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Abstract 15 

Solid waste management (SWM) decision makers are under increasing pressure to implement 16 

strategies that are both cost effective and environmentally sound. Consequently, SWM has 17 

developed into a highly complex systemic planning problem and analytical tools are needed 18 

to assist in the development of more sustainable SWM strategies. Here, we present the Solid 19 

Waste Infrastructure Modelling System (SWIMS) software, which is the first non-linear 20 

dynamic, LCA-based optimisation tool for SWM that optimises for both economic and 21 

environmental performance. The environmental and economic costs of treating generated 22 

wastes at available treatment facilities are calculated through a series of life cycle process 23 

models, based on non-linear expressions defined for each waste material and each treatment 24 

process type. Possible treatment paths for waste streams are identified using a depth first 25 

search algorithm and a sequential evolutionary genetic algorithm is used to prioritise the 26 

order of these paths, in lieu of user defined optimisation criteria and constraints. SWIMS 27 

calculates waste arisings into the future and determines if it is possible to treat generated 28 

waste, while considering present and future constraints (e.g. capacity). If additional capacity 29 

is required, SWIMS will identify the optimum infrastructure solution to meet this capacity 30 

demand. A demonstrative case study of MSW management in GB from 2010 to 2050 is 31 

presented. Results suggest that sufficient capacity is available in existing and planned 32 

infrastructure to cope with future demand for SWM and meet national regulatory and 33 

legislative requirements with relatively little capital investment beyond 2020. SWIMS can be 34 

used to provide valuable information for SWM decision makers, particularly when used to 35 

analyse the effects of possible future national or regional policies. 36 

Graphical abstract  37 
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1. Introduction 68 

The quantity and complexity of waste generated globally is expected to increase significantly 69 

in the coming decades as a result of population growth, socioeconomic development and 70 

rapid urbanisation (Hoornweg and Bhada-Tata, 2012). This makes solid waste management 71 

(SWM) a challenging task for decision-makers, who are required to provide essential waste 72 

collection and disposal services, often under increasingly stringent budgetary pressures and 73 

regulatory requirements. Ineffective SWM can incur high costs and have detrimental effects 74 

on the environment. For example, the sector is estimated to produce 3% of global greenhouse 75 

gas (GHG) emissions, primarily the result of methane emissions from landfill (Fischedick et 76 

al., 2014). However, effective SWM can reduce costs and recover valuable materials and 77 

energy. Hence, policy makers are increasingly looking to the SWM sector to improve its 78 

environmental performance and play a major role in society’s drive towards improved 79 

resource efficiency. 80 

Decision makers are expected to design and implement SWM systems that are both cost 81 

effective and environmentally sound, and contribute to wider societal goals such as 82 

renewable energy recovery and the preservation of natural resources (Giugliano et al., 2011). 83 

Accordingly, SWM systems have become increasingly complex, encompassing numerous 84 

multi-functional technologies designed to manage specific waste streams. Furthermore, as the 85 

characteristics of waste arisings are often highly variable between regions, unique strategies 86 

must be developed to manage SWM in each region (Bisinella et al., 2017). Regional decision 87 

makers are therefore faced with a multifaceted systemic planning problem, involving 88 

consideration of (amongst others) waste collection scheme design, waste treatment 89 

technology selection, site selection, estimation of capacity needs (involving the prediction of 90 
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future waste arisings and composition), and transportation scheduling and planning. With 91 

such complex demands there is a need for analytical tools that can assist in developing long- 92 

and short-term SWM strategies with respect to various sustainability objectives (Qian et al., 93 

2011). Furthermore, such tools must enable consideration of SWM systems as a whole, 94 

because they are complex and inter-dependent, with activities in one region often affecting 95 

management practices in another (Cobo et al., 2017) 96 

In recent decades, a range of integrative systems analysis techniques have been applied to 97 

SWM systems to provide interdisciplinary support for policy- and decision-making. (for a 98 

thorough, critical review, see Chang et al. (2011) and the updated review of Tan et al. 99 

(2014)). Briefly, the available techniques can be classified into two domains: a) system 100 

assessment tools, which include material flow analysis, risk assessment, environmental 101 

impact assessment, socio-economic assessment, and life cycle assessment (LCA); and b) 102 

systems engineering models, which include cost-benefit analysis, forecast modelling, 103 

simulation modelling, and optimisation modelling. 104 

Life cycle assessment (LCA) is a well-established system assessment tool that has been 105 

extensively applied to support environmentally-sound SWM decision making. For example, 106 

Turner et al. (2016) used LCA in combination with material flow analysis to evaluate the 107 

existing SWM system in Cardiff, Wales and compared it with alternative, hypothetical 108 

systems to explore the potential impacts of different national policy measures. The 109 

environmental performance of the SWM system in the Lombardia region of Italy was 110 

assessed using LCA by Rigamonti et al. (2013), who then investigated how performance 111 

could be improved in the future through scenario analysis. LCA has also been used to 112 

evaluate and compare waste collection systems (e.g. Gilardino et al. (2017)) and waste 113 
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treatment processes for different waste streams, such as supermarket food waste (Brancoli et 114 

al., 2017), street sweepings (Bartolozzi et al., 2018), source-segregated recyclable materials 115 

(Turner et al., 2015), construction and demolition waste (Borghi et al., 2018), and plastic 116 

waste (Arena et al., 2015). Over the past two decades, a range of LCA software tools has 117 

been developed specifically to analyse SWM processes and systems. The most sophisticated 118 

of these is EASETECH, which was developed at the Technical University of Denmark 119 

(Clavreul et al., 2014). EASETECH comprises a highly user-friendly interface that allows 120 

users to model the heterogeneous flows of waste between treatment processes in a SWM 121 

system and evaluate the potential environmental impacts of the modelled system. However, 122 

while EASETECH and LCA of SWM in general are useful for assessing the environmental 123 

performance of waste treatment processes and systems, the detailed modelling and 124 

optimisation of the combined environmental and socioeconomic performance of these 125 

processes and systems has received rather less attention (Chang et al., 2011; Tan et al., 2014). 126 

Unlike system assessment tools such as LCA, which focus on the assessment of existing, past 127 

or hypothetical systems, systems engineering models emphasise the design and optimisation 128 

of a system according to one or multiple specific objective function(s) and with respect to any 129 

constraints placed on that system (Juul et al., 2013). Optimisation for SWM presents an 130 

opportunity to maximise resource and energy recovery from waste, enhance environmental 131 

sustainability, and simultaneously minimise financial costs. A number of optimisation models 132 

have been developed to analyse SWM systems (for an overview, see Tan et al. (2014)), but 133 

only a few support combined economic and environmental optimisation (e.g. Chang et al. 134 

(2012)). One such model is SMART (the Solid Waste Management Resource Recovery 135 

Tool), a multi-period optimisation model for SWM based on mixed-integer linear 136 

programming (Tan et al., 2014). SMART includes a sophisticated financial costing model 137 
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based on net present value calculations (excluding discounting). However, only four different 138 

waste treatment technologies are considered in the model (landfill, incineration, composting, 139 

and recycling), which are modelled on best available technology only (i.e. “average” 140 

technologies of today are not considered). The model is also simplified in several other 141 

aspects: only seven different waste types are included (food, yard, paper, plastics, glass and 142 

ceramic, metal, and textile wastes), which does not reflect the complex nature of waste 143 

composition; transportation and transfer costs are not considered; potential climate impacts 144 

are calculated as technology-specific and are not related to waste type/composition. 145 

SMART, along with many other combined economic-environmental optimisation models, is 146 

primarily designed for cost modelling. To improve the modelling of environmental impacts, 147 

researchers have recently developed optimisation models based on the LCA framework. For 148 

example, the Solid Waste Optimisation Life-cycle Framework (SWOLF), developed at North 149 

Carolina State University, is a sophisticated dynamic optimisation tool for the integrated 150 

analysis of SWM systems based on multi-stage linear programming (Levis et al., 2013) that 151 

enables the development of integrated SWM strategies which consider existing as well as 152 

(possible) future infrastructure. OptiWaste is a LCA-based SWM optimisation model based 153 

on linear programming that enables optimisation for multiple criteria using weighting factors 154 

