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Abstract

This thesis examines some aspects of i situ phytoplankton physiology and subsequent
production rates within the Atlantic Ocean, as obsetved using a novel instrument, the Fast
Repetition Rate Fluorometer (FRRF). The undetlying theory and use of this instrument is
described in detail. High resolution FRRF data collection was petformed during three
oceanographic cruises: RV Pelagia, March 1998, RRS James Clark Ross, May-June 1998
and RRS Challenger, August 1999. These data observe characteristics of phytoplankton
physiology and, therefore, production, over daily (diel), small (turbulent) and broad
(seasonal) scales. The sampling sites for all cruises were chosen within a variety of

hydrographic regimes to further assess the light-nutrient dependencies of this variability.

Phytoplankton physiology is described by the functional absorption cross section (Cpgy)
and the quantum yield of photochemistry (F,/F.) which relate to the rate at which
photosystem 11 (PSII) saturates with light and the proportion of functional PSII reaction

centres, tespectively. Changes in both G,g; and F /F_ are most evident at the diel scale.

Oy correlates with corresponding changes in PSII pigments indicating non-photochemical
quenching of excess solar energy as part of a diel thythm in cellular constituents. A novel
calculation for the number of i situ PSII reaction centres (npg), based on FRRF
measurements, is desctibed and tested and shows similar diel vatiability. Smaller-scale
variations in Oy, are also observed continually throughout the diel period apparently as an
attempt to balance the distribution of energy between PSII and PSI and, therefore,
maintain high rates of photosynthesis. Such smaller-scale processes are most obvious in
low nutrient (oligotrophic) waters where hydrographic variability and consequently new
nutrient input, remains relatively low. FRRF estimates of production were most related to
nutrient conditions in these oligotrophic waters. Conversely, production correlated with
light in waters where nutrients were in abundance. FRRF production estimates compared
well with cotresponding in situ gross O, measurements but were typically a factor of 3-4
higher than "C production estimates. This difference can be accounted as the stochiometry
between O, evolution and carbon uptake for photosynthesis but may also represent the
limitations associated with the calculation of production from one or both techniques.

These limitations are discussed as a premise for further work.
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1. Introduction

Phytoplankton comes from the Greek phyton (plant) and planktos (that which passively
drifts) and applies to the vagrant communities of aquatic photoautotrophs, ot otganisms
which use light to grow and reproduce, whose dynamics are strongly dependent upon the
physical motions of their environment (sezsy Matgalef 1997). Thousands of [unicellulat]
species, organised into 12 algal divisions, comprise the marine component of
phytoplankton. One of these divisions is composed of the earliest oxygenic
photosynthetic organisms (prokaryotes) whilst the rest are formed from more recently
evolved, eukaryotes. Most marine phytoplankton are microscopic and are described as
micro- (20-200lum), nano- (2-20plm) or pico- (0.2-2um) phytoplankton. Some individual
species achieve large sizes (1-2mm), or form chains and aggregates using mucilaginous
threads or spines, but still remain at the mercy of ocean hydrodynamics for the continual

provision of favourable irradiance and nutrients for production and growth.

The largest and most robust marine phytoplankton are represented by Bacillariophyceae
(diatoms), Dinophyceae (dinoflagellates) and Prymnesiophyceae (coccolithophores)
Jeffrey and Vesk 1997). Diatoms are typically large and opportunistic but are dependent
upon a supply of silicate for the production of a ‘glassy’ exoskeleton, or frustule.
Dinoflagellates have paired whip-like flagella and ate able to maintain themselves in
optimal light-nutrient conditions where physical mixing of the water column may be
relatively weak. Coccolithophores are charactetised by an armour of calcium carbonate
plates and proliferate in warmer waters. The smaller picoplankton are predominantly
composed of prokaryotic Cyanophyceae (cyanobacteria) and Prochlorophyceae
(prochlorophytes), and of some eukaryotic divisions. Ultimately, members of the marine
phytoplankton are adapted to different light, nutrient and temperature conditions and,
therefore, display global patterns of standing crop and production according to the global

circulation of their marine environment, for example, the Atlantic Ocean (fig 1.1.):
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The Atlantic Ocean has a range that spans neatly the entire latitude of the globe. It is
bounded to the north by the Arctic polar basin and to the south by the Southern Ocean.
As a result, the ocean plays host to a range of sub-polar, temperate, sub-tropical and
tropical climates, each of which is governed by characteristic wind regimes. The east and

west Atlantic are bordered by continents where an abundance of nutrients can support

e i
20° 0° 20°
) E

Chlorophyll a (mg/m°)

Figure 1.1.— (left) SeaWiFs image of sea surface chlorophyll a concentration in the Atlantic
Ocean. Chlorophyll a is found in all marine phytoplankton and the concentration [of chl &] is
a useful indicator of the phytoplankton standing crop (or biomass). Image represents a
composite of data observed between September 1997 and August 1998; (right) Surface
currents of the Atlantic Ocean (modified from Tomczak and Godfrey 1994). Abbreviations
are used for: East Iceland (EIC), Irminger (IC), West Greenland (WGC), Loop (LC) and
Antilles (AC) currents and Caribbean counter-current (CCC). Other abbreviations refer to
fronts: Jan Meyen (JMF), Norwegian current (NCF), Iceland-Faroe (IFF), Subarctic (SAF),
Azores (AF), Angola-Benguela (ABF), Brazilian current (BCF), Sub-tropical (STF),
Subantarctic (SAF), Polar (PF), Continental water boundary/ Weddell gyre boundary
(CWB/WGB). Note the projections for the 2 images are different.
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the highest levels of phytoplankton growth, for example, upwelling activity (e.g. Shannon
and Nelson 1996) driven by offshore winds, and shelf seas and shelf margins influenced
by dynamic mixing regimes (e.g. Simpson and Pingree 1978, Holligan 1981, Longhurst et
al. 1995). Such systems are dominated by large opportunistic, fast growing, diatoms and
dinoflagellates that are able to accumulate a large biomass against the pressures of

grazing. This biomass typically accumulates at or near the sea surface where light energy

for growth is highest.

Much of the Atlantic Ocean is represented as vast expanses of waters with lower biomass
and productivity. These waters, known as gyres, are a product of the oceanic circulation
(fig. 1.1.). Two tropical cyclonic gyres, the Angola and Guinea domes, operate towards
the east of the ocean (Tomczak and Godfrey 1994). Cyclonic movements lead to a
divergence of water from the centre of the gyre creating an upwelling of deeper,
(relatively) nutrient-rich water. Conversely, anticyclonic movements drive watet into the
centre of a gyre creating downwelling of surface water. The largest gyres are two

anticyclonic subtropical gyres situated between 10-15° to 50-60° (Finenko 1978); 15° to

45° (Mann and Lazier 1996) north and south. These regions ate chatacterised by lower
nutrient concentrations than inshore waters and described as ‘oligotrophic’. They are
dominated by the pico-phytoplankton which exhibit a subsurface maximum of growth
and biomass accumulation. These organisms represent a low biomass as a product of

their small cell size and the relative rates of productiori and grazing.

A synthesis of such physical features, as governed by the general wind regimes and
associated phytoplankton primary production patterns has established 25 biogeochemical
provinces for the Atlantic (Longhurst et al. 1995, Sathyendranath et al. 1995). These

provinces contribute to a global marine production of carbon (C) that is similar to that of

the terrestrial system (each = 50 x 10" gC yr'). However, the standing crop of terrestrial
plants is 500-600 times more than that of marine plants (IPCC 1995, Falkowski and
Raven 1997). Therefore, our ability to accurately quantify marine primary production is

essential when considering the dynamics of the marine contribution to global processes.

Remote sensing of ocean colour currently provides the most intensive level of temporal
and spatial sampling from which one can derive estimates of marine primary production.

These derivations are driven by established relationships between production rates and
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environmental parameters, such as nutrients and light. Unfortunately, ‘classical’ methods
used to observe phytoplankton production, for example, following "“C-uptake (Steeman
Nielsen 1952) or O, evolution (eg. Bryan ef al. 1976) in incubated water samples, neglect
the actual environment of phytoplankton. Such methods are also costly and time-
consuming thereby leaving gaps in the temporal and spatial tesolution of our
understanding of 72 situ primary production. Improvements and alternatives to these
techniques were, perhaps, only a matter of time. Indeed, a functional method now exists,
the Fast Repetition Rate Fluorometer (developed by Z. Kolber and P. Falkowski), which
is capable of rapidly sampling phytoplankton physiology and production in the context
of the ‘real” environment. Such improvements have important consequences for accurate
estimates of marine primary production and atmospheric carbon assimilation with
regards to global carbon budgets (Longhurst 1991). However, the capabilities of this
instrument are largely undocumented and must be carefully validated before any output

can be considered conclusive.

1.1. Photosynthesis of marine phytoplankton

Photosynthesis describes the process by which solat energy is used to bond molecules
into carbohydrate and is often summarised as the simplistic equation: 6CO, + 12H,0 =
CH,,0, + 60, + 6H,0. However, this process is actﬁally composed of several complex
reactions and interactions which function in response to the environment of the plant. A
brief description of photosynthesis relevant to marine phytoplankton is provided below
and follows the more detailed accounts of Prézelin (1981), Kremer et al. (1981), Wallace
et al. (1991), Geider (1992), Kirk (1994) and Falkowski and Raven (1997):

Two main reactions, termed the light and dark (or light-dependent and light-
independent) reactions (fig 1.2) actually comprise the simplistic model of
photosynthesis. The apparatus and molecules required for these reactions are located
within structures in the cytoplasm. In eukaryotic organisms, organelles known as
chloroplasts (fig 1.3.) contain stacks of membrane-bounded sacks (thylakoids). An
aqueous matrix fills both the intrathylakoid space (the lumen) and the chloroplast (the

stroma surrounds the thylakoids). This arrangement appears markedly different in the
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Light reaction:

tight energy

H.O + NADP %ﬁ"*‘—%» O, + NADPH + H'
ADP + Pj ATP

Dark reaction:

CO, + NADPH + H' —7&"‘? C.H.,0, + H,O + NADP
ATP ADP + Pi

Figure 1.2.— Schematic description of the light and dark reactions of photosynthesis. The
light reaction is dependent upon the capture of photons to convert adenosine diphosphate
(ADP) and inorganic phosphate (Pi) into adenosine triphosphate (ATP) and convert oxidised
nicotine adenine dinucleotide phosphate (NADP") into the reduced form NADPH. The dark

reaction converts fixed carbon dioxide (CO,) into carbohydrate using the energy from the
products derived in the light reaction.

prokaryotic cyanobacteria and anaerobic photosynthetic bacteria (fig 1.3) in which
thylakoid membranes are arranged into sheets and placed free within the cytoplasm
rather than bundled into organelles. Irrespective of the different morphologies, the
apparatus for the light reactions are always housed within the membrane of the
thylakoids whilst the soluble enzymatic components of the dark reactions are contained

in the stroma, fig 1.4.

There are two components to the light reaction, termed photosystems I and II (PSI and
PSII). Each photosystem is composed of an antennae which is energetically coupled to a
reaction centre (RCI and RCII). The antennae contain a combination of distinctive
pigments (chlorophylls, carotenoids and/ot biliproteins) complexed to proteins which
absorb light. Hach taxa of phytoplankton contain a unique combination of pigments to
harness energy from specific wavelengths of the light spectrum. The absorbed light is

subsequently passed to a specialised chlorophyll-protein complex housed within each

reaction centre, P680 (RCII) and P700 (RCI).

When P680 has received sufficient energy, an electron becomes excited and escapes its
orbital. The electron is quickly captured by a closely associated electron transfer system

(ETS) preventing 1t falling to a lower energy level and re-associating with the chlorophyll
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Granum

: Thylakoid
=2, Ny envelope

Stroma

Chioroplast

Figure 1.3.— (upper panel) Cut
away section of a chloroplast
from a eukaryotic cell (taken from
Prézelin 1981). Each thylakoid is
a membrane surrounding an
aqueous lumen. The thylakoids
are stacked into  granum
Surrounding these stacks is the
aqueous matrix of the stroma.
The chloroplasts are found within
the cytoplasm of the cell; (lower

lamellas | .
*gm panel) Cut away section of the
lameltae photosynthetic membrane
structure in a cyanobacterium

(taken from Falkowski and Raven
1997). The thylakoids are
arranged  into  sheets  of
membranes (each representing a
pair of opposing membranes).
The cytoplasm (surrounded by
the cytoplasmic membrane, CM)
houses the thylakoid membrane
(TM). A periplasmic space
separates the cell outer wall from
the plasma membrane. Note:
both diagrams are representative
of eukaryotes and
cyanobacterium but are
phenotypically and genotypically
plastic at finer taxonomic
divisions.

Thylakeid =
membrane (Ip)

complex. The electron is transported following the ‘z-scheme’ (fig. 1.4.) to cytochrome
b-,/f whilst the ‘electron hungry’ P680 pulls an electron from H,O via a water-splitting
manganese-protein complex. An electron is also excited in PSI (P700) and passed by
several electron cartiers to ferrodoxin where an enzyme reduces NADP' to NADPH
(see fig 1.2.). This leaves the ‘electron hungry’ P700 to pull the electron from cytochrome
b-./f. The transport of electrons results in proton-pumping from the stroma into the
lumen, fig. 1.4., and establishes an electrical and chemical (pH) gradient. The proton
gradient is dissipated by the ATP-synthase and leads to the formation of ATP in the
stroma. The linear electron flow of the z-scheme may become disrupted where PSI
cannot obtain an electron from PSII (essentially where plastoquinone is the slowest to
oxidise and cytochrome b-,/f can be oxidised whilst PQ remains reduced) resulting in
electron cycling around PSI. This compensation leads to proton pumping and ATP

formation but not NADP" reduction.
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Figure 1.4.— (upper) Schematic of PSIl, PSI and ATPase (coupling factor [CF]; is a
peripheral protein attached to CF, on the stromal side) within the thylakoid membrane.
Proton pumping between the stroma and lumen is also indicated but is not balanced; (lower)
The Z-scheme depicts the change in free energy from solar excitation of electrons (e’) and
subsequent passage through the PSIl and PSI electron transfer system (ETS). First ETS =
phaeophytin — quinone Qa4 — quinone Qg — plastoquinone (PQ) — cytochrome bg/f (cyt be/f)
— plastocyanin (PC). Phaeophytin is not indicated in the figure since it only represents an
intermediary electron acceptor. Second ETS = chlorophyll monomer A, — phylloguinone (A)
— iron-sulphur cluster Fyx — either of iron containing proteins Fa/Fg — ferrodoxin (Fd). Cyclic
electron transfer around PSI is indicated and results in a loss of free energy to the electron
for each cyclic event.

The products from the light reactions provide the energy and reducing power required
for the incorporation of CO, in the dark reactions (fzg 1.2.). The majority of carbon in
the ocean is in the form of bicarbonate as a result of the slightly alkaline nature of

seawater. However, phytoplankton contain a very catalytically active enzyme, carbonic
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anhydrase, in the plasmalemma which increases the formation of CO, at or near the cell
surface (a more complete review can be found in Falkowski and Raven 1997). The CO,
is integrated into organic matter in the stroma by the addition of protons and the
reducing power of ATP/NADPH. This process occuts via the photosynthetic carbon
reduction cycle (or the Calvin-Benson cycle) where several enzymes sequentially alter the
organic carbon substrate. Reduced carbon products are removed from the Calvin-
Benson cycle, if balanced by carbon fixation, and stored outside the chloroplasts

(cyanobacteria are free to store these products anywhere in the cell) or are available for

biosynthetic reactions.

The combination of light and dark reactions establishes the gross amount of production
by phytoplankton. However, other processes within each organism conspite to alter the
quantity of O, evolved/CO, assimilated and give tise to the net photosynthesis. Dark
respiration occurs when the phytoplankton can no longer draw their energy from light.
This process follows a series of pathways: glycolysis — pentose phosphate pathway —
Krebs cycle — mitochondrial electron transport chain. These treactions involve the
sequential oxidation of carbohydrates and inevitably result in the consumption of O, and
production of CO, with a release of energy for essential life processes. Other pathways
of oxygen consumption can occur whilst photoautotrophs remain exposed to light: the
Mehler Reaction (pseudocyclic electron transport) and photorespiration. The former
process combines the O, generated via PSII with protons and electrons catried by PSI to
form water and generate ATP (thus there is no net O, production since the same O,
molecules ate ‘consumed’). The latter process desctibes the light-dependent reduction of
CO, via the Calvin-Benson cycle for the purpose of energy dissipation. Photorespiration

often appears suppressed in microalgae but can account as much as 15% of gross O,

evolution (Geider 1992).

The response of photosynthesis to environmental variability

Several key environmental factors are responsible for the ability of marine phytoplankton
to photosynthesise, grow and reproduce. Following Falkowski and La Roche (1991),
Falkowski and Raven (1997), each cell is genetically suited to utilise a specific
environmental regime through a selection of phenotypic traits (adaptation); this

environment is not static within the lifetime of phytoplankton and each cell must further
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appropriately respond over a variety of time scales in order to successfully compete
(acclimation). Similar definitions have been recently employed when describing the
response of phytoplankton to light, for example, photoadaptation from genetic
transformations of marine diatoms (Cassoti ef al. 1997), photoacclimation of
Chlorophyceae in response to vertical watet column mixing (Flameling and Kromkamp
1997). This distinction between processes operating within the evolution and within the

lifespan of phytoplankton will be maintained throughout this thesis.
Light

The light environment of the ocean is the product of the solar photon flux density,
atmospheric transmission and light attenuation by water (see Kirk 1992, 1994). Clouds
and atmospheric particles are tesponsible for the quality of light that reaches the surface
of the ocean. Light is reflected by sutface waves and absotbed/scattered by both
biologically active and inactive particles in the water resulting in a change in the quantity
and spectral composition of light throughout the water column. The term ‘euphotic
zone’ 1s used to characterise the upper (lit) region of the water column that can be used
for photosynthesis and is generally shallower than 200m. The amount of this light
available for photosynthesis 1s determined by the suite of pigments in the photosystem
antennae: the Photosynthetically Available Radiation (PAR, 400-700nm). The specific
pigment composition of a phytoplankton community will dictate the actual amount of
PAR that can be absorbed between 400 and 700nm: the Photosynthetically Usable
Radiation (PUR) (Morel 1978). Much of the light absorption by phytoplankton is by
accessoty pigments, such as accessory chlorophylls b, ¢ and d, carotenoids and
biliproteins, which absorb light in the blue and green region (~400-550nm) of the PAR

spectrum. This capitalises on the corresponding weak absorption by water in this region

of the spectrum.

Photoacclimation— Several mechanisms exist by which phytoplankton attempt to
optimise the capture and utilisation of available light. Routine exposure to low light levels
results in increase of photosynthetic light harvesting pigments into the photosystem
antennae. This promotes the overall light harvesting capability by the phytoplankton;
however, an increase in the density of pigments results in self-shading by the overlying

thylakoid membranes and actually produces a decrease in the amount of absorption per
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pigment and is described as the ‘package effect’ (eg. Betner er al. 1989). Increases to the
number of chloroplasts per cell number and in thylakoid stacking also act to boost the
light harvesting potential of a phytoplankton cell under low light (eg. Falkowski and La
Roche 1991). The opposite pattern is evident under high light.

Alterations to the ratios of accessory pigments to chlorophyll 2 are also evident at
different light intensities (eg. Falkowski and La Roche 1991). Some carotenoids, such as
diadinoxanthin, diatoxanthin, zeaxanthin and B-carotene, do not transfer any energy to
chlorophyll @ and have been classed as non-photosynthetic pigments (Bidigare et al.
1990). These latter pigments are found in high light-acclimated phytoplankton and act to
absorb excess light energy that would otherwise damage the reaction centres (Falkowski
and Raven 1997). Transformation of certain xanthophylls can also increase the amount
of energy that is dissipated non-photochemically. This process of xanthophyll cycling
(fig. 1.5.) has been correlated with non-photochemical quenching (Demmig-Adams
1990) via thermal deactivation (eg. Olaizola and Yamamoto 1994) or the aggregation of

light harvesting chlorophyll protein complexes (Horton 1992).

light
A. diadinoxanthin =——— diatoxanthin

dark
_ , light o light ,
B. violaxanthin W"ST” antheraxanthanTT zeaxanthin
ar Al

Figure 1.5.— The xanthophyll cycles. A light driven reaction transforms the epoxy containing
xanthophyll into an epoxy-free pigment. Enzymes catalyse the back reaction under dark
conditions. The 2 cycles are taxa-specific. A. The diadinoxanthin-diatoxanthin (DD-DT) cycle
is characteristic to diatoms, dinoflagellates and prymnesiophytes (Liaaen-Jensen 1978). B.
The viclaxanthin-zeaxanthin (V-Z) cycle is characteristic of chlorophytes [higher plants] and
possibly phaeophytes (Sierfermann-Harms 1985). A xanthophyll cycle has, as yet, not been
identified in cyanobacteria and pro-chiorophytes (Falkowski et al. 1994).

The amount and spectral composition of light distributed between photosystems I and II
can affect the flow of electrons from H,O to NADPH (fig 1.4.) (Falkowski and Raven
1997). Under conditions of high light, the pool of the electron carrier plastoquinone
(PQ) becomes markedly reduced. The altered redox state of the PQ pool encourages
phosphorylation of the light harvesting pigment proteins serving PSII and results in a

migration of some of the pigment protein to PSIL. This acts to address the deficit of PSI
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electron flow and is termed a state-I transition. The opposite occurs under low light
conditions to balance relatively lower electron flow through PSII and is termed a state-II
transition (Falkowski 1981, 1992, Falkowski et @l. 1994). This phosphorylation of the
photosystems appears almost universal amongst phytoplankton but may only produce
relatively small changes to the absorption cross section of PSII (Falkowski et al. 1994).
State transitions can also occur where light at wavelengths greater than 680nm
preferentially excite PSI (and vice versa); however, this explanation does not appeat to

account for the observed variations of PSI and PSII with depth in the oceanic

environment (Falkowski and Raven 1997).

Increases in the number of PSII reaction centres (eg. Berges er al. 1996), the ratio of PSII
to PSI (eg. Barlow and Alberte 1985), and electron cycling around PSI (Falkowski and
Raven 1997) are also observed under low light conditions and may similarly attempt to
maintain a steady flow of electrons between and throughout the two photosystems.
Electron cycling around PSII has also been observed by Falkowski et al. (1986). This
mechanism acts to dissipate some of the excess energy absorbed by PSII and limits the
amount/onset of high light damage to RCIIs (see below). As such, electron cycling
around PSII appears to be a mote indirect method by which the photosystem sustains a

steady flow of electrons and, therefore, maintain a relatively high rate of photosynthesis.

Photoinbibition— Phytoplankton invariably encounter light levels that are beyond the
capabilities of the mechanisms that act to maintain the highest levels of photosynthesis
to which the otganism is photoacclimated. These circumstances result in a reduction in
the number of reaction centres and a subsequent increase in electron turnover time
coupled with a decrease in the maximal rate of photosynthesis (eg. Falkowski et al. 1994).
The exact process by which RCIIs ate lost remains unclear; however, Aro et al. (1993)
suggest that high light levels can create rates of electron turnover from RCII which
exceed the rate of electron ‘donation’ from water. Holes can become established in the
molecules that transfer electrons from water to RCII and lead to the generation of free
radicals which could oxidise or destroy pigments and proteins in the reaction centres.
This retardation of the photosynthetic rate is slowly reversible (eg. Long et al. 1994) and
is dependent upon the length and degree of high light exposure. Recovery from
photoinhibition occurs over a time scale of hours (eg. Vassiliev et al. 1994) once the light

intensity experienced by the phytoplankton has relaxed below super-optimal levels.

11
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Nutrients

Species of nitrogen, phosphorus, silicon, sulphur and of trace metals (eg. iron, zinc,
manganese and copper) are all found in seawater and, in one form or another, are
required by phytoplankton for growth. These elements are, in patt, used to form
proteins/compounds for the photosystems, reactions centtes, transport of electrons and
regeneration of substrates in the Calvin-Benson cycle and, therefore, provide the
nutrition for phytoplankton cells. Nitrogen and phosphorous represent the ‘major
nutrients’ and, in addition to providing the basis of many substrates involved in
photosynthesis, are also incorporated into cellular tissue for phytoplankton growth and
reproduction. Each one of these elements represents a limiting factor where
concentrations fall below a level to which phytoplankton are acclimated (eg. Margalef
1997). The ratio of the major elements in phytoplankton cellular material is remarkably
close to that found in seawater. The ‘Redfield ratio” desctibes this ratio as 106C:16N:1P
by atoms and represents a mean since the proportions may alter according to the

nutritional status and taxanomic composition of the phytoplankton (eg. Falkowski and

Raven 1997).

The distribution of nutrients throughout the water column is the product of import and
export processes (fig. 1.6.). As a result, the lowest concentrations of nutrients are
typically found in surface waters where phytoplankton uptake exceeds replenishment.
The replenishment of nutrients into the marine system can occur via two pathways, new
and regenerated (Eppley and Peterson 1979). New nutrients are supplied to
phytoplankton in the euphotic zone from deep water, as a result of upwelling, deep wind
induced mixing, eddy activity and diffusion, from advection between bodies of water and
from atmospheric supply to the sea surface. The term ‘nutricline’ defines the zone of
sharp change in nutrient concentrations between the surface layer and deeper waters and
reflects the product of nutrient flux between deeper waters and the euphotic zone. The
amount of new nutrient supplied to a system is used to define its trophic status (Dugdale
and Wilkerson 1992). Oligotrophic systems are chatracterised by very little new nutrient
input where phytoplankton must rely on the regeneration of nutrients for photosynthesis
and growth. A so-called ‘microbial loop’ (eg. Azam et al. 1983) recycles the nuttients
required for photosynthesis resulting in relatively little (biological) export of these

clements from the euphotic zone. This provides a tightly coupled system akin to a
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spinning wheel (Goldman 1988), the speed of which turns at a speed controlled by the
maximum growth rate of the organisms involved. Some cyanobacteria contain an
alternative mechanism for obtaining nitrogen whereby they directly fix dissolved

molecular nitrogen and avoid either of these two pathways (eg. Mulholland and Capone

1999).

new nutrients

N, fixat‘ion eg. NO.” PO, si0,
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Figure 1.6.— Pathways of nutrients supplied into the euphotic zone of the oceanic
ecosystem. New nutrients enter at the air-seas interface, from deep water and advection from
neighbouring waters and is used by marine phytoplankton and the associated trophic web for

‘new production’. Regenerated nutrients are a result of trophic interactions in the euphotic
zone and give ‘regenerated production’.

Phytoplankton associated with the different trophic regimes appear to have alternate
strategies for acquiring nutrients (Eppley et al. 1969). In general, large influxes of new
nutrients stimulate the growth of large diatoms since they show rapid rates of nutrient
uptake. The phytoplankton of the nutrient poor oligotrophic regions are dominated by
small celled cyanobacteria and prochlorophytes (Veldhuis and Kraay 1993, Olson et al.
1990a, b) which display slower nutrient-uptake rates but exhibit a much greater affinity
for low nutrient concentrations. In addition, these picoplankton require less nutrients to
saturate the cell as a result of their smaller cell-size (Agawin et al. 2000). Small variations
to the nutrient status of a water-body may be reflected by changes in the photosynthetic
performance of the dominant species. However, larger variations will eventually favour
species with alternate strategies of nutrient acquisition and result in a shift of the

phytoplankton community composition according to the new trophic regime.
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Other variables

CO, is the primary substrate for photosynthesis. As such, the ability of an organism to
uptake CO, should affect the rate at which photosynthesis can proceed. Whilst this is
true for phytoplankton from some aquatic systems, for example, lakes (Kirtk 1994),
investigations reveal that most matine phytoplankton are not limited by short-term
variations in CO, (Falkowski and Raven 1997). An investigation by Riebesell et a/. (1993)

highlights that marine primary productivity appears to respond to longer-term geological

changes in atmosphetic CO.,,.

Temperature, on the other hand, does appear to affect the rate at which marine
phytoplankton can [optimally] photosynthesise, Popr. All phytoplankton have a Py
determined by a temperature to which they ate genetically adapted (Eppley 1972) ot
subsequently acclimated. Changes in temperature primarily alter the rate of enzyme
activity within the light independent component of photosynthesis (eg. Kirk 1994). This
subsequently determines the maximal rate at which electrons can be transferred through
the E'TS when the photosystem becomes saturated with light. As such, phytoplankton
exposed to low temperatures typically become photoinhibited at lower irradiances
(Falkowski and Raven 1997) and phytoplankton production becomes limited even
though all other resources are replete. A limitation of nutrients will impede the ability of
the photosystem to achieve P, where temperature i3 at, or approaching, the optimal
value (Li 1980). However, these effects of tempetratute upon 7 sit# phytoplankton
production are difficult to assess since this vatiable is closely linked with the distribution

of nutrients in the marine environment. A comprehensive review of this subject is given

by Raven and Geider (1988).

The combined effects of all these environmental parameters give rise to a characteristic
profile of phytoplankton production throughout the water column (fig 1.7.). The actual
shape and magnitude of this profile will be dependent upon the instantaneous quantity of
each parameter and will, therefore, be highly variable in time and space (ie. as a function

of latitude, season and depth). This, in turn, dictates the amount of phytoplankton

biomass available to higher trophic levels.
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Figure 1.7— (left) Schematic (typical) vertical profile of net primary production (P),
irradiance (E) and daily integrated photoautotrophic respiration (R) throughout the water
column. When total net P (ZP: area to left of curve) exceeds that of R (£R) there is net growth
of phytoplankton biomass. The light intensity at which ZP=XR corresponds to the critical depth
(Ep) and is a function of the degree of water column mixing and the solar radiance (Sverdrup
1958). If ZP < IR there is no net phytoplankton growth, for example, increased water column
mixing and/or less E and Ep effectively moves closer to the surface. Ec describes the
compensation light intensity and represents the depth at which the rate of production = rate of
respiration (and signifies the depth of the euphotic zone); (right) Schematic Photosynthesis
(P) - Irradiance (E) response curves measured using the "“C-uptake technique. Water
samples taken from high light (Su) and low light (S..) conditions in the water column
described by the left panel are each labelled with the isotope and exposed to a range of
potential irradiances. The amount of 14C-up’ta\ke represents the production (P) at each E.
Several parameters of the P-E curve describe the photosynthetic characteristics of the
phytoplankton population: light limited initial slopes (ct) where the rate of light absorption is <
the maximal rate of electron transport; the maximum rate of light saturated photosynthesis
(Pmax) Where the rate of light absorption is > the maximal rate of electron transport; the degree
of photoinhibition (B); the light intensity at which Pmax 0ccurs (Ex = Pma/0r). The filled circle on
each of the P-E curves signifies the in situ E at which the water samples were taken.
Therefore, the corresponding P represents the true (instantaneous) production for the
respective sample. The FRRF is profiled throughout the water column and provides an
instantaneous production profile akin to that described in the left panel.

15



Variability of phytoplankton production rates in the Atlantic Ocean . 1. Introduction

1.2. Estimates of phytoplankton production

The majority of marine ptimary production measurements follow one or more ‘classical’
techniques, for example, *C uptake (Steeman Nielsen 1952), oxygen (light-dark bottle
method) evolution (Bryan et al. 1976, Williams and Jenkinson 1982), and more recently,
O uptake (Grande et al. 1982). The "C technique quantifies the uptake of isotope-
labelled photosynthetic substrates into photoautotrophs whilst the light/dark bottle
technique measures the difference between photosynthetic and respired O, in illuminated
and dark bottles (respectively). Fach method requites discrete samples from the water
column (see fig 1.7.), which are incubated throughout a series of irradiances, in order to
describe the photosynthetic status and capabilities of the associated phytoplankton
populations. These methods have become well established and comparisons between
corresponding estimates of production (eg. Williams et al. 1979, Bender et al. 1987,
Grande et al 1989, Kiddon er al. 1995) appeat to agree well within their respective
limitations. As such, they continue to form the basis of many modern day oceanographic

investigations into primary production (eg. Pomeroy 1997, Marafién and Holligan 1999).

Some of the eatliest estimates of production (following the '*C and light/dark methods)
were synthesised into global [primary] productivity maps (see Berger er al. 1989). The
most accurate (and well known) was the map by Koblentz-Mishke e al. (1970) which
combined over 7000 production estimates taken frorﬁ the global ocean environment
throughout the 1960’s. Estimates of production from the Koblentz-Mishke map have
been summarised for some of the key Atlantic provinces (described by Longhurst et al.
1995) and compared with more modetn estimates (table 1.1.). The pattern of production
in the Atlantic remains throughout 30 years of study whereby values are highest towards
the Buropean north-west continental shelf and lowest in the oceanic gyre regions. The
quantitative descriptions of production appear markedly different and presumably reflect
the variability inherent to the system, however, the evolution of the respective techniques
(eg. accuracy and methodology) throughout time may add confusion to this
interpretation. The most recent study by Marafién and Holligan 1999 (see also Marafion
et al. 2000) further undetlines the inherent temporal and spatial variability of production

that exists within the Atlantic which would be difficult to determine from discrete or

synthesised data sets.
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Table 1.1.— Examples of recent published quantitative estimates of phytoplankton production

(according to Longhurst et al. 1995): NECS (north-eastern
, NAST (northern subtropical gyre), NATR
(tropical gyre), WTRA (western tropical Atlantic), ETRA (eastern tropical Atlantic) and SATL

continental sheif), NADR (north Atlantic drift)

for provinces of the Atlantic Ocean

). Also provided is comparative data from Koblentz-Mishke et

Rates of production are given as a mean or a range for each province except

(south Atlantic subtropical gyre)

al, (1970).

t data for Marafion and Holligan (1999, but also

Marafion pers.comm.) indicate the mean (standard error); * These authors note an error

associated with the lower limits of estimates for NAST, NATR and WTRA

where specific locations are indicated.

17



Variability of phytoplankton production vates in the Atlantic Ocean . 1. Introduction

The major draw-backs of these ‘classical’ techniques stem from the need to incubate
water samples for a period of time. So-called ‘bottle effects’ can drastically change the
nature of the light field from that experienced i situ (Grande et al. 1989) and create an
artificial ecosystem where small scale food webs are able to exchange the tracer
molecules between numerous possible pathways (Falkowski and Raven 1997).
Discrepancies between light and dark bottles may also confuse the intetpretation of
photoautotrophic photosynthesis (eg. Banse 1993). Furthermore, considerable time and
effort is required to measure production using these ‘classical’ methods and only provide
limited temporal and spatial resolution for the envitonment under consideration. As a
result, interest is increasing in the use of rapid i situ profiling instruments (such as the
Fast Repetition Rate Fluorometer, Kolber et al. 1998), and of algorithms which can be
applied to remotely sensed data (eg. Longhurst et al. 1995, Behrenfeld and Falkowski

1997a, b), for the analysis of the nature and variability of primary production.

1.3. The Fast Repetition Rate Fluorometer (FRRF) for measuring
in situ primary production

The pigments contained within photosystems I and II (PSI and PSII) serve to deactivate
excitation energy through photochemical and alternative non-photochemical pathways.
One of these latter pathways is the photosynthetic emission of fluorescence (Kraus and
Weis 1991) which, at ambient temperatutes, is emitted predominantly from PSII (Barber
et al. 1989). The measurement of phytoplankton fluorescence emission (yield) was
originally achieved by Lotenzen (1963, 1966) and subsequently provided a rapid assay for
the non-destructive measurement of chlorophyll a. A great deal of effort has since been
invested in understanding the relationship between chlorophyll 2 and fluorescence and

has meant that fluorescence measurements have become routine and fundamental to

oceanographic studies.

Fluorometers are designed to measute the peak emission of chlorophyll @ fluorescence
(approximately 685nm) from phytoplankton cells stimulated with easily absorbed blue
light. The routine use of traditional fluorometers has provided a wealth of information
concerning the total fluorescence yield per unit volume of sample. However, to further

assess the photosynthetic performance of such a sample requires a more detailed
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assessment of the total fluorescence yield. This was initially achieved through the
development of Fluorescence Induction Techniques’ which measute transient
fluorescence yields from rapid exposure to continuous light. The earliest attempts to
assess fluorescence yields from such techniques were complicated by multiple
photochemical turnovers (Kolber 1997) which add confusion to the interpretation of the
kinetics of light harvesting and electron transfer. Under a multiple turnover, some
reaction centres may remain briefly photochemically inactive upon light saturation (see
below) and plastoquinone pool (PQ) reduction is not wholly confined to a single
turnover event. Advancing technology led to the development of Pump and Probe (PP)

and Fast Repetition Rate Fluorometer (FRRF) techniques which can induce only a single

turnover of PSII (Falkowski and Kolber 1995).

The PP technique measures the fluorescence yield (from a probing signal) prior to, and
following, a pump of saturating actinic light. This technique was first applied to the
analysis of variable chlorophyll a@ fluorescence by Mauzerall (1972), but was not
significantly developed until Falkowski et al. (1984) began to implement the PP to
determine quantitatively the absolute rate of photosynthetic electron transport 72 situ.
This use of PP in situ was concentrated throughout the late 1980s and early 1990s, e.g.
Kolber et al. (1990), Falkowski and Kolber (1993), Kolber and Falkowski (1993),
Olaizola et al. (1996). However, this method proved too slow to follow the dynamic
changes in PSII photosynthetic parameters occurring on time scales of less than minutes
(Kolber 1997). A need to make on-deck measurements of dark adapted water samples
and of more detailed physiological patameters, such as the functional absorption cross

section (Kolber and Falkowski 1993, Boyd et al. 1997), further decreased the value of

this instrument.

The FRRF technique is based on the same photosynthesis-fluorescence relationships as
PP (eg. Geider er al. 1993) but was developed to overcome the problems associated with
the PP technique (Kolber 1997) and has, as such, superseded its use. The FRRF provides
a rapid chain of excitation flashlets. The intensity of each flashlet is much less than
saturating, but the time between flashlets is so short that cumulative excitation saturates
PSII (Falkowski and Kolber 1995) over a time scale of microseconds. This represents the

gradual contribution of PSII reaction centres to photochemistry. The V2-time for Q, re-

oxidation takes 160-400 s (Green er al. 1994), therefore, the FRRF is typically
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programmed to saturate PSII over 50-100 s (Green et al. 1994, Kolber 1997) which is
within the time period of a single photochemical turnover. The FRRF also has two data
collection chambers incorporated into the instrument to allow 2 siu simultaneous
measurement of samples under ambient light and dark conditions (Kolber and Falkowski
1992) and is further described in Chapter 2. The FRRF has been designed as a highly
flexible sampling tool; for example, it is a relatively small instrument which can be
operated directly or remotely to collect data over a range of spatial scales. It can also be

packaged with a vatiety of oceanographic instruments to provide detailed physical-

biological accounts of the environment.
The biophysical theory underlying the FRRF technique

The FRR fluorometer has the capability to estimate the absolute rate of in siu
photosynthetic electron transport (Falkowski et al. 1984) and, therefore, the gross
oxygen evolution from the photosystems. The robustness of the biophysical theoty
concerning the measured fluorescence properties of a sample are fundamental towards
the application and use of the instrument, as well as the interpretation of the observed
fluorescence signal. The following provides a brief summary of this theory which is
described in more detail by Falkowski and Kolber (1993), Kolber and Falkowski (1993),
Flameling (1997), Kolber (1997), and Falkowski and Raven (1997):

An electron (¢) is donated from PSII to the first stable acceptor, the quinone Q,, in the
clectron transfer chain (figs 1.4. and 1.8.) once the specialised chlorophyll a-protein
complex of RCII (P680) has received sufficient energy (see pages 6-8). Prior to this, Q, is
oxidised, and the reaction centre is said to be open. When Q, becomes reduced, the
reaction centre is closed. The relationship between the rates of ¢ addition-to and
subsequent e removal-from Q, determines whether photosynthesis is light-limited ot
light-saturated: when the removal rate greatly exceeds the addition rate, Q, is largely
oxidised and the rate limiting step in photosynthesis is light absorption by the antennae.
This is equivalent to the light-dependent section of a photosynthesis-irradiance (P-E)
curve (0) (fig 1.7); when the rate of ¢ addition to Q, greatly exceeds the removal rate,
Q, is largely reduced, and the rate-limiting step in photosynthesis is electron transfer

away from Q, by downstream reactions ie. the light-independent section of a P-E curve.
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Figure 1.8.— (Adapted from Kolber and Falkowski 1993) Schematic representations of the
relationship between reaction centres | and Il with respect to light excitation under ambient
dark and light conditions. Excitation energy from the FRRF (e) or from the sun (E) is absorbed
by pigmented antennae and delivered to the energetically coupled reaction centres. This
energy is subsequently de-excited by one of several pathways: conversion to chemical energy
via photochemical charge separation, re-emission as fluorescence, or non-radiative emission
via thermal deactivation. In the dark, levels of excitation energy are minimal, there is no
photochemical reaction, and the fluorescence yield (F,D) is minimal. As such, the
photosystem remains open, and the components of the electron transport chain remain in an
oxidised state. Once a degree of solar excitation energy is provided, the oxidation of water
and the transfer of electrons from RCII to RCI starts, the RCII closes and the initial electron
acceptor (Qa) becomes reduced The RCII does not re-open until Q4" is re-oxidised, and the
time taken (tp) for Qa re-oxidation represents the rate of electron transfer between RCIl and
RCI. The time constant for the oxidation of Qa by Qg is described by 1q. The change in the
background fluorescence yield (F,) between ambient light and dark conditions indicates the
proportion of RClls employed for photochemistry.

