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Abstract6

An existing theoretical model to predict the pressure levels on an aircraft’s fuselage7

is improved by incorporating a more physically realistic method to predict fan tone8

radiation from the intake of an installed turbofan aero-engine. Such a model can be9

used as part of a method to assess cabin noise. Fan tone radiation from a turbofan10

intake is modelled using the exact solution for the radiated pressure from a spinning11

mode exiting a semi-infinite cylindrical duct immersed in a uniform flow. This approach12

for a spinning duct mode incorporates scattering/diffraction by the intake lip, enabling13

predictions of the radiated pressure valid in both the forward and aft directions. The14

aircraft’s fuselage is represented by an infinitely long, rigid cylinder. There is uniform15

flow aligned with the cylinder, except close to the cylinder’s surface where there is a16

constant-thickness boundary layer. In addition to single mode calculations it is shown17

how the model may be used to rapidly calculate a multi-mode incoherent radiation18

from the engine intake. Illustrative results are presented which demonstrate the relative19

importance of boundary-layer shielding both upstream and downstream of the source,20

as well as examples of the fuselage pressure levels due to a multi-mode tonal source at21

high Helmholtz number.22

2



I. Introduction23

In modern civil aircraft, turbofan jet engines are the dominant noise source during take-off24

and cruise. Successive legislative and certification requirements have set stringent targets25

for reductions in noise emissions from civil aircraft. Reducing the impact of aircraft noise26

requires reliable and fast noise prediction tools which can be used for engineering optimisation27

studies during the development of new quieter engines. Owing to the complexity of the28

turbomachinery, it is routine to separately predict the sound radiation from individual sources29

(such as the fan, turbine and jet). Normally the sound radiation is modelled in the free field,30

but in reality sound radiation can be affected by the airframe.31

Installation acoustics for turbofan jet engines refers to the study of how the radiated noise32

is affected when an engine is installed on an airframe. Of particular relevance is the pressure33

levels on the aircraft’s fuselage since the sound transmitted through the fuselage will directly34

affect the cabin noise levels. Fan tones radiating from an engine intake duct, particularly35

“buzz-saw” tones which are produced when the fan tip speed is supersonic, can radiate at36

very high pressure amplitudes. Predicting the pressure levels on the fuselage surface is required37

in order to assess what acoustic treatments must be applied in order to achieve an acceptable38

cabin noise level.39

In this theoretical model, the source or incident field represents a fan tone radiated from40

a turbofan intake. Adjacent to the intake, an infinitely long, rigid cylinder represents a41

cylindrical fuselage. The scattering method can be used to determine the pressure field42

everywhere, albeit in this work attention is focussed on the pressure levels on the cylinder.43

The solution of the scattered field due to an acoustic monopole located adjacent to an44
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infinite, rigid cylinder in a stationary fluid is given in the text by Bowman, Senior and45

Uslenghi ([1], Chapter 2, Sec. 2.5.2, pp. 126–127). By solving the convected wave equation46

rather than the wave equation, the solution for the scattered field in the presence of a uniform47

axial flow aligned with the cylinder axis can also be derived. However, for the purpose of48

modelling sound propagation from the engine intake to the fuselage surface, the effect of49

refraction within the fuselage boundary layer must be taken into account. Sound propagating50

upstream is refracted away from the surface of the fuselage by the boundary layer, which is51

referred to as ‘shielding’. Early examples of this include McAninch [2] and Hanson [3] with52

studies of a monopole over a flat plate with a boundary layer. Following this, a significant53

advance was presented by Hanson and Magliozzi [4] who developed an installation acoustics54

model of a propeller-type source located adjacent to an infinite, rigid cylinder in the presence55

of an axial mean flow including a boundary layer on the cylinder. Later, Lu [5] added a56

temperature gradient to the boundary layer, although this was found to be inconsequential57

on the shielding. More recently, Belyaev [6] and Brouwer [7] studied the effects of installed58

open-rotor engines. Generally, all these papers found that significant shielding can be caused59

by the boundary layer upstream of the source, thereby reducing the pressure levels on the60

surface of the fuselage, but the shielding and effect on the pressure levels caused by the61

boundary layer is minimal downstream of the source.62

There is far less research on fan tone sources radiated from turbofan aero-engines, and the63

resulting fuselage pressure levels. Siefert and Delfs [8] and Dierke et al. [9] have employed64

Computational Aero-Acoustics (CAA) methods to predict the scattering and refraction by65

the fuselage of a spinning mode radiated from a turbofan intake duct. The computational66

method was also able to examine the effect of spectral broadening.67

4



The current article is a continuation of theoretical work by the authors [10],[11] on pre-68

diction of the fuselage pressure levels due to intake fan tone radiation. In McAlpine, Gaffney69

and Kingan [10] the pressure levels on a cylindrical fuselage forward of the intake duct were70

simulated using a theoretical solution based on an incident field given by a distributed “disk”71

acoustic source located adjacent to an infinite, rigid cylinder. The disk source derivation was72

based on the Rayleigh integral adopted by Tyler and Sofrin [12]. In this earlier work, the mean73

flow was taken to be a uniform axial flow aligned with the axis of the cylinder. Subsequently,74

this theoretical solution was extended by Gaffney, McAlpine and Kingan [11] to include the75

fuselage boundary layer. This requires the numerical solution of the Pridmore-Brown equa-76

tion in the boundary-layer region which is matched to the solution for the convected wave77

equation (uniform flow) at the edge of the boundary layer.78

The key advancement in the current article is to use the full Wiener–Hopf solution for a79

spinning mode exiting a cylindrical duct, instead of the disc source, to specify the incident80

field. The Wiener–Hopf solution gives the pressure radiated into a free field. It is shown how81

to combine this solution with the cylindrical fuselage scattering method. Combining these82

two existing methods gives a theoretical installation acoustics model for intake fan noise, with83

an adjacent cylindrical fuselage in the near field, and inclusion of the fuselage boundary-layer84

