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1 Introduction

In the past few years, there has been a resurgence in the interest paid to quantum field theo-

ries in 2+1 dimensions and the unexpected IR dualities that they can exhibit. In particular,

it has been shown in a variety of contexts that Chern-Simons theories coupled to matter

participate in bosonization-type dualities [1–4], and in the Abelian Chern-Simons matter

theories, bosonization can then be extended to a web of particle-vortex dualities [5, 6].

Apart from these curious dualities, Chern-Simons matter theories at IR fixed points are

models of critical phenomena in low dimensional condensed matter systems, capture phe-

nomena such as the fractional quantum Hall effect, and play a role in topological quantum

computing [7]. Further, there have been lessons taken from these dualities and imported

back into theories closer to ones recognizable to high energy physicists [8, 9]

More than being purely speculative relations, 2+1 dimensional bosonization and

particle-vortex dualities are now backed by significant evidentiary support. In the case of

non-Abelian Chern-Simons theories coupled to fundamental matter, the most analytically

controllable evidence comes from the large N , large Chern-Simons level, k, fixed number

of flavors regime, e.g. [10]. Despite N = 1 lying well outside of any extrapolation from

the non-Abelian evidence, recent exact lattice [11] and quantum wire constructions [12, 13]

have given strong support of Abelian 2+1 bosonization and particle-vortex duality. All of

this evidence suggests that these dualities might play a role in real world physical systems

at criticality.
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However if there is any intent on exporting the lessons from 2+1 dimensional bosoniza-

tion to inform any aspect of experimental protocol for real world samples, then it is im-

portant to understand how the dualities can be made consistent with the introduction of

a boundary. In [14], it was shown that a prescriptive method exists to assign boundary

conditions for Abelian bosonization and particle-vortex dualities. The key realization in

arriving at the correct accounting for necessary boundary conditions and edge modes in

Abelian dualities was that the Chern-Simons terms were best thought of in terms moti-

vated by their UV origins. That is, the Chern-Simons terms are replaced by a theory of

heavy, well-regulated “fiducial fermions”.

Recently, there have been proposals to explain the vast set of 2+1 dimensional

bosonization dualities as originating from a single “master” duality [15, 16]. The master

dualities generalize the original non-Abelian bosonization dualities (see [1]) to a level-rank

type equivalence between Chern-Simons matter theories with both scalars and fermions in

each theory. In addition, studying the N = k = 1 limit with single species of fundamental

matter can be shown to recover the known Abelian dualities.

At first glance, one might assume that the application of the fiducial fermion analysis

in Abelian dualities in the presence of a boundary would be a trivial generalization to the

non-Abelian dualities. However because both sides of the single species non-Abelian and

master bosonization dualities in [1, 15, 16] have dynamical gauge fields, the introduction

of a boundary is more subtle. As pointed out in [17], choosing certain boundary conditions

on bulk dynamical gauge fields can alter the counting of global symmetries present on the

boundary. The interplay between boundary conditions and global symmetries presents an

interesting, non-trivial extension of the study in [14] and will require a careful analysis in

order to find duality-consistent boundary conditions.

To the end of finding duality-consistent boundary conditions for the master bosoniza-

tion duality, we will organize our work as follows. In section 2, we will briefly review

the master bosonization duality and the fiducial fermion prescription. After reviewing the

preliminary information, we will construct in section 3 the consistent boundary conditions

and necessary edge modes for non-Abelian dualities with a single species of matter. Using

the method developed to address the single species non-Abelian dualities, we will show

how the new prescription works in all massive phases of the master bosonization duality

in section 4. Finally, we briefly comment on generalization to the SO and USp versions of

the master duality in section 4.1.

2 Preliminaries

2.1 Master bosonization duality

At the core of recently discovered non-supersymmetric 2+1 dimensional dualities is the

well-known level-rank duality,

SU(N)−k ↔ U(k)N + U (kN)−1 (2.1)

where U (kN)−1 represents a gravitational Chern-Simons term +2kNCSgrav [2]. New work

has suggested that there exists a master duality that seemingly encompasses and generalizes
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all known 2+1 dimensional dualities built on the level-rank core [15, 16]. Schematically,

the master duality is given by an equivalence between two gauge theories with fundamental

matter sectors containing Ns (Nf ) scalars, φ (Φ), and Nf (Ns) Dirac fermions, ψ (Ψ), i.e.

SU(N)
−k+

Nf
2

with Ns φ and Nf ψ ↔ U(k)N−Ns
2

with Nf Φ and Ns Ψ. (2.2)

This is the “master” duality in the sense that it together with its time-reversed version

encompass all of the 3d bosonization dualities of ref. [1]. Namely, the single species limits

of either Nf = 0 or Ns = 0 respectively yield

SU(N)−k with Ns φ ↔ U(k)N−Ns
2

with Ns Ψ, (2.3)

SU(N)
−k+

Nf
2

with Nf ψ ↔ U(k)N with Nf Φ. (2.4)

Explicitly, while starting from different UV theories, (2.2) is a duality between the

partition functions∫
D(· · · ) e−

∫
d3x LSU ↔

∫
D(· · · ) e−

∫
d3x LU (2.5)

in the IR limit. The Lagrangians are given by1

LSU = |Db+Bφ|2 + iψ̄D/b+C−Ã2
ψ − i

(
(Nf−k)CSN [b] + BF

[
f ; TrN

(
b−1N

(
Ã1+Ã2

))])
− iN

(
CSNf [C] + (k −Nf )

(
BF[Ã1; Ã2] + CS1[Ã2]

)
+ 2NfCSgrav

)
+ Lint, (2.6)

LU = |Dc+CΦ|2 + iΨ̄D/c+B−Ã2
Ψ−iN

(
CSk[c] + BF[Trk (c) ; Ã1] + 2kCSgrav

)
+ L′int, (2.7)

where the U(1) field f is a Lagrange multiplier whose precise role — as well as the moti-

vation for the notation adopted for the gauge fields listed in table 1 — will be discussed

below. For brevity, we have adopted the following notation for Chern-Simons and BF terms

for rank N gauge groups

CSN [b] ≡ 1

4π
TrN

(
bdb− i2

3
b3
)
, (2.8)

BF[f ; TrNb] ≡
1

2π
fdTrNb. (2.9)

The gravitational Chern-Simons term is given by∫
M=∂X

CSgrav ≡
1

192π

∫
X

TrR ∧R, (2.10)

where X is a d = 4 manifold and M is its d = 3 boundary.

1These Lagrangians are based on those in [15] with Ã1 → NÃ1 for simplicity of the expressions. This

amounts to saying quarks have charge 1 under U(1)m rather than baryons.
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Gauge Fields Background Fields

Symmetry U(N) U(k) SU(N) SU(k) SU(Ns) SU(Nf ) U(1)m,b U(1)F,S

Field bµ cµ b′µ c′µ Bµ Cµ Ã1µ Ã2µ

Index α, β ρ, σ α, β ρ, σ M , N I, J —— ——

Table 1. Collection of notation for various gauge fields. Note that dynamical gauge fields are

indicated by lower case letters and background gauge fields by upper case letters.

For the master bosonization duality to be valid, we need to deform the theories by

adding in the following putatively relevant interaction terms [15, 16]2

Lint = αϕ(φ†αMφαM )2 − (ψ̄αIφαM )(φ†βMψβI), (2.11)

L′int = αϕ(Φ†ρIΦρI)
2 + (Ψ̄ρMΦρI)(Φ

†σIΨσM ), (2.12)

where α, β = 1, . . . , N and ρ, σ = 1, . . . , k are color labels, I = 1, . . . , Nf and M = 1, . . . , Ns

are flavor labels, and αϕ is the scalar self-coupling that is tuned to αϕ → ∞ at the IR

fixed point. Upon deforming each side of the duality by the appropriate Lint and flowing

to the IR, it is believed that there are no other relevant or marginal deformations — apart

from mass terms — that are consistent with the symmetries at the fixed point. In what

follows we will often drop the explicit indices and denote the interaction terms by, e.g.,

|φ|4 and Ψ̄Ψ|Φ|2.

The |φ|4 and |Φ|4 are the usual interactions which are present at the Wilson-Fischer

fixed point. The effect of the scalar-fermion mixing term is to give a subset of the Nf (or Ns)

fermions a mass when the scalars in the theory acquire a nonzero vacuum expectation

value. The additional effect of this mass from the mixing term is necessary to get complete

agreement between the two sides of the duality, and the relative sign between the mixing

terms in Lint and L′int is important to match the phases.

