The University of Southampton
University of Southampton Institutional Repository

Selenium and molybdenum enrichment in uranium roll-front deposits of Wyoming and Colorado, USA

Selenium and molybdenum enrichment in uranium roll-front deposits of Wyoming and Colorado, USA
Selenium and molybdenum enrichment in uranium roll-front deposits of Wyoming and Colorado, USA
Sandstone uranium (U) roll-front deposits of Wyoming and Colorado (USA) are important U resources, and may provide a terrestrial source for critical accessory elements, such as selenium (Se), molybdenum (Mo), and tellurium (Te). Due to their associated toxicity, MoSeTe occurrences in roll-fronts should also be carefully monitored during U leaching and ore processing. While elevated MoSe concentrations in roll-fronts are well established, very little is known about Te occurrence in such deposits. This study aims to establish MoSeTe concentrations in Wyoming and Colorado roll-fronts, and assess the significance of these deposits in an environmental and mineral exploration context.

Sampled roll-front deposits, produced by oxidized groundwater transportation through a sandstone, show high MoSe content in specific redox zones, and low Te, relative to crustal means. High Se concentrations (up to 168 ppm) are restricted to a narrow band of alteration at the redox front. High Mo content (up to 115 ppm) is typically associated with the reduced mineralized nose and seepage zones of the roll-front, ahead of the U orebody. Elevated trace element concentrations are likely sourced from proximal granitic intrusions, tuffaceous deposits, and local pyritic mudstones. Elevated MoSe content in the sampled roll fronts may be regarded as a contaminant in U in-situ recovery and leaching processing, and may pose an environmental threat in groundwaters and soils, so extraction should be carefully monitored. The identification of peak concentrations of MoSe can also act as a pathfinder for the redox front of a roll-front, and help to isolate the U orebody, particularly in the absence of gamma signatures.
0375-6742
101-112
Bullock, Liam A.
c6ffb9b0-0a54-4ab2-9edb-f97280e6ce2d
Parnell, John
b86302b0-b930-4b7c-9786-13abc612fef7
Bullock, Liam A.
c6ffb9b0-0a54-4ab2-9edb-f97280e6ce2d
Parnell, John
b86302b0-b930-4b7c-9786-13abc612fef7

Bullock, Liam A. and Parnell, John (2017) Selenium and molybdenum enrichment in uranium roll-front deposits of Wyoming and Colorado, USA. Journal of Geochemical Exploration, 180, 101-112. (doi:10.1016/j.gexplo.2017.06.013).

Record type: Article

Abstract

Sandstone uranium (U) roll-front deposits of Wyoming and Colorado (USA) are important U resources, and may provide a terrestrial source for critical accessory elements, such as selenium (Se), molybdenum (Mo), and tellurium (Te). Due to their associated toxicity, MoSeTe occurrences in roll-fronts should also be carefully monitored during U leaching and ore processing. While elevated MoSe concentrations in roll-fronts are well established, very little is known about Te occurrence in such deposits. This study aims to establish MoSeTe concentrations in Wyoming and Colorado roll-fronts, and assess the significance of these deposits in an environmental and mineral exploration context.

Sampled roll-front deposits, produced by oxidized groundwater transportation through a sandstone, show high MoSe content in specific redox zones, and low Te, relative to crustal means. High Se concentrations (up to 168 ppm) are restricted to a narrow band of alteration at the redox front. High Mo content (up to 115 ppm) is typically associated with the reduced mineralized nose and seepage zones of the roll-front, ahead of the U orebody. Elevated trace element concentrations are likely sourced from proximal granitic intrusions, tuffaceous deposits, and local pyritic mudstones. Elevated MoSe content in the sampled roll fronts may be regarded as a contaminant in U in-situ recovery and leaching processing, and may pose an environmental threat in groundwaters and soils, so extraction should be carefully monitored. The identification of peak concentrations of MoSe can also act as a pathfinder for the redox front of a roll-front, and help to isolate the U orebody, particularly in the absence of gamma signatures.

Text
1-s2.0-S0375674216303909-main - Version of Record
Available under License Creative Commons Attribution.
Download (2MB)

More information

Accepted/In Press date: 18 June 2017
e-pub ahead of print date: 19 June 2017
Published date: September 2017

Identifiers

Local EPrints ID: 421647
URI: http://eprints.soton.ac.uk/id/eprint/421647
ISSN: 0375-6742
PURE UUID: 1858a4c3-1dd7-4a13-972f-1fb4d405f916

Catalogue record

Date deposited: 19 Jun 2018 16:30
Last modified: 15 Mar 2024 20:18

Export record

Altmetrics

Contributors

Author: Liam A. Bullock
Author: John Parnell

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×