which can shield the forward radiated fan noise. Thus new results in this article focus on the85

predicted shielding effect of the boundary layer for intake fan tone radiation. Additionally86

it is shown how to use the model to rapidly calculate a multi-mode incoherent source, as87

opposed to calculations for the radiation of a single mode.88

The benefit of using the incident field given by the Wiener–Hopf solution for a spinning89

mode incorporates scattering/diffraction by the intake lip, and accounts for reflection of sound90
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at the exit plane of the intake. Thus it provides a more realistic incident field compared to91

the disk source model which does not account for the effects of the intake duct. The other92

key benefit of using the incident field given by the Wiener–Hopf solution for a spinning mode93

is that predictions will be more realistic near the source plane (θ = 90◦), and can be extended94

to downstream (θ > 90◦). This is not possible with the disk source model whose predictions95

only will be realistic up to a maximum polar angle, say θmax, where θmax < 90◦.96

The overall situation is shown sketched in Fig. 1 which illustrates for wing-mounted engines97

the intake fan noise installation acoustics model. Both forward and aft radiated fan noise from98

modern turbofan aero-engines are significant contributors to the overall noise. Modelling99

radiation of fan noise from the bypass duct increases the complexity of the prediction method100

because it is necessary to model the noise propagating through the exhaust jet shear layers.101

Additionally there are other significant contributors to the aft radiated noise such as core,102

turbine and jet noise sources, and for engines mounted under the wings, the propagation and103

radiation of exhaust noise will be affected by the wings.104

Consequently, it is assumed that noise radiated from the intake which is incident on the105

fuselage is the dominant source forward of the aircraft wings, but it is expected that down-106

stream of the wings, the exhaust noise sources would be required for realistic predictions of107

the fuselage pressure levels. Thus, although the Wiener–Hopf solution is valid at all polar108

angles, i.e. both upstream and downstream, it is emphasised that further downstream the109

fuselage pressure levels will be dominated by exhaust noise sources. Without predicting the110

levels of other (exhaust) noise sources, the maximum polar angle at which the intake fan111

noise radiation is the dominant source cannot be precisely quantified. As shown in Fig. 1,112

the polar range over which the intake fan noise method should be reasonably applied, using113
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Figure 1: Canonical problem for intake fan tone radiation from an installed turbofan

aero-engine. (a) Sketch of an installed turbofan aero-engine mounted below the wings. (b)

Incident field = disk source. (c) Incident field = Spinning mode. Polar angle θmax indicates,

along with the shaded regions, roughly where predictions of the fuselage pressure levels are

valid.

either the disk source or the spinning mode source to specify the incident field, is illustrated.114

This illustrates the significant increase in the area of the fuselage where predictions of the115

pressure levels can be applied using the Wiener–Hopf solution for a spinning mode, compared116

to utilising the disk source for the incident field. In this work, the focus is intake fan tone117

noise, predominantly “buzz-saw” tones, incident on this portion of the fuselage forward of the118

wings.119

7



Figure 2: (Color online) Sketch of the cylindrical fuselage (radius a0) and the circular intake

duct (radius a). The centreline of the cylinder is aligned with the z̄-axis. The intake duct is

aligned with the z-axis, and the duct termination is located in the plane z = z̄ = 0. The

transverse distance between the centre of the intake duct and the centre of the cylinder is b.

Also shown is the edge of the fuselage boundary-layer (thickness δ).

II. Theory120

A sketch of the problem set-up is shown in Fig. 2. The Cartesian reference frame for the121

intake is (x, y, z), or equivalently in cylindrical polar coordinates (r, φ, z), where the centre of122

the intake is aligned with the z-axis, and the duct termination is at z = 0. The Cartesian123

reference frame for the fuselage is (x̄, ȳ, z̄), or equivalently in cylindrical polar coordinates124

(r̄, φ̄, z̄). There is a subsonic uniform mean flow, Mach number M∞, directed in the negative125

z̄-direction. Also there is a fuselage boundary layer with constant thickness δ.126

In the following analysis, all values are dimensionless: the reference length scale is equal127

to the fuselage radius a0; the reference velocity is the speed of sound c0; the reference density128

is ρ0, and the pressure is scaled by ρ0c
2
0.129

The principal difference between the theory in this article compared to the theory presented130
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in Gaffney, McAlpine and Kingan [11] is the method to calculate the incident field. In the131

previous article [11], fan tone radiation from an intake is represented by a disk source model.132

In the current article, fan tone radiation is calculated using the Wiener–Hopf solution for a133

spinning mode radiated from a cylindrical intake duct. This solution was given by Homicz134

and Lordi in 1975 [13], albeit we have used a more recent formulation taken from Gabard135

and Astley [14] which itself was based on the formulation by Munt [16]. Subsequently the136

procedure to calculate the scattered field, and to construct the total field, is the same as137

detailed in Gaffney, McAlpine and Kingan ([11], Sec. II). Accordingly, in this article, only138

the theory for the incident field is covered in detail, and for brevity, only brief details are139

given about the procedure to calculate the fuselage scattering including the boundary-layer140

refraction.141

A. In-duct Sound Field142

The intake is modelled by a cylindrical duct with a rigid, impervious and infinitesimal wall.143

The duct has radius a and is semi-infinite, −∞ < z < 0. The flow velocity inside the duct144

is the same as the flow outside the duct, i.e. Mach number M∞ directed in the negative145

z-direction. It is also noted that the ambient density ρ0, and speed of sound c0 are uniform146

everywhere.147

The in-duct acoustic pressure field is defined in terms of spinning modes [12]. Each mode148

is defined by its integer azimuthal order l and radial order q. Time-harmonic solutions are149

expressed by plq = p̂lq(r, z) exp {i(ω0t− lφ)} and uz lq = ûz lq(r, z) exp {i(ω0t− lφ)} for the150

acoustic pressure and axial particle velocity respectively, noting that the values are normalised151
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such that k0 = ω0. These are found by solving the convected Helmholtz equation, which gives152

p̂lq(r, z) = PlqJl(κlqr)e
−ikz lqz , (1)

