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Abstract
This paper presents active vibration control to reduce the stick-slip oscillations in drill-strings. A simplified two degree-of-
freedom drill-string torsional model is considered. The nonlinear interaction between the rock and the bit is included in
the model, where its parameters are fitted with field data from a 5km drill-string system. Different PD-control strategies
are employed and compared, including the one that takes into account the weight-on-bit (axial force) and the bit speed.
Optimization problems are proposed to obtain the values of the gain coefficients, and a torsional stability map for
different weight-on-bit values and top-drive speeds is constructed. It is noted that the information of the dynamics at the
bottom increases the performance of the PD-controller significantly in terms of the torsional vibration suppression, for
the system analyzed.
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Introduction

Excessive vibration of drill-strings is a concern for the oil
industry. The vibrations are responsible, for instance, for
fatigue of the structure and damage to the measurement
equipment. This paper treats specifically torsional vibration
control to reduce the stick-slip oscillation. There are many
previous articles in the literature that have addressed the
stick-slip phenomenon in drill-string vibration, and have
made propositions for its control.

Concerning the nonlinear bit-rock interaction,
Pavone and Desplans (1994) investigated the stick-slip
phenomenon in drill-strings, and measurements of the
bit-rock interaction are presented: bit rotational speed vs.
torque on bit. A decaying exponential law is observed for
this relationship. A nonlinear function is usually employed
to model the bit-rock interaction (Khulief et al. (2007);
Sampaio et al. (2007)).

Concerning control strategies, in Serranrens et al. (1998)
a torsional vibration model with H-infinity control is
developed. In Viguie et al. (2009) a torsional vibration
model is controlled with a nonlinear passive targeted energy
transfer. A lightweight is attached to the system and a
nonlinear energy sink is created. In Kreuzer and Steidl
(2012) torsional vibration is controlled by decomposing the
drill-string dynamics into two traveling waves propagating in
the direction of the top-drive and in the direction of the drill
bit.

In Hiddabi et al. (2003) a coupled torsional-lateral model
with a non-linear dynamic inversion control is developed.
In Christoforou and Yigit (2003) a coupled model for axial-
lateral-torsional vibrations using feedback control is consid-
ered. In Tucker and Wang (2009) a coupled model for axial-
lateral-torsional vibrations (Cosserat theory) and feedback
control strategies is analyzed. In Navarro-López and Cortés
(2007) a torsional model controlled by sliding modes is

developed. In Ritto et al. (2009a) a coupled axial-torsional
model controlled by a fuzzy logic controller is analyzed.
One can find a review on torsional control of drill-strings in
Patil and Teodoriu (2013).

More recently, in Liu et al. (2014), a coupled axial-
torsional model with state-dependent delay is considered.
In Besselink et al. (2016), a feedback control strategy to
mitigate torsional stick-slip oscillations using a coupled
axial-torsional model for the drill-string is proposed.

Herein, we consider a torsional dynamical model, which
is coupled with the axial force, known as weight-on-
bit. For some given conditions, a pure torsional model
is enough to represent the drill-string dynamics, as
shown in Ritto et al. (2017). A simple 2-DOF system is
chosen to focus the attention on the control strategies,
as done by Jansen and van den Steen (1995); Leine et al.
(2002); Christoforou and Yigit (2003); Richard et al. (2007).
A more complete model with coupled axial-lateral-
torsional vibrations can be found in Ritto et al. (2009b);
Tucker and Wang (2009).

To assure that the applied torsional model analyzed in
the present paper is representative, the field data from a
5km drill-string system presented in Ritto et al. (2017) is
used to calibrate the nonlinear bit-rock interaction model
and the response of the torsional model is compared with
the field data bit speed. Measurement while drilling (MWD)
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tools provide real-time and recorded data, and it helps
understanding some downhole dynamics; Shi et al. (2016).

