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The main aim of the work described in this Thesis is the identification of the essential
features of various mesogenic molecules, necessary for the formation of liquid crystals
with the aim of simulating the formation and behaviour of the liquid-crystalline
mesophase.

The first two chapters introduce the various classes of liquid-crystalline mesophases and
the techniques of computer simulation. This includes the calculation of various
orientational, structural and dynamic properties used to classify the mesophase and a short
review of the work done to date on the computer simulation of liquid crystals. This allows
us to place our work in the appropriate context.

In Chapter 3, we use the Gay-Berne potential to represent the triphenylene moiety, and
while is not liquid-crystalline itself, it is the basis for many thermotropic discotic
mesogens. Via suitable parametrisation of our potential, we have performed molecular
dynamics simulations studies which show that in addition to isotropic and crystal phases,
discotic nematic and hexagonal columnar phases are also formed.

Chapter 4 uses the configurations generated from the simulation in the previous chapter to
provide a basis for the calculation of X-ray diffraction patterns which allow us to gain
further insight into the structure of the mesophase.

In Chapter 5, again via suitable parametrisation of our Gay-Berne potential model, we
hoped to simulate the formation of a discotic smectic phase in which the symmetry axis of
each discogen is normal to the layer, and while not entirely successful in this aim, it did
bring to light some deficiencies in the potential which we have tried to address and correct.

Chapter 6 investigates the effect of the molecular anisotropy on the phase behaviour of the
Gay-Berne potential, parametrised to represent a rod-shaped mesogen. We have formed
nematic, smectic A and smectic B mesophases and by changing the shape anisotropy as
well as the simulation density, we explore their effect on the nematic-isotropic transition
temperature and the phase behaviour.
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1. Liquid crystals

1.1 Introduction

The term liquid crystal describes one of the states of matter lying in between the crystalline
solid and the isotropic liquid, another being the plastic crystal!. This intermediate state is
known as the liquid crystal mesophase and at the macroscopic level exhibits the fluidity of
a liquid, while having anisotropic properties such as birefringence, usually associated with
a solid phase. Depending on the structure of the constituent molecule, a system may exhibit
several different mesophases and transitions to these intermediate states can be brought

about by varying the temperature and, if it is a binary system, the solvent concentration.

Lyotropic mesophases'’ are formed by systems composed of amphiphilic molecules,
containing polar and non-polar parts, and a solvent, usually water. These amphiphiles
aggregate into clusters known as micelles, and if the micelles are anisotropic in shape then

they can arrange themselves into various mesophases.

Thermotropic mesophases™ are usually composed of unassociated organic molecules and
are obtained by heating and cooling pure mesogenic compounds. Several thousand organic
and some inorganic compounds have shown liquid-crystalline mesophases, with the
essential, but not sufficient, requirement for the formation of the liquid-crystalline phase
being, that the constituent molecule must deviate from spherical symmetry. Thus the
majority of thermotropic liquid crystals are composed of rod-shaped or disc-shaped
molecules, though many new shapes of mesogen have been discovered, for example,
phasmidic mesogens have three flexible, terminal substituents at each end of the molecule,
while hemiphasmidic mesogens are a combination of both rod-shaped and disc-shaped

moieties!.

The main aim of this Thesis is to identify the features of mesogenic molecules essential for
liquid crystal formation, and to then use them to see if we can model the formation and
characteristics of the liquid-crystalline mesophase. First though, we shall describe the
various types of liquid crystal phase, with particular emphasis on thermotropic liquid
crystals formed by rod-shaped and disc-shaped molecules, the properties that define each

phase and what happens at the transition from one phase to another.



1.2 Mesophases formed by rod-shaped molecules

The first liquid crystals were discovered in the 1880's'*, with their constituent molecules
being rod-shaped, (see figure 1.1). The mesophases they form can be classified according
to the long range molecular arrangement present within the phase and as such can be
placed into three broad groups: nematic, chiral nematic and smectic. These mesophases are
all distinguished from the isotropic phase by their long range orientational order with the
constituent molecules tending to align themselves parallel to a common axis called the
director. This is denoted by the unit vector n, with the states of the director, n or —n
indistinguishable from each other. An important property we need to define is the order
parameter S, introduced by Tsvetkov, which is used to give a quantitative measure of the
degree of orientational order within a mesophase. Assuming the molecules have cylindrical

symmetry, S is given as
S =((3cos?P - 1)/2), (1.1)

where J is the angle between the main symmetry axis of a molecule and the director, with
the angular brackets denoting a statistical average. Perfect parallel order, as in a crystal,
leads to a value for S of 1, total disorder, as in an isotropic phase gives S of 0, while in

liquid-crystalline mesophases, S takes intermediate values which are strongly dependent on

the temperature.

c)

R

Figure 1.1: Some examples of rod-shaped mesogenic cores: a) biphenyl, b) azoxybenzene and c) cholesterol.



1.2.1 The nematic phase

The molecular arrangement within the nematic phase is the simplest of the three
mesophase types, (see figure 1.2). The molecules are translationally disordered apart from
some short range correlation but do possess long range orientational order. The nematic
phase is uniaxial in its properties, in that there is a unique axis along which a property
displays one value, which is different from any value measured along any perpendicular
direction to this unique axis. A true uniaxial phase possesses D_, point group symmetry,
but for a nematic phase only second rank tensor properties have been measured, so in
theory it should have D, symmetry where n > 3, but it is normally assumed to have D_,
symmetry. There is also the possibility of a biaxial nematic phase in which there are three
distinct symmetry axes. This requires the constituent molecules to be biaxial and although
a biaxial nematic phase in a lyotropic system has been discovered”!, a thermotropic biaxial

N, remains elusive.

Figure 1.2: A schematic of the molecular organisation in the nematic phase, both perpendicular and parallel

to the director n.

1.2.2 The chiral nematic phase

Though we have classified it in a group on its own, the chiral nematic phase is a special
example of the nematic phase i.e. the nematic phase can be considered as a chiral nematic
of infinite pitch. At any point throughout the sample the phase has local nematic ordering.
On moving away from that point, in a direction perpendicular to the director, it can be seen
that the sample has a helical structure, in which the director orientation rotates
continuously in a helix along a preferred axis, (see figure 1.3). The pitch p, is defined as the
distance for a 2m rotation of the director and because m and -n are equivalent, the

periodicity of the structure is p/2.



This spiral arrangement of the molecules is responsible for the unique optical properties of
the chiral nematic phase such as reflection of circularly polarised light and a rotatory power
many times greater than that of ordinary optically active substances, with the mesophase
having S_ point group symmetry. Some liquid crystals produce additional optically active
phases between the chiral nematic phase and the isotropic liquid. Existing over a very
narrow temperature range, = 1 °C, these phases are known as blue phases and are generally
produced by a chiral nematic with a very short pitch. Three distinct types have been
identified: BPI having a body centred cubic lattice structure, BPII with a simple cubic
lattice and BPIII, called the "blue fog", the structure of which has yet to be determined, and

all of which are optically isotropic.

§
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Figure 1.3: A schematic of the director organisation in the chiral nematic phase.

1.2.3 The smectic phase

There are at least 12 distinct smectic phases'®, S,, S,,...... S S,, differing in their long
range order, which due to a higher degree of molecular long range translational ordering,
generally appear at a lower temperature in a phase sequence than the nematic and chiral
nematic. The smectic phases are layered structures and though they all have long range
orientational order, they can be differentiated by the degrees of order within each

mesophase.



An exception is the S or as it is now more commonly labelled, the D phase, which has a
cubic lattice. The "one dimensional" smectic phases are the S, and S. phases where the
order describes the layered structure. The smectic A phase is the most disordered of all the
smectic phases with only short range positional order within or between layers, (see figure
1.4a). This structure results in the smectic A phase being uniaxial with D_,, symmetry. The
smectic C phase is the tilted version of the smectic A phase, (see figure 1.4b), in which the
director within each layer is now tilted with respect to the layer normal. Though possessing
very little positional order, the tilt of the director means that the smectic C phase is
optically biaxial with C,, symmetry. For strongly polar molecules exhibiting these "one
dimensional" smectic phases, there are a variety of modifications of the smectic A and
smectic C phases possible. These phases show additional ordering created by
antiferroelectric effects'® but they are not really relevant here and so shall not be discussed

further.

The next class of smectic comprises the "two dimensional" phases, S, S and S,. These
phases have a layered structure, but also possess positional order within each layer and
though correlation between layers is absent, there is long range bond orientational order,
that is, there is a correlation between "bonds", vectors describing the axes joining adjacent
molecules. This implies that there can be long range bond orientational order without long
range positional order. The smectic B phase, (see figure 1.4c), has hexagonal packing
within each layer, this resulting in the phase having local D, symmetry and being uniaxial.
The smectic F and smectic I are tilted analogues of the smectic B thus are biaxial with C,,

point group symmetry.

The third class into which the smectic phases can be conveniently classified are the "three
dimensional" orientationally disordered crystals. These include crystal B, E, G, H, J and K.
Both the layered structure and positional order within each layer exist but now there is
correlation between the positions of the molecules within different layers. Though these
phases are crystal phases, the constituent molecules rotate about their long axes rather like
a one dimensional plastic crystal, differentiating these phases from true crystals. The

crystal B exhibits hexagonal packing within each layer and is uniaxial, (see figure 1.4d).



a)

b)
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Figure 1.4: A schematic of the molecular organisation in various smectic phases, both parallel and
perpendicular to the director, a) smectic A, b) smectic C, ¢) smectic B and d) crystal B mesophases. The
small circles in the latter two diagrams represent the sites of an imaginary lattice, used to illustrate the

increased positional order within the crystal B mesophase.

Crystal G and J are tilted versions of the crystal B thus have quasi-hexagonal packing with
biaxial symmetry. The crystal E phase has a herringbone packing pattern within the layers
while crystal H and K are the tilted analogues. There are also chiral analogues of various
smectic phases namely, S.*, Sp*, S, *, S*, S;* and S * where the twist axis is normal to the

layers'®. All tilted smectic phases possess C,, symmetry but when they become chiral the



symmetry drops to C,, with the symmetry axis being perpendicular to the tilt direction and
to the layer normal. For the S,* phase, the structure of the mesophase differs in that the
helical axis is now parallel to the layers and consists of smectic A blocks separated by twist

dislocations, giving rise to an alternative name, the "twist grain boundary" (TGA) phase.

1.3 Mesophases formed by disc-shaped molecules

In 1923, Vorldnder” recognised that disc-shaped molecules should form mesophases but
until twenty years ago, the vast majority of thermotropic mesogens were still composed of
elongated, rod-shaped molecules. Then in 1977 the first discotic liquid crystals were
synthesised by Chandrasekhar et al.”®, the general shape of the molecules having a flat
aromatic core with four, six or eight lateral alkyl chain substituents. Figure 1.5 shows the
basic molecular structure of a variety of disc-shaped compounds which form discotic
liquid-crystalline mesophases. Unlike rod-shaped molecules where they can play a small
part, and sometimes are not needed at all, in mesophase formation, these lateral alkyl

chains seem to be crucial for the formation of the discotic liquid-crystalline phase.

a R

c)

Figure 1.5: Some examples of disc-shaped mesogenic cores: a) benzene, b) truxene and c¢) pyrene.



The molecules align with their symmetry axes parallel, as in mesophases formed from
rod-shaped molecules, and this leads to three main phase types, discotic nematic, columnar
and discotic smectic. To avoid any confusion, for discotic mesogens, the symmetry axis is
normal to the plane of the disc, so in contrast to the nematic phase in §1.2.1, these phases
are generally optically negative, although this also depends on the molecular structure as

well as the molecular organisation within the phase.

1.3.1 The discotic nematic phase

As with the nematic phase composed of rod-shaped molecules, the molecular arrangement
within the discotic nematic phase is the simplest of the mesophase types, (see figure 1.6),
and the first examples of this mesophase were discovered by Tinh et al”, in the
hexa-substituted ethers of triphenylene. The molecules are translationally disordered apart
from the usual short range correlation but do possess long range orientational order. In a
sense the term discotic is not needed because the phase is just like any other nematic phase,
it is just the constituent molecules which are different, though we shall persist with the

terminology in order to differentiate between mesophases formed by rod-shaped molecules.

