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Abstract

In predictive analytics and statistics, entities are frequently treated as individual

actors. However, in reality this assumption is not valid. In the context of retail,

similar customers will behave and thus also purchase similarly to each other.

By combining their behavior in an intelligent way, based on transaction history,

we can leverage these connections and improve our ability to predict purchase

outcomes. As such, we can create customer-product networks from which we

can deduce information on customers expressing similar purchasing behavior.

This allows us to exploit their preferences and predict which products are going

to be sold significantly less often. We want to use this information mainly for

gaining novel marketing insights on products. For example, if customers refrain

from buying products this might be due to contextual reasons such as new com-

plements or supplements, or new nearby shops. By using these networks on data

from an offline European retail corporation, we are able to boost performance of

the predictive models by 6% and the identification of these specific products by
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20%. This indicates that the development of customer-product graphs in retail

can lead to improved marketing intelligence. To our knowledge, this is one of

the first studies to use customer-product networks for prediction modeling in an

offline retail setting. Furthermore, we suggest an extensive set of product and

network features which can guide future researchers and practitioners in their

model development.

Keywords: customer-product graph, interpurchase time, offline retail,

purchase behavior, social network analytics, transactional data

1. Introduction

Increasingly, marketing applications, such as product recommendations and

online advertising are based on leveraging large amounts of data from various

sources. Retailers often exploit links between customers to improve their tar-

geting actions, i.e. (social) network-based marketing (Hill et al., 2006). For

example, if a person clicks on an advertisement on social media, her friends

may also be more inclined to do so. This is based on the concept of homophily

(McPherson et al., 2001), where similar people tend to connect with each other.

There are also studies where retailers, such as Amazon, target customers based

on their similarities in purchase behavior, i.e. instead of using a friendship or

social network they construct networks, also called graphs, of customers based

on product purchases. These ‘pseudo-social’ networks (Martens et al., 2016) are

used to recommend other products to specific individuals.

In this research, our goal is to construct such a network and use it to predict

significant increase in interpurchase time (IPT), i.e. the frequency with which

specific products will be purchased. We construct a customer-product network

based on transaction data, in which products are connected with the customers

who have purchased them. Knowing the interpurchase time for products can

help us understand which products are likely to be sold in lower quantities

in a specific time period and is of particular interest to grocery chains. In

the grocery industry, there is often considerable variation between products in
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terms of the repetitiveness of their purchases and, as such, repetition of con-

sumer choices cannot be assumed (Adamowicz & Swait, 2013). This variance

in repetitiveness may be attributed to customer habits, variety-seeking behav-

ior of customers, novelty of products or utility maximization. For more details

on consumer decision-making strategies, the reader is referred to Adamowicz &

Swait (2013). Marketing decision makers can use the predicted IPT to boost

marketing actions of certain products, make store-layout decisions or for plan-

ning purposes. Additionally, this information can be used for supply chain and

logistics decisions.

Using customer-product networks may help overcome some limitations of

friendship or social networks. For instance, Aral et al. (2009) have shown that

a large portion of observed correlation in product adoption in social networks

is actually due to similarity of people rather than social influence. They claim

that actual social influence should not be overestimated.

We make several contributions to network-based analytics in this study.

Firstly, we introduce the application of customer-product networks in predic-

tive modeling. Given that prior work in this domain was only descriptive, we

produce novel results in the context of network analytics for generating insights

in retail. We introduce a set of network features which, when combined with

product characteristics, are helpful for predicting IPT. These features contain

more simple unipartite characteristics, as well more complex and detailed bi-

partite characteristics, and centrality measures. Furthermore, we discuss which

of these product and network characteristics contribute the most to the predic-

tions. Second, we are able to improve performance of our prediction significantly

in terms of area under the receiver operating characteristic curve by almost 6%.

In addition, our models are better capable in identifying products of interest

with increased sensitivity scores of almost 20%. This means that our model can

be used in practice by retailers to identify the top-n most relevant products for

marketing campaigns. These results are based on real-life data from a Euro-

pean retailer, multiple analytics techniques and cross-validation of the results,

leading to more robust and reliable conclusions. Our model and final insights
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can then be used by retailers as an expert tool in their decision-making. Finally,

our results also demonstrate the usefulness of transaction data in addition to

product and customer data in a practical offline retail setting.

In the next section, we first discuss related research. Then, in Section 3,

we discuss our methodology. Section 4 presents the results and discusses the

findings. We also cover the limitations of this study and propose future oppor-

tunities. Finally, in Section 5, we conclude this paper.

2. Related research

Although we do not work with friendship or social networks, i.e. the prod-

ucts do not ‘know’ each other and the customers do not necessarily have a

relationship in real life, we employ (social) network analytics (SNA) techniques.

In this context, Hill et al. (2006) built consumer networks using direct interac-

tions. Although they do work with actual social networks, their work proves

that being connected in such a network can directly affect product adoption.

‘Pseudo-social’ networks have been proposed and used before in other studies.

Martens et al. (2016) introduce the concept of a pseudo-social network in a fi-

nancial context. They also use transaction data to create a customer network

in which customers are linked based on their purchase history to target specific

customers for different products. For the purpose of brand advertising, Zhang

et al. (2016) build a network of interactions between people on the social media

platform Facebook, even though they are not friends.