In what follows, we will denote dynamical gauge fields by lowercase letters and back-

ground gauge fields by uppercase. Ordinary gauge connections will be denoted by b, B, c, C

and spinc connections by A, a.3 Specifically, we have denoted by bµ a dynamical U(N)

gauge field, cµ a dynamical U(k) gauge field, Cµ a background SU(Nf ) gauge field, and Bµ
a background SU(Ns) gauge field. Further, the background spinc gauge fields for U(1)m,b
and U(1)F,S are respectively Ã1µ and Ã2µ, and fµ is a dynamical U(1) field, which acts as

a Lagrange multiplier. The covariant derivatives are given by

(Db+B)µφ = [∂µ − i (bµ1Ns +Bµ1N )]φ, (2.13a)

(Db+C−Ã2
)µψ =

[
∂µ − i

(
bµ1Nf + Cµ1N − Ã2µ1NNf

)]
ψ, (2.13b)

(Dc+C)µΦ =
[
∂µ − i

(
cµ1Nf + Cµ1k

)]
Φ, (2.13c)

(Dc+B−Ã2
)µΨ =

[
∂µ − i

(
cµ1Ns +Bµ1k − Ã2µ1kNs

)]
Ψ. (2.13d)

2Although the mixed scalar and fermion interactions are marginal in the IR at leading order in the large

N limit, the sign of the subleading corrections are currently unknown. As in [15, 16] we will assume such

operators are at least marginal since they are vital for the consistency of the master duality.
3For a review on the subtleties of spinc connections in the context of these dualities, see [6].
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1n is the n-dimensional identity matrix. Although the presence of the Lagrange multiplier

f makes coupling slightly obscure, on the U side Ã1 only appears through a BF coupling

to the monopole current ?jm = 1
2πdTrkc, while on the SU side it couples directly to the

particle number current. The Ã2 field is associated with a new symmetry which arises due

to the presence of both scalars and fermions on each side of the duality. With the Lagrange

multiplier, the U(1)F,S symmetry only couples to the fermions on each side of the duality,

although once f is integrated out it couples only to φ on the SU side.

In the way that we have written the fermions in (2.6) and (2.7), we have left implicit

the regularizing η-invariant terms for the Dirac fermions [18, 19]. This is the notation

established in [6]. Being very explicit, for Nf , N -component fermions we have absorbed

into the kinetic term what is often written as a half-integer Chern-Simons term that results

from integrating out heavy regulator fermions, i.e.

iψ̄D/bψ − i
[
−
Nf

8π
TrN

(
bdb− i2

3
b3
)]

−−−−→ iψ̄D/bψ. (2.14)

This convention is chosen such that when integrating out positive mass dynamical fermions

the hidden η-invariant term is canceled, which leaves the Chern-Simons levels unchanged.

However, when a negative mass fermion is integrated out the overall effect is to shift the

associated Chern-Simons levels by Nf . This will be the convention we use for fermions

throughout this paper.4

As we mentioned above, the SU side of the theory contains a Lagrange multiplier field

f , which effectively transforms SU(N)→ U(N)×U(1). Analyzing the symmetry breaking

pattern for U(N)×U(1) is easier than for SU(N) [2, 15, 16]. Occasionally, it will be useful

to look at the original SU Lagrangian with f integrated out,

L′SU =
∣∣∣Db′+B+Ã1+Ã2

φ
∣∣∣2 + iψ̄D/b′+C+Ã1

ψ − i
(
(Nf − k)CSN [b′] +NCSNf [C]

)
− i
(
−N(k −Nf )CS1[Ã1] + 2NNfCSgrav

)
+ Lint. (2.15)

Because the duality exactly at the IR fixed point is between what are in general

strongly coupled theories, the best evidence for validity of 3d bosonization dualities comes

from gapped phases where the identification can be directly verified. The dictionary for

mass terms across the master duality is given by [15]5

mψ ↔ −m2
Φ, m2

φ ↔ mΨ. (2.16)

Since we have two types of matter on each side of the duality, naively one would expect there

to be four different mass-deformed phases. However, it has been shown that the interactions

of (2.11) and (2.12) separate one of these four phases into two separate phases, giving us

4This will slightly complicate things when we time-reverse the duality, because this transformation should

also flip the η-invariant term. However, we will keep the same convention whether or not we are talking

about the original or time-reversed duality. The net effect of this will mean time-reversal comes with a shift

in Chern-Simons terms as well.
5Note the opposite convention appears in [16] since it is the time-reversed version of the duality considered

in [15].
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Figure 1. Various phases of the master duality and the non-Abelian reductions. The shaded red

and blue correspond to the single-matter non-Abelian dualities.

five phases total [15, 16]. Specifically, when the scalar acquires a vacuum expectation value

the interactions give the so-called “singlet fermions”, which are neutral under the unbroken

gauge group, a mass shift.

The five massive phases are shown in figure 1. On the SU side we expect to find

I : [SU(N)−k+Nf ×U (NNf )−1]× SU (Nf )N × SU (Ns)0 × JI , (2.17a)

II : [SU(N)−k ×U (0)−1]× SU (Nf )0 × SU (Ns)0 × JII , (2.17b)

III : [SU (N −Ns)−k ×U (0)−1]× SU (Nf )0 × SU (Ns)−k × JIII , (2.17c)

IVa : [SU (N −Ns)−k+Nf
×U (Nf (N −Ns))−1]

× SU (Nf )N−Ns × SU (Ns)−k × JIV a, (2.17d)

IVb : [SU (N −Ns)−k+Nf
×U (NNf )−1]× SU (Nf )N × SU (Ns)−k+Nf

× JIV b. (2.17e)

Meanwhile, on the U side,

I : [U (k −Nf )N ×U (kN)−1]× SU (Nf )N × SU (Ns)0 × JI , (2.18a)

II : [U(k)N ×U (kN)−1]× SU (Nf )0 × SU (Ns)0 × JII , (2.18b)

III : [U(k)N−Ns ×U (k (N −Ns))−1]× SU (Nf )0 × SU (Ns)−k × JIII , (2.18c)

IVa : [U (k −Nf )N ×U (k (N −Ns))−1]× SU (Nf )N−Ns × SU (Ns)−k × JIV a, (2.18d)

IVb : [U (k −Nf )N−Ns ×U (kN + (Nf − k)Ns)−1]

× SU (Nf )N × SU (Ns)−k+Nf
× JIV b. (2.18e)

The bracketed are level-rank dual by (2.1), while the rest of the terms are global symmetries

and should be the same on both sides. The Abelian factors unique to each phase are

given by

Ji ≡ Jabi
1

4π
ÃadÃb (2.19)

– 6 –
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with a, b = 1, 2, i indexing the phase {I, . . . , IV b}, and

JabI =

(
−N (k −Nf ) 0

0 0

)
(2.20a)

JabII =

(
−Nk 0

0 0

)
(2.20b)

JabIII = − Nk

N −Ns

(
N Ns

Ns Ns

)
(2.20c)

JabIV a = −
N (k −Nf )

N −Ns

(
N Ns

Ns Ns

)
−NfNs

(
0 0

0 1

)
(2.20d)

JabIV b = −
N (k −Nf )

N −Ns

(
N Ns

Ns Ns

)
. (2.20e)

Since the massive phases are dual to one another, this is taken as good evidence that

the master duality remains true at the conformal fixed point. A similar matching can be

performed on the five critical lines that separate the five phases [15, 16].

2.2 Adding boundaries

For simplicity, we will consider the theory on the half-space R2,1
+ with coordinates {t, x, y}

with t, x ∈ (−∞,∞) and y ≥ 0. As in the Abelian duality, the results should be largely

independent of the choice of R2,1
+ as our background [14]. We will use i, j = {x, t} to refer

to indices parallel to the boundary.

In this section we will start by briefly summarizing our conventions for boundary

conditions for single-component fields as prescribed for Abelian dualities in [14], which

generalize fairly trivially to non-Abelian theories. Further, we will review the impact

of the choice of boundary conditions on the presence of edge modes and anomalies in the

boundary theory. We will then review the method described in [14] for properly accounting

for edge modes by introducing “fiducial fermions”.

Boundary conditions. From the perspective of the action, boundary conditions arise

from partial integration and demanding a well-defined variational principle. The most basic

conditions one encounters require either the variation of a dynamical variable (“Dirichlet”)

or its coefficient (“Neumann”) to vanish at the boundary. Consistent boundary conditions

for a scalar with non-derivative couplings can be either Neumann or Dirichlet,

(Db)yφαM
∣∣
∂

= 0 or δφαM
∣∣
∂

= 0 (2.21)

where “|∂” denotes an expression which holds at the boundary. Equivalent boundary

conditions hold for ΦρI . In order to derive the boundary conditions for a given Dirac

fermion ψ, it is convenient to decompose ψ into its left- and right-handed components, ψ±,

ψ =

(
ψ+

ψ−

)
, i.e. ψ± = P±ψ. (2.22)

– 7 –
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The projector P± = (1± γy) /2 where γy is the gamma matrix which is perpendicular to

the boundary. The boundary conditions are then

ψ+
αI

∣∣
∂

= 0 or ψ−αI
∣∣
∂

= 0. (2.23)

Equivalent boundary conditions hold for ΨρM . The boundary conditions on the Pauli-

Villars fields follow in an analogous manner. Like [14], we chose boundary conditions for

the Pauli-Villars that will never give rise to edge modes.

The boundary conditions for gauge fields also fall into the category of Neumann and

Dirichlet boundary conditions,

Fiy
∣∣
∂

= (∂ybi − ∂iby + [by, bi])
∣∣
∂

= 0, bi
∣∣
∂

= 0, (2.24)

respectively.6 In the Abelian dualities, there are only dynamical gauge fields on one side

of the duality, and thus only one boundary condition is necessary [14], which obviates the

complications in choosing consistent boundary conditions in both theories. In this work,

we will need to be more careful in choosing boundary conditions for all of the dynamical

gauge fields.