Figure 1.6: A schematic of the molecular organisation in the discotic nematic phase.

1 which was found

The discotic columnar nematic phase is a recently discovered phase
to be exhibited by a binary mixture of compounds that formed a charge-transfer complex.
On their own both components are not liquid-crystalline but on mixing, a complex is
formed composed of the two compounds stacking in short columns in such a way as to
maximise the number of unlike contacts. These columns then behave as rod-shaped

mesogens, forming a nematic phase with long range orientational order but only short



range translational order, (see figure 1.7). However there is considerable doubt as to
whether this is a new phase when the difference between it and the discotic nematic phase

seems to be one of local packing.

Figure 1.7: A schematic of the molecular organisation in the discotic columnar nematic phase.

N\

NN N

Figure 1.8: A schematic of the molecular organisation in the chiral discotic nematic phase.
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1.3.2 The chiral discotic nematic phase

Analogous to the chiral nematic phase formed by chiral rod-shaped mesogens, there also
exists a chiral discotic nematic phase, (see figure 1.8), and as expected for a chiral phase,
these mesophases are highly coloured. The first compounds to exhibit the twisted discotic
nematic phase were the enantiomeric esters of hexa-substituted benzene, triphenylene and

121 where the chiral centre is located in the substituted chain.

truxene
1.3.3 The columnar phase

These were the first discotic phases to be discovered® and are characterised by columns of
stacked molecules that have two dimensional long range translational order and three
dimensional long range bond orientational order. The molecules within each column can be
ordered, D, with respect to neighbouring molecules in the column, or disordered, D,,
producing liquid-like columns, and can be orthogonal or tilted with respect to the column
axis. The columns themselves can either be parallel or tilted relative to the director, while
the packing varies from a hexagonal net to a variety of rectangular lattices, (see figure 1.9).
It is interesting to note that X-ray diffraction studies have shown that in most columnar
phases, it is the molecular cores that are highly ordered with the terminal, flexible chains

being conformationally disordered'"'.

1.3.4 The discotic smectic phase

The class of molecules known as the metallomesogens'* have been shown to form a wide
range of mesophases, from the nematic, smectic and chiral nematic phases exhibited by
rod-shaped mesogens to the discotic nematic and columnar phases previously discussed.
But one of the most intriguing discoveries came in the form of a new class of mesophase
formed by disc-shaped metallomesogens, (see figure 1.10), the discotic smectic phases.
These phases are characterised by sheets of molecules in which there is no translational
ordering and that the symmetry axis of each molecules can be perpendicular’, (see figure
1.11a) or possess a tilt, similar to the smectic C, with respect to the layer normal'®. A
discotic columnar smectic phase has also discovered'”! in which the molecules within each
layer form columns, similar to the smectic B phase, (see figure 1.11b). Another possibility
exists in which the discs in the layers have their symmetry axis perpendicular to the

{18}

layers"® and it is this mesophase we shall explore in Chapter 5.



11

Figure 1.9: A schematic of the packing within the various columnar phases. Structures of the orthogonal
columnar phases, a) hexagonal (P6 2/m 2/m), b) rectangular (P2/a), c¢) oblique (P,), d) rectangular (P/a)

and tilted columnar phase e) rectangular face-centred (C2/m).
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Figure 1.10: An example of the disc-shaped metallomesogens, a) the bis-(4-n-decylbenzoyl)methanato

copper (Il) series of compounds, and b) the octa- substituted metallo-phthalocyanine series of compounds.

Figure 1.11: A schematic of the molecular organisation within a) the discotic smectic phase and b) the

discotic columnar smectic phase.
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1.4 Phase transitions between liquid-crystalline mesophases

1.4.1 Polymorphism

An important point to note is that each liquid-crystalline compound is not constrained to
exhibit just one type of mesophase. In fact, many compounds exhibit a wide range of
mesophases. But far from occurring in a haphazard order, we can usually predict the
sequence in which the phases will appear, from the fact that raising the temperature results
in progressive destruction of the long range molecular order. Thus generally, the sequence
proceeds from the smectic phases at lower temperatures with a high degree of molecular
ordering due to their layered structure, through the nematic or chiral nematic phases, to the

isotropic fluid. There is also a predetermined order"”

within the smectic phase with
increasing temperature. Starting from the disordered crystals, crystal B, E, G, H, J, K and
D, which have three dimensional orientational and translational order to the two
dimensionally ordered mesophases, smectic B, smectic F and smectic I. The smectic
phases appearing at the highest temperatures are the one dimensional phases, smectic A
and smectic C. As usual there are exceptions to these rules, and it concerns the
phenomenon known as re-entrance. Usually occurring in strongly polar compounds, it
involves the formation of a nematic or smectic phase in between a smectic and another
smectic/crystal phase on cooling from the isotropic phase, €.g. Sy - Ny, oo - Sa - N - L

Discotic liquid crystals also exhibit a rich polymorphism. On heating from the crystal the
columnar phases appear first with their highly ordered columns, then the discotic nematic
phases onto the isotropic liquid. As with the smectic phases, there are a variety of phase
transitions between the columnar polymorphs. Examples include ordered hexagonal
columnar to disordered hexagonal columnar where the order refers to the stacking of the
molecules within a column, and hexagonal columnar to rectangular columnar. This latter
phase transition consists of a small distortion in the lattice combined with an orientational
order-disorder transition of the molecular cores, in that the tilts in neighbouring columns
are no longer rotationally correlated®”. As with rod-shaped mesogens, there also exists the

possibility of re-entrant columnar and discotic nematic phases. The first example of

re-entrant phases in discotic mesophases was found in a truxene derivative®”, (see figure

1.12).
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Figure 1.12: A typical disc-shaped mesogen exhibiting a variety of mesophases that include a columnar and

a re-entrant discotic nematic phase.

1.4.2 Phase transitions

Most of these phase transitions are enantiotropic in that they take place reversibly on
heating and cooling, though conversion to the solid phases is usually accompanied by some
supercooling. There are also monotropic phase transitions, that is they are only observed on
cooling a system from the isotropic liquid, as they occur below the melting point. We have
discussed the types of mesophase that can be formed by liquid-crystalline compounds and
the order in which the phases appear, but what happens at a phase transition and are there

differences between the transitions?

At the microscopic level, the positional and orientational ordering changes as the
molecules respond to change in external stimuli such as temperature or pressure, while
changes also occur in the macroscopic properties of the system, such as the density,
refractive index and long range orientational order. But these changes are not the same at
each transition, and so the phase transitions are classified into various types characterised
by the thermodynamic properties of the system. We shall now discuss the Ehrenfest

classification using the thermodynamic free energy and its derivatives.
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The quantities” used to classify a phase transition for a liquid-crystalline system of N
particles at constant volume are the Helmholtz free energy 4, and its first and second

derivatives, that is, the entropy S and heat capacity C,, defined respectively by

S=—QA4/3T)y, (1.2)
Cy=-T@*4/T?), (1.3)

In the original classification by Ehrenfest, a phase transition is classified as being #" order
if the first (n—1) derivatives of the free energy functions are continuous across the phase
transition, while the »" derivative shows a discontinuity. Thus for a first order transition
there is a finite discontinuous change in S but an infinite discontinuous change in C,.
Following this, for a second order transition, the entropy is continuous and the second
derivative of the free energy, the heat capacity is discontinuous. The phase transitions of
liquids crystals and other compounds can thus be classified as first order if there is a
change in entropy, and second order or higher if no change in the entropy occurs. We
should note that at constant pressure which applies for most experimental studies, we

should use the Gibbs free energy G, instead of the Helmholtz free energy.

For rod-shaped mesogens®™!, the nematic - isotropic and chiral nematic - isotropic
transitions are weakly first order reflecting the low difference in molecular order between
the various phases, with AS generally being in the range 1 - 5 J K" mol”, this value being
smaller for disc-shaped mesogens. This is compared with a value of 5 - 15 J K mol” or
higher for strong first order transitions such as the smectic C - isotropic and smectic B -
smectic A transitions. An example of a second order transition is the smectic C - smectic A
phase transition in which only the tilt of the director changes, with AS in the range of 1 - 2
J K" mol". Similar trends can be observed in systems of discotic liquid crystals™L with the
columnar - isotropic being an example of a strong first order transition. The columnar -
discotic nematic transition is weakly first order, while a second order transition can occur

between different columnar mesophases.

1.5 Summary of the remaining chapters
In this Chapter we have given a basic text book introduction to the area of liquid crystals,

laying out the various mesophases that can be formed and describing the properties of these



16

phases that are of interest to us in this Thesis. The next chapter, Chapter 2, is similar in that
there we describe the techniques of computer simulation and how they can be applied to
the area of liquid crystals, while also reviewing previous simulations of the
liquid-crystalline mesophase. We also give definitions of the various order parameters and
distribution functions that we use to investigate the phases. The remaining chapters will
seek to show how we can use these computer simulations of model liquid crystals, to gain a
better understanding of the physics of real liquid crystals. Specifically, we shall concentrate

on the model used for the molecular interactions, the Gay-Berne potential.

Chapter 3 describes our simulations of discotic liquid crystals based on the Gay-Berne
potential model and illustrates some interesting aspects of phase behaviour. Chapter 4
shows how we can use the various results from the preceding chapter to calculate X-ray
diffraction patterns, allowing us to gain a better understanding of the structure of the
mesophases and to make contact with experiment. Chapter 5 describes some additional
simulations of discotic liquid crystals using the Gay-Berne potential, while also discussing
some deficiencies that have arisen in the potential model used and Chapter 6 explores a
system of Gay-Berne rods of varying length-to-breadth ratios and the effect of this on their

phase behaviour.
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2. Techniques in computer simulation

2.1 Introduction

2.1.1 Why use computer simulation?

Before we discuss in detail the techniques of computer simulation, we should mention
what we mean by computer simulation and our motivation in using it to study liquid
crystals. The liquid-crystalline state, having characteristics of both the solid and liquid
phases i.e. a combination of long range and short range order, is fairly complicated.
Despite this, a great deal is known about the macroscopic properties of liquid crystals such
as the structure of their mesophases and the transitions between them. Indeed, quite a lot is
also known about the microscopic properties of liquid crystals and how subtle changes in
molecular detail can have a profound effect on the macroscopic behaviour. There are also
many theories, such as the molecular field and continuum theories!!, describing the liquid
crystal mesophases, yet many features still remain to be discovered and understood. This is
where computer simulations can help us.

{21

By using the techniques of Monte Carlo* simulation in which we use random numbers to

generate a sequence of molecular configurations in phase space, and molecular dynamics",
where the newtonian equations of motion are solved for a limited number of particles, we
can introduce our model of a liquid crystal. If we then run the simulation and observe the
behaviour of the system, we can test the validity or otherwise of the initial model by
comparing the results of the simulation with those obtained from real experiments. We can

then refine and improve our models of how liquid crystals behave, in addition we can test

various analytical theories and see how they might be improved.

Computer simulation also has several other advantages that make it attractive to use in
studying liquid crystals. We can control the majority of conditions with great accuracy and
observe behaviour under various extremes of temperature, pressure and external fields, that
could not be readily achieved by the usual experimental methods. It also allows us to
calculate structural and dynamic properties, such as the distribution and correlation
functions, not easily obtainable in the laboratory, giving us additional information on the

behaviour and structure of liquid crystals.
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2.1.2 Intermolecular forces

We have previously indicated how we can use computer simulations by introducing our
model of the intermolecular interactions. Well for liquid crystals, in fact for all systems,
this is achieved by defining an intermolecular potential, an equation that describes the
interaction between constituent molecules of the system as a function of the coordinates
describing their positions. These interactions or forces between molecules can be
conveniently divided into the attractive and repulsive components®, and occur in all

molecules, not just those which form liquid crystals.

The attractive forces between molecules are generally represented by the van der Waals or
dispersion interactions between molecules and they usually vary as a function of distance
as 1/r°. These forces act over several molecular lengths and hence are known as long range
attractive forces. We can also build into our intermolecular potential more explicit
attractive forces such as dipole-dipole, quadrupole and charge-charge interactions which

are longer ranged.

