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Abstract

In this investigation we focus on the problem of modelling the transport of the
charged species (lithium ions) in electrolyte solutions with moderate and high salt
concentrations (0.1M to >2M), and consider the Nernst-Planck equation as a model
of such processes. First, using a combination of magnetic resonance imaging (MRI)
and inverse modelling (IM) we demonstrate that at higher concentrations the Nernst-
Planck equation requires negative transference numbers in order to accurately describe
the concentration profiles obtained from experiments. The need for such a physically
inconsistent constitutive relation indicates the loss of validity of the Nernst-Planck
equation as a model for this process. Next we consider the formation of ion pairs
and clusters as a possible effect responsible for the appearance of negative transference
numbers and derive an extended version of the Nernst-Planck system which accounts
for these additional species. However, a careful analysis of this model reveals that
incorporation of ion-pairing effects into the modelling will not change the transference
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numbers inferred from the experimental data via inverse modelling. This demonstrates
that physical effects other than formation of ion pairs and clusters must be incorporated
into the Nernst-Planck model in order for it to correctly describe ion transport at higher
salt concentrations. One prime candidate for such effects is the motion of the reaction
surface resulting from dendrite growth.

1 Introduction

Modelling plays an ever increasing role in the design of Li-ion batteries which are now used
in applications ranging from portable consumer electronics to electrified vehicles. However,
modeling efforts are often hampered by the inadequacy of models and the lack, or inaccuracy,
of data on the material properties.
A complete and accurate description of the transport of charged species (ions) in electrolyte
solutions is an essential component of any model capable of simulating the behavior of actual
battery cells. The standard model describing diffusion and migration of ions in dilute elec-
trolyte solutions is the Nernst-Planck (NP) equation [1]. It corresponds to a simplified form
of the concentrated-solution theory of mass transport which itself is based on the Maxwell-
Stefan equations. The Nernst-Planck equation, although strictly valid only for very dilute
solutions, can be adapted to treat some electrolytes of practical interest by introducing con-
centration dependence to the mass-transport parameters, i.e. diffusion coefficients D(c) and
transference numbers t+(c) [1, 2]. One way of determining these concentration-dependent
material properties is inverse modelling (IM) which is a technique for optimal reconstruc-
tion of their form based on suitably matching model predictions to the experimental data.
This IM technique has already been applied to determine the material properties of lithium
bis(trifluoromethanesulfonyl)imide dissolved in propylene carbonate and the forms of D(c)
and t+(c) obtained were shown to be in good agreement with the results obtained using
other methods [2]. Since then, we have determined Li concentration profiles in a symmetric
Li-Li cell filled with 1M LiPF6 in a binary mixture of ethylene carbonate (EC) and dimethyl
carbonate (DMC) with 1:1 ratio by volume under galvanostatic conditions. Applying the IM
technique to the data obtained from this experiment leads to negative values of the trans-
ference number t+(c) < 0 at large concentrations. For binary electrolytes based on lithium
salts and neutral organic carbonates, such as the one used in our study, negative transference
numbers are not possible [3, 4]. However, negative values of lithium transference numbers
can occur for lithium salt/ionic liquid ternary mixtures with two cations and common anion,
as reported in [5]. It has long been known that ion aggregation occurs in certain electrolytes,
as has been deduced by Onsager from experiments in which the conductivity increases with
field strength [6, 7]. Initially we attributed the predicted negative transference numbers to
the omission of ionic aggregation from the model noting that: (i) there is good evidence that
such species can form in LiPF6 in EC:DMC which has a relatively low dielectric permittivity
(ε ≈ 30) and, therefore, exhibits a high degree of ion association (ion pairing> 50%) [3],
(ii) NMR experiments detect all Li nuclei independently of whether they are in the form of
free cations or part of a larger aggregate, and (iii) ion pairs, being neutral, do not perform
a migration motion in an applied electric field. Moreover, it has been postulated that a
phenomenon which could give rise to negative transference numbers in binary systems is the
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formation and transport of ionic aggregates which form and disintegrate spontaneously at
increased electrolyte concentrations [8]. We demonstrate in the present study that incorpo-
ration of ionic aggregation into an extended Nernst-Planck model does not in fact change
the transference numbers that can be inferred from the data. It is therefore apparent that in
order to obtain an accurate model of ion transport at high concentrations, one must augment
the Nernst-Planck model with other physical effects.
The structure of the paper is as follows. In Section 2 we describe the experiment used to
acquire the data. In Section 3 the standard Nernst-Planck model is introduced, together
with all modelling assumptions, and we present results indicating the loss of its validity at
moderate and high salt concentrations. An augmented model accounting for the possibility
that ion pairs can form and disintegrate is introduced in Section 4, where careful analysis
demonstrates that in the limit of fast reaction rates this augmented model remains formally
equivalent to the original Nernst-Planck system. A discussion and final conclusions are
provided in Section 5 whilst additional details, including a further extension to higher order
aggregates with the same conclusion is presented in the appendices.