The relative number of RCIIs that are able to donate e's to Q, reflect the proportion of
light energy that is re-emitted as fluorescence. Therefore, yields of fluorescence can

determine at any particular time the relative amount of reduced (or oxidised) Q, and the
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degree to which photosynthesis is light-limited or light-saturated. Furthermore, changes
in fluorescence yields in response to changes in irradiance are indicative of the turnover

time for electron transfer.

Fluorescence Yields (F)— The excitation energy that arrives at a closed RCII is ‘excess’
energy, and can be transferred to another RCII ot returned to the antennae where the
energy will be deactivated as fluorescence or alternate pathways. The fluorescence yield
(F) is a quantitative measute of fluorescence from PSIL It can be described as minimum
yield (F.) under ambient itradiance conditions, or saturated yield (F,) under maximal
light when all RCIIs ate closed. Whilst F, fluotescence is emitted by the chlorophyll a
antennae pathway, that of F,_ is still debated; however, present evidence supportts that F,,
fluorescence follows the same pathway as F, fluotescence (see Kraus and Weis 1991).
The saturating chain of flashes delivered by the FRRF raises the fluorescence yield from
F. to F_. The difference between F, and F, is known as the variable fluorescence yield

(F.). These terms are summarised in f1g. 1.9.
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Figure 1.9.— Schematic representation of the saturation and relaxation of photosystem li
(PSII) in terms of fluorescence vyields (F) detected by the FRRF in response to excitation
flashes. The initial fluorescence yields represent background fluorescence levels (F,) whilst
saturation fluorescence yields (Fy) are induced once all reaction centres (RClls) are closed.
The effective absorption cross section for PSI, opgy;, is given by the rate at which RClls are
closed. The saturation sequence typically consists of 100 flashes whilst the relaxation
sequence is composed of flashes of lower energy. The relaxation fluorescence yield defines
the timescale for electron transfer, 1, that leads to the re-opening of RClls. The saturation and
relaxation sequences are shown for both the dark (D) and light (L) chambers operated under
the same FRRF protocol (flash duration and time between flashes), see Chapter 2.
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Quantum Efficiency of Photochemistry (Fuo/Fn)— A quantum yield is the ratio of energy
received to that which is emitted. Quantum yields for photosynthesis can be determined
in terms of the fluotescence properties of RCIIs that are fully open (probability of
excitation escape is low: F ) and fully closed (excitation energy cannot be directed to
photochemistry: F,). The dimensionless parameter F,/F, (where F, = F_-F) is the
maximum change in the quantum yield of fluorescence [normalised to the F, ] and
reflects the proportion of energy received by RCII to that which is emitted, ie. the
maximum change in the quantum yield of photochemistry or the efficiency of
photochemistry. Based on laboratory studies of phytoplankton cultures, the maximum
value for F_/F, is 0.65, and is <1.0 because of back reactions between donor chlorophyll
molecules and the acceptor molecules (Schatz et al 1988). Deviations in the observed
value of F_/F, from the maximum value of 0.65 ate seen under different environmental
conditions (eg., Falkowski and Kolber 1995) and are considered to be indicative of
variations in the fraction of RCIIs capable of converting absorbed light energy to
photochemical energy (Geider et al. 1993). As such, the proportion of functional PSII

reaction centres, f, is defined as measured F /F, divided by the theoretical I /T,

maximum (0.65).

Quenching (q)— The occurrence of competing pathways for the excitation energy results
in a reduction in the potential energy emitted as the fluorescence yield. Excitation enetgy
that proceeds along photochemical pathways will reduce the fluorescence yield and is
termed photochemical quenching (qP). Additionally, there are non-photochemical
pathways which are competing for the excitation energy, for example, as heat, or as a loss
of excitation energy from teactions within the pigment bed, and are termed non-

photochemical quenching (qN).

The photochemical quenching coefficient, qP, describes the proportion of RCIIs closed
under ambient light, and is calculated from fluorescence yields obtained from the FRRF
light and dark chambers: qP = (F,L - FL)/(F,L - F D). Estimation of the non-
photochemical quenching coefficient, qN, where qN = (F,D” - F, 1)/(F,D” - F,D"),
requires a knowledge of the fluorescence yields of fully relaxed photosystems; D~
indicates a measurement on cells that have been kept in darkness for long enough to
allow complete relaxation of energy dependent quenching (usually >30 minutes). This

parameter can be measured with a bench-top FRRF on discrete samples (eg. Kolber and
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Palkowski 1993). N represents the remainder of fluorescence quenched by sources
other than photochemistry. Instantaneous physiological measurements (i sit#) of the
pigment bed and RCII are believed to quantitatively account for the majority of energy

that is non-photochemically quenched (Kolber and Falkowski 1993).

PSII effective absorption cross-section (Oesu}— The rate at which PSII is saturated from
F, to F, (fig 1.9.) provides an indication of the area available for light interception, ie. the
area of the antennae, relative to the number of reaction centres (Vassiliev et al. 1994,
Falkowski and Kolber 1995). As such, this term is not an actual size measurement but is
a measure of the probability that photon absorption will result in a photochemical event
(Falkowski and Raven 1997), and has units of Angstroms” (A% quanta”. For a given
excitation energy, a high Oy, indicates a high efficiency of light interception, and
therefore a relativeiy fast rate of available RCII closure; a lower Opg; would result in a
longer time for light interception and hence RCII closure saturation. Any changes to

processes within the pigment bed (telative to the number of RCIIs) are likely to be

reflected in these measurements.

Minimum turnover time of electrons (1}— The decay in the yields of variable
fluorescence (fig. 1.9.), F,, in response to a series of relaxation flashlets can be used to
obtain the turnover time for photosynthetic electron transfer. Upon the removal of
saturating light, the fluorescence yield falls at a rate Vcorresponding to that of RCII
opening. This signifies the time taken for electron transfer from PSII to PSI (the
maximum rate of electron turnover, 1/7T), the rate at which electrons {(e) can be pulled
from water to evolve an oxygen molecule and, therefore, the sequestering of a single
photochemical event. The PQ pool can remain highly reduced when the rate of photon
absorption by PSII is greater than the rate of PQ re-oxidation (T,). Subsequently, PQ
becomes highly reduced and PQ re-oxidation is the rate limiting step for re-oxidation of
the intermediate electron acceptors (Q, and Q) and ultimately, of the P680 molecule.

This condition may occur at high irradiances or during a prolonged FRRF saturation

sequence (Kolber and Falkowski 1992).

Several time constants contribute to the turnover of electrons (figures 1.8. and 1.9.), for

example, T,,, describes the time taken for Q," (the ptimary electron acceptor from PSII)
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re-oxidation and T, describes the rate of plastoquinone pool (PQ) re-oxidation (Kolber
and Falkowski 1993). The FRRF can resolve up to 4 components of the kinetics of
electron transport. However, this can only presently be achieved using an extended
protocol which, for i situ observations, would last longer than the flushing time for the
sample chamber (Kolber 1997). Shorter protocols can provide estimates of T, but may
only resolve 1 or 2 components of PQ re-oxidation which is insufficient to fully describe
the actual eclectron transfer process (semsu Kolber 1997). Therefore, accurate
determinations of the i situ turnover time for PSII (t,) can, at present, only be achieved

through indirect methods such as those employed for the Pump and Probe fluorescence

technique (Falkowski and Kolber 1993, Kolber and Falkowski 1993).

Some of the i vivo fluorescence properties of PSII used to estimate rates of

photosynthesis (see equation 1.1.) cannot presently be directly resolved without making

certain assumptions:

Concentration of PSII reaction centres (nesu}— A knowledge of the number of reaction
centres is also required for the calculation of photosynthesis using the FRRF, but is not
easily measured by fluorescence techniques alone (Kolber and Falkowski 1993). A value
of fipg, (mol RCII mol chl a') must be assumed and tepresents the greatest ambiguity in
the use of the FRRF to calculate photosynthesis since this parameter can vary both with
phytoplankton taxonomy and environmental conditions (eg. Dubinsky et al. 1986).
Previously used values of nyg; for the estimation of production using the PP or FRRF
(eg. Kolber and Falkowski 1993, Boyd et al. 1997) come from several laboratory studies:
1/500 (0.002 mol RCII mol chl ") for chlotophytes and diatoms, and 1/300 (0.003 mol
RCII mol chl ') for cyanobacteria (Falkowski and Kolber 1995).

The quantum yield of electron transport (¢¢— The ratio of oxygen evolved per quanta
of energy absorbed sets a limit to the overall quantum yield of photosynthesis. At
maximum efficiency, four electrons are transferred for each molecule of O, evolved,
giving a value for ¢, of 0.25 O, molecules/quanta. However, 0, is not a constant. At high
levels of irradiance, the relationship between irradiance and oxygen yield becomes
uncoupled (Falkowski et al. 1988). This uncoupling has been attributed to cyclic electron

flow around PSII (Falkowski et al. 1988, Prasil et al. 1996), although other processes, for
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example, mitochondrial tespiration, Mehler-peroxidase reactions, photorespiration and
PSII heterogeneity are also likely to be important (Flameling and Kromkamp 1998), see
section 1.1. Irrespective of the causes, energy loss occurs when the rate of primary
photochemistry exceeds the maximal rate of electron transfer, (T,), from PSII to PSI
(Kolber and Falkowski 1993), and ¢, declines. As such, the degree to which the rate of
primary photochemistry exceeds T, at saturating irradiance levels represents a measure of

¢, and relies on the accuracy with which T is estimated.

1.4. Estimates of oxygenic primary production using the FRRF

The kinetics of photosystem closure can be observed by following the responses in
fluorescence or oxygen evolution. Fluorescence yield is defined as the ratio of photons
emitted from PSII to photons absorbed by PSII, whilst oxygen yield is the ratio of O,
evolved to photons absorbed by PSII. However, the action spectra for these 2 factors are
remarkably similar (Neori et al 1988) and suggest that they share a common
photochemical teaction (Falkowski and Raven 1997). Like fluotescence, oxygen
generation essentially stems from treactions that occur within PSIL Therefore, the FRR
fluorometer can provide a convenient assay for estimating photosynthetic oxygen
evolution. The relationship between these two factors can be used to describe an

empirical photosynthetic rate model (Kolber and Falkowski 1993) using the fluorescence

parameters that the FRRE measures:

POZB (E) =E . Opgy - qP (E) . ¢, (B). (f Dpgy) [1.1.]

This equation combines derivations of the concentration of photosystem II reaction
centres (npg), the proporton of these reaction centres that are capable of
photochemistry (f), the rate of photon absorption per reaction centre (Gpgy; - B), and the
quantum efficiency of photosynthetic oxygen evolution (qP.¢, = ¢O,) to calculate gross

photosynthesis in terms of oxygen produced. A quantum yield of photochemistry within

PSII is also considered by Kolber and Falkowski (1993) but is constant and unity and,

therefore, is not necessary in equation 1.1. Modification of equation 1.1., to take account
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of the relationship between oxygen produced and carbon fixed, gives photosynthetic

carbon fixation per unit volume:

P,=E,.Cpy . 00, . (frpg). 1/PQ . 3600 . 10° [1.2.]

Where P, = photosynthetic carbon fixation per unit volume of seawater at depth z (mol
CO, m” h'"); PQ is the photosynthetic quotient (the observed efficiency of O, evolved
per CO, assimilated or mol O, evolved: mol CO, assimilated); and 3600 . 10° is a
numerical factor to account the conversion of seconds to hours and mol photons to
mol photons. All other parameters are defined as equation 1.1. but with reference to

depth z. As for nyg,;, values for PQ must be assumed or estimated by other methods.

Summary of the calculation of photosynthetic rate via the FRRF

The following parameters are provided via the output of the FRRF (see Chapter 2 for

more details) but require further manipulation before application to equation 1.2:

The absorption cross sectional area of the antennae of RCII (oesu}—is measured and
output through the FRRF in units of A® quanta’. This can be converted to more

conventional units to compate and associate with other biophysical parametets:

oesii. A2 1m?  6.0231%3quanta = Opsn . 6.0231% (m?/mol photons)
quanta  1027A2 1 mol photons 1020

The number of functional RCIIs (nrsy)—Is a product of the value of the number of

RCIIs and the F_/F, dark chamber value (dimensionless) relative to the 0.65 maximum:

nestt . (FvD/FuD)/0.65 = n,g; . f (mol RCII mol chl @)

Fluorescence yields—TF,, F, and F_ (F-F,) values from both the light (L) and dark (D)
chambers are output through the FRRF (instrument unitsjand can be used in isolation

and provide the calculations for both photochemical (qP) and non-photochemical (qN)

quenching:
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(Ful-F.L) / (Ful-F.D) = qP (dimensionless number between 0 and 1)
(FuD-Ful) / (FuD-F,D) = gN (dimensionless number between 0 and 1)

Quantum yield of electron transport (¢g)—Is calculated from the rate of light absorption

relative to the turnover time of electrons such that:

E wmol photons 1 mol photons Opsum? qP 1s < 1 0. = 0.25

m? s 10%umol photons mol photons 1004s T, Us

This quantum yield is at its maximal value (0.25 mol O, mol RCIT"). However, where

there is excessive excitation enetgy, the process of electron transport becomes less

efficient and is accounted for:

E pmol photons 1 mol photons opsnm? P 1s = 1 Qe =
m? s 10%umol photons mol photons 10%0s T, Ms

0.25 * m2s 105umol photons  mol photons 1 10%s 1
E umol photons 1 mol photons Cpsim?z P 1s T, Us

Calculation of 7—Can be obtained directly through FRRF relaxation period where one
can be confident that T = T Under these conditions estimates of T, E, and P, can be
derived for each FRRF measurement. Following Kolber and Falkowski (1993) for PP
estimates of production, and Sakshaug et al. (1997), T, is unknown but can be

determined from the product of the turnover time of electrons and the light intensity at

which the rate of photosynthesis changes from light dependant to light independent (E,):

Tp (us) = m? s 10%wmol photons mol photons  105s
Ei umol photons 1 mol photons Opsi m? 1s

An estimate of F, can be obtained by plotting a figure of q, versus E: the sudden decline
at high light intensities corresponds to the E,. This derivation of E, and therefore T,
means that only one estimate can be derived for a series of ¢, versus E data. This single
value represents an integration of otherwise discrete depth signatures for the whole water
column, as would be expected for a mixed population. From the product of one or more

of the above factors, we are now able to calculate:
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The instantaneous rate of photosynthesis (P(E): mol Oz mg chl " h')

Ffopsu mol RCIT opsnm?  0molO; qP Imolchla 1gchla  E pmol photons 3600
mol chla  mol photons mol RCII 892g chle 10°mg chla m?s h

Subsequent modifications to the value derived through this equation, for example, mols
to mg O, or the application of a photosynthetic quotient to obsetve the amount of
carbon uptake can be performed (see equation 1.2.). A summary of the major terms and

symbols used throughout this thesis are given in the following table (table 1.2.).
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Term Definition Units Method Formula (for
obtained derived parameters)
F IFluorescence yield 1.U. M -
Fo Minimum value of I 1.U. M -
Fu Maximum valuc of ¥ L.U. M -
Fy Variable fluorescence Dimensionless M Fn-Fa
Fv/Fu Ratio of variable to maximum Dimensionless M .
fluorescence
qP Cocfficient for photochemical Dimensionless DE (FyL)/ (FaL - FoD)

quenching (quenching of 'mL
attributable to PSIT photochemistry)™
gqN Cocfficient of non-photochemical Dimensionless DE (FmD -Ful)/(FD)
quenching (quenching of Fml that 1
independent of PSI photochemistry)*

oSt Functional cross-section of (A2 quanta’™) M -
photosystem 1 (electrons photon')
f Proportion of photosystem 11 reaction Dimensionless DE (FvD/FmD)/0.65

centers that are capable of charge
separation.

nesi concentration of PSH reaction centres mol RCIT mol chl 21 A -
per chlorophyll @
concentration of PSIT reaction centres mol RCII m? DE mol RCII mol chla! .
per unit volume. [chl 4]
dresit Quantum yicld of photochemistry clectrons photon DE 1 electron photon!
(¢e - qP); (Glon/2%)
e Quantum yicld of electron transport electrons photon DE E . Ovsu . P relative to ¥
dp Quantum yield of photosynthesis clectrons photon? DE Qe . gP
Tp Turnover time of Q4 re-oxidation Us M -
DE Oesi/Ex
E Irradiance mol photons m2 st M
I Light utilisation coefficient mg C mg chl 2™ mol DE P-E curves
photons?! m2 s
™ Light saturated (max) photosynthesis mg C mg chla? hrt DE P-E curves
Ex Light saturation parameter mol photons m?2 g1+ DE Prchl/ ot
PopChl Photosynthetic oxygen cvolution Rate mol Oz mgchla? DE see text
per unit chlorophyll hrt
PO: Photosynthetic oxygen evolution Rate mol Oz my3 g DE see text

PC]' Ullit volume

a* Chlorophyll a-specific light absorption m? mg chl a! M -
cocfficient (his applics to pigments
associated with PSI, PSIT, as well as
noaphotosynthetic pigments)

Table 1.2— (upper section) Definitions of measured and derived fluorescence variables;
(middle section) definitions of variables used in calculating primary productivity using the
FRRF method; (lower section) definitions of variables used in calculating primary productivity
using hybrid Bio-optical/FRRF method. All terms are (M) measured directly through the FRRF
and subsequent processing software, for both the dark (D) and light chambers (L); or (A)
assumed based on estimates used in alternative studies using different approaches; or (DE)
derived using a combination of measured or assumed terms. nb. * gN and gP are normally
applied to interpretation of fluorescence yields measured using pulse amplitude modulated
(PAM) techniques. The fluorescence yields obtained from FRRF and PAM techniques may
vary due to differences in methodology (Kolber et al. 1998). None-the-less, these coefficients
are applied without modification to interpretation of FRRF data; * this relationship (eg. Kolber
and Falkowski 1993) as ¢ = 0.25 if E . Gpsi. P < Tp 0r ¢ = 0.25/(E . opsi . 9P . p) IFE .
opsi- QP > Tp.
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1.5. Objectives

This thesis has the broad objective of ‘identifying the factors responsible for variability of
phytoplankton primary production observed within the Atlantic Ocean’ using data
collected from Fast Repetiion Rate Fluorometets (FRRFs) throughout a series of

cruises. Several specific aims will be sought in order to achieve this goal:

1. To provide a better understanding of the application of the Fast Repetition Rate
Fluorometer (FRRF) to the measurement of phytoplankton production (Chapter 3).
Following the theoretical consideration (sections 1.3. and 1.4.), photosystem II (PSIIL)

activity and subsequent primary production estimates are analysed throughout a diel cycle

at 3 sample sites of differing nutrient status.

2. To evaluate the physiological processes which control the nature and, therefore,
variability of primary production (Chapter 4). High resolution (temporal) data collected
at two stations over 24 hour sampling periods will build on the observations of PSII
activity in relation to environmental variability (Chapter 3). A method for calculating the
number of reaction centres (npg;), based on 7 situ (FRRF) data, is also presented in an

attempt to identify factors responsible for the variability of PSII based production.

3. To describe the factors responsible for phytoplankton production variability across a
range of environmental conditions (Chapter 5). Previous chaptets consider physiological
data from different light-nutrient environments; however, Chapter 5 will analyse FRRF
data in relation to corresponding measurements of light, nutrients and temperature
collected throughout different biogeographic provinces of the Atlantic. Further
treatment of continuous surface (FRRF and hydrographic) data will be used to desctibe

patterns (scales) of biological and physical variability significant to the process of primaty

production.

4. To validate the FRRF as a tool for measuring marine phytoplankton production
(Chapter 6). Corresponding estimates of production from the FRRF and ‘classical’

techniques (eg. "“C-uptake). Data from all previous chapters will be drawn into the

analysis and discussed within their respective limitations.
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2. Common Methodology

A common sampling regime was employed throughout a series of ctuises to collect the
data presented in this thesis. These cruises traversed a range of biogeographical provinces
and hydrographic conditions within the Atlantic Ocean and are desctibed in more detail
in the relevant chapters (see also table 2.1.). The following account describes the routine
procedures employed for in situ data collection using the FRRF. In addition, methods
employed for the colléction and measurement of parameters (hydrographic, nutrient and
optical measurements; estimates of productivity using conventional methods of carbon-
14 ("C)-uptake and oxygen (light/dark) evolution; measurements of chlorophyll a-

specific absorption) which support those determined by the FRRF are also described.

2.1. Routine FRRF data collection

Preparing the FRRF for in situ data collection— The FRRF primarily collects data under
2 alternate modes of operation: automatically (remotely pre-programmed) or discretely
(attached to a p.c.), both of which were employed during each cruise. The automatic
mode was employed when the FRRF was attached to a CTD frame or housed within an
undulator, and requires that the instrument is ‘woken up’ immediately before
deployment. The FRRF can also be sent to sleep and pre-programmed to acquire data at
specific times; however, this option was not required throughout the cruises. The discrete
mode is more directly controllable and allows the user to continually interact with the
data acquisition. This mode was used when sampling the ship’s continuous seawater
supply. Two FRRFs were present on all cruises: One (ser.no. 182010) was reserved for
continuous sampling of the underway non-toxic ship’s seawater supply, whilst the other
(ser.no. 182018) was routinely employed for remote operations. A diagram of an FRRF is

given in fig 2.1.
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Flow-through

Sun-block
L/

chamber

i
: LED emission windows
Fluorescence detection (excitation channel)

windows (emission channel)

Figure 2.1— The Fast Repetition Rate Fluorometer (FRRF). Lower figure shows the full
instrument (cable guard, titanium housing for the electronics and the optical head) but without
the battery pack which is attached to the open end of the cable guard. Upper figure shows a
schematic of the optical head. The 4 cable ports are not shown but consist of PAR, pressure
sensor, communications (to deck cell or CTD) and battery connectors. The light emission
windows (excitation channels) are situated on the base of the optical head and house the
LEDs whilst the fluorescence detection channels (emission channels) are situated on
opposite sides of the vertical centre-block and house the photomuiltiplier tubes (PMTs). The
grooved sun block is placed opposite the emission channel (see text) of the light chamber. A
housing [with specific attachments to allow flow-through or retention of water samples] is
placed over the other set of optical windows to provide the dark chamber. The sun-block and
dark chamber are black but are represented here as transparent for practical purposes.
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Name of Time of  Areasampled Aim of data collection Relevant
cruise; ship  sampling chapters
Metlim 98; RV Match 1998 3 sites along 23°W Characterise general 3,0
Pelagia. meridian: 43, 40 &  responses of PSII over the
37°N diel period at 3 different sites
Atlantic Mid May ~ Cruise track Cape ~ Obsetve spatial variability 56
Meridional Mid June 1998 Town (37°S 18°E)  across different
Transect (AMT) to UK. (50°N hydrographies of the Atlffmtic,
6; RRS James 2°0)). including Aftican upwelling
Clark Ross. systems.
RRS Challenger.  August 1999 2 stations: mixed Observe the response of PSII 4.6
(48°N 04°W), to light over relatively small
stratified (49 °N scales (of variability).
06 °W).

Table 2.1.— Summary of cruises used to collect data for this thesis. This general information
describes the time and location of sampling within the Atlantic Ocean in order to fulfil the aim
of data collection using the FRRF. More details regarding the hydrographic environment of
each cruise are given in the (respective) relevant chapters.

Each FRRF must be (appropriately) programmed before it is used. The settings used for

data collection generally remained the same for the 2 instruments and were employed
under slight modification of the ‘boot protocol’, see table 2.2.. This protocol provides a
flash sequence consisting of 100 saturation (100: 1pUs flashes each separated by 1us
intervals) and 20 relaxation (20: 1pts flashes each separated by 50ls intervals) flashes at a
200kHz repetition rate. Therefore, the saturation and relaxation of PSII occurs over
approximately 200[s and 970Ms, respectively (Kolber 1997). Most of the instrument
settingé are flexible (table 2.2.); however, the boot protocol assesses PSII within a single
turnover of photochemistry whilst providing a steady rate of saturation from which the
functional absorption cross section (Opg,) can be precisely derived. As such, the boot
protocol is a highly suitable mode of operation for observing PSII activity 172 situ. Any
significant modification to these settings should be first scrutinised under a range of

conditions in a controlled (laboratory) environment (see Kolber et al. 1998).

The speed of data acquisition is, to some extent, controlled by the rate at which the array
of light emitting diodes (LEDs) can operate. A bank of LEDs provides the light source
for PSII excitation and is housed under the emission window, fig. 2.1. The fluorescence
response from each saturation and relaxation flashlet were logged to an internal memory

card as 1 acquisition averaged from several flash sequences. This was performed in order
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to increase the signal to noise ratio, in addition to conserving data storage capacity of the
instrument. As such, this internal averaging was set at different rates depending upon the
mode of operation. The discrete mode stored 1 (averaged) acquisition per 16 sequences.
The remote instrument was operated at 1 acquisition pet 3-4 sequences. These modes
resulted in a data collection rate of 1 acquisition recorded per 22 seconds per channel,
and 1 acquisition recorded per 3-5 seconds per channel, respectively. Technological
changes to the FRRF immediately prior to the RRS Challenger cruise, August 1999,
meant that these data collection rates were improved so that both instrument modes

were operated at 1 (averaged) acquisition per 16 sequences providing 1 acquisition/1-

2s/channel.

A photomultiplier tube (PMT) is housed under the detection window and intercepts the
elicited fluorescence signal, fig. 2.1. The gain of the PMT determines the sensitivity of
the instrument to the fluorescence signal. The instrument gain setting was pre-
determined for each cast/underway run using the fluorescence characteristics of previous
acquisitions. This estimation of the gain also required some degtee of leeway to account
for any unexpected variability and subsurface maxima. However, this incorporation of
leeway presented additional restraints when collecting data from more oligotrophic
regions since the fluorescence signals would become noisier. Regular observation of real-
time data supplied from the ship’s underway fluorometer provided some means to avoid
the recurrent use of an insensitive gain. The modifications to the FRRF prior to the RRS
Challenger cruise included an autogaining function. This mechanism changes the gain up
(down) when the running average fluorescence signal, as a % of the running average
maximum, is less than (exceeds) a lower (upper) threshold value, see table 2.2. However,
this modification proved too insensitive for the profiling protocols, resulting in saturated

or noisy fluorescence signals, and was seldom used.

Data were downloaded from the FRRF to a p.c. in binaty format (serial communication
parameters: 9600 N 8 1). Binary format was chosen over ASCII format since the former
comprises smaller file sizes and is faster to download. The changes to the FRRF
hardware prior to RRS Challenger cruise also incotporated a faster rate of download
(57600 N 8 1); however, this feature appeared more stable when data were downloaded
in ASCII format. These data were subsequently analysed by a programme supplied by
7.S. Kolber, to provide values of background (F,), maximum (F,), and variable (F)
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fluorescence yields, photochemical quantum efficiency (F,/F,), functional absorption
cross section of PSII (G,) and minimum turnovet time for electron transport (1), for

both the light and dark chambers. All fluorescence yields are given as instrument units

LU).

Parameter ‘boot” Settings FRRF range
setting  used

1 Number of acquisitions 0 64000 0 - 64000

2 Flash sequences per acquisition 1 16 1-16

3 Saturation flashes per sequence 100 100 1-100

4 Saturation flash duration * 4 4 4-100

5  Saturation inter-flash delay * 0 0 0 - 65535

6  Decay flashes enabled enabled enabled/disabled

7 Decay flashes per seqﬁence 20 20 1-20

8  Decay flash duration ¥ 4 4 4-100

9 Decay inter-flash delay 61 61 0-100

10 Sleeptime between acquisitions 1000 10 - 500 10 - 60000

11 PMT gain [autogain] lower signal limit 3 3 autogain (0-9)

PMT gain [normal mode] 0 x4 - x64 normal (x1 x4 x16

x04 x256)

12 Analogue output disabled disabled enabled/disabled

13 Desktop verbose mode disabled disabled enabled/disabled

14 Light chamber (&\) active active active/inactive

15  Dartk chamber (B) inactive active active/inactive

16 Légging mode to internal flashcard disabled enabled enabled/disabled

17 Uppert limit autoranging threshold value 90 85 55-99

18  Lower limit autoranging threshold value 15 15 5-45

Table 2.2— FRRF settings employed for data collection throughout the 3 cruises: boot
protocol, the typical settings used throughout the cruises and the potential range of settings
(ie. the flexibility of the instrument). All parameter settings are in numbers of flashes/
sequences/acquisitions, except sleeptime between acquisitions (ms), PMT gain (sensitivity to
fluorescence, see also main text, read as increasing/decreasing factors of 4) and the
upper/lower limit for the fluorescence threshold value (see main text). * indicates that numbers
for these parameters are in instrument units: These units correspond to clock cycles in the
field programmable gate array (FGPA which emulates the logic circuitry for generating flash
protocols) whereby (a) saturation: 4 = 1.1us and each additional integer increases the
duration by 60ns ie. 14 = 1.9us (b) relaxation: 0 = 125ns and each additional integer
increases the duration by 700ns ie. 14 =9.2 us
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FRRF data collection—The FRRFs were operated routinely on each cruise. The
instrument, which was attached to the CTD frame or in place of one of the CTD sample
bottles, was configured with a CI (Chelsea Instruments) ‘dark chambert’, designed to
retain phytoplankton in the dark long enough to induce relaxation of F, (Kolber 1997).
Also a CI grooved sunblock, designed to prevent ambient sunlight from degrading the
quality of the fluorescence tesponse of phytoplankton in the light chamber” (Iolber
1997) was mounted facing the emission window of the FRRF light chamber [assigned
channel A], see fig. 2.1. The internal clock of the FRRF was synchronised with that of
the CTD logger prior to each deployment.

The FRRE automatically acquired data during each CTD cast. The CTD was stopped for
3-5 minutes at selected depths during the up-cast. These depths were selected based on
the hydrographic profile observed from the down-cast. The stops allowed for the
collection of water and/or the collection of extended signals for the FRRF. These
extended signals provided larger signal sample sizes (typically 20-30 data acquisitions)
needed to obtain an ‘averaged’ signal. These extended stops also gave the FRRF data a

definite depth-stamp. A pressure sensor was not incorporated into the FRRF until the
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RRS Challenger cruise. The value of the FRRF as a profiling tool was further enhanced
by the faster sampling rate available for the RRS Challenger cruise, which generated data
of greater resolution during ditect profiling. A compatison between data collected from
corresponding depths during the down cast (direct profiling) and the up-cast (extended
signals from CTD stops), f1g 2.2., shows good agreement between both sets of data. A
degree of noise still remains in these data but should be considered as encouraging given

hydrogaphic variability between the up- and down-cast, and also during the extended

data collection period during the up-cast.

The CTD frame was typically fitted with a 25cm path length transmissometer (at 660nmy),
a cosine PAR (400-700 nm) sensor, water samplers (bottles), and a CTD equipped with
pressure, conductivity, and temperature sensogs. The data from these CTD instruments
was sent up the wire and logged to a p.c. The FRRF also had its own separate PAR
sensor attached. As such, the 2 PAR sensors on the CTD were mounted to the CTD
frame at the same height and gave comparable outputs, e.g. RV Pelagia: 1 = 0.985. The
FRRF PAR sensor failed during the AMT 6 cruise and, therefore, all PAR measurements
were obtained directly from the CTD PAR sensot. All FRRF and PAR sensor optical
heads, and the FRRF dark chamber, were cleaned between immersions to prevent
fouling. Water was collected at each appropriate depth to routinely sample for
phytoplankton pigments, nutrients and tates of productivity by the conventional

methods of “C-uptake and oxygen (light/dark) evolution.

Additional remote operations were employed for the FRRF during the AMT6 cruise, in
which the FRRF was housed within an undulating oceanographic recorder (UOR). These
undulators are designed to remotely collect data, free from the constraints imposed from
making casts directly from platforms such as ships (eg. Aiken and Bellan 1990). The
UOR was towed from the ship at approximately 11 knots for periods of 2 to 7 hours.
The aldtude of the UOR is controlled by means of a programmable servo, and undulates
the instrument between 5m and 75m (every 9 minutes) throughout the water column. A
Plymouth Marine Laboratory CTDF (conductivity, temperature, depth, fluorometer), a
downwelling radiance and upwelling irradiance sensor were also housed within the UOR
to provide corresponding hydrographic data. These instruments logged their data to a
PML designs logger (refer to section 2.2.) at a sampling interval of 2.0 seconds. More

comprehensive details of the UOR vehicle are given in Aiken (1985).
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The discrete sampling of the non-toxic seawater supply was also routine. The CI ‘dark
chamber’” was fixed over the optical cells of the FRRF assigned channel B. Blackened
silicon tubing was fitted to connect the opening of the dark chamber to the outlet hose
of the ship’s non-toxic seawater supply. This supply (outlet) flowed through the ship’s
underway instrumentation, for example, fluorometer, temperature and conductivity
sensors, before arrival at the FRRF. This passage typically retained the seawatet supply in
dark conditions for a period of 2-3 minutes following collection. The data from the
ship’s underway instrumentation was automatically logged to a p.c. Additional data, such
as time (G.M.T.), latitude, longitude, wind speed and irradiance was also collected from

the ship’s instrumentation and passed through additional channels and logged to the

same p.C.

Routine hydrographic measurements— The following account (and section 2.2.)
summarises the methods used in the measurement of parameters useful to the
interpretation of FRRF data. Learning to use the FRREF (and interpret the data) was a
time consuming process and meant that I could not be directly involved in a significant
propottion of the accessory data collection (see Appendix 1). Water was collected at
regular intervals from the ship’s non-toxic seawater system to analyse for phytoplankton
pigments and nutrients. The methods for these analyses are the same as those for water
collected from CTD casts. Nitrate was measuted as part of a suite of nutrients (nitrate,
nitrite, phosphorous, silicate). Nuttients were analysed from water samples using a 4
channel Technicon® Autoanalyser, and subsequently determined colorimetrically
following standard methodologies. A mixed nutrient standard was run through the

instrumentation daily to check the petformance of the analysis and validate the

concurrent measurements.

Triplicate volumes of sample water were vacuum filtered through Whatman 25mm
GF/Fs. Two of these filters were subsequently stoted at -80°C to await analysis for
pigments using spectrophotometric (RV Pelagia; RRS Challenger only) and HPLC
techniques. The third filter was placed in 90% acetone solution and stored at -4°C for
extraction of chlorophylls. The extracted solution was analysed for chlorophyll 2 using a
Turner Designs digital Fluorometer according to Welschmeyer (1994). This methodology
uses a combination of optical filters and lamps, and is thought to reduce interference

from chlorophyll b (Mantoura et al. 1997). Chlorophylls and accessory pigments were
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determined at sea using reverse phase High Performance Liquid Chromatography

(HPLC) techniques:

GT/F filters were extracted in 2ml of 90% acetone, containing a known concentration of
an internal standard canthaxanthin. Extraction was petrformed with 20s of ultrasonication
and centrifugation. Pigment extracts were loaded into a thermoseperation autosampler
and mixed with 1mol ammonium acetate (50:50) prior to injection. The pigments were
analysed according to Barlow et al. (1997), and identified by retention times and
absorption spectra using SPECTRA software. The HPLC system was calibrated for each
pigment with authentic standards (chl &, b: sigma; carotenoid, chl ¢: VKI Water Quality
Institute, Denmark; dvchl a: Bidigare, Hawaii). Calculating the relative response factors

of each standard with respect to canthaxanthin provided quantification for each pigment.

2.2. Additional (cruise specific) methodologies

Optical profiling and chlorophyll a-specific light absorption—The optical cross section
of photosystem light harvesting antennae (Gp,) is calculated as the product of light
absorption over a range of wavelengths. The calculation of this cross section, therefore,
requires knowledge of this absorption, in addition to the i situ light intensities for the
range of wavelengths concerned. This parameter is not required when typically using the
FRRF since the functional absorption cross-section of PSII (Gpg) can describe the rate
of light absorption by PSII; however, the light absorption by phytoplankton [pigment]
samples can still provide useful information concerning their photophysiological status
(sce Chapter 4). Optical data was routinely collected during each cruise. Measurements of
light absorption by phytoplankton pigments were only performed for RV Pelagia and
RRS Challenger cruises.

An optical profiling rig, consisting of a CTDF (conductivity, temperature, depth,
fluorometer), transmissometer, and 2 Satlantic light cells, was lowered throughout the
water column to correspond with the CTD profiles. Prior to deployment, the clock of
the logger was set to correspond with that of the ship [and therefore the FRRE] for

subsequent data merging. The 2 light cells measure upwelling radiance (Ed) and
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downwelling irradiance (Lu) light for 7 wavelength bands: 412, 443, 490, 510, 555, 670,
and 685nm and correspond to SeaWiFS satellite bands. Data from all instruments was
logged (per 0.5s) into a PML data logger. This logger consisted of a microcomputer
controlled 16 channel bit oversampled analogue to digital converted with 2MB of solid
state storage. The logged data was downloaded to a p.c. upon retrieval. The data were

converted into a readable tab separated ASCII file using software provided by Gerald
Moore (PML).

Absorption spectra were measured on samples filtered onto Whatman GF/F filters and
stored at -80°C until analysis using a Hitachi U-3000 spectrophotometer fitted with a ¢60
integrating sphere following the protocol of Tassan and Ferrari (1995). Approptiate
corrections were made for multiple scattering within the glass-fibre filter using a
wavelength independent pathlength amplification factor (f-correction, Kirk 1994),
determined from axenic cultures of Synechoccocus (strains WH7803 and WH8103) or of

a mixed eukaryotic assemblage, supplied by Matt Pinkerton, pets.comm.

Phytoplankton productivity—'"*C uptake measurements were made during all cruises on
30 ml samples taken at selected depths from the CTD casts. Photosynthesis-itradiance
(P-E) curves were determined by uptake of “C in a temperatute-controlled
photosynthetron (Lewis & Smith, 1983), essentially as described by Maclntyre et al.
(1996). Hlumination of 10-1700 umol photons m™ 5™ was provided by quartz-halogen
lamps, filtered through a 2.5 cm layer of water. Irradiance in the manifold was measured
with a Biospherical Instruments QSL-101 47 sensor. The cells wete held in darkness for
up to 30 minutes between sampling and incubation. The sample was inoculated with 50
uCi ml' of NaH"CO, (58 Ci mole”', Amersham CFA.3) and incubated. The incubations
were made in the photosynthetron and terminated after 60 min (RV Pelagia ) or 1-2
hours (RRS Challenger) by adding 50 pl of glutaraldehyde to each aliquot. Additional
“C-uptake experiments were performed during AMT6 and RRS Challenger cruises in
which incubations were made on deck undet simulated i situ conditions using neutral
density filters. Each experiment was conducted at 6 light intensities, 0%, 10% 20%, 33%,

60% and 100% of the incident irradiance, and was performed for a period of 5-6 hours

before termination.
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Residual inorganic carbon was driven off by addition of 250 pl of 6 N HCl and shaking
for 60 min, and then the incorporation of “C was determined by liquid scintillation
counting. Total activity of NaH'*CO, was determined on 20 pl aliquots of sample taken
directly into scintillation cocktail with 50 @l ml" b-phenylethylamine. Data wete fit by

least-squares, non-linear regression to the following model (Maclntyre et al. 1996):
P(:hl — (Pl(x;hl (1 _ exp(_a(lhl E/ P‘(];N))(CXP (_B(:hl E/ Pﬁhl))) - P(():hl [2.1.]

where P (g C [g Chl a]' h') is the Chl a-specific photosynthetic rate at irradiance E
(umol photons m™ s7); P, is the light-saturated rate of photosynthesis that would be
observed in the absence of photoinhibition; ™™ (g C [g Chl 4" ") (umol photons m? s
Y is the initial slope of the P-E curve; B (g C [g Chl 4]” h™) (Wmol photons m™ s7)" is
a photoinhibition parameter; and P (g C [g Chl 4]" h') is an intercept parameter

included to improve the distribution of residuals at low irradiances.