(Münster et al., 2015). Two models based on linear programming (single and multi-objective) 155 

and the integrated use of LCA data were developed and applied by Tascione et al. (2016) to 156 

optimise the environmental performance of waste management systems in the Abruzzo 157 

region, Italy. These tools demonstrate that it is feasible and potentially valuable to decision 158 

makers to develop optimisation models based on the LCA framework. 159 
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A common feature of LCA-based optimisation models for SWM is the use of linear 160 

programming techniques. Models are generally based on a simplified mass flow modelling 161 

approach, which considers only flows of waste streams, such as residual waste, rather than 162 

waste materials (i.e. the component materials of a waste stream). Models therefore do not 163 

address the unique response of each waste material type to a given processing method, and 164 

cannot account for regional and temporal variations, or post-treatment changes in waste 165 

stream composition, which may strongly affect the economic and environmental performance 166 

of the SWM system (Hoornweg and Bhada-Tata, 2012). SWOLF uses linear expressions to 167 

account for mass flows while OptiWaste is based on a simplified network flow model that 168 

does not include multi-output processes (i.e. processes that accept one waste stream and 169 

output multiple other waste streams). While such functionality is afforded to users of the 170 

waste-LCA tool EASETECH in assessing the environmental performance of SWM 171 

technologies, it has not to date been considered in optimisation models for SWM, because of 172 

the difficulty of solving this non-linear optimisation problem (Levis et al., 2013). To account 173 

for the heterogeneous, changeable and varied nature of waste streams, a non-linear 174 

programming approach is required. Therefore, there is a need for algorithms to efficiently 175 

solve non-linear optimisation problems for large-scale SWM systems models (Kumar et al., 176 

2010). 177 

This paper presents the Solid Waste Infrastructure Modelling System (SWIMS) software, 178 

which is the first dynamic, non-linear, life cycle-based optimisation tool for SWM that 179 

optimises for both economic and environmental performance. This is a major benefit as 180 

SWIMS is able to optimise and plan waste treatment for multiple criteria and evolve a highly 181 

effective solution. The functionalities of SWIMS expand on those of previously developed 182 

linear LCA-based SWM models (described above). Whilst these models function well in 183 
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modelling simplified SWM systems, such as those containing few process types or waste 184 

streams (with non-changeable compositions), they struggle to simulate the flows and 185 

processing of complex, changeable and varied wastes, particularly at large spatial scales (e.g. 186 

at the regional or national scale) where numerous bespoke processing methods are used. 187 

SWIMS is intended to be used to support decisions concerning both environmental and 188 

economic impacts within the development of sustainable waste management infrastructure. It 189 

can be used to help inform and incorporate the European Union’s circular economy package 190 

into SWM strategy making and assist policy makers to meet the sustainable development 191 

goals adopted by the United Nations  (Murray et al., 2017). The purpose of this paper is to 192 

describe the modelling framework of the SWIMS software (Section 2) and, through a real-193 

world case study, demonstrate its functionalities (Section 3). Concluding remarks, including 194 

an overview of the model’s limitations and areas for further development, are then described 195 

in Section 4. 196 

2. Methodology 197 

SWIMS is a dynamic, non-linear, life-cycle based environmental and financial optimisation 198 

tool for SWM. The approach and software have been developed for application in Great 199 

Britain (GB) but are generalised, enabling potential application to other countries and at 200 

different spatial scales. The following sections describe the four main parts of SWIMS: 201 

Waste Treatment Paths (WTP), waste path optimisation, additional capacity calculations and 202 

the infrastructure builder. 203 

It is important to understand that many of the processes described below occur within the 204 

model concurrently, even though they are described sequentially for clarity of 205 
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communication. Hence, the descriptions for certain processes may refer to processes that 206 

have not yet been introduced.  207 

2.1 Overview of modelling framework 208 

A schematic view of the modelling framework is presented in Figure 1. Details of each step 209 

are given in the subsequent sections. The dynamic, bi-level optimisation problem of waste 210 

management can be summarised as follows: 211 

Step 1. Waste generation 212 

This initial step requires the determination of the total mass of waste produced and its 213 

composition. Total waste produced is calculated using regional socioeconomic and 214 

demographic data. Waste composition, comprising up to 25 different materials, is defined by 215 

producer type.  216 

Step 2. Waste collection 217 

The behaviours of different waste producer types are captured in sets of disposal rules that 218 

determine the allocation of waste materials, including contaminants, to different waste 219 

collection processes. The blend of waste materials disposed to each different collection 220 

process is labelled as belonging to the appropriate waste stream and is transported to primary 221 

waste treatment facilities as waste flows, containing specific masses of waste material. 222 

Step 3. Waste management pathfinder 223 

A depth first search algorithm (DFSA) determines the possible treatment paths that waste 224 

flows can take through the network of treatment facilities (TF) (Tarjan, 1972). A genetic 225 

algorithm (GA) is then used to prioritise the order of these paths for the collection and 226 
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transport of waste flows to treatment facilities until all waste is treated. The optimal WTP for 227 

the waste flows to facilities is selected with reference to user defined optimisation criteria and 228 

constraints. This is essential due to the finite capacity of each facility which makes 229 

optimisation much more difficult. Strategies define and restrict the space in which SWIMS 230 

can utilise areas, transport, and groups of waste treatment facilities. The space refers to a 231 

series of compounding constraints and rules, e.g. restrictions on types of TF, restrictions on 232 

exports to external areas, and rules governing which waste type can be sent to a TF. 233 

Step 4. Waste treatment 234 

Waste is treated within facilities, such that the materials are treated, rejected, or treated with 235 

by-products (or a combination of all three). If treated, the material is removed from the 236 

system. If rejected, the material enters another waste flow and is sent for further treatment. If 237 

a by-product fraction is produced, the treated fraction is removed and the residual fraction 238 

enters a new waste flow for further treatment. 239 

Step 5. Future infrastructure planner 240 

The SWIMS infrastructure planner takes into account future waste arisings and composition 241 

within defined planning horizons. The lifespan and absolute capacity of a waste TF is 242 

considered and the planner determines whether there is sufficient capacity to manage the total 243 

waste produced, within the user defined constraints. If insufficient capacity is predicted, a 244 

genetic algorithm determines whether the current facilities require upgrading, or whether new 245 

infrastructure is needed to meet or exceed a set capacity margin. 246 

Step 6. Infrastructure builder 247 
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User defined strategies determine which TFs can be built. If the TF suggested within the 248 

infrastructure finder step is permitted within the strategy, the TF is planned and staged for 249 

addition. However, if it does not, the TF is rejected. 250 
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pathfinder

Waste treatment process

Future infrastructure 
finder – Meeting or 
exceeding capacity 
margin and future  
constraints whilst 
treating all waste 

produced

Infrastructure builder

Regional GVA

Tonnes/ £M GVA

Producer type proportion

Producer type waste 
composition 

Demographics

Collection process

Waste Stream

Waste treatment facility

Waste collection 
processes accepted

Waste streams accepted

Waste Stream(s) assigned 
into waste flows

Goals

Constraints

Capacity margin (must be > 0)

Future and current constraints

Lifespan/ capacity remaining 
for existing facilties

Upgradable facilities

Buildable facilities

Capital expenditure budget 
(£m yr-1)

Build options

Infrastructure planned Infrastructure rejected

Scenario

Producer disposal rules 

 251 



14 

 

Figure 1. A simplified linear flow diagram of the main process steps within SWIMS, with the 252 

primary grouped processes for each main step shown. The secondary processes between the 253 

steps and the user defined inputs are not shown. 254 

2.2 Assumptions 255 

The units of time in which waste is produced, collected and managed, and for which 256 

infrastructure planning is carried out, are called timesteps. A timestep can be any duration of 257 

‘real-world’ time, such as a year, month, week or day. The base case (or initial) timestep is: 258 

𝑡 = 𝐵𝑇𝑆 + (𝑛 − 1)      (1) 259 

Where BTS is the baseline timestep (e.g. 2010), n is the number of timesteps. 260 