2 Experimental

The experiment monitors the gradual build-up of the ionic concentration gradient in an
electrolyte solution which results from the application of a constant current, starting from an
initially uniform concentration throughout the solution volume. The experiment is carried
out under galvanostatic conditions in a symmetric Li-Li electrochemical cell constructed
from a 5 mm diameter NMR tube, shown in Figure 1, filled with a 1M LiPF6 solution
in a binary mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) with 1:1
volume ratios. A constant current of 75 µA (corresponding to the current density of 382
µA cm−2) was applied to the cell for 16 hours. Concentration profiles were acquired using
magnetic resonance imaging (MRI). For this experiment we chose to monitor the 19F nuclei,
which significantly reduces the data acquisition time, since the relative NMR sensitivity to
a 19F nucleus is approximately 3 times higher than to a 7Li nucleus. One-dimensional 19F
NMR images were obtained using a gradient spin-echo pulse sequence with the magnetic
field gradient applied along the x-direction (i.e., along the axis of the cell), with a 3 ms echo
time and a 20 G/cm reading gradient [9]. In the course of the experiment 256 frequency-
domain points were collected over the spectral width of 200 kHz. The combination of the
magnetic field gradient and spectral resolution yielded a spatial resolution of 40 µm. A total
of 64 scans with a relaxation delay of 3.5 s were collected for each image, resulting in an
acquisition time of 4 minutes per image. The imaging measurement sequence was repeated
at 2-hour intervals uniformly spread over 14 hours duration of the galvanostatic experiment.
The experimentally obtained concentration profiles, hereafter denoted c̃(x, t), are shown in
Figure 1 at different times t ∈ [0, 14 hours] as functions of the space coordinate x.

3 The Nernst-Planck Model

In the present section we recall the classical Nernst-Planck model used to describe the trans-
port of charged species in dilute electrolytes [1]. The concentrations of cations and anions
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are denoted by c+ and c−, respectively. We make the following modelling assumptions in
order to obtain the mathematical description of the mass transport during the galvanostatic
experiment described in Section 2:

A1: isothermal conditions;

A2: the driving force for mass transport of a species is the gradient of its chemical potential;

A3: the lack of thermodynamic ideality (i.e., activity coefficient different from one) and the
effect of the solution viscosity are accounted for by an a priori undetermined dependence
of the material properties on the salt concentration;

A4: ion transport occurs only in the axial direction and transport in the radial direction of
the cell is negligible;

A5: the electrolyte solution is homogeneous at the beginning of the experiment;

A6: the system satisfies local electrical neutrality at every location in the bulk, which
implies that c+ = c− = c, were c is the salt concentration;

A7: mass transport occurs only by diffusion and migration in the applied electric field (i.e.,
convective transport is neglected);

A8: the cation flux at the two boundaries (x = 0 and x = L) corresponds to the applied
electric current and results in lithium deposition and stripping, respectively [10, 1].

We therefore consider a 1D problem with the spatial coordinate x ∈ [0, L], where L is the
length of the electrolyte-filled region in the cell, and time t ∈ [0, T ], where T denotes the
duration of the experiment. The above assumptions lead to the following partial differential
equation (PDE) describing mass transport in the electrolyte solution (1a), subject to the
boundary conditions (1b) and the initial condition (1c):

∂c

∂t
=

∂

∂x

[
D
∂c

∂x
+

(1− t+) I

FA

]
in (0, L)× (0, T ], (1a)

∂c

∂x

∣∣∣∣
x=0,L

= −(1− t+) I

DFA
in (0, T ], (1b)

c|t=0 = cinit in (0, L), (1c)

where cinit is the initial concentration, A is the cross-sectional area of the cell, F is Faraday’s
constant, whereas I denotes the applied constant current. We note that the effective Fickian
diffusion coefficient D and the transference number t+ are considered unknown and will be
reconstructed from the experimental data using the inverse modelling approach described in
the following subsection. In contrast to the standard Nernst-Planck theory, both the diffusion
coefficient and the transference number will be considered functions of the concentration c
in our model, i.e., D = D(c) and t+ = t+(c).
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3.1 Material Properties Estimates Based on the Nernst-Planck
Model