Measurements of 7 situ oxygen content for the estimation of primary production using
the light-dark technique were made during the RV Pelagia cruise (sce Appendix I).
Water samples (25dm”) were collected into BOD bottles following each CTD cast.
Dissolved oxygen was determined using the ‘Shibala’ Winkler spectrophotometric
method (Pai er al. 1993). Winkler chemicals (1ml MnCl,. 4 H,O 600 g’ and 1ml NaOH
250g and K1 350gl") were added within minutes after sampling the bottles by means of
dispensers. 0.8 ml 20N H,SO, was then added after which the samples wete shaken and
stored under water for at least one hour. The mixture was stirred with a magnetic stirring
bar until the precipitate had dissolved completely. The brown yellow solution was
siphoned to a Hitachi U1000 spectrophotometer equipped with a 1 cm flow-cell
(aperture 11mm x 4mm). Absorption was measured at 456 nm on the analogue output of
the spectrophotometer connecting a 4 digit voltmeter (Metex M4650). Corrections were
made for the seawater color by subtracting the absorption value for untreated seawatet,

and for the effects of the volume of Winkler reagents on measured oxygen

concentration.
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3. Diel variability of phytoplankton
physiology and production at three
contrasting sites in the North Atlantic

3.1. Introduction

Day-night variability of phytoplankton activity has been well documented in data
obtained from a number of obsetvational approaches, for example, fluorescence yield
(Lorenzen 1963; Prézelin and Ley 1980, Vincent et al. 1984), cellular pigment content
(Owens et al. 1980) and productivity rates (Harding et al. 1982a, b; Neale and Richerson
1987, Prézelin et al. 1987). This variability may be produced through circadian rthythms
(Sournia 1974; Brand 1982) or represent a tightly coupled light-dark effect that is
independent of, but can exhibit a modifying influence, on phased cell division (Owens et
al. 1980). The corresponding regulation of photosynthesis throughout the day, diurnal

variation, occurs through modulation of the photosynthetic light reaction, in particular

within PSII (Prézelin 1992).

Active fluorescence techniques allow the observation of photosystem II (PSII) dynamics,
in addition to providing a rate estimate for photosynthetic productivity. As such, the
FRRF lends itself to the study of processes that occur through the modulation of PSIL
Laboratory investigations have shown that variations in photosynthetic physiological
parameters, as measured using Pulse Amplified Modulation (PAM), are coupled to
simulated light regimes under both nutrient replete (Kroon 1994, Flameling 1998,
Flameling and Kromkamp 1997, 1998) and nutrient deplete (Flameling 1998) conditions.
In situ observations of diel/diurnal variability have been made using both the Pump and
Probe (PP) and FRRF but have focused on the efficiency of PSII (Falkowski and Kolber
1993, Greene et al. 1994), or have been restricted to surface water samples (Vassiliev et
al. 1994, Behrenfeld and Kolber 1999). All these studies reveal a decrease in

photochemical conversion efficiency with an increase in irradiance as a result of
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photoinhibition/quenching processes.

This investigation introduces FRRF [field] measurements and provides an analysis of the
in situ diel variability of the light harvesting capability, photochemical efficiencies and
production by phytoplankton throughout the water column. In addition, the diel
response of these parameters will be compared between three sites of differing nutrient
status in the north-cast Atlantic. A knowledge of diel PSII (and, therefore,
photosynthetic) activity under contrasting growth conditions will provide a context for

subsequent obsetvations of 72 situ phytoplankton physiology that are removed from an

inherent daily irradiance cycle.

General Hydrography

Three sample sites were chosen along the 23°W meridian: 43°N (13-14.3.98), 40°N (16-
17.3.98), 37°N (18-19.3.98), fig. 3.1., and are referred to as sites 1, 2 and 3 (respectively)
for the remainder of this chapter. The sites are situated within the north Atlantic
subtropical gyre close to its boundary with the North Atlantic Drift towards the north
(Sathyendranath et @/ 1995). Both hydrographic regimes lie within the westerly wind
domain where wind mixing plays a ctitical role in determining the pattern of seasonal
water column stratification and the development of the spring phytoplankton bloom
(Longhurst et al 1995). As such, the sites were initially chosen in otder to observe
successive stages of phytoplankton dynamics duting the spring. To date, there appeats
little available published material tegarding phytoplankton within this area, with the
majority of observations coming from large scale programmes, such as, the Joint Global
Ocean Flux Studies and North Atlantic Bloom Experiment (eg. Ducklow and Harris
1993), the CANIGO (Canary Islands Azores Gibralter observations) project (eg.
Fernandez and Pingree 1996) and the Atlantic Meridional Transect (cg. Marafién et 4.

2000, Aiken et al subm.).

At each of the three sites, a seties of CTD casts (a minimum of 7/site) were performed
throughout a 24 hour (08:00-08:00 GMT, 07:00-07:00 local time) period. All times are
given in GMT unless otherwise indicated. The respective protocols, sampling strategy

and the instrumentation employed ate described in Chapter 2. A more detailed
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explanation and derivation of terms used throughout is also given in Section 1.4.

50°
Station 1 (43")
Station 2 (40°) 40°
Station 3 (37°)

30°N

20°

10°

Chlorophyll a (mg/m’)

Figure 3.1.— The approximate positions of the three diel sites along 23°W (see text)
indicated on a composite SeaWiFs image of chlorophyll a distribution in the northern Atlantic
Ocean, March 1998. All sites were dominated by the cyanobacteria, Synechococcus (Marcel
Veldhuis, pers.comm.)

3.2. Specific hydrographic environment and climate at the 3 sites

Values of temperature and salinity measured between 0 and 75 metres appear uniform
over the 24-hour period at sites 2 and 3. These sites display similar values of temperature
and salinity, 15.34-15.66°C /36.022-36.054 and 15.75-36.48 °C/36.050-36.477
respectively (fig. 3.2.). Site 1 shows lower values of temperature and salinity, 13.24-13.67
°C / 35.748-35.811. Values of water density, expressed as Gz, wete derived from tables of

salinity and temperature values at depth. The water masses at sites 2 and 3 have a density
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band signal of 26.7-26.75 and 26.45-26.75 10%kgm™ respectively whilst 07 at site 1 is
relatively higher (27.0-27.1 10°%kgm3). The G, relationship with depth indicates a distinct
jump, most notably at site 3 (also fig. 3.2.), of increased density between 55-60m
corresponding to the thermocline. No significant statistical difference (ANOVA Fq 105 =
2.08, 1.88 and 1.83 for sites 1, 2 and 3, respectively) was found for values of Gr measured

between all casts for each of the three sites, and indicates that Or remained relatively

constant throughout each diel series.
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The profiles of mean nitrate concentration measured throughout the diel period at the
three 3 sites are shown in fg. 3.3. Nitrate concentration [NOj] increases from the surface
to deeper water with the zone of maximum increase (the nutricline, p.12) at 40-50m at
site 1, and 50-60m at sites 2 and 3. [NO3] were highest at site 1 (3-4 mmol m~) and
lowest at sites 2 and 3 (0-0.3 mmol m™ in the surface 50m increasing to 1-3 mmol m3
below 50m). Fig. 3.4. shows the diel variability of water temperature for the three sites. A
permanent thermocline is most evident at site 3, as reflected by the strong density
discontinuity in fig. 3.2., and remains throughout the 24 hour period. A similar feature
appears evident at site 2, however, the temperature difference between 10 and 75 metres
is less (0.6°C) than at site 3 (0.8°C). Conversely, water temperature at site 1 is mote
variable throughout the upper 75 metres but does not correspond with any significant
changes in water mass density over the 24 hour period (see above). The mean of the
surface wind speeds measured throughout the diel cycle increased with decteasing

latitude: 3.55, 5.56, and 5.48 at sites 1, 2 and 3, respectively.

46



Variability of phytoplankton production rates in the Atlantic Ocean

3. Diel Variability

Figure 3.3.— Depth profiles of mean
nitrate concentration (mmol m's) for
each of the 3 sample sites (sites 1, 2
and 3) along 23 W. The mean NOjg
concentration is taken from all diel
(nutrient) casts performed (site 1,
N=3 2y =6 L8l SN=5) e
corresponding standard error bars
are also given.
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Variations in the strength and stability of the thermocline, which is a function of

temperature and wind regimes (e.g., Herbland and Voiturez 1979; Doney et al. 1995), are

related to the presence of a stable, deeper subsurface chlorophyll maximum at site 3, and

Time {locai)
15:00 23:00

Depth (metres)

station 1 (43N)

station 3 (37N)

47

station 2 (40N)

Figure 3.4— Water temperature
(°C) measured from diel CTD casts
(data points are indicated by filled
circles) at each of the 3 sites. 7
casts were performed over 24
hours (07:00 to 07:00 local time/
08:00 to 08:00 GMT) at all sites.
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of a well mixed upper water column with elevated biomass at sites 1 and 2. The
permanent thermocline at site 3 is evident of consistent wind and temperature
conditions (eg. Pond and Pickard 1983); site 1 is perhaps reflective of temperate seasonal
conditions where, presumably, strong wind mixing and a lack of solar heating have
retarded the formation of strong water column temperature stratification. The nitrate
concentrations are relatively low at sites 2 and 3 indicating that this nutrient source has
become exhausted. Conversely, the generally higher values of nitrate throughout the

water column at site 1 would suggest stronger or more recent mixing (Falkowsk: et al.
1994).

The stability and hydrography at site 1 appears markedly different from sites 2 and 3.
The water is of lower temperature and salinity and hence has higher density.
Furthermore, the temperature profile of the water column appears relatively variable
throughout the diel petiod. The proximity of site 1 to the northern-most section of the
Azores Current (Gould 1985) might suggest that site 1 could be significantly affected by
another water mass compared to that of the other 2 sites. Although changes in water
mass density were not apparent throughout the diel period at site 1, the apparent
variability in hydrography throughout the diel period could still add confusion to the
interpretation of the diel response of the photosystem. Sites 2 and 3 display reasonably
similar and stable hydrographic characters but contain phytoplankton with differing

distributions and physiological signatures.

Discrete water samples were taken throughout the diel series at each of the 3 sites and

analysed for total chlorophyll @ (see section 2.2), figs. 3.5-3.7 (panel b). Site 1 (fig 3.5.) is

difficult to characterise because of a lack of data; however, a surface maximum (0.9-1.2
mg chl 2 m®) is evident to 40-50m, most notably after 15:00 GMT. A subsurface
maximum is apparent during the first two hours of sampling. Site 2 (fig 3.6.) maintains a
surface chl 2 maximum of 0.8-1.0 mg chl @ m™ to 40-50m throughout the diel period but
also displays a strong subsurface maximum (>1.1 mg chl 2 m”) between 09:00 and 20:00.
Site 3 (fig 3.7.) displays a subsurface maximum (45-65m), which is of lower chl @ (0.4-
0.55 mg chl 2 m™) than at sites 1 and 2, throughout the diel period.
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3.3. FRRF variables observed at the 3 sites.

Diel wvariability of phytoplankton physiology— The in situ PAR and FRRF-derived
values of the variable fluorescence yield (Fy), quantum efficiency (Fy/Fm), photochemical
quenching (qP), non-photochemical quenching (gN), functional absorption cross section
(opsi) and instantaneous production (P¢hl) from throughout the sampling period are
given in figs 3.5. (site 1), 3.6. (site 2) and 3.7. (site 3). All FRRF derived parameters
display a clear diurnal trend that follows that of the measured PAR at each site. As such,

a general account of phytoplankton physiology can be described throughout the diurnal

period:

The variable fluorescence yield (Fy) exhibited uniform values in the upper layer in the
early morning and a subsurface maximum developing by midday when irradiance is
highest. A subsutface Fi-maximum also appears to develop during the night at sites 1
and 3. In surface waters (10m), Fy declines between morning (08:00) and midday (13:30),
and recovered thereafter. Casts throughout the night (21:00-08:00, inclusive) show
relatively consistent profiles for Fy but may reflect the limited sampling resolution during
this period of the diel cycle. The fluorescence profiles can have contributions from
photochemical (qP) and non-photochemical (qN) quenching. Most quenching occurs at
13:30; least at 08:00 and is intermediary at 10:00 and 16:30. Quenching increases
dramatically from deeper to shallower water. The distribution of the values of qP and qN
indicate that photochemical quenching occurs over a higher portion of the water column

than non-photochemical quenching.

Chl a exhibits a similar distribution pattern as Fy (see above). A regression between these
two parameters using data amalgamated from all 3 sites is given in fig. 3.8. The

relationships are strongly significant (see figure heading) despite the lack of chl @ data
collected throughout the diel period. The highest covariance occurs for samples taken in
watets where there is virtually no light and at night. Conversely, the lowest covatiance is
observed in samples taken during the day in the lit upper euphotic zone. The most
scattered points are from the shallowest (10-20m) depths. Where estimates of ¢N are
removed from the corresponding values of Fy, the relationship between F. and

chlorophyll 4 increases.
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Figure 3.5.— Changes in parameters observed with the FRRF throughout the water column
at site 1 (43°N 23°W). Filled circles in upper 2 panels represent sample points for the FRRF
via CTD casts: (A) PAR (umol photons m? sy (C) Variable fluorescence (F,D: instrument
units) (D) Quantum efficiency of photochemistry (F,D/F,D: dimensionless) (E) Photochemical
quenching (gP: dimensionless) (F) non- photochemlca| quenching (gN: dimensionless) (G)
Functlona| absorptlon cross section (opsiD: A® quanta™) (H) Photosynthetic rate (P P mgC
mgchl a' h"). Panel (B) shows corresponding chlorophyll a concentration, as measured by
filtration and extraction (Chapter 2). (C), (D) and (G) were measured in FRRF dark chamber.
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Figure 3.6.— Changes in parameters observed with the FRRF throughout the water column
at site 2 (40°N 23°W). Filled circles in upper 2 panels represent sample points for the FRRF
via CTD casts: (A) PAR (umol photons m? s™) (C) Variable fluorescence (F,D: instrument
units) (D) Quantum efficiency of photochemistry (F,D/FD: dimensionless) (E) Photochemical
quenching (gP: dimensionless) (F) non- photochemlcal guenching (gN: dlmensmnless) (G)
Functlonal absorptlon cross section (opsD: A® quanta’ ") (H) Photosynthetic rate (P™": mgC
mgchl a' h™). Panel (B) shows corresponding chlorophyll a concentration, as measured by
filtration and extraction (Chapter 2). (C), (D) and (G) were measured in FRRF dark chamber.
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Figure 3.7.— Changes in parameters observed with the FRRF throughout the water column
at site 3 (37°N 23°W). Filled circles in upper 2 panels represent sample points for the FRRF
via CTD casts: (A) PAR (umol photons m? s7) (C) Variable fluorescence (F,D: instrument
units) (D) Quantum efficiency of photochemistry (F,D/F,D: dimensionless) (E) Photochemical
quenching (gP: dimensionless) (F) non- photochemlcal quenching (gN: dimensionless) (G)
Functlonal absorptlon cross section (opsiD: A® quanta’ ") (H) Photosynthetic rate (P P mgC
mgchl g'n ). Panel (B) shows corresponding chlorophyll a concentration, as measured by
filtration and extraction (Chapter 2). (C), (D) and (G) were measured in FRRF dark chamber.
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Figure 3.8.— Relationship between variable fluorescence (F,), as measured with the FRRF,
and chlorophyil a concentration (extraction and fluorescence). Left panel uses dark chamber
values of F, (F,D) to minimise the contribution from gP (photochemical quenching). Right
panel also shows this relationship but further removes an estimate of gN (non-photochemical
guenching) for each respective data point (= F,/(1-gN). For definition and calculation of
quenching terms, see section 1.4. Relationships are shown for data points collected above
(>) and below (<) their respective 1% incident irradiance (E). Data from <1% surface E also
contains all measurements taken at night. All correlation coefficients have a significance of

p<0.001 unless noted otherwise. Relationships use all corresponding data points from the 3
sites.

The quantum efficiency of photochemistry (Fy/Fm) displays a subsurface maximum at all
sites throughout the diel period but is strongest at night. Surface values of Fy/Fm
decrease in 2 manner similar to values of Fy, and are lowest at 13:30 when measured PAR
is highest. The quantum efficiency can be divided by 0.65 to give the proportion of
reaction centres that are functional (/) when multiplied by the number of reaction centres
(npsi). A constant value of npsi must be assumed (see sectzon 1.3.) and, since all 3 sites
had phytoplankton populations that were dominated by cyanobacteria (Synechococcus), a
value of 1/300 mol RCII mol chl ! was used. Profiles of fnpsi (mol RCII mol chl a”,

data not shown) reflect those of Fy/Fm since a constant value for npsu was assumed

throughout.

The functional absorption cross section (Ops) exhibits diel variability that is similar to
that of Fy at sites 1 and 3. There is a decline in the surface (10m) Gpsn from 08:00 until

13:30 and an increase back between 13:30 and 21:00. A subsurface maximum of Gpsy is
evident at all sites, but is most intense at site 3 where it remains throughout the diel

period. The night casts (21:00 and 06:00) at all sites have values that are relatvely
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uniform throughout the surface 50m, after which there is a rapid decline with increasing
depth. The decrease of Gpsi1, Fo/Fy, and Fy in the deeper water samples corresponds with
a decrease in chl @ and presumably reflects the sensitivity of the FRRF rather than a true

physiological response, for example, of highly stressed phytoplankton that have escaped

the mixed layer, given the hydrographic characteristics of the three sites.

The quantum yield of electron transfer () is a key parameter when determining the rate
of chlorophyll a-specific instantaneous production (P<Y), and is obtained using the value
of Ek, the light saturation parameter. Ey is detived as the inflection point in a plot of qP
versus irradiance (Kolber and Falkowski 1993; section 1.3); however, the low spatial
sampling resolution throughout this investigation resulted in few high light/near surface
FRRF measurements and Ex could not be determined from the qP-E relationships of
each individual cast. Instead, all diurnal data was amalgamated to produce a single gP
versus B response representative of the respective phytoplankton population from each
site; for example, site 2, fig, 3.9. Phl displays clear diurnal variability at the three sites and

again reflects the change in the light field. The magnitude of Peh! throughout the water

column is greatest where light intensity is highest.

Comparison berween the 3 sites— The incident light fields (measured as PAR irradiance
attached to the FRRF) were similar at the three sites. Absolute values show that
irradiance at 10m was highest (approximately 280-350 umol photons m=2 s') at sites 2

and 3, but only reaching 120 fimol photons m? s! at site 1, at the peak of the light period
(13:30). Fluorescence yield profiles at site 1 were similar to those observed at site 2,
where fluorescence is high at the surface and reaches a maximum at 35-45m.
Fluorescence values below this depth were significantly reduced. Fluorescence values at
site 3 were generally lower (0-20 instrument units) than those at the other 2 sites (0-40
instrument units). In addition, there is a subsurface fluorescence maximum at site 3 at a
deeper depth of 60m evident throughout the diel petiod. Surface fluorescence values at
site 3 remain low throughout the 24 hours but become slightly elevated during the dark

period.

Surface (10m) values of F/Fum range from 0.35-0.5, 0.25-0.45 and 0.3-0.5 (dimensionless)
at sites 1, 2 and 3, respectively, with the lowest values reflecting the peak of the light

period and the highest values occurring at night. The subsurface values show less diel
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Figure 3.9— (upper)
photochemical quénching (qP)
versus log (irradiance (E)+1) for
all data collected from site 2
(40°N) throughout the diurnal
(daylight) period of diel casting.
The inflection point corresponds
to the light intensity at which
maximal light saturated
photosynthesis (Ex) occurs
(Kolber and Falkowski 1993), and
is determined by ‘eye’; (lower
panel) Eyx is then used in the
calculation of the quantum yield of
electron transfer (¢} , see
sections 1.3 and 1.4. Where
phytoplankton physiology s
measured under irradiances
exceeding Ey, ¢ will decrease
accordingly. The quantum vield of
photosynthesis ¢, (which s
calculated as ¢, * gP) is then used
in the calculation of
photosynthesis, P™. ¢, and o,
have units of molO, mol electrons
! (or mol photons“).
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vatiation. The range of Gpsir at 10m is 560-700 A2 quanta! at site 1, but is greatest at sites

2 and 3 (540-880 and 380-780 A? quanta’!, respectively). Opsi values at depth (40-60m)

over the 24-hour period remain at a relatively constant intermediary value (540-620 Az

quanta) at sites 1 and 3 but are higher (720-800 A2 quanta) at site 2. Finally, values of

Pehl decrease from 10m to 60m and reduce to values of zero throughout the water

column during the dark period at all 3 sites. P<! reaches a maximum of 3.62 (site 1), 4.35

(site 2) and 6.31 (site 3) mgC mg chl al h! between 13:30 and 16:30. At both sites 1 and

2, the Pehlmaximum is situated at, or just above, the depth of the biomass-maximum (Fv,

chl 4). Interestingly, the Pehl-maximum at site 3 appears at the surface 10m whilst the

biomass-maximum exists much deeper at approximately 60m
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3.4. Accounting for diel activity of PSII and production at the 3
sites |

All photosynthetic parameters displayed a strong diel trend, which could be observed at
the sampling resolution of 2-3 hours, at all three sites. Minimum values of Gpsi, Fy/Fm
and associated maximum values of Pl and quenching coefficients coincide with solar
noon (13:00-13:30 GMT) and reflect changes to both the background (Fo) and maximal
(Fi) fluorescence yields (see below). Similar diurnal relationships between 72 situ PSII
activity (eg. Falkowski and Kolber 1993, Greene et al. 1994) or production rates (for

Synechoccocus, Prézelin et al. 1986) with itradiance have been previously observed.

The diel variability of fluotescence is produced by several forcing factors including
changes in chl a/cell (Owens et al. 1980), changes in biomass (Matra 1997), and changes
in quenching of F, and Fin (Demers et al. 1991). The variable fluorescence yield (FvD)
correlated with chl @ concentration (fig. 3.8., left panel), most noticeably for the lower
(<1% sutface irradiance) depths. The lack of correspondence in the surface data is
attributed to quenching (Falkowski and Kolber 1990, 1993, 1995). As such, accounting
for non-photochemical quenching (qN) improved the correlation between Fy and [chl 4]
for samples taken in the upper (>1% surface irradiance) depths (r? increased from 0.647
to 0.789). Overall, this effect of N is a function of the diurnal irradiance and contributes
to the change in the vertical gradient of fluorescence with depth. Quenching of

fluorescence in the pigment bed reduces both Fo and Fm and subsequently the rate of
PSIT light saturation (Gpsi) whilst quenching in, or loss of, reaction centtes reduces Fm
and, therefore F./F, without affecting Gpsi (Falkowski et al. 1994, Vassiliev et al. 1994).

As such, qN, fluorescence yields and Gpsir all describe the ability of phytoplankton to

tespond to diurnal variations in E.

Diurnal photoinhibition of P at the surface/near-surface (10-20m) was only evident at
site 2. This reflects reduced values of Fy/Fm (photochemistry inhibition), GOpsit
(quenching) and also of ¢. (and hence ¢p) and cotresponding 7 situ irradiances which
exceed the ability of this phytoplankton population to maintain maximal light-saturated

photosynthesis. Reduced values of Fy/Fm and Opsu ate also obsetved in surface waters of
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sites 1 and 3 but do not correspond with an appatent photoinhibition of P¢h! and remains
difficult to explain. Surface (10m) values of Fy/Fn, ate reduced (between 08:00 and 13:30
GMT) by a factor of 2.02 at site 2 but only by 1.22 and 1.77 at sites 1 and 3, respectively.
This relatively small physiological change at site 1 corresponds with a lack of high
irradiances. A closer look at the P-E characteristics of the individual diurnal casts from
site 3 (fig 3.10.) shows a limited amount of photoinhibtion present during the 13:30
GMT cast which was not described by the resolution of the contouting in fig 3.7.
However, the limited amount of Fy/Fs, and Pehl inhibtion observed at site 3 is perhaps
circumstantial given the lack of samples taken under high light and without considering

the photoacclimation strategies of the alternate phytoplankton populations.

Figure 3.10.— FRRF 7(
derived chl a-specific
instantaneous

production (P™") against
corresponding values of
in situ irradiance (E)
from site 3. Data is
shown for water column
casts made at 10:00,
13:30 and 16:30 GMT.

x 10:00
2r o 13:00
016:30

P (mgC mgchla' h™)
[o]
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E (umolphotons m? s™)

Accounting for physiological differences between the 3 sites— Opsu is essentially
considered to be indicative of a photoacclimatory response to growth irradiance levels

(eg. Falkowski 1980) and phytoplankton will endeavour to increase their ability to harvest
light and saturate Gpsii when grown for extended periods under low light conditions
(Dubinsky et al. 1986). Values of Opsn measured at the three sites are all significantly
different from one another (ANOVA, Fai7 = 48.235; Tukey test, qsie7 = 5.309,
p<0.001). The mean (£ standard deviation) of all Opsi values measured above the
thermocline (at night, to exclude any differential effects of quenching) at each of sites 1,
2 and 3 are 703.7 £ 18.6, 849.6 £ 31.6, 670.2 £ 13.0. The lower mean Opsy at sites 1 and 3
suggests phytoplankton are photoacclimated to higher irradiances than those at site 2

since saturation of PSII would take longer and require more light. Lower values of Gpsir
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would account for the corresponding low values of P! estimated at site 1 given that the

irradiance levels remained relatively low throughout the day.

Phytoplankton at site 2 appear acclimated to relatively lower mean irradiances but are
exposed to the highest light levels. However, high values of cesy ate also produced under
nutrient limiting conditions (eg. Kolber et al. 1988, Falkowski and Kolber 1995). Values
of Fy/Fm were generally lower throughout the diurnal period at site 2 (see above).
Similatly the mean of all night values of Fy/Fy, from above the thermocline are relatively
Jower at site 2 (0.482) when compared with those from sites 1 and 3 (0.503 and 0.523,
respectively) but is not statistically significant (ANOVA Fz, 3¢ = 2.93). It might be

considered that the site 2 phytoplankton population display characteristics that are more

indicative of physiological stress.

Site 3 is characterised by relatively low values of Gpsi above the thermocline, but by high
values (mean * standard deviation 10-50m: 734 + 40.4 A% quanta!) at the Fy and chl a
maximum, corresponding to the depth of the thermocline. Fy/Fm values above the
thermocline are slightly lower (mean 10-50m: 0.502), but still remain relatively high,
throughout the diel period when compared with those found at the thermocline (mean
55-70m: 0.516). In addition, the maintenance of high P! values in surface waters might
suggest the presence of separate phytoplankton populations which are acclimated to high
irradiances in the surface waters and to lower irradiances deeper in the water column.
These photoacclimated phytoplankton populations would require stable hydrographic
conditions for a significant period of time (eg. Olson et al. 1990a, b), as reflected by a

well established thermocline (site 3).

Conclusions— The consideration of phytoplankton physiology and water column
hydrography has, in part, accounted for differences between the 3 sites. Site 1 is
described by phytoplankton that are typically adapted to conditions of higher light but
were measured under conditions of mixing that are apparently more recent than the time
required for the population to photoadapt. This condition and the occurtence of elevated
nutrient concentrations might be desctibed as pre-bloom, however, the instability of the
water column throughout the diel period could confound this interpretation. Site 2
appears to have been under conditions of mixing for a longer period of time, however,

the cotresponding phytoplankton physiological status and lower nutrient concentrations
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might imply that this population is beginning to decline. Site 3 is generally characterised

by a stable hydrography and an efficient phytoplankton population, most notably at the

nutricline.

The FRRF has, therefore, provided a quantitative in situ assessment of PSII and
photosynthetic variability throughout a 24 hour (diel) period. Furthermore, the
biophysical charactetistics associated with PSII emulate the dynamics of the system
under observation whete cortesponding hydrographic signals are available. The
phytoplankton populations at the three sites behaved in a similar manner despite the
alternate nutrient (trophic) regimes that were chosen for sampling, and may reflect the
stress tolerant nature of the dominant (prokaryotic) phytoplankton. The impottance of
PSI variability within cultured cyanobacterial populations has been highlighted (eg.
Barlow and Alberte (1985), and may need to be futther considered to help explain
differences in physiological tesponse between populations. Finally, this study also
exemplifies the problems associated with a limited sampling resolution whete a lack of
surface and near-surface samples has confounded the interpretation of the

phytoplankton response to high light, and therefore, the photoacclimatory status of the

populations.
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4. The response of phytoplankton
physiology to light under different
conditions of vertical water column

mixing

4.1. Introduction

Phytoplankton are genetically photoadapted to particular types of light environment.
These environments are dynamic and individual cells must further adjust their physiology
and- morphology within their genetic constraints (Falkowski et al. 1994), ot
photoacclimate within their lifetime, to variations in light (see section 1.1.).
Photoacclimation can occur on a time scale of hours (eg. Falkowski and La Roche 1991)
and phytoplankton generally photoacclimate to the mean irradiance at which they are
exposed to during the day (Falkowski and Raven 1997). However, continual variations in
cloud cover and of vertical water column mixing (Vincent et al. 1984) expose
phytoplankton to high and low irradiances to which they are not best acclimated. As a
result, a number of physiological mechanisms, for example, state transitions (Falkowski
et al. 1994), non-photochemical thermal deactivation in both the antenna and reaction
centre (eg. Aro et al. 1993, Olaizola and Yamamoto 1994), fluorescence (eg. Krause and
Weis 1991), and clectron cycling (eg. Falkowski et al. 1986), act to protect the

photosystem, on scales of seconds to 10’ of minutes, in an attempt to maintain efficient

photochemistry.

Processes of photoacclimation can be directly measured from the FRRF. Smaller-scale
responses of Gpsri to light are thought to be indicative of antennae quenching of excess
energy/fluorescence (eg. Vasilliev et al. 1994, Falkowski 1992) and signify the ability with
which a cell can photoprotect the reaction centres. Photoacclimation can be
characterised from significant changes in the ‘size’ (G) or number (n) of either or both

photosytems (ie. PSII and/or PSI), Falkowski and La Roche (1991). FRRF
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measurements are concerned with PSII, however, whilst the FRRF is able to directly
measure Opsii, the assessment of npgy is more problematic. This chapter describes, and
subsequently tests, a novel method for calculating npsn based on FRRF measurements.
These data, in addition to a consideration of pigment content and light absorption, which
can also reveal valuable information regarding the photoacclimative status of cells (see
section 1.1.), will be further used to assess the response of the phytoplankton
photosystem to light under different conditions of vertical water column mixing.
Following Cullen and Lewis (1988), it is expected that characteristics telating to

photoacclimation will reflect the turnover times of the different water columns.

4.2. A method for calculating the number of reaction centres, nesu

A knowledge of npgi (mol RCII mol chl 2) is fundamental for the estimation of primary
production via FRRF measurements (see section 1.3). This parameter also yields valuable
information regarding the photoacclimative condition of phytoplankton. However, npsi
measurements cannot be measured non-destructively by fluorescence techniques alone
and have been confined to laboratory studies. An approximation of 1 /npsit for both
cukatyotes (500 molchl 2 molRCII) and prokatyotes (300 molchl 2 molRCIT™) has been
determined from these laboratory measurements (eg. Falkowski and Kolber 1995) but is
clearly recognised as a potential source of error in the calculation of production
(Falkowski and Kolber 1993, Kolber and Falkowski 1993). A search of the literature
(table 4.1.) reveals that 1/npg is a highly variable parameter when considering both
different taxa and growth conditions and, therefore, various states of acclimation. The

nature of npgir has vet to be described for iz situ phytoplankton populations
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Taxa/Species Growth irradiance 1/nresu Reference
(nmol photons m? s) (mol chl &
mol RCII'")
Bacillariophyceae
Skeletonema costatum 30, 200, 600 605, 600, 590 Falkowski et af. 1981
Thalassiosira weissflogii 30, 70, 150, 320, 600 723,613, 585, Dubinsky et al. 1986
638, 553
Phaeodacrylum tricornutum 250 (Fe replete, straved) 298,512 Greene et al. 1991
Thalassiosira weissflogi 150 (nutrient replete, starved) 280, 770 Berges er al. 1996
Chlorophyceae
Dunadiella tertiolecta 45, 600 830, 710 Falkowski et al. 1981
70,700 734,520 Sukenik et al. 1990
150 (nutrient replete, starved) 350, 570 Berges et al. 1996
Chlorella pyrenoidesa Not stated 380, 220 Jursinic & Dennenberg
1985
Chlamydomonas reinbardtiz 47,400 672, 380 Neale & Melis 1986
Chlamydomonas reimnbardtii Not stated 830, 440 Jursinic & Dennenberg
1985
Dinophyceae
- Prorocentrum micans 70, 150, 320, 600 725, 588, 520, Dubinsky et al. 1986
514
Haptophyceae
Lsochrysis galbana 30, 70, 150, 320, 600 637, 463, 389, Dubinsky ef al. 1986
366, 624
Cyanobacteria
Anabaena variabilis 500-1500 lx, 4000-6000 Ix* 293,178 Kawamura et al. 1979
Synechococcus 6301 5800 Ix* 384 Monodori ef al. 1984
Synecbococcus 7803 (DC-2 Grown at 40-50, exposed to 133,172, 192, Barlow & Alberte 1985
typc) 10,25, 50, 100, 250 275,311
Synechococcus 7803 (1600 Grown at 40-50, exposed to 154,153, 168, Barlow & Alberte 1985
type) 10,25, 50, 100, 250 199,307

Table 4.1— Summary of literature which describe values for the number of PSII reaction
centres, 1/npg; {mol chi a mol RCH'1). These estimates are based on laboratory calculations of
total chlorophylla: oxygen evolved per flash (ie. the Emerson-Arnold PSU size) which are then
divided by 4 since each PSUq, contains the equivalent of 4 PSII reaction centres, see text;
Mauzerall and Greenbaum (1989). All species were grown under nutrient replete (except
Greene et al. 1991, Berges et al. 1996, as indicated) conditions over a range of irradiances

(expressed in umolphotons m?s”, except *).

The following describes an empirical method for calculating npsn based on situ

measurements made using the FRRF and additional data on chlorophyll @-specific

absorption (see Chapter 2 for a full description of the methodologies employed):
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Following Mauzerall and Greenbaum (1989), photosynthetic unit size (PSU) is related to
the functional absorption cross section (Opsir), chlorophyll a-specific light absorption
coefficient (a*) and the maximum quantum efficiency of photosynthesis (¢p) through the
relation PSUo2 = Goo/(a* . ¢p). Goz is the functional absorption cross section of the

oxygen evolving PSII and can, therefore, be desctibed by Opsu. ¢p is given as 0.125

molO2 mol photons! (Kok 1960). To summarise:

PSUozmolchla = _ opsum? . mgchla . 8 molphotons . 1molchla [4.1.]
mol O mol photons a* m? ¢r mol Oz 892 x 10> mg chl 4

PSUqg, or the Emerson-Arnold unit size (eg. Falkowski and Raven 1997), is the ratio of
chlorophyll @: O2 evolved in a single saturating turnover flash. PSUoz can be divided by
4, since each PSU(z contains the equivalent of 4 PSII reaction centres, to give PSUrcir

or 1/npsit (eg. Kawamura et al. 1979, Falkowski et al. 1981):

PSUrcnmolchla = PSUO» [4.2.]
mol RCII 4

The value of PSUrcn in equation 4.2. actually represents the functional size of PSII
reaction centres as measured in the water column by the FRRF and should, therefore, be
denoted as f. PSUxrcrr (see section 1.3.). To obtain the actual number of reaction centres,
equation 4.2. should be divided by f, the proportion of functional reaction centres
(Kolber and Falkowski 1993), a parameter which can be detived as the measured n situ

quantum  efficiency of photochemistry relative to the theoretical maximum, ie.

[Fy/Fin]/0.65:

1 molchla = PSUR(;H . 0.65 [43]
nesi mol RCIL [F.D/FnD]

This method of using the FRRF to calculate npsn is indirect and contains several
potential sources of error that must be considered when interpreting the results. The
peak emission of the FRRF and subsequent measurement of Opsir occurs at 475nm with
a half band-width of 30nm. The band-width can be accounted for following Dubinsky et
al. (1986, pp.1338) to produce a mean (appropriately weighted) value of Grsu (4750m).

Both the Gpsii and a* at 475 nm are then used in equation 4.1. The emission spectrum of
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the FRRF cotresponds to the region of blue-green absorption of light by phytoplankton.
Most phytoplankton taxa show peak absorption on or near to this wave-band but will
vary according to species (Babin et al. 1996). However, the apparent [antennae]
absorption (Opsil) is incteased by the presence of wavelength-specific accessory pigments
which exist to promote energy harvesting and transfer to PSII reaction centres (see
Falkowski and Raven 1997). As such, Opsi is wavelength dependent, and therefore, this
method of calculating npsii may prove unsatisfactory when considering populations with
large taxanomic differences. In addition, equation 4.1. assumes that ¢ is constant. The
removal of the proportion of functional reaction centres from the equation could
account for any reduction in dp from the inactivation of teaction centres. Irrespective of
these potential problems, this method does begin to satisfy the need for refining a

technique of measuring nvsi based on in sit measurements. Here it is examined using

data collected in the English Channel in August 1999.

4.3. General hydrography and phytoplankton physiology

Two sites were visited by RRS Challenger in the western English Channel, August 1999
(fig. 4.1.). The western English Channel is situated on the north-western European
Continental Shelf within the westerly wind domain. The vertical distribution of
phytoplankton on continental shelves is dictated by heat exchange, wind and tides
throughout the year (eg. Holligan 1987); however, it is the mixing by tides that
determines the degree of mixing during summer months (Pingree 1980). Consideration
of these physical processes can be used to predict areas of stratified and well-mixed
waters on the shelf (Pingree et al. 1978) and ultimately, the potential physiological and
photosynthetic responses of phytoplankton. Whilst observations of phytoplankton
physiology and productivity have been made from these contrasting mixing regimes in
the Celtic Sea (eg. Joint and Pomeroy 1986), the Notth Sea (eg. Tett et al. 1993) and the
eastern English Channel (Pingree ef al. 1986, Lizon et al. 1995), smaller-scale changes in

PSII activity have yet to be described under similar conditions.

A well-mixed site (M, 48°45'N 04°44"W) was occupied around neap tide (August 6)
between 06:30 GMT August 6 and 11:20 GMT August 7, whilst a stratified site (SH
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49°14’N 06°10'W) was occupied between 13:45 GMT August 8th and 15:10 GMT
August 9. CTD casts were performed every 1-1.5 hours at both sites and FRRF
measurements were made (at least) every metre (see Chapter 2). This intense sampling
resolution allows for the charactetisation of smaller-scale PSII variability that could not
be described from the broad-scale diel sampling regime of the RV Pelagia cruise,
Chapter 3. The tespective protocols and sampling strategy employed with the
instrumentation are described in Chapter 2. In addition, a more detailed explanation and

derivation of terms used throughout is given in Section 1.6. All times are given in GMT

throughout this Chapter unless stated otherwise.

Figure 4.1.— SeaWiFS
satellite image of surface
chlorophyll a
concentration (for  key
see figure 3.1.) from
waters around the UK
and northern France.
Image taken 24" July
1999, 1 week before the
cruise commenced, but is
representative of the
conditions  experienced
throughout. The
approximate positions of
the mixed (M) and
stratified (U) sampling
sites are indicated in high
and low areas of [chl a],
respectively.

Hydrographic and physiological characteristics— Site M was characterised by relatively
high rates of vertical water column turnover (diffusivity and shear, table 4.2.). Mean
surface water temperatures were low and there was little evidence of a thermocline
throughout the sampling period. Nitrate concentrations ([NOs]) wete low in surface

(stratified) waters when compated to values from deeper in the water column. Values of
PAR (fig. 4.2.) wete significantly affected by cloud during the first day of sampling and

ate relatively low (and vatiable). PAR was much higher on the second day of sampling.
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Photochemical quenching (qP, fig. 4.2) follows the trends in PAR where quenching was

highest [= qP values are lowest] on the second day of sampling.

Parameter Site M Site U
Mean water temp (°C) 1-2m: 14.50 (£0.154) 1-2m: 18.69 (£0.095)
90-95m: 13.72 (£0.019) 103-110m: 11.10 (£0.045)
thermochne depth (o) - 30-32
[NO;] (mmol m-%) 1-2m: 1.0 1-2m: <0.01
> 30m 2.8 below thermocline: 5.47
[chl ] (mgchl a m™) 1-5m: 5.08 1-5m: 0.31
> 30m 0.97 thermocline: 61.32
Mean tutbulence dissipation (m?s%) 1.14 x 106 1.60 x 107
Mean diffusivity (m?s1) 2.08 x 103 1.097 x 105
opsit (AZquanta?) 454 - 771 282 -913
F./F, (dimensionless) 0.33 — 0.57 0.19-0.52

Table 4.2.— Values of hydrographic and physiological parameters recorded at the 2 sites.
The range (lowest-highest) of all parameter values measured throughout the 25 hour casting
period are given for the depth of the thermocline (m), nitrate concentration {INOz], mmo! m'3),
chlorophyll a concentration [chl &}, as measured from filtration and extraction methodology,
see section 2.2], the functional absorption cross section (opsi, A’quanta”) and the
photochemical efficiency (F./Fn, dimensionless) measured with an FRRF. The depths where
the highest and lowest [ch! a] and [NO3] were observed is indicated. The mean temperature
(°C) + standard error at each respective station is also given for all measurements made
(throughout the sampling period) at the surface (1-2m at both stations) and at the deepest
depth of the CTD cast (‘bottom’ water: 90-95m site M; 103-110m site U). Mean vertical eddy
diffusivity (m?s™") and turbulence dissipation rates (m’s”) were measured using a FLY (Free-
fall Light Yo-yo) shear profiler, c/o M.Moore.

