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Abstract

After a borrower defaults on their repayment obligations, collectors of unsecured consumer
credit debt have a number of actions they can take to secure some repayment of the debt. The
operations management challenge in this setting is to decide which of these actions to take,
how long to take them, and in what sequence to take them, in order to maximize the recovery
rate. In this paper, we adopt a dynamic programming approach to find an optimal policy of
which action to undertake in the next period, using Bayesian updating to take into account the
individual debtor’s repayment performance thus far. The use of the model is empirically

illustrated using data provided by a European bank’s in-house collections department.

Keywords: Finance; dynamic programming; Bayesian updating; stochastic processes.

1. Introduction

Collectors of unsecured consumer credit debt can select from a series of different actions to
secure some repayment of defaulted debt. They can include gentle actions such as reminder
phone calls or polite letters. These may be followed by tougher actions involving more
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persistent letters, or repeated phone calls through which the collector seeks an agreement with
the borrower on a new schedule for repayment. If these actions fail, collectors could make
home visits, but more often they may seek legal proceedings through the courts and the use of
court officers to recover property in recompense. The collections policy is to decide: which of
these actions to take; how long to take each one; and in what sequence to take them. Where the
latter is concerned, it is reasonable to assume that the actions can be ordered in terms of their
perceived harshness. In this paper, we assume that the collector will not be moving from a
harsher action to a milder one. For example, after legal proceedings have been threatened, there
seems little point in sending a gentle reminder letter. However, if this assumption were to be

dropped, the proposed model could be easily modified to accommodate this.

When managing the consumer credit repayment process, lenders frequently use behavioural
scoring to predict the risk of default for an individual borrower. Since input data on recent or
current arrears typically feature in those models, many of the lender’s decisions (e.g. whether
to grant a credit limit increase) depend on the individual consumer’s performance prior to
default. It therefore seems natural that a lender’s collection policy too should be based on the
individual consumer’s repayment performance while in default. For example, it could depend
on how many payments the defaulter has made under the current action in the collection
process, relative to the length of time the action has been undertaken. This can be more effective
than simply applying the same fixed policy to everyone and may partially answer the criticism
that consumer credit decisions are often too impersonal (Johnson, 2004). Also, it goes some
way towards addressing regulatory concerns about responsible lending implying that collectors
should be “fair in their treatment of debtors” and “establish proportional policies” (Office of
Fair Trading, 2011). To achieve this, the proposed model will use a Bayesian updating
approach; thus, a decision shall be made to either continue with the same action for another

period, or proceed to the next action.



The success of the collection process is measured by the recovery rate, i.e., the percentage of
the defaulted amount that is recovered during that process. Some institutions and regulators do
not allow the collection costs to be added to the original default amount that is subject to
collection, while others do. This paper assumes that one cannot collect more than the original
default amount; hence, a collector seeking to maximize their profit would wish to maximize

the collected amount less the collection costs, i.e.:

Profit = Recovery Rate x Default Amount — Collection Costs.

Optimizing this for an individual defaulter is equivalent to optimizing:

True Recovery Rate = Recovery Rate — (Collection Costs / Default Amount).

We call this expression the ‘true’ recovery rate whilst referring to the first term in its right-
hand side as the ‘formal’ recovery rate. The collector’s objective is to maximize the discounted
true recovery rate, subject to the formal recovery rate having to remain less than or equal to
100%. A slight modification of the suggested approach would be to model the case where

collection costs could instead be added to the original default amount.

The remainder of the paper is organized as follows. The following section briefly reviews the
literature on recovery rates for unsecured consumer loans and the collection process involved.
In section 3, we introduce the Bayesian dynamic programming model of the collection process,
while section 4 describes the form of the optimal collection policy, with details of the proofs
given in Appendix. Section 5 applies the model to data provided by a European bank on their
in-house collection process. Next, section 6 looks at two alternative policies that are suboptimal
but easier to calculate; these will give an indication of the potential gains of using the optimal
Bayesian policy. Section 7 draws conclusions about the problem and the model used to solve

it.



2. Literature Review

The collection process for defaulted consumer credit is a multi-billion dollar operation, yet it
is little researched compared with other operations management activities. Similarly, until more
recently, statistical models for estimating the recovery rate or its complement, loss given
default (LGD), gained far less attention than those for the probability of default (PD) of loans.
Yet, for each segment of a bank’s loan portfolio, estimating LGD is a requirement for the
(Advanced) Internal Ratings Based (IRB) approach under the Basel II and III regulatory

frameworks (BCBS, 2004; BCBS, 2011).

Although it is common practice to use regression to model LGD, the accuracy of the loan-level
estimates produced tends to remain poor, particularly so for unsecured consumer credit
(Loterman et al., 2011; Zheng and Thomas, 2012), unless the strategic and operational
decisions that affect recoveries could be modelled as well. Whereas for corporate credit, this
process is fairly specific to the assets of the defaulted firm, the administrator’s remit and
whether there are potential purchasers, for consumer credit, the homogeneity of the pool of
defaulted loans and the limited set of collector’s actions (Coleman, 2004) allow generic models

of the collection process based on the data available.