The repulsive interactions between molecules occur when the molecules are squeezed close
together causing electronic repulsions, these repulsions increase sharply, the closer the
molecules approach each other. Producing a functional form for these repulsive
interactions from first principles is extremely complicated, but again we can define the
repulsive forces between molecules as a function of distance and this usually takes the
form of 1/r'%. These forces act as the molecules approach close together and hence are
known as short range repulsive forces. We have just given an overview of the forces acting
between molecules but we need a way of incorporating them into the simulation. This is

achieved by the use of the pair potential.

2.1.3 Pair potentials
For a system of N molecules, the potential energy may be divided into terms depending on

the coordinates of individual molecules, pairs of molecules, triplets etc. and as such can be

written as

U=XU)+ XX Us(rir) + XX X Us(rirj,r) + .. (2.1)

i > i i k>p>i
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though in the case of liquid crystals we must build in anisotropic forces as well. Care must
also be taken to sum over all distinct pairs i and j without counting any pair twice. The first
term represents the effect of an external field, while the remainder define the
intermolecular interactions. The second term U,(r, r), the pair potential, is the most
important; it represents the interaction between two molecules and contributes the most to
the total energy. Higher terms also contribute but as they are very computationally
expensive to calculate, they are often neglected. As we normally use only the pair term in a
simulation this might not seem to be an accurate reflection of the various interactions, so
we overcome this in part by defining the pair term as an effective pair potential in that it
represents all the many body interactions, albeit in an approximate manner. This does mean
that the effective pair potential will depend on the temperature and density of the system,
where as the real pair potential does not. We have previously discussed representing
repulsive and attractive forces in various functional forms, and as such, can be used on

their own as pair potentials. One such potential is the hard sphere potential, where
Uns = 0 (r > G), (2.28.)
Upys =oo (r<o). (2.2b)

Here, r is the separation between the interacting molecules and ¢ is a range parameter

known as the contact diameter, the distance at which two particles touch. Another

approximation used is the soft sphere potential defined as:
Uss =€(G/l’)v, (2.3)

where v is a parameter, often chosen to be an integer and as v is increased, the potential
becomes "harder", tending to the shape of the hard sphere potential. An extension of the

hard sphere potential that contains attractive forces is the square well potential defined as

o (r<oy), (2.4a)
Usw=-¢ (6, £r<o0y), (2.4b)
0 (6250, (2.4¢)

while one of the most commonly used pair potentials that incorporates attractive forces is

the Lennard-Jones 12-6 potential and takes the form:

U(r) = 4¢[(o/r)'2 — (6/r)8], (2.5)
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with the repulsive part represented by the (6/r)'* term and the attractive part by the (c/r)°
term. At separations less than the molecular diameter G, the potential is repulsive with a
steep wall, becoming increasingly steeper the closer the molecules approach. As the
molecules move further away from each other, the attractive forces dominate. At very large
separations though, the molecules do not interact between each other thus the energy and
hence the potential tends to zero. To make these potentials model the behaviour of liquid
crystals, an orientational dependence needs to be built in and we shall describe how this is

achieved and the variety of potentials that are actually used to simulate liquid crystals in

§2.5.

2.1.4 Ensembles

The aim of a computer simulation is to calculate the thermodynamic, structural and
dynamic properties of a system, the macroscopic behaviour, from the microscopic
behaviour via the pair potential. This conversion is achieved by statistical mechanics"' and
the use of ensembles. A basic postulate of statistical mechanics is that the time average of a
mechanical property in a system is equal to an average over an imaginary array of replicas
of the system so instead of following one system over time, we can take an average picture
of a collection of systems, the so-called ensemble. As the original system is defined by
fixed thermodynamic parameters, we can fix certain properties of the ensemble, allowing
us to perform computer simulations under varying conditions. There are a variety of

ensembles'® that are currently used.

The microcanonical or constant NVE ensemble, is most commonly used in molecular
dynamics simulations (see §2.3). The total energy E, and volume V, of the system are fixed
but the temperature and pressure vary. This means, especially in our system of Gay-Berne
particles, a step is needed in which we scale the velocity of each particle so as to keep the
temperature at the desired value. The canonical or constant NVT ensemble is mainly used
in Monte Carlo simulation, where the temperature of the system is fixed. As with the
microcanonical system, the pressure is free to fluctuate but as most experimental data is
obtained at constant pressure, these two ensembles are generally considered unsuitable for

some simulations.
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Thus the isothermal-isobaric or constant NPT ensemble becomes particularly useful as we
can now vary both the size and shape of the simulation box. This has the advantage in that
you should not be able to observe two phases coexisting, an important feature when
studying a series of phase transitions. In the grand canonical or constant VuT ensemble,
the chemical potential |, is fixed, while the number of particles can fluctuate. Its great
advantage is that the free energy of the system can be easily calculated, with its main use
being the study of monolayer adsorption near a surface. In our discussion of ensembles, we
should perhaps mention the Gibbs Monte Carlo technique'” which is used to simulate fluid
phase equilibria. It has two simulation boxes which consist of two coexisting phases in

which the chemical potential is equal but the volume and number of particles can change.

2.1.5 Small systems

There is one major obstacle to be overcome with computer simulation and that is the
problem of the system size. The number of molecules with which simulations are carried
out, typically ranging from a hundred to several thousand, are well short of the numbers
present in real systems. This limitation is due to the finite speed and limited storage and
memory capacity of even today's computers. As we are interested in the bulk properties of
liquid crystals, a legitimate question'® is, can we compare the properties of the few hundred
particles in a computer simulation with real systems composed of 107 particles? Well,
fortunately, the bulk properties of a system can be obtained from relatively few molecules
provided the range of the intermolecular potential is relatively short and periodic boundary

conditions are used to eliminate the effects of any free surfaces.

As an example of periodic boundary conditions, let us take a square simulation box in two
dimensions which is surrounded by exact replicas of itself, (see figure 2.1). Each replica
box is in turn surrounded by similar images to form an infinite lattice containing no
surfaces. During the simulation, when a particle moves in the original box, all the images
of the particle necessarily move in their corresponding boxes. If a particle leaves the
original box, an image of it appears on the opposite side of the box, from a neighbouring
box and this is illustrated by the particle D, thus a constant density is maintained in the

simulation box.
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2L

Figure 2.1: A two dimensional periodic system with minimum image convention (square) and potential

cut-off (circle).

This method of periodic boundary conditions is not perfect for it inherently imposes a
periodicity of half the box size, L, on the system but it is successful in allowing us to
simulate systems using a small number of particles by removing the free surface. The
minimum image convention needs to be used when employing periodic boundary
conditions. This constrains each particle in the original box, to interact with every other
particle or its periodic image only once, that is, a single particle interacts with the closest
image of the other N—1 particles. This is equivalent to constructing a box of the same
dimensions around one particle, and allowing it to interact only with the particles in the
new box. Thus for particle B, instead of interacting with particle A in its own box, it will

interact with the closest periodic image of A, that is particle C.

Also, as the largest contribution to the potential energy comes from neighbours close to the
particle of interest, we apply a spherical cut-off, r_. This means that if a particle is more
than a pre-set distance away from the particle of interest, such as particle A, the pair
potential for the two particles is set equal to zero. Though the number of such contributions

increases with the separation, it is pointless to calculate essentially zero contributions to
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U(r) and so the cut-off is applied in order to minimise the time a simulation takes. This will
mean that the calculated potential energy will be incorrect, thus r, should be large enough
to minimise any errors, though by applying long range corrections'®’ we can estimate this
lost energy of interaction. A particular problem encountered in molecular dynamics is that
we need to stop the potential from being discontinuous at the cut-off point as this avoids
problems in calculating the derivatives of the force. What we do is to "ramp" the potential

from 0.95r, to 1.0r,, so that the potential is truncated at a U(r) of 0™, (see figure 2.2).

1.0r, 0.95r, 1.0r
U(r) : Utr) ‘ '

a) b)

Figure 2.2: a) A straight potential cut-off applied to an intermolecular potential. b) By "ramping" the

potential from 0.95 r_to 1.0 r, we can avoid any discontinuity in the potential.

But this still leaves us with the question, can we compare a small, infinitely, periodic
system with a macroscopic one? This depends of the range of the intermolecular potential
used and the type of phenomenon under investigation. If the potential is short ranged then a
box of several molecular lengths should be long enough so that the system does not "sense"
the symmetry imposed by periodic boundary conditions. If the potential is long ranged
such as a charge-charge interaction, then there will be a substantial interaction between a
particle and its own periodic images, thus in this case other techniques for handling long

ranged forces are implemented®'.

2.2 Monte Carlo simulations
The Monte Carlo technique gained its name from the use of random numbers, and was
devised in 1953 by Metropolis et al.”” to evaluate statistical averages. If we have a system

of known potential energy

Uy =7 X Ulr;, Q1. Q)), (2.6)

i#f

D =
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where r, represents the position and €2, the orientation of a molecule 7, then we can

calculate any time independent property A4 for a certain configuration j, as an average {(4).

This can be written for the NVT ensemble as

_ [4exp(BUy)A{(r, )"}

4= . 2.7
W [exp(BUNA{ (r, )} (2.7a)
which is approximated by
> Aexp(BUy)
A =S5 BT 2.7b
“ 2 exp(BUw) (2.7b)

with the value of 4 for this configuration being A?. If we repeat this process M times, then

the average (4) in equation (2.7b) would now be

X

() =+ 3 A0 idm), 2.8)
=

—

with M being large enough to reduce any significant statistical errors in (4). Providing the

system is ergodic, we can replace the average in equation (2.8) with an ensemble average,
| M
<A>ens = A_l Z A(Fj)pens(rj)a (29)
J=1

where our collection of systems of points in phase space are distributed with a probability
P.(I), with the property 4 of the system having a value I at that instance. Thus the aim of
a Monte Carlo simulation is to generate a trajectory in phase space which samples from a
chosen statistical ensemble defined by a set of fixed parameters. One vital part of the
Monte Carlo technique that we should briefly mention is importance sampling® in which
we concentrate on performing the simulation in regions of phase space that make important
contributions to the integral in equation (2.7a). Sampling from this non-uniform
distribution, allows us to simulate more quickly and efficiently. The main steps in a Monte

Carlo simulation include:

i) The initial configuration: The first step is to set up a starting configuration with N
particles contained in a cubic box or similar boundary conditions. In theory we could start
from any state as the ergodic hypothesis means that any state can be reached from any

other, given infinite time. But as we need to reach an equilibrium state within a finite time,
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we need choose a reasonable starting configuration. For example, it is generally considered
difficult to generate a crystal from an isotropic fluid via one state point, so in practice a
number of intermediate state points are simulated, each run using the final configuration of
the previous run as its starting point. Usually in the initial run of a simulation, especially if
a new system is being studied, the position of each particle is associated with a lattice.
Historically an o-fc.c. lattice has been used for liquid crystal simulations, the initial

orientations, being chosen either at random, or selected from a gaussian distribution.