For Neumann boundary conditions on dynamical gauge fields, we will need to worry

about anomaly inflow. Note that since we do not assign boundary conditions for back-

ground fields, their corresponding Chern-Simons terms can produce anomalies. The can-

cellation of anomalies will be achieved by introducing “fiducial fermions”, which will give

rise to edge modes and will be discussed in the next section.

If we choose Dirichlet boundary conditions for the dynamical gauge fields, there is

no chiral current flow off the boundary and, hence, no anomalies. This follows from the

fact jyflux|∂ ∼ Fij |∂ = 0. Since Dirichlet boundary conditions break the gauge symmetry

to the group that leaves the boundary condition invariant, an additional global symmetry

emerges at the boundary [20].

We will show that the only way the global symmetries are consistent with the duality

is to choose Dirichlet boundary conditions on one side and Neumann boundary conditions

on the other. These results align with those discussed in [17].

Lastly, we should mention that choosing the same boundary condition on all flavors is

necessary in order to maintain the full SU (Ns) and SU (Nf ) global symmetries as well as

the respective gauge symmetries. For future work, it may be interesting to consider a set of

boundary conditions that breaks the flavor symmetries or mixing Neumann and Dirichlet

boundary conditions for subsets of the gauge fields in a given theory.

Edge modes and anomalies. In studying Chern-Simons matter theories in the pres-

ence of a boundary, we must reconcile the theories against possible edge modes allowed

by the boundary conditions and any anomaly inflow. In particular, introducing gapped

fermions to a manifold with a boundary can create gapless, chiral fermionic modes local-

ized to the boundary, i.e. domain wall fermions (DWFs). If we allow the mass of the bulk

6Neumann boundary conditions can be modified by coupling boundary matter to the bulk gauge sector

by εijFjy|∂ = jibdry where jibdry is the boundary matter current [20]. Since we do not add any additional

charged boundary matter, we will always set jibdry = 0.

– 8 –
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fermions to vary in the direction normal to the boundary (m(y)), then by the standard

construction [21, 22] DWFs will exist when the profile of the spatially varying mass leaves

the function

ξ±(y) = e±
∫ y
0 dy

′m(y′) (2.25)

finite for all y ∈ R2,1
+ . In fact in R2,1

+ , any constant, non-zero mass will give a normalizable

zero mode with chirality determined by the sign of the mass. That is, we have left-moving

DWFs for sgn(m) = +1 and right-moving DWFs for sgn(m) = −1.

In addition to the possible anomalies associated with non-vanishing chiral currents on

our boundary, we also need to take care of potential anomaly inflow from the gauge sector.

Chern-Simons theories in the presence of a boundary are not a priori gauge invariant

everywhere. However, the non-trivial anomaly associated with a bulk SU(N) Chern-Simons

term of level k can be compensated for by the chiral anomaly through the Callan-Harvey

mechanism provided [21]

k = n+ − n−, (2.26)

where k is the level of the bulk Chern-Simons theory and n± are the number of (right-)

left-movers in the fundamental representation of SU(N) living on the boundary. This of

course generalizes to the Abelian case as well. Similarly the gravitational Chern-Simons

term with coefficient kΩ has an anomaly associated with diffeomorphisms, which can be

compensated for by having excess right- or left-moving (ñ± resp.) Majorana-Weyl fermions

satisfying

kΩ =
1

2
(ñ+ − ñ−). (2.27)

Equivalently, we could use a single right- or left-moving Weyl fermion for every two corre-

sponding Majorana-Weyl fermions to accomplish the same compensation.

Fiducial fermions. Informed by lattice realization of Abelian dualities, the accounting

for edge modes above led to the prescriptive replacement of Chern-Simons terms by heavy

fermions [14]. These “fiducial fermions” act to display the UV physics captured in the IR

by the Chern-Simons terms while more directly enumerating the gauge sector edge modes.

The non-trivial IR theory left behind after integrating out heavy Dirac fermions coupled

to a background spinc connection A is CS1[A] + 2CSgrav. More importantly, the fiducial

fermions give rise to DWFs which automatically render their associated Chern-Simons

terms non-anomalous. Thus, the fiducial fermion prescription reads

e±i
∫
d3x (CS1[A]+2CSgrav) →

∫
DχDλ ei

∫
d3xL±ff [χ,λ,A], (2.28)

where

L±ff [χ, λ,A] ≡ lim
|mχ|,|mλ|→∞

(
iχ̄D/Aχ∓ |mχ| χ̄χ+ iλ̄D/Aλ∓ |mλ| λ̄λ

)
. (2.29)

Here χ is the fiducial fermion, λ is the Pauli-Villars regulator field, and the their respective

masses |mχ|, |mλ| are taken to be parametrically heavy.

– 9 –
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This procedure generalizes to the case where B is a non-Abelian background gauge

field of SU(N) and we have

e±i
∫
d3x (kCSN [B]+2NkCSgrav) =

∫ k∏
M=1

DχMDλM ei
∫
d3xL±ff [χM ,λM ,B], (2.30)

now with

L±ff [χM , λM , B] ≡ lim
|mχM |,|mλM |→∞

(
iχ̄MD/BχM∓|mχM | χ̄

MχM + iλ̄MD/BλM∓|mλM | λ̄
MλM

)
(2.31)

with χM and λM in the fundamental representation of SU(N). The non-Abelian fiducial

fermion prescription requires χM and λM be parametrically heavy N -component fields with

U(k) flavor symmetry.

As was done in [14], it will be useful to rewrite all BF terms as Chern-Simons terms

in order to properly account for the edge theories. For example,

NCSk[c̃] +NBF[Trk(c̃); Ã11k] = NCSk[c̃+ Ã11k]−NCSk[Ã11k]. (2.32)

The right-hand side makes the assignments of fiducial fermions clearer.

Global symmetries. The global symmetries manifest in the Lagrangian as three types

of background Chern-Simons terms: (1) Abelian, namely Ã1 and Ã2, (2) non-Abelian, B

and C, and (3) gravitational. All three of these global symmetries are related to a conserved

current, which will allow us to put additional constraints on the fields.

First consider the Abelian symmetries. There is an identification between the currents

which couple to Ãa, found via

jµU,a(x) ≡ δSU[Ãa]

δÃaµ(x)
, ↔ jµSU,a(x) ≡ δSSU[Ãa]

δÃaµ(x)
. (2.33)

As with the Abelian dualities, Ã1 is associated with the flux current on U side and a particle

current on the SU side. For example, when Ns = 0 and we set Ã1 = 0 after variation,

jµU,1 =
1

2π
εµνρ∂νTrk(c̃ρ) ↔ jµSU,1 = jµfermion. (2.34)

We will show below that the Ã2 field plays a very similar role. Note that in the single

species non-Abelian dualities the Ã2 symmetry drops out [1], so it is only a feature of the

master bosonization duality [15, 16].

The non-Abelian global flavor symmetries also give two currents related to the SU(Ns)

and SU(Nf ) symmetries on either side. These flavor currents are not just simply matter

currents because there is also flux coupling to the background Cµ fields on the SU side of

the duality.

Lastly, the equivalence of the gravitational currents simply identifies the stress-energy

tensors on either side of the duality. We will not make use of this identification in what

follows.
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3 Single species non-Abelian bosonization with boundaries

Before analyzing the master bosonization duality in the presence of a boundary, let us take

the step of first considering non-Abelian dualities with a single species of matter. That is,

we consider (2.6) and (2.7) setting either Nf = 0 or Ns = 0, which correspond to one of

Aharony’s original dualities and one of the time-reversed versions [1]. Additionally, we make

connections with the Abelian limit where we take Ns = k = N = 1 or Nf = k = N = 1 and

find results consistent with our previous analysis in [14]. We will also discuss additional

subtleties involving the connections coupled to the fermion.

Setting either Ns or Nf = 0 eliminates one type of matter from each side of the

master duality. This has the effect of making the additional U(1)S,F symmetry redundant.

Specifically, U(1)S,F becomes a linear combination of the global U(1)m,b symmetry and

the dynamical gauge group. Since U(1)S,F does not appear in [1], the redundancy should

be expected. Importantly, U(1)S,F becoming redundant does not amount to just setting

Ã2 = 0 in the master duality. We will see keeping careful track of the Ã2 dependence in

section 3.2 allows us to correctly distinguish ordinary and spinc connections.

3.1 Non-Abelian U + scalars↔ SU + fermions

To start studying the non-Abelian dualities, we will consider Ns = 0. This reduces (2.2) to

SU(N)
−k+

Nf
2

with Nf ψ ↔ U(k)N with Nf Φ (3.1)

with the mass identification mψ ↔ −m2
Φ. This duality is subject to the flavor bound

Nf ≤ k.7

Explicitly, the Lagrangians for the theories on either side of (3.1) are given by

LSU = iψ̄D/ b′+C+Ã1
ψ − i

(
(Nf − k)CSN [b′] +NCSNf [C]

)
− i
(
−N(k −Nf )CS1[Ã1] + 2NNfCSgrav

)
(3.2)

LU = |Dc+CΦ|2 + αϕ|Φ|4 − i
(
NCSk[c] +NBF[Trk (c̃) ; Ã1] + 2NkCSgrav

)
. (3.3)

Since the Lagrange multiplier term will not be important for this section, we have integrated

out f as in (2.15). Furthermore, in (3.3), we can split the U(k) field, c, into its traceless

SU(k) part, c′, field and non-zero trace, c̃, such that

LU = |Dc+CΦ|2 + αϕ|Φ|4 − i
(
NCSk[c

′] +NCSk[c̃+ Ã11k]−NkCS1[Ã1] + 2NkCSgrav

)
(3.4)

Note that mass deformations in these theories correspond to phases I and II in figure 1.