In secured consumer credit, Lucas (2006) modelled collections as a two-stage process that may
involve repossession (i.e. foreclosure), followed by the sale of the security. The probability of
having to repossess is first estimated using logistic regression; in the second stage, a
repossession “haircut” is estimated — the percentage loss when comparing the actual sale value
of the security with the expected market value. Leow et al. (2014) showed how the economy

affected these estimates.

One of the first approaches to model the collection process for unsecured consumer default was

by Mehta (1972) who developed a Markov process model of the cash flow behaviour under
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different collection actions. The paper by Murgia and Sbrilli (2012) used neural nets, integer
programming and hidden Markov chain models to score the distressed debt. It then employed
a decision support system to suggest which action to be taken. However, the latter is more akin
to a simple collection score approach, which does not guarantee any optimality. Matuszyk et
al. (2010) suggested that decision trees are a useful way of determining the strategic decisions

of when and whether to recover “in house”, use an agent or sell off the debt.

The model that is closest to this paper’s is that outlined in De Almeida Filho et al. (2010). This
previous paper used a dynamic programming approach to find the optimal sequence of
collection actions and the optimal duration of each action. However, an important limitation of
this earlier model is that it only dealt with the problem at the portfolio level. Although this is
useful for determining the staffing resources and specific expertise required to undertake the
optimal strategy, it does not provide any insights as to how such strategy might vary with the
individual borrower as they partially repay or fail to repay the debt. In contrast, the new model
we propose in this paper works at the individual defaulter level and finds, for each of them, the

collection action to be applied in the light of their repayment performance thus far.

The collection optimization method proposed in this paper adopts a Bayesian dynamic
programming approach in which uncertainty about a parameter value is described by a Beta
distribution. This idea was first introduced to credit granting models by Bierman and Hausman
(1970), who applied it to the problem setting of a consumer who may be offered a series of
one-period loans, each of which is due for repayment before the decision on the next loan is
made. To develop a model that helps the lender decide whether to grant additional credit,
Bierman and Hausman (1970) assumed the probability of the next loan being paid has a Beta
distribution whose parameters are updated in light of the consumer’s past payment history.

Waldmann (1998) further extended this model by including economic factors which may affect



the transition probability between the belief in one period and the next. In both papers, a loan
is either repaid in full or not at all, and the only options the lender has are to either refuse or
accept a subsequent loan. Instead, we address the problem setting of debt collections, where
the objective is to maximize the recovery rate achieved. In each period, the defaulter could
make a partial payment or no payment towards the default balance. Moreover, rather than
having to make a simple binary decision, the collector must choose between a number of

different collection actions.

The basics of the Bayesian dynamic programming approach which solves these models are
outlined in Puterman (2005) and Bauerie and Rieder (2011). The latter showed how the models
can be applied in finance. An alternative approach to solving partially observable dynamic
programming problems uses the piecewise linearity of the value function in terms of the
unknown probability. This approach was introduced by Smallwood and Sondik (1973) and a

review of the different solution approaches is found in Lovejoy (1991).

3. Collections Process Model

In our proposed (infinite-horizon) dynamic programming model to determine the optimal
actions for the collection process, we denote the states by (7, s, m, i). Here, i is the current
collection action; 7 is the ‘formal’ recovery rate that had been realized during the actions that
preceded action i (as a percentage of the defaulted loan amount, D, and excluding the costs of
recovery and any discounting of the recovery cash flows); s is the number of periods that action
i has been undertaken; and m is the number of repayments that have occurred during those s
periods under action i (m < s). Hence, as the collector starts with action 7, the debt owed is
still (1 —r)D. Now, let F;(m) be the cumulative fraction of this outstanding formal debt that

is subsequently recovered through the first m payments under that action, whereas f;(m) =



F;(m) — F;(m — 1) will be used to denote the fraction received back in the m-th payment of

action i.

Whether the borrower repays in any given period under action i is assumed to be a Bernoulli
random variable whose probability of occurring is pi. The collector’s belief about p; is given

by a Beta distribution with parameters B(«a, £) , the prior conjugate distribution to a Bernoulli

random variable. Under our notation, this Beta distribution has a density function g(p), where

g(p) x p¥ (1 — p)P~1; hence, its expected value is 7 At the start of the collection

(a+p)
process, the initial belief about p; is given by the Beta distribution B(m,,s; —m,) . After every
successful payment period, the belief about the repayment probability changes from B(m, s —m)
to B(m+1,s —m), while after every period with no repayment, it changes from B(m,s —m) to
B(m,s +1—m). This is a simple application of Bayes theorem. If the prior distribution is B(1,1)
, this corresponds to a uniform prior where the density function of p is 1 over the whole region
[0,1]. However, one can introduce more informative priors where (my,s, —m;) could depend

on previously collected data concerning the defaulter. This is akin to a “collection score”.