The chlorophyll 4 concentration and variable fluorescence yields ([chl 4] and F, fig. 4.2)
remained highest in the surface 20 metres throughout the sampling period, in particular,
between 00:00 and 06:00 GMT. The functional absorption cross section (Gpsr, fig. 4.2.)
was lowest during daylight hours in the surface 20m. A subsurface Gpsi-maximum can be
identified between 40 and 60m despite the more vatiable nature of Gpsi signals deeper in
the water column. The quantum efficiency (Fv/Fm, fig. 4.2.) appears less variable. The
lowest values of By/Fm were found in the surface 10m, and coincided with periods of

highest PAR (16:00 first day and 11:00 second day), whilst a maximum of Fy/Fun was

maintained between the surface and 20m throughout the sampling period. Water column

[chlorophyll a-specific] instantaneous production (P, fig 4.2.) was calculated using a
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Figure 4.2— Changes in parameters observed with the FRRF throughout the water column at
site M (48°45'N 04°44'W). Filled circles in upper panel represent sample points for the FRRF
via CTD casts: (A) PAR (umol photons m™ s'1) (C) Variable fluorescence (F,D: instrument
units) (D) Photochemical quenching (gP: dimensionless) (E) Functional absorption cross
section (opgD: A? quanta’1) (F) Quantum efficiency of photochemistry (F,D/FnD:
dimensionless) (G) Photosynthetic rate (P™: mgC mgchl a' h™). Panel (B) shows
corresponding chlorophyll a concentration at the same resolution as panels (A), (D) — (G)
using the relationship established between discrete chl a measurements and CTD measured
(not FRRF) fluorescence. (C), (E) and (F) were measured in FRRF dark chamber.
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value of 500 molchl 2 molRCII'! for 1/npsi since the phytoplankton community was
characterised by eukatyotes (see below). In addition, the high sampling resolution
(relative to RV Pelagia data, Chapter 3) meant that gP versus E relationships could be
constructed from each CTD cast for a more accurate determination of Pehl, Pebl follows

the diel changes in PAR and reaches a [subsurface] maximum of 9.32 mgC mgchl 4! h-!

at 11:00 GMT on the second day of sampling.

The water column was considerably less mixed at site U, as described by the lower rates
of diffusivity and turbulent dissipation, and the presence of a stable thermocline, table
4.2. [NOs] remained high in the deeper waters but were below detection limits above the
thermocline. Surface values (1-2m) of PAR at site U (fig. 4.3.) were similar to those
measured at site M but were attenuated at a lower rate (mean light attenuation coefficient
(IKy, m!) £ standard deviation in upper 20m from all diurnal casts: 0.012 £ 0.0049 site U,
0.018 + 0.0025 site M). The trend of photochemical quenching followed that of PAR,
most notably in the surface 20m (fig. 4.3.). Both [chl 4] and Fy at site U displayed an
intense subsurface maximum between 20 and 40m (fig. 4.3.) with highest levels occurring
between 16:00 and 20:00 on the first day of sampling. Values of opsu and Fy/Fr were
again very variable (fig. 4.3.), especially deeper in the water column. Gpsit was highest at
night (18:00 - 06:00) between 0 and 35m. Values of Fy/Fm were generally highest at the
Fi-maximum throughout the sampling period. Both values of opsn and Fy/Fm were
significantly reduced in the surface 15m throughout daylight hours on the second day of
sampling. Pel again follows the diurnal changes in PAR. The highest value of P (8.56
mgC mgchl a! hl, fig 4.3.) is observed at 20m, just above the Fv/chl 2 maximum, at
12:00 GMT. These diurnal responses ate similar to those observed at stations 2 and 3 in

the north-east Atlantic, Chapter 3, whete nuttient depleted conditions prevailed.

Taxonomic variability berween sites— The main photosynthetic taxonomic biomarker
piments (sensu Batlow et al. 1993, Jeffrey and Vesk 1997) to chl 4 ratios for the 2 sites
are given in fig. 4.4. Both the deep and shallow HPLC samples (see legend text) from site
M are dominated by phytoplankton containing chlorophyll b (‘green’ algae, ie.
chlorophyceae, prasinophyceae and euglenophyceae) and, to a lesser extent, fucoxanthin
(diatoms and prymnesiophytes). Site U is characterised by the strong presence of

19’hexanoyloxyfucoxanthin (prymnesiophytes) and fucoxanthin. Significantly smaller

68



Variability of phytoplankton production rates in the Atlantic Ocean 4. Photoacclimation
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Figure 4.3— Changes in parameters observed with the FRRF throughout the water column
at site U (49°14’'N 06°10'W). Filled circles in upper panel represent sample points for the
FRRF via CTD casts: (A) PAR (umol photons m? s7) (C) Variable fluorescence (F,D:
instrument units) (D) Photochemlcal quenching (gP: dimensionless) (E) Functional absorption
cross section (opg)D: A? quanta’ ) (F) Quantum efficiency of 1pho’(ochemlstry (FyD/ED:
dimensionless) (G) Photosynthetic rate (P™: mgC mgehl a' h ). Panel (B) shows
corresponding chlorophyll a concentration at the same resolution as panels (A), (D) — (G)
using the relationship established between discrete chl a measurements and CTD measured
(not FRRF) fluorescence. (C), (E) and (F) were measured in FRRF dark chamber.
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quantities of peridinin (photosynthetic dinoflagllates) relative to chl a are also present in

all samples, except for surface samples from site U. These taxonomic differences can be

partially substantiated by microscopic identification where the coccolithophore

Calyptrosphaera oblonga (D.Harbour, pers.comm.) was predominant, most notably at

the chl @ maximum, at site U. In general, values of pigment:chl # are lower in the surface

samples than within the deep samples.
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Figure 44— Mean (%
standard error) pigment
to chlorophyil a (chl a)
ratios measured from all
deep and shallow water
samples throughout the
25 hour sampling period
at the 2 stations. Deep
and shallow samples
were taken between 43-
50m and 1-7m at site M
and between 27-31m and
5-6m at site U. Pigments
included are: peridinin
(Per), chlorophyllb (chib),
fucoxanthin (Fucox), 19’
hexanoyloxyfucoxanthin
(19'hex) and zeaxanthin
(Zeax).
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4.4. Observations of photoacclimation and photoprotection at the 2
sites

Non-photosynthetic pigment composition and PSII activity— Phytoplankton pigments
can be divided into those which contribute significantly towards photosynthesis

(chlorophylls and photosynthetic carotenoids) and those which are non-photosynthetic
or photoprotectant, ie. diadinoxanthin, diatoxanthin, B-carotene and zeaxanthin
(Bidigare et al. 1990). The magnitude of the ratios of each of these main non-
photosynthetic pigments (NPP) relative to chlorophyll « at sites M and U are given in fig.
4.5. The sum of the total NPP:chl « ratios is largely comprised of diadinoxanthin:chl  at
both sites, although a significant contribution from B-carotene:chl « is also apparent at

site M. A significant positive relationship is found between corresponding values of the

total[NPP] and light (fig. 4.6.).

0.2  [Mb-carot:chla ) Figure 4.5— Pigment to chl
_ ) Site M a ratios of the main non-
[l Zeax:chla . .

0.16 - _ photosynthetic pigments
@ Diat:chla (Bidigare et al. 1990) at the

0.4 | M Diad:chla respective irradiances

measured at the 2 sites. A
mean pigment:chl a is given
for all samples where PAR =
0. As such, irradiance is
plotted as log (PAR+1) and
not log (PAR). Each of the
‘ ‘ pigment: chl a are plotted
000 019 020 037 061 079 131 166 173 218 249 cumulatively so that the

[pigment]:chla

upper limit at each irradiance
log (PAR+1) represents the total [NPP]:chl
0.2 . a. NPPs plotted are: B-
Site U carotene (b-carot),
© 016 zeaxanthin (Zeax),
= diatoxanthin  (Diat) and
2 diadinoxanthin (Diad).
=N 0512
=
o
€ 0.08
el
o
= 0.04
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log (PAR+1)
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The relative changes in diadinoxanthin (DD) and diat;oxanthin (DT) pigments are a
useful indication of xanthophyll-cycle activity (eg. Olaizola and Yamamoto 1994) and
provides a mechanism for non-photochemical quenching excess light energy in the
antennae (sec section 1.1.). When the ratio of DD:DT is plotted against cottesponding
measurements of light (fig 4.7), a significant positive linear relationship is observed at site
U, but not at site M. One might also expect a relationship to exist between xanthophyll-
cycle activity and changes in Gpsir since the latter parameter is also indicative of antennae
quenching (qN), eg. Vassiliev ez al. 1994, Falkowski and Kolber 1995. A significant
negative linear relationship is established between Gpsi and DD:DT again at site U but
not at site M, fig. 4.7. The pattern at site U is repeated when Opsn is plotted against the
total[NPP], fig. 4.6. This regression also establishes a trend, albeit of low significance,
between non-photosynthetic pigment content and the functional absorption cross

section of PSII (Gpsi) at the well mixed site, M.
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Light absorption by pigments— Examples of chlorophyll a-specific absorption (a*qy)
measurements between 380 and 840nm are given in fig. 4.8. (raw data plots are presented
in Appendix 2). The data must be expressed as m? mg chl ! for the calculation of npsi
(equation 4.1.). Chlorophyﬂ a4 measurements made using spectrophotometric of
fluorometric acidification techniques do not necessarily discriminate against all species of
phaeopigment (chlorophyll degradation products), Jeffrey and Welschmeyer (1997). The
application of such techniques would result in measurements of a*p) expressed as m?
(mg chl @ + phacopigments)!, for example, Babin et al. (1996), Bisset et al. (1997).

Instead, chl @ should be determined, as in this study, using the Welschmeyer (1994)
method or HPLC techniques.

Both sites M and U show strong absotption peaks at 435 and 675 nm corresponding to

absorption by chlorophyll 4, and a secondary absorption shoulder between 410 and
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470nm indicating absorption by chlorophyll b, photoprotectant and photosynthetic
carotenoids (Bidigare et al. 1990). The absorption shoulder at 470nm (cotresponding to
chl b) and the absorption peaks of chl # appear less prominent at site U. As such, one
might consider that chromatic differences could, in part, account for variations in Gpsn
between the 2 sites. There is little evidence of strong absorption by phycobiliproteins
(see Kirk 1994), for example, phycoerythtin (490-565nm) to indicate the significant

presence of cyanobacteria in any of the samples.

. Figure 48—
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Measurements of a*p, between 400 and 500 nm, where absorption is most appatent,
were significantly lower in surface samples (2-5m) than from cortesponding deeper
(thermocline) samples (t-testi, o1z = 3.192, 0.002>p>0.001) at site U. A similar analysis
obsetves no significant differences between surface and deep samples at site M. Mean
values of a*() were further calculated from all samples for the wavelengths 412, 443, 490,
510, 555, 670 and 685 nm corresponding to SeaWiFS satellite bands for both sites and
compared (table 4.3.). Mean absorption was highest at site U for all wavelengths, except

555nm.
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A (nm) a* (A) (m” mgchl a”)

Site M Site U
412 0.0233 0.0368
443 0.0266 0.0442
490 0.0169 0.0277
510 0.0105 0.0158
555 0.0046 0.0041
670 0.0113 0.0141
685 0.0074 0.0086

Table 4.3.— Summary of mean values of the chlorophyll a-specific absorption (a*, m?® mgchl
a') at wavelengths corresponding to SeaWiFS satellite bands (412, 443, 490, 510, 555, 670
and 685nm) from the 2 sample sites. The mean is derived from all samples taken at each
respective sample site, irrespective of time of day or depth.

Changes in nrsi— The number of PSII reaction centres (1/npsi, molchl 2 molRCII,

equation 4.3.) calculated for both sites throughout the sampling period are given in fig.
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0 | . | | . | molchl a molRCII" as
] determined from equation
4.2. for sites M (upper
panel) and U (lower panel).
Times are given in GMT for
both sites and are on
different scales following
the respective sampling
series. The key applies to
both panels. Filled circles
represent the points at
which samples were taken.
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4.9. The highest overall values are observed at site M (356-745 molchl 2 molRCII,
mean * standard error, 493 + 23) whilst the lowest are seen at site U (310-560 molchl &

molRCII!, 428 + 18). In general, 1/npgii from samples taken during the day increase with
depth and hence decrease with irradiance at both sites (a regression of 1/npsi and
irradiance showed significant negative correlations for both sites, M: 1/npsu = -68.4[Log
PAR+1] +577.6, n=12 £2=0.593 0.005>p>0.002; U: 1/npsyi = -86.8 [Log PAR+1]
+581.4, n=12 £2=0.573 0.005>p>0.002). A high surface 1/npgrr is observed in the 05:50
(GMT) sample from site M and corresponds with a large increase in Fy (fig. 4.2.). A
higher value of 1/npsi is also observed in the surface waters (than in deeper waters) of
site U during the night, however, this inctease appears to remain independent of any

changes in chlorophyll 2 or fluorescence yield.

4.5 Discussion and conclusions

Photoacclimation— The increase in NPP:chl a4 in response to an increase in light

intensity observed at both sites indicates de novo synthesis (Olaizola and Yamaoto 1994)
at both stations. A corresponding increase in the ratio of diadinoxanthin to diatoxanthin
(DD:DT) was also observed in response to increased light at site U. This trend, which
has been recorded under both laboratory (Olaizola and Yamamoto 1994) and field
conditions (Brunet et al. 1993), is indicative of xanthophyll activity and is pattly
responsibly for the corresponding loss observed of the functional absorption cross

section of PSII antennae, Opsi.

The lack of a similar relationship between DD:DT and light (or Gpsi) at site M may
reflect the respective phytoplankton taxonomic community. The DD-DT xanthophyll
cycle is characteristic of diatoms, dinoflagellates and prymnesiophytes (Liaaen-Jensen
1978); however, the pigment analyses from site M suggests that this phytoplankton
community, most notably in surface, 1-7m, samples, appears to have been significantly
composed of ‘green’ algae. As such, the positive relationship between NPP and light at
site M simply reflects a general synthesis of photoprotectant xanthophyll pigments which

would tesult in more non-photochemical quenching in the antennae (hence the

relationship between NPP and Gpsir at site M). The DD:DT relationships of site M (from
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f1g 4.7.) become significant, and more consistent with those observed at site U, when all
surface data points (1-7m) are removed from the analysis (DD:DT = -0.0065*Gpsit +
4.45, 2= 0.921, n= 4, 0.01> p>0.005; DD:DT = 0.523*log[PAR+1] + 0.158, r? = 0.924,
n= 4, 0.01> p>0.005). This is suggested to cotrespond to a significant increase in the

concentration of fucoxanthin, and hence diatoms and prymnesiophytes (eg. Jeffrey and

Vesk 1997), in the deeper waters of site M

The changes in NPP were observed from a broad sampling resolution and are not,
therefore, strict evidence of a short term response of photoacclimation to fluctuating
irradiance. Values of Gpsii from the continuous FRREF surface water record reveals
further differences between stratified and mixed waters, fig 4.10. Small-scale variations
(minutes-10’s minutes) can be observed and signifies the ability with which
phytoplankton can regulate light harvesting of PSII (Dubinsky et al. 1986, Falkowski et
al. 1986). Incident irradiance correlates with Opsn at site U (Opsn = -0.162*light + 599,
n=35, r2 = 0.323, p<0.001) but not at site M. The significant response of phytoplankton
with light may reflect the lower water column mixing rates at site U. Conversely, it could
be considered that the higher mixing rates at site M appear to exceed the time scale of
short-term physiological responses that are reflected by variations in Opsi. However, the

lack of data from site U (and hence variations in light-Gpsr) limit these interptetations.

Phytoplankton appear to display strong photcacchmétive strategies, at greater time
scales, under the contrasting water column mixing regimes at the two sites. The well
mixed site (M) is characterised by values of npsn that are generally higher than those from
the stratified site (U). These different characteristics can be considered to reflect mean
light conditions that the respective communities receive (Falkowski 1980) and should be
expected, if it could be assumed that phytoplankton in well mixed waters receive, on
average, less light than those in less dynamic waters. Laboratory studies indicate that
phytoplankton grown at lower light intensities have higher values of 1/npsu (mol chl
molRCII) (table 4.1.) since relative increases in chl a/cell are greater than those of mol
RCII/cell (Sukenik et al. 1990). A greater 1/npsy will result in faster ‘processing’ of
available light energy and is hence an acclimation strategy to lower irradiances. However,
npsir represents a limited interpretation of photoacclimation based on photosynthetic unit

size (npsu) (Falkowski and La Roche 1991), since corresponding alterations to the
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number of PSI photosynthetic units (nps) also occur (eg. Dubinsky et al. 1986).
Furthermore, the apparent taxonomic differences between the phytoplankton

communities of the two sites could, in part, account for actual divergence in values of

1/npsn (see table 4. 1).
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Figure 4.10.— Continuous record of the functional absorption cross section (cpsu, A guanta’ )
from the surface seawater supply (7m) and of incident irradiance (umolphotons m?s 1) from
the ship-mounted PAR sensor. Data were measured whilst at site M. The ops data measured
whilst at site U was corrupted. Therefore, the run of data measured in stratified waters
immediately prior to the station is presented as a means of comparison. Also shown are the
corresponding discrete measurements of opgy and PAR from the CTD profiles which were used
in figures 4.5. to 4.7. This high resolution FRRF surface data (1 stored acquisition per 2-3s,
dark chamber) were ‘binned’ into 5 minute averages.

Phytoplankton will also attempt to photoacclimate by altering their ability to saturate the

number of PSII reaction centres. Different amounts of light harvesting and
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photoprotectant pigments relative to 1/npsn will result in changes to Gpsir and to the chl
a-specific absorption (a*). The mean of all Gpsir values measured at night (to minimise
any differences associated with fluorescence quenching) are significantly higher (t-testy,
127 = 3.804, p<0.001) at station U (694.34 A2 quanta?) than at site M (629.37 A% quanta-
1. This indicates that the PSIIs of phytoplankton at site U become saturated at relatively
lower light energy levels but does not conform with the suggestion that these
phytoplankton ate acclimated to higher light intensities. Phytoplankton cells in surface
waters at site U experience very low nutrient concentrations (see table 4.2.). Nutrient
limitation produces elevated values of Gpsit since the functional antennae typically serves
fewer PSII reaction centres and can, therefore, saturate them faster (eg. Falkowski 1992).
The higher values of Gpsii observed in the surface waters of site U coincide with reduced
values of F./Fn which are also indicative of nutrient limitation (Kolber et al. 1988).
Nutrient limited cells are more susceptible to the effects of light (eg. photoinhibition,
Falkowski et al. 1994) and this may have conttibuted to the daytime reduction of both
F./Fm and Opgi in the surface waters at both sites. Values of Opgir at site U remain
clevated at and below the thermocline pethaps indicating a separate lower-light

acclimated phytoplankton population which can successfully maintain the high levels of

production and biomass.

All values of a*, except at 555nm, are higher at site U than at site M. In addition, values
of a* at site M remain constant from the depths at which samples were taken.
Conversely, a* from site U are significantly lower at the thermocline than in surface
samples. These differences can occur through changes in pigment composition and the
‘package effect’ (Falkowski a;d La Roche 1991, Bricaud et al. 1995), see section 1.1. The
highest concentrations of photosynthetic pigments:chl 4 (fig. 4.4.) and chi a (fig. 4.3.)
were found at site M and in the thermocline samples of site U. This results in more light
absorption (m?2, data not shown) but reduced values of chlorophyll a-specific absorption
(m? mgchl a') and is evidence of pigment packaging (eg. Allali ez al. 1997). This further
suggests that the phytoplankton populations at site M and in the thermocline region at
site U were both acclimated to relatively low light conditions. Phytoplankton cells reduce
the amount of chl 4/cell and increase their cell volume, theteby reducing the degree of
pigment packaging, in response to nuttient starvation (Berges et al. 1996) and high light

(Berner et al. 1989). As such, the relatively high values of a* observed in the sutrface
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[strongly stratified, high light] waters of site U may be considered as a combination of
forcing factors. Alternate mechanisms contributing to this apparent pigment packaging,
for example, number of chloroplasts per cell number and thylakoid stacking (eg. Berner
et al. 1989, Sukenik et al. 1990) were not considered and subsequently investigated at the
time of sampling but could provide a more detailed explanation regarding the changes to

opsit, Fv/Fm and a*.

Validation of nesn estimations— The range of 1/npsn (molchl 2 moIRCIT) calculated
for both sites M and U fall within previously cited values (see table 4.1.). Acclimation to
relatively low light levels (eg. Falkowski et al. 1981, Dubinsky ez al. 1986) cotrespond
with higher values of 1/npg at site M compared to site U. At site U, conditions of
nuttient starvation (eg. Berges et al. 1996) may have contributed to the higher 1/npsu in
[dark adapted, 02:00 GMT] surface samples. These acclimations reflect the balance of
reductions in chl a/cell versus those of RCII/cell (Falkowski et al. 1981, Berges et al.
1996). Barlow and Alberte (1985) measured an increase of 1/npsi when phytoplankton
(Synechococcus) were subjected to photoinhibition. A decrease in values of both Fv/Fm
and Pehl was observed in the surface stratified layets of both sites U (30-32m) and M (0-
10m) when irradiance was highest and is indicative of photoinhibition (eg. Falkowski ez
al. 1994); however, 1/apsi did not cotrespondingly increase. Previous estimations of
npsn (table 4.1) have been confined to phytoplankton cultures in the laboratoty,
presumably as a consequence of the sensitivity of oxygen electrodes used for the
technique (eg. Mauzerall and Greenbaum 1989). In addition, no other field data of FRRF
and corresponding a* values;appears evident in current literature for the derivation of
npsnt following eguation 4.1. Therefore, there is a lack of data with which to compare
variations of npsii observed in this field investigation. A consideration of the kinetics of
PSII activity under laboratory and iz situ conditions may, in part, account for the npsi

variations at sites M and U:

Laboratory investigations relevant to npsu typically allow cultures of single species to
acclimate over a period of several days. Throughout this period, changes in mol chl
a/cell occur at neatly twice the rate of corresponding changes in mol RCII/cell when
acclimating to low light (Sukenik et al. 1990). Only after a period of approximately 72

hours are new steady state values reached. If it is assumed that this is also true for
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phytoplankton cells exposed to prolonged increases in light throughout the day then it is

possible that the observed surface values of 1/npsi temain low because the rate of chl

a/cell reduction exceeds that of RCII/cell loss at this scale. As such, phytoplankton cells

in situ would not have the same time period of acclimation as those in the laboratory.

Chlorophyll a-specific absorption describes the mean target for the absorption of

photons within a cell (Falkowski et al. 1994) and can, therefore, reflect the [chl 4] per cell

volume. A closer look at changes of a* shows that this parameter responds to increases

in light at a faster rate than corresponding changes of Gpsi and f, fig 4.11., at both sites

(although data from site M is not statistically significant, see figure legend). The

parameter f represents the number of functional reaction centres whilst Opgi is related to

the average size of the antennae composed of light harvesting proteins (Falkowski 1992)
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Figure 411 — Regression
between PAR and relative values
of chlorophyll a-specific absorption
(a*), effective absorption cross
section (opsy) and the quantum
efficiency (F./Fn). All values of a*
were divided by the lowest
determined value to observe the
relative increase in this parameter.
Conversely, all corresponding
values of opgy and F./F, were
divided by the highest determined
value to observe the relative
decrease of these parameters. The
relative change of each parameter,
with respect to irradiance, is
indicated by the gradient of the
relationship. n= 11 for each
parameter at both sites. P<0.001
except site M: a* (0.05>p>0.02),
Opsii (0.01>p> 0.005), FV/Fm
(0.2>p>0.1) and site U: a*
(0.1>p>0.05).
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and is influenced by both changes in antennae quenching and f (see above). The relative
rate of a* increase (chl /cell volume reduction) exceeds the loss of RCII (fj, hence
relatively less chl a serves the number of RCII thereby reducing the rate at which RCII
saturation can occur (combined with non-photochemical quenching processes in the
antennae) to produce lower values of Opsi. In terms of equation 4.3., (essentially
ovsit/[2* . f]) the product of the a* increase and Gpsi decrease exceeds the corresponding
decrease in [, and 1/npsir will decrease. Therefore, it would appear that the decrease in
1/npsit with increasing light [at this diurnal time scale] is a function of the greater relative

changes in pigment than of functional reaction centres.

Similar data concerning a*, Gpsir and f for Synechococcus from the strongly stratified site

of the RV Pelagia cruise (site 3, 37°N 23°W, Chapter 3) can also be considered as a

Figure 4.12— (upper panel)
t2r N y = 0.0002x+ 1 regressions between PAR and
N ¥ =0.149 relative changes in a*, Gesi
: : and F,/Fn, (see figure 4.10.
legend for a more detailed
description following
calculations of these
parameters); (lower panel)
regression between
corresponding data of the

number of reaction centres
04 a y=2-0.0017x+1 (1/npsy) and PAR using the
o FF,, r=0.8964 " data from the upper panel and
02 following equation 4.3. This
data is taken from the strongly
o L , , , stratified site 37°N 23°W from
the RV Pelagia cruise and is
described in more detail in
Chapter 3. This site was
dominated by populations of
Synechococcus. n=9, a* (0.5>
300 | X p>0.2), Opsgli (0.05>p>0.02),
Fu/Fm (p<0.001).
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means of compatison (fig 4.12.). With an increase in light, a* shows no significant change
whilst Gpsir decreases at a similar rate to that seen above. f (the proportion of functional
reaction centres) decreases at a relatively greater rate. As such, the rate of RCII loss
exceeds corresponding losses of chl a/cell volume. This should result in an increase in
Gpsiy since the available chl # serves fewer RCIIs and PSII saturation can occur relatively
faster. However, it is clear from fig. 4.12. that Opsn decreases, presumably as a result of
additional quenching processes. In tetms of equation 4.3., the reduction in f exceeds the
product of changes to a* and Opsi. The lack of change in a* presumably reflects the
already small cell size and the low cellular chl & content of Synechococcus. The product of
these changes is an increase of 1/npsy with an increase in light (fig. 412)) and is in

agreement with the results of Batlow and Alberte (1985).

Conclusions— Phytoplankton display general photoacclimation differences in npsii, Gpsi
and a* and pigment content under the different light climates at the 2 sites. However, the
use of npsi and Opsn may confound this interpretation where taxonomic and trophic
differences (respectively) also exist between the sites. The significant differences in a*
and Gpsu throughout the water column at site U compared to site M indicates that
mixing rates are, in general, lower than the time scale required for acclimation. Changes
in a* are also observed at different depths of the water column at site U and correlate
with corresponding values of light (fig. 4.11.). This suggests that phytoplankton display
significant acclimation 7 situ or, more likely, reflects a diel rhythm in cellular chlorophyll
a (Owens et al. 1980). Evidence of smaller-scale changes of Gpsir also appears to reflect

the time scale of water column mixing but temains uncertain given the lack of data.

The novel calculation of npsii (using 7 situ data) desctibed hetre appears to give absolute
values which conform within the limits of values obtained from the oxygen flash yield
technique upon phytoplankton cultures in the laboratory (table 4.1.), given the respective
limitations. It is clear that the environmental dynamics experienced by phytoplankton
under natural conditions are vastly different to those applied in the laboratory. As such,
these initial results appear promising given an absence of existing npsi 72 sy
observations and the limited understanding of the kinetics of cellular components under
combined light-nutrient regimes both 17 situ and in the laboratory. However, a, proper

validation of this technique is requited before these results can be considered firmly
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conclusive. The significant 72 situ npsn variability throughout a variety of temporal and
spatial scales 1s likely to be of considerable consequence to the calculation of production

using the FRRF (see section 1.4.), and is pursued in Chapter 6.
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5. Variability of phytoplankton physiology
and production throughout the Atlantic
Ocean

5.1. Introduction

The variability of primary production rates is predominantly a function of light (Kitk
1994), nutrients (Marafién and Holligan 1999, Marafion et al. 2000) and temperature
(Behrenfeld and Falkowski 19972, b). The most recent observations within the Atlantic
using both "“C-uptake (Marafién and Holligan 1999) and fluotescence induction
techniques (Geider et al. 1993, Babin et al. 1996, Behrenfeld et al. 1996, Olaizola et al.
1996, Behrenfeld and Kolber 1999) undetline that nutrients are the most significant
vatiables to drive the variability of photosystem petformance, and ultimately, production.

However, this does not preclude the importance and predominance of the effects of light

and temperature under certain conditions.

This investigation aims to assess the variability of phytoplankton physiology and
production throughout biogeographic provinces of the Atlantic. Broad-scale sampling
was accomplished by performing CTD casts at regular intervals (10:00-11:00 local time
each day). As a result, diurnal effects upon fluorescence signal variability (Chapters 3 and
4) between samples should be minimal. An analysis of the broad-scale relationships
between taxonomy (using HPLC data) and physiology (FRRF) will provide a general
description of photoadaptive charactetistics, and will be considered in terms of the light-
nutrient environment. Furthermore, a continuous FRRF assessment of the surface water
will be used to describe the spatial scales at which PSII physiological variability occurs (in
relation to corresponding scales of hydrographical variability) throughout the Atantic
Ocean. Following the relationships that have been observed between PSII variability and
environmental variability (Chapters 3 and 4), it is expected that biological variability

should reflect the nature of the predominant physical processes in the respective
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biogeographic provinces.
General Hydrography

The cruise transect followed a course from Cape Town (34°S 18°E) to the U.K. (50°N
1°W) and traversed a number of biogeographic provinces (fig. 5.1.). These provinces are

summarised from descriptions by Longhurst (1993), Longhurst et al. (1995),
Sathyendranath et al. (1995):

The open ocean provinces fall within 2 domains: The most northetly open ocean
provinces of the transect are within the westerlies wind domain which sets up conditions
for algal spring blooming (see section 3.2.). These provinces are the north Atlantic drift
(NADR: 40°N to 60°N) and the north Atlantic subtropical gyre (NAST: 25°N to 40°N).
This gives way to the trade winds domain at approximately 30°N which encompasses the
rest of the open ocean provinces traversed by this cruise. These provinces ate
characterised by a shallow permanent pycnocline of very high stability and an excess of
precipitation ovet evaporation. The mixed layer depth, the column of well mixed sutface
water above the thermocline, changes seasonally as a geostrophic response to the wind
field, whilst breakdown of the pycnocline and nuttient renewal into the mixed layer only

occurs at strong divergences. Provinces within this domain are the notth Atlantic tropical
gyre (NATR: 25°N to 10°N) and the eastern tropical Atlantic (ETRA: 10° N to 15° §,
castwards of the 20°W hingeline of seasonal basin scale tilt). Such boundaries are not
static and consistent features associated with the nutrient-field and phytoplankton activity
of ETRA (described later) wete observed to change notth of approximately 6-7°N. As
such, the boundary between NATR and ETRA is defined as this transition (6-7°N) for

the purposes of this study.

The NATR province can be further sub-divided into 2 distinct hydrographic regions.
The notthern leg of the NATR crossing (17°N to 25°N) is characterised by waters of
relatively high chl @ concentration (fig. 5.1.) as a result of upwelling activity otiginating
from the Canary Current coastal province (CNRY: 15°N to 43°N). However, the area

17°N to 25°N will be referred to as the northwest African upwelling (NWA) province
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Figure 5.1.— AMT 6: Cruise track of RRV James Clark Ross, Cape Town (34°S 18°E) to the
UK. (50°N 1°W), 15" May to 16" June 1998. Track is superimposed onto SeaWiFS
composite image of chla concentration taken throughout May and June 1998. The track
traversed a number of biogeographic provinces (described by Longhurst et al. 1995,
Sathyendranath et al. 1995): Benguela upwelling (southern Benguela: SB: 33-27°S; northern
Benguela: NB, 27-18°S°), Eastern tropical Atlantic (ETRA: 15°S-6°N), Northern equatorial
(NEQ: 6-17°N), North-west African upwelling (NWA: 17-25°N), North Atlantic subtropical gyre
(NAST: 25-40°N), North Atlantic drift (NADR: 40-60°N). Note that for the purposes of data
presentation, the NADR province also encompasses the north-east Atlantic continental shelf
(NECS) when the cruise-track finished at the U.K. (50°N).
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since the cruise transect did not enter the continental shelf and, therefore, the CNRY

province. The remainder of NATR (6°N to 17°N) encompasses the notthern equatotial

and hence will be referred to as the NEQ province.

Several coastal provinces were also sampled along this transect. These provinces are
charactetised by dynamic hydrographies which promote high levels of phytoplankton
biomass and production. The Benguela system (BENG: 18°S to 40°S) desctibes the
upwelling off the south west coast of Africa. The principal upwelling centre of the
Benguela system is located around Lideritz (27°N 15°E), and comprises an
environmental barrier so that the Benguela system is effectively divided into northern
(NB) and southern (SB) components (Pitcher et al. 1992). This classification is
maintained for this study. The north Atlantic drift region NADR: 40°N 18°E to 50°N

1°W) will be used to describe the final leg of the transect which traversed both NADR
but also NECS (the north-east Atlantic continental shelf).

5.2. Province characteristics based on broad-scale sampling

CTD profiling— Surface water temperature (fig. 5.2.) displays a clear increase towards
the equatorial provinces but the gradient is more abrupt moving from the Benguela
(southern hemisphere) than from northern hemisphere provinces. This presumably
reflects the cruise track which sampled the Benguela close to the coast whilst the passage
through north-west African-waters was further offshore (fig. 5.1). The Bengucla and
NWA provinces are charactetised by shallow mixed layer depths (15-30m) and high
surface and near-surface concentrations of nitrate (fig, 5.2.). NADR, ETRA and NEQ
provinces display deeper mixed layers and nutriclines (50-60m). The NAST province is
characterised by a deep thermocline (100-140m) and low concentrations of nitrate
throughout the upper 150m of the water column. The nutricline and thetmocline are

defined as the zone of shatp change in nutrients and temperature, respectively, from

surface to deep watets (see also p.12).

Nitrate concentrations (fig. 5.2.) closely follow those of phosphate ([NO,] = 14.281
[PO,] - 0.0377, ¥ = 0.91, n = 161). Nitrite concentrations (fig. 5.2.) display surface and
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Figure 5.2— Changes in parameters within the upper 100m of the water column, as
collected from CTD casts throughout the AMT 6 transect. Black circles in upper panel
represent sample points for (A) Temperature (°C) (B) Nitrate concentration [NOs] (mmol m’)
(C) Nitrite concentration [NO2] (mg m™®). Time of each CTD cast was approximately 10:00-
11:00 local time. Transect has been divided into respective biogeochemical provinces
(Longhurst et al. 1995) and are described in more detail in section 5.2.
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subsurface maximum and follow the respective depth of the nitrate nutricline, ZNO .y
= 1.01 zNO; + 9.7943 (+* = 0.914, n=22, p<0.001), except within NADR and ETRA
where the subsutface maximum becomes shallower (10-20m). The depth of both the
nitrate nutricline and the nitrite maximum display a strong relationship with the depth of

the thermocline, zNO, = 1.52 2T - 21.8, *= 0.81, n = 23, p<0.001; zNO,,x = 1.57 2T -
13.9, ¢ = 0.69, n = 23, p<0.001.

Observed values of water column irradiance (PAR: fig. 5.3.) were highest within the
ETRA (surface value: 2400 imol photons m™ s) and lowest within the NWA, NADR,
Benguela and southern NAST (surface value: 800-1000 pmol photons m? s7) regions.
The depth penetration of PAR, indicated arbitrarily as the depth of 10 and 1% of surface
irradiance, was greatest within NAST and lowest within NWA, SB and NADR provinces.
The FRRF detived variable fluorescence (F,: fig. 5.3.) is significantly correlated with 272
situ chlorophyll a (fig 5.3.), (F, = 9.9818 [chl 4] + 7.0022; £* = 0.401, n=207, p<0.001).
Both F, and chlorophyll @ have high surface and near-surface maximum (0-25m)
throughout the Benguela, NWA and notthern NADR, subsurface maximum (40-50m)

within ETRA, NEQ and southern NADR provinces, and deep (80-120m) subsurface
maximum the NAST.

Taxonomic (pigment) variability— The main taxonomic biomarker pigments (sce
section 4.3) in relation to chl a4 from surface (7m) waters throughout the transect atre
given in fig. 5.4. Following R.Batlow (pers.comm; AMTG6 Cruise Rept), the SB is
characterised by dinoflagellates (high peridinin and some fucoxanthin), whilst both the
NB and NWA are generally characterised by diatoms (high fucoxanthin but no
peridinin). Levels of 19’hexanoyloxyfucoxanthin (prymnesiophytes) remain reasonably
high throughout the transect but show a strong peak at 48.3°N. A slight increase in
peridinin is also evident between 9 and 16°N. These increases in accessory pigments
generally correspond with increases in production and biomass (see later). Microscopical

analysis of water samples confirmed that the SB phytoplankton community was
dominated by Ceratium spp. (Dinophyceaea) whilst that of the NWA was ptedominantly
composed of centric diatoms and Rbizosolenia spp. (Bacillatiophyceae) together with
small flagellates. The increase in phytoplankton pigments and production at 48.3°N was

identified as a bloom of Phaeocystis spp. (Prymnesiophyceae). The provinces ETRA,
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Figure 5.3.— Changes in parameters within the upper 100m of the water column throughout

the AMT 6 transect. Panels (A) PAR (umol

photons m? s™) and (C) chlorophyll a

concentration (mg m™) are taken from CTD casts/ water samples. The depths of 10 and 1% of
surface irradiance from each cast are also indicated in panel (A). Data in panel (B)

Fluorescence yield (F,: instrument units) are taken

from FRRF measurements. Filled circles in

lower 2 panels represent sample points for the 2 forms of data collection. Time of each CTD
cast was approximately 10:00-11:00 local time. Transect has been divided into respective

biogeochemical provinces as in figure 5.2.
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NEQ and NAST contained mixed picophytoplankton communities of shallow water
cukatyotes, but was dominated by prokaryotes (zeaxanthin- Synechococcus,; divinyl

chlorophyll @ (dvchl @)- Prochlorococcus).

N Latitude (decimal degrees) S
-50 -40 -30 -20 -10 0 10 20 30
V.4
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0.2 + peridinin:chla
0.1
0" . P — <2 P— P— -JA
0.6 fucoxanthin:chia
04 t
02 ¥\ I\ \k

oL \\\._I\\// \'\NM{ =

10 19'hexanoyloxyfucoxanthin:chla

22/\/\/'/\_ . N
O"ZL y —— Y \/\/W
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zi : P /X/\ '
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-
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Figure 5.4— Pigment to chlorophyll a ratios from CTD surface water samples (7m)
throughout the AMT 6 transect. All pigments were measured by HPLC (see Chapter 2). Only
main biomarker pigments (see main text) are shown: peridinin (per:chl &), fucoxanthin
(fucox:chl a), 19’hexanoyloxyfucoxanthin (hex:chl &) and zeaxanthin (zeax:chl a). The
horizontal line through each pigment:chla seties represents the mean of all measurements.
Therefore, variations in pigment:chl a indicate above- and below-average values.

Numbers of picophytoplankton were highest in ETRA and NEQ and were largely
composed of Prochlorococcus; Synechococcus were most abundant in the surface waters
of NAST and NWA (M. Zubkov, pers.comm). These differences are reflected by the

concentrations of dvchl @ (relative to total chl 4, fig 5.5) and zeaxanthinn (fig 5.4.),
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Latitude (decimal degrees)
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Figure 5.5.— Changes in parameters within the upper 100m of the water column throughout
the AMT 6 transect collected from CTD casts. Panels (A) %dvchl a (of total chl a = dvchl
aldvchl a + chl a) and (B) total NPP:chl a (the ratio of the sum of all non-photosynthetic
pigments to chlorophyll a). Non-photosynthetic pigments assigned according to Bidigare et al.
(1990): zeaxanthin, antheraxanthin, violaxanthin, diatoxanthin and diadinoxanthin. Zeaxanthin
is also found in Cyanophyceae (Synechococcus) and may indicate the relative abundance of
this taxa. Time of each CTD cast was approximately 10:00-11:00 local time.

respectively. The chl @, F, and %dvchl 2 maximum occur at similar depths (80-100m) in
the NAST region. Conversely, the surface maximum of %dvchl 2 does not coincide with
the maximum of chl 2 and F, (40-50m) within ETRA and NEQ regions. The subsurface
biomass maximum in these regions appeats to coincide with increases in per:chl @ and
19’hex:chl 4 (data not shown). As such, these trends imply a stratification of the
phytoplankton community comprising sutface prokaryote and subsurface eukaryotic
dominated populations. The sum of non-photosynthetic pigments (NPP:chl 2) (see figure

text) is also plotted for each data point from above 100m (fig 5.5.). The highest NPP:chl
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a occur in waters of ETRA, NEQ and NAST regions where in situ irradiance also

appears highest and penetrates deepest (fig 5.3.). The NPP was predominately comprised
of diadinoxanthin throughout the transect reflecting the significant presence of

dinoflagellates, prymnesiophytes and/or diatoms.