Especially with simulations of liquid crystals, there is the problem of Aysteresis, that is, the
system remembers the order from a previous simulation i.e. the starting configuration. This
will impose various degrees of order that would otherwise not be present in the system, this
being particularly true when starting from a lattice configuration. This would be a big
problem in liquid crystal simulations where we are trying to form liquid-crystalline phases
spontaneously. So we try to minimise this effect by heating the starting crystal structure
into the isotropic fluid, so hopefully destroying all residual order within the system. This
process can be monitored to see if it is successful by calculating properties of the system
such as the translational order parameter!®., Once we are confident that all order has been
removed, we would be ready to proceed with the simulation by cooling the system. Once
an initial configuration has been generated, be it either a lattice or from a previous

simulation, the energy U, of the configuration is calculated:
N
Usa =2, U(rg-ld). (2.10)
Jj=1

ii) Moving the molecules: Once the initial configuration has been set up and the energy
calculated, the particles are then ready to be moved one at a time. The first particle, either
picked at random or sequentially, is given a uniform, random, translational displacement

according to the equation
Fre = pold 4 (28 — 1)87 max- (2.11)

This is repeated along each of its coordinate axes with &r _ being the maximum

max

displacement that a particle is allowed and & a random number. If dr___ is too large then

max

most of the attempted moves are rejected and the phase space is explored very slowly. If

or is too small then most moves are accepted but the particles never move any

max



27

significant distance. The maximum displacement is usually adjusted during the simulation
so that half the moves are accepted and half the moves are rejected. The rotational motion
of the particles is handled in a similar fashion to the translational motion. The orientation
of the particles u, can be described in terms of the Euler angles, and the new component is
calculated by selecting a laboratory axis at random, in this case the x axis, and rotating the

particle about an angle ¢ so that:
uy = l/tgld + (2& - l)aq)max, (2.12)

where 8¢, is the maximum displacement of the Euler angle and & is a random number.

iii) Calculating the change in energy: Once the first particle has been moved, the change in
energy OU between the old and new configurations is calculated by comparing the energy

of the first particle, i, with all other particles before and after the move, so that

ij ij

N N
SU=Upew —Upg=| X UE'™) =Y, U |. (2.13)
=1 =1

iv) Accepting or rejecting the move: Once the particle move has been attempted and the
change in energy OU calculated, it must be decided whether to accept or reject the move as
being significant to the system. If the move is downhill in energy, dU < 0, then the move
and the new configuration are accepted and the new energy of the configuration becomes
U, + OU. If the move is uphill in energy, 8U > 0, then the value exp(—BdU) is compared
with a random number &, uniformly distributed between 0 and 1. If the random number is
less than exp(—BdU) then the move is accepted. If a move is rejected the particle is returned

to its original position and the old configuration retained and counted again in the
averaging. This strategy is performed to allow the simulation to explore other regions of
phase space with possible potential minima, instead of locating and residing within the first

potential well found.

v} Equilibration: Once the process of selecting and moving a particle, calculating the
change in energy 0U and accepting or rejecting the move, has been performed N times, one

Monte Carlo cycle has been completed. The simulation is then run for many thousands of

cycles until properties such as the order parameter and energy are constant within the
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desired limits. Once the system is regarded as being in equilibrium, the various properties
of interest can then be calculated. As we have performed only molecular dynamics
simulations in this thesis, we shall not go into any further detail about Monte Carlo

techniques'”, but instead concentrate on molecular dynamics.

2.3 Molecular dynamics simulations

It was first recognised that Newton's equations of motion could be solved numerically for
many interacting particles by Alder and Wainwright in 1957"", The system is treated by
setting up the newtonian equations of motion, which are coupled with the interaction
potential between the particles via the forces and torques. This set of equations is then
solved numerically to give the positions, orientations and velocities of all particles as a
function of time. We have shown that in Monte Carlo simulations we calculate
thermodynamic observables by taking an ensemble average, but in a molecular dynamics
simulation, the system evolves in a real time sense and so we obtain physical properties by
taking a time average. Even so, we do employ the use of ensembles as a means of defining
the thermodynamic state of the system we are to study. If a property A at a particular point

I', in phase space has a value A(I') and the system evolves in time ¢, the macroscopic

property (A) can be thought of as a time average given by
1 t
(A) = (AT O))ume =lim - [ ACC(®) dr. (2.14)
0

This equation can be rewritten to average over a long finite time # consisting of a number n

of time steps of length &z = t/n so that
(A) = (A)ime = = T ACT()). (2.15)
n=1

i) The initial configuration: The same criteria used to generate an initial configuration for a
Monte Carlo simulation are used in a molecular dynamics simulation but an extra process
is needed to define the initial translational and rotational velocities of the particles. They
may all be assigned a value of zero or selected from a Maxwell-Boltzmann distribution
which matches the initial starting temperature. Additionally, the total translational
momentum, which is conserved throughout the simulation, and the angular momentum are

set to zero to stop the box from moving in space.



29

ii) Calculating the force: Once the starting configuration has been set up, the forces and
torques are calculated, using a double loop over all distinct pairs of molecules with the
minimum image convention and a spherical cut-off being employed. To do this we need a
potential function with which to define the interaction between the constituent particles.
The intermolecular potential can have a multitude of forms, common ones being the hard
sphere potential and the Lennard-Jones 12-6 potential, (see §2.1.3). For liquid crystal
simulations, an orientational dependence is built into the potential, the forms of which are
discussed in section §2.5. In this Thesis, we will use continuous potentials, so we shall
discuss how the system is treated with this type of interaction in mind, as different methods

are used when handling discontinuous potentials as for example with hard particles'?'.

iii) Moving the molecules: Once the forces and torques have been calculated using the
appropriate potential, the molecules can be advanced forward one time step by integrating
the newtonian equations of motion. The most fundamental form of these is the lagrangian

equation of motion,
<@L~ AL, =0, (2.16)

where q, represents the coordinates of the particles and L the difference between the kinetic
and potential energies. If we express q, in terms of cartesian coordinates, U the potential
energy, in terms of the sum of the pair interaction energies and K the kinetic energy, as the

sum of the momenta, then we obtain from equation (2.16),
ma; =F, 2.17

where F = —9U/dr, is the total force acting on the particle of mass m, with centre of mass r,
and acceleration a,. An equivalent set of equations can also be constructed for the rotational

motion and assuming axial symmetry, can be written as

Io; =T, (2.18)

where T is the torque, I is the moment of inertia and ® the angular acceleration of each
particle. For a rigid body, the torque is the sum of the forces acting on each site in the
particle, but we use the Gay-Berne potential, a single site potential, in this Thesis. Thus we
can define the torque as equivalent to a force acting on a point at unit distance from the

{113]

centre of mass, in a direction perpendicular to the symmetry axis' . This force is the
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derivative of the potential at these coordinates, where the centre of mass is taken as the
origin, and is given by,
U/
E=| (dU/duy) |, (2.19)
(QUI0,)

where U; represents the orientation of the particle. The torque is now defined as
T=uxE. (2.20)

Once these equations of motion have been set up, the integration method used to solve

them must be chosen. The object of any integration procedure is to determine the phase

point I, representing the state of the system at time ¢, ,, = 7, + At. The state point I, is
calculated by means of a power series in At and for continuous potentials, we can use a
variety of finite difference methods. The procedure for choosing the integration algorithm

can be found in any general reference!®>'

and, amongst other factors, will depend on the
type of system being simulated and the computer resources available. The algorithm used
in our simulations, being present in the original program, is that developed by Verlet'"'.
The Verlet method is computationally cheap in that only one evaluation of the forces is
performed, but it does have some disadvantages in that the calculation of the velocities is
prone to errors and it is not self-starting in that we need to generate the first few points in
phase space before the main routine takes over. The Verlet algorithm is based on a Taylor

series expansion of the positions at time ¢ + &t and ¢ — 8¢, where 6t is the time step, such

that for an atomic system:
r(t+80) = r(t)+ v()dt +58r%a(s)....., (2.21)
r(t—81) = r(t) - v()dt + 38%a(1)....., (2.22)

where r are the coordinates, v is the velocity and a the acceleration. Addition of these two

equations produces the algorithm for the translational coordinates,
r(t+8f) = 2r(t) — r(t - 81) + dra(s). (2.23)

The algorithm for the rotational coordinates is slightly non-standard but is a Verlet-type
algorithm as used by Luckhurst et al!™ in their molecular dynamics simulations of

Gay-Berne mesogens.
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Equation (2.23) can be written for the angular coordinates so that,

u(t+ 8= 2u(r) —u(t+ 3+ 82 (r), (2.24)

where u is the vector defining the orientation of a particle and ® is the angular acceleration.
But to constrain the vector u(z + 8¢) to have unit length, a corrective force f(¢) is applied,

parallel to the symmetry axis of the particle, so at time ¢
f(r) = Ma(o), (2.25)
where A is a scalar quantity. So the corrected orientation at time ¢ + 8¢ is

u(z+ 8¢ = u(t + ) + ra(o), (2.26)
where
A =—a(t+ 80).u() £ {[u(z+ 6).0(1)]? — [ut + &1).u(t + 8] + 11172, (2.27)

The positive root is taken to minimise the corrective force. Similar to the maximum
displacement o6r__,, in the Monte Carlo method, the time step d¢, controls how well the
phase space of the system is explored. Too small a time step and the particles never move
any significant distance. Too large a time step and the solutions to the equations of motion
become unstable i.e. the energy is not conserved. The procedure to obtain the optimum &¢

{6}

is discussed in reference™. The velocities do not appear directly in the equations but can be

calculated from

V(t+8) = Slr(e+ 80— r(t— 80, (2.28)
with a similar analogue for the rotational velocities:
u(t+ 8t = zi&[ﬁ(ﬁ 8t) —u(t - 81)]. (2.29)

iv) Equilibration: The main problem, especially with liquid-crystalline systems, is that near
a phase transition, large fluctuations in the thermodynamic and structural properties can
occur, so considerable periods of time are needed for the system to reach an equilibration
state. Before a new state point is reached in the simulation, the system is run at a certain
temperature until it has lost all memory of its starting configuration. This is called the
equilibration period. This part of the simulation is especially important in a molecular
dynamics simulation as the temperature is not a constant of motion and so will drift from

its initial value. When this happens the integration must be periodically halted, usually
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every time step, though in our simulations we wait until the temperature has reached a
certain tolerance level. Then the translational and rotational velocities can be multiplied by
a scaling factor (7/T")" to restore the temperature to its desired value. The components of
this scaling factor are 7, the desired temperature and 7", the actual value as calculated from
the sum of the translational and orientational kinetic energies of the particles. Once the
system has reached equilibrium at a certain configuration, that is the temperature drift is
replaced by a fluctuation about a desired value 7, temperature scaling of the velocities is
ceased and the production period begins in which the various properties of interest are

calculated.

2.4 Calculation of thermodynamic, structural and dynamic properties

Once a system has been equilibrated at a certain state point, the production period begins,
where in a molecular dynamics simulation, the temperature scaling has been turned off, and
the thermodynamic, structural and dynamic properties of interest are calculated. For the
essential properties, such as the temperature, internal energy and orientational order
parameters, it is usual to calculate them during the course of the simulation, at each time
step and then average them according to the procedure described in equation (2.15). Other
properties such as time correlation functions are more usually calculated after the
simulation has finished, from a tape file that contains the positions, orientations and
velocities, both translational and orientational, of the particles stored at, say, every 5 or 10

time steps.

2.4.1 Thermodynamic properties
Temperature: In a molecular dynamics simulation, temperature is not a constant of the
motion, and so it has to be calculated from the translational and rotational components,

obtained from the equipartition principle,
NkgNtTr (2.30)
and

<21i‘(0i|2>=

NkgNg TR, (2.31)

D |—

1
2
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where N, and N; are the number of translational and rotational degrees of freedom
respectively. In our simulations N, = 3, corresponding to three dimensional movement

while N, = 2 as we assume each particle to be uniaxial in symmetry. The average

temperature T can then be calculated from,

NtTt+ NrTr
IT=———. .
Nyt Ny (2.32)
Internal energy: The average total potential energy per particle (U) is calculated from the
sum of just the pairwise interactions such that,

<U>=% 2 Ur;, Q;, l'j,.Qj), (2.33)
I N

Sisj<

where U(r,, Q, r, Qj), the effective pair potential, is summed over all time steps.

Heat capacity: At constant volume, the heat capacity C,, is defined as
Cy = (dU/0T)y. (2.34)

Calculation of this could involve using a cubic spline fit to values of (U), the average
internal energy, over a range of temperatures, and performing a numerical differentiation
with respect to the temperature. An alternative way to calculate the heat capacity is from

fluctuations in the potential or kinetic components of the energy. Thus,

(8K, = (NFI2NkR T2(1 — 3Nkg/2Cy), (2.35)

where K is the total kinetic energy, N; the number of degrees of freedom, which takes the

value of 5 for our system and
Bk, = (K*)—(K)*. (2.36)

However, as this property is calculated from fluctuations, we would expect it to be affected
by larger errors than values for the heat capacity calculated from equation (2.34) especially

near phase transitions. Against this, the heat capacity can be obtained from this method
using a single simulation state points whereas for dU/JT, at least three simulation state

points are needed.