Also for products, network-based analytics has been applied in previous re-

search. In general, there are two types of networks which can be constructed,

namely market basket graphs and customer-product graphs, although no con-

sensus about terminology currently exists. Firstly, market basket graphs con-

nect products which are sold together at the same time, by the same customer

(Kim et al., 2012). For example, Dhar et al. (2014) aim to predict future demand

of an online retailer by developing a co-purchase network of products which are

frequently purchased together. They claim that co-purchase networks, to which
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they also refer as ‘product networks’ or ‘economic networks’, reflect an aggrega-

tion of preferences of people external to the network. As such, they are able to

catch smoothed trends. Similarly, Raeder & Chawla (2009) and Videla-Cavieres

& Ŕıos (2014) create a market basket network for the purpose of frequent item

set mining. They are able to perform a market basket analysis by means of com-

munity detection techniques. Ŕıos & Videla-Cavieres (2014) extend this work

by introducing time dynamics in order to study the stability of the communi-

ties. Secondly, there has been some prior work on customer-product networks,

the topic of this paper. These networks connect products which are purchased

together by the same customer, regardless the timing (Kim et al., 2012). Huang

et al. (2007) study this type of networks in order to gain more insights into con-

sumer purchase behavior in an e-commerce setting. In comparison to standard

random graphs, they find that average path lengths are larger than expected

and the tendency to clustering is higher. This suggests that customers’ prod-

uct choices are not random, which justifies further research. Kim et al. (2012)

also study customer-product graphs in a more descriptive manner. They claim

that this type of network is more sensitive to customer preferences compared

to market basket networks. The choice for one type of network should thus be

mainly driven by the application. Market basket networks could be more inter-

esting for frequent item set mining or recommender systems. Customer-product

graphs, on the other hand, are interesting for capturing customer preferences,

for example for classification models and studying purchase behavior dynamics.

Furthermore, some work has been done on network-based, predictive classi-

fication problems. Specifically, we can link our work to the concept of (partial)

churn. In the context of customer churn, e.g. in the telecommunications sec-

tor, marketing aims to identify those customers who are (gradually) ceasing

their purchases of products or services at a company. In our work, we cate-

gorize products into two groups and attempt to identify those products which

experience a significant increase in IPT. These products are thus facing partial

and involuntary passive churn. Therefore, previous work on customer churn

can be of particular interest to our study. Verbeke et al. (2014) developed a

5



network of customers based on call details and study how the spread of churn

through this network can be used in a predictive manner. They, furthermore,

discuss how network characteristics can be incorporated in classification models,

i.e. by building a relational classifier or by featurizing the network and adding

these variables to a non-relational learner. Óskarsdóttir et al. (2017) compare

several SNA methods for churn prediction in telecommunications. They empha-

size the importance of edge and weight definitions in this context. Moreover,

their best-performing model was a non-relational classifier enriched with net-

work variables. Benoit & Van den Poel (2012) use kinship network data to

improve a churn prediction model in the financial services industry. They show

that network variables increase model performance and often prove to be more

impactful than local variables not containing network effects.

Furthermore, our work is linked to the domains of market basket analysis,

recommender systems and forecasting, although it is different in a number of

ways. Firstly, market basket analysis zooms in on products which are frequently

bought together, by the same customer at the same time, i.e. market basket

networks. Our network, on the other hand, is a customer-product network

which only focuses on products bought together by the same customer and not

necessarily at the same time (Kim et al., 2012). Secondly, our work differs

from recommender systems in two ways. The goal is inherently different since

recommender systems aim to offer several items to customers while we focus

on particular products and their dynamics. Moreover, collaborative filtering

is focused on finding similar customers and uses the purchase preferences of

these customers to make recommendations (Adomavicius & Tuzhilin, 2005).

We, on the other hand, focus on products and finding similar products based on

customer purchase behavior. Lastly, the concept of product attrition is linked to

sales or demand forecasting. However, our methods are focused on classification

which differs from the techniques in the forecasting domain. Moreover, the goals

are also different since our paper aims mainly to provide new insights regarding

the interpurchase time for specific products.
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Figure 1: Methodology.

3. Methodology and data

This section describes the data and explains how we apply analytics tech-

niques in order to predict which products will be sold significantly less often.

Both product characteristics and network features will be taken into account.

The former are also referred to as local features, since they do not take the

network into account. Figure 1 illustrates an overview of the methodology.

3.1. Data from an offline food retailer

Our methodology is applied on a dataset from a low-cost European retailer

specialized in grocery shopping. They provide both food (e.g. butchery, fruits

and vegetables, dairy, beverages, snacks) and non-food (e.g. health and beauty,

household, pets supplies) products. They are mainly active in Belgium where

they have a 31.5% market share (2015/2016) and 234 retail stores. We collect

data from 30 stores of which two are pick-up points for online ordered goods.

After the removal of outliers and seasonal products, we are left with 6,355 prod-
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ucts and 406,678 customers with a total of more than 100 million transactions

over a period of 12 months. Here, a customer is a household and may be a single

person, couple or family all living together at one address. It is to be noted that

the data is anonymized so the identity of the customer is not revealed.

3.2. Variable extraction

In this section, we explain how we define the outcome variable, namely

product attrition. Next, we identify and justify features that are used for the

prediction including product characteristics and features extracted from the

network of products. These features are summarized in Table A.1, in Appendix

A.

3.2.1. Product attrition

We define product attrition based on IPT. A product is undergoing attrition

if its purchase frequency decreases significantly over time. Product attrition

can be regarded as partial passive, involuntary churn since customers are ceas-

ing their purchases for this particular product. In order to determine IPT,

we calculate the number of days in between product purchases by a specific

customer during a specific time period of five months. Consecutively, we take

the average per month. For example, a product that is bought every day in

September, has an average IPT of 0. Next, we calculate the slope of the IPT

throughout the five consecutive months. If this slope is positive, thus the IPT

is increasing, and this slope is significant with a confidence level of 90%, we

identify this as product attrition. This means that we subdivide products into

two categories: those products which experience a significant increase in the

IPT slope and those which do not. This allows us to apply predictive, binary

classification techniques. Note that we do not take products into account which

are not sold on a regular basis, since these are probably seasonal or temporal

products, and thus not of interest to the retailer.

Our study is not the first to use the change in a particular value as a de-

pendent variable. Baesens et al. (2004), for example, use the slope of customer
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spending to define passive customer churn. Miguéis et al. (2012), on the other

hand, also focus on partial churn, namely of customers, and recognize that churn

in retail occurs less abrupt. Moreover, in prior work, IPT has proven to be a

valuable feature. Benoit & Van den Poel (2012) illustrate the importance of

interpurchase time for predicting customer churn in the financial services indus-

try. In the context of customer lifetime value (CLV) measurement, Borle et al.