ûz lq(r, z) = ξlqPlqJl (κlqr) e−ikz lqz , (2)

where Plq is the modal amplitude, Jl(·) denotes the Bessel function of the first kind of order153

l, and κlq, kz lq denote the radial and axial wavenumber of mode (l, q) respectively. The rigid154

boundary condition on the duct wall gives the radial wavenumber which corresponds to the155

lth turning point of the Bessel function. The acoustic pressure and particle velocity are linked156

via the factor157

ξlq =
kz lq

k0 + kz lqM∞
, (3)

and the dispersion relationship (valid for the in-duct field) is given by158

k2
z lq + κ2

lq = (k0 + kz lqM∞)2 . (4)

The modal amplitude can be related to the modal power Wlq via159

|Plq| =
√√√√√ 2Wlq

π
[
a2 − (l/κlq)

2] J2
l (κlqa)

[
(1 +M2

∞) Re {ξlq} −M∞ (1 + |ξlq|2)

] . (5)

This relation will be used to specify the amplitude of each mode to form an incoherent,160

equal-power-per-mode source for which illustrative examples are provided in Sec. IV.161

B. Incident Field162

The Wiener–Hopf formulation by Gabard and Astley [14] for a spinning mode radiated from163

a cylindrical duct is used to determine the incident field. The key parts of the derivation are164

outlined in this section. Full details and how to implement the solution are given in Ref. [14].165
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Differences between this and the formulation by Gabard and Astley is the convention for166

time-harmonic quantities and the choice of reference length scale∗. Also Gabard and Astley167

derive the solution based on a velocity potential formulation, whereas in this article the key168

steps in the analysis are formulated in terms of the pressure.169

The problem is defined such that the incident field p̂i for mode (l, q) is given by a summation170

of the (in-duct) spinning mode, given by Eq. (1), and a diffracted field p̂d, such that171

p̂i =


p̂lq + p̂d , r < a

p̂d , r > a

. (6)

Since the walls of the duct have infinitesimal thickness, conditions are specified taking the172

limits as r → a− and r → a+, where the superscript − denotes approaching r = a from173

r < a, and the superscript + denotes approaching r = a from r > a. In the region z < 0, this174

corresponds to taking the limit inside or outside the duct. Therefore, on the rigid duct wall175

the radial particle velocity is zero. This is equivalent to zero pressure gradient, i.e.176

∂p̂i(a
−, z)

∂r
=
∂p̂i(a

+, z)

∂r
= 0, z < 0 . (7)

Forward of the duct, there is pressure continuity, i.e.177

p̂i(a
−, z) = p̂i(a

+, z), z ≥ 0 , (8)

⇒ p̂lq(a
−, z) + p̂d(a

−, z) = p̂d(a
+, z), z ≥ 0 . (9)

Therefore, the diffracted field must be discontinuous at r = a for z ≥ 0. The pressure178

∗Gabard and Astley define time-harmonic waves using the convention exp {−iω0t} and take the duct radius

a as the reference lengthscale. In the current article, the convention used for time-harmonic waves is exp {iω0t}

and the reference lengthscale is the cylinder radius a0.
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jump in the diffracted field is179

∆p̂d = p̂d(a
+, z)− p̂d(a−, z) = p̂lq(a

−, z), z ≥ 0 . (10)

The solution is found by taking a Fourier transform in the axial position z, however, the180

Fourier transform is split into two half-range transforms to take account of the different181

boundary conditions on r = a for z < 0 and z ≥ 0, i.e.182

p̃d−(r, k̄z) =

∫ 0

−∞
p̂d(r, z) eik0k̄zz dz , (11a)

p̃d+(r, k̄z) =

∫ ∞
0

p̂d(r, z) eik0k̄zz dz , (11b)

where k̄z = kz/k0. The full transform is183

p̃d = p̃d− + p̃d+ . (12)

Following Gabard and Astley [14], it can be shown that pd± are regular in the half-planes R±184

where R±: ∓Im(kz − k±z ) < ∓ tan(ε)Re(kz − k±z ).185

Upon Fourier transformations the convected Helmholtz equation reduces to Bessel’s differ-186

ential equation, and the solutions are chosen as187

p̃d(r, k̄z) =


A(k̄z) H

(2)
l (k0Γ0r) r > a

B(k̄z) Jl(k0Γ0r) r < a

. (13)

Note that H
(2)
l (·) is the Hankel function of the second kind of order l. This solution is188

selected for r > a because it satisfies the appropriate radiation condition as r →∞ (outward189

propagating wave). The other solution with Jl(·) is selected for r < a because it satisfies the190

finiteness condition at r = 0.191

Outside of the duct the dispersion relationship is192

k̄2
z + Γ2

0 =
(
1 + k̄zM∞

)2
. (14)
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This can be written as Γ0 = Γ+
0 Γ−0 where193

Γ+
0 =

[
1 + (M∞ − 1)k̄z

]1/2
and Γ−0 =

[
1 + (M∞ + 1)k̄z

]1/2
, (15)

where Γ±0 have zeros at194

k̄−z = − 1

1 +M∞
and k̄+

z =
1

1−M∞
. (16)

The transform of the radial particle displacement ε̂r on r = a by W . This reduces to the195

half-range transform196

W+(k̄z) =

∫ ∞
0

ε̂r(a, z) eik0k̄zz dz , (17)

since the radial particle velocity is zero on the rigid duct, hence W− = 0.197

Then taking the transform of the radial component of the linearised momentum equation,198

and substituting Eqs. (13) and (17), gives199

(1 + k̄zM∞)2W+ = A(k̄z)Γ0H
(2)
l

′
(k0Γ0a) = B(k̄z) Γ0J′l(k0Γ0a) . (18)