34

2.4.2 Orientational properties

Orientational order parameters: The calculation of these properties are particularly
important in the simulations, as it gives us a quantitative measure of the orientational order
in the system, which is the essential feature of liquid crystals. For a uniaxial phase in which

the director is known, the second rank order parameter (P,) at any one time step is,

(Py)= (3cos?B; — 1)/2, (2.37)

i1

Z =

where B is the angle between the symmetry axis of the particle and the director n. However
in our simulations, the director orientation is not known, so the order parameter is obtained
by maximising the expression

1S, o a

N & Pa(uin), (2.38)

=

(Py)=

with respect to the unit vector n which renders (P,) a maximum. u defines the orientation

of the i"" particle in the laboratory frame. Equation (2.38) can be rewritten as

(Py)= %(ﬁ-Q.ﬁ% (2.39)
where the tensor Q is

u I
{3} (2.40)

After diagonalising Q and averaging the elements after each time step, the eigenvalues of
the ordering matrix are, in decreasing size, A, A, and A_, with the order parameter being

obtained from the largest positive eigenvalue, A, so that
(P2) = (312)+, (2.41)

and the corresponding eigenvector being the director orientation. If n is parallel to the z

axis of the simulation box, Q in its diagonalised form is

—(1/3)P2)+€
—(1/3XP2)—¢ , (2.42)
(2/3){P2)

where € is a measure of the phase biaxiality. Thus in a uniaxial phase, € is zero, but the

small system size in the simulation means it deviates from zero. The use of A, gives a good
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estimate of (P,) in the nematic phase, but leads to an order parameter of 1NN in the
isotropic phase, instead of zero, as we are always averaging a positive quantity. Eppenga
and Frenkel"! recommend that in certain applications it may be preferable to use the
middle eigenvalue A,. In the nematic phase, A, = A= —1/2A_, resulting from Q being
traceless, thus the order parameter is equal to —2A,. In the nematic phase this would make
very little difference, however in the isotropic phase, (P,) would be closer to zero, as we
are averaging A, which can change from positive to negative, having an associated error of

1/N. An alternative route to the order parameter is the pair orientational correlation

coefficient G,(r), the use of which will be discussed later.

We can also calculate the fourth rank orientational order parameter (P,), a quantity which is
difficult to measure using experimental methods, though the use of polarised Raman
scattering has provided a route to obtaining some experimental values''”. (P,) is the

average of the fourth rank Legendre polynomial and is defined as
(P = %(35 cos?B—30cosP +3). (2.43)

This calculation is possible in our simulation as we have already calculated the director
orientation and hence can quite easily find B, the angle between the symmetry axis of each

particle and the director.

Singlet orientational distribution function: The orientational order of an ensemble of
molecules can be specified by the distribution function P(r, £2) which gives the probability

of finding a molecule at a particular position r with a particular orientation €. For the

nematic phase,

P(r, Q) = pflQ), (2.44)
where p is the number density and f{Q) is the orientational distribution function with €2
being the set of angles o, B and 7y, the molecule makes with the laboratory frame. In a
uniaxial phase such as the nematic phase the distribution depends on just 3, so the particles
have their long axes at an angle between P and B + dcosf, with respect to the director. We

can expand f{B) in terms of Legendre polynomials, and because n = —n, it follows that fn
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—B) = AB) as cos(n — B) = cos(P), thus this implies that only even terms can occur, so f{f3)

becomes,

oo

By= X %(2L+ 1)fLPL(cos P). (2.45)

L=0 & even

We can evaluate the expansion coefficients f,, from the orthogonality of the Legendre

polynomials, so that the first three coefficients are

fo = (Po(cos B)) = 1, (2.46)
f = (P2(cos B)) = (3 cos? B — 1)/2, (2.47)
fa = (P4(cosP)) = (35cos*B —~30cos?f +31)/8, (2.48)

where f, can be recognised as the order parameter introduced in equation (1.1) and as that
calculated in the simulation, and f, the fourth rank order parameter (P,) as defined in

equation (2.43). Substituting equations (2.46) - (2.48) into (2.45) gives f(3) as
fiB) = %(1 + 5(P3(cos B))2 + (P 4(cos B)2........). (2.49)

To obtain the singlet orientational distribution function in the simulation, we calculate the
angle between the symmetry axis of the particle and the director. We then sort the angles
into histograms bins over the range cosP = 0 - 1, normalising with the number of particles

present in each bin and the number of configurations used.

2.4.3 Structural properties
The radial distribution function: The radial distribution function g(r), is a widely used
quantity with which to investigate the translational order within a system; it can be defined

as

o(r) = -]Ygz_—l) [ exp(-BUr1. Fa....xy))drs....dr, (2.50)
N

where p is the number density and Z, is the configurational partition function. It gives the
probability of finding a particle at a distance r from the origin of another particle, relative
to the probability in an ideal gas. At large separations, the positions of any two particles
will be largely uncorrelated, so the probability will tend to the density p of the fluid, but as

g(r) is normalised by p, g(r) will tend to the value of one. For particles with a hard
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repulsive core there is a zero probability of finding another particle closer than a minimum
distance o, the molecular diameter, so g(r) takes the value of O at separations less than ©.
The position of the peaks can be used to identify shells of neighbouring particles and the
area under each peak is the number of neighbouring particles, thus helping to determine the
structure of the phase under investigation. The radial distribution function in the simulation

is calculated by constructing a histogram n of all the minimum image particle

simulation®

separations, where each bin has a width 8r and extends from » — /2 to r + &r/2. To obtain

g(r), each interval in the histogram is then divided by the number of particles in an ideal

gas at the same density n,, , which is given by:

3 3
nidealzig—e[(r+%) _(r—%) ], (2.51a)
= 4—“9[3r25r+ 5—’3} : (2.51b)
3 4 | '

As &r is small, the term involving 8" is usually neglected. The g(r) at a certain separation
g y neg P

can now be given by

g(r) = Tomtin, (2.52)
The orientational pair correlation coefficient: The pair distribution function g(r, €2) is
dependent on the orientation as well as the separation between two particles and is easy to
determine via the simulation but difficult to represent graphically though it can be
expanded in terms of Legendre polynomials. Thus for one set orientation €}, it can be
defined as

g(r,Q) = -g-%’; 3 2L+ 1/64T4YGL(r)PL(cos B), (2.53)

where B is now the angle between the symmetry axis of the two particles and not between
one particle and the director, while g(r) is the radial distribution function defined in the

previous section. The coefficients G, (r), are averages of the Legendre functions,
GL(r) = (PL(cos B(r))). (2.54)

G,(r) is the radial distribution function, and G,(r) is the second rank orientational pair

correlation coefficient.
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These can be easily calculated during the course of the simulation for each time step by,

N
Ga(r) = #21, Y Pa(cos By (r)). (2.55)
=1 i#f

At large separations, i.e. the limit » — oo, angular correlations between particles are lost

and so,
G2(r) = (P2 (cos B))°. (2.56)

Thus the limiting value of G,(r) provides an alternative method for the calculation of the
order parameter (P,). For small separations, G,(r) takes a value of approximately one, even
in the isotropic phase. This behaviour can be explained as follows: as the separation
between the particles approaches the smallest dimension of a particle, the particles must be
essentially parallel to each other, i.e. the orientational vectors are parallel, and hence {(P,) of
1. The pair correlation coefficient G,(r) is calculated in a similar fashion to the radial
distribution function in that a histogram of minimum image separations is constructed, that
also depends on the relative orientations of the particles as well. Each bin is then divided

by the corresponding bin from the g() histogram giving the plot of G,(r).

The longitudinal and transverse pair correlation functions: The functions g|(r||) and
g,(r) are calculated in a similar way to the radial distribution function g(r), in that a
histogram of all interparticle separations is calculated then normalised by a suitable volume
element. These correlation functions provide additional information by allowing us to
probe in greater detail the structure of the mesophase, revealing such detail as the onset of
columnar ordering. In the simulation we transform the simulation box into the director
frame, with the director now placed along the z axis of the transformed simulation box.
Histograms of the interparticle separations of the specific components, r, for g|(r|), and r,

and r, along the orthogonal xy plane for g (r,), are then calculated.

The density distribution function: The density distribution functions, p(r|) and p (r)),
measure the density of particles in directions parallel and perpendicular to the director.
p,(r) is calculated by first transforming the particle coordinates such that the director is
oriented along a reference direction, for example the z axis. A histogram is then complied

of all the z coordinates and then normalised by dividing each histogram bin by the number
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of particles and the number of configurations analysed. Though this function does suffer
from the problem of the director origin fluctuating during the simulation, resulting in the

smearing out of any peaks in the distribution curve.

2.4.4 Dynamic properties
The velocity autocorrelation function: Perhaps the most informative way of analysing the

18 which describe the

dynamic properties of liquids is via time autocorrelation functions
relationship between a property at a certain time and its value at a later time. From the area
of these functions we can calculate the macroscopic transport coefficients such as the
diffusion coefficient D'®. In general, for ergodic systems, a time correlation function of a

property A is defined by,

Tmax

Cu@=_lim = [ (Ae)Anw)dr. 2.57)
0

max >0 Tmax

The property we have chosen to illustrate these ideas is the translational velocity of the

particles v, and thus the velocity autocorrelation function C,,, at a time T is given by,
Cwv(1) = (v(1).v(0)), (2.58)

At long time intervals where there is little or no correlation between velocities, the C,,
decays to zero, while at the initial stages of the simulation, the velocities are highly
correlated. In the simulation, we calculate the dynamic properties from a tape file that
contains the positions, orientations and velocities for the whole state point. The velocities

are stored at time intervals 8¢, with each step labelled as 7 i.e. = t6t. We have 7, time
origins and calculate the averages of C,, at time T,0f and then at a time 18t later. In our
simulations, we use 200 time steps with time origins every 5 steps and calculate the C,,, for
the system as a whole or transform into the director frame and calculate the C,, parallel and
perpendicular to the director. The normalised C,,, is defined as

(v(D).v(0))

iD= om0y

(2.59)

The mean squared displacement: This dynamic property measures the square of the
distance a particle travels relative to its initial position. It is important though to use the

coordinates that represent the actual movement in space, rather than those resulting from
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the application of periodic boundary conditions. The mean squared displacement m(?) is
extremely useful in indicating the translational movement of the particles and hence to

what extent a system is "liquid-like" or "solid-like"; it is defined by
m(t)={|r:(0)~r,(0)|*). (2.60)

In the simulation this is calculated as
1 ul 2
m(r) = N 2 -r;(0)]* t=(m - n)dt. (2.61)
i=1

We can also resolve the mean squared displacement parallel and perpendicular to the
director yielding extra information about the phase behaviour and dynamics. At sufficiently
long times, the mean squared displacement becomes linear, the diffusion coefficient D can
then be obtained from the Einstein relationship™,

D =lim Lm(s). (2.62)
t~300 OF

An alternative method of obtaining the diffusion coefficient is from the integration of the

velocity autocorrelation function C,,, such that

D == [(v(2).v(0))dr . (2.63)

Oty §

1
3

2.4.5 Calculating and estimating errors

As with all experiments, real or numerical, the results obtained by computer simulations
are subject to errors. Systematic errors are of the most concern and include system size, the
use of random numbers and poor equilibration. Statistical errors occur when calculating
equilibrium averages of the various properties of interest, (A). We calculate these averages

in our molecular dynamics simulations by the general formula,

Trun
(Ahun = == 3 A(T). (2.64)
rnn =1
If we divide the simulation into sub-chains and in each chain o, calculate the average (A),

together with (A) over the whole chain, the statistical error of (A) is estimated as the

standard deviation from the average
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Mo, 2
o(4) = {—1_5 ;1 ((A)a—(A>)2} , (2.65)

Mo(M,,
where M is the number of sub-averages. An alternative method is to calculate the standard

statistical variance,

0-2(<A>run) =¢? (A)/Trun, (2.66)
where

Trun

62(A) = (842)run = TL ;} (A(T) = (A ran)>. (2.67)

The estimated error is then given by
S ({A)run)- (2.68)

2.4.6 Scaled variables
In computer simulations it is common to calculate static and dynamic properties in
dimensionless, scaled variables, normally indicated by an *. The most common scaled

variables used are

Internal energy per particle U* = U/Ng,

Temperature T =k,TlE,
Density p* =No//V,
Time * =(e/mo)"t,
Distance r*  =rlo,.