As argued previously, we shall assume the collector’s actions, i =1, ..., I, are ordered in
increasing level of harshness. In each state (7, s, m, i), there are thus two options available to
the collector: continue with the current action 7, or move to action i+1. This corresponds to the
normal situation in collections where the position of the debtor may be reviewed every month.
Since moving to a different action is immediate, note that the collector in effect also has the
option of moving directly to action i+2 (or higher) in that same period, by undertaking action
i+1 for 0 periods. Hence, the available actions in this state are action i and all higher actions.

Now, let V(r,s,m,i) be the expected ‘true’ future discounted recovery rate starting from that

state (i.e. excluding what went on before, but allowing for the costs, ci, incurred in each period



and discounting both the amounts recovered and the costs; each time period we discount them
by a factor f). Thus, V(r,s,m,i) satisfies the following dynamic programming optimality
equation (Puterman, 2005):

[O—ﬂﬁOn+D+ﬂVUJ+Lm+LDh{}—gﬁiﬂQ)m+ﬂVUJ+LmJﬂ—q(D

(s +s0)

(m+m6)
V(r,s,m,i) =maxy (s+ sé)

V(r+(1=r)F(m),sy™ ,mi i +1)
The first expression on the right-hand side (RHS) of the optimality equation corresponds to the
decision to persist with action i for another period. Given the belief about the probability of

(m+myg)

repayment, one expects the chance of repayment is .. A payment is equivalent

(s+s0)
to a fraction (1-r)f;(m+1) of the original debt. In the event of a payment being made, the
debtor will be in state (r,s+1, m+1, i) at the start of the next period, as the posterior belief about
the repayment probability then becomes B(s; + s +1,m; + m +1). The chance of there being no

. o +mp .
repayment in the current period is [l— ” njo J In that case, at the start of the next period, the
s+

borrower will be in state (r,s+1,m,i), and the belief about the repayment will change to
B(sy + s +1,my +m).

The second expression on the RHS of the optimality equation corresponds to the alternative
decision to start action i + 1. This change of action is immediate (hence no £ in the expression)
and costless (hence no c¢; in the expression). It implies that the lender starts that action with a
formal recovery rate of r+(1—r)F,(m). The probability of repayment in the next period then

has a Beta distribution with parameters (m,", s, —m.")

Note that, if the collection costs were to be included in the debt total that can be recovered, it

would be sufficient to change the second expression on the RHS of (1) to:

V(r+ 1 = r)F(m) —sc;, sitt,mt, i + 1).



Here, the first component could turn negative if the collection costs added to the debt are greater

than the recoveries so far.

The standard way of solving stochastic dynamic programming problems and finding the form
of the optimal policy is value iteration, in which one solves the optimality equation using the
following iteration scheme:

Vo(r,s,m,i)=0,Vr,s,m,i

(m+m6)

| m+mp)

+50)

(=P fim+1)+ BV, (r,s +1,m+ 1,i)]+[ J[o + BV, (r,s +1,m,i)] - ¢; (2)

Vyit (ro8,m,0) = max{ (s +s¢)
Vol + (1= r)Fy(m), 5" m' i+ 1)
It is well known (Puterman, 2005) that, for compact state space problems such as (1), value
iteration (2) converges to the solution of the optimality equation (1) and the optimizing actions
of the RHS of (2) converge to the optimal policy. Although r is essentially a continuous variable
with values between 0 and 1, we will need to discretize it in order to solve the problem
numerically. In fact, this does not pose any real problem because the first action should always
start with 7 being 0; the second action must then start with r taking a value of the form 1 —
F, (m), for some integer m; similarly, the » values when the third and subsequent actions start

can only take one of a finite number of values corresponding to how many repayments were

made under the previous actions.

4. Form of the Optimal Policy

The form of the optimal policy is described by the two theorems of this section. Their proofs
and those of their supporting lemmas can be found in appendix. The optimal policy turns out
to be a control limit where, for a given r, m and i, one moves to the next action after a set
number of periods, s*. Formally:

Result 1: The optimal policy in state (r,s,m,i) is given by a set of functions, s *(r,m,i), such

that:



i)  One continues with action i if s <s*(r,m,i);
ii) One moves to action i+1 if s 2=s*(r,m,i).
One might expect to find that s*(r,m,i) <s*(r,m+1,i); i.e., the more repayments under action i,

the longer one would stick with it before swapping to another action. At first, this appears
intuitive since seeing more payments under action i increases the belief that a repayment will
occur in the next period. However, more payments under action i also imply a lower reward
from future payments under that same action, if Fi(.) is concave. Hence, the two effects can
cancel each other out, as a result of which the optimal action may change. If, however, the
value of each repayment under action i is assumed constant, the second effect does not occur.
In that case, the more payments made under action i, the longer one stays with action i, as the
following result shows.