Specifically, mψ < 0 and m2
Φ > 0 is Phase II, and mψ > 0 and m2

Φ < 0 is Phase I. Also

take note of the fact the duality has no Ã2 dependence, since the U(1)S,F duality coupled

to the fields associated with the SU(Ns) symmetry.

7There are arguments that these flavor bounds can be extended slightly [8], but we will not consider

such cases in this work.
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Let us work through the counting of fiducial fermions in detail. First consider the U

side of Phase II where m2
Φ > 0. Integrating out the scalars when m2

Φ > 0 is straightforward,

they are simply gapped and cause no change in the Chern-Simons terms so we are left with

iLIIU = NCSk[c
′] +NCSk[c̃+ Ã11k]−NkCS1[Ã1] + 2NkCSgrav. (3.5)

We will start by assuming Neumann boundary conditions for the dynamical gauge fields;

all the Chern-Simons terms are anomalous in the sense that they result in a non-vanishing

current flowing onto the boundary. Fortunately, in Phase II it is straightforward to assign

edge modes to compensate for the anomalies.

To start, N right-moving k-component fiducial fermions coupled to c′ + c̃+ Ã11k will

make NCSk[c
′] + NCSk[c̃ + Ã11k] non-anomalous. Note that since we can shift away the

Ã1 factor, together these terms are equivalent to a U(k)N Chern-Simons term.

Next, Nk left-moving single-component fiducial fermions will make NkCS1[Ã1] non-

anomalous. The newly added Nk left and N right movers respectively generate gravi-

tational Chern-Simons terms +2NkCSgrav and −2NkCSgrav, and hence such terms can-

cel out.

Lastly, we need to make the remaining +2NkCSgrav term non-anomalous. We thus

introduce Nk neutral right-moving single-component fiducial fermions. Moving forward,

we note that a positive mass scalar does nothing to the Chern-Simons modes, and so, we

will always use the m2
Φ > 0 (or m2

φ > 0) regime to determine the fiducial fermions on the

scalar end of the dualities.

However, there is one subtlety we have not yet mentioned: introducing the fiducial

fermions has given the theory additional symmetries on the boundary. For example, choos-

ing to add N×L+
ff [c′+c̃+Ã11k] introduces a new global SU(N) symmetry on the boundary.

We need to be careful with how we are assigning fiducial fermions on both sides of the dual-

ity so that their associated global symmetries match. While the global symmetries coming

from the fiducial fermions for the background Chern-Simons terms trivially match, the

fiducial fermions associated with dynamical gauge fields have no analog on the opposite

side of the duality.

Taking care to assign the fiducial fermions for the dynamical gauge fields, recall that

Dirichlet boundary conditions not only enhances the global symmetry on the boundary but

also eliminates the need to make the dynamical gauge fields non-anomalous. This removes

the need to assign fiducial fermions to the dynamical gauge fields for Dirichlet bound-

ary conditions. In fact, the enhanced global symmetry from choosing Dirichlet boundary

conditions on one side of the duality exactly match the additional global symmetry from

introducing the dynamical fiducial fermions [17].

Let us demonstrate this mechanism explicitly in the present example. Table 2 summa-

rizes all the fiducial fermions we had to add on both sides of the duality. We just explained

this fiducial matter content on the U side and will turn to the SU side momentarily. There

are common Nk left-moving fermions (charged under Ã1) and Nk neutral right-moving

fermions on both sides. They give rise to an extra SU(Nk) × U(Nk) global symmetry

on both sides. In addition, there are N fiducial fermions on the U(k) side that have no

corresponding fiducial fermions on the SU(N) side. We can account for the new SU(N)
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global symmetry from these fiducial fermions by choosing Dirichlet boundary conditions

for the dynamical SU(N) gauge field b, which will produce a global SU(N) symmetry on

the boundary. More generally, choosing Neumann boundary conditions for the gauge fields

on one side of the duality is only consistent with choosing Dirichlet boundary conditions

on the other.

To complete the entries in table 2, let us analyze the fiducial matter content on the SU

side. Staying in Phase II and integrating out the Nf N -component dynamical fermions,

we pick up additional Chern-Simons terms, which reduces (3.2) to

iLIISU = −kCSN [b′]− kNCS1[Ã1]. (3.6)

At this point if we choose Dirichlet boundary conditions on b′, the −kCSN [b′] term is non-

anomalous on its own. First note that we have fermions on this side of the duality and so if

we choose appropriate boundary conditions, DWFs can exists and potentially provide the

necessary edge modes for (3.6) to be non-anomalous. However, with a bit of foresight we

will choose the fermionic boundary condition which does not allow DWFs to exist in this

phase, and hence all of our anomaly cancellation must come from fiducial fermions. This

also turns out to be the right choice for matching global symmetries on the boundary.

Specifically, introducing k left-moving N -component fiducial fermions coupled to Ã11N

renders −kNCS1[Ã1] non-anomalous. To account for the gravitational Chern-Simons term

−2NkCSgrav from the fiducial fermions, we should also introduce Nk right-moving neutral

fermions. It is easy to see that the boundary global symmetries match the choice of

Neumann boundary conditions on the U side above.

We have completed our first complete dual pair. As pointed out in [17], we have seen

that the duality-consistent boundary conditions for dynamical gauge fields are Neumann

on one side of the duality and Dirichlet on the other with the freedom to assign which side

sees which boundary condition.

There is a second dual pair with the same gauge groups and matter content where we

choose Dirichlet boundary conditions on the U side and Neumann boundary conditions on

the SU side. We can work out the fiducial fermion content in this pair following the same

logic as above.

Staying in Phase II, on the SU side we now need to assign fiducial fermions to make

both terms in (3.6) non-anomalous. Fortunately this isn’t much different from the case

considered above, and simply requires the k left-moving N -component fiducial fermions be

coupled to b′ + Ã11N instead of just Ã11N . This renders both −kCSN [b′] − kNCS1[Ã1]

non-anomalous.

Now, consider imposing Dirichlet boundary conditions on the U side in Phase II.

Above, we saw that Neumann boundary conditions required three types of fiducial fermions

to render all the terms in (3.5) non-anomalous. However, chosing Dirichlet boundary

conditions for c means that we no longer need to worry about canceling the anomaly

associated with its Chern-Simons term. In this case the anomalies of NCSk[c̃+ Ã11k] and

−NkCS1[Ã1] actually cancel, and this means that we only need the fiducial fermions that

made the gravitational term non-anomalous.
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SU(N) + fermions U(k) + scalars

Boundary Conditions ψ−αI |∂ = 0 ΦρI : Dirichlet

b′: Dirichlet c: Neumann

Additional Edge Modes ——— N × L+
ff [c′ + c̃+ Ã11k]

Nk × L−ff [Ã1] Nk × L−ff [Ã1]

Nk × L+
ff [0] Nk × L+

ff [0]

SU(N) + fermions U(k) + scalars

Boundary Conditions ψ−αI |∂ = 0 ΦρI : Neumann

b′: Neumann c: Dirichlet

Additional Edge Modes k × L−ff [b′ + Ã11N ] ———

Nk × L+
ff [0] Nk × L+

ff [0]

Table 2. The top (bottom) table counts the additional edge modes when choosing Neumann and

Dirichlet boundary conditions on the dynamical gauge fields in U (SU) and SU (U) side respectively

when Ns = 0.

Having established the fiducial fermion spectrum in Phase II, let’s now check that

the assignments work to make Phase I non-anomalous as well. For the SU + fermion

theory, integrating out the fermions in (3.2) cancels the η-invariants, which leaves the

Chern-Simons levels unaffected,

iLISU = (Nf − k)CSN [b′]− (k −Nf )NCS1[Ã1] +NCSNf [C] + 2NNfCSgrav. (3.7)

However, it will be helpful to view iLISU as coming from iLIISU in order to show that (3.7)

is non-anomalous. Comparing to (3.6),

iLISU = iLIISU +NfCSN [b′] +NNfCS1[Ã1] +NCSNf [C] + 2NNfCSgrav. (3.8)

In order to get a non-anomalous theory, we can take advantage of the fact that the

fiducial fermions that we have already assigned rendered iLIISU non-anomalous. It remains to

be shown that the additional Chern-Simons terms in (3.8) are non-anomalous. Fortunately,

we have chosen the boundary condition on the dynamical fermion such that we allow the

DWFs to live for mψ > 0. From (2.15), the dynamical fermions couple to b′1Nf + C1N +

Ã11NNf , and hence the DWFs are exactly the edge modes needed to cancel the residual

anomalies of (3.8).