(2008) found that longer IPTs are associated with a greater risk of leaving the

firm, while Kumar et al. (2004) claim that more stable IPTs are linked to more

durable and profitable customer relationships. Moreover, IPT has been included

in multiple CLV models (Borle et al., 2008; Kumar et al., 2004; Venkatesan &

Kumar, 2004) and in predictive models, e.g. for the purpose of customer loyalty

prediction (Buckinx et al., 2007).

3.2.2. The collection of product characteristics

Product characteristics are extracted from product, transaction and payment

datasets. Each transaction line is linked to a specific product. With regards

to payment information, we can link one or more payment details to a transac-

tion. For example, a customer may have paid the largest part of a particular

transaction with foodstamps, and the remainder with debit card.

Firstly, we extract recency, frequency and monetary (RFM) features, which

are popular measures in marketing literature and practice (Buckinx & Van den

Poel, 2005) and a well-known customer value analysis method ((Kaymak, 2001)

in (Cheng & Chen, 2009)). We chose not to aggregate these values but rather

treat each value as a separate feature. We follow the definition of Cheng &

Chen (2009), and discretize each feature into five quintiles. The higher the

value, the more recent, frequent or profitable the product is. Next, we take the

average and standard deviation of the interpurchase time (in days) into account.

Additionally, we compose a feature ‘regularity’, similar to Buckinx & Van den

Poel (2005), which expresses the stability of IPT and is defined as the standard

deviation divided by the average. The number of unique stores in which the

product is sold, the number of unique customers of the product, how often it
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was in promotion, its mean price and its mean discount are also calculated

based upon Baesens et al. (2004) and Buckinx & Van den Poel (2005). Each of

these characteristics give information about the likelihood that customers buy

the product. For example, discounts can significantly influence the shopping

behavior of customers (Walters, 1991). Finally, we include payment data, similar

to Buckinx & Van den Poel (2005), and calculate how frequently a product is

bought by means of cash, card, foodstamps, the retailer’s debit card, or by

mobile phone. How customers paid for a specific shopping basket can reflect

customer, timing, store, purpose and basket characteristics, and is therefore

valuable to include. For example, we note that young adults (18 up to 34 years)

use on average significantly more their electronic card compared to middle group

(35 up to 54 years) customers and 55-plus customers. On the other hand we

note that 55-plus customers use significantly more often the retailer’s card or

cash to pay. Furthermore, we observe significant positive correlations of 0.67

and 0.12 (p-value < 0.0001) between the percentage a customer paid with the

retailer’s debit card and their total number of visits and total spending during

the observed year respectively. Additionally, a positive correlation between the

average number of distinct products a customer purchases during a shopping

trip and how they paid, can be discovered. Paying by means of an electronic

card has a significant positive correlation of 0.11 (p-value < 0.0001). The same

can be said about the retailer’s card and foodstamps, although these correlations

are smaller, i.e. 0.023 and 0.015 respectively. Paying in cash, on the other hand,

has a significant negative correlation of 0.15 (p-value < 0.0001).

Since we measure these variables across a time span of five months, some data

might be lost due to aggregation. For this reason, we would like to incorporate

the dynamics of the previously introduced product variables during this time

span. As such, we create an additional variable for each characteristic which

represents the slope of the change in the variable. For example, if a product is

bought 100 times each month, its frequency slope will be 0. Moreover, we cap

outliers at the 5th and 95th percentile and standardize each variable.

Finally, we also include the time period as a categorical variable in our
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Figure 2: A small example of how a bipartite customer-product graph can be visualized.

Products are connected if they are bought by the same customer at the same store.

models.

3.2.3. Building a customer-product network

We create a network of products which are connected if they are bought by

the same customer at the same store during the specified time period. These

connections are also called edges and the objects they connect are called nodes.

In this setting, we can distinguish between two types of graphs. Firstly, we

have bipartite graphs which exist out of two types of nodes. A small example

is visualized in Figure 2. The nodes are products and the customers who buy

them. However, we can also map this bipartite graph onto a unipartite graph

existing only out of product nodes. Then, products are directly linked to other

products by means of edges if they have customers in common.

3.2.4. Extracting network characteristics

There are, in general, two methods to incorporate network effects in our

models. This is illustrated nicely in the work of Verbeke et al. (2014, p.432).

We can either extract features from the network, this process is called featur-

ization or propositionalization (Kramer et al., 2001), or we can implement a

relational learner (RL). In addition, a RL can be complemented by a collective

inferencing component (Macskassy & Provost, 2007). The advantage of a RL is

that it entails all network information and details. However, the featurization
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technique allows us to still apply well-known, proven and robust non-relational

classifiers. Moreover, it allows for analyzing the effect of both local and network

features alongside each other. In addition, good results were obtained using this

technique in previous studies in churn prediction (Óskarsdóttir et al., 2017; Ver-

beke et al., 2014). Therefore, we opt for featurization. We distinguish between

four types of network features.

(1) Firstly, we apply an adaption (Van Vlasselaer et al., 2017) of Google’s

PageRank algorithm (Page et al., 1998) as can be observed in Equation 1. The

PageRank algorithm has been applied in a similar context by Dhar et al. (2014).

However, this algorithm focuses on unipartite graphs, whereby we would lose

the information of the customers. Therefore, we implement an adapted version

which allows us to work with both the product and customer characteristics of

the bipartite graph. We set the number of iterations k to 100 as suggested by

Van Vlasselaer et al. (2017) and the damping factor α to 0.85 based on Page

et al. (1998). In Equation 1, −→z norm represents the normalized degree-adapted

restart vector and ξk the exposure scores after k iterations. Note that the final

exposure scores are independent of the initial ξ0 (Page, 2001; Van Vlasselaer

et al., 2017). However, we make slight changes to the restart vector in order to

be able to calculate the exposure to each of the RFM values, a popular metric

in retail. We propose three starting vectors. Each vector contains the respective

product and customer values for each of the three RFM variables. This leads

to three PageRank exposure scores for recency, frequency and monetary.