Result 2: If the recovery rate for each payment under action i is constant, i.e. f;(m)=f;, then

s*(r,mi)<s*(r,m+1,0).

5. Numerical example

The data feeding into our numerical example were supplied by a European bank’s in-house
collections department. The dataset consisted of information on 3,084 defaulted unsecured
consumer loans. For each loan, there were details of when the borrower defaulted, and how
much they defaulted for. There were also three years of the subsequent collection history for
each of the loans, recorded on a monthly basis. This included which collection action was

applied to that debtor in each time period and how much the debtor repaid that month.

There were three actions that could be applied to a debtor. Action 1 involved communicating
with the debtor to arrange and encourage an agreed repayment schedule. Action 2 involved
using legal procedures to recover some of the debt. Action 3 was essentially writing off the

debt in that it involved no costs but also no expectation of any further recovery of the
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outstanding debt. The collection process must always begin by applying Action 1, since, in the
country involved, it was a legal requirement to have discussed possible repayment schedules
with a debtor before the lender can apply for legal redress. At the end of the collection process,
once a debt has reached the passive write-off involved in Action 3, the lender would not return
to Actions 1 or 2. The collection policy which led to this data was based on a review of all
accounts undertaken once a year at the financial year end, not on the basis of any optimization
strategy comparable to ours. Hence, we only use the data to define the action structure and
obtain reasonable cost and recovery rate function estimates. Note that the true test of our model
would be to implement the proposed policy and then observe (and if possible compare against
a control sample) the resulting actual collections and costs; however, we were not in a position
to do so. Instead, in order to have some indication of potential efficiency gains, later on in
section 6, we will compare the expected recovery rates for the optimal policy against those

obtained for two simpler reference policies.

The costs and recoveries under Action 3 are taken to be ¢; =0 and f3(m)=0 for all m. For

Actions 1 and 2, the monthly cost is expressed as a fraction of the debt outstanding on default.
This was calculated by dividing an estimate of the total costs incurred during an action by the
total number of months that that action was performed summed over all debtors. This gives the
average monthly cost of that action which is then divided by the average default balance over

all debtors. This leads to the values ¢; = 0.00048656,c, = 0.00398703 .

In section 3, we proposed that the size of the debt repayments under each action i be a function
of the number of previous payments under that action. For the same dataset, looking at averaged
recovery data, De Almeida Filho et al. (2010) reported that an exponential function provided a
good fit to the shape of these payment recovery rates. We make a similar choice in our current

numerical example and define:
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i=m —b;jm
fi(m+1)=a;e””™ , and hence F,.(m):jzfl.(j):ai(l_—eh) 3)
j=1 (I-e ")

Fitting to the data from Action 1 and 2 leads to: a, =0.035721, b, = 0.1470, a, = 0.0245225,
b, =0.0577. Note that the usefulness of our model by no means depends on selecting this

particular function; on different datasets, other functional forms might provide a better fit.
Moreover, it is possible to segment the loan set further and fit different functions to different
groups of loans, if their repayment patterns were found to vary. This would also allow
introducing different cost parameters. Doing so would require solving not one but a (small)
number of different model instances (which remains entirely feasible) and then applying the
different resulting policies to these respective loan segments.

In our numerical example, we further assume that, at the start of each action, we have no
prior knowledge concerning the probabilities of a debtor repaying. This corresponds to
choosing a flat uniform prior over the interval [0,1] of possible probabilities for Actions 1 and

2, before updating those probabilities based on repayment performance. In other words, we

set: my =m{ =1;s0 = s =2 (more on alternative choices of priors in the conclusions section).

The Markov decision process (MDP), whose optimality equation is (1), can be solved using
the iterative scheme shown in (2). As it stands, there are an infinite number of states in the
MDP, but if we put an upper limit of S on the number of periods any specific action lasts, then,

with m and s being integer values, s < S, and m <s, the number of states for Action 1 (where
=0 and i=1) becomes finite. When the decision is to proceed to Action 2, the process must
move to one of the S+1 states (F(m,),0,0,2), where 0<m, <§, depending on how many
payments, m;, were received under action 1. Thus, under the second action, the number of

states only multiplies with a further factor of (§+1).
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On solving the optimality equation, we arrive at the optimal policy, shown in Figures 1 and 2.
Figure 1 shows whether the optimal decisions in the states (0,s,m, 1) are to stay with Action 1
or move to Action 2. The results in Figure 2a and 2b describe the decisions in states
(F()),s,m,2) for j=1, 10, 30 and 50, i.e., whether to stay with Action 2 or move to Action 3.