Phytoplankton physiology— All stations throughout the transect displayed a subsurface
maximum of quantum efficiency (F,/F,;: fig. 5.6.). These maxima are shallowest within

the NWA, Benguela and NADR provinces, and deepest within the NAST. The highest

N Latitude (decimal degrees) s
-40.00 -30.00 0.00 10.00 1 20.00 80.00

o

Depth (m)

| | I l l )
A. F/F,, (dimensionless) | | 1
| | 1

|

NADR NAST NWA NEQ ETRA NB SB
Opsll (A2 quanta‘1)

Figure 5.6.— Changes in parameters within the upper 100m of the water column, as
measured using the FRRF throughout the AMT 6 transect: (A) Quantum efficiency of
photochemistry (F./Fn, dimensionless) (B) Functional absorption cross section (cpsi, A?
quanta’). Sampling points for both data are the same as those given for F, (fig. 5.3.b.).
Transect has been divided into respective biogeochemical provinces as in figure 5.2.
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values of F./F, (0.5-0.6) were observed within ETRA, Benguela and NAST provinces,
whilst lowest values (0.4-0.5) were in the NWA and NADR and were uniform
throughout most of the water column. The functional absorption cross section (Gpg: fig.
5.6) increased with depth in all provinces, except for the Benguela where thete was a
near-sutface (20-40m) maximum. Gy, was highest (900-1000 A? quanta™) in the NWA,
NEQ and NADR regions, whilst lower values (700-800 A quanta™) were obsetved for
the NAST and ETRA. Increases in PAR were reflected in a reduction in surface values of
both F./F,, and Oy, at the equator and NAST, but not the surface reduction of F/F,, in

the southern ETRA or the surface reduction of Gy in the northern NB.

Values of Chlorophyll a-specific production (P®) and instantaneous production (Pc)
derived from the FRRF are given in fig. 5.7. The ETRA, NEQ and NAST regions were
dominated by prokaryotic populations, whilst all other regions were dominated by
cukaryotic populations (R. Barlow, pers.comm.). Therefore, these 2 groups of regions
were assigned values for n,g, of 1/300 and 1/500 molchl a molRCIT" respectively for the
calculation of production (see sections 1.3 and 1.4. for derivation of production with the
FRRE). P (Fig. 5.7.) was highest (6-16 mgC mg chl ' h') with these high values
penetrating deep into the water column (80-100m) within the ETRA and NAST. All

other provinces display surface maxima of P which are lower (2-6 mgC mg chl a' ht
p play g g

and only reach 20-30m.

The trends of P derived from the FRRF in fig 5.7. do not conform with patterns of P
that have been previously “observed throughout the Atlantic using the “C-uptake
approach (for example, Marafion and Holligan 1999, Marafion et al. 2000) wheteby
production is highest towards coastal provinces and lowest in the open ocean subtropical
gyres. This latter distribution is only observed when the FRRF production (P accounts
the respective i situ chlorophyll 2 concentrations to produce estimates of instantaneous
volume-specific production (P) (fig 5.7.). P_is highest (8-12 mgC m” h™), with a surface
maximum, within the Benguela, NWA and NADR provinces. The lowest values (2-4
mgC m” h ™) of P, are found in the ETRA, NEQ and NAST where production is
observed to penetrate deeper into the water column (80-90m). Very high surface (0-20m)
production rates (> 20 mgC m® h™) were observed at the station at 48.3°N and

correspond with the elevated levels of chl a associated with the Phaeocystis bloom.
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N Latitude (decimal degrees) s
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Figure 5.7— Changes in parameters within the upper 100m of the water column as derived
through FRRF measurements taken throughout the AMT 6 transect: (A) P™" ' (chlorophyll a-
specific production: mg C mg chl a’ h ) (B) P¢ (instantaneous production accounting for
chlorophyll a concentration: mg C m’ S hy ). Sampling points for data are the same as those
given for F, (fig. 5.3.b.). (C) Values of P¢c mtegrated to 200 meters for each CTD cast. Time of
each CTD cast was approxnmately 10:00-11:00 local time. Transect has been divided into
respective biogeochemical provinces as in figure 5.2.
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Subsurface variability of phytoplankton physiology— Several tows were made using the
UOR (Undulating Oceanographic Recorder, see p.38) during the AMTG cruise. The
majotity of these describe a general homogeneity of the water column with regards to
surface features or a continuum between successive CTD casts; an example 1s given in
fig. 5.9. (tow A: 20.89°N 20.00°W - 21.73°N 20.00°W ). This tow traversed the transition
between the NWA upwelling and more deeply stratified oligotrophic waters.
Corresponding surface sample data taken during tow A (fig 5.8.) displays an increase in
water temperature and decrease in fluorescence which is consistent with that observed by
the UOR tow (¢ of values from 7m (n=32) = 0.553 p<0.001, UOR FRRF F, versus
ship-board FRRF F; 0.686 p<0.001, UOR temperature logger versus ship-board
temperature logger). The subsurface changes of Opgy and F,/F, reflect the successive
CTD casts performed between the NWA and NAST. As such, the broad scale CTD

sampling strategy and surface water analysis appeat to adequately describe this feature.

Time (GMT) Figure 5.8— Surface
14:00 16:10 18:30 {7m) values of

o
23.0 400 »  temperature (°C) and
o 130 P fluorescence  (FRRF
S 225 E 1 300 '§ and ship  Turner
o : | o fluorometer, both
S g —— Temperature %0 5 . .
= ) e oo T instrument units) from
ag- -~ - iNcident irradiance o the continuous
g | 1150 8  gseawater supply
K \\ 1{ 100 ‘; between 20.90 and
LN e ds0 T 217N (1400 to
205 , ; < . o @, 1840 GMT) in the

70 , , ; ‘ ‘ } ( , 40 NWA. Corresponding
values of incident
irradiance collected

—— Ship fluorometer | 39

Q.

=

2 L from the ship-mounted

3 25 3 PAR sensor are also

S 20 :"1 shown. These data

2 s B (except FRRF F,D)

2 were periodically

o R 10

S logged (once per 10

w10 15 minutes). This section
0 : ; : : ‘ : . : 0 corresponds to the
20.9 21 21.1 212 213 214 215 216 217 218 data collected during

UOR tow A.

Latitude north

The most interesting tow (B) was performed in the region of increased fluotescence
around the equator (1.10°S 7.43°W to 0.26°S 8.05°W) at night (21:00-02:40 GMT), fig

5.10. A shallowing and intensification of the thermocline occurs in the first half of the
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Time (GMT)
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Figure 5.9.— Changes in parameters between 0 and 50 metres from UOR tow (A), AMT 6,
between 20.89°N and 21.73°N (14:00 — 18:40 GMT), in the north-west African (NWA)
upwelling region. Filled circles in upper panel represent sample points for all data shown in
panels (A) Temperature (°C) from data logger and (B) Variable fluorescence yield, Fy, (C)
Quantum efficiency of photochemistry, F./Fr, and (D) Functional absorption cross section of
PSII, ops; measured with the FRRF. Corresponding surface data are given in fig. 5.8.
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Time (GMT)
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Figure 5.10.— Changes in parameters between 0 and 60 metres from UOR tow (B), AMT 6,
between 01.10°S and 00.26°S (21:00 — 02:40 GMT), in the ETRA region. Filled circles in
upper panel represent sample points for all data shown in panels (A) Temperature (°C) from
data logger and (B) Variable fluorescence yield, F,, (C) Quantum efficiency of photochemistry,

F./Fm and (D) Functional absorption cross section of PSIl, opsy measured with the FRRF.
Corresponding surface data are given in fig. 5.11.
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tow and is accompanied by a strong subsutface fluorescence peak. Similar changes have
been described by Bauerfeind (1987) between 2°N and 3°N (along 22°W) corresponding
the equatorial upwelling. Both the thermocline and F, subsurface maximum weaken as
the tow moves further north suggesting greater water column mixing. As the thermocline
weakens, the depth where both low and high surface values of F,/F,, and Oy occur,
respectively, appears to become more shallow and may be partly a function of nocturnal
relaxation of fluorescence quenching processes/photoinhibition (eg. Vassiliev et al.
1994). The changes in both surface fluotescence yield and tempetature (fig 5.11.) agtee
well with those from the UOR tow (r* of values from 7m (n=33) = 0.591 p<0.001,
FRRF F| versus ship-board fluorescence yield; 0.726 p<0.001, UOR temperature logger
versus ship-board temperature logger); however, it is clear that the changes in surface
fluorescence yield were too sensitive to be reproduced by the contouring package. The

subsurface variability is not reflected by the cotresponding surface data or successive

CTD casts.

Time (GMT)

21:00 00:00 02:40 Figure 511.—
26.2 t — L A 70 surface (7m)
temperature (°C) and

26.1 / /f "\/\W\\/ fluorescence
o NN N 65 (instrument units) as
g 26.0 ) -1 measured from the
2 — Temperature € continuous seawater
£ %° - Ship fluorescence g Supply between
5 P 1608 01.00 and 00.26°S in
2-25.8 8 the ETRA. These
3 $ data were collected
25.7 155 Dby ship instruments
and were petiodically
256 ™/ logged (once per 10
minutes). This

255 5.0

-1

-1.03 -0.96 -0.89 -0.82 -0.75 -0.68 -0.61 -0.54 -0.47 -0.4 -0.33 -0.26

section corresponds
with UOR tow B.

Latitude South (decimal degrees)

Statistical treatment of data collected from CTD profiling— The Plymouth Routines in
Multivariate Fcological Research (PRIMER, Carr 1994) programme was used for the
calculation of the following statistics. A more complete description of these statistics
(Clarke and Warwick 1994), and of the results generated from this AMT6 data, can be
found in Appendix 3. A (Bray-Curtis) similarity matrix was generated between pairs of

CTD stations using the following data: depths of the nitrate (NO,) and phosphate (PO,)
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nutriclines, the nitrite (NO,) maxima, the thermocline and the 1% of the surface PAR;
integrated water column values for NO,, PO, and NO, (from above the nutricline/NO,
maximum); surface values of temperature and salinity. The approximate depths of the
thermocline and nutricline were interpreted as the zone of maximum change between
surface and deeper waters in temperature and nutrients respectively. The data were
subsequently presented as a hierarchical dendrogram (see Appendix 3) to identify clusters
of similar stations based on these characteristics. The analyses reveal that nutrients
account for 50.71-54.16 % of the similarity between groups whilst all other hydrographic

parameters compose the remaining 45.84-49.29 %.

An ordination technique provides a 2 or 3 dimensional map that reflects similarities of
samples (Clarke and Warwick 1994). Ordination by non-metric multidimensional scaling
(MDS, Kruskal and Wish 1978) was chosen to represent the clusters from the similarity
matrix since it is a very flexible technique and lacks assumptions. A principal components
analysis was originally performed on the data but was abandoned since it is limited and
contains poor distance presetvation when projecting samples onto a 2D plane. The MDS

from the respective similarity matrix of the above data is given in fig 5.12

Figure 5.12— MDS plot
32.28 12.7N from Bray-Curtis similarity

y 20.2N/ ?9-5’4 matrix of  hydrographic

\ ot . (temperature, salinity and
nutrient) characteristics,
see main text, of CTD
stations throughout AMT6.
Clusters are derived from
arbitrary levels of simiiarity
chosen between stations in
Bray-Curtis dendrogram
(see appendix 3): solid line
= 75% similarity; dashed
(inner) line = 85% similarity
between stations. Stations
within clusters are
described by  decimal
latitude. Minimum stress
level of MDS = 0.05.

2458/
21.48

The clustering of similar stations is dependent upon the arbitrary level of similarity that is
determined from the corresponding dendrogram (Appendix 3). At a relatively low level

of similarity (eg. 75%) between samples, groups of stations can be easily identified and
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correspond to the NAST (28-36°N), the NB and northern SB (29-18°S) and all stations
from the southern NADR, NEQ and ETRA. This suggests that the boundaries of the
different biogeographic boundaries are reasonably well defined. Stations at 20°N, 32°S,
12°N and 49°N appear to form another distinct group. If a higher level of similarity is
used, eg. 85%, then more clusters of stations are identified since the conditions of
similarity become mote discriminative. This analysis had little trouble, or a low stress

level, in reducing the data into a 2D plot and is reflected by the distinct nature of the

clusters.

A second similarity matrix and MDS was constructed to include information concerning
the nature of phytoplankton biomass and production throughout the water column as
derived from the FRRF, in addition to the hydrogtaphic variables contained in the first
analysis. The respective depths of the maximum variable fluorescence (F,), chlorophyll a
concentration, chlorophyll specific production (P™) and production (P,), in addition to
absolute values of these parameters both at the maximum and at the surface (7m), were
used to further describe conditions at each station. The resulting MDS (fig 5.13.)
generates clusters of stations that are very similar to those found from the first MDS at
the 75% similarity level, and again, was produced with a relatively low level of stress (see
fig. legend). However, station 48.3N has become isolated and reflects the distinctive
phytoplankton photosynthetic conditions observed. The consideration of more variables

in the second MDS appears to result in a greater degree of discrimination (je. mote

Figure 5.13— MDS plot
‘_43.3N from Bray-Curtis similarity

matrix ~ of  hydrographic

(temperature, salinity and
) ’ nutrient) and FRRF
i characteristics (see main

text)y of CTD stations
throughout AMT6. Clusters
are derived from arbitrary
levels of similarity chosen
between stations in Bray-
Curtis dendrogram (see
appendix 3): solid line =
75% similarity; dashed line
= 85% similarity between
stations.  Stations  within
clusters are described by
v A N decimal latitude. Minimum
N 32.2S agoN stress level of MDS = 0.08.

'49.5N
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clusters) when attempting to group stations at higher levels (eg. 85%) of similarity. A

more detailed description of these analyses can again be found in Appendix 3.

The strong hydrographic differences are, therefore, mirrored by clear differences that
exist in phytoplankton physiology and production between the provinces at the sampling
scale employed. As such, the clusters produced above can be subjectively classified in
terms of their trophic status: the NAST group is considered to represent a strongly
oligotrophic regime, the NB and northern SB group as representative of strongly
eutrophic, the group comprised of 20°N, 32°S and 49°N as representative of weak
eutrophic, and the remaining stations (southern NADR, ETRA and NEQ) as
representative of meso-oligotrophic conditions. The station at 48.3°N is exceptional but

will be classified as strongly eutrophic since this station was under intense bloom

conditions (see above).

Stations comprising Trophic MSR relationships with hydrography
environmental group status
18-29°S (NB) 48.3°N Strongly Fv/Fm  Temperature (44.6%) PAR (16.2%0)
(NADR) eutrophic GPsI Nuttients (59.0%) PAR (11.4%)

pl PAR (44.6%)
P PAR (354%) Nutrients (15.7%)

32°S (SB) 20°N (NWA) weakly Ev/Fm  PAR (47.1%) Nuttients(36.0%0)
49°N (NADR) eutrophic opsIt Nauttients (66.6%) PAR (13.5%)
petit PAR (39.9%) Nutrients (31.2%)

Pe PAR (51.6%) Nutrients (37.0%)

14°S-16°N (NATR & Meso- to Fv/Fm  Nutrients (46.3%)
NEQ) oligotrophic orsit Nuttients (14.1%) PAR (22.3%)
pei! Nuttients (54.2%) PAR (10.1%)

Pc Nuttients (44.7%)

28-36°N (NAST) Strongly Fv/Fm  Nutrients (61.8%)
oligotrophic OpsIt Nuttients (54.1%)
pett Nuttients (91.7%)

Pc Nuttients (85.0%)

Table 5.1.— Summary of data derived through MDS (non-metric multi-dimensional scaling)
and MSR (Multiple Stepwise Regressions) statistics performed on all FRRF data obtained
from CTD casts. Fach environmental group is determined from MDS and is assigned an
arbitrary trophic status based on common production, biomass and hydrographic conditions.
The variables which explain the % of variance greater than 10% are displayed for the MSR
between each respective physiological parameter and hydrographic conditions (temperature,
nutrients and PAR). Full results from the MSR are given in Appendix 3.
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Multiple Stepwise Regressions (using MINITAB) were subsequently performed to
determine the degree to which each of F /F,, Gpy;, P™ and P (as detived through the
FRRF) wete dependent upon corresponding measurements of tempetature, nuttients and
PAR within each of the 4 identified trophic regimes (table 5.1.). Full details of these
analyses can be found in Appendix 3. F_/F,, and Gy, generally display highest covariance
with nutrients throughout all regimes, except within the strong eutrophic where
temperature appears the predominant variable, and within the weak eutrophic where a
similar covariance is exhibited for both nutrients and PAR. P™ and P display a more
distinct relationship, whereby the highest covatiance occurs with PAR throughout the

strong and weak eutrophic and with nutrients throughout the meso- and strong

oligotrophic regimes.

5.3. Province characteristics based on continuous surface FRRF
data

The vatiable fluorescence (F), quantum efficiency (F,/F,) and the functional absorption
cross section (Gg,) observed in the surface water across the entire transect are presented
in fig. 5.14. In general, F_ is high throughout the Benguela, NWA/NEQ and NADR but
remains very low throughout the ETRA and NAST provinces. FRRF data from the
equator is absent because the signal was saturated where the gain setting was too high but
does indicate that the fluorescence yield increased significantly. The corresponding
fluorescence trace from the ship-board fluorometer shows a slight increase in
fluorescence yield between 3°S and 2°N. There was a significant agreement between

these 2 sets of fluorescence data from the entire transect: FRRF fluorescence yield =

0.734 Ship-board F, + 7.54, = 0.592 (n = 3185, p<0.001).

Both F_/F,_ and G, display obvious diel variability in their respective signals throughout
the transect, as a decrease in parameter value during the day. A discrete state transition
(see section 1.4.) of these signals also occurs at dawn and dusk (Behrenfeld and Kolber
1999) and dampens the night fluorescence signals. This phenomenon was observed
throughout the more oligotrophic regions (see also fig. 5.15.) but is less easily
distinguished from the signals within the dynamic upwelling regions. Differences

between provinces can still be observed against this background pattern of diel variability
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Figure 5.14— Changes in surface (7m) FRRF variables as measured from the continuous
non-toxic seawater supply throughout AMT6. Latitude and biogeochemical provinces (see fig.
5.2) are indicated. Variables shown are variable fluorescence yield (F,: instrument units),
photochemical efficiency (F./Fm: dimensionless) and the functional absorption cross section
(rsi: A% quanta™). The fluorescence yield (instrument units) and incident PAR (ship mounted,
uncalibrated) collected by the ship logger are also shown as a means of comparison. All these
data presented here are ‘binned’ into hourly averages. Full records (at the actual data

collection resolution) are given in Appendix 4.

105



Variability of phytoplankton production rates in the Atlantic Ocean ' 5. Basin Scale Variability

(sce Appendix 4). F /F, is high (0.4-0.5) within NWA and NADR regions but also
appears to increase north of the equator. F /F, is highest, and is close to its theoretical

maximum, throughout the BENG region (0.6-0.65). The greater variability exhibited by
the Oy, (Appendix 4) trace appears partly as a function of noise. However, the mean

value of Oy, is relatively higher within NAST (634A* quanta™) and telatively lower within
ETRA, NEQ and NADR (538, 535 and 515 A” quanta”) when compared to the mean
Oy from the entire BENG region (586 A quanta"l).

Figure 5.15.— Example of
state transition of surface
FRRF fluorescence yield
(Fy) and quantum efficiency
(FW/Fm) occurring at dawn
(approx. 07:00) and dusk
(approx. 18:00). This diel
track is taken between
serial day (SD) 149 and SD
150, 5.59 and 2.65 °S,
AMT 6. The process of the
diel state transition is given

2.5 - —— Fluorescence yield 105

-Quantum efficiency

0 , » ‘ SR L . - \ ) in more detail in section
12:20 14:40 17:00 19:20 21:40 00:00 02:20 04:40 07:00 09:20 11:40 1_4_
Time (GMT)

Scales of wvariability of surface data throughout the Atlantic — Several techniques are
commonly employed to assess the spatial scale, variability or patchiness of hydrographic
parameters. The most popular of these techniques employed in oceanographic analyses
are variance (power) spectra (eg. Denman and Platt 1976, Weber et al. 1986), semi-
variograms (eg. Yoder et al. 1987, Seuront and Lagadeuc 1997, 1998), and correlograms
(eg. Jumars 1978, Mackas 1984). These techniques are all closely telated (Yoder et al.
1987) and are applications of the stochastic point process. A stochastic point process is
essentially the difference in parameter values between all points separated by distance

(dx) in a series of data, eg. Fasham (1978), and is assessed over a range of length scales.

Underway hydrographic and FRRF data were collected via continuous surface watet
sampling (see Chapter 2) throughout the cruise transect and are analysed using the
vatiogram technique. A full account of this technique, and of all variograms produced

from the AMTG data, is given in Appendix 3. This technique was chosen because,
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compared to other techniques, it is flexible, filtering of the data is not necessary, and it
can operate where there are gaps in the data series (Yoder et al. 1987). Conversely,
spectral analysis is favoured when transfer functions or filtering of the data is involved
(Fasham 1978). However, the major limitation of vatiograms is that they only resolve the
predominant scales and do not detail less obvious patterns. Using this approach, we can
obtain information concerning the variability of physical and biological variability in each
system The ease of the vatiogram technique eliminated the need to manipulate or

extrapolate the transect data (shown fully in Appendix 4). Table 5.2. provides a summary

of the dominant scales of variability determined from the vatiograms in Appendix 3.

The smallest predominant scales (<100km) appear to operate in the SB (temperature,
fluorescence yield Ogy, and to a lesser extent, F,/F, ) and the NWA (FRRF fluorescence
yield, F /F,_ and Opg;). Small scales may also account for the variability in fluorescence
yield in the NEQ; however, these data should be treated with caution since the respective
variograms were difficult to interpret (the sills describing the smaller scales were
borderline with respect to the criterion that determine significant scales, see Appendix 3).
In general, scales between 100 and 1000km act on FRRF parameters in all provinces
except SB and NWA, and on hydrographic parameters in all provinces except ETRA and
NAST. The hydrography of these last 2 provinces are governed by scales greater than
1000km. Indeed, the linear variogtam produced for the hydrography of NAST
(Appendix 3) indicates a scale with a period of at least twice that of the longest sample
distance ie. 2 x 908km. Similatly, this also implies that the linear variograms produced for
the temperature of NEQ and salinity of NB could also exceed scales greater than 1000
km. The temporal scales determined for PAR agree well (* = 0.92, n=7, p<0.001) with

the (mean) diurnal petiod within each province in the underway record (data not shown)

and provides confidence in the technique for determining the predominant scales.

Fractal dimensional analysis can be subsequently employed on the variogram plots to
further describe the nature of the inherent variability. This is a simple procedure and is
described in detail in Appendix 3. To summarise (following Seuront and Lagadeuc 1997,
1998), the gradient of a log-log plot (m) of the variogram is used to provide a value for
the fractal dimension, D. A high value of D (eg. = 2) is characteristic of a complex

system where local variability is highly developed and is dominated by short range, such
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as biological, processes. A relatively low value of D (tending towards zero) characterises
larger scale variability as a result of long range (ie. physical) processes. This analysis has

been applied to the variograms produced for the hydrographic and FRRF variables from

each province.

Province  PAR T S F F. Fv/Fm opsh
SB 127 33 36.0 39 31%06 55 38+03
NB 11.5+40 28.6 Linear 13.1 7.6+08 10409 10.7
FTRA  119:20 578 54.2 270  103+09 117209  None
NEQ 13.0 Linear 9.0+ 1.6 2.2 2.3 9.7 None
106% 1177
NWA 13.0 14.6 16.0 10.7 4.0 3308 3.3
NAST  150+18 Linear  Linear 155 194 121+12 13418
NADR  158+04 275  105+05 156 24.9 152 10509
Province  PAR T S F Fv Fv/Fu Opsit
SB 282 73 801 87 69 122 85
NB 256 636 Lineat 291 169 231 238
ETRA 265 1285 1205 600 229 260 None
NEQ 289 Linear 200 49 51 185 None
236 % 260 *
NWA 289 325 356 238 89 73 73
NAST 333 Linear  Linear 345 431 269 298
NADR 333 612 234 347 554 338 191

Table 5.2.— Summary of dominant temporal and spatial scales of FRRF and hydrographic
parameters within each province, as determined by variogram analysis (see Appendix 3). Top
panel indicates scales in decimal hours, whilst bottom panel indicates scales in kilometres
(whereby 1km/hr = 0.5396 knots, assuming ship speed at an average of 12 knots). Linear
indicates that a variogram which did not exhibit a sill and, therefore, could not determine a
dominant spatial scale from the largest between-sample distance; None indicates a high
nugget value (the result of noise) hence any sills are unlikely to be significant; * indicates a
possible alternate dominant scale where the initial sill is difficult to interpret.
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Values of D, fig. 5.16., typically appear higher for ‘biological’ data (see figure legend) than
for the corresponding hydrographic data. A Wilcoxen’s test for matched pairs confirms
that the mean of all hydrographic fractal dimensions is significantly different from the
mean of F, F_ F /F  and O, (T=3, P<0.1) throughout the 7 provinces. In general, D
remains between 1.3 and 1.5 for temperature, salinity and PAR in all regions except
NWA and the Benguela where values of D that are typically 1.5 and 1.8. Using the above
critetia, it appears that the vatiability of these parameters even in NWA, NB and SB
provinces are predominantly influenced by large scale processes. The trend of D for PAR
between provinces also emphasises that whilst the period of variability can remain
constant, the scales of the forcing physical factors can vary. Fractal dimensions for the
biological data appear to remain more consistent between provinces. A relatively large
increase in the value of D for F /F,_ is also observed between ETRA and NAST. Mean
values of D for the physiology (F /F,, and G,g,) wete significantly different (Wilcoxen’s

test for matched pairs: T=3, P<0.1) from those of fluorescence yield throughout the 7

provinces.
Figure 5.16— Values of
20 —  PAR the fractal dimension (D),
1.9 ( ....... Temperature as derived from the
—_— Salinity respective  scales  of
' variability using
L variogram analyses (see
Q6 appendix 3), plotted for
15 L each province throughout
oy o AMT6. D is plotted for
’ both hydrographic (PAR,
13 temperature and salinity)
12 : : - : : — and biological
NADR NAST NWA NEQ ETRA NB SB (fluorescence vyields: F
from the ship Turner
fluorometer and F, from
the FRRF); quantum
20 - efficiency F./Fn and the
functional absorption
el cross section of PSll
187 opsi) parameters. More
7 information regarding the
o 16t - 5 calculation of D is given
\ in Appendix 3. Note: A
1o % """" Fv LFRRF) valuep%f D could not be
14t — R derived for opsy in ETRA
1.3 | Opsil or NEQ as a result of the
12 ; : - - s , large amount of noise in
NADR NAST NWA NEQ ETRA NB SB the respective variograms

Province
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5.4. Discussion and conclusions

Province characteristics based on CTD profiling— The cruise transect was dominated by
three areas of high productivity: the Benguela, the north-west African upwelling and the
north-west continental shelf approaches (NADR). These systems contained taxonomic
and physiological signatures which may be interpreted to indicate the biological age of
the respective water-type. By definition, both the NB and NWA feature characteristics
(eg. diatom dominance) of recently upwelled water (Barlow 1982a, Painting et al. 1993,
1994). The predominance of dinoflagellates in the more stratified SB is indicative of
mature water types (Pitcher er al. 1992), and is well known for this region duting the
latter part of the upwelling secason (Pitcher et al. 1998). Similarly, the especially strong
bloom of the colonial (prymnesiophyte) flagellate Phaeocystis observed in NADR is not
unusual, especially in late spring/eatly summer (Holligan 1987). Prymnesiophytes
dominate post bloom waters whilst dinoflagellates develop as a later secondary
component (Barlow er al. 1993, Lochte et al. 1993). Thetefore, the high ratio of

19’hexanoyloxyfucoxanthin: fucoxanthin: petridinin would suggest developed but not

mature bloom watets.

Variations in phytoplankton physiology— The patterns of phytoplankton physiology

(F./F, and Oy, were quite vatied between provinces but conformed with the above
inferences. Any diurnal effects upon the observed wvarability of phytoplankton
physiology should be minimal since all CTD casts were performed at the same local time
each day. High values for the quantum efficiency (F, /F,) were obsetved where nuttient
concentrations were high and nutriclines were relatively shallow, such as, the Benguela
and the northern ETRA/southern NEQ. Lower F /F_ values ate indicative of nutrient
limitation (eg. Geider et al. 1993) and are observed within both the NWA and NADR.
This observation would appeat to conflict with the productive nature of these provinces

but can be explained.

The occurrence of both relatively low nutrient concentrations and high water
temperatures within the NWA is not indicative of recently upwelled water. If one
assumes that the predominant diatom population is in decline from nutrient limitation

then a corresponding reduction in the synthesis of protein (Barlow 1982b) and elevated
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levels of storage products (carbohydrate and lipids, Falkowski and Raven 1997) would be
expected. As such, there is typically a reduction in the amount of pigment associated with
the PSII reaction centres (Falkowski 1992) available for photochemical energy
conversion (Kolber et al. 1988) thereby reducing the efficiency of photochemistry. The
low F /F (but relatively high nutrient concentrations below 20m) within the NADR
cannot be explained by nutrient limitation but rather low light as a result of deep mixing
(eg. Olaizola et al. 1996). Efficient photochemistry would not be maintained where the
phytoplankton population is held at a mean light level which is below that of the
compensation light intensity (sensy Kitk 1994: productive O, liberation relative to
tespiratory O, consumption, see section 1.4) and is, therefore, light limited. The depth of
the 1% light depth was restricted to 20-25m in the NADR province (fig. 5.3.); however,
the possibility of nutrient advection, or of taxonomic differences in yields of the

quantum efficiency, cannot be accounted for and may confound the interpretation of

phytoplankton physiology.

The functional absorption cross section (Gpg;) can tespond to the environment over both
relatively short (photoacclimation) and long (photoacclimation and photoadaptation)
scales.- As such, the ability of Gy, to respond to the current light climate can also reflect
the photo-history of a phytoplankton population. The lowest values of Oy (at the Cpgyr-
maximum) were obsetrved within the region of the NB (23-27°S) which is located near to
the upwelling centre of the Benguela. This observation is difficult to explain unless this

phytoplankton community has acclimated or adapted to high light and therefore acquired
a lower Gy, (eg. Dubinsky et al. 1986, see also Chapter 4). A taxonomic diffetence in
absolute photon target size (eg. Berges et al. 1996) may serve to add confusion to this
interpretation. Conversely, the higher chlorophyll 2 content and lower 72 situ irradiance

penetration of the SB could explain the relatively higher values observed for Gpgy-

Low values of O, were also seen within NAST whete nuttients were severely depleted.
The response of Oy to increased light intensity becomes modified under conditions of
nutrient limitation whereby Gy, furthet increases (Kolber et al. 1988, Greene et al. 1991,
see Chapter 4). However, this was not observed. Higher values of Gy, coincided with

high values of F /F  deeper in the water column (60-100m) where phytoplankton

approached the nutricline, instead suggesting low light acclimation. This may be
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contrasted with the occurrence of high O, but low quantum efficiencies at depth in
both the NWA and NADR. These values could reflect the declining physiological status

of sinking-out or deeply mixed populations and perhaps an increase in noise to the FRRF

signal.

Further evidence suggests that phytoplankton in the NAST are acclimated to low light:
Prochlorophytes are known to dominate oligotrophic ateas of the Adantic (Platt et al.
1983, Veldhuis and Kraay 1990, 1993), especially in summer (Olson ez al. 1990a, b),
where water column conditions are relatively stable. These authors explain that
Prochlorococcus-type organisms are well adapted to growth at low light since they have a
high affinity for nutrients and seck the deep nutriclines. Prochlorococcus dominated the
NAST province but showed highest cell numbers in the surface 20-75m (M.Zubkov,
pers.comm.). A calculation of total chlorophyll @/cell (chl 2 m™ divided by cell number
m™) shows that surface populations contain less chl #/cell (mean * standard error, 0-7m:
2.53x107 £ 1.09x107) than those from deeper in the water column (80-100m: 6.78x107 &

8.02x10™ in this province, and reinforces the suggestion of low light acclimated (or

adapted) phytoplankton at depth.

The multiple stepwise regressions generally displayed a significant relationship between
F /F_ and O, and nuttients throughout the majority of trophic regimes. This close
association suggests that most of the observed communities have a physiology which is
driven by nutrient availability and vatiability. However, temperature and PAR appeared
to dictate the relationship of F /F, within the strong and weak eutrophic regimes,
respectively. Stations within the strong eutrophic come from dynamic areas where water
has been most recently nuttient enriched (NB upwelling and inferred deep water column
mixing within southern NADR). Light and nutrient limitation only become significant
limiting factors as upwelled water matures (Brown and Field 1986) and phytoplankton
adapt which might explain why temperature exhibits a strong correlation with
photophysiology within the strong eutrophic. The strong association between PAR and
photophysiology in the weak eutrophic would suggest that changes in light most strongly
influence the variability in phytoplankton physiology under stable hydrographic and
nutrient replete conditions. This response must also be reasonably strong in order to
dominate the nutrient limited relationship of the NWA, which was also present within

this category.
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Scales of wvariability of biology and hydrography in surface waters— The observed
horizontal spatial scales of variability typically reflected the physical nature of each
respective region. Both the physical and biological parameters of the dynamic Benguela,
and to a lesser extent NWA and NADR, wete characterised with the smallest scales of

variability. The Benguela and NADR displayed relatively low fractal dimensions (D),

however, the D{physical parameters] are generally = D[biological parameters] indicating
that the physical processes acting on the hotizontal variability of these systems are
relatively small but dictate the variability obsetved in biological processes (eg. Seuront
and Lagadeuc 1998). Similar scales of biological variability within the Benguela province
have been reported as a result of rapid changes in the intensity and frequency of the
upwelling (eg. Shannon et al. 1984) giving rise to eddies. The open ocean provinces are
characterised by hotizontal scales [of physical parameters] of the order 100s-1000s km
and correspond with larger scale physical processes such as rings, [baroclinic] eddies and
Rossby waves (eg. Ventick 1990, Mann and Lazier 1996). As such, biological variability

occurs at scales that are smaller than those for physical parameters, most notably within

ETRA and NAST.

The horizontal scales of fluorescence yield variability, which are high when compared to
previous estimates of the scale of phytoplankton patchiness throughout the open ocean
(10-100km Steele 1976 in Okubo 1978; 5-10km Denman et al. 1977), correspond with
the spatial scales of daylight as measured by the underway PAR sensor throughout the
transect. ‘This is pethaps not surprising since diel variations of fluorescence can
coincidentally arise from several physiological sources (such as changes in pigment
content, state transitions, and quenching, Falkowski 1984, Falkowski and Raven 1997)
and would, therefore, represent a very strong signal. Such temporal variability may mask
the actual scales of phytoplankton patchiness. The scales of PSII variability typically

correspond with those of fluotescence yield; however, values of D remain higher for

both F_/F, and G, throughout all regions. This difference is greatest in the ETRA,
NEQ, NWA and NADR regions signifying the strong influence of small scale biological
processes upon the scales of variability. The strong small scale biological influence within
NWA conflicts with the appatent control by physical processes under dynamic
conditions but may perhaps be explained since this phytoplankton community appears
physiologically stressed and would be less likely to display an ability to regulate PSII

variability with the continually changing environment.
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Finally, despite the above observations, the scales of fluorescence yield variability
determined from the ship Turner fluorometer atre different (for some provinces) to those
described using the FRRF. The Turner fluorometer only measures the maximum
fluorescence yield (F,) of a water sample whilst the FRRF measures the variable
fluorescence vyield I, (=F -background fluorescence yield, F). Therefore, changes in
non-biological fluorescence and chlorophyll breakdown products could account for
changes in F, (and thus in F) but not in open ocean samples where the occurrence of
such products is likely to be low (Geider et al. 1993). It might be considered that the
sensitivity of the variogram technique contributes to the differences observed, for
example, the greater sampling resolution of the FRRF could illustrate significant smaller
scales of wvariability (F) than in cortesponding analyses using the ship’s Turner
fluorometer (F) data. In general, the confused correspondence between the two

measurements cannot be wholly explained.

Conclusions— The broad scale assemblages of phytoplankton throughout the Atantic
display a variety of physiological and productivity signatures. This investigation has
demonstrated that geographically separated populations can be grouped according to
similar characteristics such as hydrographic habitat, standing stock and production. The
resolution of broad-scale CTD sampling appears sufficient for characterising the
boundaries of biogeographic provinces when compared with corresponding observations
from the continuous underway and UOR records. The physiology of the phytoplankton
groups are reflected by corresponding variations in nutrients, but also light and
temperature where nutrients are present in abundance. The predominant scales of
physiological variation are observed at the diel scale. Oligotrophic regions (ETRA, NEQ
and NAST) are strongly characterised by the effect of small scale biological processes
upon the scales of variability, hence phenomena such as daily state transitions are most
obvious throughout these regions. Finally, the more dynamic upwelling regions are
characterised by physical processes which appear to overshadow phytoplankton

physiological signals and/or influence the ability of phytoplankton to respond to their

environment.
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6. A comparison of primary productivity
derived through alternate methodologies

6.1. Introduction

To date, the majority of production estimates in the aquatic environment have been
made using techniques that follow *C-uptake and Oz evolution. Recent developments in
fluorescence induction methodologies have led to alternative indirect ‘measurements’ of
primary productivity. The FRRF is cutrently the most commonly used fluorescence
induction technique in oceanography (see sectzon 1.3.) and avoids the limitations
associated with conventional techniques to quantify primary productivity (eg. Sakshaug ez
al. 1997), such as ‘bottle effects’ (section 1.2.). In addition, rates of production derived
through the FRRF ate based on oxygen evolution and should be expected to be more

comparable with conventional estimates of Oz evolution rather than *C-uptake.

Previous chapters in this thesis have shown that an estimate of production derived from
the FRRF requires several assumptions. However, neither the weight of these
assumptions, nor the ability by which the FRRF compares to conventional methods for
estimating production, are well documented in the literature. It is currently believed (eg.
Sakshaug et al. 1997) that the use of the FRRF lies more in understanding the properties
influencing photosynthesis and not in the quantitative values of measurement. The aim
of this final chapter is to examine the relationship between corresponding estimates of
production from the FRRF and 'C-uptake techniques, within their respective limitations.
An alternative model is also presented for the calculation of production based on FRRF
measurements and subsequently compared with changes in the oxygen content of the
watet column. This chapter predominantly draws on information collected during the
RV Pelagia cruise (see Chapter 2) but also uses some information from RRS Challenger
and AMT 6 cruises. The details and general hydrographies covered duting these cruises
are given in secttons 3.1, 4.2. and 5.2., respectively. The respective protocols and

sampling strategies employed are described in Chapter 2, whilst a more detailed
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explanation and derivation of terms used throughout is given in Section 1.4.

6.2. Comparing corresponding FRRF and “C-uptake production
estimates.

Rates of production calculated using the FRRF cotrespond to the 72 situ light intensity at
which they are measured and ate, therefore, instantaneous (P(E)). The FRRF
photosynthesis-irradiance (P-E) relationship is an accumulation of 72 situ P(E) measured
at various irradiances throughout the water column and represents the entire
phytoplankton population. C P-E cutves ate generated from discrete water samples
taken throughout the water column. Each sample is experimentally incubated (for
example, in a ‘photosynthetron’ (see general methodology: section 2.2.) under artificial
light, RV Pelagia and RRS Challenger) at incremental light levels to describe the
photosynthetic response from a range of possible light exposures and, therefore, the
physiological status of phytoplankton from different depths of the water column. This is

illustrated in the introduction, fig 1.7.