The objective is to find A(k̄z) and B(k̄z) by deriving an expression for W+. The transform200

of the pressure jump of the diffracted field [Eq. (10)] is201

G(k̄z) =

∫ ∞
−∞

∆p̂d eik0k̄zz dz , (19)

=

∫ ∞
−∞

[
p̂d(a

+, z)− p̂d(a−, z)
]

eik0k̄zz dz , (20)

which, from Eq. (13), leads to202

G(k̄z) = A(k̄z) H
(2)
l (k0Γ0a)−B(k̄z) Jl(k0Γ0a) . (21)

However, since the pressure is continuous on r = a for z > 0, combining Eqs. (1), (10) and203

(20), the positive half-range transform of G can be evaluated analytically,204

G+(k̄z) = Plq

∫ ∞
0

Jl(κlqa) e−ikz lqz eik0k̄zz dz = iPlq
Jl(κlqa)

kz,lq − k0k̄z
. (22)
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Next, substituting for A(k̄z) and B(k̄z) from Eq. (18)205

G (k̄z) = G−(k̄z) +G+(k̄z) =
W+

Γ2
0

K, (23)

where the kernel K is206

K(kz) = (1 + k̄zM∞)2Γ0

(
Jl(k0Γ0a)

J′l(k0Γ0a)
− H

(2)
l (k0Γ0a)

H
(2)′
l (k0Γ0a)

)
. (24)

The functions will be factorised into analytic and non-analytic functions. Thus, factorise207

K such that208

K =
K+

K−
(k̄z − kz0)2, (25)

where K+ and K− are regular, and kz0 = −k0/M∞. When substituted into Eq. (23) this gives209

G−(k̄z)K−(k̄z)Γ
−2
0 +G+(k̄z)K−(k̄z)Γ

−2
0 =

W+(k̄z)

Γ+2
0

K+(k̄z)(k̄z − kz0)2 . (26)

Equation (26) is modified to ensure that the left hand side is regular in the lower-half plane,210

G−(k̄z)K−(k̄z)Γ
−2
0 (k̄z) +G+(k̄z)K−(k̄z)Γ

−2
0 (k̄z)− Γ−2

0 (kz,lq)K−(kz,lq)G+(k̄z) =

W+(k̄z)

Γ+2
0 (k̄z)

K+(k̄z)(k̄z − kz0)2 − Γ−2
0 (kz,lq)K−(kz,lq)G+(k̄z) . (27)

Then, using Liouville’s theorem both sides of Eq. (27) are equal to a constant, say E. Let211

E(kz0) = −Γ−2
0 (kz,lq)K−(kz,lq)G+(kz0) so that W+ is given by212

W+(k̄z) = −Γ−2
0 (kz,lq)Γ

+2
0 (k̄z)

K−(kz,lq)

K+(k̄z)(k0 − kz0)2

[
G+(kz0)−G+(k̄z)

]
. (28)

Using the method in Gabard and Astley ([14], Appendix A), the functions K− and K+ can213

be evaluated. This gives214

A(k̄z) = (1 + k̄zM∞)2 W+(k̄z)

Γ2
0H

(2)′
l (k0Γ0a)

, (29a)

B(k̄z) = (1 + k̄zM∞)2 W+(k̄z)

Γ2
0J′l(k0Γ0a)

. (29b)
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Thus, combining Eqs. (13) and (29), the transformed incident pressure field is given by215

p̃d(r, k̄z) = (1 + k̄zM∞)2W+

Γ0


H

(2)
l (k0Γ0r)

H
(2)′
l (k0Γ0a)

r > a

Jl(k0Γ0r)
J′l(k0Γ0a)

r < a

. (30)

Only the incident field for r > a will be required for the cylinder scattering problem. Thus,216

the required field, for a spinning mode of amplitude Plq, is expressed as217

p̃i (r, k̄z) = p̃d (r, k̄z) = ζ̃lq(k̄z) H
(2)
l (k0Γ0r) , (31)

where218

ζ̃lq(k̄z) = Plq
(1 + k̄zM∞)2W+

Γ0H
(2)′
l (k0Γ0a)

. (32)

Then on taking the inverse Fourier transform, the incident field is given by219

p̂i(r, φ, z) =
1

2π

∫ ∞
−∞

ζ̃lq(k̄z) H
(2)
l (k0Γ0r) e−ik0k̄zz dk̄z e−ilφ . (33)

The integration contour is deformed from the real axis by analytic continuation such that220

the functions are regular. This means avoiding poles in K caused by the acoustic modes in221

the duct. The location of the poles are the complex conjugate of those found in Ref. [14].222

The key result is the complex amplitude of the incident field ζ̃lq [Eq. (32)], which depends223

on W+ [Eq. (28)]. This is adapted from Gabard and Astley ([14], Eq. (3.22)). It is emphasised224

that this is not a new result, since it gives the pressure field for a spinning duct mode radiated225

from a cylindrical duct, but Eq. (31) is formulated so that the incident field can be combined226

with the scattered field to determine the total field resulting from fuselage scattering.227

C. Fuselage Scattering including Boundary-layer Refraction228

Having determined the incident pressure for a spinning mode radiated from a circular duct229

into a free field, the objective is to determine the total field in the presence of a cylindrical230
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fuselage located adjacent to the intake duct. The effect of refraction as the sound propagates231

through the fuselage boundary layer is included in the modelling.232

The basic procedure now follows the method outlined in McAlpine et al. [10], with the233

method to include the boundary layer outlined in Gaffney et al. [11]. Graf’s addition theorem234

([10], Eq. (25)) is used to transform the incident field to the cylindrical polar coordinate235

system (r̄, φ̄, z̄) centred on the cylindrical fuselage. This transforms Eq. (33) to236

p̂i(r̄, φ̄, z̄) =
1

(2π)2

∞∑
n=−∞

(∫ ∞
−∞

p̃in(r̄, k̄z) e−ik0k̄z z̄ dk̄z

)
e−inφ̄ , (34)

where237

p̃in(r̄, k̄z) = 2πζ̃lq(k̄z)(−1)(l+n)e−i(l−n)βH
(2)
l−n(k0Γ0b) Jn(k0Γ0r̄) . (35)