[Figure 1, 2a and 2b about here]
Note that keeping m fixed and increasing s (i.e. for a longer period of time and no additional
payments), one moves horizontally along these graphs from left to right. In every case, we find
that initially the collector should stick to the current action but then, after some s* number of
periods, move to the next action. This is the result proved in Result 1. Moving vertically up the
graphs, i.e., keeping s fixed and increasing m, there are several examples of non-monotonicity,
where initially the collector is told to move to the next action for low values of m (implying
little chance of repayment), then stay with the existing action as m increases, and finally move
again to the next action if m becomes large. The latter upper boundary on whether to change to
the next action comes about because, as the number m of previous payments increases, the

assumed recovery rate on the next payment, f;(m+1), eventually decreases until it becomes

too low to compensate for the cost, ¢;, of staying in action i. One tends to stay longer with
Action 1 than with Action 2 for the simple reason that, in our numerical example, Action 1 is

less costly than Action 2 to undertake.

If the debtor made more payments under Action 1, then Fj(m), the cumulative recovery rate

under that action, increases. Figure 2a and 2b shows that, under that scenario, there are fewer
states where one opts for Action 2 before writing off the debt (cf. the shrinking green-coloured

area for the states (£(30),s,m,2) and (F(50),s,m,2), shown on the right of Figure 2a and 2b).

The reason for this is that there is less money left to recover whilst the cost of Action 2 remains

fixed.
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Looking at the boundary between staying with Action 1 and moving to Action 2, there are
several situations where the optimal action in (r,s,m,1) is Action 1, but in (r,s+1,m+1,1) it is
Action 2. Since a payment entails that the debtor moves from (7,s,m,1) to (r,s+1,m+1,1), these
correspond to occasions when it is optimal to move to a new action even if the debtor has just

made a payment under the current action.

[Figure 3, 4a and 4b about here]
To help us better understand the latter result, a second example considers the hypothetical case
where the debtors must pay a fixed repayment amount under a given action. For example, let
us use the same cost values and assume the fixed repayment rate is 0.0104 for all states. The
resulting policy when in Action 1 is given by Figure 3; that in Action 2 is given in Figure 4a
and 4b. Now there is only a lower boundary between both action choices as m increases. As
shown by Result 2, a constant recovery rate implies that, if action 7 is optimal in state (r,m,s,i),
it remains optimal in (r,m+1,s+1,i), as the return under action i no longer diminishes as m
increases. Note that, in Figure 4a and 4b, this lower boundary between Action 2 and Action 3
moves up as more of the debt has already been collected by the first action. Therefore, the

second action becomes less profitable and is used less frequently. Eventually, at F(59), the

Action 2 region disappears entirely as so much of the debt has been recovered in Action 1, that

there is no point in continuing the collection procedure.

6. Bayesian myopic policy and non-Bayesian policy

The optimal Bayesian policy involves significant calculations to solve the corresponding
dynamic program. Alternatively, one can obtain a near-optimal Bayesian policy using the
myopic approach, which does not consider the entire time horizon but only considers one
period at the time. Under this policy, one would continue to use action i in the next period,

provided that it is profitable to do so in that period, i.e. if equation (4) is satisfied.
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i

s+ 5

(”"*”“3J<1—r)ﬁ(m+l>2ci )

As (m“’?o} is the expected probability that there will be a payment in the next period, (4)
S+ S0

requires that the expected repayment is greater than the cost; otherwise, one moves to action
i+1. The form of this policy (for Action 1 only), assuming the same costs and recovery
functions given in section 5, is described in Figure 5. In Figure 5, there are states where the
optimal policy is to move to Action 2, while the myopic policy proposes Action 1. This follows
if the expected real reward under Action 1 is positive but is still less than that under Action 2.
Note that we do not show the policy for Action 2 as, in this case, the result is identical to that
of the optimal policy (i.e. Figure 2a and 2b) because, in this example setting, Action 3 does not
incur any cost or generate any revenue.
[Figure 5 about here]

Another policy would be to ignore the Bayesian updating aspect of the policy and assume the
same probability of repayment under action i, irrespective of the debtor’s repayment pattern.

i
—Z.OJ for action i, which amounts to 0.5
So

To ensure a like-for-like comparison, take this to be (
for each of the actions in the numerical example. We can derive the optimal policy in this non-

Bayesian case, by solving the following dynamic programming problem:

@[(1 ) fi(m + 1)+ BV (rom +1,0) ]+ [1 - @J[o + BV (rom,i)] - c; 5)
So

V(r,m,i) = max S0

Vir+(1-r)F;(m),0,i+1)
Using the same costs and recovery rates, we thus obtain the optimal policy shown in Figures
6a and 6b. This policy looks very different to the Bayesian policy since the action is now
independent of s. It only depends on m as the recovery rate still depends on m. For example,

this policy says switch from Action 1 to Action 2 when there have been 16 payments under
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Action 1 (Figure 6a). Similarly, the change from Action 2 to Action 3 depends on the number
of payments made under Action 1 (Figure 6b).
[Figure 6a and 6b about here]