ξk+1 = α · ξk + (1− α) · −→z norm (1)

(2) Secondly, we calculate edge attributes in the bipartite graph. We take

into account the connections a product has. Then, we adhere three types of

weights to the edges. We determine the recency, frequency and monetary value

for each specific product-customer connection, which we again discretize into

five quintiles. Finally, we take the average edge weights for each of the RFM

values for each product. By including edge attributes, we are able to focus on

specific customer-product behavior in a particular store. For example, if there
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would a new bakery in town, the purchase behavior of a local inhabitant for

bread can change and impact her IPT.

(3) Thirdly, we calculate network features based on the direct neighbor-

hood of products in the unipartite graph. In general, the direct neighborhood

already contains a lot of information (Macskassy & Provost, 2007; Neville &

Jensen, 2007; Óskarsdóttir et al., 2017; Verbeke et al., 2014) which will allow

us to deduce relevant features. As such, we measure the number of first-order

neighbors, namely products who share customers with the product of inter-

est. Furthermore, we take into account how many of these neighbors belong

(percentage-wise) to the same category as the product of interest. This is con-

sidered for three hierarchical categorical levels. For example, cereals and muesli

belong to the same group breakfast. It is common that marketing applies prod-

uct hierarchies to describe their goods, for store-lay-outs and for visualizing

advertisements. For example, Kim et al. (2012) explicitly take advantage of a

product taxonomy in their customer-product graphs. In addition, we compute

the general number of passively churning neighbors and repeat this to detect

attrition among neighboring products belonging to the same category.

(4) Lastly, we calculate centrality measures on the unipartite graphs. This

type of measures allows us to estimate how a product is situated in the network.

We measure the degree, closeness, betweenness and finally apply the personal-

ized PageRank algorithm of Google (Page et al., 1998) and a local clustering

coefficient. Degree, closeness, and betweenness are common centrality measures

(Sun & Tang, 2011). Degree is similar to the number of neighboring customers

with the only difference that we normalize the degree by the number of nodes.

Closeness takes into account how many steps are necessary to reach every other

product in the network, which is also normalized by the number of nodes (Free-

man, 1978). Betweenness expresses the number of shortest paths going through

a specific product node and is again normalized (Brandes, 2001; Freeman, 1978).

All centrality measures are determined using the implementation of Csardi &

Nepusz (2006). The final two measures are recommended by Dhar et al. (2014)

in a similar context. For calculating the PageRank, we apply the “prpack”
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Figure 3: Sampling of data for the extraction of the feature set and outcome variable.

algorithm (Csardi & Nepusz, 2006), we set the damping factor again to 0.85,

and we personalize the algorithm using product attrition of the current time

period. Next, the local clustering coefficient is defined as the ratio of triangles

connected to the node and the triples centered on the node (Csardi & Nepusz,

2006). Dhar et al. (2014) provide us with two good reasons to include this clus-

tering measure. Firstly, it gives an indication of customer behavior, in the sense

that it influences the path potential customers follow going from one product

to another. Secondly, it suggests groups of more closely linked products.

3.3. Model building

We split our data in three samples of each five months in order to extract the

features. Consecutively, we use the next five months, as depicted in Figure 3, to

determine product attrition. The duration of the time period, i.e. five months,

was chosen to be significantly long in order to discover a product trend and,

at the same time, allow for comparison of different time periods bounded by

the availability of the sample dataset. This is in line with previous literature

(Baesens et al., 2004; Buckinx & Van den Poel, 2005; Miguéis et al., 2012)

applying slopes in customer analysis which use three, five or six months of data.

We create three models, one with only local, product features; one with only

network features; and one with a combination of local and network features. We

will refer to these model as the local, network and hybrid model. Using repeated

five-fold cross-validation, we train and validate our model on 80% of the dataset,

and consecutively test our model on 20% of the remaining observations. We

measure performance as the area under the receiver operating characteristic

(ROC) curve (AUC), and sensitivity and specificity with a cut-off rate of 50%

and a cut-off rate following the actual attrition rate of 14%. ROC curves display
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the sensitivity versus the specificity. The closer this curve is to the top left, and

thus the higher the AUC, the better the model is able to distinguish between

the products which experience attrition and those which do not. Thus, AUC

will vary between 0 and 1 with a value of 0.50 representing random classification

performance and a value of 1 representing a perfect model. Sensitivity or the

true positive rate, measures the percentage of actual product attrition predicted

as such and ranges from 0 to 1. Specificity or the true negative rate, on the other

hand, measures the percentage of actual non-attrition identified as such and

ranges from 1 to 0. Note that the maximum and best value for both sensitivity

and specificity is 1. This cross-validation process is repeated ten times after

which we calculate the average in order to report a more stable result.

We construct each model using four popular data analytics techniques, namely

logistic regression, decision trees, random forests, and neural networks.

(1) Logistic regression is perhaps one of the most well-known techniques.

This technique allows for easy deduction of variable importance. In the context

of this paper, this adds the advantage of distinguishing between the importance

of product and network characteristics. Before applying the technique, we per-

formed variable selection based on their importance in a random forest model,

using a hold-out validation set containing 20% of the dataset. Importance is

calculated as the mean decrease in node impurity, measured by the Gini index,

if that particular variable would be removed from the variable set. Accordingly,

we perform forward feature selection by removing highly correlated (> 50%)

variables.

(2) Next, we apply decision trees using the C5.0 algorithm implemented

by Kuhn et al. (2014). This algorithm is an extension of the C4.5 algorithm

(Kuhn et al., 2014; Quinlan, 1993). We tune a binary Boolean parameter which

determines whether feature selection should be used by means of four-fold cross-

validation on the training and validation set.

(3) Additionally, we apply random forests (Breiman, 2001), an ensemble

technique which constructs multiple decision trees and combines them into one

model. It has been shown that this technique can achieve superior performance
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compared to other techniques (Lessmann et al., 2015). For this purpose, we

follow the implementation of Apache’s H2O math engine (The H2O.ai team,

2017). We optimize the number of trees in the random forest model by means

of grid search on a hold-out validation set consisting of 20% of the original

dataset, and set it to an odd number in order to improve tie-breaking.