It is important to note that ζ̃lq(k̄z) is not affected by the transformation of coordinates.238

The incident field is now defined. The method to incorporate fuselage scattering including239

boundary-layer shielding refraction now follows the same procedure outlined in Gaffney et240

al. ([11], Sec. II B).241

An inviscid compressible isentropic perfect gas flow is assumed. The mean flow is assumed242

to be axisymmetric, parallel and directed in the negative axial direction, with constant mean243

density and sound speed profiles inside the boundary layer. The velocity profile Mz is given244

by245

Mz =


M(r̄) 1 < r̄ ≤ 1 + δ

M∞ 1 + δ < r̄

, (36)

where δ is the non-dimensional thickness of the boundary-layer, and M(r̄) is the boundary-246

layer Mach number profile. Note that the non-dimensional radius of the fuselage is unity.247

Outside the boundary layer, where there is uniform flow, the acoustic pressure field is found248
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by solving the convected Helmholtz equation. In this region, each azimuthal component of249

the total pressure field can be expressed in the form250

p̃n(r̄, k̄z) = η̃n(k̄z) Jn(k0Γ0r̄) + γ̃n(k̄z) H(2)
n (k0Γ0r̄) , (37)

where η̃n(k̄z) and γ̃n(k̄z) are amplitude coefficients of the incident and cylindrical scattered251

waves respectively.252

Inside the boundary-layer region, the acoustic pressure field will satisfy the Pridmore-253

Brown equation,254 [
d2

dr̄2
+

(
1

r̄
− 2k̄zM

′

1 + k̄zM

)
d

dr̄
+

(
k2

0Γ2
0 −

n2

r̄2

)]
p̃bln = 0 , (38)

where M ′ = dM/dr̄.255

There is no known analytical solution to the Pridmore-Brown equation, therefore a stan-256

dard Runge-Kutta ordinary differential solver is utilised. Accordingly, the transformed pres-257

sure in the boundary layer is normalised, i.e.258

p̃bln
(
r̄, k̄z

)
= α̃n(k̄z)f̃bln

(
r̄, k̄z

)
, (39)

where f̃bln is the normalised pressure, which is scaled by α̃n(k̄z). On the surface of the rigid259

cylinder (r̄ = a0 = 1), the boundary conditions are260

p̃bln(1, k̄z) = α̃n(k̄z) and p̃′bln(1, k̄z) = 0 . (40)

The value of α̃n must be proportional to the incoming wave. In order to formulate α̃n261

in terms of the incident wave amplitude, matching conditions are applied at the edge of the262

boundary layer (r̄ = 1 + δ) to enforce continuity of pressure and the pressure gradient. The263

pressure in the boundary layer is scaled to match the amplitude of the incoming wave, i.e.264

α̃n(k̄z) = Λ̃n(k̄z)η̃n(k̄z) , (41)
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where265

Λ̃n(k̄z) = − 2i

π[1 + δ]

1

f̃bln

∣∣∣
1+δ

k0Γ0H
(2) ′
n (k0Γ0[1 + δ])− f̃ ′bln

∣∣∣
1+δ

H
(2)
n (k0Γ0[1 + δ])

, (42)

and266

η̃n(k̄z) = 2πζ̃lq(k̄z)(−1)(l+n)e−i(l−n)βH
(2)
l−n(k0Γ0b) . (43)

It is noted that Λ̃n(k̄z) is a function that depends on the boundary-layer profile, but it does not267

depend on the spinning mode order (l, q), whereas the amplitude coefficient η̃n(k̄z) depends268

on the spinning mode (l, q), but it does not depend on the boundary-layer profile.269

Finally, on the surface of the cylinder, the pressure can be calculated via270

p̂t
(
a0, φ̄, z̄

)
=

1

(2π)2

∞∑
n=−∞

{∫ ∞
−∞

α̃n(k̄z) e−ik0k̄z z̄dk̄z

}
e−inφ̄ . (44)

The integration contour of this solution is identical to that of the incident field, [Eq. (33)].271

III. Validation272

A. Implementation273

Only brief details about the implementation procedure are mentioned in this article since274

similar details about the numerical implementation are given in the previous articles on this275

work by the authors [10],[11]. The Wiener–Hopf solution for a spinning mode has been276

implemented directly into the installation acoustics code by adapting another in-house code277

named ‘GXMunt’ written by Gwénaël Gabard, based on the formulation derived by Gabard278

and Astley [14].279

The other difference between the new installation acoustics code, and the implementation280

described in Gaffney et al. [11], is that all wavenumbers in the Wiener–Hopf solution are taken281
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to be complex. This means that no special treatment is required for the critical layer in the282

Pridmore-Brown equation, owing to this feature of the Wiener–Hopf solution. Consequently,283

it is no longer necessary to implement a Frobenius solution to integrate the Pridmore-Brown284

equation across the critical layer described in Gaffney et al. ([11], Sec. III). When imple-285

menting the Wiener–Hopf method it is crucial to select an appropriate integration contour.286

The integration path must ensure that all the split functions are regular, in order to apply287

Cauchy’s integral theorem. This also applies to the inverse Fourier transform in Eq. (33),288

where the contour is displaced from the real axis.289

B. Comparison between disc source and spinning mode source290

In order to verify the results from the new installation acoustics code, results are compared291

between the disc source and the spinning mode source. Hocter [17] compared the Wiener–292