In our prior investigation [2] the inverse modelling approach (as briefly described in Appendix
A) was applied to infer material properties of lithium bis(trifluoromethanesulfonyl)imide so-
lutions in propylene carbonate with concentrations up to 1.1M and produced thermodynam-
ically consistent reconstructions of the effective diffusivity and Li+ transference number as
functions of the salt concentration. However, when this approach is applied to the concen-
tration profiles shown in Section 2, cf. Figure 1, which feature salt concentrations up to 2.2
M, the results shown in Figure 1 are no longer physically consistent. Specifically, while the
reconstruction of the diffusion coefficient D(c) is in the expected range, the reconstructed
values of the Li+ transference number t+(c) are negative for most of salt concentrations,
i.e., at > 0.85M. Under assumptions A1–A8, a negative transference number t+ implies that
the cationic current due to migration has a direction opposite to the electric field which is
physically impossible for binary symmetric electrolytes. At the same time, we emphasize
that the negative transference numbers were obtained as the constitutive relation in system
(1) that allows this system to optimally match the experimental data, in the sense of min-
imization of the least-square error (for details, see the minimization problems P1 and P2
defined in Appendix A). Therefore, such a result demonstrates that system (1) no longer
provides a physically valid description of the data. This failure is clearly attributable to
the fact that system (1) does not account for physical effects which become important at
higher concentrations. Such effects may include the formation of neutral ion pairs, different
forms of advection [11] or the motion of the reaction surface as dendrites are formed on the
electrode surfaces. We will discuss the former effect in the next section.

3.2 Prior Reports of Negative Cation Transference Numbers

There exist several prior studies that report negative transference numbers and speculate
about their possible origins. For example, investigation [12] provides evidence for a negative
transference number measured in a lithium binary symmetric electrolyte. While a number of
possible reasons for negative transference numbers is mentioned by the authors, they conclude
that the formation of large complexes and a high molecular weight of the anion may be the
key factor. An analogous opinion is expressed in monograph [13] where the authors argue
that formation of ion complexes of cations and anions with a net negative charge at higher salt
concentration in a non-symmetric electrolyte can result in a negative transference number.
This hypothesis was also reinforced by other studies [14]. The thermodynamic validity of
negative transference number was considered in [15]. Based on the analysis presented in
that study, one can conclude that in principle negative transference numbers may arise
under certain conditions in non-binary electrolytes. Since the experimental set-up discussed
in Section 2 involves a binary electrolyte, this argument cannot explain the results reported
in Section 3.1, cf. Figure 2. Hence, in the next section we will address the question whether
ion-paring effects could be used to justify negative transference numbers.
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4 Transport Model with Ion-Pairing Effects

In this section we formulate a generalized version of the Nernst-Planck model discussed in
Section 3, in which the effects of ion-pairing are explicitly accounted for. We will then draw
some conclusions about how this extension affects the reconstructions of material properties
via inverse modelling. Henceforth, we will use the term “ion pair” to describe complexes
that are formed when a positive and negative ion come sufficiently close together to become
(reversibly) bound by their Coulombic interaction. The formation of an ion pair could then
occur via the reaction Li+ + A− 
 LiA, where A− represents the anion in the binary
symmetric salt LiA. Of course, it is conceivable that higher-order clusters (consisting of
more than one of either the positive and negative ions) may form in electrolytic solutions and
in the recent literature there exist reports based on molecular dynamics (MD) simulations
indicating the presence of higher-order clusters in Li-ion battery electrolytes [16]. We note,
however, that MD probes phenomena on time scales several orders of magnitude faster than
the time scales for diffusion in liquids and no reports regarding the lifetime of higher-order
clusters were provided. Furthermore, the absence of the signature typical for the existence
of substantial amounts of triple ions in the ionic conductivity data for LiPF6/carbonates
solutions is also reported [17]. Therefore, for simplicity, in this section we neglect the presence
of higher-order ion clusters. However, this analysis arrives at the same conclusions when
extended to higher-order clusters, as demonstrated in Appendix D.
Conservation equations for each of the three species in the system can be written as follows

∂c+
∂t

+
∂F+

∂x
= −Q(c+, c−, co), (2a)

∂c−
∂t

+
∂F−
∂x

= −Q(c+, c−, co), (2b)

∂co
∂t

+
∂Fo
∂x

= Q(c+, c−, co), (2c)

where c+, c−, and co, are the cation, anion and ion-pair concentrations, respectively, F+,
F−, and Fo, are the corresponding fluxes (specified in Appendix B), whereas Q(c+, c−, co)
is the rate of the ion-pair formation reaction. In symmetrical electrochemical cells with
lithium metal electrodes, lithium is stripped from one electrode deposited onto the other.
The possible electrochemical reactions that can lead to lithium deposition/stripping are [18]

(I) Li
Li+ + e−, (3a)

(II) Li+ A−
LiA+ e−. (3b)