Following this, optimal waste management is planned for the next T years (n = 1… N). The 261 

number of timesteps can be defined as follows: 262 

𝑛 = 1,2, … , 𝑁      (2) 263 

Where n is the nth timestep, and N represents the total number of timesteps for which the 264 

model is run. Note that the planning frequency (i.e. how often the model plans new 265 

infrastructure) and planning horizon (how far into the future the model plans for) are defined 266 

by the user. 267 

Optimisation is performed with one or multiple objectives (e.g. minimise total costs and/or 268 

maximise energy recovery) and constraints (e.g. send less than 10% of waste to landfill by 269 

2019). More details on the optimisation method are provided below. 270 

Input data must be set to the duration of a timestep, e.g. the rate at which amounts of waste 271 

are generated during a timestep.  SWIMS has many input data tables which require per 272 
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timestep data, hence running SWIMS with a higher temporal resolution will require more 273 

input data and increase the set-up time. A fundamental constraint of the model is that all 274 

waste produced in a timestep is treated within the same timestep, with any waste that cannot 275 

be treated due to a shortage of capacity classified as untreated waste which is not carried 276 

forward to the following timestep. 277 

The length of time that it takes a computer to process a timestep will be roughly constant 278 

regardless of the length of real-world time that each timestep represents. For this reason, and 279 

taking account of the data input overhead, a maximum timestep duration of one year is 280 

recommended, which gives a sufficiently granular temporal resolution in most cases. 281 

In some instances, precise and accurate input data will not be available and modelling 282 

assumptions will be required. Suitable assumptions are addressed in the following sections. 283 

Despite this, it should be emphasised that the proposed optimisation model for waste 284 

management is versatile and can easily be adapted to incorporate more refined information as 285 

it becomes available. 286 

2.3 Waste flow modelling in SWIMS 287 

The representation of waste flows through the system is based on a network mass flow 288 

model. The network is built up of nodes, which represent the waste treatment facilities that 289 

populate the system. The model accounts for all incoming and outgoing mass flows of waste 290 

between the nodes that make up the network, with waste entering the system through 291 

processes that collect waste from waste producers (more information below). Figure 2 292 

describes schematically the processes occurring within the running of the model.  293 
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Flows of waste are modelled heterogeneously, i.e. they may contain one or multiple waste 294 

materials. A waste stream is a specific category of waste (e.g. residual waste or textile waste) 295 

and is initially defined by how it is collected, e.g. from kerbside bins or specialist bins at a 296 

household waste recycling centre (HWRC). A specific mass of waste, including both target 297 

materials and contaminants, collected by a waste collection process in a given area and 298 

timestep forms a waste flow. Waste flows have a total mass equal to the sum of the masses of 299 

the constituent waste materials. 300 

Waste materials have a type, mass (within a given waste flow) and specific set of physico-301 

chemical properties. While material type is persistent, the specific properties associated with 302 

a material are dynamic and may be modified by certain types of waste treatment processing. 303 

Nevertheless, regardless of any changes to a waste’s properties it will always be traceable to 304 

the original material type. This enables the fate of each single material type to be tracked 305 

from waste generation to treatment and disposal. The benefit of this approach is that it allows 306 

SWIMS to identify the optimal treatment paths for different waste flows based on the 307 

physico-chemical properties of the waste materials contained with those flows. For example, 308 

two flows from the same waste stream may have different optimal treatment paths if, despite 309 

being the same waste stream type, differing masses within the flow or geographic location 310 

resulted in differing facilities and path orders being available, changing the physico-chemical 311 

properties at the TFs.   312 

Different waste collection processes and treatment processes are significantly influenced by a 313 

waste producer’s “willingness” to participate in recycling, composting, etc. within SWIMS. 314 

The producer’s behaviour affects the level of contamination in a waste flow; this is likely to 315 

change spatially, temporally and demographically. As the waste flows are modelled 316 
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heterogeneously, and with distinct and dynamic compositions, ratio constraints based on non-317 

linear expressions are required for each waste material and each treatment process. This 318 

introduces non-linear constraints, greatly increasing the complexity of the model, and results 319 

in what is suspected to be an NP-hard decision problem (see Kellerer et al. (2004)). The 320 

problem is addressed in SWIMS through a non-linear optimisation algorithm, as described 321 

below.  322 
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Figure 2. Visualisation of the steps taken to generate waste flows, utilise existing TP and 324 

initialise new TP. A TP consists of the processes used for a waste stream to be collected, 325 

transported and treated. 326 

2.4 Waste generation 327 

Waste producers are the agents within the system that generate and dispose of waste. The 328 

material composition of generated waste is predetermined for each producer type within the 329 

database. An example of material generation is shown in Figure 2. Each geographic region’s 330 

initial waste production is defined as primary waste, with reprocessed wastes sent for further 331 

treatment defined as secondary waste. One or more waste producer types (e.g. urban 332 

household or rural household) may be defined for each geographic area represented within 333 

the system. Waste arisings w (tonnes) for producer type x in area a at timestep t are:  334 

𝑤𝑥,𝑎,𝑡 = 𝐺𝑉𝐴𝑥,𝑎,𝑡 ∙ 𝐺𝐸𝑁𝑥,𝑎,𝑡 335 

𝐺𝑉𝐴𝑥,𝑎,𝑡 = 𝑃𝑥,𝑎,𝑡 . 𝑇𝑜𝑡𝑎𝑙𝐺𝑉𝐴𝑎,𝑡  336 

𝐺𝐸𝑁𝑥,𝑎,𝑡 =  𝐺𝐸𝑁𝑥,𝑎 ∙ (1 − 𝑑𝑥)𝑡 337 

𝑡 = 0, 1 … 𝐹𝑇𝑆     (4) 338 

where 𝐺𝑉𝐴𝑥,𝑎,𝑡 is gross value added (£ million) for producer type x in area a at timestep t; 339 

Px,a,t is the proportion of producer type x in the population of area a at timestep t, GENx,a,t is 340 



20 

 

the waste generation rate (tonnes/£M GVA1) for producer type x, in area a for timestep t, dx is 341 

a “decoupling” rate constant (see below) for producer type x, and FTS is the final timestep.  342 

Based on the above, total waste arisings, W, in area a at timestep t are: 343 

𝑊𝑎,𝑡 = ∑ 𝑤𝑥,𝑎,𝑡     (5) 344 

Temporal changes in waste arisings are modelled in SWIMS by assuming a positive 345 

correlation between waste generation and economic activity (i.e. GVA). Historical trends in 346 

most industrial economies show a link between resource use (and resultant waste generation) 347 

and economic activity (Hoornweg and Bhada-Tata, 2012). It has, however, been 348 

demonstrated that more efficient use of resources can break the link between resource use and 349 

economic growth (Bithas and Kalimeris, 2018) Hence, decoupling refers to the concept of de-350 

linking resource use from economic growth over time, i.e. the generation of less waste per 351 

unit of economic activity. Mazzanti et al. (2012) show that a general trend towards 352 

decoupling of economic growth and waste arisings is occurring in the European Union. For 353 

this reason, SWIMS allows a waste decoupling factor to be applied. A waste decoupling 354 

factor can also be applied to prevent an exponential growth in waste generation. The pre-set 355 

values within SWIMS range from 0 to 4% per annum determined from historical projections 356 

and calculations as reported by Hall et al. (2016b), but can be redefined by the user. 357 

                                                 

1 GVA reported here is the measure of the increase in the value of the economy due to the production of 
goods and services at a regional level.  
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2.5 Waste collection 358 

2.5.1 Waste collection processes 359 

Waste collection processes represent the way in which waste enters the waste management 360 

system and are the point at which groups of waste materials are combined into waste streams. 361 

Waste collection processes should be thought of as the types of ‘bins’ available to waste 362 

producers. Each waste collection process produces a single waste stream and different waste 363 

collection processes may produce the same waste stream. For example, a “residual” waste 364 

stream may be produced by a “household kerbside collection, residual waste” collection 365 

process as well as a “household waste recycling centre, residual waste” collection process.  366 