A PD-control strategy, which includes a control law for
the weight-on-bit, was proposed in Monteiro and Trindade
(2017). If we act on the axial force, the bit-rock interaction
curve shifts, and stick-slip oscillations might be suppressed.
One consequence is that an extra gain coefficient must be
considered in the analysis. In this paper we follow a similar
strategy proposed in Monteiro and Trindade (2017), but: (1)
four PD-control strategies are compared with increasing
parameters and information required, (2) optimization
algorithms are applied to minimize cost functions and to
obtain the control gain coefficients, and (3) the stability map
(top-drive speed vs. weight-on-bit) is constructed for each
control strategy.

Five control strategies are compared: (i) imposed top-drive
speed, (ii) PD-control (2 gain coefficients) considering the
response at the top, (iii) PD-control (3 gain coefficients)
considering the response at the top and information about
the weight-on-bit, (iv) PD-control (3 gain coefficients)
considering the response at the top, information about the
weight-on-bit, and the response at the bit, and (v) PD-control
(5 gain coefficients) considering the response at the top,
information about the weight-on-bit, and the response at the
bit. The main goal of this paper is to construct the stability
map for different strategies, and analyze how the stability
region changes as more information is included in the control
strategy.

The second section of this paper depicts the 2-DOF system
considered in the analyses, as well as the control strategies
employed. The third section presents the numerical results
and, finally, the concluding remarks are made in the last
section.

Formulation

Dynamical Model
The two degree-of-freedom (2DOF) drill-string torsional
system sketched in Fig. 1 is considered. The degrees of
freedom are θ0 and θbit, which are the rotations of the top-
drive and of the bottom-hole-assembly/bit. A control law is
applied at the top-drive and a nonlinear bit-rock interaction
torque occurs at the bottom of the column.

It is assumed that the bottom-hole-assembly (BHA) is a
rigid body, and that the drill-pipe is flexible. The inertia and
the natural frequency of the system are obtained calibrating
the model with the field data found in Ritto et al. (2017).
A linear model with linear viscous damping is considered
for the column, but the bit-rock interaction is nonlinear. The
equations of motion of the system are given by

I0θ̈0 + k(θ0 − θbit) + c(θ̇0 − θ̇bit) = Ttop ,

Iθ̈bit + k(θbit − θ0) + c(θ̇bit − θ̇0) = Tbit ,
(1)

where I0 and I are the top-drive and drill-string moments
o inertia, k is the drill-pipe stiffness, and c is the damping
parameter. The torque at the top and the torque at the
bit (Khulief et al. (2007); Sampaio et al. (2007); Ritto et al.
(2017)) are

     BHA

(rigid body)

drill-pipe

(flexible)

torque-on-bit

torque control

Figure 1. Sketch of a drill-string.

Ttop = Tcontrol ,

Tbit = −b0

(
tanh(b1θ̇bit) +

b2θ̇bit

1 + b3θ̇2bit

)
.

(2)

in which the torque is given in [N.m] and θ̇bit in [rad/s].
The parameters of the nonlinear bit-rock interaction model
are positive constants b0 [N.m], b1 [s], b2 [s], b3 [s2], and
they depend on the weight-on-bit, rock properties and cutting
characteristics. We can write b0 = r̄W , where W is the
weight-on-bit and r̄ is the bit effective radius. Figure 2
shows the nonlinear bit-rock interaction, where the fitted
model is compared with the available field data presented
in Ritto et al. (2017). Although the fluctuation of the field
data is big, the fitted bit-rock interaction model is in good
agreement with the experiments.
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Figure 2. Torque applied to the bit: field data (Ritto et al.
(2017)) vs. fitted model.