For reaction (I) we denote the forward reaction rate (per unit area) by r(I), on the electrode
at x = 0, and by R(I), on the electrode at x = L. For reaction (II) we denote the forward
reaction rate (per unit area) by r(II) on x = 0 and by R(II) on x = L. The appropriate
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boundary conditions on the ionic fluxes are thus

F+|x=0 = r(I), (4a)

F−|x=0 = −r(II), (4b)

Fo|x=0 = r(II). (4c)

F+|x=L = −R(I), (4d)

F−|x=L = R(II), (4e)

Fo|x=L = −R(II). (4f)

which can, in turn, be related to the current density flowing through the device via

j|x=0 = F (r(I) + r(II)), and j|x=L = −F (R(I) +R(II)). (5)

Charge neutrality. As is usual in such charge transport problems, at realistic ion con-
centrations there is almost exact charge neutrality

c− ≈ c+

throughout nearly all of the electrolyte, except in very narrow double layers adjacent to the
electrodes (typically of size around 1nm). This is a consequence of Poisson’s equations and
the very short Debye length of the electrolytes used in battery applications.

Reaction quasi-equilibrium. Borodin et al. [19] estimate the reaction rate for the dimeri-
sation reaction k to be of the order of 109s−1 and this allows us to determine how close to
quasi-equilibrium the dimerisation reaction will be. In the immediate vicinity of the elec-
trodes we do not expect the reaction to be close to equilibrium because the reactions occurring
there act to drive the system away from equilibrium. However, by comparing the timescale
for diffusion of ions L2/D to the reaction rate timescale 1/k we can obtain an estimate of the
length scale L away from the electrodes over which the system shows significant deviation
from equilibrium. With an estimate of D ∼ 10−9m2s−1 this gives L ≈ 1nm. Thus we expect
the dimerisation reaction to be at quasi-equilibrium throughout the electrolyte except in
narrow reaction layers, of width ≈ 1nm, in the immediate vicinity of the electrodes.

The bulk equations. Away from the Debye layers and reaction layers lying adjacent to
the electrodes we expect almost exact charge neutrality and almost exact equilibrium of the
dimerisation reaction. These two assumptions allow us to considerably simplify the governing
equations by writing

c− = c and c+ = c, (charge neutrality) (6)

and

c0 = F (c), (quasi-equilibrium of dimerisation reaction). (7)

Here the equilibrium function F (c) can be obtained by balancing the chemical potential of
the electrolyte with that of the dimer (see equation (25) in Appendix B). We note that a
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mass action balance, as considered for example in [20], would give [c+][c−] = MF [c0]
2, with an

equilibrium constant MF . Therefore, we would have F (c) = MF c
2 in (7), which is a special

case of the present more general approach. In (6) and (7) we therefore have two equations for
the three variables c+, c− and c0, and we need a further equation and appropriate boundary
conditions that will allow us to fully determine these variables.

A transport equation for total Lithium concentration in the bulk. In order to close
the problem for c+, c− and c0 in the bulk region (away from the Debye and reaction layers
adjacent to the electrodes) we seek a diffusion equation for the total lithium concentration
in the electrolyte

[Li] = [Li+] + [Li A] = c+ + co. (8)

This should be in a form in which the dimerisation reaction rate Q does not appear explicitly.
Because although the reaction lies close to quasi-equilibrium it is not necessarily true that
the Q terms in (2a)-(2c) are negligible. In addition, given the experiment that we are trying
to model, we require a relation between the total lithium flux and the current density at the
electrodes. Throughout nearly all the electrolyte (with the exception of the Double layers)
charge neutrality c− = c+ is satisfied and we can rewrite (8) in the form [Li] = 1

2
(c++c−)+co.

This motivates us to define the total lithium concentration cT and the total lithium flux FT
(outside the double layers) by the expressions

cT =
1

2
(c+ + c−) + c0, and FT =

F− + F+

2
+ F0. (9)

We note that while cT does not represent the total lithium concentration [Li] in the narrow
double layers, it is still possible to write down a conservation equation for cT throughout the
entire electrolyte (including the double layers). This is accomplished by adding twice (2c) to
(2a) and (2b) and dividing the result by two which yields an equation that is independent
of the volumetric reaction rate Q, namely

∂cT
∂t

+
∂FT
∂x

= 0. (10)

Appropriate boundary conditions on this conservation equation for cT can be derived by
re-expressing FT on the boundaries in terms of the reaction rates there, via (4a)-(4f) and
(5). This results in two conditions that are independent of the reactions occurring in the
boundary layers

FT |x=0 =
j(t)

2F
, and FT |x=L =

j(t)

2F
. (11)

The total lithium flux FT is related to total lithium concentration cT , except in the narrow
double and reaction layers adjacent to the electrodes, via the relation