The cancellation of the edge modes happens analogously to the cancellation of the

Chern-Simons terms. In the end, we have k−Nf left-moving N -component fiducial fermions

coupled to b′ + Ã11N , and N right-moving Nf -component fiducial fermions coupled to C

to cancel the background SU(Nf ) and gravitational Chern-Simons terms.

To complete the duality in Phase I, we need to consider the scalar side in the Higgs

regime (m2
Φ < 0). Following [15, 16], we will assume that the Nf scalars maximally Higgs
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the U(k). The breaking pattern is then U(k)−N → U (k −Nf )−N × SU (Nf )−N ; resulting

in a Lagrangian

iLIU = N
(

CSk−Nf [c′] + CSk−Nf [c̃+ Ã11k−Nf ]+ CSNf [C]− (k −Nf )CS1[Ã1] + 2kCSgrav

)
.

(3.9)

Since there are fiducial fermions which couple to U(k), the spontaneous breaking separates

each of the k-component fiducial fermions into broken and unbroken parts, namely

N × L+
ff [c′ + c̃+ Ã11k]→

{
N × L+

ff [c′ + c̃+ Ã11k−Nf ] (unbroken)

N × L+
ff [C + Ã11Nf ] (broken)

. (3.10)

Note that the Ã1 part of the N Nf -component fiducial fermions from the broken sector

combines with the opposite chirality Nk modes coupled to Ã1; leaving a total of N(k−Nf ).

The number of gravitational Chern-Simons terms is unchanged — we still have the same

net number of modes. A straightforward check shows these edge modes render (3.9) non-

anomalous.

Comparing the boundary spectra for mass deformations of the single species non-

Abelian duality, we can match the degrees of freedom in kind. Thus, we see that

LIU ↔ LISU (3.11)

LIIU ↔ LIISU (3.12)

indicating a consistent duality in the bulk. We outline both instances of duality consistent

boundary conditions and the additional edge modes in table 2.

The last remaining question we have to address is how to identify boundary conditions

for the scalar fields. Following a similar procedure used in [14], let us reinterpret the effect

of anomaly inflow when we choose Neumann boundary conditions on the U side. Alone, a

Chern-Simons term is anomalous on the boundary due to a non-trivial current divergence.

Since the associated current is not conserved, we can think of this as meaning the U(1)m
symmetry is broken on the boundary. When we introduce edge modes on the boundary,

there is a compensating term for the current flowing onto the boundary. In other words,

if we identify the U(1) axial symmetry on the boundary with the U(1)m symmetry in

the bulk, we have a restored U(1) symmetry everywhere. This is consistent with the SU

side of the theory where there is no anomalous term and thus the U(1)b symmetry exists

everywhere.

If we choose Neumann boundary conditions for c on the U side of the duality, this

amounts to the constraint that Fyi|∂ = 0, with F the field strength of c. Since the flux

current is jµflux ∼ ε
µνρFνρ, Neumann boundary conditions automatically imply any flux cur-

rent on the boundary must vanish. This is consistent with the U(1) boundary symmetry

being provided by the edge modes, rather than the flux current. The Neumann bound-

ary condition on the gauge fields is also inconsistent with having a scalar current on the

boundary since such a current is charged under the dynamical gauge field. Additionally,

recall that the bulk equations of motion relate bulk flux and matter currents; schematically,
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jµmatter ∼ j
µ
flux. Although such equations do not apply on the boundary, allowing for scalar

current to flow on the boundary would be inconsistent with the continuity of the current

and also have no compensating current on the SU side. Therefore, we choose Dirichlet

boundary conditions for the scalar which kills off the scalar current on the boundary.

Now consider Dirichlet boundary conditions for c. Although ci|∂ = 0, this does not

necessarily imply Fyi|∂ = 0 since ∂icy|∂ 6= 0 (although it does imply Fij |∂ = 0). By the same

reasoning above, this means we can have a nonzero flux current on the boundary. Such

boundary conditions are consistent with there being matter charged under the dynamical

gauge field on the boundary. The only boundary condition that is consistent with this is

Neumann boundary conditions for the scalar. Again via the identification of global sym-

metry currents, we see that this is consistent with choosing Neumann boundary conditions

for b′µ since we have a nonzero edge modes coupling to Ã1 on the SU end now.

Abelian reduction. Let’s apply a consistency check on our new non-Abelian prescrip-

tion. We will take the limit Nf = N = k = 1, and choose Neumann boundary conditions

for c on the U side to compare to the boundary analysis of the Abelian dualities [14].

Affecting this limit in (3.2) and (3.3) gives

LSU = iψ̄D/Ã1
ψ − i (2CSgrav) (3.13)

LU = |Dc̃Φ|2 + αϕ|Φ|4 − i
(

CS1[c̃+ Ã1] + CS1[c̃] + 2CSgrav

)
, (3.14)

which is similar to the Abelian “scalar + flux = fermion” considered in [14], up to the

additional 2CSgrav terms.

Now, taking the Abelian limit of the tallied boundary modes in table 2, we find that

one fiducial fermion is needed on U side to be coupled to c̃+ Ã1 and, on both sides of the

duality, we need one left-mover coupled to Ã1 and a neutral right-mover.

Due to certain subtleties with the non-Abelian case, our convention has changed

slightly as compared to [14] where the opposite boundary conditions on the dynamical

fermions were chosen and gravitational Chern-Simons terms were absent. Without grav-

itational Chern-Simons terms present we do not need the right-moving neutral fiducial

fermions on both sides of the duality. Choosing opposite boundary conditions on the dy-

namical fermions makes the mΨ < 0 regime consistent via a fiducial fermion rather than a

dynamical fermion. This is why in the present analysis we find an additional left-moving

fiducial fermion coupled to Ã1 on the fermion side of the duality. Choosing Dirichlet bound-

ary conditions on the scalar was also found for a similar reason. Thus, the number of edge

modes is consistent modulo conventions.

Notice that the fermions couple to the background U(1)m spinc connection, Ã1. The

analysis in [14] requires that in order for the “scalar+flux = fermion” duality to be con-

sistent in the presence of a boundary Ã1 must be a spinc connection and not an ordinary

U(1). Meanwhile, c̃ was required to be an ordinary connection. Indeed, both of these

requirements are consistent the Abelian limit.
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3.2 Non-Abelian U + fermions↔ SU + scalars

Now let us consider the other type of single species non-Abelian duality in [1] — rather its

time reversed version — by setting Nf = 0 such that (2.1) reads

SU(N)−k with Ns φ ↔ U(k)N−Ns
2

with Ns Ψ. (3.15)

with the mass identification m2
φ ↔ mΨ. In this case the flavor bound is given by Ns ≤

N [15, 16]. The explicit Lagrangians for the theories on each side of the duality are given by

LSU = |Db+Bφ|2 + αϕ|φ|4 − i
(
−kCSN [b] + BF[f ; TrN (b)−NB̃]

)
− i
(
NkCS1[B̃]−NkCS1[Ã1]

)
, (3.16)

LU = iΨ̄D/c−Ã2+BΨ− i
(
NCSk[c] +NBF[Trk (c) ; Ã1] + 2NkCSgrav

)
= iΨ̄D/c′+ã+BΨ− i

(
NCSk[c

′] +NCSk[ã+ B̃1k]−NkCS1[Ã1] + 2NkCSgrav

)
. (3.17)

Setting Nf = 0 has eliminated one of the gravitational Chern-Simons terms, and in the

last line of (3.17) we defined the ordinary connection B̃ = Ã1 + Ã2 and spinc connection

ã = c̃ − Ã21k. Note that B̃ is now the background gauge field associated with the global

U(1)m,b symmetry. We have also used

BF[Ã1; Ã2] + CS1[Ã2] = CS1[B̃]− CS1[Ã1]. (3.18)

For this dual pair, mass deformations correspond to Phase II (m2
φ > 0 mΨ > 0 ) and Phase

III (m2
φ < 0 mΨ < 0) — see figure 1. As with the Ns = 0 case, we can find the fiducial

fermion spectrum by looking at Phase II.

As with the last duality, we will find the boundary symmetries to be consistent only

if we choose Neumann and Dirichlet boundary conditions for the dynamical gauge fields

on opposite sides of the duality. Nevertheless, we will first proceed with the analysis for

Neumann boundary conditions on both sides of the duality; generalizing to Dirichlet is

straightforward. For the SU + scalar theory in (3.16) with Neumann boundary conditions

for the dynamical gauge fields, integrating out the Lagrange multiplier gives

iLIISU = −kCSN [b′]− kNCS1[Ã1]. (3.19)

k left-moving N -component fiducial fermions coupled to b′ + Ã11N compensate for the

anomalies generated by −kCSN [b′] − kNCS1[Ã1]. We also need Nk right-moving neutral

fiducial fermions to cancel the gravitational term.

The U side of the duality is also easy to analyze with Neumann boundary conditions.

Despite the new definitions of B̃ and ã, the anomaly spectrum of (3.17) is identical to that

of (3.5). We can choose exactly the same fiducial fermions for the U + fermion side of the

duality that we did for U + scalar with Neumann conditions in table 2.