The state space model is given by:

ẏ =

[
0 I

−M−1K −M−1C

]
y +

[
0

M−1T(y)

]
, (3)
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where y = (θo, θbit, θ̇o, θ̇bit), I is the two by two identity
matrix, 0 is the zero matrix (or vector). The other matrices
and vectors are given by

M =

[
I0 0
0 I

]
, C =

[
c −c
−c c

]
, (4)

K =

[
k −k
−k k

]
, T(y) =

[
Ttop

Tbit

]
. (5)

Note that linear models are assumed for stiffness and
viscous damping; the nonlinearity comes only from the bit-
rock interaction Tbit. It should be remarked that a second
damping parameter could be added directly to the BHA,
which would decrease a rigid body rotation. However, for
the purpose of the present analysis, this parameter is not
important, and it would be another parameter to be identified.

Control strategies
If the motor at the top (top-drive) can sustain a constant speed
ωref , i.e., the drive torque assumes any value necessary to
maintain the reference speed, then only one equation must
be solved:

Iθ̈bit + k(θbit − ωref t) + c(θ̇bit − ωref ) = Tbit . (6)

When the PD-control is applied, the control gain
coefficients k are obtained solving an optimization problem,
where an objective function should be minimized. That is, for
each pair {ω(i)

ref ,W
(j)
ref}, {i = 1, 2, .., n}, {j = 1, 2, ..,m},

an optimization problem is solved to compute the optimal
gain coefficients, as shown in Eq. 7

k∗ = argmin J(k) , (7)

where k belongs to an admissible space and J is the cost
function defined in the next sections, which depends on the
system response.

The stick-slip severity factor is defined by SSS =
(ωmax − ωmin)/(2ωref ). This is how we interpret this
factor. If the bit speed reaches a constant speed, which is
equal to the reference speed at the top, this factor is equal
to zero and the system is stable. If there is a limit cycle
oscillation for the bit speed, this factor is greater than zero,
and the system is considered to be unstable.

Control strategy 1 : the first control strategy adopted is the
following one

Ttop(θ0) = kP (ωref t− θ0) + kD(ωref − θ̇0) , (8)

with control gain coefficients k = (kP , kD) and ωref as the
reference speed at the top-drive. In this strategy the cost
function is defined as

J(k) = ||ωref − θ̇0(k)|| , (9)

which means that the goal is to obtain k such that the top-
drive speed is as close as possible to the reference speed.
Note that only information at the top is taken into account,
i.e., θ0 and θ̇0.

Control strategy 2 : the second control strategy adopted
is similar to the one proposed by Monteiro and Trindade
(2017), where the weight-on-bit is also included in the
control law, such that the bit-rock interaction curve can be
changed. Note that the axial force at the top (weight-on-
hook) is directly related to the axial force at the bottom
(weight-on-bit).

Ttop(θ0) = kP (ωref t− θ0) + kD(ωref − θ̇0) ,

W = Wref + kW(θ̇0 − ωref ) .
(10)

The control gain coefficients are k = (kP , kD, kW), and kW
is limited so that the actual weight-on-bit variations are
smaller than 20%. As explained in Monteiro and Trindade
(2017) ”Therefore, if the angular velocity is larger than the
reference one, the weight-on-bit is increased relative to the
target one (which allows higher rate of penetration). But,
in the opposite case, where the angular velocity is smaller
than the target one, meaning that stick-slip is potentially
occurring, the weight-on-bit is reduced to alleviate the
frictional reaction torque.”

We propose to obtain the control gain coefficients using
the same cost function of the previous strategy,

J(k) = ||ωref − θ̇0(k)|| . (11)

As in the strategy 1, only information at the top is taken
into account, i.e., θ0, θ̇0 and weight-on-hook (directly related
to the weight-on-bit).

Control strategy 3 : the third control strategy adopted is
again similar to the one proposed by Monteiro and Trindade
(2017). However, now information from the bottom is
needed to implement this strategy. Note that θ̇bit appears in
the second equation below.