FT = −D̃(cT )
∂cT
∂x
− j

2F
(1− 2t+). (12)

which is derived in Appendix B, cf. equation (33). Even though this definition of the flux
does not apply in the double and reaction layers, it holds in the central bulk region that
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extends across nearly the entire electrolyte. Since double and reaction layers are narrow,
their capacity for ions and ion pairs is low and consequently the total flux FT across them
is almost uniform (an argument that has been formalized by conducting a boundary layer
analysis of equation (10), see appendix C). Thus the boundary conditions (11) can be applied
directly to the bulk flux FT , as defined in (12), even though this relation does not hold in
the double and reaction layers adjacent to the reaction surfaces x = 0, L.
We note that when we substitute equation (12) for the flux into the conservation equation
(10) and the boundary conditions (11), we retrieve equations (1a)–(1b) which were used in
the original inverse modelling approach, namely,

∂cT
∂t

=
∂

∂x

(
D̃(cT )

∂cT
∂x

)
− ∂t+

∂x

j

F
, (13)

D̃(cT )
∂cT
∂x

∣∣∣∣
x=0

=
j

F
(1− t+), (14)

D̃(cT )
∂cT
∂x

∣∣∣∣
x=L

=
j

F
(1− t+). (15)

where here j is constant and related to the total current I via j = I/A. It is thus immediately
apparent that invoking ion pairing cannot resolve the issue of negative transference numbers,
since the system for the total lithium concentration that we obtain here is identical to
the original system investigated in the inverse-modelling approach used to determine the
electrolyte properties.

5 Conclusions and Outlook

The equivalence of the reduced system (13)–(15) with the effective diffusion coefficient D̃,
cf. (32), and the original Nernst-Planck model (1) demonstrates that accounting for ion-
pairing under the assumption of fast reaction rates cannot affect the transference numbers
reconstructed via inverse modelling. In particular, incorporation of this effect will not resolve
the problem highlighted in Section 3.1 where negative transference numbers were obtained
from reconstructions. As demonstrated in Appendix D, this conclusion still holds even when
higher-order ion clusters are taken into account. These findings therefore call into question
the claim made in [14] about the relation between negative transference numbers and ion
pairing. Since the extended model introduced in Section 4 which accounts for ion pairing still
cannot provide a physically consistent description of the galvanostatic experiment (cf. Section
2), one needs to consider other physical effects not accounted for in the Nernst-Planck model.
One such candidate is incorporation of the motion of the reaction surface owing to dendrite
growth, and inverse modelling in the presence of such effects will be the topic in a forthcoming
report.
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Appendices

A Inverse Modelling

The unknown material properties, D and t+, can be reconstructed based on the assumed
transport model, such as system (1), and using the concentration profiles obtained in the
NMR experiment described in Section 2. We will use the inverse modelling approach devel-
oped and validated in [2] in which the problem is framed as minimization of a cost functional
representing the least-squares deviation between the concentration values predicted by the
model (denoted c in eq. (1)) and the experimentally determined concentration values c̃. The
cost functional can thus be represented as

J (D, t+) =
1

2

∫ T

0

∫ L

0

[
c(x, t;D, t+)− c̃(x, t)

]2
dx dt. (16)

We will consider two distinct formulations corresponding, respectively, to constant and to
concentration-dependent material properties. The first one pertains to the standard Nernst-
Planck theory, whereas the second one represents the extension discussed in [2]. We will
henceforth distinguish the two cases by using the following notations: D and t+ for the
former case, D(c) and t+(c) for the latter case.
When both D and t+ are constant, we obtain a simple optimization problem (which is exact
in the limiting case of an ideal solution, i.e., at very dilute salt concentrations)

P1 : [D̂, t̂+] = argmin
[t+,D]∈R2

J (D, t+)

(henceforth carets “̂·” will denote optimal reconstructions). Problem P1 is rather well under-
stood and can be solved in a straightforward manner using commercially available software
tools such as the minimization routines in MATLAB. It was in fact already solved in the seminal
study by Klett et al. [21] and is also solved here as a preliminary step in a more complete
analysis.
A more complicated optimization problem arises when bothD(c) and t+(c) are concentration-
dependent, which reflects the physics of the problem in more realistic fashion

P2 : [D̂(c), t̂+(c)] = argmin
[t+(c), D(c)]∈X

J
(
D(c), t+(c)

)
,

where X denotes a suitable function space to which D(c) and t+(c) belong. We emphasize
that, apart from smoothness and the limiting behavior for large and small values of c,
no other a priori assumptions are made about the functional forms of D(c) and t+(c). In
contrast to the simplified problem P1, the computational approach required to solve the more
realistic problem P2 with concentration-dependent material properties is more involved and
necessitates specialized tools described in detail in [22, 23].