Having quickly read off the fiducial fermions in Phase II, we should check that the

assignment holds for Phase III. In Phase III for the U + fermion theory mΨ < 0, and
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so, integrating out the dynamical fermions shifts the Chern-Simons levels relative to their

Phase II values:

iLIIU → iLIIU −NsCSk[c]−NskCS1[Ã2]− kCSNs [B]− 2NskCSgrav. (3.20)

Using the first line of (3.17), the Lagrangian for the U + fermion theory becomes

iLIIIU = (N −Ns) CSk[c]− kCSNs [B] +NBF[Trk (c) ; Ã11k]

−NskCS1[Ã2] + 2k (N −Ns) CSgrav. (3.21)

Rewriting the BF term as a sum of Chern-Simons terms, we find

iLIIIU = (N −Ns)

(
CSk[c

′] + CSk

[
c̃+

N

N −Ns
Ã11k

]
+ 2kCSgrav

)
− k

(
CSNs [B] +NCS1[Ã1] +

NNs

(N −Ns)
CS1[B̃]

)
.

(3.22)

So long as we choose the boundary condition such that dynamical DWFs are allowed for

mΨ < 0, the U + fermion theory in Phase III non-anomalous theory. This follows for the

same reason we saw in Phase I of the SU side in section 3.1: from (3.20) iLIIU is already

non-anomalous due to the fiducial fermions and the dynamical DWF provides the rest of

the edge modes to render the whole expression non-anomalous. Thus, the fiducial fermion

assignment for Phase II works in Phase III, and the U + fermion theory is non-anomalous.

While it may be hard to see that (3.22) is non-anomalous, the cancelling of the edge modes

can be seen directly from the cancellation of the Chern-Simons terms. Finally, note when

one expands out B̃ in (3.22) this reproduces the stated background terms of (2.20c), as

it should.

The SU + scalar theory in Phase III (m2
φ < 0) is complicated slightly due to the

Lagrange multiplier — which changes SU(N) → U(N) × U(1) and makes the breaking

pattern clearer. We do not want to treat the BF terms containing the Lagrange multiplier

as additional Chern-Simons terms. We will be more concerned with analyzing the behavior

of the edge modes after the breaking has occurred as above on the U side.

After spontaneously breaking U(N) → U(N −Ns) × SU(Ns), N −Ns scalars remain

coupled to b′ + yB̃1N−Ns . The Ns-components corresponding to the broken part of the

gauge symmetry have no coupling to any part of b′ but do couple to the SU (Ns) flavor

symmetry. The factor y is a rescaling of the Abelian coupling implemented by the Lagrange

multiplier that is novel to this theory. Explicitly, the coupling of the N −Ns modes now

becomes

b′ + yB̃1N → b′ +

√
N

N −Ns
B̃1N−Ns . (3.23)

Thus, when one integrates out the k fiducial fermions, they give

iLIIISU ⊃ −k
(

CSN−Ns [b
′] +

N

N −Ns
CS1[B̃]

)
, (3.24)

which will combine with the existing background terms to reproduces the Abelian factor

in (3.22).
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Let us choose Neumann boundary conditions for b′. The dividing of the fiducial fermion

that we would assign occurs analogously to the breaking of the Chern-Simons terms:

k × L+
ff [b′ + B̃]→

k × L
+
ff

[
b′ +

√
N

N−Ns B̃1N−Ns

]
(unbroken)

k × L+
ff [B] (broken)

. (3.25)

There are still Nk total fermion components; Nsk of which couple only to the flavor

symmetry. Thus, we still have the same number of gravitational Chern-Simons terms as in

Phase II. The full Lagrangian for the SU side of Phase III is then

iLIIISU = −kCSN−Ns [b
′]− k

(
CSNs [B]−NCS1[Ã1] +

NNs

N −Ns
CS1[B̃]

)
, (3.26)

which is rendered non-anomalous by the edge modes from the fiducial fermions as assigned

in Phase II.

Thus far, we have only considered Neumann boundary conditions for the dynamical

gauge fields. To generalize these results to the Dirichlet case is straightforward: simply

remove the coupling of the fiducial fermion to the dynamical field whose Chern-Simons

terms is no longer anomalous on the boundary. Table 3 summarizes our results for this

duality. Note once again a nice cancellation between anomalous terms occurs on the U side

with Dirichlet boundary conditions.

Finally, consider the boundary conditions on the scalar fields. Again, we use fact that

Neumann boundary conditions imply any flux current on the boundary must vanish and

that the variation of Ã1 relates the scalar matter current on the SU side to the flux current

on the U side. Since there can be no flux current on the boundary, there can be no scalar

current on the boundary as well. Hence we must choose Dirichlet boundary conditions in

this case, φαM |∂ = 0.

As we argued earlier, for Dirichlet boundary conditions on c we can have a nonzero

flux current on the boundary. Again using the identification of global symmetry currents

we can also have a nonzero scalar current on the SU side of the duality. Thus, we must

choose scalar boundary conditions which allow for a nonzero boundary current, which

means Neumann.

Abelian reduction. Finally, let us check that this is consistent in the Abelian limit by

setting N = k = Ns = 1, choosing Neumann boundary conditions for c̃, and moving all

background terms to the fermion side. Affecting this limit, we find

LSU =
∣∣DB̃φ

∣∣2 + αϕ|φ|4 (3.27)

LU = iΨ̄D/ ãΨ− i
(

1

4π
CS1[ã+ B̃] + 2CSgrav

)
(3.28)

where we have canceled the two −CS1[Ã1] terms. This expression should be equivalent

to the time-reversed fermion, but with the understanding that in [14] the time-reversed

fermion came with an opposite sign Pauli-Villars regulator as well; our conventions for

the η-invariant are different here. Accounting for this difference of convention, we pick up
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SU(N) + scalars U(k) + fermions

Boundary Conditions φαM : Neumann Ψ+
ρM |∂ = 0

b′: Neumann c: Dirichlet

Additional Edge Modes k × L−ff [b′ + Ã11N ] ———

Nk × L+
ff [0] Nk × L+

ff [0]

SU(N) + scalars U(k) + fermions

Boundary Conditions φαM : Dirichlet Ψ+
ρM |∂ = 0

b′: Dirichlet c: Neumann

Additional Edge Modes ——— N × L+
ff [c′ + ã+ B̃1k]

= N × L+
ff [c′ + c̃+ Ã11k]

Nk × L−ff [Ã1] Nk × L−ff [Ã1]

Nk × L+
ff [0] Nk × L+

ff [0]

Table 3. The top (bottom) table counts the additional edge modes when choosing Neumann and

Dirichlet boundary conditions on the dynamical gauge fields in SU (U) and U (SU) side respectively

when Nf = 0.

an overall shift by −CS1[ã] − 2CSgrav on the fermionic side of the duality and change the

fermionic boundary condition. We end up with the dual theories being given by

LSU =
∣∣DB̃φ

∣∣2 + αϕ|φ|4, (3.29)

LU = iΨ̄D/ ãΨ− i
(

CS1[ã+ B̃]− CS1[ã]
)
. (3.30)

Per our fiducial fermion choices shown in table 3, we should have a single right-moving

fiducial fermion coupled to ã+ B̃. Note the fermions associated to B̃ and neutral fiducial

fermions on both ends of the duality cancel one another out.

Once more we see a nice consistency with our previous analysis: ã = c̃− Ã2 is a spinc
connection, and the background field B̃ = Ã1+Ã2 is an ordinary U(1) connection. Thus, we

can start from the master bosonization duality, demand that a subset of Abelian factors

be either ordinary or spinc connections, and consistently arrive at both known Abelian

bosonization dualities with the correct coupling of gauge fields to matter. This is also

consistent with the process of promoting background fields to dynamical and coupling to

new background fields followed by integrating out the old dynamical fields [5, 6].

3.3 Discussion

Before turning back to the master bosonization duality, let us take stock of how the phases

and edge modes changed when we moved to negative mass deformations for the fermions

and scalars:
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• Fermion Deformations : Given our choice of fermionic boundary conditions, the dy-

namical DWFs only existed when mψ > 0 or mΨ < 0. In the corresponding mψ < 0

and mΨ > 0 phases, we found that the additional Chern-Simons terms were ren-

dered non-anomalous by the dynamical DWFs. Since the mψ > 0 and mΨ < 0

phases were non-anomalous due to the fiducial fermions, the resulting theory was

non-anomalous. Furthermore, the same mechanism that rendered the Chern-Simons

terms non-anomalous can be used to argue that — despite some simplified forms

of the theories appearing to have extraneous edge modes — that edge modes are

cancelled.

• Scalar Deformations : in the spontaneously broken phase, m2
φ < 0 or m2

Φ < 0, the

dynamical gauge groups are split up into smaller dynamical groups and gave rise to

new non-Abelian flavor symmetries. Additionally for SU + scalars, the background

Abelian coupling was rescaled. The couplings of the fiducial fermions were changed

according to the breaking pattern for the Chern-Simons terms. The fiducial fermions

then split into parts, which couple to the broken and unbroken parts of the gauge

group. The remaining dynamical and new flavor Chern-Simons terms are rendered

non-anomalous by this set of fiducial fermions.

