicitly for the USp duality, we will take ¢ to be a Dirac fermion but require that
Va1 QPO = (P7)e; with ¢ the charge conjugate of ¢ and Q*F (/) symplectic invari-
ant tensor of USp(2N) (USp(2Ny)). Hence, integrating out real fermions provides half the
change in Chern-Simons level as that of a full Dirac fermion.

As with the U/SU case, the Chern-Simons terms are anomalous in the presence of a
boundary. Fortunately, the fiducial fermion prescription used above can be generalized to
be used with Majorana fermions. Alternatively, the fiducial Dirac fermions can still be
used with the reality conditions discussed above. Thus, the SO and USp dualities can be
rendered non-anomalous by rewriting Chern-Simons terms as fiducial Majorana fermions.
Deriving the boundary conditions and DWF's for Majorana fermions follows similarly.

8Here we follow the notation of [3], where USp(2N) = Sp(N) and the levels of SO groups are normal-
ized to give Chern-Simons terms 8%Tr (AdA - i%AS). Also note that Majorana fermions come with an
regularizing phase of exp(—inn/4) instead of exp(—inn/2), with 1 the n-invariant.

— 95—



The global symmetries on either side of the master dualities also change slightly. For
instance, the flavor symmetries of the fermions of the SO (USp) duality are now SO(Ny)
(USp(2Ny)) on the left-hand side of (4.10) and (4.11), respectively. The fiducial Majorana,
fermions for a given SO or USp Chern-Simons term have an analogous “flavor” symmetry
whose rank scales with the Chern-Simons level. Thus, when one chooses Dirichlet boundary
conditions for the dynamical gauge field on one end of the duality, the fiducial fermions on
the Neumann end once again share the same global symmetry on the boundary.

5 Conclusion

Physical samples that we can drive to criticality and probe in a laboratory setting have
boundaries, and too often conjectured dualities do not or cannot make explicit the role
of boundary conditions. In order to understand what — if any — role dualities such as
2+1 dimensional master bosonization duality or any of its single species non-Abelian and
Abelian limit cases play in describing physical critical systems, we must carefully analyze
the admissible boundary theories consistent with bulk duality. Our previous work in build-
ing duality consistent boundary conditions where a prescriptive method for discovering the
necessary edge modes was proposed was focussed solely on Abelian theories [14].

The relative simplicity of the gauge sector in the Abelian dualities hid an important
aspect of the choice of boundary conditions for the dynamical gauge fields. In this work, we
have reconciled the Abelian fiducial fermion prescription with those subtle aspects that are
necessarily present in all non-Abelian bosonization dualities in 2+1 dimensions regardless of
the types of fundamental matter considered. The important takeaway is that the additional
complication of having dynamical gauge fields on both sides of the duality necessitated an
alternating prescription of boundary condition such that Neumann conditions are mapped
to Dirichlet conditions across the duality. As first observed in [17] and later elaborated
in [20], the reason this change in boundary conditions is due to emergent global symmetries
in the boundary theories that must match in order to be duality-compatible.

Beyond simply analyzing the gauge sectors, in the preceding sections, we have con-
structed the necessary duality-compatible boundary conditions and additional edge modes
for the master bosonization duality for Chern-Simons-matter theories in [15, 16]. A non-
trivial check on the analysis in this work has been the consistent reduction of the duality-
consistent boundary conditions in the master bosonization duality to the Abelian case. The
check furnished by the Abelian reduction also resolved a subtlety not addressed in [15, 16]
regarding whether the Abelian gauge fields U(1),,, 5 and U(1) r, g were ordinary U(1) or spin,.
connections. Further, the motivation of the boundary conditions on the scalar sector of the
U side of the non-Abelian single species and master bosonization dualities discussed in 3
provides a more satisfying picture than the Abelian analysis in [14] had suggested. Lastly,
the novel extension of the fiducial fermion prescription to SO and USp dualities filled out
the spectrum of 2+1 dimensional bosonization dualities in the presence of a boundary.

That being said, there are further questions to ask in the context of 241 dimensional
dualities involving Chern-Simons-matter theories in the presence of a boundary. As noted
at the start of this work, at the core of all of the bosonization dualities sits the basic
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level-rank duality familiar from WZW theories. In the non-Abelian dualities, we cannot
integrate out the non-Abelian Chern-Simons terms for dynamical fields in the massive
phases. Since the dynamical fields are related by the level-rank duality rather than simply
being the same, this has resulted in slightly different boundary theories. One could then
wonder whether WZW-matter theories participate in other non-trivial level-rank dualities.
To our knowledge, there has been little work done on the effects of level-rank duality for
WZW theories with non-trivial matter sectors.
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A Time-reversed master duality

In this appendix, we consider the time-reversed version of the master duality in order to
explicate the subtlety of our conventions for the fermion mass terms. That is, time-reversal
acts as to change signs in the following way,

i Pl & it Pyyp — i (CS1[a] + 2CSgray) - (A1)
For example, on the SU side of the master duality the fermion kinetic term becomes
WDy e i o WD, o4, — i (NyCSN[H] + NCSy,[C])
— i (NN;CS1[As] + 2N N;CSgan ) (A.2)
This means the time-reversed master duality is given by
Lsu = |Dysdl® + 0Dy, o a0 — i (kcsN[b] +BF [f; Try (b (A — Ag))D
i (—kNBF[fL; As] — ENCS, [AQ]) + Ling (A.3)
Ly = |Derc® + B, 5 5, — i ((Ns = N)CSi[e] - NBF[Trs(e); 4]
— (k:CS N.[B] + kN,CS1[As] + 2k(N, — N)ngrav) + L (A.4)
where now the mass identification is
My <> M3, mi o —Mmy. (A.5)

Note that signs of WW|®|? and 11)|p|? flip as well. The associated boundary conditions
and edge modes are given in table 5.
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SU(N) Side U(k) Side

Boundary Conditions Yhlo =0 Y oarlo =0
Garr: Neumann ®,r: Neumann
b': Neumann ¢: Dirichlet

Additional Edge Modes | k x E}'f o + A11y] S

Nk x L,[0] Nk x L ,[0]
SU(N) Side U(k) Side
Boundary Conditions Ylo =0 U onlo=0
danr: Dirichlet ®,;: Dirichlet
b': Dirichlet ¢: Neumann
Additional Edge Modes — N x Li[d + &+ Ailly]
Nk x L£},[Ai] Nk x LF[A]
Nk x L,[0] Nk x L ,[0]

Table 5. The top (bottom) table counts the additional edge modes when choosing Neumann and
Dirichlet boundary conditions on the dynamical gauge fields in SU (U) and U (SU) side respectively
when Ny # 0 and N, # 0 for the time-reversed master duality.
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