Ttop(θ0) = kP (ωref t− θ0) + kD(ωref − θ̇0) ,

W = Wref + kW(θ̇bit − ωref ) .
(12)

The control gain coefficients are k = (kP , kD, kW). For
this strategy a multi-objective cost function is proposed, to
include the bit dynamics, θ̇bit

J(k) = ||ωref − θ̇0(k)||+ (ωmax
bit (k)− ωmin

bit (k)) , (13)

which means that there are two goals put together: (1) obtain
k such that the top-drive speed is as close as possible to the
reference speed and (2) the bit oscillations are as small as
possible.

It should be remarked that usually, in the field, this
information is not available, but we want to investigate how
much the control strategy would improve if this information
was available. And, also, an observer can be constructed to
estimate θ̇bit.
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Control strategy 4 : the fourth control strategy which is
proposed in the present paper is similar to the strategy 3,
nevertheless it considers the bit speed in the control law of
the torque. Doing so we reinforce the main objective, which
is to reduce the torsional vibration of the system.

Ttop(θ0) = kP1(ωref t− θ0) + kP2(ωref t− θbit)

+kD1(ωref − θ̇0) + kD2(ωref − θ̇bit) ,

W = Wref + kW(θ̇bit − ωref ) .
(14)

The control gain coefficients are k =
(kP1, kP2, kD1, kD2, kW). The cost function is the same
one used in the previous strategy

J(k) = ||ωref − θ̇0(k)||+ (ωmax
bit (k)− ωmin

bit (k)) . (15)

Numerical results
The feedback control gain coefficients are constraint to
kP ∈ [0, 105], kD ∈ [0, 103], and kW is limited so that the
actual weight-on-bit variations are smaller than 20%. To
compute the gain coefficients, optimization is carried out
using an interior-point algorithm, and the system dynamics
is computed with the Runge-Kutta integration scheme.

The following system were obtained, calibrated with the
available field data in Ritto et al. (2017): ωn = 0.85 [rad/s]
(natural frequency), ξ = 0.25 (damping ratio), I = 383
[kg.m2], I0 = 9.58 [kg.m2], b0 = 5671, b1 = 0.4775, b2 =
8.7854, b3 = 4.5595. The bit-rock interaction parameters
were obtained for W equals to 245 kN. Assuming that Tbit

is linear with respect to the weight-on-bit, a coefficient is
used to multiply Tbit such that different values of W can be
simulated. For example, if the W is 200 kN, then Tbit must
be multiplied by 200/245 = 0.816.

Figure 3 shows the bit rotational speed obtained
integrating Eq. (6) with top-drive speed 120 RPM and Wref

equals to 245 kN. The computational model response is
compared with the available field data (Ritto et al. (2017)).
The model is not perfect, but it performed very well
to capture the stick-slip oscillations, with amplitude and
frequency of oscillation in the same order of magnitude of
the field data signal. Recalling that a 1DOF system is being
used to represent a 5km drill-string system.

Figure 4 shows the bit rotational speed obtained from
integrating Eq. (6) for three different top-drive speeds: 60
RPM, 100 RPM and 140 RPM. Depending on the top-
drive speed the response have different amplitudes torsional
oscillation (and different frequency of oscillation), or it can
simply not oscillate. The corresponding SSS values are 1.66,
1.22, and 0.02. The value of SSS decreases with increasing
top-drive speeds.

Usually for higher speeds the system escapes from the
stick-slip condition, i.e., the bit speed is equal to the top-
drive speed. A similar analysis can be done with respect
to the weight-on-bit, but on a different sense. Usually for
lower weight-on-bit the system escapes from the stick-slip
condition.

In the sequence, stability maps are constructed, varying
the top-drive speed ωref and the weight-on-bit Wref , for the
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Figure 3. Bit rotational speed: field data vs. computational
model response, Eq. (6), point (120 RPM, 245 kN).
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Figure 4. Bit rotational speed: field data vs. computational
model response, Eq. (6), with constant top-drive speeds (60
RPM, 100 RPM, 140 RPM).

five different control strategies. The five control strategies
analyzed are the following ones: (i) imposed top-drive speed,
(ii) control strategy 1 (PD-control), (iii) control strategy 2
(PD-control using the weight-on-bit; only information at the
top) (iv) control strategy 3 (PD-control using the weight-on-
bit; with information from the bit), and (v) control strategy 4
(PD-control using the weight-on-bit and the bit response).