Although the master duality is slightly more complicated due to two independent mass

deformations, we will see that the same mechanisms that lead to non-anomalous theories

in both phases of the single-species non-Abelian cases completely generalize. Since the

fiducial fermions make the positive mass phase non-anomalous and the fiducial/dynamical

fermions — including the singlet — continue to work after Higgsing or integrating out

negative mass fermions, all five phases of the master duality continue to be non-anomalous.

4 Master duality with boundaries

Now that we have firmly established how to derive the correct set of boundary conditions

and assignments of fiducial fermions in order to render boundary theories non-anomalous in

the single-species non-Abelian dualities, we can analyze the two-species master bosonization

duality. Having made the assignments in the common Phase II region, the fiducial fermions

of the two single-species non-Abelian cases considered are consistent with one another —

see tables 2 and 3. We can then combine the two prescriptions and check their compatibility

across all five mass deformed regions in figure 1.

We will analyze the phases on the U and SU sides roughly in order of increasing

difficulty. The discussion will be kept brief for phases where cancellation is a straightforward

generalization of what we have already observed in the single-species non-Abelian cases of

section 3. In the following analysis, we are interested in the assignments that render

the theories non-anomalous, and so we will assume Neumann conditions on the dynamical

gauge fields throughout. Although Neumann boundary conditions on both dynamical gauge

fields does not yield a consistent duality, generalization to Dirichlet boundary conditions

for one of the dynamical gauge fields is straightforward, see section 3.2.
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SU(N) Side U(k) Side

Boundary Conditions ψ−αI |∂ = 0 Ψ+
ρM |∂ = 0

φαM : Neumann ΦρI : Neumann

b′: Neumann c: Dirichlet

Additional Edge Modes k × L−ff [b′ + Ã11N ] ———

Nk × L+
ff [0] Nk × L+

ff [0]

SU(N) Side U(k) Side

Boundary Conditions ψ−αI |∂ = 0 Ψ+
ρM |∂ = 0

φαM : Dirichlet ΦρI : Dirichlet

b′: Dirichlet c: Neumann

Additional Edge Modes ——— N × L+
ff [c′ + c̃+ Ã11k]

Nk × L−ff [Ã1] Nk × L−ff [Ã1]

Nk × L+
ff [0] Nk × L+

ff [0]

Table 4. The top (bottom) table counts the additional edge modes when choosing Neumann and

Dirichlet boundary conditions on the dynamical gauge fields in SU (U) and U (SU) side respectively

when Nf 6= 0 and Ns 6= 0.

Phase II

This phase corresponds to mψ < 0 and m2
φ > 0 on the SU side and mΨ > 0 and m2

Φ > 0

on the U side. Starting from (2.6) and (2.7), after integrating out all of the matter fields,

we find that

iLIISU = −kCSN [b] + BF[f ; TrN (b)−NÃ1 −NÃ2] +NkBF[Ã1; Ã2] +NkCS1[Ã2], (4.1)

After some simplification, (2.6) and (2.7) reduce to

iLIISU = −kCSN [b′]−NkCS1[Ã1], (4.2)

iLIIU = NCSk[c
′] +NCSk[c̃+ Ã11k]−NkCS1[Ã1] + 2NkCSgrav. (4.3)

Since this was the phase of the duality where we chose all of our fiducial fermions such

that the theory was non-anomalous, no further analysis is needed, and the assignments are

listed in table 4.

Phase I

This phase corresponds to mψ > 0 and m2
φ > 0 on the SU side and mΨ > 0 and m2

Φ < 0

on the U side.
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U side. For mΨ > 0, the Chern-Simons levels are unaffected when integrating out the

fermions. However because m2
Φ < 0, the theory is in a spontaneously broken phase

iLIU = N
(

CSk−Nf [c′] + CSNf [C] + CSk−Nf [c̃+ Ã11k]− (k −Nf ) CS1[Ã1] + 2kCSgrav

)
(4.4)

As with the single-species non-Abelian case, the edge modes automatically split up to make

the new Chern-Simons modes non-anomalous. The original N right-moving k-component

fiducial fermions break in a manner completely analogous to (3.10). The modes coupling

to the unbroken U(k−Nf ) render N(CSk−Nf [c′]+CSk−Nf [c̃+ Ã11k]) non-anomalous. The

parts of the Nf -component modes coupling to Ã1 can cancel with the fiducial fermions

of opposite chirality which only couple to Ã1, leaving only the C coupling. Hence, the

NCSNf [C] and −N (k −Nf ) CS1[Ã1] terms are also non-anomalous. Since the number of

fiducial fermions hasn’t changed at all, the gravitational Chern-Simons term is also still

non-anomalous.

SU side. On this side of the duality, we have mψ > 0 and m2
φ > 0. Neither the scalar

nor the fermion change the Chern-Simons terms when integrated out. Note that we have

chosen the boundary conditions on the dynamical fermion such that we let the ψ DWFs

exist in this phase.

The fact that the theory is non-anomalous, however, should be evident if we rewrite

LISU in terms of LIISU,

iLISU = iLIISU +NfCSN [b′] +NCSNf [C] +NNfCS1[Ã1] + 2NNfCSgrav

= −(k −Nf )CSN [b′] +NCSNf [C]−N(k −Nf )CS1[Ã1] + 2NNfCSgrav. (4.5)

We already have assigned the fiducial fermions so that the iLIISU is non-anomalous. Pro-

vided that the dynamical DWFs are enough to make the new Chern-Simons terms non-

anomalous, the entire Lagrangian in (4.5) will be non-anomalous. Since the dynamical

fermions couple to b′+C + Ã1 this is indeed the case. The DWFs cancel with the existing

Nf fiducial fermion edge modes, making (4.5) non-anomalous.

Phase III

This phase corresponds to mψ < 0 and m2
φ < 0 on the SU side and mΨ < 0 and m2

Φ > 0

on the U side.

SU side. The gauge group is spontaneously broken in this phase, but since mψ < 0 we

have no additional shift of Chern-Simons terms due to integrating out the fermion, relative

to our fiducial fermion assignments of Phase II. Spontaneously breaking SU(N) causes the

Lagrangian to be modified to

iLIIISU =− kCSN−Ns [b] + BF[f ; TrN−Ns (b)−NÃ1 −NÃ2]− kCSNs [B] (4.6)

+NkBF[Ã1; Ã2] +NkCS1[Ã2], (4.7)
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After integrating out the Lagrange multiplier, we are left with

iLIIISU =− kCSN−Ns [b
′]− kCSNs [B] (4.8)

− Nk

N −Ns

(
NCS1[Ã1] +NsBF[Ã1; Ã2] +NsCS1[Ã2]

)
. (4.9)

The fact that we get such complicated Abelian Chern-Simons terms can be explained in a

manner analogous to the non-Abelian SU Higgsing discussed earlier. Indeed, as we should

expect, this expression matches (3.26). More precisely, the complicated breaking of the

SU(N) field can be simplified by transforming into a U(N)×U(1) field and breaking down

the U(N) field, and the Lagrange multiplier encodes a change in coupling to both Abelian

factors Ã1 and Ã2. The splitting of the fiducial fermion modes once more occurs in a

manner analogous to (3.25).

U side. Since m2
Φ > 0 the U(k) symmetry remains unbroken, but the dynamical fermions

change the Chern-Simons terms. The change in Chern-Simons terms and edge modes

follows in a manner practically identical to (3.22).

Phase IVb

This phase corresponds to mψ > 0, m2
φ < 0, mΨ < 0, and m2

Φ < 0. Additionally, this will

be the first phase where we have to worry about singlet fermions, and we have ms > 0 in

both theories.

SU side. Similar to Phase III, the gauge group is spontaneously broken in this phase and

this is slightly complicated by the fact this is the SU side. Additionally, the dynamical and

singlet fermions contribute additional Chern-Simons terms relative to Phase II, but they

also contribute dynamical DWFs which makes said terms automatically non-anomalous.

U side. Here the U(k) symmetry is spontaneously broken to U(k −Nf ) × SU(Nf ), but

the dynamical fermion behavior is the same as that of Phase II. However, the singlet

fermions have positive mass and thus shift a subset of the Chern-Simons level relative to

that of Phase II. Although this is the first time we have seen the singlet fermion behaving

differently from the dynamical fermions, there is nothing different about the way we end

up at an non-anomalous theory. The singlet fermions give rise to DWFs which exactly

compensate for their shift of the Chern-Simons levels in the bulk.

Phase IVa

This phase corresponds to mψ > 0, m2
φ < 0, and ms < 0 on the SU side and mΨ < 0,

m2
Φ < 0, and ms < 0 on the U side. Again, this phase is a repeat of what we have already

looked at in Phase IVb but with negative mass singlet fermions. For the U side, the singlet

fermions have the same sign mass as the dynamical dynamical fermions and hence both

contribute a shift to the Chern-Simons terms, but the different masses break the flavor

symmetry between the two.