FRRF estimates of production— All in situ detived chlorophyll a-specific instantaneous
production (Pl data from the RV Pelagia cruise are plotted as P-E curves in fig 6.1.
Only one FRRF P-E curve was obtained at each of the 3 diel sites since the limited
sampling resolution precluded the estimation of Ex (and hence T, and ¢¢) for each cast
within the diel-series (see Chapter 3). The P-E cutves for the 3 sites have reasonably
similar light-limited initial slopes (Oln) of 0.062, 0.081 and 0.073 (mgC mgchl a! h
(wmol photons! m2 1)1 for sites 1, 2 and 3 respectively (see also table 6.1.). The light-
saturated photosynthetic rates (Pma™) vary between 3.62 and 6.31 mgC mgchl & h,
with the highest value at the southern-most site (site 3: 37N). The changes in P! and
in the saturation irradiance at which Pmax is established (Ex) suggest differences in the
photoacclimation status of the phytoplankton (ie. phytoplankton at the southernmost site
are acclimated to a higher light intensity since they exhibit greater photosynthetic

capacity at higher values of E) that are consistent with the observations discussed in

Chapter 3.
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Figure 6.1.— Photosynthesis-Irradiance (P-E) curves reconstructed from data collected using
the FRRF at the 3 diel sample sites (43°, 40°, and 37°N) from the RV Pelagia cruise (see
Chapter 3). Instantaneous production (P(E)) is calculated from FRRF parameters measured at
respective light levels in situ. Calculations of chlorophylla-specific P(E) are given for both
oxygen (mmol O, mg chla' h™) and carbon (mg C mg chla™ h™"), according to equations 1.1.
and 1.2, (Chapter 1), and assumes a photosynthetic quotient of 1. P-E curves are fitted by
least squares non-linear regression according to equation 2.1.

The FRRF wversus the ""C-uptake approach— C-uptake P-E experiments were
petformed on samples taken from between 5 and 40m at each of the three sites (RV
Pelagia). The mean values of Pumax™ from all these experiments should represent the
general response of the phytoplankton population and are 2.34, 2.57 and 2.41 mgC
mgchl a1 h'! from sites 1 (43°N), 2 (40°N) and 3 (37°N), respectively (table 6.1.). These
values ate a factor of 2-3 lower than those determined by the FRRF (fig 6.1.). The initial
slopes (Olehl) from the 3 sites average 0.0106 (mgC mgchl ! h'!)(mol photons™ m-2 s)-1
and are approximately 1/8 of those calculated by the FRRF. A better means of assessing

the rates of production determined from the two techniques is to compare the

instantaneous production rate (P(E)).

To obtain instantaneous C P(E), each P-E curve must be reconstructed using values of
Ponax, Ol and B (see eguation 2.1.). The value of production corresponding to the in
situ B from where the sample was originally taken is the instantaneous production. FRRF

and 4C P(E) are compared in fig 6.2. using an amalgamation of all data from the 3 diel
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sites, RV Pelagia and signifies that the rate of chlorophyll a-specific production (Pehl)
measured in situ by the FRRF is 5 times greater than that measured in vitro by C
uptake. However, one might consider that FRRE P is not a meaningful estimate of
production since biomass-specific vatiations are not strictly accounted for (1/nps,
molchl @ molRCII, is constant). Multiplication of Pt with the chlorophyll a
concentration of the sample (mgchl 2 m™) gives the rate of instantaneous production per
unit volume of water (Pc: mgC m™ h'). A comparison between FRRF and MC Pc
reduces the difference between cotresponding estimates of production but with a
weakening of the (t?) relationship, fig 6.2. A reasonably similar relationship is observed
when comparing corresponding FRRF and reconstructed #C-uptake Pc from the RRS

Challenger cruise (fig 6.2., right panel, see fig. heading).

Site 1 (43°N) Site 2 (40°N) Site 3 (37°N)

a* 0.056 + 0.005 0.054 % 0.002 0.064 * 0.002
o9 s Puas™ 3.62 435 6.31
gé ‘: 2 g 0.061 0.081 0.073
= 3 E 59.7 53.6 86.9
Puas™  shallow 228 0.05 1.89 +0.26 2.08%0.19
- deep 1.66 +0.14 1.57 £0.11 1.52£0.39
S shallow 0.011 £ 0.001 0.010 # 0.002 0.010 + 0.001
= A 5 deep 0.011 # 0.002 0.011 # 0.002 0.009 + 0.009
Fx shallow 2072476 185.1+ 8.2 2059 +3.4
deep 1543429 1462+ 45 186.0 +12.2

Table 6.1.— Summary of P-E characteristics taken from FRRF P-E curves (fig 6.1.) and Ye-
uptake experiment P-E curves. "C data are shown as the mean (& standard error) P-E
characteristics from all samples taken in relatively shallow water (10m, n=2, 4, 3 for sites 1-3
respectively) and in deeper water (30m n=3 and 5 for sites 1 and 2; 40m, n=2 for site 3). Data
shown are light saturated rates of photosynthesis (Prac, mgC mgchl a™ h™) light limited initial
slopes (o, (MgC mgcehl @' h™")(umol photons™ m? s7')") and the light intensity of maximal
photosynthesis (Ei, umol photons m? s7). Also shown is the mean (£ standard error)
chlorophylia-specific absorption from the 3 sites, a* (n=7, 14 and 12 for sites 1-3 respectively).
All data are irrespective of time of day (a” is also irrespective of depth of sample).

An alternate method for estimating C-uptake is to incubate the depth-specific water
samples at an irradiance level corresponding to conditions from which they were taken

for a longer period of time. Samples are typically maintained on-deck in flowing seawater
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under a blue filter screening to approximate iz situ spectral light quality (eg. Graziano et
al. 1996). Hence, this approach attempts to simulate 27 situ conditions. AMT6 (Chapter
5) MC-uptake experiments were performed in such a manner for 6-7 hours and thus
provide an estimate of time integrated production. AMTG6 values of P(E) are compared

with corresponding FRRF 7 situ instantaneous measurements, ﬁg 6.3., using all data

collected along the transect.

RV Pelagia RRS Challenger
2 14
° * 12 ¢
16 =

0 1 2 3 4 5 5]

FRRF P(E)

30
¢ mgCm®*h" + mgC mgchla’ h'

Figure 6. 2~— Comparison of instantaneous estimates of production (P(E)) from in s:tu FRRF
and in vn‘ro *C-uptake measurements. P(E) is shown as chla-specmc production (P mgC
mgchl an ) and production per unit volume of water, P¢ (ie. pen *[chl a: mgC m’ h1

P(E) were derived from reconstructed P-E curves (P(E) using the in situ E from Wthh the
water sample was taken). FRRF P(E) was determined from equation 12 and assumes a
photosynthet;c guotient of 1. RV Pelagta relationships are C Pe (mgC m® h ) = O 224*FRRF
Pe 12 = 0.262, 0.02>p>0.01; “C P*" (mgC mgchl a' h'y = 0224*FRRF P 2 = 0639
p<0 001 (n=22); Only PC data collected from RRS Challenger are given: '*C Pg (mgC m® h™)

= 0.361*FRRF P; r* = 0.581, P<0.001 (n=21). All data collected throughout the RRS
Chal/enger cruise are presented and not just sites M and U as described in Chapter 4.

A significant relationship is observed between corresponding estimates of instantaneous

production per unit volume of water (Pc) from the 2 methods (fig 6.3.). This relationship

is improved ("C Pc = 0.410*FRRF Pc, £2=0.596, n=107, p<0.001) upon the removal of
data from the NWA upwelling (20.2°N) and from the Phaeocystis bloom at site 48.3°N
(see Chapter 5). FRRF Pc remains approximately 2-3 times greater than that of "C-

uptake. The AMTG Pc data were further considered in terms of that collected from
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eutrophic and meso-/oligotrophic waters (see Chapter 5). FRRF Pc from eutrophic
waters remains appfoximately 2-3 times higher than *C Pc (see figure legend). However,
a large proportion of AMT6 data were collected in meso-/ oligotrophic waters where

FRRF Pc rather exceeds that of 14C by a factor of 5 (fig. 6.3., left panel).

AMT6 — All data AMT6 — Meso-/Oligotrophic
data only
18  20.2°N 1.0
6 L N “C P, = 0.172*FRRF P,
. 08 | " =0.228n=70
< ; . p <0.001
‘?E 12 r ¢ “C P, = 0.328*FRRF P,
10 =0.132n= 114
2 p < 0.001
£ 8 |
6|
o
O 4
T2 i . ‘
o g » 483°N
o 10 20 30 0 1 2 3 4 5

FRRF P, (mgC m* h")

Figure 6.3— Companson between correspondmg estimates of instantaneous production per
unit volume of seawater (Pc: mgC m’ *h ) from in situ FRRF measurements and simulated in
situ '*C uptake incubations, collected during AMT6 (see Chapter 5). The data in the left panel
were further treated by the removal of the extreme data points, and corresponded to those data
collected from sites 20. 2°N (NWA) and 48.3°N (NADR), which improved the rela’nonshlp c
Pc = 0.410°FRRF Pg, r°=0.596, n=107, p<0.001). An analy513 of data coliected from the
eutrophic waters (Chapter 5) revealed relatlonshlps of “C P¢ = 0.337*FRRF Pg, r’=0.021,
n=54, not significant (all eutrophic data) *C Pc = 0.447*FRRF Pg, °=0.519, n=47, p<0.001
(upon removal of 20.2°N and 48.3°N data. The meso-/oligotrophic data are presented in the
right panel.

Accounting for spectral differences in sources of light (*C-uptake)

The “C-uptake incubations from AMTG6 were performed on-deck in cylinders filled with
seawater and exposed to the full spectrum of incident solar irradiation whereas those of
the RV Pelagia and RRS Challenger cruises were made in a photosynthetron, illuminated
by a light source of restricted waveband. As such, an adjustment to the data of the RV
Pelagia cruise can be performed to account for the limited [incident] light field

experienced by the photosynthesising phytoplankton:
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The photosynthetron spectra was measured at intervals of 1nm between 400 and 700nm
whilst the 7 situ light was only recorded at 7 wavelengths relevant to the SeaWiFS
satellite from optical profiles (see Chapter 2). A global spectrum was used to
appropriately weight a non-linear interpolation (Gerald Moote, pers.comm.) between the
(7) in situ wavelengths and give cotresponding in situ light every nm between 400-
700nm. These spectra were then normalized so that the total energy between 400 and
700nm was equal to unity as a means of comparison, fig 6.4. There is a clear difference
between spectra at which most light occurs (~450-580 2 sitw and ~525-700 in the
photosynthetron) and this will have a significant effect when considering the absorption
properties by the photosynthetic pigments of the phytoplankton under consideration.
The ‘effective’ rate of light absorption was calculated as the sum of chlorophyll a-specific
absorption (a*py) multiplied by the normalized irradiance (Egy) from all values of A
between 400-700nm. The difference in the effective rate of light absorption between the

2 light spectra was obtained by dividing the rate of light absorption by the respective

irradiance (Ea4o0.700, which is equal to 1 since the spectra were normalized).

The mean effective absorption from the photosynthetron light source is 0.53 (site 1),
0.51 (site 2) and 0.41 (site 3) times lower than that for the 2 situ light field. Therefore,
the irradiance (400-700nm) measured in the photosynthetron is only 0.41-0.53 as
effective for photosynthesis as a corresponding value measured in the water column.
Hence the rates at which light saturated photosynthesis are achieved (On) in the
photosynthetron will be underestimated. In order to compensate for these differences in

spectral quality, the irradiances measured in the photosynthetron are multiplied by 0.53
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(site 1), 0.51 (site 2) and 0.41 (site 3) when establishing the P-E curves for each water

sample. These corrections result in lower values of Ex (mean Ex of 85.9, 76.1 and 82.7
Hmolphotons m2 s! from sites 43°N 40°N and 37°N, respectively) and higher values of
O (mean Okt = Prmg M/ Ey of 0.022, 0.020 and 0.023 (mgC mgchl 21 h'l)(imol photons!

m? s1) 1 from sites 43°N 40°N and 37°N, respectively) since the irradiances at which
light saturated photosynthesis occurs are lower. These changes to the characteristics of
the C P-E curves tesult in a more significant relationship (r?) and higher values of
instantaneous production (P(E)), fig 6.5. As such, the difference in corresponding

estimates of P(E) from the FRRF and *C is reduced and is comparable to that observed

from the AMTG6 cruise.

Figure 6.5— Comparison of

instantaneous  estimates  of

RV Pelagia production (P(E)) from in situ

FRRF and in vitro '*C-uptake
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"C Pc = 0.330*FRRFP¢ for the effects of spectral
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specific ?roduction (P™ mgC
mgechl &' h') and production
p per unit volume of water (ie. P™"
* [chl a]: mgC m® h™"). "C P(E)

+ o were derived from
reconstructed P-E curves (P(E)
was extracted corresponding to
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6.3. Modelling FRRF production

A basic model can be formulated to estimate FRRF instantaneous production where the

actual FRRF temporal or spatial sampling resolution is less than desired. The model will
be described using the data of site 2 (40°N) from the RV Pelagia cruise (see Chapter 3)

and requires knowledge of the irradiance (E, Wmol photons m-2 s1), light absorption (a*,
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m? mgchl a') and photosynthetic parameters determined from the FRRF. Calibrated
light data were not available from the cruise. Therefore, the incident irradiance at the sea
surface, which provides the energy for production, was estimated from the knowledge of
time of year (Julian Day 76) and position (40°N 23°W), Kirk (1994). The diurnal
variability of the incident irradiance was extracted from the uncalibrated ship-mounted
PAR sensor and superimposed onto the estimated values (fig. 6.6.). The subsequent
transition of the incident irradiance from air into water gives the required values of in
situ irradiance which are used to calculate production. This model incorporates the
effects of both reflection and refraction at the sea surface on the underwater light field.
The estimates of reflection are dependent upon the solar elevaton (B) and uses a

refractive index (water:air) of 1.33 for seawater at ambient temperatures at any

wavelength within the PAR spectrum (Kitk 1994). The water surface is assumed to be
flat.

In situ irradiance (E) at each time (t) is calculated with respect to depth (z) as the product
of E(t) and the vertical attenuation coefficient (IK4). Values of Kg were calculated at 10m
intervals from light data collected by a2 PAR sensor mounted on the CTD frame (fig.
6.6.). A linear interpolation between these estimates provides a depth-dependent Kg

(Kag)) and accounts for vertical differences in the spectral quality of PAR:
Ewy=Ep . Kap [6.1.]

The rate of light absorption (4, lmol photons m™ s1) is given by the product of the light
intensity (E), the chlorophyll a-specific absorption (%) and the chlorophyll a
concentration (mgchl 2 m~). Although a spectrum of absotption may be available, a
single value of 2% is used for this model to correspond to the absorption at the peak
wavelength of FRRF LED emission (475nm). This single value (0.054 m? mg chl a')
represents the mean of all measurements taken at site 2. In addition, # includes a

characteristic estimate (the median) for the chl 2 concentration at this site, 0.8 mg chl a

m:

a ey =E @y .a® . [chld]w o [6.2.]
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Figure 6.6.— (left panel) Modelled incident irradiance at the sea surface according to time of
day and position (site 40°N). The uncalibrated surface PAR data were quantified assuming
that the highest point at which the modelled and uncalibrated converged was a representative
period of clear sky; (right panel) Vertical attenuation coefficients (Kq, m™) of PAR (400-
700nm, measured from the FRRF PAR sensor) = (log Ez)-logEz2)/(21-22) where light (E) is
at depth (Z). Values at each depth are shown as the mean (+ standard error) from all casts
(n=4) performed during the day at the 3 sites.

Primary production is constructed from the product of the rate of light absorption ()
and the quantum yield of photosynthesis (¢p, mol carbon mol photons ) (equation 6.3.).
Values of ¢p were calculated from FRRF production divided by the product of
chlorophyll a-specific absorption and light intensity ie. P(E)/(a* . E) at each depth and
time where data was available. The relationships between discrete values of ¢p and E are
given for each site occupied during the RV Pelagia cruise, fig 6.7. The relationship
between ¢p and light at all sites is best described by an exponential equation. The
equation from 40°N ( Op = 0.0578c000¥E_ 42 = (0,887, n=14 p<0.001) is applied

throughout the model (¢pg)) to account for variations in the quantum yield of

photosynthesis throughout the day and with depth:

Pey = a @y - Or@) [6.3.]
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Instantaneous model production was calculated throughout the diurnal period with a
temporal resolution of 11 minutes and depth resolution of 2 metres (fig 6.8.). The model
takes into account diel changes in incident solar radiation, vertical light attenuation within
the watet column, light absotption by phytoplankton, and the irradiance-dependence of
the quantum efficiency of photosynthesis. It is clear from fig 6.8. that the underwater

irradiance and absorption fields drive the spatial (vertical) and temporal pattern of

modelled primary production.

The modelled production throughout the diurnal petiod reaches a maximum value of

0.12 umolC m3 s (6.2 mgC m? h'). The depth and vertical extent of the zone
exhibiting production values > 6.0 mgC m™ h'! increases with the increasing irradiance.
Inhibition in the sutrface waters is established within the first 2 hours of the diurnal
petiod and increases (in extent) with increasing irradiance. Values of modelled
production have been integrated (0-60m) and further plotted in fig. 6.8. This trend
indicates that a maximum value of integrated production (148-150 mgC m2 hl) is
reached by 09:15 (GMT), and is maintained throughout the diurnal period when
photoinhibition becomes established in sutface waters. Integrated production estimates
based on arbitrarily assigned lower values of the incident irradiance (33%) show a similar
pattern but with a lower maximum rate being maintained for a shorter period around
midday. Confidence for this approach can be reinforced by comparing corresponding
values of both 1 situ light and rates of production between the model and FRRF, fig

6.9. Both compatisons yield highly significant relationships with gradients close to 1.
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Figure 6.8.— Diurnal variability in parameters throughout the surface 0-60m at site 2 (40°N),
RV Pelagia cruise following the model described in equations 6.1-6.3. All parameters are
calculated according to modelled irradiance (panel C, pmol photons m? s™) following the
incident irradiance (panel A), and to parameters measured using the FRRF. Depth integrated
production (mg C m” h™) in panel B represents modelled production from 0-40m (panel E, mg
C m™® h™) using in situ irradiance (thick line) and 33% of in situ irradiance (thin line).
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Figure 6.9.— Relationships between FRRF measured and modelled in situ irradiance (E,
wmol photons m? s”, left panel) and rates of in situ instantaneous chlorophylla-specific
production (P*(E), mg C mg chl &' h™", right panel). Data illustrated are from site 40°N only.

The FRRF and oxygen evolution

Oxygen concentrations [Oz] in the water column were measured duting the RV Pelagia
cruise (fig 6.10.), using the Winkler light/dark method (see Chapter 2). There was a cleat
diel trend at sites 2 (40°N) and 3 (37°N) whereby [O2] increases throughout the day. A
decrease in [O2] occurs between dusk and dawn the following morning. The limited
sampling resolution prevents the exact determination of the time at which this [Og]
decrease occurs; however the maximum water column [O2] concentration was observed
during the 16:30 and 21:00 GMT casts at both sites. Site 1 (43°N) does not exhibit this
pattern but rather shows an increase in [O] throughout the water column for most of
the sampling period. A decrease in the [O2] of the water column is apparent at this latter
site during the 13:30 and 16:30 CTD casts (sce also fig. 6.11.). These pattetns of [O2]
distribution reflect the hydrographic properties at each site (Chapter 3). A strong and
consistent temperature gradient was evident throughout the water column over the diel
period at site 3, and to a lesser extent site 2. Conversely, the structure of the water

column appeared less stable over the same petiod at site 1 (figs. 3.2. to 3.4.)

The estimates of production provided by both the model and the FRRF are originally

given in mmolOx (see equation 1.1, section 1.4.). Values of in situ [O2] describe the
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oxygen content of the water but are not analogous to production. As such, only the
trends in oxygen production can be compared between corresponding data. The rate of
gross oxygen production measured by the FRRF/model can be expressed cumulatively
over time to express the contribution of photosynthetically produced oxygen to the water
column throughout the day. The mean [O2] throughout the mixed layer ie. 0-40m, (see
Chapter 3) from both Winkler measurements and cumulative Oz modelled production,
are given for the 3 sample sites in fig 6.11. The initial background oxygen content is
assumed to be close to that measured at 08:00 GMT by the Winkler method for the data
point when FRRF/model production is equal to time O hours for the purposes of this
comparison. Data from site 40°N show that the cumulative amount of Oz calculated
from the model is greater than the 72 situ increase in [O2] throughout the day. When the
modelled oxygen production is divided by 2 (and again expressed cumulatively), a
regression with a slope close to 1 is established between the corresponding points (see

figure heading). This difference reflects an offset between the net oxygen content of the
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water, as measured by the Winkler method, and the gross oxygen production from PSII

(model/FRRF), which remains throughout the diurnal period. This pattern is repeated at

site 37°N but not at 43°N and presumably reflects the more physically variable nature of

the water column throughout the diel period at the latter station.
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Flgure 6.11.— Relationship between measured oxygen concentra’uon (Winkler method, mmol
Oom ) and modelled FRRF production (mmol O, m’ S pt * multiplied by time interval between
estimates). Both measured and modelled data are the mean from 0-40m for each respective
cast. The modelied data shows the cumulative (mean) O, production throughout the day
assuming an initial [O,] which approximated to the initial mean (measured) [O,]. A significant
regression is found between true modelled O, production and measured [O,]: 40°N: modelled
[O,] = 2.16" measured [O,] — 291.66, r ?=0.888 n=4, 0.02 > p > 0.01. Significant relationships
are also observed where modelled (O2) production values (P(E)) are divided by 2 and again
expressed cumulatively: 40°N: modelled [O,)/2 = 1.0003"measured [O,], ], #=0..883 n=4, 0.02 >
p > 0.01; 37°N: modelled [0,}/2 = 1.004*measured [O,], r’=0.744 n=5, 0.05 > p > 0.02. All
other relationships were not significant.
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6.4. Reconciliation of differences between FRRF, “C-uptake and O
estimates of production.

The photosynthesis-irradiance response curves for *C-uptake typically yield mean values
of photosynthesis (P, table 6.1., P(E), figs, 6.3 and 6.5.) that are a factor of 2-3 lower
than those determined by the FRRF. Several reasons could account for this discrepancy
including a wrong assumption about the PSU size for FRRF calculations, an etror in the
estimation of Ly for the FRRF profiles, a failure to account for uncoupling of gross
electron transfer (gross oxygen evolution) rates from net carbon-fixation rates in the
FRRF calculations and/or errors in 14C assimilation measurements associated with bottle
effects. Although the last possibility cannot be ruled out, the P-E cutves for RV Pelagia
14C labeled samples incubated for periods of 30, 60 and 120 minutes were very similar
indicating that photosynthesis was not time-dependent (at least between 30 and 120

minutes) and that the incubations were free from artefacts due to contamination

(R.Geider, pers.comm.).

The number of PSII reaction centres, npsi— Bstimation of P using the FRRT is
dependent on assuming an approptiate value for the photosynthetic unit size (PSU) of
photosystem II (1/npsi: 500 and 300 molchl 2 molRCII! for eukaryotes and
prokaryotes, respectively, Falkowski and Kolber 1995). However, observations on
laboratory cultures indicate that 1/npsi can range from 133 to 384 molchl 2 molRCII'! in
Synechococcus spp. and 280 to 830 molchl # moIRCII! in eukaryotic organisms (see table
4.1., Chapter 4). Furthermore, values of npsi appear to vary throughout the day and will
alter corresponding estimates of photosynthesis. A compatison between production
estimates (P using the constant 1/npsu (above) and those using the calculated 1/npsn
(Chapter 4, data from RV Pelagia and RRS Challenger cruises), fig 6.12., indicate that
Pehl and, therefore, Pc, will be underestimated where a constant npsyy is assumed. The
greater spread of data around the regression line of the prokaryote populations (RV
Pelagia) indicates that the relative changes of their naturally lower 1/npsit are greater than

those seen for the eukaryote populations of the RRS Challenger cruise.

These calculations do not help to reconcile the C results since they imply that the
difference with corresponding FRRF estimates should be even greater. However, there

are a number of uncertainties in the estimation of PSUrc, including the assumption of
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equal distribution of excitation energy between RCI and RCII within the wavelength
band of the FRRF light sourtce, evaluation of the fraction of photochemically active
RCIIs from 0.65/(F./Fy), and measurement of the absorption of light by photosynthetic
pigments (sce Chapter 4).

Figure 6.12— Relationship

14 r o RV Pelaai between FRRF rates of
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r° =0.956, n=25 population were dominated by
p<0.001 prokaryotes and eukaryotes,
respectively.  Corresponding

: — calculations of 1/npg; were

0 2 4 6 8 10 made following equation 4.3.,

Chapter 4.
Pchl (constant 1/nps|)) P

P (calculated 1/npg)

Estimation of Ei— The light saturation parameter (Ei) is used to estimate the quantum
yield of photosynthesis (¢p = ¢ * qP) via the calculation of the minimum turnover time
of electrons (Ty) through the photosystem (following Falkowski 1992, Sakshaug et al.
1997: 1, = 1/(light intensity of light saturated photosynthesis * functional absorption
cross section) or 1/(Bx * opsir). Using the RV Pelagia data as an example, mean values of
14C By (85.95, 76.11 and 82.71 umolphotons m2 s for sites 1, 2 and 3 using the spectral
correction) exceed those of the FRRF by a factor of 0-1.5. However, the FRRF
determination of Ejx comes from plots of qP versus E (see Chapter 3) and must,
therefore, be considered as subjective and prone to error. If the FRRF Ex from site 2
(40°N) is assumed to be under-estimated by a factor of 1.5 then subsequent calculations
of P(E) (above Ey) will be overestimated, fig. 6.13. Conversely, an over-estimation of

FRRF Ex would result in higher values of [estimated] T, and subsequently lower values of
P(E), thereby, accounting for some of the difference between the C and FRRF

techniques.
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Figure 6.13.— Sensitivity analysis of variations in estimate of Ex (the light saturation
parameter) to subsequent [FRRF] calculations of the quantum yield of photosynthesis (¢p,

molO, mol photons", = ¢, see section 1.4., * qP) and instantaneous chlorophylla-specific
chl

photosynthesis (P™"). Data is from site 2 (40°N), RV Pelagia cruise where Ey was estimated as

53.6 umolphotons m? s from a plot of qP versus irradiance (E). This values was then
multiplied and divided by a factor of 1.5 for the purposes of this analysis.

This type of sensitivity analysis does not account for the differences between the
chlorophyll a-specific initial slope of the P-E curve (Cn) between the two techniques
but does demonstrate that values of T, measured by the FRRF are insufficient to fully
describe the actual electron transfer process (Kolber 1997). A comparison of values of Tp
measured by the FRRF (sce sections 1.3., 1.4. and 2.1.) with those estimated using 1/(Ex
* opsm) for the RV Pelagia data is given in fig. 6.14. The measured values of Tp are lowet
(by a factor of approximately 1.5-2.2) than those that are derived. Tp measured duting
AMTG6 and RRS Challenger cruises (data not shown) were 1.5-2.35 times lower than
corresponding estimates from 1/(Ex * Opsi). Although there appears a consistent
difference between the two approaches there is no statistically significant relationship.
Typical values of Tp are reported to be between 2 and 15 ms and reflect the rates of the

[PST] dark reactions of photosynthesis (Kolber and Falkowski 1993). The values of Ol
and, therefore differences between FRRF and C P(E) at irradiances below Ex, will be

132



Variability of phytoplankton production rates in the Atlantic Ocean 6. Comparison of productivity estimates

sensitive to quantitative determinations of other parameters describing production ie.

npsit and Opgy;.
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It is possible to summarise the maximum error inherent to estimations of production
using the FRRF (table 6.2.) where limits to the assumptions comprising eguation 1.1. (p.
26) are known. The highest and lowest reported values of 1/npsn in the literature (table
4.1) are significantly different from the values typically assumed and could lead to an
error in the estimation of FRRF production by a factor of upto 2.25. The FRRF
derivation of Ey (qP versus E) assumes that the water column is well mixed throughout
(see fig. 1.7.); however, stratified water bodies contain distinct phytoplankton
populations which display higher values of Ex (acclimated to high light) in surface waters
when compared with corresponding values from deeper waters. The FRRF derivation of
Ey in stratified waters will, therefore, represent some intermediary between the maximum
and minimum present throughout the water column. The greatest difference between
surface and deep water values of Ex are observed in open ocean waters (eg. Kirk 1994).
A consideration of this difference could account for a further error in the FRRF
estimation of production by a factor of +0.66, -10. (table 6.2.) Finally, the measurement
of opsn, following the excitation by blue light, is known to be overestimated in waters
where spectral irradiance is narrower and shifted further into the red (Kolber and
Falkowski 1993); for example, deep water and coastal waters. The extent of error in the
subsequent calculation of production is more difficult to quantify and will be a function

of the in situ spectral irradiance. The product of one or more of these factors represents
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an extreme potential for error but does highlight the need for accurate assumptions when

using the FRRF to estimate production.

Parameter Limits of reported values Effect on FRRF
estimation of production
1/npsn (mol chl @ 830 - assumed value of 500 overestimated by a factor of 1.66
molRCIIY) for eukaryotes  underestimates by a factor of using assumed value
(830/500) 1.66
280 — assumed value of 500 underestimated by a factor of 1.79
overestimates by a factor of 1.79 using assumed value
1/nrsu (mol chla 384 — assumed value of 300 ovetestimated by a factor of 1.28
molRCITY) for prokaryotes  underestimates by a factor of 1.28 using assumed value
133 — assumed value of 300 underestimated by a factor of 2.25
overestimates by a factor of 2.25 using assumed value
Ex — stratified waters Examples of the maximum factor of Using extreme values:
difference between open ocean surface  overestimated by a factor of 0 —
and deep water measurements: 10; underestimated by a factor of
4.8 (T'akahaski et al. 1988) 0 — 6.57. Will depend on the 7
3 - 4.5 (Cullen et al. 1992) situ irradiance sample is measured
2 - 10 (Marafién and Holligan 1999) at in relation to the By
OPSII Overestimated in waters where spectral ~ overestimated

irradiance is shifted further into the red

Table 6.2— Summary of factors of error upon the FRRF estimation of production using
extreme reported values as the assumed parameters in the empirical equation (equation 1.1.,
p.26). The number of reaction centres (1/npgy) are according to table 4.1. Example values of
the light saturation parameter, E, are obtained from investigations in stratified open waters.
The functional absorption cross section, opgy, is measured by the FRRF (and not assumed in
the empirical calculation) but remains subject to error. These factors are taken to be
independent of any further operator error.

Relating O: evolution with COs uptake— The FRRFE provides a measure of the rate of
clectron transfer through RCII, which should be proportional to the gross rate of oxygen
evolution. The assimilation of *C is commonly assumed to represent net carbon dioxide
fixation even when incubation times are relatively short (<1 hour), eg. Williams (1993).
Therefore, the rate of gross oxygen evolution should not be expected to equal that of net
carbon fixation. Amongst the processes that can account for the divergence of gross
oxygen evolution from net carbon dioxide assimilation are the Mehler reaction,
photorespiration (RuBP oxidase), both of which lead to photosynthetic oxygen
consumption and are collectively termed ‘light respiration’ (eg. Grande et al. 1991), ‘datk’
respiration, and the utilisation of reductant generated by photosynthetic electron transfer
for reactions other than carbon dioxide fixation. These processes are reviewed in sectzon

1.1.
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Typically, dark respiration can account for a 15% reduction in gross photosynthesis
(Geider 1992). The utilisation of reductant for processes other than carbon assimilation is
accounted for as the photosynthetic quotient (O2/COz). This patameter can vary from
1.4 £ 0.1 when cells are growing with nitrate as the N source to 1.1 + 0.1 when
ammonium is the N source (Laws 1991), but has been reported as high as 2-3 for mixed
assemblages of phytoplankton (Williams and Robertson 1991) and in cultures of
Synechoccocus (Grande et al. 1991). These authors explain that this higher photosynthetic
quotient is the result of nitrate metabolism, which involves hydrolysis of water and hence
relatively more O evolution, and light respiration. The Mehler reaction has been
reported to account for 50% of gross oxygen evolution at light saturation in
Synechococcus (Kana 1992). Therefore, a combination of processes of light respiration
and a photosynthetic quotient of 1.4-2.0 could account for about a 3-4 fold difference
between 4C assimilation and gross oxygen evolution. This is consistent with the

differences observed between the FRRF and 4C estimates of production presented here.

The Mehler reaction is likely to account for uncoupling of gross oxygen evolution from
net carbon dioxide fixation at irradiances that exceed Eg, but is not thought to be
important at low irradiances corresponding to the initial slope region of the P-E curve
(Kana 1992). The initial slopes (0M) from the FRRI P-E curves exceed those from the
14C curves by a factor of 3-4 (table 6.1.). This difference is higher than can be explained
relative to the importance of CO2 and other compounds as electron acceptors through
the photosynthetic quotient (Falkowski and Raven 1997) and to dark respiration. As
such, it must be assumed that differences in 0! reflect the respective abilities of the two

techniques to accurately describe instantaneous photosynthesis.

6.5. Summarising the FRRF quantification of primary production

Despite the growing use of fluorescence techniques to provide estimates of production

there are few comparisons amongst the literature with more classical techniques, such as
4C-uptake (table 6.3.). Kolber and Falkowski (1993) obtain a coefficient of
determination (12 of 0.74 and a slope of 1.06 between paired data of fluorescence (pump
and probe) derived and *C (chl a-specific) instantaneous production. Boyd et al. (1997)

observed a weaker relationship when comparing Pm™ from vertical profiles (P-E) using

135



Variability of phytoplankton production rates in the Atlantic Ocean 6. Comparison of productivity estimates

Reference Relationship Significance Details

FRREF versus *C

This study FRRF Pehl = 14C 2= 0.663 n=22 Using instantaneous P from
Pehl+3 (55 discrete measurements
Boyd er al. 1997 FRRF Pebl = 14C 2=02720=15  FRRF Py from water column
Peblt(), 242 profile compared with discrete
14C Pmchl
Kolber and Falkowski FRRE Pebl = 14C 2 = 0.740 n=61 Using instantaneous P from
1993 Pehlky 272 discrete measurements
FRREF versus diel Oz
This study FRRF® PO,= 2= 0.888 n=4 Discrete [Oz] measurements
[O]*(2.16 to 2.45) 12 = (.840 n=5 compared with modelled O4®

80, versus “C

Kiddon et al. 1995 Gross 180, = 2.01¥14C 2= 0.98 n=31 Discrete samples compared
assim
Langdon et al. 1995 Gross 02 = (1.16 to Discrete samples integrated over
2.55)* 14C assim 24 hrs compared
Grande et al. 1989 ¢ Gross O, = (1.74 to Discrete samples compared

2.75y" MC assim

O: light/dark bottle versus *C

Davies and Williams Gross Oz = (0 to 2.5)* Discrete samples compared
1984 () HC assim
Williams ez 2. 1979 ¢ Gross O = 1.95*4C 2= 0.96 n=167 Discrete samples
Williams et al. 1983 @D Gross O2 = (0.92 to Discrete samples compared
1.66)* HC assim
Williams and Purdie Gross Oy = (1.13 to Discrete samples compared
1991 @ 1.96)* HC assim

Table 6.2— Summary of reported relationships between corresponding estimates of
production between alternate techniques. Note FRRF comparisons by Kolber and Falkowski
(1993) and Boyd et al. (1997) used a pump and probe fluorometer which involves more
assumptions to the underlying methodology/calculation of production than the FRRF; ®
indicates that model [FRRF] production is used rather than the direct in situ FRRF
measurements; (7 indicates approximate differences between production estimates from
alternate methods since corresponding data are given in the form of a tables or diagram.
Values for the relationships shown here are adjusted (for comparative purposes) to those
cited by removing any included photosynthetic quotient {(s). This table does not represent a
complete list of studies but aims to present the range of values reported throughout the
literature.
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the pump and probe with discretely measured C samples. In addition, these latter
authors observed FRRF values of Pyt that were markedly lower than those from #C-
uptake experiments. However, both these comparisons are limited since pump and probe
methodology involves more assumptions, for example Opsit must be assumed constant or

measured on-deck, than the FRRF methodology. As such, any direct comparison

between these studies should be treated with caution.

The FRRF appeats to give in situ estimates of gross Oz evolution which are significantly
higher than equivalent estimates derived using the #C-uptake methodology. These
differences may represent the contrasting mechanisms associated with the light and dark
processes of photosynthesis, which can ultimately account for 2-3 times more gross Oz
evolution than corresponding '4C-uptake, and is consistent with observations of gross Oz
production using mote conventional methods (sec table 6.3.). However, the
stochiometry between O evolution and C uptake is known to be quite variable
between taxa/trophic regimes, (Laws 1991, Williams ez al. 1979, 1983, Williams and
Robertson 1991) therefore, FRRF O2 production is likely to relate differently to 1C

under alternate oceanographic conditions.

This investigation demonstrates that FRRF determined i situ production may closely
follow that of the water column as determined by inditect Winkler methods, but is likely
to be closer to 3-4 times higher than that estimated by '“C uptake. This difference
presumably accounts for discrepancies associated with the parameters comptising the
FRRF production algorithm (for example npgir and the calculation of Ej, see above) and
14C-uptake methodology (ie. confinement effects, such as, temperature and light).
Longer-term incubations are described to affect the population charactetistics of the
water sample and typically lead to under-estimations of productivity based on isotopic
uptake (eg. Lohrenz 1993). The AMTG data demonstrates that longer incubations result
in a greater discrepancy between FRRF and *C production. Data from eutrophic waters
appear to produce a relationship that is similar to that observed from the short term P-E
expetiments of RV Pelagia and RRS Challenger. Conversely, samples from oligotrophic
waters reveal a higher discrepancy between the two methods. Oligotrophic samples are
predominantly composed of small prokatyotic phytoplankton under low concentrations
of new nutrients (AMT6, Chapter 5) and suggests that the effects of confinement are

most sionificant where a ‘recycling’ [of nutrients] communi redominate. The
g p
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heightened difference between FRRF and #C P(E) estimates from the oligotrophic
[longer term] incubations would further suggest that the MC techniques may
underestimate CO2 uptake by a factor as high as 2 (Williams et al 1983) and is of
considerable consequence to the carbon budget of a large proportion of the global
marine system. However, such speculation is inconclusive given that there are still

unexplained differences between both the processes and measurement of COz uptake

and O3z evolution.

138



Variability of phytoplankton production rates in the Atlantic Ocean 7. Summary & conclusions

7. Summary and conclusions

7.1. General discussion of the variability of PSII and production as
observed from FRRF measurements

Calculation of FRRF photosynthesis is achieved as the product of several measurable
parameters, as defined in eguation 1.1. Vatiability from the estimation of Opyy, the
functional absorption cross section, F /F_, the quantum efficiency of photochemistry,
Ny, the number of reaction centres and E,, the light saturation parameter, in addition to
the amount of light (F), all contribute to the observed variability in oxygenic production
estimates. The preceding chapters demonstrate that Gpg; and F,/F,, consistently respond
to environmental variability.. Changes in Opy; and F,/F, have been previously
documented to follow changes in light (eg. Vassiliev et al. 1994) or nutrients (eg. Kolber
et al. 1988, 1990) relative to the background photoadapted state. However, the responses
of PSII in nature ate not controlled by mutually exclusive variables (Kolber et al. 1988,
Falkowski 1992, Falkowski and Kolber 1995). The data presented in this study observes
PSII variability over a wide range of co-varying environmental conditions. These
observations can be summarised into a general schematic model for both Gy, and F/F,|

throughout the Atlantic Ocean (fig 7.1.).

Changes in Oy, reflect alterations to the functional PSII antennae size and also changes
in the number of functional reaction centres (RCIIs) and hence F /F, . The product of
these two parameters teptesents the rate of PSII light saturation and the ability of PSII to
maintain high or light saturated levels of photosynthesis. The response of Gy and F,/F,,
to variations in environmental parameters throughout this thesis appear consistent
(summarised as fig 7.1. from trends observed in Chapter 3 to 5) and assumes that
phytoplankton are acclimated to optimal conditions of light and nutrients available for
growth. However, data from the Benguela upwelling (Chapter 5) have already illustrated

that young phytoplankton populations in recently upwelled water lack a strong
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acclimation status to light and/or nuttient regimes. Therefore, the schematic responses

described by fig 7.1. may become altered under such dynamic conditions.

Figure 7.1—  Schematic
summary of the in situ
functional absorption cross
section (opsy) and quantum
efficiency of photochemistry
(FW/Fn)  following  bivariate
changes in light and nutrient
conditions in the Atlantic
Ocean. The bivariate response
represents an interpolation
between parameter-light and
parameter-nutrient interactions.
These relationships are non-
linear and are characteristic
responses from a variety of
scales (within the life time of an
organism) from Chapters 3-5.
All axes consider relative
changes to parameters. An
initial photoadapted status of
PSIIL must be assumed.
Subsequent changes in light
and nutrients will determine the
described response over short
(photoprotection) and  long
(acclimation)  time  scales.
Exceptions to this model are
stated in the main text.