Waste collection processes do not exist in isolation but are always part of a coherent group 367 

available to waste producers, here called a “waste collection process set”. Waste collection 368 

process sets are defined because there are certain processes that do not logically belong in the 369 

same set. For example, there are several types of kerbside collection process for recyclable 370 

materials, which can be categorised as single-stream co-mingled (all recyclable waste mixed 371 

together in one bin), two-stream co-mingled (most recyclable waste mixed together in one bin 372 

with something separate, such as glass) and sorted/source segregated (where specific types of 373 

recyclable waste materials are separated by the waste producer and placed in their own 374 

exclusive bin). In practice, no one waste producer (e.g. a householder) would be offered more 375 

than one of these types of kerbside recycling collection, hence they should not belong to the 376 

same waste collection process set. However, a waste collection process set should be made up 377 

of a diverse range of processes to collect a variety of waste types: e.g. from the kerbside, at 378 

HWRC, bring banks and public street bins. 379 
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For each geographic area a, the proportion of the population that is served by each waste 380 

collection process set is pre-determined within the database. Each material type has a 381 

proportion that is collected by a single waste collection process type. The material collected 382 

by each waste collection process type creates a unique waste stream (up to 85) as shown in 383 

Figure 2. 384 

The timestep-based approach allows for the simulation of changes in collection service 385 

provision over time, for example, to replicate the increased provision of source-segregated 386 

food waste collection services in the UK since 2010.  387 

Waste collection metrics are calculated from coefficients with set transport distances on a t 388 

km-1 basis, details of which are given within the Supplementary Information (SI). 389 

2.5.2 Waste producer discard rules 390 

Waste discard rules are used to define, for each waste producer type, the proportion of each 391 

generated waste material discarded to each waste collection process they are offered. Also 392 

defined for each waste collection process is a) a contamination rate, i.e. the proportion of the 393 

waste materials in that waste collection process that are non-target materials; and b) the 394 

collection process to which the contaminant material should be assigned. Contamination rates 395 

are predefined for each material and waste producer type as a fraction of the waste collected 396 

based on user inputs and  literature values (Clavreul et al., 2014), which is then redirected to 397 

a residual TF upon receipt at the initial TF. For example, a paper recycling collection process 398 

has 10% contaminants and the contaminants belong to the residual collection process. 399 

Residual waste can be a source of contamination for a recyclable materials collection process. 400 

However, the general residual waste collection process, by nature of being a residual waste 401 

collection process, cannot contain contaminants. 402 
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As waste composition and waste discard rules are defined for each specific waste producer 403 

type it is possible to simulate changes in waste producer behaviour by varying the proportion 404 

of different waste producer types over time. For example, good waste producer behaviour 405 

would involve the discarding of “target” materials (e.g. recyclables and food waste) into the 406 

separate bins (i.e. collection processes) with minimal contamination, thus diverting the 407 

valuable materials at the source from the residual waste stream. Bad behaviour would involve 408 

the opposite. Hence, by populating the system at t = 0 with a high proportion of poorer 409 

behaving waste producer types and then increasing the proportion of well-behaved producer 410 

types in later timesteps, an improvement in waste producer behaviour may be simulated.  411 

2.6 Waste treatment 412 

All waste collected by each waste collection process in an area for a given timestep forms a 413 

waste flow, which is identified as being of a specific waste stream type and is directed for 414 

treatment accordingly. Given their different material compositions and resulting physico-415 

chemical properties, different waste streams require different types of treatment. There are 416 

168 discrete waste treatment processes currently built into the database, covering a wide 417 

range of technologies (e.g. landfill, composting, anaerobic digestion, reprocessing, etc.), each 418 

of which has a variety of configurations. For each waste stream, the type(s) of waste 419 

treatment technology that can be used to treat that waste stream is defined by the user. This 420 

prevents, for example, “residual waste” from being treated via paper reprocessing.  421 

In SWIMS, waste handling sites are waste TFs. Each geographic area represented within the 422 

system is initially (t = 0) populated by a number of TFs. Facilities that are due to become 423 

operational in the future (t ≥ 1) may also be specified by the user; these are then added to the 424 

network when appropriate. These TFs represent the nodes of the network flow model. TFs are 425 
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defined by a name, location (geographic area), technology type (e.g. in-vessel composting or 426 

landfill, sanitary), operating capacity (tonnes per year), theoretical maximum capacity (tonnes 427 

per year), the timestep in which they became/will become operational, and the capital cost (£ 428 

million) of their construction. The standard of the technology type can also be specified e.g. 429 

“average technology”, “best available technology”.  430 

A system may comprise several hundred discrete TFs (for example, the system of the case 431 

study described below initially comprise 904 facilities, with a further 1546 added to the 432 

system by 2020) and cover a wide array of technologies. Hence, to simplify the modelling of 433 

waste treatment, each technology type is categorised into one of 14 different waste treatment 434 

process models. Process models may be single- or multi-stage. At its most basic, a process 435 

model may involve the transfer of a waste flow, without any modification to its material 436 

properties, from one TF to another (e.g. a transfer station). Other process models are more 437 

complex, multi-stage operations entailing several different processing steps. For example, 438 

waste treatment at a TF of technology type “mechanical biological treatment with in-vessel 439 

composting [average technology]” is modelled using the multi-stage “mechanical biological 440 

treatment” process model, as follows: Step 1) initial sort in which a proportion of each input 441 

material type is “rejected”, i.e. transferred to a residual waste stream; Step 2) physical 442 

separation where a proportion of each input material type is transferred into different waste 443 

streams (e.g. fines, for biological treatment internally; residual waste, for treatment/disposal 444 

elsewhere; or recyclables, for reprocessing elsewhere), with each output waste stream also 445 

containing a proportion of contamination. Step 3, Biological treatment where materials that 446 

are accepted for biological treatment during Step 2 are transferred to a “composting” or 447 

“anaerobic digestion” process model. Here, the physico-chemical properties of input 448 

materials are changed based on the parameters of the biological treatment process (in this 449 
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case, in-vessel composting) such that the properties of the output are different from those of 450 

the input.  451 

2.7 Capacity 452 

At the start of the model all existing and planned/under construction TFs have a defined 453 

annual maximum operating capacity that cannot be exceeded. Facilities can be upgraded to 454 

extend their lifespan and potentially their capacity, except for landfills, which have both a 455 

maximum annual operating capacity and a finite capacity. The landfill-specific cumulative 456 

capacity constraint prohibits the model from disposing of more waste than an individual 457 

landfill can hold. Once the total capacity is reached, the landfill is removed from operational 458 

use and becomes a legacy landfill in the model. 459 

2.8 Genetic algorithm and optimisation of WTPs 460 

All possible waste treatment paths (i.e. chains of waste treatment processes) that accord with 461 

the constraints (database and user defined) exist at the start of a model run. As SWIMS 462 

assesses the performance of these paths rather than individual waste treatment processes, all 463 

possible paths must be tested to guarantee that an optimal solution is selected. However, the 464 

variety of waste producer types (and associated discard rules), waste streams, waste treatment 465 

processes, geographic areas and government and user-defined constraints that may be 466 

modelled means there are too many permutations to test within a reasonable run time. 467 

SWIMS uses a path order optimiser, which due to the capacity constraints of TF makes this 468 

problem difficult to solve, similar to the ‘bin packing’ or ‘travelling salesman’ optimisation 469 

problems (Larrañaga et al., 1999).  470 

To address this, a DFSA is used for each waste flow. Each path has implications for the 471 

utilization of the capacity of different waste treatment facilities. Using one path to process a 472 
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mass of waste reduces the capacity available to other waste flows. If any facility on a path has 473 

no remaining capacity, the entire path becomes unavailable. Therefore, the order in which the 474 

WTPs are used is very important to the performance of the system as a whole. Finding the 475 

ideal order is non-trivial. Paths that, in isolation, look very good may result in the use of very 476 

bad paths to process a larger quantity of waste further down the line. Therefore, finding the 477 

best order of use is crucial to optimizing the performance of the system as a whole. A 478 

sequential evolutionary genetic algorithm (GA) is employed to determine the optimum order 479 

of paths for a waste stream so that the available capacity of the various treatment facilities is 480 

best utilized to achieve the optimisation goals (Mayer et al., 1999). A GA is used because of 481 

its record in finding optimal or near-optimal solutions quickly and its computational 482 

efficiency (Kumar et al., 2010). 483 

As shown in Figure 3, the GA populates a model run with an initial random selection of 484 

WTPs, referred to as “parents”. The performance of these parents is assessed according to the 485 

optimisation criteria and user selected optimisation criteria weights. One or more of the 486 

following eleven optimisation criteria may be selected: 487 

 Minimise: Cost, CO2e, use of undesirable processes. 488 

 Maximise: Energy recovery, energy production, electricity recovery, electricity 489 

production, heat production, materials recovery. 490 

 Throughput goal performance. 491 

 Constraint performance. 492 

Throughput goal performance is a measure of how well a waste flow type or material is 493 

optimised and a constraint performance is how well the system meets set constraints. 494 
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All waste treatment paths Depth First Search Algorithm

1 n

All potential TPs exist and are 
possible prior to a model run. 
Multiple paths combined to treat all 
waste are defined as a path order. 
Path orders are explored rather than 
defined using a DFSA. This is similar 
to the number of possible ways you 
could travel to work, with some 
more sensible/ achievable than 
others.