Figure 5 shows the stability map obtained by the model
that imposes the speed at the top, Eq. (6). A 10× 10 grid is
considered and the contour plot represents the values of the
stick-slip severity factor. The dark blue region is the stable
region, where there is no torsional oscillation. The points
in the regions with other colors represent responses with
torsional oscillations, SSS > 0.1 (where 0.1 is an arbitrary
tolerance). The figure shows that, for high top-drive speeds
and low weight-on-bit there is less bit oscillations, and for
low top-drive speeds and high weight-on-bit the oscillation
is more intense.

Figure 6 shows a particular characteristics of the nonlinear
system under investigation. The same equation is analyzed,
Eq. (6), but while in Fig. 5 the initial speed of the simulations
is θ̇bit(t = 0) = 0, in Fig. 6 the initial speed is θ̇bit(t = 0) =
ωref . It can be observed that the stability region increases
when the initial condition is changed.

For the next simulations, only the worst case scenario,
when θ̇bit(t = 0) = 0, is considered.
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Figure 5. Stability map for imposed top-drive speed. The colors
represent the values of the stick-slip severity factor.
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Figure 6. Stability map for imposed top-drive speed, where the
initial speed in the simulations is θ̇bit(t = 0) = ωref . The colors
represent the values of the stick-slip severity factor.

Another preliminary investigation is carried out for the
linearized system, around the nominal rotational speed. In
this case, the stability is characterized by the eigenvalues of
the linearized system matrix. Figure 7 shows the stability
map for the linearized system presented in Eq. 6. For each
pair (top-drive speed, weight-on-bit) the highest real part of
the eigenvalues is identified. When this highest real part is
positive the system is unstable (yellow region), and when it
is negative the system is stable (dark blue region).

Obviously some dynamic features are missed when the
system is linearized, therefore in this paper we proceed with
the nonlinear time domain analysis. Nevertheless, if fast
computations are needed, the linearized system could be of
great value.

Let us get back to the investigation of the stability maps
obtained with the different PD-control strategies depicted in
the present paper. Depending on the initial guess used in the
optimization algorithm, a different k is identified, yielding
quite different results. Therefore, attention is needed because
there are several local minima in the optimization problem.

Figure 8 shows the stability map obtained for the control
strategy 1, Eqs. (8) and (9). Figure 8(a) shows the stability
map when the initial guess is (kp = 10000, kd = 100), and
Fig. 8(b) shows the stability map when the initial guess
used in the optimization algorithm is the previous identified
(kp, kd). The best result (bigger stable region) is shown
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Figure 7. Stability map of the linearized system. Yellow region
represents instability (at least one eigenvalue with positive real
part), while the dark blue region represents stability (all
eigenvalues with negative real part).

in Fig. 8(b), which yields a similar result to the previous
strategy of imposed top-drive speed, Fig. 5. To tackle the
problem of several minima, different initial guesses are
tested, and the best stability map obtained is recorded.
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Figure 8. Stability map, PD-control strategy 1 (a) initial guess
(kp = 10000, kd = 100) (b) using previous identified (kp, kd) as
initial guess.

Figure 9 shows the stability map obtained for the control
strategy 2, Eqs. (10) and (11). And Figure 10 shows the
stability map obtained for the control strategy 3, Eqs. (12)
and (13), and control strategy 4, Eqs. (14) and (15).
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As mention previously, the control strategy 1 yields very
similar results comparing to the strategy of imposing the top-
drive speed, Figs. 5 and 8(b). The control strategy 2, which
includes the information about the weight-on-bit, improves
significantly the results, Fig. 9. For instance, top-drive speeds
above 100 RPM lead to a stable system, without stick-slip
oscillations. There is also a stable region (dark blue) around
60 RPM, in the middle of two unstable regions.