Obpsii

The trends summarised in fig. 7.1. may requite modification where conditions of
physiological limitation, not investigated in Chapters 3 to 5, occur. An alternate response
of G, by prokaryotic algae is apparent under conditions of iron limitation (Behrenfeld
et al. 1996, sce fig 7.2.) whereby Gy, rapidly increases upon the addition of iron to iron-
depleted waters of the Pacific. Laboratoty investigations of iron-limitation upon
eukaryotic algae (Greene et al. 1991, 1992) obsetve elevated values of Gpgy, T, and Npgyy

but a decrease in E,. This is consistent with the response described in fig. 7.1. and, in

terms of the equation Gy = 1/ (r, Bk Sakshaug et al. (1997), suggests that increases in
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the minimum electron transfer time (T) do not exceed the decrease to the light
saturation parameter (E,) in eukaryotic algae. Iron limitation leads to a decrease in
cellular constituents with high iron requirements, such as cytochrome byf (part of the
electron transport chain) and PSI (Behrenfeld and Kolber 1999). Prokatyotic organisms
have high numbers of PSI relative to n,g; and, therefore, a high requitement for iron
(Brand 1991) to sustain efficient photochemistry. As such, one might consider that iron
limitation could potentially impose significant constraints upon the electron transport
capacity of prokaryotes. Increases in T, that exceed decreases in Ey would explain the low
values of Gy and it follows that changes to T, must predominate over other
physiological adjustments to explain the observations in fig 7.2. It is noted that
conditions of iron limitation in the Atlantic ate highly debatable (eg. Martin et al. 1993,
Timmermans et al. 1998). Instead, this response should be most readily observable in the
Pacific Ocean and regions of high nutrient-low chlorophyll (HNLC) whete iron has been

indicated to limit phytoplankton growth (eg. Chavez et al. 1991, Pitchford and Brindley
1999)

Figure 7.2— Changes to the
functional absorption cross section

.
- /j’ (opsn) following iron  additions,
&

g

fronex Il (taken from Behrenfeld et
al. 1996), Pacific Ocean. Mean opgy
i ~ + s.d. are shown as measured on a
Toaoa flow-through of seawater from 3
metres, dark adapted for 3 minutes.

|

5 10 15 20 25

Time since first iron
enrichment (hours)

A need for the accurate knowledge of both the minimum turnover time of electrons (T.)
and the number of reaction centres (nug) is also required for calculating production

using the FRRF (sce Chapter 6). The FRRF does not appear to provide accurate

quantitative estimates of T, however, a subjective analysis of FRRF derived 7, indicates
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that this parameter is strongly affected by environmental change (fig 7.3). Values of
FRRF 1, measured during the RRS Challenger cruise (Chapter 4), increase upon
exposure to high light. Furthermore, this response is most obvious in data from the
nuttient limited surface stratified waters of site U. These differences suggest that both
high light and/or low nutrient concentrations increase the minimum tutnover time of
clectrons presumably as a result of photoinhibition processes within PSII but also Calvin
Cycle activity since the oxidation of the PQ pool is controlled by the datk reactions of
photosynthesis (Kolber and Falkowski 1993). As such, this response of T, will also be
strongly temperature dependent (Falkowski and Raven 1997). An ability to maintain low
values of Gy, through quenching and the prevention of damage to the reaction centres,
and T, (fast photochemical turnover) will result in a high Ey (see Sakshaug equation

above) and reflects acclimation to high light.

6000 r
e site U °
5000 x site M
n
o 4000 . [ ]
c
(o]
O 3000 -
Q
3
~ 2000
o
P
1000
4] L 1 s
0 0.5 1 1.5 2 2.5 3 3.5

Log (PAR+1)

Figure 7.3.— Relationship between the minimum turnover time of electrons (tp, as measured
from the FRRF dark chamber) and irradiance (log (PAR, umoiphotons m? s +1)) from all
data measured during the day at the mixed site (M) and [the surface 20m] of the stratified
site (U), RRS Challenger cruise, Chapter 4. The mean of corresponding 1, measurements
taken at night (ie. dark acclimated) from the 2 sites (M = 1266.61 and U = 1280.96 ps) show
no significant statistical difference (t-test: t; 24o = 0.458).

The characterisation of 7 sit# fng vatiability is difficult given the uncertainties
associated with the method for calculating this parameter (see Chapter 4). Howevet,

changes in 1/n,, should, to some degtee, reflect the changes of Gpg,. Greater losses of
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mol RCII than of mol chl @ occur under nutrient limitation (Greene et al. 1991, Berges et
al. 1996) and result in higher values of 1/npg; (mol chl a:mol RCII). An increase in Gpgy
will follow since saturation of the (lower) numbet of RCIIs can occur more quickly (eg.
Kolber et al. 1988, Falkowski 1992). Similar cotresponding changes to the two
parameters might not be expected with variations in light since other factors, such as
quenching and state transitions, setve to adjust Opg; at scales (minutes, eg. Falkowski et
al. 1994) that are faster than the response of 1/1npgy to light (10°s minutes to hours, eg.
Sukenik et al. 1990, Vassiliev et al. 1994). The additional lack of laboratory validation of

fygy at time scales equivalent to i situ variability limits a conclusive description of 7 situ

Ny in response to environmental change.

The photon flux density (E) intercepted by phytoplankton cells represents the final
parameter from the [FRRF] production algorithm and contributes to the observed
variability in production. It is the amount of light that drives the photosynthetic
apparatus so phytoplankton acclimate and eventually adapt to make the most efficient
use of the available light. However, light can vary on time scales as small as 10" s via
fluctuations in sea surface waves (the flicker effect, see Falkowski 1984). Similarly, any
patticulate matter in the water column can scatter light and result in reduced light-
quantity/-quality available to a cell (eg. Kirk 1994). Such small scale changes in E will
only result in corresponding alterations to the instantaneous production P(E) and the
amount of energy that is quenched (ie. qP and qN) since protective and acclimative
mechanisms of PSIT occur over longer time scales (see above). Above all, it is apparent

that the variability of light, nutrients and temperature represent major factors responsible

for the observed variability in primary production.

The FRRF has the ability to measure 72 situ photosynthesis and associated parameters at
some of the smallest scales of physiological and ecological vatiability (measurements of
<450us 100ms ). Each of these instantaneous measurements of physiology and oxygenic
production is the product of a complex web of interactions. Differences in the energy of
the water column will dictate the encounter rate with light, nutrients, competitors and
predators, and significantly influence both the photosynthetic capacity and the
competitive ability of individual cells (Estrada and Berdalet 1997). Low energy

environments are characterised by phytoplankton that are more stress tolerant (Margalef
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1997) to variations in light ie. photoacclimation and nutrients (Chapters 4 and 5).
Furthermore, morphological discrepancies will have an impact upon the ability of an
individual cell to survive, for example, uptake of resources (Chisholm 1992) and predator
‘attractiveness’ (Reynolds 1999). Phenotypic variations may also discretely alter the
internal composition of individual cells and add physiological variability at the micro-
molecular scale (Falkowski and Raven 1997). As a result, the potential for small-scale
ecological variability in photosynthetic capacity is immense and one should expect, given

any operator and instrument error, that FRRF measurements will be cotrespondingly

highly variable.

Latger scale vatiations in production are more difficult to characterise, ptimatily as a
result of logistical constraints. Whilst the vertical water column can be easily documented
with high resolution profiling instruments, horizontal spatial variability will be dictated by
the passage of the sampling platform. The data from the AMT6 cruise, Chapter 5, reveals
relatively few changes to the scale of horizontal variability (significant to instantaneous
primary production) along the cruise track and reflects the lack of short-range physical
processes operating throughout except within dynamic water bodies governed by
upwelling and/or eddy field activity where smaller scales of variability were observed.
The strong diel signal in fluorescence throughout the cruise track may have concealed the
true horizontal variability (see below). The greatest spatial changes to photosynthetic
capacity are seen at the biogeochemical province level as a result of changes between and
adaptation within specieys. This conforms with observations from '“C-uptake expetiments
(Marafién and Holligan 1999, Marafion et al. 2000) and reflects the stability of spatially
defined light-nutrient fields. However, the most significant period of variability
throughout the series of observations is the diel signature of phytoplankton activity. This
is not surprising since the most consistent change experienced within the lifetime of all

phytoplankton in any aquatic environment will be a difference in light between night and

solar noon.

The consideration of temporal variability of phytoplankton fluorescence yield and
physiology appears to be of more importance in terms of both sample resolution and
ecosystem change. Transient perturbations to physical or biological forcing factors can
shift the flow of energy in an environment, be it directional or steady state, to a different

level. This is usually seen as a shift in species community composition/interaction
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resulting from different scales of variability such as the passage of eddies (Falkowski et
al. 1991), seasons (Barlow et al. 1993), years (Marafién et a/. 2000) and of geological time
(Berger et al. 1989). Indeed the degree of temporal change appears much greater than
that of spatial change in the Atlantic Ocean (Kyewalyanga et al. 1988, Marafion et al.
2000). The consideration of temporal variability is, therefore, important for the
prediction of larger-scale estimates of production; however, most cuttent sampling
strategies are of limited temporal resolution. A significant time series of data is available
from the north Atlantic subtropical gyre (the Bermuda Atlantic Time Series (BATS)
station) and indeed demonstrates that marine oligotrophic primary production varies
significantly both within and between years (fig 7.4.). Although programmes such as
AMT are spatially intensive they only operate twice yeatly (Marafién and Holligan 1999,

Marafién et al. 2000) and must typically assume the intra-annual pattern of
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Figure 7.4— Estimates of primary productivity (PP) collected at the BATS (Bermuda Atlantic
Time Series) station, 31°N 64°W, in the north Atlantic subtropical gyre (eg. Longhurst et al.
1995) between 1989 and 1998. Data shown are estimates of daily integrated (between 0 and
140m) instantaneous primary production (upper panel) and chlorophyll a-specific production
(lower panel) determined using '“C-uptake PP methodology and fluorometric determination of
chl a from discrete water samples taken throughout the water column (Lohrenz et al. 1992).
Data was taken from the BATS data-base: http://www.bbsr.edw/users/ctd and represents 1-2
samples month™.
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phytoplankton production within a given system to accurately quantify [larger-scale]
estimates of martine primary production. Ultimately, such clarification is generated

through a better understanding between phytoplankton and the environment they

inhabit.

7.2. Conclusions and further work

In answer to the original aims concerning ‘identifying factors and scales at which the
variability of phytoplankton primary production operates within the Atlantic Ocear’, it is
clear that the both the nature and scale of environmental variability are fundamental
determinants of PSII activity and production of Atlantic phytoplankton. This thesis has
presented novel data to quantitatively desctibe the response of phytoplankton, relative to
the conditions to which they are acclimated/adapted, to environmental variability. Daily
alterations to the antennae pigments and quenching of excess energy appeared a
consistent feature throughout the phytoplankton. Significant changes were also observed

at high light as a result of RCII loss or damage (photoinhibition). This is seen in all

parameters (F./F,, Opyy, fipgy and T)) relevant to the empirical calculation of production
and becomes exaggerated where nutrients are limiting or temperatures are reduced. The
product of these processes ensure that the diurnal scale of PSII variability appears the

most consistent and significant feature relevant to phytoplankton production.

Phytoplankton show strong evidence of photoprotection strategies where waters become
stratified and are, therefore, able to prevent the onset of photoinhibition and maintain
higher levels of photosynthesis. Further environmental stress, within the boundaries of
acclimation, will be tolerated as a temporary loss of high instantancous production. As
such, physical variability is an important factor responsible for changes in water column
primary production and also for community succession where alternate phytoplankton
can maintain efficient PSIT photochemistry with the least amount of energy expenditure.
Corresponding changes in PSI activity may also occur but have not been considered
throughout this thesis. The ability to measure 272 situ variability of PSII using the FRRF
indicates that phytoplankton oxygenic production can be highly dynamic throughout a
given water column, presumably where physical processes operate at rates greater than

those of PSII mechanisms employed to maintain maximal photosynthesis.
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The FRRF estimates of production from these investigations appear to conform with the
conventional understanding of (gross) O, photosynthesis. The agreement between
corresponding FRRF and "“C-uptake derived rates suggests that the FRRF can ultimately
bridge the limited sampling tesolution associated with the latter technique. However, a
clear understanding of the stochiometty between O, evolution and carbon uptake, in
addition to an intensive treatment of the limitations involved in the calculation of FRRF
production (further work), will perhaps prove essential before any conclusive
extrapolations are attempted. A discrepancy is also evident in "*C-uptake incubations of
confined water under different trophic environments. Data from this thesis suggest that
‘classical’ techniques for estimating production could undetestimated CO, uptake (and
hence gross O, evolution) from oligotrophic areas. This is of consequence to a large

proportion of the marine environment, and the subsequent contribution to the global

carbon budget, and must be further considered.

Finally, this thesis has demonstrated that the FRRF is a highly flexible instrument capable
of characterising photosynthetic activity in the real phytoplanktonic environment. The
collection of data of high temporal and spatial resolution is invaluable given that it can
be subsequently averaged to the desired scale. Similarly, observations at high light levels
are essential to the characterisation of PSII activity, in addition to the generation of qP
versus B relationships which currently represents the most satisfactory quantification of
T, Simple manipulation to the FRRF ‘boot protocol’ has enabled this novel description

of phytoplankton variability and provides a basis for future interpretation of FRRF data.

Further work

The FRRF has the capability to collect a phenomenal amount of information, however,
the interpretation of these data represent the greatest limitation towards the use of this
instrument as a widespread oceanographic tool. This should be considered, in patt, as the
lack of readily available information regarding the use of the instrument and subsequent
treatment of data. An initial paper (‘Assessment of photosynthesis in a spring
cyanobactetial bloom using a Fast Repetition Rate Fluorometer’, Suggett et al., subm.)
presents the calculation of production using the FRRF and a subsequent comparison
with alternate (eg. "“C-uptake) techniques, following Chapter 6. Other papers are

intended for the interpretation of FRRF data from phytoplankton populations of
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different physiological status. Further research is required to build or clarify the

observations pre‘sented here:

1. Pursue improvements to estimate of parameters associated with the FRRF algorithm
for primary production through (a) technological improvements are required for the
accurate quantitative 72 situ estimation of PQ pool oxidation (T) given the natutal
flushing rates of seawater samples across the optical windows; (b) validation of the
method presented here, or the establishment of an alternative [model], for the calculation

of npg, based on corresponding in situ measurements; () assess the accuracy by which

Opgy measured using the FRRE (at 475nm, half band width 30nm) describes the
functional absorption cross section given the different absorption characteristics (as a

result of photosynthetic and non-photosynthetic pigment distributions) of contrasting

phytoplankton taxa.

2. Provide a better understanding of the quantitative control by limiting environmental
factors of light, nutrients and temperature upon phytoplankton production and
physiology under controlled (laboratory or mesocosm) conditions; for example, does the
heightened photoprotection response observed in the stratified waters of site U (RRS
Challenger cruise, Chapter 4) represent a compensatory mechanism for the maintenance
of efficient photochemistry where nutrients are limiting and/or temperatures ate
elevated, an ability to respond to the light field where time scales of water column mixing
are lower, or a combination of factors ? In addition, these analyses should consider
variability at scales equivalent to those experienced in situ. A consideration of the
kinetics of cellular components, such as chlorophyll 2 and the number of reaction centres

of photosystems I and 11, will also aid the interpretation of these observations and lend

to the validation of the method for calculating n,; (see above).

3. Mote specifically, implement the AMTG6 basin-scale observations of PSII and
production variability into a more detailed classification of the Atlantic. Several Atlantic
transects of FRRF data now exist for a detailed temporal and spatial account. A critical
assessment of the oligotrophic regions, in addition to a consideration of corresponding
temporal variability through data sets such as BATS, will provide more accurate estimates
of production. This will require further investigations to account for the differences

between [AMT derived] '*C-uptake and FRRF oligotrophic production rates (re. Chapter
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6). However, it is clear that the identified limitations associated with the FRRF should be
. ’ . . . 14
rectified before attempting a more detailed treatment with, for example, the C

technique.

149



Variability of phytoplankton production rates in the Atlantic Ocean 8. References

8. References

Agawin NSR, Duatte CM, Agusti S. 2000. Nutrient and temperature control of the contribution of
picoplankton to phytoplankton biomass and production. Limnol. Oceanogt. 45, pp.591-600.

Atken J. 1985. The undulating oceanographic recorder: Mark 2 In Mapping strategies in chemical
oceanography (Ed. Zinno A), pp.22-25.

Aiken J, Bellan 1. 1990. Optical oceanography: an assessment of a towed method In Light and life in the sea
(Ed. Hetring PJ, Campbell AK, Whitfield M, Maddock L), pp. 39-57.

Aiken J, Rees N, Hooker S, Holligan P, Bale A, Robbins D, Moore G, Harris R, Pilgtim P. The Atlantic
Meridional Transect: Overview and synthesis of data. Prog.Oceanog. (Special Issue). Subm.

Allali K, Bricaud A, Claustre H. 1997, Spatial variations in the chlorophyll-specific absorption coefficients

of phytoplankton and photosynthetically active pigments in the equatorial Pacific. J.Geophy.Res. 102, pp.
12413-12423.

Aro EM, Virgin I, Anderson B. 1993. Photoinhibition of photosystem 2. Inactivation, protein damage and
turnover. Biochim Biophys.Acta. 1143, pp. 113-134.

Azam F, Fenchel T, Field |G, Gray JJ, Meyer-Reil LA, Thingstad F. 1983. The ecological tole of watet
column microbes in the sea. Matr.Ecol.Prog.Ser. 10, pp.257.

Babin M, Morel A, Claustre H, Bricaud A, Kolber ZS, Falkowski PG. 1996. Nitrogen- and irradiance-
dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and

oligotrophic marine systems. Deep Sea Res. 43, pp.1241-1272.

Banse K. 1993. On the dark bottle in the #C method for measuting marine phytoplankton production.
ICES mat.Sci.Symp. 197, pp.132-140.

Barlow RG. 1982a. Phytoplankton ecology in the southern Benguela current. 1. Biochemical composition.
J.exp.mar.BiolEcol. 63, pp.209-227.

Batlow RG. 1982b. Phytoplankton ecology in the southern Benguela current. I1II. Dynamics of a bloom.
J.exp.mar.Biol Ecol. 63, pp.239-248.

Barlow RG, Alberte RS. 1985. Photosynthetic charactetistics of phycoerythtin-containing marine
Synechococcus spp. Mar.Biol. 86, pp.63-74.

Batlow RG, Cummings DG, Gibb SW. 1997. Improved resolution of mon- and divinyl chlorophylls a and
b and zeaxanthin and lutein in phytoplankton extracts using reverse phase C-8 HPLC. Mar.Ecol.Prog.Ser.

161, pp.303-307.

Barow RG, Mantoura RFC, Gough MA, Fileman FW. 1993. Pigment signatures of the phytoplankton
composition in the northeast Atlantic during the 1990 spring bloom. Deep Sea Res. II 40, pp. 459-477.

Barber ], Malkin S, Telfer A. 1989. The origin of chlorophyll fluorescence in vivo and its quenching by the
photosystem II reaction centres. Philos. Trans R.Soc.London B 323, pp.227-239.

Baurfeind F. 1987, Primary production and phytoplankton biomass in the equatorial region of the Atlantic
at 22 west. Oceanol. Acta.(Special Edition 1987), pp.131-136.

Behrenfeld MJ, Bale A}, Kolber Z5, Atken J, Falkowski PG. 1996. Conformation of iron limitation of

150



Variability of phytoplankton production rates in the Atlantic Ocean 8. References

phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383, pp. 508-511.

Behrenfeld MJ, Falkowski PG. 1997a. Photosynthetic rates derived from satellite-based chlorophyll
concentrations. Limnol.Oceanogr. 42, pp-1-20.

Behrenfeld MJ, Falkowski PG. 1997b. A consumer’s guide to phytoplankton primary productivity models.
Limnol.Oceangr. 42, pp.1479-1491

Behrenfeld MJ, Kolber ZS. 1999. Widespread iton limitation of phytoplankton in the South Pacific Ocean.
Science 283, pp.840-843.

Bender M, Grande K, Johnson K, Marra J, Williams PJ, Sieburth J, Pilson M, Langdon C, Hitchcock G,

Orchardo J, Hunt C, Donaghay P. 1987. A compatison of 4 methods for determining planktonic
community production. Limnol Oceanogt. 32, pp.1085-1091.

Berger WH, Smetacek VS, Wefer G. 1989. Ocean productivity and paleoprodcutivity-an overview pp. 1-25

in Productivity of the oceans: Past and Present (eds. Berger WH, Smetacek VS, Wefer G.), John Wiley and
Sons.

Betges JA, Chatlebois DO, Mauzerall DC, Falkowski PG. 1996. Differential effects of nitrogen limitation
on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiology 110, pp.689-696.

Betner T, Dubinsky 7, Wyman K, Falkowski PG. 1989. Photoadaptation and the ‘package’ effect in
Dunaliella tertiolecta (Chlorophyceae). ] Phycology 25, pp.70-78.

Bidigare RR, Ondrusek ME, Morrow JH, Kiefer, DA. 1990. In vivo absorption properties of algal
pigments. SPIE. 1302, pp.290-302.

Bisset WP, Patch JS, Carder KL, Lee ZP. 1997. Pigment packaging and Chl g-specific absorption in high-
light oceanic waters. Limnol. Oceanogr. 42, pp.961-968.

Boyd PW, Aiken J, Kolber Z. 1997. Comparison of radiocarbon and fluorescence based (pump and probe)

measurements of phytoplankton photosynthetic characteristics in the Northeast Atlantic Ocean.
Mar.Ecol.Prog.Ser. 149, pp.215-226.

Brand LE. 1982. Persistent diel thythms in the chlorophyll fluotescence of marine phytoplankton species.
Maz.Biol. 69, pp.253-262.

Brand LE. 1991. Minimum iron tequirements of marine phytoplankton and the implications for the
biogeochemical control of new production. Limnol Oceanogr. 36, pp.1756-1771.

Bricaud A, Babin M, Morel A, Claustre H. 1995. Variability in the chlorophyll-specific absorption
coefficients of natural phytoplankton: analysis and parameterisation. J.Geophy.Res. 100, pp. 13321-13332.

Brown PC, Field JG. 1986. Factors limiting phytoplankton production in a near-shore upwelling area.
J Plankton Res. 8, pp.55-68

Brunet C, Brylinski JM, Lemoine Y. 1993. In situ variations of the xanthophylls diatoxanthin and
diadinoxanthin: photoadaptation and relationships with a hydrodynamical system in the eastern English
Channel. Mar.Ecol Prog.Ser. 102, pp. 69-77.

Bryan JR, Riley JP, Williams PJ. 1976. A Winkler procedure for making precise measurements of oxygen
concentration for productivity and related studies. J.exp.mar.Biol. Ecol. 21, pp.191-197.

Burrough PA. 1981. Fractal dimensions of landscape and other environmental data. Nature 294, pp.240-
242

Carr MR. 1994. Plymouth Routines in Multivariate Ecological Research (PRIMER) user manual. Plymouth,
Plymouth Marine Laboratory. 48pp.

Cassoti R, Ribera M, D’Alcala D, Bowler C. 1997. A molecular approach to the study of photoadaptation in

151



Variability of phytoplankton production rates in the Atlantic Ocean 8. References

phytoplankton. Genetic transformations of marine diatoms. Biologia Matina Mediterranea 4, pp. 24-29.

Chatlson R}, Lovelock JE, Meinrat DA, Stephen GW. 1987. Oceanic phytoplankton, atmospheric sulphur,
cloud albedos and climate. Nature 326, pp.655-661

Chavez FP, Buck KR, Coale KH, Martin JH, DiTullio GR, Welschmeyer NA, Jacobson AC, Barber RT.

1991. Growth rates, grazing, sinking and iron limitation of Equatorial Pacific phytoplankton.
Limnol.Oceanogr. 36, pp.1816-1833.

Chisholm SW. 1992. Phytoplankton size, pp.213-238 In Primary productivity and biogeochemical cycles in
the sea (Ed. Falkowski PG, Woodhead AD), Plenum Press, 550pp.

Clark I. 1979. Practical geostatistics. Applied Science Publishers. 317pp.

Clarke KR, Warwick RM. 1994. Changes in marine communities: an approach to statistical analysis and
mnterpretation. Plymouth, Plymouth Marine Laboratory. 110pp.

Claustre H, Marty JC. 1995. Specific phytoplankton biomassess and their relation to primary production in
the tropical North Atlantic. Deep Sea Res. 42, pp.1475-1493.

Cullen J], Lewis MR. 1988. The kinetics of algal photoadaptation in the context of vertical mixing.
J.Plankton Res. 10, pp.1039-1063.

Cullen J], Lewis MR., Davis CO, Barber RT. 1992. Photosynthetic characteristics and estimated growth

rates indicate grazing is the proximate control of primaty production in the Equatorial Pacific. J.Geophys.
Res. 97, pp.639-654.

Davies M, Williams PJ. 1984. Verification of MC and O derived primary organic production
measurements using an enclosed ecosystem. ].Plankton Res. 6, pp.457-474.

Demers S, Roy S, Gagnon R, Vignault C. 1991. Rapid light-induced changes in cell fluorescence and in
xanthophyll-cycle pigments in Alexandrium escavatum (Dinophyceae) and Thalassiosira pseudonoma

(Bacillariophyceae): a photoprotection mechanism. Mar.Ecol.Prog.Ser. 76, pp.185-193.

Demmig-Adams B. 1990. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin.
Biochim.Biophys.Acta 1020, pp. 1-24.

Denman KL, Okubo A, Platt T. 1977. The chlorophyll fluctuation spectrum in the sea. Limnol.Oceanogr.
22, pp. 1033-1038.

Denman KL, Platt T. 1977. Biological ptediction in the sea. pp.251-260. In Modelling and prediction of the
upper layers of the ocean. (Ed. Kraus EB). Pergamon. 428pp.

Doney SC., Najjar RG, Stewart 5. 1995. Photochemistry, mixing and diurnal cycles in the upper ocean.
J-Mat.Res. 53, pp.341-369.

Dubinsky Z, Falkowski PG, Wyman K. 1986. Light hatvesting and utilisation by phytoplankton. Plant Cell
Physiology 27, pp.1335-1349.

Ducklow HW, Harris RP. 1993. Introduction to the JGOFS (North Atlantic Bloom Experiment). Deep Sea
Res. 11 40, pp.1-8.

Dugdale RC, Wilkerson F. 1992. Nutrient limitation of new production in the sea, pp. 107-122 In Primary
productivity and biogeochemical cycles in the sea (Ed. Falkowski PG, Woodhead AD), Plenum Press,
550pp.

Eppley, RW. 1972. Temperature and phytoplankton growth in the sea. Fish Bull. 70, pp. 1063-1085.

Eppley RW, Peterson BJ. 1979. Particulate organic matter flux and planktonic new production in the deep
ocean. Nature 282, pp.677-680.

152



Variability of phytoplankton production rates in the Atlantic Ocean 8. References

Eppley' RW, Rogers JN, McCarthy JJ. 1969. Half stauration constants for uptake of nitrate and ammonium
by marine phytoplankton. Limnol. Oceanogr. 14, pp.912-920.

Estrada M, Berdalet E. 1997. Phytoplankton in a turbulent world. Scientia Marina 61 (suppl 1), pp.109-123.

Falkowskt PG. 1980. Light-shade adaptation in marine phytoplankton Iz Primary Productivity in the sea,
pp-99-199. (Ed. Falkowski PG). Plenum Press, New York

Falkowskt PG. 1981. Light-shade adaptation and assimilation numbers. J. Plankton Res. 3, pp. 203-216.

Falkowski PG. 1984. Physiological responses of phytoplankton to natural light regimes. J.Plankton Res. 6,
pp-295-307.

Falkowski PG. 1992, Molecular ecology of phytoplankton photosynthesis. pp.47-67 In Primary

Productivity and Biogeochemical Cycles in the Sea (Ed. Falkowski PG and Woodhead A). Plenum Press,
New York. 550pp.

Falkowski PG, Fujita Y, Ley AC, Mauzerall D. Evidence for cyclic electron flow around photosystem II in
Chlorella pyrenoidosa. Plant Physiology 81, pp. 310-312.

Falkowski PG, Greene RM, Kolber Z. 1994. Light utilization and photoinhibition of photosynthesis in

marine phytoplankton [ Photoinhibition of photosynthesis, pp407-432 (Ed. Baker NR and Bowyer JR).
Bios Scientific Publishers.

Falkowski PG, Kolber ZS. 1990. Phytoplankton photosynthesis in the Atlantic ocean as measuted from a

submersible pump and probe fluorometer in situ, pp.923-926 In Curtent Research in Photosynthesis V.4,
Kluwer.

Falkowski PG, Kolber ZS. 1993. Estimation of phytoplankton photosynthesis by active fluorescence. ICES
mar.Sct. Symp. 197, pp.92-103.

Falkowski PG, Kolber ZS. 1995. Vatiations in chlorophyll fluorescence yields in phytoplankton in the
worlds oceans. Aust.].Plant Physiology 22, pp.341-355.

Falkowski PG, Kolber ZS, Fujita Y. 1988. Effect of redox state on the dynamics of photosystem II duting
steady-state photosynthesis in encaryotic algae. Biochim.Biophys.Acta. 933, pp.432-443.

Falkowski PG, LaRoche J. 1991. Acclimation to spectral irradiance in algae. J.Phycology 27, pp.8-14.

Falkowski PG, Owens TG, Ley AC, Mauzerall DC. 1981. Effects of growth irradiance levels on the ration
of reaction centres in two species of marine phytoplankton. Plant Phystology 68, pp.969-973.

Falkowski PG, Raven JA. 1997. Aquatic Photosynthesis. Blackwell Science, U.K. 375pp.
Falkowski PG, Wyman K, Mauzerall DC. 1984. Effects of continuous background irradiance on xenon-
flash-induced fluorescence yields in matine microalgae In Advances in Photosynthesis Research (Ed.

Sybesma C), pp.163-166. Martinus Nijhoff/Dr. Junk: The Hague.

Falkowski PG, Ziemann D, Kolber ZS, Bienfang PK. 1991. Role of eddy pumping in enhancing primary
production in the ocean. Nature 352, pp.55-58.

Fasham MJR. 1978. The application of some stochastic processes to the study of plankton patchiness,
pp.131-156 in Spatial pattern in plankton communities (ed. Steele JH). Plenum Press.

Fernandez E, Pingree RD. 1996. Coupling between physical and biological fields in the north Atlantic
subtropical front southeast of the Azores. Deep Sea Res. 43, pp.1369-1393.

Finenko Z7Z. 1978. Production in plant populations, pp.3-88 In Matine Ecology IV: Dynamics (Ed. Kinne
0), John Wiley & Sons, 746pp.

153



Variability of phytoplankton production rates in the Atlantic Ocean 8. References

¥*’1a111eli11g IA. 1998. Growth and photosynthesis of eukaryotic microalgae in fluctuating light conditions,
induced by vertical mixing. Katholieke Universiteit Nijmegen, 135 pp.

Flamehgg 1A, Kromkamp J. 1997. Photoacclimation of Scenedesmus protuberans (Chlorophyceae) to
fluctuating PPFD simulating vertical mixing. J.Planton Res. 19, pp.1011-1024.

Flameling 1A, Kromkamp J. 1998. Light dependence of quantum yields for PSII charge separation and
oxygen evolution in eucaryotic algae. Limnol.Oceanogt, 43, pp.287-297.

Geider RJ. 1992. Respiration: Taxation without representation. pp. 333-360 In Primary Productivity and
Biogeochemical Cycles in the Sea (Ed. Falkowski PG and Woodhead A). Plenum Press, New York. 550pp.

Geider RJ, Greene RM, Kolber ZS, MacIntyre HL,, Falkowski PG.1993. Fluorescence assessment of the
maximum quantum efficiency in the western North Atlantic. Deep Sea Res. 40, pp.1205-1224.

Goldman JC. 1988. Spatial and temporal discontinuities of biological processes in pelagic surface waters,

pp- 273-296 in Towards a theory in biological-physical interactions in the World Ocean (Ed. Rothschild
B)).

Gould WJ. 1985. Physical oceanography of the Azores front. pp.167-190 Iz Essays on Oceanography: a
tubute to John Swallow (Ed. Crease ], Gould W] and Saunders PM). Pergamon Press.

Grande KD, Bender ML, Irwin B, Platt T. 1991. A compatison of net and gross rates of oxygen production

on a function of high intensity in some natural plankton populations and in a Synechococcus culture. J.
Plankton Res. 13, pp.1-16.

Grande KD, Kroopnick P, Burns D, Bender ML. 1982. 180 as a tracer for measuring gross primary
productivity in bottle expetiments. EOS 63, pp.107.

Grande KD, Williams PJ, Matra J, Purdie DA, Heinemann K, Eppley RW, Bender ML. 1989. Primary
production in the north Pacific gyre: a compatison of rates determined by the C, oxygen concentration
and 8O methods. Deep Sea Res. 36, pp.1621-639.

Graziano LM, Geider R], Li WKW, Olaizola M. 1996. Nitrogen limitation of North Atlantic

phytoplankton: analysis of physical condition in nutrient enrichment expetiments. Aq.Microb.Ecol. 11,
pp-53-64.

Greene RM, Geider R], Falkowski PG. 1991. Effect of iron limitation on photosynthesis in a marine
diatom. Limnol.Oceanogz. 36, pp.1772-1732.

Greene RM, Geider RJ, Kolber Z, Falkowski PG. 1992. Iron-induced changes in light harvesting and
photochemical energy conversion in eukaryotic marine algae. Plant Physiology 100, pp. 565-575.

Greene RM, Kolber ZS, Swift DG, Tindale NW, Falkowski PG. 1994. Physiological limitation of
phytoplankton photosynthesis in the eastern equatotial Pacific determined from variability in the quantum

yield of fluorescence. Limnol Oceanogr. 39, pp.1061-1074.

Harding LW, Prézelin BB, Sweeney BM, Cox JL. 1982a. Diel oscillations in of the photosynthesis-
irradiance (P-I) relationship in natural assemblages of phytoplankton. Mat.Biol. 67, pp.167-178.

Harding LW, Prézelin BB, Sweeney BM, Cox JL. 1982b. Primary production as influenced by diel
periodicity of phytoplankton photosynthesis. Mar Biol. 67, pp.179-186.

Herbland A, Voitutiez B. 1979. Hydrological structure analysis for estimating the primary production in the
tropical Atlantic Ocean. J.Mar.Res. 37, pp.87-101.

Holligan PM. 1981. Biological implications fronts of the notth-west European continental shelf.
Philos. Trans.R.Soc. London A 302, pp.547-562.

Holligan PM. 1987. The physical environment of exceptional phytoplankton blooms in the north-east
Atlantic. Rapp. P-V. Réun. Cons. Int. Explor. Mer. 187, pp. 9-18.

154



Variability of pbytoplankton production rates in the Atlantic Ocean 8. References

Horton P, Ruban AV. 1992. Regulation of photosystem II. Photosyn.Res. 34, pp.375-385.

IPCC. 1995. Climate change 1994. Radioactive forcing of climate change. Cambridge University Press.
337pp.

Jeffrey SW, Vesk M. Introduction to marine phytoplankton and their signatures pp.37-84 in Phytoplankton

pigments in oceanography: guidelines to modern methods (Ed. Jeffrey SW, Mantoura RFC, Wright SW),
UNESCO Publishing.

Jeffrey SW, Welschmeyer NA. 1997. Spectrophotometric and fluorometric equations in common use in
oceanography, pp.597-615 in Phytoplankton pigments in oceanography: guidelines to modern methods
(Hd. Jeftrey SW, Mantoura RFC, Wright SW), UNESCO Publishing.

Jochem FJ, Zeitschel B. 1993. Productivity regime and phytoplankton size structure in the tropical and
subtropical North Atlantic in spring 1989. Deep Sea Res. I1. 40, pp.495-519.

Joint TR, Pomeroy AJ. 1986. Photosynthetic characteristics of nanoplankton and picoplankton from the
surface mixed layer. Mar.Biol. 92, pp. 465-474.

Joint I, Pomroy A, Savidge G, Boyd P. 1993. Size fractionated primary productivity in the northeast
Atlantic in May-June 1989. Deep Sea Res. 11. 40, pp.423-440.

Jumars PA. 1978. Spatial autocorrelation with RUM (Remote Underwater Manipulator): vertical and
hotizontal structure of a bathyal benthic community. Deep Sea Res. 25, pp.589-604.

Kana, T.M. 1992. Relationship between photosynthetic oxygen cycling and catbon assimilation in
Synechoccocus WHT803 (Cyanophyta). J.Phycology 28, pp. 304-308.

Kawamura M, Mimuro M, Fujita Y. 1979. Quantitative relationship between two reaction centres in the
photosynthetic system of blue-green algae. Plant & Cell Physiology 20, pp.697-705.

Kiddon J, Bender ML, Matra J. 1995. Production and respiration in the 1989 north Atlantic spring bloom:
an analysis of irradiance-dependent changes. Deep Sea Res. 42, pp.553-546.

Kitk JTO. 1994. Light and photosynthesis in aquatic ecosystems (2nd Edn). Blackwell Science, UK. 401pp.
Koblentz-Mishke OI, Volkovinsky VV, Kabanova Yu.G. 1970. Plankton primary production of the world
ocean 1n Scientific exploration of the South Pacific (Ed. Wooster W), pp.183-193, National Academy of

Sciences, Washington DC.

Kok B. 1960. Encyclopaedia of plant physiology (Ed. W. Ruhland) vol.1. Springer-Verlag, Berlin. 620pp.

Kolber ZS. 1997. Fast Repetition Rate Fluorometry — A method for assessing ocean photosynthesis 12pp.
in FAST"* FRRF Handbook, Chelsea Instruments, U.IC.

Kolber ZS, Falkowski PG. 1992. Fast Repetition Rate (FRR) Fluorometer for making in situ measurements
of primary productivity. Proc.Ocean 1992 Conference, Newpott, Rhode Island, pp.637-641.

Kolber Z8, Falkowski PG. 1993. Use of active fluorescence to estimate phytoplankton photosynthessis in
situ. Limnol.Oceanogr. 38 (8), pp.1646-1665.

Kolber Z8, Prasil O, Falkowski PG. 1998. Measurements of variable chlorophyll fluorescence using fast
repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys. Acta. 1367,

pp.88-106.

Kolber ZS, Wyman KD, Falkowski PG. 1990. Natural variability in photosynthetic energy conversion
efficiency: A field study in the Gulf of Maine. Limnol. Oceanogt. 35, pp.72-79.

Kolber ZS, Zehr ], Falkowski PG. 1988. Effects of growth irradiance and nitrogen limitation on
photosyathetic energy conversion in photosystem I1. Plant Physiology 88, pp.72-79.

155



Variability of phytoplankton production rates in the Atlantic Ocean 8. References

Kmu'se GH, Weis E. 1991. Chlorophyll fluorescence and photosynthesis: The basics. AnnRev. Plant
Physiology Plant Mol Biol. 42, pp-313-349.

Kremer BP. 1981. Dark reations of photosynthesis. pp. 44-64 In Physiological basis of phytoplankton
ecology (Ed. Platt T). Can.Bull Fish.Aquat.Sci. 210. 346pp.

Kroon 1994. Variability of photosystem II quantum yield and related processes in Chlorella pyrenoidesa

(Chlorophyta) acclimated to an oscillating light regime simulating a mixed photic zone. J.Phycology 30,
pp-841-852.

Kruskal JB, Wish M. 1978. Multidimensional scaling. Sage Publications, Beverley Hills, California. 462pp.

Kyewalyanga MN, Platt T, Sathyendranath S, Lutz VA, Stuart V. 1998. Seasonal vatiations in physiological
patameters of phytoplankton across the North Atlantic. ]. Plankton Res. 20, pp.17-42.

Langdon C, Marra ], Knudson C. 1995. Measurements of net and gross oxygen production, dark
respiration and MC assimilation at the marine light-mixed layers site (59N 21W) in the north east Atlantic
ocean. ].Geophys.Res. 100, pp.6645-6653.

Lewis MR, Smith CJ. 1983. A small-volume, short-incubation time method for the measurement of
photosynthests as a function of incident irradiance. Mat.Ecol Prog.Ser. 13, pp.99-102.

Li WKW. 1980. Temperature adaptation in phytoplankton: cellular and photosynthetic characteristics. pp.
259-279 In Primary Productivity in the Sea (Ed. Falkowski PG). Plenum Press, New York.

Lizon F, Lagadeuc Y, Brunet C, Aelbrecht D, Bentley . 1995. Primary production and photoadaptation of
phytoplankton in relation with tidal mixing in coastal waters. ] Plankton Res. 17, pp. 1039-1055.

Lochte K, Ducklow HW, Fasham MJR, Stienen C. 1993. Plankton succession and carbon cycling at 47N
20W during the JGOFS Nozth Atlantic Bloom Experiment. Deep Sea Res. 1T 40, pp. 91-114.

Lohrenz SE. 1993. Estimation of primaty production by the simulated in situ method. ICES Mar.Sci.
Symp. 197, pp. 159-171.

Lohrenz SE, Wiesenburg DA, Rein CR, Amone RA, Taylor CD, Knaver GA, Knap AH. 1992. A
compatison of 2 siu and simulated n sity methods for estimating oceanic primary production. J.

Plankton Res. 14, pp.201-221.