It is the performance of paths, not 
processes, that SWIMS uses to solve 
the optimisation problem. 1 n

1
The genetic algorithm 
begins by initialising a 
population of random and 
‘logical’ path orders, 
which are a subset of the 
‘possible’ path orders.

A timer countdown begins 
to restrict the duration of 
the algorithm, and 
ultimately the number of 
path orders generated.

2
An optimiser within the 
model determines the 
performance of each path 
order. Each optimisation 
criterion is adjusted to a 
coefficient set by the user 
(0, 1 … n).

4
The genetic algorithm recombines 
(mates) strong performing path 
orders.

These path orders are returned to 
the optimiser to determine 
performance.

All mated path orders exist within 
“all waste treatment path orders” 
above, but are generated 
separately as a product of the 
genetic algorithm

2.
4

1.
1

0.
3

1.
4

4.
8

0.
1

2.
7

? ? ? ? ? ? ? ? ?

3
Poor preforming path orders are 
removed from the process and are 
no longer assessed/ bred.

6.
2

End when a satisfactory 
path order performer 
emerges or the timer runs 
to completion, with an 
optimum path order 
selected from the 
remaining list.

5

The genetic algorithm

Optimiser calculation

Path “breeding”

Path removal

Path selection

Optimum path order selected

Cycle continues until timer 
completes or one path order 

remains.

Selected path orders (red/ dashed)

• Energy supply,
• Cost,
• CO2e,
• Recovered materials,
• Etc.

Optimiser score

Timer starts e.g. 40 seconds

Timer ends

Possible path order (described in Figure 2)

Populated path order selected by the GA

Daughter path orders generated breeding 
selected paths

Path Key

 495 

Figure 3. Schematic diagram of the genetic algorithm (GA) used to optimise WTP selection 496 

in SWIMS.  497 

The worst performing parents are removed, while the path orders of the best performing 498 

parents are ‘bred’ together to create a new generation of path priority orders, referred to as 499 

“children”. Successive generations of children are sorted based on their performance. As 500 

before, the worst performers are removed and the best performers bred until either only one 501 
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optimum path order remains or a pre-defined time limit is reached, after which the best 502 

performing path order at that point is selected from the population. Only path orders that 503 

satisfy the model conditions are tested by the GA. 504 

2.9 Additional capacity requests 505 

After the GA has run for a timestep, as shown in Figure 4, and the outputs have been 506 

recorded, the amount of future capacity that is needed is calculated. For this, SWIMS 507 

calculates waste arisings for future years (see Section 2.4) and calculates the amount of 508 

useable infrastructure capacity (i.e. operational, upgradable or planned) in future years. User-509 

defined planning horizons determine for how many timesteps the model will project forward 510 

and plan. The example shown in Figure 4 uses a planning horizon of five years to determine 511 

future waste arisings and infrastructure capacity (Point 1) and a planning frequency of one 512 

year timesteps, resulting in each year of the model run determining future capacity needs. 513 

This information is then used by the DFSA and GA (see Figure 3) to determine if it is 514 

possible to treat all generated waste within the planning horizon, while considering present 515 

and future constraints. Using the optimum path orders, SWIMS will determine the existence 516 

and size of any treatment capacity shortfall.  Additional capacity requirements are generated 517 

using this data, for use in the infrastructure builder. 518 
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1
Build options determine if infrastructure 
can be:
• All upgradable and additional 

buildable,
• All upgradeable only NO NEW BUILD,
• Selected TP only buildable and 

upgradeable,
• No upgrades or additional build,
• Combination of the above.

Build and upgrade according to pre-
defined build ratios. These are expressed 
for each waste stream and define which 
TPs can be built if build options allow and 
(optionally) in what proportions.

Additional capacity request 
is calculated in parallel with 
the running of the DFSA and 
GA for each individual 
timestep (as shown in Figure 
3). This is the additional 
capacity (requested) for a 
waste treatment process 
(TP) for each waste 
treatment path and waste 
stream type. If all waste is 
treated using TP in an area 
no request is made. If waste 
is not treated, a request for 
excess capacity is made.

2

Additional capacity calculation

All additional capacity requests for a TP are 
summed for each area. Below shows an 
example for the TP (anaerobic digestion).

3
50

0

85
0 0

34
0 0 0 0 0 0 Σ additional capacity area-1

Additional capacity request t yr-1

(TP specific)4
Once all capacity demand for a TP 
and waste flow have been summed 
for each area, the additional capacity 
request is stored. 

All infrastructure building is 
determined based on the areas 
needs.

Anaerobic digestion TP 
capacity request

1000

650

450

450

1200
200

890

90

950

550

Selected and run path orders

• Area,
• TP,
• Waste Flow,
• Additional capacity 

request.

1987 2027

2027 2057

2057

1987 ∞

Assumed 30 year 
lifespan

Upgradable for another 30 years use with BAT

New infrastructure utilising BAT

Model run with no aging, assumed infrastructure is maintained 
and never upgraded 

All facilities have a 
lifespan. Towards the end 
of a TF’s lifespan it can be 
upgraded, extending its 
lifespan and upgrading it 
to BAT.

This can be used in 
conjunction with building 
additional capacity with 
new infrastructure.

1 Planning horizons determine the duration of time (i.e. number of timesteps) for which waste arisings are projected and 
capacity management is required. The GA is run with the future waste arisings, available existing infrastructure and planned 
buildable infrastructure. The timeline below shows a planning horizon of five years, run for a timestep of one year.

2010 2015 2020 20302025
Model run start Model run end

Build options
Capacity demand is filtered through build options.

Build and/ or upgradeNo build

Infrastructure is suggested for build 
and/ or upgrade but is not staged 
for addition. Infrastructure builder 
ends here.

Infrastructure is staged for 
upgrade, with additional capacity 
met by building new infrastructure.

2
Depending on the build options, the model 
either suggests the need for new capacity only 
(no build), or allows for the construction/ 
upgrade of a TF.

3
Buildable/ upgradable facilities are defined for 
each waste stream. Permitted options are 
explored, and the BAT (user defined) option 
meeting all constraints and meeting the capacity 
demand is selected. Priority is given to the 
upgrading of existing TFs rather than the 
construction of new ones.”.

4
Selected facilities are staged for upgrade/ building. 
These are then added to the existing facilities list 
upon completion. 

Not 
allowed

Not 
allowed

Do not meet constraints 
or capacity demand

Meets all 
criteria

Waste treatment process is staged 
for build becoming a waste 
treatment facility upon completion.