Lastly, let us comment on the scalar boundary conditions for the master duality. As

with the single species non-Abelian cases considered above, we can deduce whether φ and
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Φ obey Neumann or Dirichlet boundary conditions by comparing the global symmetry

currents. Recall that when Ns = 0 the Ã2 coupling vanished and the Ã1 global symme-

try could be attributed to the U(1)m,b symmetry. Meanwhile, when we took Nf = 0 in

section 3.2, Ã1 and Ã2 could be combined into a new background field B̃ which was then

associated with its own U(1)m,b symmetry. For the case when both Nf and Ns 6= 0, the

Ã1 and Ã2 background fields play the same roles. The combinations Ã1 and Ã1 + Ã2 are

associated with two U(1)m,b symmetries, one whose U(1)b part is the ψ matter, and the

other, the φ matter. As such, all arguments of identifying global symmetries on either side

of the duality to impose scalar boundary conditions still hold for the master duality, and

so we find the same results, as shown in table 4.

4.1 Generalization to SO and USp

Finally, we will briefly comment on the generalization of our methods to the versions of

the master duality for the SO and USp groups in the presence of a boundary. In the bulk,

these dualities are given by [15, 16]8

SO(N)
−k+

Nf
2

with Ns φ and Nf ψ ↔ SO(k)N−Ns
2

with Nf Φ and Ns Ψ (4.10)

USp(2N)
−k+

Nf
2

with Ns φ and Nf ψ ↔ USp(2k)N−Ns
2

with Nf Φ and Ns Ψ. (4.11)

Here, the matter is still in the fundamental representation of the respective gauge groups.

The difference now is that the scalars are real, and the fermions are Majorana. There are

five massive phases following the same pattern as those considered for the U/SU master du-

ality. Note that the mass deformed phases match under the level-rank dualities generalized

to the SO and USp cases [3],

SO (N)−k ↔ SO (k)N × SO (kN)−1 (4.12)

USp (2N)−k ↔ USp (2k)N × SO (4kN)−1 . (4.13)

Accounting for the change to real fermions and scalars, there are half as many matter

degrees of freedom as compared to the U/SU dualities, which can most easily be understood

by starting with complex scalars and Dirac fermions and imposing a reality condition [3].

Explicitly for the USp duality, we will take ψ to be a Dirac fermion but require that

ψαIΩ
αβΩ̃IJ = (ψβJ)c; with ψc the charge conjugate of ψ and Ωαβ (Ω̃IJ) symplectic invari-

ant tensor of USp(2N) (USp(2Nf )). Hence, integrating out real fermions provides half the

change in Chern-Simons level as that of a full Dirac fermion.

As with the U/SU case, the Chern-Simons terms are anomalous in the presence of a

boundary. Fortunately, the fiducial fermion prescription used above can be generalized to

be used with Majorana fermions. Alternatively, the fiducial Dirac fermions can still be

used with the reality conditions discussed above. Thus, the SO and USp dualities can be

rendered non-anomalous by rewriting Chern-Simons terms as fiducial Majorana fermions.

Deriving the boundary conditions and DWFs for Majorana fermions follows similarly.

8Here we follow the notation of [3], where USp(2N) = Sp(N) and the levels of SO groups are normal-

ized to give Chern-Simons terms k
8π

Tr
(
AdA− i 2

3
A3

)
. Also note that Majorana fermions come with an

regularizing phase of exp(−iπη/4) instead of exp(−iπη/2), with η the η-invariant.
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The global symmetries on either side of the master dualities also change slightly. For

instance, the flavor symmetries of the fermions of the SO (USp) duality are now SO(Nf )

(USp(2Nf )) on the left-hand side of (4.10) and (4.11), respectively. The fiducial Majorana

fermions for a given SO or USp Chern-Simons term have an analogous “flavor” symmetry

whose rank scales with the Chern-Simons level. Thus, when one chooses Dirichlet boundary

conditions for the dynamical gauge field on one end of the duality, the fiducial fermions on

the Neumann end once again share the same global symmetry on the boundary.

5 Conclusion

Physical samples that we can drive to criticality and probe in a laboratory setting have

boundaries, and too often conjectured dualities do not or cannot make explicit the role

of boundary conditions. In order to understand what — if any — role dualities such as

2+1 dimensional master bosonization duality or any of its single species non-Abelian and

Abelian limit cases play in describing physical critical systems, we must carefully analyze

the admissible boundary theories consistent with bulk duality. Our previous work in build-

ing duality consistent boundary conditions where a prescriptive method for discovering the

necessary edge modes was proposed was focussed solely on Abelian theories [14].

The relative simplicity of the gauge sector in the Abelian dualities hid an important

aspect of the choice of boundary conditions for the dynamical gauge fields. In this work, we

have reconciled the Abelian fiducial fermion prescription with those subtle aspects that are

necessarily present in all non-Abelian bosonization dualities in 2+1 dimensions regardless of

the types of fundamental matter considered. The important takeaway is that the additional

complication of having dynamical gauge fields on both sides of the duality necessitated an

alternating prescription of boundary condition such that Neumann conditions are mapped

to Dirichlet conditions across the duality. As first observed in [17] and later elaborated

in [20], the reason this change in boundary conditions is due to emergent global symmetries

in the boundary theories that must match in order to be duality-compatible.

Beyond simply analyzing the gauge sectors, in the preceding sections, we have con-

structed the necessary duality-compatible boundary conditions and additional edge modes

for the master bosonization duality for Chern-Simons-matter theories in [15, 16]. A non-

trivial check on the analysis in this work has been the consistent reduction of the duality-

consistent boundary conditions in the master bosonization duality to the Abelian case. The

check furnished by the Abelian reduction also resolved a subtlety not addressed in [15, 16]

regarding whether the Abelian gauge fields U(1)m,b and U(1)F,S were ordinary U(1) or spinc
connections. Further, the motivation of the boundary conditions on the scalar sector of the

U side of the non-Abelian single species and master bosonization dualities discussed in 3

provides a more satisfying picture than the Abelian analysis in [14] had suggested. Lastly,

the novel extension of the fiducial fermion prescription to SO and USp dualities filled out

the spectrum of 2+1 dimensional bosonization dualities in the presence of a boundary.

That being said, there are further questions to ask in the context of 2+1 dimensional

dualities involving Chern-Simons-matter theories in the presence of a boundary. As noted

at the start of this work, at the core of all of the bosonization dualities sits the basic
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level-rank duality familiar from WZW theories. In the non-Abelian dualities, we cannot

integrate out the non-Abelian Chern-Simons terms for dynamical fields in the massive

phases. Since the dynamical fields are related by the level-rank duality rather than simply

being the same, this has resulted in slightly different boundary theories. One could then

wonder whether WZW-matter theories participate in other non-trivial level-rank dualities.

To our knowledge, there has been little work done on the effects of level-rank duality for

WZW theories with non-trivial matter sectors.
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A Time-reversed master duality

In this appendix, we consider the time-reversed version of the master duality in order to

explicate the subtlety of our conventions for the fermion mass terms. That is, time-reversal

acts as to change signs in the following way,

iψ̄D/aψ ↔ iψ̄D/aψ − i (CS1[a] + 2CSgrav) . (A.1)

For example, on the SU side of the master duality the fermion kinetic term becomes

iψ̄D/b+C−Ã1
ψ ↔ iψ̄D/b+C−Ã2

ψ − i
(
NfCSN [b′] +NCSNf [C]

)
− i
(
NNfCS1[Ã2] + 2NNfCSgrav

)
(A.2)

This means the time-reversed master duality is given by

LSU = |Db+Bφ|2 + iψ̄D/b+C−Ã2
ψ − i

(
kCSN [b] + BF

[
f ; TrN

(
b− 1N (Ã1 − Ã2)

)])
− i
(
−kNBF[Ã1; Ã2]− kNCS1[Ã2]

)
+ Lint (A.3)

LU = |Dc+CΦ|2 + iΨ̄D/c+B−Ã2
Ψ− i

(
(Ns −N)CSk[c]−NBF[Trk(c); Ã1]

)
− i
(
kCSNs [B] + kNsCS1[Ã2] + 2k(Ns −N)CSgrav

)
+ L′int. (A.4)

where now the mass identification is

mψ ↔ m2
Φ, m2

φ ↔ −mΨ. (A.5)

Note that signs of Ψ̄Ψ|Φ|2 and ψ̄ψ|φ|2 flip as well. The associated boundary conditions

and edge modes are given in table 5.
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SU(N) Side U(k) Side

Boundary Conditions ψ+
αI |∂ = 0 Ψ−ρM |∂ = 0

φαM : Neumann ΦρI : Neumann

b′: Neumann c: Dirichlet

Additional Edge Modes k × L+
ff [b′ + Ã11N ] ———

Nk × L−ff [0] Nk × L−ff [0]

SU(N) Side U(k) Side

Boundary Conditions ψ+
αI |∂ = 0 Ψ−ρM |∂ = 0

φαM : Dirichlet ΦρI : Dirichlet

b′: Dirichlet c: Neumann

Additional Edge Modes ——— N × L−ff [c′ + c̃+ Ã11k]

Nk × L+
ff [Ã1] Nk × L+

ff [Ã1]

Nk × L−ff [0] Nk × L−ff [0]

Table 5. The top (bottom) table counts the additional edge modes when choosing Neumann and

Dirichlet boundary conditions on the dynamical gauge fields in SU (U) and U (SU) side respectively

when Nf 6= 0 and Ns 6= 0 for the time-reversed master duality.
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