Long SP, Humpbhries S, Falkowski PG. 1994. Photoinhibition of photosynthesis in nature. Ann. Rev. Plant
Physiology Plant Mol.Biol. 45, pp.655-662.

Longhurst A. 1991. Role of the marine biosphere in the global carbon cycle. Limnol Oceanogr. 36,
pp-1507-1526.

Longhurst A. 1993. Seasonal cooling and blooming in tropical oceans. Deep Sea Res. 40, pp.2145-2165.

Longhurst A, Sathyendranath S, Platt T, Caverhill C. 1995. An estimation of global primary production in
the ocean from satellite radiometer data. J.Plankton Res. 17, pp.1245-1271.

Lorenzen CJ. 1963. Diurnal variation in photosynthetic activity of natural phytoplankton populations.
Limnol.Oceanogs. 8, pp.56-62.

Lorenzen CJ. 1966. A method for the continuous measurement of in vivo chlorophyll concentration. Deep
Sea Res. 13, pp.223-227.

MacIntyre HL, Geider R], McKay RM. 1996. Photosynthesis and regulation of RUBISCO activity in net
phytoplankton from Delaware Bay. J.Phycology 32, 718-732.

Mackas, DL. 1984. Spatial autocorrelation of plankton community composition in a continental shelf
ccosystem. Limnol.Oceanogr. 29, pp.451-471.

156



Variability of phytoplankton production vates in the Atlantic Ocean 8. References

Mandelbrot BB. 1983. The fractal geometry of nature. Freeman, San Francisco. 407pp.
Mann KH, Lazier JRN. 1996. Dynamics of matine ecosystems (2nd Edn), Blackwell Science, UK. 466pp.

Mantoura RFC, Jeffrey SW, Llewellyn CA, Claustre H, Morales CE. 1997. Comparson between
spectrophotometric, flourometric and HPLC methods for chlorophyll analysis, pp.361-380 In

Phytoplankton pigments in oceanography: guidelines to modern methods (Ed. Jeffrey SW, Mantoura RFC,
Wright SW), UNESCO Publishing. 661pp.

Maraiion E, Holligan PM. 1999. Photosynthetic parameters of phytoplankton 50°N to 50°S in the Atlantic
Ocean. Mar.Ecol.Prog.Set. 176, pp.191-203.

Marafién E, Holligan PM, Varela M, Mourifio B, Bale AJ. 2000. Basin-scale vadability of phytoplankton
biomass, production and growth in the Atlantic Ocean. Deep Sea Res. 47, pp.825-858.

Margalef R. 1997. Our Biosphere. Excellence in ecology (Ed. Kinne O). Ecology Institute Nordbunte 23,
D-21385 Oldendorf/Luhe, Germany. 74pp.

Marra J. 1997. Analysis of diel variability in chlorophyll fluorescence. ] Mar.Res. 55, pp.767-784.

Martin JH, Fitzwater SE, Gordon M, Hunter CN, Tanner SJ. 1993. Iron, ptimary production and carbon-
nitrogen flux studies during the JGOFS north Atlantic bloom expetiment. Deep Sea Res. 11 40, pp.115-134.

Mauzerall D. 1972. Light induced changes in Chlorella and the primary photo-reaction for the production
of oxygen. Proc.Nat.Acad.Sci. 6, pp.1358-1362.

Mauzerall D, Greenbaum NL. 1989. The absolute size of a photosynthetic unit. Biochim Biophys.Acta.
974, pp.119-140.

Mozgel A. 1978. Available, usable and stored radiant energy in relation to marine photosynthesis. Deep Sea
Res. 25, pp.673-688.

Morel A, Antoine D, Babin M, Dandonnean Y. 1996. Measured and modelled ptimary production in the
northeast Atlantic (EUMELI JGOFS program): the impact of natural variations in photosynthetic
parameters on model predictive skill. Deep Sea Res. 43, pp.1273-1304.

Mulholland MR, Capone DG. 1999. Nitrogen fixation, uptake and metabolism in natural and cultured
populations of Trichodesmium spp. Mar.Ecol Prog.Ser. 188, pp.33-49.

Neale PJ, Richerson PJ. 1987. Photoinhibition and the diurnal variation of phytoplankton photosynthesis -

I. Development of a photosynthesis-Irradiance model from studies of in situ responses. J.Plankton Res. 9,
pp-167-193.

Neori A, Vernet M, Holm-Hansen O, Haxo FT. 1988. Comparison of chlorophyll far-red and red

fluorescence excitation spectra with photosynthetic oxygen action spectra for photosystem II 1n algae.
Mar.Ecol.Prog.Sex. 44, pp.297-302.

Olaizola M, Geider R], Harrison WG, Graziano LM, Ferrard GM, Schlittenhardt. 1996. Synoptic study of
vatiations in the fluorescence-based maximum quantum efficiency of photosynthesis across the North
Atlantic Ocean. Limnol.Oceanogy. 41, pp.755-765.

Olaizola M, Yamamoto HY. 1994. Short-term response of the diadinoxathin cycle and fluorescence yield to
high irradiance in Chaetoceros muelleri (Bacillariophyceae). J.Phycology 30, pp. 606-612

Olson RJ, Chisholm SW, Zettler ER, Armbrust EV. 1990a. Pigments, size, and distribution of
Synechococcus in the North Atlantic and Pacific Ocean. Limnol.Oceanogr. 35, pp.45-58.

Olson RJ, Chisholm SW, Zettler ER, Altabet MA, Dusenberry JA. 1990b. Spatial and temporal

distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep Sea Res. 37, pp.1033-
1051.

157



Variability of phytoplankton production vates in the Atlantic Ocean 8. References

Oschilles A, Garcon V. 1998. Eddy induced enhancement of ptimary production in a model of the North
Atlantic Ocean. Nature 394, pp.266-269.

Owens TG, Falkowski PG, Whitledge TE. 1980. Diel periodicity in cellular chlorophyll content in marine
diatoms, Mar.Biol. 59, pp.71-77.

Pai 5-C, Gong G-C, Lui K-K. 1993, Determination of dissolved oxygen in seawater by direct
spectrophotometry of total iodine. Mar.Chem. 41, pp.343-351.

Painting SJ, Lucas MI, Peterson WT, Brown PC, Hutchings L, Mitchell-Innes BA. 1993. Dynamics of
bacterioplankton, phytoplankton and mesozooplankton communities during the development of an
upwelling plume in the southen Benguela. Mar.Ecol.Prog.set. 100, pp.35-53

Pauly D, Christensen V. 1995. Primary production required to sustain global fisheries. Nature 374 (6519),
pp-255-257.

Pingree RD. 1980. Physical oceanography of the Celtic Sea and English Channel, pp.415-465 In The north-
west Buropean shelf seas: the sea bed and the sea in motion. II. Physical and chemical oceanography and
physical tesoutces (Ed. Banner FT, Collins MB and Massie KS). Pergamon. 588pp.

Pingree RD, Holligan PM, Mardell GT. 1978. The effects of vertical stability on phytoplankton
distributions in the summer on the northwest European Shelf. Deep Sea Res. 25, pp. 1011-1028.

Pingree RD, Mardell GT, Reid PC, John AWG. 1986. The influence of tidal mixing on the timing of the
spring phytoplankton development in the Southern Bight of the North Sea, the English Channel and on the

northern Armorican Shelf, pp.164-192 In Tidal mixing and plankton dynamics (Ed. Bowman M],
C.M.Yentsch & W.T Peterson). Pergamon. 396pp.

Pitcher GC, Brown PC, Mitchell-Innes BA. 1992. Spatio-temporal variability of phytoplankton in the
Southern Benguelan upwelling system. S.Afr.J.Mar.Sci. 12, pp.439-456.

Pitcher GC, Boyd AJ, Horstman DA, Mitchell-Innes BA. 1998. Subsutface dinoflagellate populations,
frontal blooms and the formation of red tide in the southern Benguela upwelling system. Mar.Ecol.

Prog.Ser. 172, pp.253-264.

Pitchford JW, Brindley J. 1999. Iron limitation, grazing pressure and oceanic high nutrient-low chlorophyll
(HNLC) regions. J.Plankton Res. 21, pp. 525-547.

Platt T, Shubba-Rao RV, Irwin B. 1983. Photosynthesis of picoplankton in the oligotrophic ocean. Nature
310, pp.702-704.

Pomeroy LR. 1997. Primary production in the Arctic Ocean estimated from dissolved oxygen. ]. Mar.
Systems. 10, pp.1-8.

Pond S, Pickard G. 1983. Introductory Dynamical Oceanography (Second Edition). Butterworth-
Heinemann, U.K. 329pp.

Prasil O, Kolber Z, Berry JA, Falkowski PG. 1996. Cyclic electron flow around photosystem Il in vivo.
Photosynth.Res. 48, pp.395-410.

Prézelin BB. 1981. Light reations of photosynthesis. pp. 1-43 [n Physiological basis of phytoplankton
ecology (Ed. Platt T). Can.Bull. Fish.Aquat.Sci. 210. 346pp.

Prézelin BB. 1992. Diel periodicity in phytoplankton productivity. Hydrobiologia 238, pp.1-35.

Prézelin BB, Bidigare RR, Matlick HA, Putt M, VerHoven BM. 1987. Diurnal patterns of size fractionated
primary productivity across a front. Mar.Biol. 4, pp.563-574.

Prézelin BB, Ley AC. 1980. Photosynthesis and chlorophyll a fluorescence rhythms of marine
phytoplankton. Mar.Biol. 55, pp.295-307.

158



Variabiliry of phytoplankton production rates in the Atlantic Ocean 8. References

Prézelin BB, Putt M, Glover HE. 1986. Diurmnal patterns in photosynthetic capacity and depth-dependent

photosynthesis—irmdiance relationships in Synechococcus spp. and larger phytoplankton in three water
masses in the Northwest Atlantic Ocean. Mar.Biol. 91, pp.205-217.

Raven JA, Geider R]. 1988. Temperature and algal growth. New Phytologist 110, pp.441-461.

Rees AP, Joint I, Donald KM. 1999. Eady spring bloom phytoplankton-nuttient dynamics at the Celtic
shelf sea edge. Deep Sea Res. 46, pp.483-510.

Reynolds CS. 1999. With or against the grain: responses of phytoplankton to pelagic variability, pp. 15-44 in

Aquatic life cycle strategies: survival in a variable environment (eds. Whitfield M, Matthews J., Reynolds
C.). The Marine Biological Association, UK.

Riebesell U, Wolf-Gladtow DA, Smetacek V. 1993. Catbon dioxide limitation of marine phytoplankton
growth rates. Nature 361, pp.249-251.

Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre L, Morel A, Parslow J,

Takahashi M. 1997. Parameters of photosynthesis: definitions, theory and interpretation of results.
J.Plank.Res. 19, pp.1637-1670.

Sathyendranath S, Longhurst A, Caverhill CM, Platt T. 1995. Regionally and seasonally differentiated
primaty production in the North Atlantic. Deep Sea Res. 42, pp.1773-1802.

Savidge G, Boyd P, Pomroy A, Harbour D, Joint I. 1995. Phytoplankton production and biomass estimates
in the northeast Atlantic Ocean May-June 1990. Deep Sea Res. 42, pp.599-617.

Schatz GH, Brock H, Holtzwarth AR, 1988. A kinetic and energetic model for the primary processes in
photosystem II. Biophys.]. 54, pp.397-405.

Seuront L, Lagadeuc Y. 1997. Charactetisation of space-time variability in stratified and mixed coastal

waters (Baie des Chaleurs, Quebec, Canada): application of fractal theory. Mar.Ecol Prog.Ser. 259, pp.81-
95.

Seuront L, Lagadeuc Y. 1998. Spatio-temporal structure of tidally mixed coastal waters: variability and
heterogeneity. J.Plankton Res. 20, pp.1387-1401.

Shannon LV, Hutchings LH, Bailey GW, Shefin PA. 1984. Spatial and temporal distribution of chlorophyll
in southern African waters as deduced from ship and satellite measurements and their implications to
pelagic fisheries. S.Afr.].mar.Sci 2, pp.109-130

Shannon LV, Nelson G. 1996. The Benguela: large scale fluctuations and processes and system variability,
pp- 163-210 in The South Atlantic (Ed. Wefer G et al.). Betlin: Springer. 283pp.

Siefermann-Harms, D. Carotenoids in photosynthesis. 1. Location in photosynthetic membranes and light
harvesting function. Biochim Biophys.Acta. 811, pp. 325-355

Simpson JH, Pingree RD. 1978. Shallow sea fronts produced by tidal stirring, pp. 29-42 In Oceanic fronts
in coastal processes (Ed. Bowman M], Esatas WE). 133pp.

Sournia A. 1974. Circadian periodicities in natural populations of marine phytoplankton. Adv.Mar.Biol. 12,
pp- 325-389.

Steeman Nielsen E. 1952, The use of radiocarbon (MC) for measuring organic production in the sea.
J.Cons.Expl.Mer. 18, pp. 117-140.

Suggett DJ, Kraay G, Holligan PM, Davey M, Aiken J, Geider R]. Assessment of photosynthesis in a spring
cyanobacterial bloom using a Fast Repetition Rate Fluorometer. Limnol.Oceanogt. subm.

Sukenik A, Bennett ], Mortain-Bertrand A, Falkowski, PG. 1990. Adaptation of the photosynthetic
apparatus to irradiance in Dunaliella tertiolecta. Plant Physiology 92, pp.891-898.

159



Variability of phytoplankton production rates in the Atlantic Ocean 8. References

Sverdrup HU. 1958. On the conditions for the vernal bloom of phytoplankton. J.Cons IntExplor.Mer. 18,
pp- 287-295.

Takahashi M, Ichimura S, Kishino M, Okami N. 1989. Shade and chromatic adaptation of phytoplankton
photosynthesis in a thermally stratified sea. Mar.Biol. 100, pp.401-409.

Tassan S, Ferrarit GM. 1995. An alternative approach to absorption measurements of aquatic particles
retained on filters. Limnol. Oceanogr. 40, pp.1358-1368.

Tett PB, Joint IR, Purdie DA, Baars H, Ostethuis SN, Daneri G, Hannah F, Mills DK, Plummer D,

Pomeroy AJ, Walne AW, Whitte HJ. 1993. Biological consequences of tidal stirring gradients in the Notth
Sea. Philos Trans.R.Soc.London A 343(1669), pp. 493-508.

Timmermans KR, Gledhill M, Nolting RF, Veldhuis MJW, de Baar HJW, van den Berg CMG. 1998.

Responses of marine phytoplankton in iron-enrichment experiments in the northern North Sea and the
north-east Atlantic Ocean. Mar.Chem. 61, pp.229-242.

Tomczak M, Godfrey JS. 1994, Regional Oceanography: An Introduction. Elsevier Science Ltd., UK.
422pp.

Vassiliev IR, Prasil O, Wyman KD, Kolber Z, Hanson AK, Prentice JE, Falkowski PG. 1994. Inhibition of

PSII photochemistry by PAR and UV radiation in natural phytoplankton communities. Photosynth.Res. 42,
pp-51-64.

Veldhuis MJW, Kraay GW. 1990. Vertical distribution and pigment composition of a picoplanktonic

prochlorophyte in the subtropical North Atlantic: a combined study of HPLC-analysis of pigments and
flow cytometry. Mar.Ecol.Prog.Ser. 68, pp. 121-127.

Veldhuis MJW, Kraay GW. 1993. Cell abundance and fluotescence of picoplankton in relation to growth
irradiance and nitrogen availability in the Red Sea. Neth.].SeaRes. 31, pp.135-145.

Venrick EL. 1990. Mesoscale patterns of chlorophyll a in the central Nozth Pacific. Deep Sea Res. 37, pp.
1017-1031.

Vincent WF, Neale PJ, Richerson PJ. 1984. Photoinhibition: algal responses to bright light during diel
stratification and mixing in a tropical alpine lake. J.Phycology 20, pp.201-211.

Wallace RA, Sanders GP, Ferd R]. 1991. Biology: The science of life (3rd Edn.). Harper Collins Publishers,
U.S. 1246pp.

Weber LH, El-Sayed SZ, Hampton I 1986. The variance spectra of phytoplankton, krill and water
temperature in the Antarctic Ocean south of Africa. Deep Sea Res. 33, pp.1327-1343.

Welschmeyer NA. 1994. Fluorometric analysis of chlorophyll a i the presence of chlorophyll b and
phaeopigments. Limnol.Oceanogr. 39, pp.1985-1992.

Williams PJ. 1993. Chemical and tracer methods of measuring plankton production. ICES mar.Sci.Symp.
197, pp. 20-36.

Williams PJ, Heinemann KR, Marra J, Purdie DA. Compatison of “C and O, measurements of
phytoplankton production in oligotrophic waters. Nature 305, pp.49-50.

Williams PJ, Jenkinson NW. 1982. A transportable microprocessor controlled Winkler titration suitable for
field station and shipboard use. Limnol. Oceaonogr. 27, pp.576-584.

Williams PJ, Purdie DA. 1991, In vitro and in situ derived rates of gross production, net community
production and respiration of Oz in the oligotrophic subtropical gyre of the north Pacific Ocean. Deep Sea
Res. 38, pp.891-910.

Williams PJ, Raine RCT, Bryan JR. 1979. Agreement between “C and O, methods of measuring
phytoplankton production: reassessment of the photosynthetic quotient. Oceanol. Acta. 20, p.411-416.

160



Variability of phytoplankton production rates in the Atlantic Ocean 8. References

Williams PJ, Robertson JE. 1991. Overall planktonic oxygen and carbon dioxide metabolisms: the problem
of reconciling observations and calculations of photosynthetic quotients. J.Plankton Res. 13 (suppl),
pp-153-169.

Yoder JA, McClain CR, Blanton JO, Oey L. 1987. Spatial scales in CZCS-chlorophyll imagery of the
southeastern U.S. continental shelf. Limnol. Oceanogt. 32, pp.929-941.

161



Variability of phytoplankton production rates in the Atlantic Ocean Appendices

Appendix 1— Persons responsible for data sampling

The understanding, operation and manipulation of the Fast Repetition Rate Fluorometer
(FRRF) was a lengthy and remains a continual process. As such, I could not become
directly involved with a vast majority of the routine collection of additional data (see
Chapter 2) useful for subsequent interpretation of the FRRF data. However, 1 have
previously practised some of the methodologies listed below (M, otherwise I attempted to
become familiar with those of which I had no previous experience (™. Table A1.1. lists

and gratefully acknowledges those patticipants of the cruises (Methodology, Table 2.1.)

whose data was used in this thesis.

Methodology Cruise
RV Pelagia AMT 6 RRS
Challenger
Filtration for pigmentst M. Davey P. Holligan P. Holligan
Production (HC-uptake) i R. Geider G. Tilstone/ E. Tierra M. Lucas
Production (Og) G. Kraay n/a n/a
Optical profiling D. Suggett S. Hooker/]. Aiken n/a
Chl a-specific absorption analysis P. Shaw n/a D. Suggett
Nutrients analysis U. Riebesell M. Woodward D. Hydes
HPLCH S. Gibb R. Barlow C. Lucas
Underway hydrographic data K. Timmermans J- Aiken J. Sharples
CTD operations and K. Timmermans/ D. Richmond/ D. Teare/
hydrographic data R. Groenewegen V. Afanasyev J. Short

Table A1.1.— Summary of cruise participants who collected the data for the respective
parameter methodologies. Operation of the FRRF is not included since | was responsible for
the majority of the data collection, however, R.Geider, M.Davey, M.Moore and E. Abraham are
gratefully acknowledged for aiding in the operation of the FRRF, most notably during watch
periods. The person responsible for the underway hydrographic data collection also signifies
the Principle Scientist of each respective cruise. Whilst | was not directly responsible for the
majority of ancillary data collection, | have previous experience (1), or have observed the
protocol at sea and am therefore familiar with (1), some of the above methodologies.

162



Variability of phytoplankton production rates in the Atlantic Ocean : Appendices

Appendix 2— Chlorophylla-specific light absorption
measurements from sites M and U, RRS Challenger
(re. Chapter 4)

The following figure (fig. A2.1.) provides a summary of all chl a-specific absorption (a*)
measurements of filtered seawater samples corresponding to the mixed and stratified
sites, RRS Cballenger cruise, described in Cbapter 4. Samples were taken at 3-4 depths
from 5 CTD samples during each of the 25 hour sampling periods. Measutements of
absorption were made between 350 and 850 nm in a  spectrophotometer and

subsequently converted to chl a-specific absorption (see section 2.2.)
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Figure A2.1.— Summary of all chlorophyll a-specfic absorption (a*) measurements from water
samples collected at the mixed (M) and stratified (U) sites, Chapter 4 (see main text).
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Appendix 3— Statistics employed for AMT6 data
analysis (re. Chapter 5)

The following calculations were performed using the Plymouth Routines in Multivariate
Ecological Research (PRIMER, Catr 1994) programme. The information provided below
is intended to support the calculation and results of the analyses presented in Chapter 5.
Much of this understanding is drawn from Clarke and Warwick (1994) and readers are

referred to this source for a more detailed explanation of these techniques.

Calculation of similarity matrices— Similarities were calculated between every pair of
samples to give a lower triangular matrix. The Bray-Curtis coefficient was chosen since it
is commonly applicable to environmental data. The data used were hydrographic and
quantitative summaries of phytoplankton biomass/production (ie. environmental). I was
interested in analysing the similarities for the absolute values of each parameter (eg.
surface temperature, integrated nutrient concentrations) that were contributed to the
samples (CTD stations). I also intended to subsequently subject the resultant matrix to
an MDS analysis, which is vety flexible (this technique ranks similarities in a matrix and
then interprets their relative distances apart). As such, it did not appear necessary to
transform the data. The Bray-Curtis similatity matrices that were derived for the
hydrographic -/+ the biomass/production data ate given below (figs A3.1. and A3.2.,

respectively).

Hierarchical dendrograms (agglomerative clustering)— This technique provides a
graphical display linking samples that, based on the degree of common
characteristics/values, have mutual levels of similarity. A dendrogram successively fuses
the samples into groups and then groups into large clusters. This method can provide a
check (and the levels of similarity) for which the clusters are identified in subsequent
ordination techniques. The Bray-Curtis similarity matrices are plotted as dendrograms for
the hydrographic -/+ the biomass/production data are given below (]‘igs A3.3. and
A3.4., respectively).
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Figures A3.1. and A3.2.— Bray-Curtis similarity matrices determined from all hydrographic
data (upper panel, A3.1.) and from all hydrography + all biomass/production characteristics as
measured from the FRRF (lower panel, A3.2.). All CTD stations were used in the analyses
and are signified in decimal degrees. All calculations were made using PRIMER.
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44,

49.

Figures A3.3. and A3.4— Dendrogram plots using Bray-Curtis similarity matrices
determined in Figs. A3.1. and A3.2., respectively. All CTD stations were used in the analyses
and are signified in decimal degrees. All calculations were made using PRIMER.
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Non metric multidimensional scaling (MDS)— This ordination technique is relatively
modern and very flexible. This method recognises the essential arbitrariness of absolute
similarity values meaning that the state of the source data is mote ctitical to how one
interprets it than to the outcome of the algorithm. The reliability of this technique can be
determined from the level of stress generated during each calculation (a value of stress is
assigned to each iteration of the algorithm [to the data] as it attempts to reduce the
multidimensional data into 2 ot 3 dimensions). The technique works towards minimising
the stress value and, as such, a minimum stress level is derived (with the appropriate
data). Six iterations are recommended for this technique and were, therefore, applied (see
table A3.1.). Re-calculation using more iterations did not yield a different result. Stress
levels for the reduction of the AMT6 data remained below 0.1 thus providing “a good
ordination with no real prospect of a misleading interpretation”. This method was

performed in favour of a Principle Components Analysis (see Chapter 5).

Stress values of MDS
Hydrographic data All data
Iteration 3D 2D 3D 2D
1 0.03 0.05 0.04 0.08
2 0.03 0.05 0.04 0.08
3 0.03 0.05 0.04 0.09
4 0.03 0.05 0.04 0.09
5 0.03 0.05 0.04 0.08
6 0.03 0.05 0.04 0.08

Table A3.1.— Summary of stress values produced from MDS calculations using data from
the Bray-Curtis similarity matrix. Calculations were repeated for 6 iterations on both the
hydrographic data only and hydrography + all biomass/production characteristics as
measured from the FRRF (all data).

Multiple Stepwise Regressions (MSR)— These analyses were performed for comparing

the variance of cach of the physiological [dependent] variables F /F,_, Oy, and

production from the FRRF with the variance of hydrographic [independent] variables
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(temperature, nuttients and PAR). All data was grouped according to the clusters
produced from the MDS statistics and MSR analyses were subsequently performed using
the Minitab statistics package. Each MSR analysis was re-calculated with only the 4 most
significant variables to reduce the amount of error generated (from minor variables) in
the calculation of the statistic. The following results provide the coefficient (of the
independent variable in the regression equation), the t-statistic, the probability of

: : 2 . . . .
significance, the r~ (the proportion of variance accounted by each independent variable)

and an ANOVA summary of the data for each MSR.

A. Strongly eutrophic stations:

regression eqn: Fv/FmD = -0.00023PAR +0.127N O, -0.0325P0;4 +0.06Temp +7.8
t-statistic: 277 1.54 -3.03 7.18 5.12
probability (P): 0.01 0.134 0.005 0.000 0.000
2 (Vo). 16.20 20 6.72 44.64

source DI S8 MS F P
regression 4 0.32 0.064 18.07 0.000
error 30 0.103 0.004

total 34 0.422

regression eqn: orsi = -0.423PAR -7.91NO; -129P0y4 +852

t-statistic: -2.55 -3.56 -6.45 18.31

probability (P): 0.015 0.001 0.000 0.000

12 (%o): 11.44 12.55 46.45

soutrce DI SS MS F P
regression 3 1142682 285671 16.59 0.000
error 36 602736 17221

total 39 1745418

regression eqn: penl = 0.0127PAR -0.0725N0O; -7.48NO2 +0.473Temp +22.0
t-statistic: 3.94 -1.34 -2.35 1.38 -0.34
probability (P): 0.001 0.192 0.027 0.178 0.740
2 (0/0): 44.61 6.47 2.95 6.88

source DF SS MS B P
regression 4 210.819 35.136 6.90 0.000
ertor 29 137.527 5.094

total 33 348.345

regression eqn: Pc = 0.373PAR -0.349N O3 -262NO; -26.8PO4 +638
t-statistic: 2.7 -1.18 -1.76 -1.51 0.22
probability (P): 0.013 0.249 0.094 0.147 (1.826
2 (0/0>: 35.4 6.66 4.53 4.49

source DI sS MS F P
regression 4 211570 35262 3.97 0.008
error 23 186686 8890

total 27 398256
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B. Weakly eutrophic stations:
regression eqn:  Fv/FuD = 0.016 NOs -0.381 POs4 -0.1615PAR +0.0145Temp +6.001
t-statistic: 2.65 -3.98 -2.59 1.61 2.85
probability (P): 0.001 0.16 0.018 0.125 0.1
e (Yo): 29.8 62 471 58
source DF SS MS F P
regression 4 0.261 0.0703 8.17 0.001
error 19 0.163 0.0086
total 23 0.444
regression eqi: orsu = -0.0624PAR +4.18NOs +121 NO2 -111 POy -9404
t-statistic: -1.06 1.26 1.63 -1.93 -10.63
probability (P): 0.156 6.084 0.122 0.071 0
12 (Yo): 135 27.3 16.7 22.6
source DF Ss MS F P
regression 4 511681 102336 40.0 0.000
error 17 40939 2559
total 21 552620
regression eq: pett = 0.0021PAR -0.0489NOs -3.58N0, +0.173Temp +36.8
t-statistic: 2.10 -2.26 -2.87 207 1.81
probability (P): 0.05 0.037 0.07 0.053 0.087
12 (%o): 39.93 19.94 12.7 211
soutrce DF 58 MS F P
regression 4 32238 6.4476 8.72 0.000
error 19 13.304 0.7391
total 23 45.542
regression eqn: Pc = 0.0443PAR -17.9NO; ~64.8NOs +182P0s4 -1140
tostatistic: 1.55 -3.88 -1.84 3.19 -1.82
probability (P) 0.143 0.002 0.087 0.007 0.09
2 (Vo): 51.63 17.12 14.08 5.8
soutrce DI 58 MS ¥ P
regression 4 31634.7 6326.9 1212 0.000
ettor 15 7309.7 5221
total 19 38944.4
C. Meso-Weak oligotrophic stations:
regression eqn:  Fv/EaD = 0.359 NO» -0.083P0, +0.0083Temp -1.65
t-statistic: 5.25 -2.33 201 -1.45
probability (P): 0.00 0.022 0.048 0.15
2 (0/()): 19.28 27 5.3
source DF SS MS 3 P
regression 3 0.93720 0.23430 19.9 0.00
error 82 0.95391 0.01178
total 85 1.89111
regression eq: ovsit = 3155 -0.138PAR -144NOs  -58.8Temp
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t-statistic: 1.46 -2.32 -2.65 -0.97

probability (P): 0.148 0.023 0.01 0.336

2 (Yoy: 6.1 223 43

source DF SS MS F P
regression 3 994939 331646 8.11 0.000
error 76 3109455 40914

total 79 4104394

regression eqn: pett = -0.298N O3 -0.115Temp -3.18PAR +111

t-statistic: 3.25 -2.40 -4.14 3.90

probability (P): 0.002 0.019 0.000 0.000

2 (%o): 54.17 343 10.14

source DI SS MS F P
regression 3 476.62 158.85 39.31 0.000
error 68 274.80 4.04

total i 751.42

regression eqn: Pc = 1.15 NOs +10.6 PO4 -1.01Temp +0.0031PAR -10.2
t-statistic: 2.23 1.20 -1.76 1.01 .84
probability (P): 0.029 0.236 0.084 0.318 0.403
2 (Yo): 42.68 2.06 1.93 0.98

source Dy S8 MS F P
regression 4 5574.5 1393.6 13.07 0.000
error 59 6293.0 106.7

total 63 11867.5

D. Strongly oligotrophic stations:

regression eqn: Fv/FuD = 0.696 -0.0032PAR -0.00287 PO, -1.41 NO- -0.845 NO3
t-statistic: 4.51 -0.73 -0.42 -0.74 -2.49
probability (P): 0.006 0.498 0.690 0.495 (1055
2 (Ye): nd nd nd 61.82
source DF S8 MS F p
regression 4 0.17565 0.04414 2.58 0.164
error 5 0.08567 0.01713

total 9 0.26223

tegression eqn: OPSIT = 649 +1.14PAR +6.91NOs +811INO2 -183 POy
t-statistic: 11.34 0.71 243 1.16 -0.97
probability (P) 0.00 0.575 0.072 0.31 0.382

2 (0/0): nd 54.12 nd nd
source DE SS MS F P
regression 4 20989 1247 2.38 0.210
erfor 4 8808 2202

total 2 29797

regression eqp: pert = 0.044 NO; -8.68PAR -0.003NO> +0.75

t-statistic: 497 -2.22 -0.22 2.83

probability ®): 0.004 0.077 0.839 0.053

12 (%): 91.68 443 0.94

source DI sS MS F P
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regression 3 8.9035 2.2259 31.33 0.001
error 6 0.3553 0.0711
total 9 9.2587
regression eqn: Pc = 249 NO3 -0.008NO2 -4.94Temp +0.045PAR -59.7
t-statistic: -4.62 .36 -2.18 2.25 -2.38
probability (P): 0.044 0.753 0.161 0.153 0.14
2 (o): 85.01 4.14 2.69 241
source D SS MS F P
regression 4 12.9099 21517 2238 0.043
error 4 0.1923 0.0962
total 8 13.1022

Semivariograms and fractal dimensions— These techniques were employed to
characterise the predominant spatial scales of variability in continuous surface watet
measurements along the AMTG transect, and were chosen because of their flexibility and
case of use (see Chapter 5). The following provides a summary of the semivariogram
technique as described in detail by Clark (1979) and Yoder et al (1987): The variogram is

a plot of the semivariance (S-V) against distance between samples (h). S-V is calculated

as:

S-V (h) = [1/20]*[g, - el

n(h)
S-V =X [1/20] ]*[g, - genl”
x=1

Where h is the distance (lag) between samples; g is the sample value; and n is the
number of observations between each lag. When applied to a continuous set of data, one
ot more patterns can be produced (fig. A3.5.). The predominant scales of vatiability can
be extracted from analysing the sill(s) of a variogram. The initial sill signifies the
maximum difference between values of a parameter comprising a patch and corresponds
to 1/2 the wavelength at which the patch occurs (fig. A3.5.). The sill may be further
represented throughout the variogram as a wave function whete subsequent sills have a
spatial scale equal to the distance between successive sills, In addition, more than one
dominant spatial scale may be apparent and result in alternate sills and wave functions.
However, not all sills are easy to distinguish, for example, where multiple sills of a wave
function dampened with increased scale length. As such, a seties of criteria can be

employed to separate real (dominant) patches from noisy data or weak signals (Yoder et
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al. 1987): 1. The dectease in slope must be 10% ot less of the mean slope before the
decrease; 2. Constant (£10%)/decreased S-V after a break in the slope for >20% of the
resolved scale length; 3. A sill value at least twice that of the nuggett vatiance (see fig.

A3.5. legend). These were applied throughout the analyses of the AMTG6 transect given in
fig A.3.6.

Nuggett
variance

semivariance

pi2 : Period{p

)

Interval (lag h)

Figure A3.5: Example patterns of semi-variograms: (A) rational quadratic (or spherical) (B)
linear (C) exponential (D) wave. The abbreviations in plots (A) and (D) show some of the
features of a variogram. The peak (sill) indicates a dominant spatial scale and is equal to 1/2
the lag distance at which the peak occurs. Some variograms do not have an S-V value = 0 at
the first (lag 1) distance. This non-zero is referred to as the nuggett variance and is the result
of measurement error and/or variability at scales less than lag 1 and is equivalent to white
noise in spectral analysis (Journel and Hujibregts 1978). Where a variogram remains at a
constant value, following the S-V at lag 1, there will be no resolvable sills, and therefore, no
dominant spatial scale. (B and C) A linear or curvilinear S-V indicates a trend that has a
period at least twice that of the longest lag. (D) A periodic distribution of variability produces
an S-V with regular sills where the distance between sills is equal to the wavelength.

Semivariograms are applied to assess spatial scales of variability, however, the technique
can be taken a stage further to assess the hetero/homogenetic nature of the respective
vagability. This is achieved by calculating the Fractal Dimension, D, and is summarised
below following Burrough (1981), Mandelbrot (1983) and Seuront and Lagadeuc (1997,
1998).
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D =s5r (4-m) [where m is derived from the gradient of a log-log plot of the semivariogram]

D describes the variability of a continuum of scales. Under this approach, the degree of
hetero/homogeneity is associated with patterns temaining similar upon subdivision in
time. Where m=0: D=2, indicating that variation within and between sampling units is
the same (ie. no directional change in the value of the semivariogram following lag 1). As
such, variability is evenly distributed and relatively unstructured in space. High values of
D characterise short range (local) variability, such as biological processes, which obscure
long range physical processes; lower values of D (m increases) describe processes which
are not [as easily] repeated upon subdivision in time, ie. long range physical processes
with larger petiods of vatriability. Some semivatiograms can exhibit greater than 1
gradient (m) and give multiple fractal-dimensions where different periods of variability
are developed and dominant. These calculations are easy to perform but again require an
objective criteria. Following Seuront and Lagadeuc (1997), the values of D presented in
Chapter 5 wete calculated as describe these criteria as: 1. Maximise the coefficient of
determination (t°) of the semivariogram; 2. Minimise the total sum of the squared

residuals for the regression. An example is given in ﬁg. A3.6.
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Figure A3.6.— Summary of semivariograms performed on along track surface (7m) data (see
Appendix 4) of F,, F/Fi, and opsu (FRRF) and PAR, temperature, salinity and fluorescence
(ship data) collected throughout the southern benguela (SB) province, AMT6.
Semivariograms (S-V) are in parameter units squared whilst lag h is in decimal minutes. Data
used was from data points logged every 10 minutes. The upper most right hand figure also
gives an example of the calculation of fractal dimension (D) whereby both axes of the S-V are
logged. The gradient of a best-fit linear slope (m), see above) is established to calculate D.
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Figure A3.6. (contd.)— Summary of semivariograms performed on along track surface (7m)
data (see Appendix 4) of F,, Fu/Fn and opsy (FRRF) and PAR, temperature, salinity and
fluorescence (ship data) collected throughout the northern benguela (NB) province, AMT6.
Semivariograms are in parameter units squared whilst lag h is in decimal minutes. Data used

was from

data points logged every 10 minutes.
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Figure A3.6. (contd.)— Summary of semivariograms performed on along track surface (7m)
data (see Appendix 4) of F,, F/Fn and opgy (FRRF) and PAR, temperature, salinity and
fluorescence (ship data) collected throughout the eastern tropical Atlantic (ETRA) province,
AMTS6. Semivariograms are in parameter units squared whilst lag h is in decimal minutes.
Data used was from data points logged every 10 minutes.
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Figure A3.6. (contd.)— Summary of semivariograms performed on along track surface (7m)
data (see Appendix 4) of F,, F./Fn and opsy (FRRF) and PAR, temperature, salinity and
fluorescence (ship data) collected throughout the northern equatorial (NEQ) province,
AMTS6. Semivariograms are in parameter units squared whilst lag h is in decimal minutes.
Data used was from data points logged every 10 minutes.
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Figure A3.6. (contd.}— Summary of semivariograms performed on along track surface (7m)
data (see Appendix 4) of F,, FJ/Fn and opsy (FRRF) and PAR, temperature, salinity and
fluorescence (ship data) collected throughout the northwest African upwelling (NWA)
province, AMT6. Semivariograms are in parameter units squared whilst lag h is in decimal
minutes. Data used was from data points logged every 10 minutes.
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Figure A3.6. (contd.}— Summary of semivariograms performed on along track surface (7m)
data (see Appendix 4) of F,, F\/Fn and Gesi (FRRF) and PAR, temperature, salinity and
fluorescence (ship data) collected throughout the north Atlantic subtropical gyre (NAST)
province, AMT6. Semivariograms are in parameter units squared whilst lag h is in decimal
minutes. Data used was from data points logged every 10 minutes.
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Figure A3.6. (contd.)— Summary of semivariograms performed on along track surface (7m)
data (see Appendix 4) of F,, F./Frn and cesi (FRRF) and PAR, temperature, salinity_and
fluorescence (ship data) collected throughout the north Atlantic drift (NADR) province,
AMT6. Semivariograms are in parameter units squared whilst lag h is in decimal minutes.
Data used was from data points logged every 10 minutes.
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Appendix 4— Along-track continuous measurement
of phytoplankton physiology, AMT6.

FRRF data were measured from the surface (7m) seawater supply throughout the AMTG6
transect. These data were binned into hourly averages and presented in Chapter 5. Fig.
A4.1. presents the data at the full resolution of acquisition (FRRF dark chamber data
logged approximately every 45 seconds) to give an idea of the noise/ variability
encountered. The corresponding along track measurements of seawatet temperature are
also shown as a means of comparison (hydrographic data logged once every 10 minutes).
Conversely, the FRRF data are also binned into day (PAR<0) and night (PAR=0)

averages, fig. A4.2. to further show the diffetences in mean parameter values between

provinces.

182



Variability of phytoplankton production rates in the Atlantic Ocean Appendices

Latitude (decimal degrees)
N

50 45 40 35 30 25 20 .15 10 5 0 -5 -10 -15 -20 -25 -30 -35

‘00 | — FRRFF,
~+- Ship (Turner)-fluorescence

Instrument units

S R
PRENESRARE e

Bttt
-

0.7 r

0.6 §
0.5

0.1

1000
I

800 -

- A

400

200

30 -

26 | "“"'"\\

24 | '\‘

22 t MW

20

16

14

10 : : ; : ; l : : ; ; ; : : TR
50 45 40 35 30 25 20 15 10 5 0 -5 -10 -1 -20 -25 {-30 -85

18 | v w w-l
Surface temperature (°C) ww
12
NADR NAST NWA NEQ ETRA NB SB

X

Figure A4.1.— Changes in surface (7m) FRRF variables as measured from the continuous
non-toxic seawater supply throughout AMT 6. Latitude (decimal degrees) and biogeochemical
provinces (see section 5.2.) are indicated. Data was collected every 45 seconds. Also shown
is ship-measured fluorescence and surface seawater temperature (collected every 10
minutes).
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Figure A4.2— Changes in surface (7m) FRRF variables as measured from the continuous
non-toxic seawater supply throughout AMT 6. Latitude (decimal degrees) and biogeochemical
provinces (see section 5.2.) are indicated. Data was collected every 45 seconds but has been
binned into day and night averages. ‘Day data’ was determined from corresponding surface
(ship-mounted) PAR, where PAR values (uncalibrated) were greater than 0.
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