B The Total Lithium Flux in the Bulk

In this appendix we give the details behind the modification to the Nernst-Planck equations
accounting for ion pairing. We begin by stating expressions for the fluxes of positive ions
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F+, negative ions F− and ion pairs Fo using the Maxwell-Stefan diffusion formalism which
is applicable to moderately concentrated electrolytes [15]

F+ = −D+c+
RT

∂µ+

∂x
, µ+ = µ−	−+ +RT log a+ + Fφ, (17a)

F− = −D−c−
RT

∂µ−
∂x

, µ− = µ−	−− +RT log a− − Fφ, (17b)

Fo = −Doco
RT

∂µo
∂x

, µo = µ−	−o +RT log ao, (17c)

where Dk, µ
−	−
k and µk, and ak are, respectively, the diffusion coefficient, the reference and

total electrochemical potential and activity of the kth species (for k = +,−, o), whereas φ
is the electric potential. Within the electrolyte and away from the double layers at the
electrode there is almost exact charge electroneutrality, i.e. c+ = c−. This allows us to write

c+ = c, and c− = c. (18)

Substituting these electroneutrality relations into equations (2a)–(2b) and subtracting these
two equations gives the following relation for current conservation

∂j

∂x
= 0, where j = F (F+ −F−), (19)

in which j is the current density. On substituting for F+ and F− from (17a)–(17b), the
expression for j may also be written as

j = − Fc
RT

(
D+

∂µ+

∂x
−D−

∂µ−
∂x

)
. (20)

At this stage it is convenient to introduce the electrolyte chemical potential µe defined as

µe =
µ+ + µ−

2
, (21)

which has the property that it is independent of the electric potential, since by using the
definitions of the electrochemical potentials found in (17a)–(17b) and (21) we see that

µe = µ−	−e +RT log(ae(c)), where ae(c) = [a+(c)a−(c)]1/2 and µ−	−e =
µ−	−+ + µ−	−−

2
. (22)

Where the dimerisation reaction Li++A− � LiA is in quasi-equilibrium, the following rela-
tion between the chemical potentials is satisfied

µ+ + µ− = µo (23)

which in turn implies that

ao = Ka2e, where K = exp

(
2µ−	−e − µ−	−o

RT

)
, (24)
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and since ae = ae(c) and ao = ao(co), this implies a functional relationship between co and
c. Since we will be working with the “total concentration” cT = co + c, as defined in (9), it
is most helpful to express this in the functional form

co = f(cT ), (25)

from which it follows that

c = cT − f(cT ). (26)

We now seek to express the ion fluxes, as defined in (17a)–(17b), solely in terms of the
electrolyte chemical potential µe and the current density j. We do this (following [1]) by
referring to relation (20) and recasting (17a)–(17b) in the following form

F+ = − c

RT

[
D+

∂µ+

∂x
− α

(
D+

∂µ+

∂x
−D−

∂µ−
∂x

)]
+ α

j

F
,

F− = − c

RT

[
D−

∂µ−
∂x
− β

(
D+

∂µ+

∂x
−D−

∂µ−
∂x

)]
+ β

j

F

with an appropriate choice of α and β. In this instance, by taking α = t+ and β = −(1− t+),
where the transference number t+ is defined via

t+ =
D+

D− +D+

, (27)

we obtain the desired expressions, namely,

F+ = − c

RT

2D+D−
D+ +D−

∂µe
∂x

+
t+j

F
, (28a)

F− = − c

RT

2D+D−
D+ +D−

∂µe
∂x
− (1− t+)j

F
. (28b)

Defining

D†(c) = c
2D+D−
D+ +D−

∂µe
∂ae

∂ae
∂c

= c
2D+D−
D+ +D−

RT

ae

∂ae
∂c

,

where we used relation (22), we can rewrite the fluxes as

F+ = −D†(c) ∂c
∂x

+
t+j

F
, (29a)

F− = −D†(c) ∂c
∂x
− (1− t+)j

F
. (29b)

Similarly, defining D†o(co) = coDo
∂µo
∂ao

∂ao
∂co

, we have

Fo = −D†o(co)
∂co
∂x

. (30)
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Then, using the definition of the total lithium flux FT found in (9) together with the relations
(29a)–(29b) and (30), we obtain the following expression

FT = −
(
D†(c)∂cT

∂x

(
1− df

dcT

)
+D†o(co)

df

dcT

)
∂cT
∂x
− j

2F
(1− 2t+), (31)

where co and c are given by (25) and (26), respectively. It is straightforward to rewrite this
expression in terms of an effective diffusivity, defined by

D̃(cT ) = D†(c) +
(
D†o(co)−D†(c)