Infrastructure builder

 519 
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Figure 4. Schematic diagram of the approach for determining additional capacity 520 

requirements in SWIMS.  521 

2.10 Infrastructure builder 522 

Requests for additional capacity are sent to the infrastructure builder, which will select the 523 

optimum waste treatment process(es) to meet this capacity demand. Selection is based on the 524 

following: the waste stream for which treatment capacity is required; user-defined constraints 525 

on (waste stream-specific) buildable waste treatment processes; the availability of 526 

upgradable, existing waste treatment facilities; and, capital budget. The selected process(es) 527 

are then staged for building, as illustrated in Figure 4, and made available for model runs of 528 

successive planning horizons to avoid multiple builds. 529 

2.11 Waste transportation 530 

All waste flows involve the transfer of waste from an origin to a destination. Inter-area 531 

transportation is required where waste is transferred between facilities in different geographic 532 

areas (e.g. London to the South East). Inter-area transportation is currently modelled based on 533 

the central geographic point for each area and the distances between these nodes. Larger 534 

vehicles are used for these transfers. Intra-area transportation has pre-defined collection/ 535 

transportation vehicles and distances based on discard rules and collection methods. 536 

Transport metrics are calculated from coefficients on a t km-1 basis. 537 

2.12 Modelling of financial costs 538 

Although comprehensive cost assessment methods, such as the approach proposed by 539 

Martinez-Sanchez et al. (2015), provide users with a detailed insight into the costs of their 540 

waste management systems, they are typically highly data-intensive. Given the challenges of 541 
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acquiring comprehensive, accurate cost data for waste management processes, it was not 542 

considered appropriate to use such a detailed approach here (at least for SWIMS v.1). Rather, 543 

a simplified approach based on gate fees (for operational expenditure) and capital expenditure 544 

was followed. The gate fee is a unit payment made by the waste treatment/collection 545 

authority to the service provider that is charged against a given quantity of waste (typically £ 546 

per tonne) received at a TF. Gate fees may be positive or negative and are levied to cover the 547 

costs of operation, maintenance, and eventual closure of the site, and may be offset by the 548 

profits from the sale of recovered materials and/or energy (see Hogg (2002)). Gate fees have 549 

been used as a basis for comparing costs of alternative waste treatment options in the EU 550 

(Hogg, 2002) and the UK (WRAP, 2017). Capital expenditure is derived from one-time 551 

construction-related capital costs for the building of a new TF and upgrading an existing TF 552 

(by default, 50% of the build cost). 553 

2.13 Modelling of environmental impacts  554 

Potential environmental impacts of the SWM system are calculated using life cycle 555 

assessment (LCA), following an “attributional” approach (Heinrich, 2010). The assessment 556 

includes impacts from waste collection and treatment, as well as those on processes in 557 

external systems that are affected by the consequences of SWM activities, chiefly the 558 

recovery of materials and energy. The functional unit of the LCA is the treatment of all waste 559 

generated in an area within the planning time horizon, and the system boundaries are defined 560 

by the SWM system under investigation. The model follows the “zero burden assumption”, 561 

whereby the potential impacts from upstream life cycle stages prior to waste collection are 562 

not included, which is largely outside the remit of infrastructure planers and policy makers on 563 

waste management infrastructure (Ekvall et al., 2007). Environmental impacts from capital 564 

goods (machinery, buildings, etc.) are not considered as they are typically negligible, in terms 565 
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of Global Warming impacts, compared with those associated with TF operations (Brogaard 566 

and Christensen, 2016). 567 

The basis of LCA modelling in SWIMS is a series of waste treatment process models, 568 

developed based on those developed for the EASETECH waste-LCA software (Clavreul et 569 

al., 2014). Emissions are calculated for each waste collection and treatment process based on 570 

the composition and quantity of the input waste stream. Gross emissions are generated 571 

through the use of materials, energy and services during handling. Avoided emissions result 572 

from the production of electrical and thermal energy, soil improvers, and secondary materials 573 

that offset production from virgin materials (see Turner et al. (2016) for details of the 574 

modelling approach). Net emissions are calculated as differences between the gross and 575 

avoided emissions. Default life cycle inventory (LCI) data for the waste treatment processes 576 

pre-defined in SWIMS are provided in the SI. 577 

Emissions to the environment, calculated here by the LCA process models, are translated into 578 

potential environmental impacts by applying substance-specific characterisation factors. 579 

These express the individual contribution of each emitted substance to a given impact 580 

category, relative to a reference flow (i.e. a waste flow). A wide variety of impact categories 581 

may be considered in LCA, such as freshwater eutrophication, human- and eco-toxicity and 582 

abiotic resource use. While SWIMS has the functionality to calculate impacts from as many 583 

substances and across as many impact categories as desired, the first version of the model is 584 

limited to considering only the potential impacts of greenhouse gas emissions on climate 585 

change. GHG emissions are characterised by Global Warming Potential (GWP) using a 100 586 

year time horizon and expressed as tonnes of carbon dioxide equivalents (t CO2e). 587 

Characterisation factors were taken from the baseline model of 100 years of the 588 
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Intergovernmental Panel on Climate Change (IPCC) (Bogner et al., 2008). Only emissions of 589 

carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are considered. Combined, 590 

emissions of these three GHGs account for over 90% of total GHG emissions from SWM 591 

(Bogner et al., 2008).  592 

2.14 Modelling of regulatory and legislative requirements   593 

The SWIMS model allows users to create specific constraints that enable analysis and 594 

exploration of different SWM policies and regulatory and legislative requirements. These 595 

include, landfill diversion targets for biodegradable waste, restrictions on the treatment of 596 

certain materials via certain processes (e.g. plasterboard waste to landfill), taxes (e.g. landfill 597 

tax or carbon tax). The performance of hypothetical systems based on different collections of 598 

constraints can be explored through use of scenario analysis; a powerful decision- and policy- 599 

support feature.  600 

3. Case study 601 

The illustrative case study was implemented using the C# scripting language and solved on a 602 

64 bit Windows 8.1 machine with an Intel Core i7-6820HQ CPU, 2.7 GHZ processor and 16 603 

GB RAM. The solve time was 55 minutes. All input database tables and complete output 604 

results tables can be found in the SI.  605 

Here we present the coarse-grained, proof of concept results generated by SWIMS as part of 606 

a pilot test for the UK national infrastructure needs assessment (Hall et al., 2016a). The data 607 

generated utilised a version of SWIMS run within the system-of-systems model, NISMOD 1 608 

(National Infrastructure Systems MODel version 1) (Hall et al., 2016b), developed by the 609 

Infrastructure Transitions Research Consortium (ITRC).  610 
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3.1 Model setup and data input 611 

The model was based on a single, central (median) scenario of projected population growth, 612 

economic development and fossil fuel prices for GB (generated by an exogenous economic 613 

and demographics model (Hall et al., 2016b)). Details of the scenario are described in Hall et 614 

al. (2016b) and the inputs used are presented in the SI. For the case study, only a “business as 615 

usual” (BAU) strategy was examined, with all current practices kept and only planned policy 616 

changes implemented. To remove the effects of inflation all calculations are at 2010 prices. 617 

Barring landfills, which have a finite capacity, the simulation of infrastructure aging was not 618 

considered, i.e. lifespan was set to “null” and all existing infrastructure remained operational 619 

until 2050. This was used as a means of estimating if current infrastructure (if well 620 

maintained) would be sufficient to meet future demand. 621 

The database and LCI used are outlined in Section 2 and the SI. The model run considered 622 

the generation, collection and treatment of municipal solid waste (MSW) from 2010 (base 623 

year) to 2050 for the eleven government office regions (GOR) of England, plus Wales and 624 

Scotland (treated as GOR equivalents for the purpose of the study). To remove the effects of 625 

inflation all calculations are at 2010 prices. Barring landfills, which have a finite capacity, the 626 

simulation of infrastructure aging was not considered, i.e. lifespan was set to “null” and all 627 

existing infrastructure remained operational until 2050. This was used as a means of 628 

estimating if current infrastructure (if well maintained) would be sufficient to meet future 629 

demand. For each GOR represented in the model, an initial population of TFs was defined, as 630 

well as a list of planned/under construction TFs that are scheduled to become operational in 631 

pre-defined future timesteps (t > 0). In total, the database contains information on 905 632 

existing TFs and 182 planned TFs across GB. Details of each TF (including capacity) were 633 
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estimated from publically available sources (e.g. waste permits, company reports, etc.). 634 

Details of all TFs are available within the SI. 635 

The optimisation goal (objective function) of this model run was to minimise financial costs. 636 

Note, though, that whilst a single optimisation goal is used for this demonstrative case study, 637 

SWIMS does allow for multi-objective optimisation. Transfers of waste among GORs and 638 

the export of recyclate and refuse-derived fuel abroad were both enabled. UK landfill tax was 639 

considered dynamically. An overview of all constraints utilised in this case study is outlined 640 

in Table 1. Note that as SWM is a devolved issue in GB, different constraints are utilised for 641 