(4) For the reason of providing a more exhaustive overview, we also apply a

classic neural network. In this technique, the number of neurons in the hidden

layers (for simplicity set to one hidden layer) is important. Therefore we tune

this parameter similar to how we tune the number of trees in the random forests.

The algorithm itself is an implementation of Fritsch et al. (2016) using resilient

backpropagation with weight backtracking (Riedmiller, 1994).

4. Results and discussion

4.1. Comparison in performance of prediction models

We build the models using the four techniques mentioned in the previous

section, namely logistic regression, decision trees, random forests and neural

networks. Firstly, we want to compare the different techniques. As illustrated

in Figure 4, random forests outperform all other techniques while decision trees

clearly underperform. This might be due to the fact that random forests are

able to catch interaction effects. Moreover, random forests is an ensemble tech-

nique which frequently offers increased performance (Lessmann et al., 2015).

Therefore, our main focus will be on random forests.

Table 1 provides the average AUCs of all models in their local, network and

hybrid variant. By means of the test of DeLong et al. (1988), we compare per

iteration whether the values differ significantly and provide the average. Addi-

tionally, we perform a paired non-parametric statistical test, namely Wilcoxon

signed-rank test. The results are shown in Table 2. Note that by applying four

analytics techniques, a repeated five-fold cross-validation, and providing both a

test for comparing individual ROCs and a non-parametric statistical hypothesis

test, the reliability and validity of our findings are demonstrated in a robust
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Figure 4: Domination graph of logistic regression (LR), decision tree (DT), neural network

(NN) and random forest (RF) models. AUCs are compared using the Mann-Whitney U test.

manner. We observe that for all techniques except the neural networks, the

network and hybrid model achieve better performance than the local model.

When we zoom in on the random forests, we even observe a significant average

difference of 4 percentage points (i.e. a 6% performance increase) by including

network variables. This suggests that customer-product networks indeed cap-

ture customer preferences and behavior, and that we can transfer this in order

to gain new insights into product attrition.

In addition, Figure 5 illustrates the median ROC curves of the local, network,

Table 1: Performance of the different techniques in terms of AUC. Standard deviations of the

models are relatively small and indicated in parentheses.

Local (σ) Network (σ) Hybrid (σ)

Logistic regression 0.6503 (0.0248) 0.6521 (0.0183) 0.6623 (0.0217)

Decision tree 0.5587 (0.0648) 0.6055 (0.0600) 0.6130 (0.0536)

Random forest 0.6616 (0.0204) 0.6902 (0.0229) 0.6989 (0.0213)

Neural network 0.6595 (0.0239) 0.6512 (0.0246) 0.6462 (0.0271)
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Table 2: Difference in AUC performance between the local, network and hybrid model. (1)

Average p-values determined by the test of (DeLong et al., 1988) are shown, as well as (2) the

results of a Wilcoxon signed-rank test.

Logistic regression Decision tree

(1) (2) (1) (2)

Local vs. Network 0.5182 0.6922 0.2141 0.002577

Local vs. Hybrid 0.3611 < 0.0001 0.1365 < 0.0001

Network vs. Hybrid 0.4057 < 0.0001 0.2243 0.4286

Random forest Neural network

(1) (2) (1) (2)

Local vs. Network 0.3154 < 0.0001 0.4657 0.004019

Local vs. Hybrid 0.05284 < 0.0001 0.4111 0.0005685

Network vs. Hybrid 0.4618 0.0002536 0.4742 0.3956

and hybrid random forest model. We note that the advantage of including

network variables is higher for sensitivity rates up till 80%. Therefore, we take

a closer look at the sensitivity and specificity of the random forest models.

Table 3: The sensitivity (sens) and specificity (spec) of the random forest models. Both

metrics are calculated for a 50% cut-off rate (Sens/Spec 50) and a cut-off rate (Sens/Spec 14)

similar to the actual attrition ratio of 14%.

Sens 50 Spec 50 Sens 14 Spec 14

Local model 0.02983 0.9963 0.3038 0.8891

Network model 0.09389 0.9892 0.3482 0.8952

Hybrid model 0.05160 0.9953 0.3634 0.8969

Table 3 presents the measures for the local, network and hybrid random

forest model. In a marketing context, one might say that sensitivity is important

since it informs us how well our model is able to identify actual product attrition.

In general, it is believed to be more costly to miss the products of interests than

the other way around. We can immediately observe the advantage of including

network features. If we focus on the sensitivity when we follow the current
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Figure 5: Median ROC curves of the local, network and hybrid random forest model.

attrition rate of 14%, we notice an increase of almost 6 percentage points (i.e. a

20% performance increase) in sensitivity for the hybrid model compared to the

local model. Moreover, the network model already offers an increase of more

than 4 percentage points (i.e. a 15% performance increase).

4.2. Importance of product and network characteristics in the hybrid model

Logistic regression does allow for easy evaluation of its model variables.

Therefore, we take a better look at the hybrid model. The significance of each

variable included in the model after feature selection can be observed in Table 4.

Note that no causal relation may be inferred and that interaction effects remain

unnoticed in this model. However, we find some significant positive and negative

effects. With regards to local variables, average IPT has a negative correlation

with attrition probability. Products with an already high IPT have a lower

probability of increasing their IPT. Furthermore, if the number of customers is
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increasing, the probability of attrition increases. The same can be said about a

positive change in the number of customers over the last five months. These last

findings seem unusual and might be due to interaction effects. When we take

a look at the feature ‘Promo’, we observe that the more frequently a product

was in promotion, the lower its chance of attrition, which is in line with general

understanding and marketing research (Walters, 1991). Next, the higher the

percentage of payments by card, the lower its chance of attrition. This might also

relate to the fact that most customers pay by card (more than 70%). Contrarily,

an increase in the percentage of payments by means of foodstamps leads to a rise

of the attrition probability. However, foodstamps only account for 0.13% of the

payments on average. As we discussed in Section 3.2.2, there are various reasons

why payment methods can influence product attrition. The size and direction of

the means of payment impact might additionally be country-specific (Schmiedel

et al., 2012). Secondly, with regards to network variables, we can also deduce

findings. We notice that the number of product neighbors in the same group

with medium aggregation has a positive influence while neighbors in the same

group with high aggregation has a negative influence on attrition probability.