) df(cT )

dcT
, (32)

so that it now reads

FT = −D̃(cT )
∂cT
∂x
− j

2F
(1− 2t+). (33)

C Fluxes in the Reaction Layers

In this section we offer a systematic demonstration that the fluxes of the charged species
do not vary appreciably across the narrow reaction layers in the vicinity of the interfaces
using asymptotic methods. First, we cast the problem in nondimensional form by scaling
the dependent variables. Henceforth, quantities marked with a star are dimensionless. We
write

ci = ĉ c∗i , Q = k ĉQ∗, x = Lx∗, (34a)

Fi =
Lĉ

τ
F∗i , Ri =

Lĉ

τ
R∗i , t = τt∗, (34b)

where ĉ is a typical value of the ionic concentration, Fi is the flux of species i = {+,−, o},
τ is a characteristic timescale for the experiment, whereas k is a characteristic reaction rate.
Typical values of some of these parameters are summarized in Table 1. On applying these
scaling relations to equations (2) as well as (10) and its boundary conditions (11) we obtain

∂c∗+
∂t∗

+
∂F∗+
∂x∗

= −Q
∗

δ
,

∂c∗−
∂t∗

+
∂F∗−
∂x∗

= −Q
∗

δ
,

∂c∗o
∂t∗

+
∂F∗o
∂x∗

=
Q∗

δ
, (35a)

∂c∗T
∂t∗

+
∂F∗T
∂x∗

= 0, F∗T |x=0 =
J

2
, F∗T |x=1 =

J

2
, (35b)

where

δ =
1

τk
� 1, J =

j

FF∗i
= O(1). (36)

Here δ is the ratio of the typical timescale of experiment to those for ion-pairing reactions
while J is the ratio of the electronic current density supplied at the contact to the ionic
current density in the solution.
The small value of δ (which can be estimated using the parameter values in Table 1) requires
that the bulk of the electrolyte, where x∗ = O(1), be in quasi-equilibrium. Contrastingly,
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close to the edges of the domain near the electrodes, where either x∗ = O(δ) or 1−x∗ = O(δ),
the reaction rate could be sufficiently large that it may appreciably alter the fluxes of some
of the different species across these narrow layers. Examining (35a)–(35b) we see that the
fluxes of anions, cations and neutral ion pairs are all altered, but, crucially, the flux of the
total mount of Lithium is unaffected. To demonstrate this we make the following rescalings
in order to form the governing equations in the narrow (of width O(δ)) reaction layers

x∗ = δw∗l , 1− x∗ = δw∗r , (37)

so that wl and wr are the local coordinates within the left- and right-hand non-equilibrium
layers, respectively. Under these rescalings the governing system for c∗T , cf. relation (35b),
becomes

∂c∗T
∂t∗

+
1

δ

∂F∗T
∂w∗l,r

= 0 (38)

which, on noting the smallness of δ, immediately asserts that

F∗T =
j

2F
+O(δ) (39)

so one can thus write

F∗T
∣∣∣
x∗=0+,1−

=
j

2F
+O(δ) (40)

throughout the reaction layers adjacent to the electrodes. This more rigorously justifies the
application of the boundary conditions (11) to the governing system for the total Lithium
flux in the bulk (10).

D Higher-Order Ion Clusters

Here we extend the analysis of Section 4 to demonstrate that in fact the same conclusions
also hold when higher-order ion complexes are taken into account. Let us now consider
third-order ion clusters with concentrations denoted as

c1+ — concentration of Li+,

c1− — concentration of N−,

c20 — concentration of LiN ,

c3+ — concentration of Li2N
+,

c3− — concentration of LiN−2 .

Assuming that third-order ion clusters form from ion pairs, we can write the transformation
reactions as follows

Q1 : Li+ +N− 
 LiN, (41a)

Q2 : LiN + Li+ 
 Li2N
+, (41b)

Q3 : LiN +N− 
 LiN−2 , (41c)
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where Q1, Q2 and Q3 are the corresponding reaction rates. The conservation equations for
the different species can then be written as

∂c1+
∂t

+
∂F1+

∂x
= −Q1 −Q2, (42a)

∂c1−
∂t

+
∂F1−

∂x
= −Q1 −Q3, (42b)

∂c20
∂t

+
∂F20

∂x
= Q1 −Q2 −Q3, (42c)

∂c3+
∂t

+
∂F3+

∂x
= Q2, (42d)

∂c3−
∂t

+
∂F3−

∂x
= Q3, (42e)

where F(·) are the fluxes of the respective species. Reactions at the electrodes can now be
written as

(I) Li
 Li+ + e−, (43a)

(II) Li+N− 
 LiN + e−, (43b)

(III) Li+ LiN 
 Li2N
+ + e−. (43c)