England, Scotland and Wales (constraints 1-9, 10-20 and 20-24, respectively). 642 

  643 
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Constraint 

number 

Waste 

throughput 

type 

Initial 

time 

step 

Final 

time 

step 

Operator Value Value type Source 

1 Recycling & 

composting 2010 2014 >= 0.4 proportion (European Union, 1999, 2008) 

2 Recycling & 
composting 2015 2019 >= 0.45 proportion (European Union, 1999, 2008) 

3 Recycling & 

composting 2020  >= 0.5 proportion (European Union, 1999, 2008) 
4 Recycling, 

composting & 

energy 
recovery 2010 2014 >= 0.53 proportion (European Union, 1999, 2008) 

5 Recycling, 

composting & 
energy 

recovery 2015 2019 >= 0.67 proportion (European Union, 1999, 2008) 

6 Recycling, 
composting & 

energy 

recovery 2020  >= 0.75 proportion (European Union, 1999, 2008) 
7 Biodegradable 

waste to 

landfill 2010 2012 <=   11,200,000  mass (tonnes) (European Union, 1999, 2008) 
8 Biodegradable 

waste to 

landfill 2013 2019 <=   14,510,000  mass (tonnes) (European Union, 1999, 2008) 
9 Biodegradable 

waste to 

landfill 2020  <=   10,160,000  mass (tonnes) (European Union, 1999, 2008) 
10 Biodegradable 

waste to 

landfill 2010 2012 <=     1,320,000  mass (tonnes) (European Union, 1999) 
11 Biodegradable 

waste to 

landfill 2013 2019 <=     1,798,000  mass (tonnes) (European Union, 1999) 
12 Biodegradable 

waste to 

landfill 2020  <=     1,258,000  mass (tonnes) (European Union, 1999) 
13 Reuse & 

recycling 2020  >= 0.5 proportion 

(European Union, 1999; 

SQWenergy, 2010) 

14 Energy from 

waste 2010  <= 0.25 proportion 

(European Union, 2008; 

SQWenergy, 2010) 

15 Waste to 

landfill 2025  < 0.05 proportion 

(European Union, 1999; 

SQWenergy, 2010) 
16 Recycling & 

composting 2010 2012 >= 0.4 proportion 

(European Union, 2008; 

SQWenergy, 2010) 

17 Recycling & 
composting 2013 2019 >= 0.5 proportion 

(European Union, 1999; 
SQWenergy, 2010) 

18 Recycling & 
composting 2020 2024 >= 0.6 proportion 

(European Union, 2008; 
SQWenergy, 2010) 

19 Recycling & 

composting 2025  >= 0.7 proportion 

(European Union, 1999; 

SQWenergy, 2010) 
20 Biodegradable 

waste to 

landfill 2010 2012 <=         710,000  mass (European Union, 1999) 
21 Biodegradable 

waste to 

landfill 2013 2019 <=         919,000  mass (European Union, 1999) 
22 Biodegradable 

waste to 

landfill 2020  <=         643,000  mass 

(Welsh Assembly Government, 

2009) 

23 Reuse & 

recycling 2020  >= 0.5 proportion 

(Welsh Assembly Government, 

2009) 

24 Reuse & 
recycling 2025   >= 0.7 proportion 

(Welsh Assembly Government, 
2009) 

Table 1. All constraints utilised within this SWIMS model run. 644 
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3.2 Interpretation of model outputs 645 

Arisings of MSW were calculated based on regional GVA and waste generation coefficients, 646 

as outlined in Section 2. Figure 5 shows the main outputs from the model run. A gradual 647 

decrease over time in the amount of waste generated (Figure 5a) is observed in 10 of the 11 648 

GOR. This is due to the rates of waste decoupling (from GVA; see Section 2.4) in those GOR 649 

being greater than the rates of population growth. In contrast, the population increase in 650 

London is predicted to be such that there is an increase in waste generation over time.  651 

Figure 5b shows a decline in the amount of “overflow waste treatment” (defined as being any 652 

waste that is sent to landfill) between 2010 and 2020, with a further slight decline after 2020 653 

in all GOR except London, again due to greater population growth in this region. These 654 

declining amounts of overflow waste treatment are a consequence of the model responding to 655 

constraints imposed by regulatory and legislative instruments that set limits on the amount of 656 

waste that can be sent to landfill each year (Waste framework directive targets for recyclate 657 

material recovered and waste to landfill,  see SI). 658 

The amount of treated waste that is recovered for recycling is shown in Figure 5c. After 659 

initial fluctuations during the infrastructure build period 2010-2020, recycling rates begin to 660 

stabilise, with slight variations among GORs. Post-2020, as new infrastructure is built and 661 

constraints are met, the amount of recovered material begins to increase. Similar trends are 662 

observed for energy production from waste, which is the result of new thermal treatment 663 

facilities becoming operational by 2020. 664 

The climate impacts of SWM decline from 2010 to 2015 (a reduction of around 4.5 Mt 665 

CO2e). Post-2015, this culminates in a net “positive” climate impact reduction, i.e. climate 666 

benefit; a consequence of the increased avoided climate impacts from energy production and 667 
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materials recycling (Figures 5g-h). The greatest “positive” effects are observed in the East of 668 

England, which is likely due to a combination of increased material and energy recovery in 669 

the region as well as lower waste production compared to other GORs. Gradual increases in 670 

climate impacts in some GORs are observed post-2020. This is due to a decrease in waste 671 

arisings, which reduces the amount of waste available from which energy and recyclable 672 

materials can be recovered (i.e. reducing the potential for causing avoided climate impacts). 673 

To combat this (perhaps, misleading) effect, climate impacts can also be measured per tonne 674 

of waste generated (Figure 5h). For example, a region that produces more primary waste, 675 

such as London, could displace more CO2e in total, but might displace less CO2e when 676 

measured on the basis of CO2e per tonne of waste produced. 677 

Figures 5b-h show the amounts of waste treated in each year in each GOR between 2010 and 678 

2050. Large fluctuations are observed between 2010 and 2020, which is due to heavy initial 679 

investment in infrastructure by the model in 2011 (shown in Figure 5f) – in order to meet 680 

current and future constraints – and new infrastructure (including both that which was 681 

planned prior to 2010 and that which was built by the model in 2011) becoming operational 682 

at various times until 2020 (Figure 5f). 683 
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Figure 5. Model output for the case study, representing a BAU scenario covering eleven GOR 685 

within GB. 5a shows the tonnes of waste treated as overflow, 5b shows the tonnes of primary 686 

waste treated, 5c shows the tonnes of material recovered, 5d shows the energy produced in 687 

each region (TJ), 5e shows costs in £ tonne-1 waste treated, 5f shows the capital expenditure, 688 

5g shows the tonnes of CO2e produced, and 5h shows the tonnes of CO2e produced per tonne 689 

of waste treated. 690 
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Total operational expenditure is significantly greater than capital expenditure, as shown in 691 

Figure 6. This highlights the significance of optimising the treatment paths when compared to 692 

determining the correct infrastructure needs. There is a significant variation in regional 693 

operational costs; this is due to a combination of differing total waste arisings, collection and 694 

transport methods and distances, as well as initial available TF infrastructure. 695 
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Figure 6. Total operational and capital expenditure for each GOR between 2010 and 2050. 697 

Simulated capital expenditure peaks in 2011 (Figure 5f), which is due to the initial sizeable 698 

investment in materials recycling facilities, as shown in Figure 7. Such investment is 699 

necessary for the system to handle the ever-increasing demand for recycling capacity in 700 

future years and to meet constraints on landfill rates and recycling targets. Overall, a diverse 701 

mix of waste treatment process types was constructed for each GOR, reflecting the unique 702 

requirements and situation of each region. Construction focussed primarily on facilities for 703 

materials recycling (as mentioned above) and the biological treatment of organic material 704 

(e.g. composting and anaerobic digestion facilities). The simulated capital expenditure for 705 