In this section we have outlined some of the techniques available to the computer
simulator, and in the final part of our introduction, we review how these techniques have

been applied previously to the simulation of the liquid-crystalline mesophases.

2.5 Molecular models of liquid crystals

2.5.1 Introduction

The liquid-crystalline state, having characteristics of both the solid and liquid phases is
very complex, thus modelling this phase is quite a challenge to the computer simulator.
This is compounded by the intricate nature of most mesogens at the molecular level, as
even the simplest of mesogenic molecules have at least nineteen atoms, thus constructing a

realistic atom-atom potential for a liquid crystal molecule will involve a large, complicated
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superposition of interacting force sites. As liquid crystals sometimes undergo weak phase
transitions and possess long range order, large system sizes are desirable, so most realistic
simulations are long and expensive to perform. However, these problems can be overcome
and the simulations of liquid crystals have used increasingly detailed and realistic models

as the power of computers has increased.

For the purpose of discussing the simulations of rod-shaped and disc-shaped mesogens we
shall neglect the various lattice models, the most widely studied being the Lebwohl-Lasher
model!"””?! where the particles are restricted to the sites of a simple cubic lattice, and
concentrate on models that allow full translational and orientational degrees of freedom.
These various models can be classified into three general types of increasing complexity, a)
hard, non-spherical models, b) soft, non-spherical models and ¢) atom-atom models. The
first two do not attempt to model the behaviour of actual liquid crystal compounds, but try
to identify the essential features which are responsible for mesophase formation. It is worth
reviewing the range of simulations that have been performed on liquid-crystalline systems,
but this is not meant to be an exhaustive survey, rather it highlights the major results and

places our work in context.

2.5.2 Hard, non-spherical models

These models were developed based on the view that the structure of simple liquids is
governed by short range repulsive forces!’). In broad terms, the liquid state is dominated by
the harsh electronic repulsions between molecules and this can be represented at one
extreme by the infinitely steep hard sphere potential, (see §2.1.3). Indeed the freezing of an
atomic liquid incorporating only these repulsive forces was successfully modelled as early
as 1957"", The problem we encounter is that, in these simulations, the particles are
represented as spheres, but as we know from experiment, molecules must deviate from
spherical symmetry to form a liquid-crystalline mesophase, so this raises several
questions™!, First, what shape of particle is needed to represent the liquid crystal
molecules? secondly, can these repulsive forces or excluded volume effects be used alone to
model liquid crystals? and thirdly, if hard repulsive forces can be used to cause a phase
transition, can it be assumed that these are responsible for the transitions in real liquid

crystals?
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In answer to the first question, it has emerged that for non-atomistic potentials, several
basic anisotropic shapes can be used to model liquid crystals, with the majority of the
pioneering work being performed by Frenkel and co-workers. The obvious feature that
these models have in common, are that they are all anisotropic in shape, but as we shall
see, they must still possess a certain minimum length-to-breadth ratio to exhibit
liquid-crystalline mesophases. These shapes include prolate ellipsoids and spherocylinders
used to model rod-shaped mesogens, and oblate ellipsoids and cut spheres used to represent
disc-shaped mesogenic molecules. It must be remembered that these are only rigid,
idealised shapes and do not include characteristics of real liquid crystal molecules such as
flexible chains and specific attractive interactions, though increasingly, researchers are

extending the complexity of their simulations to include such common features.

The second question, as to whether repulsive forces can produce orientationally ordered

phases, has been answered by the theory of Onsager'*”!

. The second law of thermodynamics
states that an isolated system tends to maximise its entropy and hence its disorder, so it
seemed surprising that Onsager used this tendency to maximise entropy as an ordering
force. He showed that, at a sufficiently high density and constant volume, a system of
infinitely thin spherocylinders with length L and diameter D, could spontaneously order,
from an isotropic fluid, to form an orientationally ordered nematic phase. Although the
entropy associated with the orientational degrees of freedom decreases, this is offset by the
increase in the translational entropy of the system. This is because the excluded volume of
two rods in a nematic phase is smaller than in the isotropic fluid*®. This theory was borne

out by the early computer simulations””"**!

of rod-shaped mesogens in the 1970's though it
was only unti] the 1980's that we saw the first simulation of a nematic - isotropic transition
in a system of disc-shaped mesogens”. We shall now look more closely at the results

obtained from the simulations using these anisotropic shapes.

Spheroids: The first type of hard particle to be extensively studied were the spheroids
which could be divided into two classes, ellipsoids of revolution a#b=c and biaxial
ellipsoids a#b#c, where a, b and ¢ are the three semi-axes of the ellipsoid. The first really

successful simulations were of the hard ellipsoids of revolution’**"!, the shape of which is

characterised by the aspect ratio a/b, where the major axis of the ellipsoid has length 2a
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and the minor axis length 2b. This system was extensively studied over the years allowing
a phase diagram to be constructed, (see figure 2.3). This shows the existence of isotropic,
nematic and solid phases for both prolate and oblate hard ellipsoids, where the regions of
nematic stability and two phase coexistence, the black lines, were established by free
energy calculations. The diagram also raises several interesting points. First, there is a high
degree of symmetry between oblate and prolate ellipsoids under the operation e < 1/e on
the length-to-breadth ratio a/b. Secondly, the phase diagram also shows that a minimum
non-sphericity is needed to form a stable nematic phase, a/b being roughly < 0.4 for discs
and > 2.5 for rods, though the precise values have been challenged”?, the authors claiming
that the a/b ratio needs to be greater than 3 to exhibit a nematic phase. It should be noted
that for all a/b ratios, the nematic phase was formed by spontaneous ordering from the

compression of the isotropic phase.

Another point of interest is why does the system of hard ellipsoids not produce any smectic
or columnar phases™? Consider the case for smectic mesophases, they have a large degree
of orientational order and to a first approximation can be represented by a system of
perfectly aligned non-spherical molecules. A system of hard ellipsoids parallel to an
arbitrary direction, say the director n, can be mapped onto hard spheres by scaling the
system with the factor b/a along the director. Since hard spheres do not form smectics, a
system of parallel ellipsoids should not be able too either. So unless orientational degrees
of freedom can stabilise a smectic phase, which intuitively seems unlikely, it can be
concluded that a system of freely rotating, hard ellipsoids can only produce a nematic
phase. This fact is of particular relevance to us, as hard ellipsoids resemble the shape of the

particles used in the simulations in this thesis.

Recent simulations have shown a biaxial nematic phase can be formed by a hard ellipsoid

133

with three distinct semi-axes”™, that is a#b#c. The mesophase was found using the

parameters c/a = 10, b/a = V10 and 1 < b/a <10. While of tmportance 1n itself, it would be

interesting to study the effect of molecular biaxiality on the strength of the nematic -

isotropic transition. Theory"**!

predicts that the transition weakens with increasing
biaxiality and this would help to explain the difference between the weak transition seen in

experiment and the stronger ones predicted by theory.
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alb

Figure 2.3: Schematic of the phase diagram for hard ellipsoids of revolution”*'!. The x axis represents the

aspect ratio under the operation e < 1le, while the y axis reflects the packing density.

Spherocylinders: To explore further the possibility of smectic ordering in a system of hard
particles, a subtle change of shape to a spherocylinder was performed. Spherocylinders are
represented as a cylindrical rod of length L and diameter D with hemi-spherical caps each
of diameter D, thus the length-to-breadth ratio is (L+D)/D. After the initial work by
Vieillard-Baron®", a full study was carried out on a system of parallel spherocylinders™**")
i.e. the particles only possessed translational freedom. At high densities, the system formed
a close packed crystal, and as the particles were confined to be perfectly aligned, the low
density fluid phase was always a nematic phase. Systems of L/D ratios, 0.25. 0.5, 1, 2 and 3
were studied using the Monte Carlo technique with smectic ordering occurring when L/D >
0.5. There was no bond orientational order present in the phase and so it was deduced that
it was a smectic A phase. The transition from the smectic A phase to the nematic showed
strong pretransitional fluctuations but there was no observable change in density, thus it

was tentatively assigned as a second order transition.

Further work™ produced a columnar phase for L/D > 5 with a system size of 270 particles,
(see figure 2.4a). This columnar phase was investigated further for L/D > 5 with a system
consisting of 1080 particles® to produce a different phase diagram, (see figure 2.4b), in

which the columnar phase was replaced by a AAA stacking hexagonal crystalline phase.
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The columnar phase observed with the lower system size was believed to be a consequence
of the fact that the small system size allowed unphysical diffusion of the columns, with the
range of stability dependent on the system size. These results indicate another important
reason in using simple models, in that it allows us to investigate fully the effect of system
size, boundary conditions etc. on the phase behaviour of the system, before we proceed

with more detailed and realistic models.
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Figure 2.4: Phase diagrams ffor hard parallel spherocylinders where the number of particles in simulation

are a) N =270 and b) N = 1080.

Even though these systems of spherocylinders were constrained to lie parallel to each
other, it showed how a change in shape of the particle can dramatically alter the phase
behaviour. The next step was to study the same system but with full translational and
orientational degrees of freedom allowed. Intuitively this would change the phase
behaviour in two possible ways. First, there would be an isotropic fluid at low densities

instead of a perfectly aligned nematic phase, while the orientational degrees of freedom
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could quite possibly destroy the smectic ordering. For a L/D ratio of 5"*'1, a f.c.c. crystal
was expanded to an isotropic fluid. On compression, nematic and smectic A phases were
produced. A tentative phase diagram, (see figure 2.5), for L/D ratios between O (hard

sphere case) and 5, was produced™?

showing the formation of liquid-crystalline
mesophases for L/D > 3.5. It is interesting that compared to parallel spherocylinders, the
orientational degrees of freedom do indeed destroy the liquid-crystalline phases for a wide
range of L/D ratios. It is also worth noting that just the shape of a particle i.e. the hard
repulsive forces, can produce a thermodynamically stable smectic that was generally
thought to be exclusive to models that incorporate attractive forces, though theories can

now predict the hard core smectic phases'.
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Figure 2.5: Schematic phase diagram for hard spherocylinders.

Cut spheres: We have seen that while prolate ellipsoids only form a nematic phase, a
spherocylinder will produce a smectic phase, in addition to a nematic, thus it seems
reasonable to see if an oblate counterpart of the spherocylinder could produce a columnar
phase. The actual geometric shape that fitted this description was the spheroplatelet but
this proved difficult to use because of numerical considerations in calculating the overlap

so the shape that was decided on was of a cut sphere'™.

It consists of a sphere of diameter D with the top and bottom removed, these flat parts are

separated by a thickness L. This has the advantages that it is numerically easier to cope
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with and in the limit L/D = 1, reduces to a hard sphere. Compréssing the isotropic fluid, for
a system of cut spheres with L/D of 0.1, causes the spontaneous formation of nematic and
columnar phases, though the columns in the latter where somewhat buckled. Expansion of
the crystal phase produced a defect free columnar phase with hexagonal packing of the

columns. Further simulations**

were carried out with the aspect ratios of 0.2 and 0.3. At
L/D of 0.2, the system exhibited isotropic, columnar and solid phases, but no stable
nematic phase in contrast to L/D of 0.1, instead a cubatic phase was found. This consisted
of columnar stacks of 4 or 5 particles packing against each other, frequently at 90° angles

and though there is short range translational order, the columns themselves are

orientationally disordered.

As the L/D ratio was increased to 0.3, all liquid-crystalline behaviour disappeared, the
isotropic liquid crystallising directly to the solid phase; the full phase diagram is shown in
figure 2.6. After taking into account the example of hard parallel spherocylinders, where
the finite system size induced spurious columnar ordering, a range of simulations with
differing numbers of particles was performed to test the stability of the columnar phase. It
was found that the crystal - columnar phase transition appeared to be continuous, the

columnar - nematic strongly first order and the nematic - isotropic weakly first order.
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Figure 2.6: Schematic phase diagram for hard cut spheres.