On the one hand, interaction effects may be due here. On the other hand, we

might be observing substitution and complementary effects. Products in the

middle group are perhaps rather substitutes, while products in the higher-level

group can be rather complements. We also find that the number of passively

churning neighbors in the same group (most detailed categorization), has a

negative impact on attrition probability. Similarly, this can be due to hidden

interaction effects as well as substitution effects. Finally, the edge frequency

weight has a negative effect on attrition probability. The higher the frequency

of the purchase, the lower the chance of attrition. This is in line with previous

research which positively correlates a higher frequency to more loyal customers

(Buckinx & Van den Poel, 2005). Moreover, it is worthy to note that the time

period also has a significant impact. Therefore, it is important to take into

account this period when making new predictions.
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Table 4: The estimate and significance of each variable included in the best performing hybrid

logistic regression model with an AUC of 0.70 on the holdout test set.

Variable Estimate p-value

Intercept 0.09602 0.9475

Time period 2 −0.2149 0.1534

Time period 3 −1.0277 < 0.0001

Local variables

RecencyChange 0.08869 0.1492

FrequencyChange −0.0002564 0.4884

AvIPT −0.2699 0.003385

RegularityIPT 0.006392 0.7435

NoCustomers 0.00001704 0.04533

Promo −1.3846 0.03102

AvPrice −0.005853 0.5134

AvDiscount −0.001684 0.9301

Card −2.0820 0.01114

MobilePay −27.4102 0.1276

SlopeStores 0.06362 0.2668

SlopeNoCustomers 0.1363 0.01255

SlopePromo 0.01068 0.8540

SlopeAvDiscount −0.04973 0.3812

SlopeCard 0.01289 0.8047

SlopeFoodstamps 0.1293 0.02022

SlopeMobilePay 0.04530 0.3733

Network variables

NeighborsGroupL2 20.5352 0.008195

NeighborsGroupL1 −13.5442 < 0.0001

NeighborsChurn 20.0299 0.4737

ChurnGroupL3 −0.2323 0.006564

ChurnGroupL2 −0.1390 0.8264
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ChurnGroupL1 0.1770 0.8645

EdgeR 0.2067 0.4826

EdgeF −0.3211 0.000352

PageRankChurn −2557.2767 0.6019

p-value < 0.1; p-value < 0.05; p-value < 0.01; p-value < 0.001

The logistic regression model indicates that customer behavior can indeed

be captured in product and network variables and, as such, impacts the IPT of

products. However, the presented model does not show any interaction effects

hidden underneath. Therefore, it would be valuable to look at the importance

of the variables in the final hybrid random forest model. We can analyze the

importance of each variable by its relative influence in the model. This metric

is determined based on whether the variable was selected for splitting a tree

and how much the squared error over all trees improved as a result (The H2O.ai

team, 2017). The relative importance of each variable is visualized in Figure 6.

For numeric details, the reader is referred to Table B.1 in Appendix B. Firstly,

we observe that network and local variables alternate each other continuously in

importance. The local variable, change in number of customers, and the network

variable, number of neighboring products in the same high-level group, prove

to be very important. Furthermore, the means of payment also turns up in the

random forest as important. While only the edge frequency deemed important

in the logistic regression, all edge variables turn out to be valuable in the final

random forest model. Next, there are still some network variables which are

in the upper half of importance and which are worth mentioning. The local

clustering coefficient seems to be useful. This metric indicates how clustered

a product is within customer purchases. The motivation behind this might

be that it is important to know which products are frequently purchased by

the same customers, or rather bought by one-time shoppers. Furthermore, the

PageRank personalized with product attrition suggests that attrition spreads

through the network. The finding that these last two features are important is

in line with the findings of Dhar et al. (2014) in a similar setting. Finally, RFM
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Figure 6: Variable importance of the best performing (on the hold-out validation set) hybrid

random forest model in terms of mean decrease in node impurity measured by the Gini index

if that particular variable would be removed from the variable set.

variables do not prove to be very important as well as the adapted PageRank

using RFM values as a starting point. Thus, although RFM values can be im-

portant for the identification of customer loyalty (Cheng & Chen, 2009), this

does not necessarily lead to product loyalty. Rather, the RFM values of specific

customer-product relations are deemed to be more important, emphasizing the

importance of applying more intelligent bipartite network structural measures.

Furthermore, we would like to add that in general adapting the PageRank with

local variables (e.g. attrition, RFM) can be valuable, but results depend natu-

rally on the choice of the local variable as shown in this paper.
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4.3. Discussion

We built a local model using only product characteristics, a network model

using only unipartite and bipartite network characteristics of a customer-product

graph, and a hybrid model using both feature sets. We found that, by including

network characteristics, we can improve the predictive value of product attrition

models. This indicates that customer behavior and preferences can indeed be

leveraged by means of a customer-product graph. This was already suggested

by previous literature (Huang et al., 2007; Kim et al., 2012) in a descriptive

setting, but now also confirmed in a practical setting in offline retail.

These results contribute both to practitioners and researchers. Companies

can use our models as expert tools to focus their marketing attention on cer-

tain products and to better map customer behavior. Furthermore, we included

several product characteristics as well as network characteristics and illustrated

their importance in product attrition prediction. This can deliver novel insights

to the retailer and guide them in the development of new models. We found

that, although RFM values seemed to be less valuable, the payment method and

promotions do matter. With regards to the customer-product graph, purchase

behavior of similar products is relevant. We demonstrated that personalized

PageRank can be a valuable metric, depending on the starting vectors employed.