At the anode the boundary conditions pertaining to the flux of each species can now be
stated as, cf. (4a)–(4c),

F1+|x=0 = r(I), (44a)

F1−|x=0 = −r(II), (44b)

F20|x=0 = −r(III) + r(II), (44c)

F3+|x=0 = r(III), (44d)

F3−|x=0 = r(I). (44e)

(44f)

Now let us define FT as, cf. (9),

FT = F1+ + F1− + 2F20 + 3F3+ + 3F3−, (45)

which at the anode gives, cf. (11),

FT |x=0 = r(I) + r(II) + r(III) =
j

F
(46)

and similarly for the cathode we can write,

FT |x=L =
j

F
. (47)

If we also assume, cf. (9),

cT = c1+ + c1− + 2c20 + 3c3+ + 3c3−, (48)
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then we can write, cf. (10),
∂cT
∂t

+
∂FT
∂x

= 0. (49)

Thus, starting from equations (48) and (49) and following the approach laid down in Section
4, we can show that the transport equation for this extended system will again be formally
equivalent to the Plank-Nernst equation (1). This analysis can be further extended in the
same way to fourth- and higher-order ion clusters which will lead to the same conclusions.

References

[1] J. Newman and K. E. Thomas-Alyea, Electrochemical Systems. John Wiley and Sons,
2004.

[2] A. K. Sethurajan, S. A. Krachkovskiy, I. C. Halalay, G. R. Goward, and B. Protas, “Ac-
curate Characterization of Ion Transport Properties in Binary Symmetric Electrolytes
Using In Situ NMR Imaging and Inverse Modeling,” The Journal of Physical Chemistry
B, vol. 119, no. 37, pp. 12238–12248, 2015.

[3] S. A. Krachkovskiy, J. D. Bazak, S. Fraser, , I. C. Halalay, and G. R. Goward, “Determi-
nation of Mass Transfer Parameters and Ionic Association of LiPF6: Organic Carbonates
Solutions,” J. Electrochem. Soc., vol. 164, no. 4, pp. A912–A916, 2017.

[4] S. Zugmann, M. Fleischmann, M. Amereller, R. M. Gschwind, H. D. Wiemhfer, and
H. J. Gores, “Measurement of Transference Numbers for Lithium Ion Electrolytes via
Four Different Methods, a Comparative Study,” Electrochim. Acta, vol. 56, no. 11,
pp. 3926–3933, 2011.

[5] M. Gouverneur, F. Schmidt, and M. Schönhoff, “”Negative Effective Li Transference
Numbers in Li Salt/Ionic Liquid Mixtures: Does Li Drift in the ”Wrong” Direction?”,”
Phys. Chem. Chem. Phys., vol. 20, pp. 7470–7478, 2018.

[6] L. Onsager, “Deviations from Ohm’s Law in Weak Electrolytes,” The Journal of Chem-
ical Physics, vol. 2, no. 9, pp. 599–615, 1934.

[7] L. Onsager, “Initial Recombination of Ions,” Phys. Rev., vol. 54, pp. 554–557, Oct 1938.

[8] H. Dai and T. A. Zawodzinski, “The Dependence of Lithium Transference Num-
bers on Temperature, Salt Concentration and Anion Type in Poly (Vinylidene
Fluoride)-Hexafluoropropylene Copolymer-Based Gel Electrolytes,” J. Electroanal.
Chem., vol. 459, no. 1, pp. 111–119, 1998.

[9] T. D. Claridge, High-Resolution NMR Techniques in Organic Chemistry, vol. 27.
Newnes, 2008.

[10] A. Nyman, M. Behm, and G. Lindbergh, “Electrochemical Characterisation and Mod-
elling of the Mass Transport Phenomena in LiPF6 : EMC Electrolyte,” Electrochim.
Acta, vol. 53, no. 22, pp. 6356–6365, 2008.



17

[11] J. Liu and C. W. Monroe, “Solute-Volume Effects in Electrolyte Transport,” Elec-
trochimica Acta, vol. 135, pp. 447–460, 2014.
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Table 1: Typical values of dimensional parameters.

Parameter Symbol Value Units Source
Debye Length LD O(10−9) m [24]
Cell Length L O(10−2) m Experiment
Reaction Rate k O(109) 1

s
[19]

Time of Experiment τ O(104) s Experiment
Concentration ĉ 103 mol

m3 Experiment
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Figure 1: Concentration profiles obtained via in-situ magnetic resonance imaging during a
galvanostatic polarization experiment.
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Figure 2: Constant and concentration-dependent effective salt diffusivities (left) and Li+

transference numbers (right) reconstructed from the measurement data described in Section
2 using the inverse modelling approach (problems P1 and P2) defined in Appendix A) based
on system (1).