The value functions for the three different policies (i.e. their expected ‘true’ recovery rates) are
listed in Table 1. The value reported for the model using the optimal Bayesian policy is 0.1926;
i.e., it expects a recovery rate of just over 19%. The expected recovery rate for the myopic
policy is 0.1894, which is a drop of just over 2%. The next line indicates that the optimal non-
Bayesian policy gives an expected recovery rate of 0.1747, which is 9% lower than that of the
Bayesian optimal policy. This indicates there are clear potential gains to the method proposed
in sections 4 and 5 in terms of profit, under the assumptions it makes about the repayment
process. Note again that these are expected recoveries — the actual recoveries if the policy were
applied shall remain unknown as any variation in collection strategy would inevitably impact
what returns are observed. Also, Table 1 each time reports a single number, but if a loan
segmentation approach were adopted, different expected recovery rates would ensue for

different loan segments.

[Table 1 about here]

7. Conclusions

This paper looked at how debt collection departments should manage their operations to
maximize recoveries. It develops collection policies for defaulted consumer debt based on the
performance of the individual customer. Debt collection is a multi-billion dollar industry, but
also one with a high political profile in terms of legislation and media attention, much of it
negative. Therefore, the collections process needs to steer a delicate course between efficiency
and fairness. The actions pursued to recover a defaulted debt need to be defendable under both
objectives. An optimal Bayesian collections policy would therefore seem sensible since the

collector’s actions depend on the debtor’s performance.
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The flexibility of the Bayesian approach is that the extra knowledge the collectors have can be
incorporated in the prior distribution used. For example, the parameters m/ and s} of the prior

could be functions of the characteristics of the loan, the defaulter and the defaulter’s
performance before default, or even their performance under the earlier collection actions. Thus
it could become an extension of the idea of a collections score. The parameters of the prior
could also be made functions of the economic conditions. In that case, one could estimate the

recovery rate (and thus the LGD) in downturn conditions as well as normal ones.

One can extend the model in other ways. For example, one could include a fixed cost for
starting a new action by making the costs a function of s as well as i with ci(1) # ci(s), s>1.
Moreover, one could allow for the fact that some actions have to be performed for some period,
say S, until the debtor starts to repay. This would mean the recovery rate is a function of s as

well as m, with F(m,s)=0,Vs<S§. Further extensions could include having a nested action

structure, in which different variations or levels of the same action can be tried; this would lead
to a model formulation with one extra state variable and an additional expression in (1) for each

such decision option.

Finally, in our numerical example, we found a considerable difference in the optimal policy
and value between the Bayesian and non-Bayesian formulations. This suggests that there may
also be significant advantages in terms of financial returns when introducing a Bayesian

approach to the modelling of the collections process.
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Appendix
Lemma 1: V,(r,s,m,i) defined in (2) is non-decreasing in n and hence it converges to

V(r,s,m,i), the solution of (1).

Proof. The proof is by induction to show/V, (r,s,m,i)—V,(r,s,m,i)=0. Initially,
Vo(r,s,m,i)=0,thus V;(r,s,m,i)—V,(r,s,m,i)>0. Since max(a,41, bps1) — max(ay,, by) =

min(an+1 - an,bn+1 - bn,)’

(m+mj)
(s+sb)

Ve (r,s,m, i) =V, (r,s,m,i) = Min{ BV, (r,s+1m+1,i) —V,_,(r,s+1,m+

1,0] + (1 - ("‘+’"3))/3[1/n(r,s +1,m,0) = Vs (r,s + 1,m, D], Vy(r(1 =

(s+sb)
r)F;(m), st mitt i+ 1) = VL  (r(1 — r)F;(m), sit,mét, i + 1) }
(A21)
Hence, the induction step holds and V (r,s,m,i)is non-decreasing in n. Thus, being a non-

decreasing but bounded set of functions, by Puterman (2005), it converges to V(r,s,m,i).

Therefore, the result is proven. Now we are in a position to prove the way the optimal value
function varies as the different components of the state space vary.

Lemma 2:

i) V(r,s,m,i) is non-increasing in r;

i) 1-r)fim+1)+pV(,s,m+1,i) =pV(r,s,m,i)

iii) V(r,s,m,i)is non-increasing in s (i.e. V(r,s,m,i)>V(r,s+1,m,i));

iv) V(r,s,m,i) is convex in r.

Note that (ii) says that the recovery rate is higher if there is a payment in the current period

than if there is no payment in the period.
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Proof: All the proofs are by induction on the iteration number in the value iteration scheme (2).