Scotland is far higher than might be expected. In other GORs a large number of facilities 706 

become operational post-2010 but construction was agreed and capital expenditure was paid 707 
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prior to 2010, i.e. capital expenditure is not paid during the simulation time period. To meet 708 

capacity demands in the ensuing years, relatively little further investment in infrastructure is 709 

required in those regions. In contrast, there is a relative lack of such planned facilities in 710 

Scotland, which therefore requires greater investment in infrastructure post-2010 in this 711 

region. Finally, it should be noted that no landfills were staged for construction in any GOR 712 

post-2010, despite them being the only facilities that would require replacement due to their 713 

finite capacity (Figure 7). This suggests that there will be sufficient capacity from existing 714 

and planned infrastructure in GB to handle future demand for residual waste treatment, at 715 

least in this simulated BAU scenario. 716 
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 717 

Figure 7. Total simulated capital expenditure and the number and type of facilities built for 718 

each GOR. 719 
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3.3 Case study findings and conclusions 720 

Four principle conclusions can be drawn from the presented case study: 721 

1. Relatively little capital investment in additional infrastructure is required to meet the 722 

SWM demands of a central BAU scenario for all GOR. However, this is based on the 723 

assumption that all planned and existing infrastructure is maintained until 2050 with no 724 

additional costs beyond operational expenditure. Where capital investment in additional 725 

infrastructure was required, it was largely to meet increased demand for materials 726 

recycling and organic waste treatment facilities. 727 

2. Operational costs varied widely between regions, primarily due to differences in waste 728 

generation rates and the availability and types of existing/planned facilities that are/will 729 

be available to meet SWM demands. 730 

3. Sufficient capacity is available through existing and planned infrastructure to ensure that 731 

all targets for reducing the landfilling of wastes are met and that there is an overall 732 

reduction in the amount of waste that is sent to landfill in all regions compared with 2010 733 

levels. This is achieved through a simultaneous increase in both material recycling and 734 

energy production from waste over time. 735 

4. The climate impacts of SWM were found to decline over time in all regions, with SWM 736 

in GB eventually having a net “positive” climatic effect, i.e. environmental benefit. This 737 

is due to the aforementioned increase in material and energy recovery, which offsets the 738 

need for virgin materials in product manufacturing, and fossil fuels in energy generation.  739 

Detailed outputs of the modelled scenario are available in the SI. 740 
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4. Concluding remarks 741 

SWIMS is a dynamic, non-linear, life cycle-based tool for optimising SWM in a given region 742 

(or given regions) over a defined time period, determining future capacity requirements, and 743 

identifying optimum infrastructure solutions to meet future capacity demands. Unlike 744 

traditional, linear optimisation tools for SWM, waste flows through the network are modelled 745 

in SWIMS heterogeneously and with distinct and dynamic compositions; ratio constants 746 

based on non-linear expressions are defined for each waste material and each waste treatment 747 

process type. This modelling approach results in a combinatorial NP-Hard optimisation 748 

problem that is addressed through a sequential evolutionary genetic algorithm. Optimisation 749 

can be based to one or multiple objective function(s) and with respect to all constraints placed 750 

on the system. SWIMS therefore addresses the need for an algorithm to efficiently solve non-751 

linear optimisation problems for large-scale SWM system models (Kumar et al., 2010) and 752 

enables more complete and thorough assessments of the economic and environmental 753 

performance of SWM systems.  754 

SWIMS can be used to provide valuable information for SWM decision- and policy-makers, 755 

particularly when used to analyse the systemic effects of possible future national or regional 756 

policies. To demonstrate the tool’s functionality, an illustrative case study of MSW 757 

management in GB from 2010 to 2050 was presented. Results show that waste generation is 758 

projected to decline in most GOR, with the exceptions of London, South East England and 759 

the East of England. The model suggests that sufficient capacity is available in existing and 760 

planned infrastructure to cope with current and future demand for SWM and meet the UK’s 761 

regulatory and legislative requirements with relatively little capital investment beyond 2020. 762 

A single scenario for population and economic growth, and a “business as usual” strategy 763 
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was examined in the study, but the flexibility and adaptability of SWIMS enables a multitude 764 

of scenarios and strategies to be explored, whilst the database can be modified to reflect the 765 

specific needs of the user. For example, planners could explore the impact of policies to 766 

further reduce waste generation versus relying on infrastructure solutions; this is particularly 767 

relevant in areas of increasing population growth.  768 

The SWIMS approach enables the user to examine the resilience of a complete system at a 769 

materials level with varying constraints, and economic and environmental drivers, while 770 

addressing the unique relationships of different material types and combinations. SWIMS 771 

will optimise the pathways to which waste is managed as opposed to the conventional 772 

management of facilities. This allows for a fine grained analysis of the impacts of altering 773 

waste material composition within the current, and evolving, infrastructure. Policies and 774 

legislation such as the incorporation of EU circular economy package or the UN sustainable 775 

development goals can be simulated with a plethora of scenarios and strategies to understand 776 

both environmental and economic impacts. . 777 

The current version of SWIMS has several limitations that will be addressed in future 778 

updates. The model is limited by the availability of LCI data on different waste treatment 779 

processes. Capital goods (machinery, buildings, etc.) are not currently considered in the 780 

modelling of environmental performance due to a lack of available data and their typical 781 

insignificance in terms of the potential global warming impacts of SWM (Brogaard and 782 

Christensen, 2016). It has, however, been shown that these impacts can be significant to the 783 

overall environmental impacts of SWM (Brogaard and Christensen, 2016). To enable users 784 

who wish to extend the LCI assessment beyond the one currently considered impact category, 785 

global warming, and relevant LCI data should be identified and integrated into the tool.  786 
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An inherent consequence of the dynamic, future-oriented nature of SWIMS is that the 787 

uncertainly will increase quite drastically as the model runs into the mid- to long-term. Most 788 

treatment processes are currently modelled in two technology levels: “average” and “best-789 

available”. However, a lack of knowledge of how technologies will advance in the future, 790 

limits the likely representativeness of the model over long time horizons. This is also true of 791 

the data and modelling approach used for transportation and collection options, which will 792 

likely be affected by changes in fleet composition and engine type in the future (e.g. 793 

increasing share of electric vehicles). Similarly, the modelling approach to waste generation, 794 

which is based on a decoupling rate that relates arisings to population and economic growth, 795 

becomes increasingly problematic over time. Whilst data on waste arisings have been 796 

regularly collected in the UK since the 1990s, the decoupling rates applied in the case study 797 

are based on short temporal trends (c. 15 years), which leads to uncertainty regarding the 798 

robustness of such relationships in the mid- to long-term.  Furthermore, the overall approach 799 

to modelling waste generation is valid only if there a relationship between these variables 800 

exists, which may not be valid in all cases, both now and in the future. Future versions of 801 

SWIMS with appropriate data input will enable rates to be changed over time, e.g. to 802 

represent increasing waste reduction rates. 803 

An important limitation concerns the approach used to model financial costs, which is highly 804 

simplified in the current model and can be improved in future versions, provided that 805 

sufficient relevant data becomes available.  806 

The LCA modelling approach is deterministic and does not account for uncertainty in the 807 

model input, nor is sensitivity or uncertainty in model output considered. This can be 808 

improved through the implementation of stochastic analysis, although this would also require 809 
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significantly more data on input variables. Regarding the cost assessment, operational 810 

expenditure is currently based on gate fees, which incorporate a highly aggregated range of 811 

costs and are highly variable between regions and facilities. Access to, and inclusion of, data 812 

on operational costs for different waste treatment technologies and collection methods would 813 

significantly improve the representativeness of the model; such data are, however, scarce. 814 

SWIMS has been designed in such a way that it can easily modified by software developers 815 

and users, which provides considerable flexibility in how and where it can be used. It can also 816 

be utilised in its standalone form or be integrated with other infrastructure software packages 817 

as part of a system-of-systems model (see, for instance, its use in NISMOD1 as part of the 818 

ITRC research consortium (Hall et al, 2016b)). Such integrated modelling can be highly 819 

beneficial, for instance integration of SWIMS with an energy system model can enable the 820 

exploration of cross-sectoral impacts of energy from waste processes, which is relevant for 821 

decision makers in both the energy and waste sectors.  822 
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