Hopf solution for a spinning mode and an approximate result obtained by the Kirchhoff293

approximation. The latter is directly comparable to the disk source model without the screen294

utilised in previous work by the authors [10],[11]. Hocter showed a representative sample of295

directivity patterns covering low- and high-order modes with a range of mode propagation296

angles. In all these examples, the principal lobe was very similar in both predictions, but297

all the directivity patterns were significantly different on approaching θ = 90◦. It is not298

possible to identify a single polar angle where the two solutions start to differ because Hocter299

showed that it varied for different modes, but commonly the solutions differ starting at polar300

angles between 60 and 70◦. Since differences in the directivity between the Wiener–Hopf301

solution for a spinning mode and the disk source model depend on the parameters which302

define the spinning mode, a key benefit of using the Wiener–Hopf method is that it removes303
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this uncertainty by using a solution which is valid at all polar angles.304

Figure 3 shows examples of the predicted sound pressure level on the cylindrical fuselage305

at φ̄ = 0 and 0 ≤ z̄ ≤ 2. The pressure is calculated using the disc source or the spinning306

mode source for the incident field. There is very close agreement between the two alternative307

predictions in the range 1 ≤ z̄ ≤ 2. Closer to the source plane, in the range 0 ≤ z̄ ≤ 1, the308

predictions differ, with typically a difference in excess of 5 dB at z̄ = 0. These predictions can309

be used to estimate θmax, which corresponds to the maximum polar angle (measured as shown310

in Fig. 1) at which there is good agreement between the fuselage pressure levels, predicted311

by either the disc source or the spinning mode source. For the same parameters used with312

Fig. 3, the values of θmax in Table 1 are calculated for a selection of values of z̄, whereby the313

value of z̄ specifies the axial location where the two alternative predictions (disc source and314

spinning mode) start to diverge. It is seen in Fig. 3 that the two predictions typically start315

to diverge in the range 0.5 ≤ z̄ ≤ 1. This roughly corresponds to θmax ≈ 70◦, which is similar316

to the findings in Hocter [17].317

Figure 4 shows the predicted sound pressure levels on the whole cylindrical fuselage in the318

range −5 ≤ z̄ ≤ 5 for an incident field comprised of a single mode, calculated using either319

the disc source or the spinning mode source. This illustrates the region forward of the source320

plane where predictions using either of the incident fields give very similar levels. In contrast,321

closer to the source plane the predicted levels using the disc source are not realistic, because322

in the absence of a mean flow the disc source prediction would be symmetric about the source323

plane.324
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Figure 3: Predictions of the normalised SPL at φ̄ = 0 for the disk source and spinning mode

source. The mean flow is uniform with no boundary layer. The relevant parameters are

k0a = 20, a = 0.5, b = 3 and M∞ = 0.75. (a) (l, q) = (4, 1), (b) (l, q) = (11, 1), (c)

(l, q) = (14, 1) and (d) (l, q) = (17, 1). Key: disk source (- - -); spinning mode (—).

Table 1: Estimates of θmax using the same parameters as in Fig. 3.

z̄ [ ] 0.5 1.0 1.5 2.0

θmax 76◦ 63◦ 53◦ 45◦
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Figure 4: (Color online) Normalised total SPL on the cylinder. Comparison between the

disc source (a) and the spinning mode source (b). The relevant parameters are k0a = 20,

a = 0.5, b = 3, (l, q) = (16, 1) and M∞ = 0.75.
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IV. Illustrative results325

A. Boundary-layer shielding326

This section focuses on the effect of boundary-layer refraction or ‘shielding’ on a single mode327

radiated from an intake duct. The difference between the predicted sound pressure level with328

and without the boundary layer, at a point on the cylindrical fuselage, is defined by329

∆ [dB] = SPLbl − SPL . (45)

An example of ∆ at φ̄ = 0 and −5 ≤ z̄ ≤ 5 for a quarter-sine boundary layer is shown in330

Fig. 5. The Helmholtz number in these results is fixed at k0a = 20 (a realistic blade passing331

frequency), whilst the thickness of the boundary layer is varied from a very thin profile,332

δ = 0.0025, to a thick profile, δ = 0.1, as defined by 99 % of the freestream velocity. For333

all the different boundary-layer thicknesses, there is little effect of boundary-layer refraction334

downstream of the source plane (z̄ < 0). However, upstream of the source (z̄ > 0), large335

reductions in the levels are predicted, caused by boundary-layer shielding as the upstream336

propagating sound is refracted away from the surface of the cylindrical fuselage. Even the very337

thin boundary-layer, δ = 0.0025, is predicted to give a reduction of nearly 20 dB, compared338

to without the boundary layer, at z̄ = 5. This reduction in the predicted SPL increases as the339

thickness of the boundary layer is increased, and can lead to effectively total shielding with a340

thick boundary layer.341

In order to quantify the effect of the boundary layer shielding over the whole cylinder, in342

Gaffney et al. [11] a simple shielding coefficient was introduced, defined by343

S =
(1/A)

∫
A
p2
bl dA

(1/A)
∫
A
p2 dA

≈
∑M p2

bl∑M p2
, (46)
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Figure 5: Predictions of ∆ at φ̄ = 0 for the spinning mode source. The boundary-layer

profile is quarter-sine with boundary-layer thickness δ varying from 0.0025 to 0.1. The other

relevant parameters are (l, q) = (4, 1), k0a = 20, a = 0.5, b = 3, and M∞ = 0.75. Key:

δ = 0.0025 (solid line, no symbols), δ = 0.01 (solid line, ×), δ = 0.025 (solid line, ◦),

δ = 0.05 (dashed line, no symbols), δ = 0.075 (dashed line, ×), δ = 0.1 (dashed line, ◦).

where in practice it is sufficient to evaluate S via a sum of the predicted mean square pressures344

over theM grid points distributed over the cylinder surface. The value of S will be between345

0 and 1, where zero represents total shielding and unity represents no shielding.346

However, in the previous work there were only simulation results upstream of the source347

plane. Therefore in order to examine the effects of upstream and downstream sound propa-348

gation, additional shielding coefficients S+ and S− are defined349

S+ =

∑M+ p2
bl∑M+ p2

∣∣∣∣∣
z̄>0

and S− =

∑M− p2
bl∑M− p2

∣∣∣∣∣
z̄<0

, (47)

where M+/− denotes the grid points distributed over the cylinder’s surface for z̄ ≷ 0. It is350

emphasised that S 6= S+ + S−.351

An illustrative result is shown in Fig. 6 with the same parameters used in the example shown352

in Fig. 5. In Fig. 6(a) the S+ and S− shielding coefficients are plotted against boundary-layer353
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Figure 6: Prediction of the shielding coefficient S for the quarter-sine boundary layer profile

with varying boundary-layer thickness δ: (a) S+ (dashed line) and S− (solid line); (b) S.