In each case, the result is trivially true for the 0™ iteration since Vo(r,s,m,i)=0,Vr,s,m,i.
i) Assuming V, (r,s,m,i) is non-increasing in r, then as r+(1—r)F;(m)is increasing in r, all the
terms on the RHS of (2) are non-increasing in » and hence so is V,, (7, s,m,i).

i1) This holds trivially when n = 0 since Vy(r, s, m,i) = 0 for all values of r,s,m and i. To
prove the induction step from »n to nt+l, we use the inequality
maX(an+1' bn+1) - max(an' bn) = max(an+1 — Ay, bn+1 - bn) (AZ)

The induction step then becomes:

Vo (rs,mi)=V . (r,s,m+1,i)
(m+my)
(s+sp)

SM 1 1

PV 1= m) ) gy st iy —| 1= L)
(s+50) (s+50)

V(r+1=rF@m),si" ,m" i+ )=V (r+(1-r)Fm+1),s)" ,m",i+1)

_(m+1+mf,)

[(l—r)f,(m+1)+ﬂV”(r,s+1,m+1,i)] -
(s+5,)

[(1 =) fi(m+2)+ BV (r,s+1,m+ Z,i)]

]ﬂVn(r,s+l,m+l,i);

(’71(%47;10[(17r)f,(m+1)7(17r)f,(m+2)+ﬂVn(r,s+1,m+1,i)7ﬁVn(r,s+1,m+2,i)]

s+,

- Max 4{1(’"H%jﬁ[l/n(r,s+l,m,i)Vn(r,s+1,m+1,i)] -1 [A=r) fim+1)+ V,(r,s +1,m+1,0) = BV, (r,s +1,m,i)];
(s+s,) (s+s,)

V(r+1=r)F(m),ss" ,m)" i+ 1) =V (r+1=r)F(m+1),s)" ,m" i +1)

(m“””é)[(l_r)ﬁ(m+l)]+[l—Mj[ﬁ—r)ﬁ(’"”)]

(s+s)) (s+s))
< Max -1
(s+s))
a-nf, (m +1)
<(1-nf (m+1)

[(l—r)fi(m+1)+ﬂVn(r,S+l,m+1,i)—ﬁVn(r,s+l,m,i)]: (A3)

Again the first inequality follows from (A2). The second inequality follows from applying the
induction hypothesis (ii) to each bracket in turn. This shows that the bracketed part of the third

term is in fact positive while the first two terms sum up to (1-r)f;(m+1). The inequality in

the second expression follows since V (r,s," ,m)",i+1) =V (r+h,s,",m,",i+1) cannot exceed

h since that is the maximum recovery rate difference that is possible.
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iii) We also prove the monotonic drop in the value function as s increases using induction on

the n in value iteration. It is enough to show V, (r,s +1,m,i)—-V, (r,s,m,i) < 0. Trivially this

holds when n = 0 since V,(.,.,.,.) is zero. Assume it is true for V,,, then:

V. (r,s+Lmi)=V  (r,s,m,i)

((’ﬁf%))[(l LA+, (5 + 2,m+1,1)] - (””’”ﬂ)[a L m+ )+ BV, (ros+Lm+1,0)]

SMaxy () (me+m) o[ (memy) ,
+[1 (S+1+S(,.))]ﬂVn(r,s+2,m,l) [ (s+5i) ]ﬂVn(r,sH,m,z), (Ad)
0
M[ﬂV(rs+2m+ll) ﬂV(rs+1m+ll)] [ (m+m(i).)]ﬂ[Vn(r,s+2,m,i)—Vn(r,s+l,m,l')]
(s+1+sy) (s+1+sp)

~ e %[(l—r)ﬁ(m+1)+ﬁV;(r,s+1,m+1,i)—,b’Vn(r,s+2,m,i)],
0

<0

The first inequality follows from (A2). The second inequality follows since the first two terms
in the first expression are negative because of the induction hypothesis on (ii1), while the third
term is negative because of the induction hypothesis of (ii) holding for Vx(.). This means that
the bracketed part of the third term is positive. Thus, the difference

(r,s+1,m,i)—V,  (r,s,m,i) is less than or equal to zero and Vx»+1(.) is non-increasing in s.

n+l
Hence, the induction assumption holds.
iv) Since Vy(r,s,m,i)=0,Vr,s,m,i, the induction hypothesis that V,(r,s,m,i) is convex holds
for n=0. Examining equation (2), the first expression on the RHS is the sum of a linear function
in 7 and two functions which are convex from the induction hypothesis. Therefore, the
expression is convex in 7. Similarly, the induction hypothesis means the second expression is
convex. Since the maximum of two convex functions is convex, the induction is proven and
the result holds.
There is no monotone property for m, because, as this increases, one is more likely to get more

repayments with this course of action, but there is less money to recover from the future courses
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of actions. These two factors work against each other and negate the possibility of a monotone

result.

Proof of Result 1: From Lemma 2(ii), V(r,s,m,i) is non-increasing in s. Let:

s *(rym,i) =min{s |V (r,s,m,i) =V (r + (1= r)F;(m),0,0,i + 1)},
which means the optimal policy is to move to action i+1. The minimum must exist since, if
V(r,s,m,i)>V(r+(1-r)F,(m),0,0,i+1) , then as s tends to infinity, V(r,s, m, i) tends to 0.
This means the inequality V(r,s,m,i) >V (r +(1-r)F,(m),0,0,i+1) cannot continue to hold.