Looking at the results obtained from the control strategy 3,
Fig. 10(a), it can be noted that all the region under analysis
is stabilized. That is, for any combination of top-drive
speed and weight-on-hook, control gain coefficients that
mitigate torsional oscillations were able to be identified. This
means that knowing the dynamics at the bottom increases
significantly the performance of the PD-control in terms of
torsional vibration reduction.

The stability map obtained for the control strategy 4,
Fig. 10(b), is similar to the results obtained for the control
strategy 3, Fig. 10(a). We expect that the control strategy 4
performs at least as good as the control strategy 3, since the
latter is a particular case of the former.
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Figure 9. Stability map for PD-control strategy 2. The colors
represent the values of the stick-slip severity factor.

Summarizing the results:

• The maximum value of the SSS for the four strategies
was, respectively, 2.59, 3.38, 0.01, 0.01.

• Gain coefficients for the control strategy number 1:
kP ∼ 6.2× 104

kD ∼ 900
• Gain coefficients for the control strategy number 2:
kP ∼∈ [0.1× 104, 7.5× 104]
kD ∼ 900
kW ∼∈ [0.1, 950]

• Gain coefficients for the control strategy number 3:
kP ∼ 5.4× 104

kD ∼ 950
kW ∼∈ [400, 600]

• Gain coefficients for the control strategy number 4:
kP1 ∼ [0.1× 104, 0.9× 104]
kD1 ∼ 950
kW ∼∈ [400, 600]
kP2 ∼ 0.1× 104

kD2 ∼∈ [25, 300]

Let us emphasize some aspects of these results. For control
strategy 1, for all the domain analyzed, the identified control
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Figure 10. Stability map (a) PD-control strategy 3 and (b)
PD-control strategy 4. The colors represent the values of the
stick-slip severity factor.

gain coefficients are pretty much the same. For control
strategy 2, another control gain kW is included, and the
proportional gain coefficient kP might vary from about 0.1×
104 to about 7.5× 104 N.m, and the gain coefficient related
to the weigh-on-bit varies a lot depending on the values of the
reference top-drive speed and reference weight-on-bit. For
control strategy 3, the proportional gain coefficient do not
change much (in a level lower than the value presented for
the control strategy 1), and the gain related to the weigh-on-
bit varies less, comparing to the control strategy 2. Finally,
for control strategy 4, two more control gain coefficients are
added. This allows the proportional gain coefficient kP1 to
assume lower values.

Concluding remarks

In the present paper, different PD-control strategies, which
include controlling the weight-on-bit (or weight-on-hook)
and taking into account information of the bit speed, were
investigated. A simple 2DOF system is considered in the
analyses. This simple system was calibrated with a 5 km
drill-string field data, and seems to be representative of the
phenomenon analyzed, which is torsional vibrations.

Although simple, the nonlinearity makes results quite
interesting. For example, different initial conditions for
the dynamics, and different initial guesses for the gain
coefficients in the optimization algorithm, might lead to
completely different stability maps.
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Four different control strategies with increasing informa-
tion required were investigated, and the control gain coeffi-
cients were obtained through optimization. It is noted that,
for the system analyzed, the information of the dynamics
at the bottom (bit speed) increases the performance of the
PD-controller significantly in terms of torsional vibration
reduction.

As future work, a multiple DOF system and uncertainties
should be taken into account in order to construct a robust
control strategy. The linearized system can also be investi-
gated, using different control strategies, for instance, pole
placement in the frequency domain (Ghandchi-Tehrani et al.
(2013, 2015)). Especially, if many simulations are needed to
generate the numerical simulations, fast computations with a
linearized system could be of great value.
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