The relevant parameters are (l, q) = (4, 1), k0a = 20, a = 0.5, b = 3 and M∞ = 0.75.

thickness from δ = 0 to 0.1. This isolates the upstream and downstream effects of boundary-354

layer refraction. For upstream propagating sound only a relatively thin boundary layer is355

required for very significant shielding to be predicted. For downstream propagating sound356

some modest shielding is predicted, but in fact this is due to the difference in the predictions357

on the far side of the cylinder (not shown). In Fig. 6(b) the total shielding over the whole358

cylinder (upstream and downstream combined) is very significant, even for thin boundary359

layers, owing to the shielding of sound propagating upstream of the source plane.360
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B. Multi-mode simulations361

In Gaffney et al. [11] the illustrated results showing the effect of boundary-layer shielding were362

for a single incident mode. However, a multi-mode source provides a better representation of363

fan tone radiation. This section presents some multi-mode results.364

From Sec. II.C, the surface pressure p̂t [Eq. (44)] is expressed in terms of an inverse Fourier365

transform of the function α̃n(kz) [Eq. (41)], where α̃n is the product of the functions Λ̃n(kz)366

[Eq. (42)] and η̃n(kz) [Eq. (43)]. The evaluation of Λ̃n is the principal time-consuming step367

in the method, since it involves the numerical integration of the Pridmore-Brown equation368

through the boundary layer. However, Λ̃n is independent of the incident mode order (l, q);369

only the function η̃n is dependent on (l, q). This means that multi-mode results can be370

calculated very efficiently, because for a fixed frequency the function Λ̃n(kz) is only required371

to be evaluated once. For the simulation results shown in this section, an incoherent sum of372

all the cut-on modes is performed, but despite the incoherent sum involving 127 modes, the373

total run-time is only around twice the computation time that is required for a single mode.374

The simulation results shown in Fig. 7 are for a multi-mode source with equal power per375

(cut-on) mode, whereas in Fig. 7 the results are for a multi-mode source with equal power per376

mode, except mode (l, q) = (16, 1) which is 45 dB higher. This type of scenario reflects the377

situation where one or more modes may be dominant owing to the type of source mechanism,378

for example, rotor-locked modes which are dominant when the rotor-locked pressure field is379

cut on.380

In both examples, the total SPL on the surface of the cylinder is shown for the range381

−5 ≤ z̄ ≤ 5. At z̄ = 5, with the thin boundary-layer the predicted SPL is approximately382
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20 dB less than is predicted with uniform flow (no boundary layer). With the thick boundary-383

layer the predicted SPL is approximately 50 dB less compared with no boundary layer. These384

reductions are due to the boundary-layer refracting the sound away from the cylinder, and,385

as expected, the effect of boundary-layer shielding is much more significant with the thick386

boundary layer.387

Contrastingly, downstream of the source plane the predicted levels with uniform flow or388

the thin boundary layer are very similar. There are small differences compared with the thick389

boundary-layer, but, also as expected, the effect of boundary-layer shielding is rather small,390

since the downstream propagating sound is refracted towards the cylinder.391

Finally, in Fig. 8 the directivity pattern of mode (l, q) = (16, 1) is visible, mapped onto392

the surface of the cylinder. The intersection of the principal lobe corresponds to the area of393

highest SPL. Overall, the results in Fig. 8 are very similar to the results in Fig. 7, but with394

the effective directivity pattern of the protruding mode imposed on the visualisations of the395

total sound pressure levels.396

V. Discussion397

Nayfeh et al. [18] showed that inside a flow duct, predictions quantifying the effect of boundary-398

layer shielding showed similar results for different boundary-layer profiles if the different pro-399

files were scaled such that they had the same displacement thickness (δ?). The exception was400

the power-law profile which is commonly used to model a turbulent boundary layer.401

A similar illustrative example is shown in Fig. 9, based on the exterior problem considered402

in the present work, i.e. boundary-layer shielding on the external surface of a cylindrical403
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Figure 7: (Color online) Normalised total SPL on the surface of the cylinder for an

incoherent, multi-mode source with equal power per mode: (a) uniform flow, δ = 0.0; (b)

δ = 0.01; and (c) δ = 0.1. The boundary-layer profile is quarter-sine. The dashed line shows

the position of the source plane z̄ = 0 (the source is not shown). The relevant parameters

are k0a = 20, a = 0.5, b = 3 and M∞ = 0.75.
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Figure 8: (Color online) Normalised total SPL on the surface of the cylinder for an

incoherent, multi-mode source with equal power per mode except (l, q) = (16, 1) whose

modal amplitude is set 45 dB higher: (a) uniform flow, δ = 0.0; (b) δ = 0.01; and (c) δ = 0.1.