Moreover, we found that edge attributes also improve performance. This means

that both unipartite as well as more complex bipartite networks contribute to

these results. With regards to the existing knowledge base, we contribute by, to

the best of our knowledge, being the first to apply customer-product graphs in

a predictive setting. Moreover, we incorporated an extensive set of product and

network features, including network and bipartite features, and illustrated their

importance in the final model. Moreover, our findings are robust across four

techniques (logistic regression, decision tree, random forest, neural network) and

are validated by means of repeated five-fold cross-validation. Finally, we pro-

vide an empirical study with a focus on offline retail of everyday products, and

illustrate as such how transactional data can be leveraged by using new ways of

structuring data, i.e. by means of networks.
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We also researched homophily in our customer-product networks. Homophily

assumes that more similar entities are more likely to form a connection (McPher-

son et al., 2001). In the training sets, we found significant (p-value < 0.0001)

indications of homophily in each time period. This indicates that products de-

creasing in purchase frequency are more closely clustered together than expected

randomly. However, these results do not hold if we apply the attrition rates of

the next five months. This might be due to the unusual characteristics of the

customer-product graphs. They are a lot denser than graphs studied in other

works (Kim et al., 2012) with density rates of more than 77% in the unipar-

tite product graphs. Nevertheless, additional tests show that these networks do

have dyadic properties, meaning that products decreasing in purchase frequency

are more densely connected than expected if they would have been randomly

connected.

4.4. Limitations and further research

Research on customer-product graphs, especially in offline retail, has been

limited up till now. Nevertheless, it contains real value thanks to its ability to

incorporate customer spending behavior. In this paragraph, we shortly present

some interesting opportunities for further research.

Firstly, our study used network analytics and evaluated a prediction model

using a large offline retail dataset. The study was constrained by the time

duration of the sample dataset. As such, it could be repeated over a longer

time period to include time dependencies. We observed a significant impact of

the third time period in our research. This network, in addition, appeared to

be a lot denser than the other two graphs. A longer time period could thus

provide more insights into seasonal effects. Moreover, in future work, seasonal

effects could even be explicitly included by adding features indicating holidays,

weather, season, etc. Note, however, that we excluded products which are

heavily subjected to seasonal effects by setting a maximum IPT. Seasonal effects

do not necessarily need to be included by means of explicit features; they are

reflected in the customer-purchase graphs since these implicitly express customer
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preferences. Additionally, it would be valuable to repeat this study for other

retailers, potentially including online retail. Furthermore, it would be useful

to investigate different adaptions of the PageRank algorithm. In this study,

we investigated the spread of each of the RFM metrics. However, the recency,

frequency and monetary local values did not prove to add value relative to the

other metrics. Therefore, it could be interesting to research the spread of other

local features such as price, promotion and payment information. Additionally,

instead of focusing on classification, we could focus on predicting a product’s

repeat purchase by means of survival analysis. Prinzie & Van den Poel (2007),

for example, study survival analysis in the context of a cross-sell model for home

appliances. Finally, the dynamics of the customer-product graph itself could

be researched. We already found that our customer-product graphs are much

denser and that our nodes are more clustered than typically expected in social

networks or market basket networks. Similarly, Kim et al. (2012) found that

their customer-product network is 20 times more dense than their market basket

network and has a higher clustering coefficient. The characteristics as well as

how customer behavior evolves over time could be more thoroughly studied in

future work. As such, fluctuations in customer behavior could be reflected in

descriptive and predictive analytics models. A potential approach for this could

be, for example, community mining or co-clustering.

5. Conclusion

Customers do not behave and purchase in a vacuum, but rather their choices

are influenced by social interactions, context and environment. We focus on

leveraging purchasing similarities by building a customer-product network for

the purpose of product attrition prediction. In these networks, products are

connected to the customers who have purchased them, regardless of the timing

and basket properties. We applied four techniques in order to create three mod-

els, one with local features, one with network features and one with both. For

our network features, we relied on a technique called featurization which proved
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to be interesting in the past and allowed us to apply well-known and proven

classification techniques. By comparing the three models via four different ana-

lytics techniques and validating them by means of repeated cross-validation and

two types of statistical tests, we improve the robustness of our findings. The

hybrid random forest model proved to deliver improved predictive performance

and allows us to better recognize those products which are going to be sold

significantly less. This information can be used by the marketing department

to tailor their marketing actions and promotions. In addition, this information

can be used for supply chain and logistics decisions as well as strategic planning

and store lay-out decisions. Moreover, our study indicates the importance of

using similarities in customer behavior. The fact that customers who are more

alike, behave similarly can be used in numerous analytics applications, both de-

scriptive and predictive. Lastly, we proposed new network features such as an

adaption of the PageRank algorithm based on RFM scores and edge attributes.

Specifically the local neighborhood of a product as well as its edge attributes

proved to be valuable and can be of interest for future studies. In addition, we

also confirmed the importance of product characteristics concerning price and

promotion details as well as payment details.

Given the value of customer-product networks for gaining novel retail in-

sights, we listed several opportunities for future research. First, the study itself

could be extended, e.g. to a longer time period or to different markets such

as e-commerce. Additionally, instead of focusing on classification, one could

apply survival analysis to predict time to attrition. Finally, it would be partic-

ularly interesting to research the dynamics of customer-product graphs. These

networks show interesting properties which deviate from typical social graphs,

e.g. they are denser. Studying how customer preferences change over time and

identifying valuable customer groups, presents itself as an interesting follow-up

research.
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Appendix A. Description of model variables

Table A.1 presents an overview of local (product) and network characteristics

extracted from a customer-product network.

Table A.1: Product and network variables and their description. All variables are measured

during the specified time period.

Variable Description

Local variables

Recency Number of days in between last purchase and end of time

period. Discretized into 5 quintiles.

Frequency Number of purchases. Discretized into 5 quintiles.

Monetary Total revenue of purchases. Discretized into 5 quintiles.

RecencyChange Slope of change in recency per month; capped at the 5th

and 95th percentile and standardized.

FrequencyChange Slope of change in frequency per month; capped at the

5th and 95th percentile and standardized.

MonetaryChange Slope of change in monetary value per month; capped at

the 5th and 95th percentile and standardized.

AvIPT Average of IPT (in days).

SdIPT Standard deviation of IPT (in days).

RegularityIPT Ratio of SdIPT and AvIPT; if AvIPT equals zero, this

value is set to SdIPT.
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NoStores Number of unique stores in which the product is sold.