It has been shown that the hard model potentials with only short range repulsive forces can

produce liquid-crystalline mesophases, though the nature of these phases is dependent on
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the shape of the molecule used. The question as to whether repulsive forces are also
responsible for transitions in real liquid crystals is much harder to answer. It is true that for
a molecule to form a liquid-crystalline mesophase it must deviate from spherical
symmetry, and that hard models with a non-spherical core have shown some of the
characteristics of the nematic - isotropic phase transition as well as other mesophase
behaviour. It is also true that a system that contains only attractive forces will collapse, but
it is thought that the inclusion of attractive forces is necessary for the stability of all

mesophases.

2.5.3 Soft, non-spherical models

The hard model, though successful in describing certain liquid crystal mesophases, only
involves the repulsive forces between molecules, thus the soft model of liquid crystals tries
to take into account the attractive as well as the repulsive forces between molecules. The
main advantage over the hard repulsive model, is that raising the temperature and not just
the density can cause transitions from disordered phases into liquid-crystalline phases i.e.
hard models do not exhibit thermotropic phase transitions. When studying liquid crystals,
the intermolecular potential must be dependent not on just the separation between
molecules but on their orientation, so these models are essentially anisotropic versions of

the Lennard-Jones potential:
U(r) =4el(c/n'? - (o/r)°], (2.69)

where ¢ and € are the length and energy parameters, respectively. At large molecular
separations, attractive forces dominate, while at small separations the repulsive forces take
over. By the addition of attractive forces and by splitting up the potential into repulsive and
attractive components, we can investigate the relative contributions each makes to the
stability of the liquid-crystalline mesophase'®. For instance, it has been shown that, for the
Gay-Berne system at least, the attractive forces play a crucial role in the formation and

stability of the more ordered phases'**'.

The Gay-Berne potential: The Gay-Berne potential falls into the category of a soft
non-spherical model, in that it takes into account the role of attractive forces as well as
repulsive forces in the formation of liquid crystal mesophases. The ground work was laid

by Corner as far back as 1948, when he suggested that linear non-spherical molecules
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could be modelled by placing a number of Lennard-Jones force centres, equidistant along
the symmetry axis. However this gave a complicated interaction between many force sites,

so Corner'*

overcame this by proposing a single site potential where the multi-site
potential was fitted numerically to a single 12-6 Lennard-Jones potential, obtaining range
and energy parameters which were orientation dependent. The potential had the interaction
between two particles as a function of the distance between their centres and was scaled by

a range parameter 6(£2) giving the form of the potential as,
Ucomer = E(Q)f(r/o-(g)) (2.70)

Both the strength €(Q2) and range 6(€2) parameters were dependent upon the orientations €2
of the molecules and of the intermolecular vector r. Berne and Pechukas'’' then developed
forms for the strength and range parameters using the gaussian overlap model. The

gaussian function of a three dimensional vector x is defined by

G(x) = exp(—x.y! .x), 2.71)

where
Y= (6} —oD)ul +o11, (2.72)
u is the unit vector of the orientation of the particle and I is the unit matrix with the surface

of constant G producing an ellipsoid of revolution about the symmetry axis.

A
A u2

r 201

A

201

Figure 2.7: Geometry of two ellipsoids used in the gaussian overlap model.

They then calculated the overlap between two ellipsoids of revolution using the geometry

of figure 2.7, obtaining

Gy, 0y, 1) = [y |72 || 2 [ dx exp(—x.y; x—(x = 1)y, (X — 1)), (2.73)
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where | Y | is the determinant of the range matrix 7, and
¥i = (c§ —or)uu; + o, L (2.74)

Equation (2.73) can be expressed in the simplified form

Gy, Uy, ) =g(ll;, Uy)exp [-r2/c2(ay, Uy, I)], (2.75)

where e(1;,01,) and (0, U», r)are assumed to be the orientation dependent strength and
range parameters which are of prime interest to us. These parameters are calculated by
finding the eigenvectors and eigenvalues of (Y, + v,) and in the case that both interacting

ellipsoids have the same dimensions, we find

_1
e, up) =€o[1 —x*(1,u2)%] 2, (2.76)
and
i
A A A A 2 A A _ A A 2 *‘é‘
G(ﬁl , ﬁz, f') — 00{1 _ Z_l: (ll1 r +Al12;l‘) + (ll1 .r Allz’.\l‘) :I} ] (2.77)
21 1 +X(ll1.l12) 1 —X(lll.llz)
The parameter % is defined by
2 2
G;—0O
L (2.78)
O +0

This overlap model, the BPK model, was first used to simulate liquid crystals by Berne and
Kushick!*®, and Decoster et al.*, using the forms for ¢ and € generated by Berne and

Pechukas, in a Lennard-Jones 12-6 potential,

ot 0,5 )% (o, b,,1))°
UBPK(uI,uz,r)=4e(u1,uz)K L2 ] —( L2 H (2.79)

r r

However, it was realised by Gay and Berne™ that the potential possessed a number of
unrealistic features. First, as the well depth, (see equation (2.76)), depends on the relative
orientation of the particles and not on the orientation with respect to the intermolecular
vector, the well depth for various orientations are identical, when they should be different,
(see figure 2.8). Further, the width of the attractive well varies with orientation of the
particles with respect to the intermolecular vector, thus the potential becomes softer for
different orientations, though the distance dependence should be independent of the

orientation®!,
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Figure 2.8: The distance dependence for the BPK intermolecular potential for two orientations, illusirating

how the well width varies with the orientation of the particles, with 6 /G, of 3.0.
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Figure 2.9: The distance dependence for the Gay-Berne intermolecular potential for two orientations,

showing how the deficiency with the well widths has been corrected, with ¢/, of 3.0.
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In order to rectify these problems in the BPK model, a number of modifications were tried

(52

by Walmsley®™, and by Tsykalo and Bagmet™! but by far the most important and
successful modification was the further development of the overlap model by Gay and
Berne®™. They first changed the potential by using a shifted form, analogous to that
proposed by Kihara® rather than the scaled versions used previously, thus the potential

now took the form,

12 6
U(ﬁl,ﬁZ,r)=4£(ﬁl,ﬁz,f')|:( 1 ) —( 1 j } (2.80)

r—o(ly,us, )+ 1 r—o(i,u,,r)+1

This now meant that the well width was independent of the molecular orientations i.e. the
form of the potential was now the same for any orientation, (see figure 2.9). The range

parameter is the same as in the BPK potential, but the strength parameter was redefined,
e(lly, i, F) = £oe” (1, W )E ) (1, 2, F), (2.81)

similar to that used by Walmsley, and by Tsykalo and Bagmet, and with the exponential

parameters as W of 1 and v of 2, took the form,

/ A A A A 2 A /\_ A A 2
il b, fy = 1 -4 QT el (=8 D) | (2.82)
2 1+X(ll1.l12) —y'(u;y)
where
x/ — 1 — (861‘88)u (283)

1+ (o/es)T

Here, € /g is the ratio of the well depth for the end-to-end and side-by-side configurations.
The values of 1 of 1, v of 2 and € /e, of 0.2 were obtained by fitting the potential to a linear
array of four Lennard-Jones centres placed 26,/3 apart, chosen as they have been used to
model diatomics. The fitting to this array of Lennard-Jones sites, was by comparison of the
maximum well depths and separation at the maximum well depths for a range of five
configurations between the two particles. The first simulations using the dimensionally
correct Gay-Berne potential, (equation (2.84)), were by Adams et al.”™ who successfully

simulated a nematic - isotropic transition in a system of rod-shaped mesogens.

12 6
U(ﬁl,ﬁg,r)=4e(ﬁ1,ﬁ2,f')|:( %0 ) —( 90 )] (2.84)

r—o(u;,uz, 1)+ 0 r—o(u;,uz,r)+ 0o
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Luckhurst ez al.""*' used the same potential form, but with y of 2 and v of 1, leading to the
formation of smectic A and smectic B, in addition to the usual isotropic, nematic, and
crystal phases. A more detailed study of the Gay-Berne fluid composed of prolate particles
was performed by de Miguel et al.'"** and using the Monte Carlo method they showed the
existence of a tilted smectic B phase as well as producing a full phase diagram'”’. Further
simulations on prolate particles with 6,/c, of 3.0 were performed by Berardi er al.”®, who
using the parameters (L of 1 and v of 3, demonstrated how the orientational and structural
properties of the system can change depending on the parametrisation. The structure of the
smectic B phase has also been investigated by Hashim et al.”, revealing it to contain

rippled layers.

Up to now, the parameters employed in the Gay-Berne potential have been obtained by
comparison with a line of four Lennard-Jones centres and as such, might not be
representative of those for mesogenic molecules. To obtain more typical values for the

parameters, 6,/c, and € /¢, Luckhurst and Simmonds'*”

compared the Gay-Berne potential
with a site-site potential for the rod-shaped mesogen p-terphenyl, obtaining values for 6,/0,
of 4.4 and ¢ /e, of 1/39.6, compared with the original Gay-Berne'™” values of 6/, of 3.0
and e /e, of 1/5. Using these new parameters they successfully simulated nematic and

smectic A phases. In order to model chiral systems, Memmer et al.'®"' added a chiral term

U. to the Gay-Berne potential. The potential now took the form

U(uy,0,,1) =al,(;, 0, 1)+ cUc(t;,0,,1), (2.85)

where

Og
r—-G(ﬁl,ﬁz,f‘)-i-G()

7
Uc(ﬁl,ﬁz,r)=4e(ﬁl,ﬁz,£)( j (G x oy ri i), (2.86)

and U, is the normal Gay-Berne potential as in equation (2.84). Simulating along an
isotherm, they produced isotropic, cholesteric and BPII phases, while additional
simulations cooling the system along an isochiral, ¢ being 0.8, managed to produce a
helical smectic A* phase, the so-called twist grain boundary phase. But the simulation of
these chiral systems raised the question of what type of boundary conditions to use? In
their initial work, Memmer et al. used ordinary cubic boundary conditions, so they

addressed this by using the twisted boundary conditions as used by Allen and Masters'®”,
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and as a result, the potential energy of the system®! was reduced and the pitch increased

when compared with the results of their earlier work!®",

All of the simulations up to now have used parametrisation for rod-shaped mesogens,
mainly achieved by using the value of 6 /0, of 3.0. The first simulations of disc-shaped
mesogens were performed by Emerson er al.®® who used a value for /0, of 0.345 in
producing discotic nematic and columnar phases, the detailed results of which will be
discussed in later chapters. Apart from using the Gay-Berne potential to calculate the
properties of liquid-crystalline mesophases, it has been used as a solvent in studying the
conformations of flexible molecules® and in the calculation of the dependence on density
of the orientational order via the parameter T, which will again be discussed in a later
chapter. There has also been investigations into modelling systems other than liquid
crystals with the Gay-Berne potential and these have tended to concentrate on molecules

such as benzene'*® and napthalene!®™!.

At this point we should mention the shape of the Gay-Berne particle!®!. Up to now, we
have described the Gay-Berne particle as being ellipsoidal in shape but this only holds true
when two particles are in a parallel arrangement. Though these are prevalent in liquid
crystals phases, there are other situations, such as when two particles are in the tee
arrangement, that the zero potential energy contour deviates from an ellipsoid, and in this

case is spherical.