For s>s*(r,m,i), we have:
V(r+(1-r)F;(m),0,0,i +1) <V(r,s,m,i) <V (r,s *(r,m,i),m,i) =V (r +(1-r)F;(m),0,0,i +1)

where the middle inequality follows from the non-increasing property in s. Hence, in state
(r,s,m,i), one must also choose action i+1.

Proof for Result 2: It is sufficient to show that, when in state (#,s,m,i) it is optimal to stay with
action i, then it remains optimal to do so in state (7,s,m+1,i). Let 7 be the optimal policy starting
in state (r,s,m,i). The total return under this policy, V”(r,s,m,i), is decomposed into a term
describing the return under action i and one describing the recovery rate when other actions are

used, namely:

V*(r,s,m,i) = W™(r,s,m,i) + z pt(s',mHV(ir+A—-r)(m+m")f;,00,i+1)

S’,ml
Here W™ (r,s,m, i) is the total recovery using action i under policy z, while p™(s’,m") is the
probability that one moves to action i+1 after s’ more periods which involved m’ more
repayments. Note Y.¢7 v p(s’,m') = 1. If we apply policy = starting in state (r,s,m+1,i), we

have a similar decomposition:
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V”(r, s,m+1,0)

W s,m+1,0) + Z p(s", MW+ (1—r)(m+1+m)f;,00,i + 1)
S',m

Note W™ (r,s,m + 1,i) > W™(r,s,m, i), since the first term has higher probabilities of a
repayment each period compared with the second.

We need to prove that if V(r,s,m,i) > V(r + (1 —r)mf;,0,0,i + 1), then V(r,s,m + 1,i) >
Vr+@A—-r)(m+1)f,0,0,i+ 1).

V(r,s,m+1,i)

>W™(r,s,m+1,i) + z pr(s' ,mHVr+ (A —-r)(m+1+m")f;,00,i+1)

! !

s'm

> W™(r,s,m,i) + Z pt(s',mHVir+A—-r)(m+1+m")f;,00,i+1)

st m'

=V(r,s,mi)+ Z p"(s',mHYVr+@A—-r)((m+1+m")f;,00,i+1)-V(r+(@1

s'm!
—r)(m+m")f;,0,0,i+ 1)
>V(r+(1—-r)mf;,00,i+1)+ Z pt(s',mH(Vir+@A—-r)(m+1+m')f;,0,0,i
s'm/
+ 1) -Vir+A—-r)(m+m')f;,00,i+1)

>V(r+1-r)(m+1)f;,0,0,i +1).
The last inequality follows from the convexity of V(r, s, m + 1, 1) in r, since convexity implies:

Vr+ (A —-r)mf,,00,i+ 1) —-Vr+A-r)(m+1)f;,00,i+1)

>Vr+A-r)(m+m")f;,00,i+1)—-Vr+A-r)(m+1+m')f;,0,0,i)+ 1).

Together with X5 ,,» p™(s’,m") = 1, this gives the inequality and hence the proof is complete.
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Table 1. Value functions /1(0,0,0,1) (i.e. the expected recovery rate) for the proposed model

and two simpler alternatives.

Expected
Recovery Rate
Optimal Bayesian Model 0.1926
Bayesian Model with Myopic Policy 0.1894
Non-Bayesian Policy 0.1747
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Figure 1. Optimal policies for states (0,s,m,1) for all s and m. The policy for states

highlighted in red is to stay in Action 1 and for those in green to move to Action 2. The

=0,1,...60).

0,1,...,60) and s(

values along the axis are the values for m(

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

6 7

5

25



Figure 2a. Optimal policies for states (F{(1),s,m,2) (top) and (#{(10),s,m,2) (bottom) for all s
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Figure 3. Optimal policies for states (0,s,m,1) for all s and m, for a fixed repayment rate. The

1 and for those in green to move to
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Figure 4b. Optimal policies for states (£(30),s,m,2) (top) and (£(59),s,m,2) (bottom) for all

s and m, for a fixed repayment rate. The policy for states highlighted in green is to stay in

Action 2 and those in blue is to move to Action 3. The values along the axis are the values for

m(=0,1,...,60) and s(

0,1,...60).
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Figure 5. The myopic policies for states (0,s,m,1) for all s and m. The policy for states

hlighted in green is to move
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Figure 6a. The optimal non-Bayesian policies for states (0,m,1)
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Figure 6b. The optimal non-Bayesian policies for states (£ (m,),m,2), for all m, and

.19. Due to page size limitations, we have not shown the results of (£(m,),m,2) for

m=0,1,..

.,00. The optimal policies for those states are using Action 3. The policy for states

highlighted in green is to stay in Action 2 and those in blue is to move to Action 3.
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