The boundary-layer profile is quarter-sine. The dashed line shows the position of the source

plane z̄ = 0. The relevant parameters are k0a = 20, a = 0.5, b = 3 and M∞ = 0.75.
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fuselage. Predictions of ∆ [Eq. (45)] for three boundary-layer profiles are compared. The404

profiles are linear, quarter-sine and 1/7th power law with linear sublayer of thickness 0.001 δ.405

The results show predictions of ∆ versus δ? at two different locations on the fuselage. The406

range of δ? from zero to 0.0125 is equivalent to varying the boundary-layer thickness δ from407

zero to 0.1 for the 1/7th power-law profile. In Fig. 9 it is seen that at both locations on408

the cylinder, the predictions of ∆ obtained with the linear or quarter-sine profiles are almost409

identical, but the predictions with the power-law profile differ from the other two profiles.410

This is consistent with the previous findings reported by Nayfeh et al. for the flow duct411

problem.412

Also in Fig. 9, the results clearly show that for thin boundary layers the rate-of-change413

of ∆ is nonlinear as δ? is increased, whereas for thicker boundary layers the change in ∆ is414

linearly proportional to the change in δ?.415

It is possible to predict similar values of ∆ obtained with the power-law profile by utilising416

a simple, discontinuous, ‘step’ velocity profile. The ‘step’ velocity profile is taken to be zero417

for 0 < r̄ < 1 + τδ, and equal to M∞ for 1 + τδ < r̄, where δ is the thickness of the power-418

law boundary layer. There is a discontinuous step change in the velocity from zero to the419

free-stream value at r̄ = 1 + τδ. Predictions of ∆ versus δ for the 1/7th power-law boundary-420

layer profile, and the ‘step’ velocity profile with τ = 1
3
, are shown in Fig. 10. Results are421

compared at locations upstream (z̄ = 5), downstream (z̄ = −5) and in the source plane422

(z̄ = 0). There is excellent agreement between the two separate predictions of ∆ upstream of423

the source, where shielding will be very significant. Thus, it is seen that the ‘step’ velocity424

profile (with an appropriate value of τ) could be used instead of the power-law profile to425

calculate realistic predictions of boundary-layer shielding. The benefit of this approach is426
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Figure 9: Predictions of ∆ versus boundary-layer displacement thickness δ? for three

different velocity profiles. The 1/7th power-law boundary layer is compared against linear

and quarter-sine boundary-layer profiles at (a) φ̄ = 0, z̄ = 0, and, (b) φ̄ = 0, z̄ = 5. The

relevant parameters are (l, q) = (4, 1), k0a = 20, a = 0.5, b = 3 and M∞ = 0.75. Key:

power-law (solid line); linear (solid, ×); quarter-sine (solid, ◦).
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Figure 10: Predictions of ∆ versus boundary-layer thickness δ for two different velocity

profiles. The 1/7th power-law boundary layer is compared against the step-change profile,

with step thickness equal to one-third of the boundary-layer thickness. Results are shown at

φ̄ = 0 and z̄ = 5, 0, and −5. The relevant parameters are (l, q) = (4, 1), k0a = 20, a = 0.5,

b = 3 and M∞ = 0.75. Key: z̄ = 5 (solid lines); z̄ = 0 (dashed lines); z̄ = −5 (dashed-dot

lines); power-law (crosses), and step-change (no symbol).

that a fully analytical solution can be derived for a ‘step’ velocity profile because there is427

no sheared flow. Consequently, the calculations are extremely quick, comparable with the428

calculations for uniform flow with no fuselage boundary layer.429

VI. Conclusions430

In this article, the key advancement to a theoretical model for calculating the fuselage pressure431

levels due to fan tones radiated from the intake of an installed turbofan aero-engine is the432

use of a Wiener–Hopf solution of a spinning mode exiting a cylindrical duct to specify the433

incident field. As in previous work by the authors [10, 11], the total field is given by the sum434

of the incident and scattered fields, and is calculated with the inclusion of refraction by the435
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fuselage boundary layer. The advanced method enables more representative predictions to436

be obtained in the region around the source plane, up to a maximum polar angle θmax > 90◦,437

after which point the intake fan noise ceases to the dominant source of noise incident on the438

fuselage.439

This work focusses on the prediction of intake fan tones, such as “buzz-saw” tones, and440

the incident sound on the fuselage forward of the wings. However, the radiation of bypass441

fan tones also is applicable using the Wiener–Hopf technique, and has been examined by442

a number of authors including Munt [16], Rienstra [19], Gabard and Astley [14], Samanta443

and Freund [20] and Veitch and Peake [21]. Thus there is scope to use the Wiener–Hopf444

method to construct the incident field for a fan tone radiated from the bypass duct, and to445

incorporate this into the installation acoustics method. However this problem has significant446

added complexity, compared to the intake noise radiation problem. Other tonal sources,447

such as turbine tones, are radiated from the engine’s exhaust. Sound radiated from the448

exhaust propagates through the jet shear layers which causes refraction, and also, potentially,449

spectral broadening or ‘haystacking’ of tonal sound fields. Additionally for the installation450

acoustics problem, exhaust noise radiation will be affected by the wings for wing-mounted451

engines. Thus, for incident sound on the fuselage downstream of the wings, there are number452

of additional issues that would need to be examined. Recently the current focus of research in453

this area has focussed on the issue of jet-wing interaction, which could be a more significant454

source of the aft noise radiation.455

Illustrative results show that boundary-layer shielding forward of the source can be very456

significant. It is also highlighted that it is possible to obtain realistic estimates of the shield-457

ing without necessarily modelling the realistic boundary-layer profile. It may be sufficient458
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to ensure that the profile has realistic thickness parameters, without necessarily having to459

determine the realistic mean-flow profile.460

It is also shown that multi-mode sources can be simulated very efficiently using this ap-461

proach, without any prohibitive increase in the computational cost compared to simulations462

for a single mode.463

In summary, the fidelity of this theoretical model for installation acoustics is comparable464

with previous methods which had been developed for propeller noise sources, but not for465

turbofan noise sources. The incident field can be calculated using the Wiener–Hopf solution466

which is valid at all polar angles, thus predictions can be extended downstream as well as467

upstream of the source plane. However, it is emphasised that further downstream the fuselage468

pressure levels will be dominated by exhaust noise sources.469

All the data supporting this study is openly available from the University of Southampton470

repository at http://dx.doi.org/10.5258/SOTON/XXXXXX471
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