NoCustomers Number of unique customers.

Promo Percentage of purchases for which the product was in

promotion.

AvPrice The average price of the product.

AvDiscount The average discount of the product in absolute value.

Cash Percentage of purchases paid in cash.

Card Percentage of purchases paid electronically.

Foodstamps Percentage of purchases paid with paper foodstamps.

RetailerCard Percentage of purchases paid with the retailer’s debit

card.

MobilePay Percentage of purchases paid with a mobile phone.

SlopeStores Slope of the change in NoStores per month; capped at

the 5th and 95th percentile and standardized.

SlopeNoCustomers Slope of the change in NoCustomers per month; capped

at the 5th and 95th percentile and standardized.

SlopePromo Slope of the change in Promo per month; capped at the

5th and 95th percentile and standardized.

SlopeAvPrice Slope of the change in AvPrice per month; capped at the

5th and 95th percentile and standardized.

SlopeAvDiscount Slope of the change in AvDiscount per month; capped at

the 5th and 95th percentile and standardized.

SlopeCash Slope of the change in Cash per month; capped at the

5th and 95th percentile and standardized.

SlopeCard Slope of the change in Card per month; capped at the

5th and 95th percentile and standardized.

SlopeFoodstamps Slope of the change in Foodstamps per month; capped at

the 5th and 95th percentile and standardized.

SlopeRetailerCard Slope of the change in RetailerCard per month; capped

at the 5th and 95th percentile and standardized.

SlopeMobilePay Slope of the change in MobilePay per month; capped at

the 5th and 95th percentile and standardized.

Network variables
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PageRankRec Adapted GOTCHA PageRank algorithm applied to Re-

cency.

PageRankFreq Adapted GOTCHA PageRank algorithm applied to Fre-

quency.

PageRankMon Adapted GOTCHA PageRank algorithm applied to Mon-

etary.

Neighbors Number of first-degree neighbors in unipartite network

(number of connected products).

NeighborsGroepL3 Number of first-degree neighbors in unipartite network

belonging to the same L3 product category (most de-

tailed).

NeighborsGroepL2 Number of first-degree neighbors in unipartite network

belonging to the same L2 product category (medium de-

tailed).

NeighborsGroepL1 Number of first-degree neighbors in unipartite network

belonging to the same L1 product category (least de-

tailed).

NeighborsChurn Number of first-degree neighbors in unipartite network

that passively churned.

ChurnGroepL3 Number of first-degree neighbors in unipartite network

belonging to the same L3 product category (most de-

tailed), that passively churned.

ChurnGroepL2 Number of first-degree neighbors in unipartite network

belonging to the same L2 product category (medium de-

tailed), that passively churned.

ChurnGroepL1 Number of first-degree neighbors in unipartite network

belonging to the same L1 product category (least de-

tailed), that passively churned.

NoConnections Number of direct edges to customers.

EdgeR Average of the Recency weights of direct edges with the

Recency weights discretized into 5 quintiles.

EdgeF Average of the Frequency weights of direct edges with

the Frequency weights discretized into 5 quintiles.
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EdgeM Average of the Monetary weights of direct edges with the

Monetary weights discretized into 5 quintiles.

Degree Degree centrality, normalized.

Closeness Closeness centrality, normalized.

Betweenness Betweenness centrality, normalized.

LocalClustCoef Local clustering coefficient.

PageRankChurn Personalized PageRank using product attrition, with

damping factor set to 0.85.

Appendix B. Variable importance

Table B.1 presents the variable importance in the hybrid random forest

model.

Table B.1: The relative importance of each variable in the hybrid random forest model. In

addition, its importance on a scale of 0 to 1 is given. Network variables are accentuated in

bold.

Variable Relative importance Scaled importance

SlopeNoCustomers 3865.2598 1.00000000

NeighborsGroepL1 3499.9412 0.90548666

Card 3451.0300 0.89283263

EdgeM 3404.0449 0.88067688

RetailerCard 3158.2720 0.81709178

SlopeRetailerCard 3107.8982 0.80405933

EdgeR 3019.0454 0.78107180

ChurnGroepL1 2995.9548 0.77509793

SlopeCard 2964.1155 0.76686061

SlopeMobilePay 2960.9929 0.76605276

EdgeF 2957.0359 0.76502902

SlopeStores 2937.6428 0.76001175

NeighborsGroepL2 2910.0046 0.75286134

SlopeAvPrice 2819.5332 0.72945504

SlopeCash 2784.1602 0.72030350

SlopeFoodstamps 2782.9639 0.71999401
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SlopeAvDiscount 2780.7424 0.71941929

Cash 2764.9990 0.71534624

NeighborsGroepL3 2667.1936 0.69004252

SlopePromo 2640.4956 0.68313536

NeighborsChurn 2569.2712 0.66470856

Promo 2395.0117 0.61962504

LocalClustCoef 2263.8835 0.58570023

RegularityIPT 2193.8025 0.56756923

PageRankChurn 2141.2820 0.55398139

AvPrice 2084.0913 0.53918532

Degree 2005.7013 0.51890466

Foodstamps 1971.3920 0.51002833

Closeness 1900.0089 0.49156047

NoStores 1860.8704 0.48143475

Betweenness 1741.8317 0.45063767

MobilePay 1571.9622 0.40668991

ChurnGroepL2 1464.1974 0.37880957

Neighbors 1459.8702 0.37769007

AvDiscount 1366.0131 0.35340783

PageRankRec 1319.9918 0.34150145

SdIPT 1309.1505 0.33869664

RecencyChange 1277.1089 0.33040700

Monetary 1074.9142 0.27809623

FrequencyChange 1045.8759 0.27058359

PageRankFreq 1017.9736 0.26336485

MonetaryChange 991.2912 0.25646173

AvIPT 976.2747 0.25257674

TimePeriod 969.4575 0.25081302

PageRankMon 958.2082 0.24790266

ChurnGroepL3 829.4179 0.21458271

Frequency 677.5262 0.17528607

Recency 367.9931 0.09520527
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