Hybrid GBLR potential: The other main soft potential that has been used for the simulation
of liquid crystals is that based on the potential first developed by Luckhurst and Romano!
to study the classical nematic phase. The particles interact via a scalar Lennard-Jones

potential U, but with an additional anisotropic term U,. The potential has the form:

U =4e[(o/r) 12_ (0/r)61 +[—4Ae(c/r) P2 (cos B)], (2.87)

Ug Ua

and with A of 0.15, the simulations show a weak first order nematic - isotropic transition.
Though all of the models we have discussed here are single site potentials, there lies the

possibility of joining force centres together in an array of complex geometries to model



56

more accurately the interactions within real mesogens. This approach suffers from the same
problem of the complex models to be discussed later, in that the system becomes
computationally very expensive. To overcome this problem, De Luca et al'” have
developed a potential that takes a 1/10" of the computational time of the Gay-Berne
potential, while still retaining some of its more important features. They took the
Luckhurst-Romano potential, (see equation (2.87)), and scaled the total potential by an

energy term with the same functional form as that in the Gay-Berne potential*”,

/ A A A A 2 A A _ A A 2
€/l fp, By =1 - L (T TaD | (T2l D) | (2.88)
2 1+x (uy.u7) l—x (u;.u,)
where
1
y = LoEfe) (2.89)
(1 +eeles)®
such that the potential now became,
U=¢'(a,0,, ) (Uo + V). (2.90)

This allowed the potential to differentiate not only between orientations with their
orientational vectors parallel and perpendicular, as only the Luckhurst-Romano potential
could, but between face-to-face, edge-to-edge, cross and tee orientations. By then allowing
the well depth ratio to take a form suitable for disc-shaped molecules, i.e. the face-to-face
orientation is favoured over all others, the formation of a discotic nematic and

columnar-like phase, consisting of short stacks of particles, were observed.

2.5.4 Atom-atom models

The increase in computing power over the years, and the desire to produce more realistic
models has led to the simulation of liquid crystals using atom-atom models. Whereas the
previous potentials have represented mesogenic molecules as a variety of solid geometric
shapes with just one interacting force centre, these realistic potentials include the atomic
detail, by having force centres at each atomic site. The molecular charge distribution,
obtained by ab initio calculations, is then incorporated by the addition of a Coulomb term
to the potential. Once this molecular framework is established, we can introduce some
measure of flexibility by adding extra potentials for bond stretching, bending and torsion,

though this increase in the complexity of the model potential is only allowed by reducing
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the size of the system to approximately 100 particles. There have been many studies on
rod-shaped mesogens with a variety of approaches being taken. A number of bulk studies
have been undertaken>*"""® on mesogens such as trans-4-(trans-4-n-pentylcyclohexyl)
cyclohexylcarbonitrile (CCHS), 4-ethoxy benzylidene-4'-n-butyaniline (EBBA) and
4-n-pentyl-4'-cyanobiphenyl (5CB), while other work has concentrated on pairs of
molecules”. Systems such as thin films®! and molecules adsorbed onto a variety of

surfaces®'Thave also been investigated.

Discotic systems suffer, in that the number of atoms in even the smallest mesogens are so
much greater than in a simple rod-shaped mesogen such as SCB, so to date there has only
been one study on a real discotic mesogen. Ono and Kondo® undertook a study of
hexakis(pentyloxy)triphenylene (THES) in an attempt to investigate the behaviour of the

diffusion coefficients. The system was assumed to be in the D, phase as the particles were

ho
arranged into 9 columns each containing 6 molecules. Each molecule had a coulomb
potential, with charges obtained from ab initio calculations, placed at each site but with
united atoms representing the alkyl chain. Then performing molecular dynamics
simulations in the NVT ensemble, they found the diffusion coefficient to be greater

perpendicular to the director as expected®). They measured the order parameter (P,) to be

~ (.95 for the aromatic core, a result verified by N.M.R studies'®!.
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3. The Gay-Berne discogen I

3.1 Introduction

We have seen in the previous chapter, (see §2.5), that for model mesogens, a sufficient
condition for the system to form a nematic phase is for the constituent particles to deviate
from spherical symmetry. However, whether the mesophase is observed or not depends on
the freezing point. It is recognised as result of computer simulations studies that a subtle
change in shape is all that is needed for the system to exhibit the more ordered mesophases,
such as the smectic phase for rod-shaped particles and columnar phase for disc-shaped
particles. These simulations have used hard particle models in which each molecule
interacts via repulsive forces alone. Obviously this oversimplifies the behaviour of real
mesogens, as it neglects the other intermolecular forces, and so the next stage would be to
incorporate attractive forces into the model. This would allow us to investigate the thermal
behaviour of the model mesogen as well as seeing whether these forces might be able to

stabilise mesophases not observed with hard particle models.

COO

1869C 1930C 2740C

Figure 3.1: A typical disc-shaped mesogen based on triphenylene, which forms the starting point for our

model Gay-Berne discogen.

In Chapter 2 we discussed the various types of models that can be used to simulate the bulk
properties of liquid crystals, paying special attention to the Gay-Berne potential as this is a
particularly successful model for the liquid-crystalline mesophase, while still retaining

computational and conceptual simplicity.
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For these reasons, we chose to use this potential in our studies of liquid crystals. The
Gay-Berne potential can be thought of as representing each interacting particle as an
ellipsoid, and though the definition of the shape is not straightforward, (see §2.5), it has
been used to model rod-shaped mesogens by using prolate ellipsoids. This has proved
successful in terms of simulating a range of mesophases including nematic, smectic A and

M This illustrates that the addition of attractive forces can stabilise the

smectic B
translationally ordered phases, previously absent in the corresponding system of hard
ellipsoids. The next logical step is to model a discotic liquid crystal, (see figure 3.1), and
this is one of the great attractions of the Gay-Berne potential in that it is very simple to
change the shape of the interacting ellipsoids from prolate to oblate or disc-shaped.
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The initial work on these systems was carried out by Emerson'™ who performed molecular

dynamics simulations of the Gay-Berne discogen at the scaled densities p* of 2.7 and 3.0
(p* = No,/V). The results were similar in that isotropic, discotic nematic, columnar and
crystal phases were produced for both densities, again proving the value of this potential in
that it can provide a range of mesophases. The only difference between the two densities
were the transition temperatures, which were lower at the lower density p* of 2.7. This is
to be expected, because at higher densities the particles are closer together so the
intermolecular forces experienced by each particle are stronger, with the increased

attractive forces stabilising the ordered phases so causing the transition temperatures to

rise.

Of greater interest to us is the structure of the columnar phase, in which the columns are
arranged in a square lattice, (see figure 3.2). The particles within each column are not tilted
as might be expected with the normal square or rectangular phase", but lie with their
symmetry axes parallel to the column axis. This results from the fact that the particles
within each column are staggered with respect to particles in the neighbouring columns,
thus allowing the columns to penetrate each other. Such an interdigitated structure is
analogous to that observed in some smectic phases. The extent of interdigitation was
quantified by the transverse pair correlation function g (r *) which gave the distance
between particles as 0.9, instead of 1.0 or greater, expected for non inter-penetrating

columns, (see figure 3.3).
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Figure 3.2: View parallel to the director for the columnar phase at p* of 2.7 with the ellipsoids shown at

half the correct size for ease of visualisation, illustrating the square packing structure of the columns.

0.0 0.5 1.0 1.5 20 2.5

Figure 3.3: The transverse pair correlation function g (r *) for the square columnar phase at the density

p* of 2.7. The peak at r * of 0.9 indicates that the columns penetrate each other as the particle diameter is

defined as 1.0c,,
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Though the structure might be seen as an artefact produced by the constant volume and size
of the box shape, a square columnar phase has been observed experimentally in a lyotropic
system'™ in which the constituent micelles, lie horizontally within each column. The
staggered arrangement and the square lattice within the columnar phase were the same for
both densities p* of 2.7 and 3.0. This led us to ask why a hexagonal phase was not
observed as this would certainly allow the most efficient packing of the columns within the

phase?

It seemed reasonable therefore to perform further simulations at other densities in the
expectation of, a) observing hexagonal packing between columns, and b) to see if the
columnar phase exists at all at lower densities. These experiments can be thought of as
being analogous to various pressure studies performed on a variety of systems. From
similar experiments on real rod-shaped mesogens”!, we know that, at constant temperature,
as the pressure is decreased any smectic phase present will slowly disappear, with, in most
cases, all mesogenic behaviour ceasing at extremely low pressures, though the stability of
the phase depends on AS and AV at the transition via the Clapeyron equation. This
behaviour could conceivably be applied to disc-shaped mesogens, with the columnar
phases being present at higher pressures, then gradually vanishing as the pressure is

reduced.

The starting point for the choice of the simulation density is the phase diagram determined
by Frenkel® for hard ellipsoids, (see figure 2.3). It would be more useful to redraw the
phase diagram by defining the density as a number density, as used in this Thesis, in units
N003/ V, where N is the number of particles and ¥ the volume of the simulation box, and the
aspect ratio a/b, (defined in §2.5), in a simple linear scale, (see figure 3.4). The enclosed
area of the graph represents the regions of two phase coexistence, while it is interesting to
note that the nematic - isotropic density is essentially independent of the a/b ratio. The
original densities p* of 2.7 and 3.0 were chosen as they lay either side of the nematic -
isotropic transition boundary as defined by the phase diagram for hard ellipsoids. A density
greater than p* of 3.0 could have been chosen, and although this lay in the nematic region
of the phase diagram, there is a danger that the density could be too high, leading to the

system being locked in an ordered phase at all temperatures.
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Conversely, choosing too low a density might mean that no liquid crystal phase would be
formed, the particles being too far apart to experience sufficient anisotropic, attractive
forces from other particles to hold them in an ordered state. Thus to maximise the
probability of forming liquid-crystalline phases as well as exploring the Gay-Berne
discogen phase diagram further, a scaled density p* of 2.5 was chosen which lay just
outside of the nematic region of densities for hard oblate ellipsoids. We must remember
that the hard ellipsoid phase diagram is only used as a rough guide in helping us choose the
correct density, since the shape and nature of the intermolecular forces of the Gay-Berne

particle does not represent a true hard, ellipsoid.

Discotic
nematic

Number density

Isotropic

0 0.345 1
a/b ratio

Figure 3.4: A schematic of the phase diagram for hard ellipsoids™' redrawn with different axes scales from
the original reference. Previous densities used™ are marked by O, with the density used in this Thesis

indicated by OI.
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3.2 Parametrisation of the Gay-Berne potential
The development of the Gay-Berne potential, and the variety of parameters used to model

rod-shaped mesogens are described in Chapter 2. The Gay-Berne potential has the form

U(ﬁ] ﬁz l')=48(ﬁ1 ﬁz f') ( 0o \12_( Go \6 (3 1)
Y T kl"—G(l’\h,ﬁz,f‘)ﬁ-Go) kl"—-G(ﬁ1,ﬁ2,f‘)+Go} ’ '

where U and U, are the unit vectors for the orientations of the symmetry axes of the two
particles and r denotes the intermolecular vector. In the original development of the
potential, the four adjustable parameters, €/¢_, 6/6,, L and v, were used to model a best fit
for a row of four Lennard-Jones centres'®, each centre being 2/3G, apart. For oblate
particles, a best fit to a ring or plate of Lennard-Jones centres could be used, but the aim
was also to keep some conformity and simplicity to the model. Though rather than
arbitrarily choosing the value of these parameters, there has been some attempt to mimic a
real disc-shaped mesogen, so the parameters first used to represent the Gay-Berne discogen
were based on triphenylene, and although not liquid-crystalline itself, it is the basis for

many discotic mesogens, (see figure 3.1).

The range parameter 6/0, is the ratio of the separation when the two particles are in a
face-to-face (o) or an edge-to-edge (G,) arrangement, and in reality controls the shape
anisotropy of the particles, thus for the disc-shaped particles of triphenylene, ¢,/c, takes the
value of 0.345. The energy parameter €/ is just the ratio of the well depths for the
face-to-face and edge-to-edge arrangements and for our study, the value of 5.0 was used.
The variety of values for the parameters, . and v are discussed in Chapter 2. Previous
simulations of Gay-Berne discogens used the values, u of 1 and v of 2, which were chosen
because they stabilise the face-to-face and edge-to-edge arrangements relative to the cross
and tee arrangements, thus enhancing the formation of translationally ordered phases. For
our choice of parameters in this work, it must be remembered that we wanted to investigate
the effect of the density of the system, thus it would be sensible to use these same
parameters as Emerson to be consistent with previous simulations, thus we kept the values,
i of 1 and v of 2. The form of the potential energy with respect to the intermolecular

separation for the different arrangements of the Gay-Berne discogen is shown in figure 3.5.
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Figure 3.5: The Gay-Berne potential parametrised for disc-shaped mesogens with 6,/c, of 0.345, e/¢, of 5.0,

Wof I and v of 2. U*(r*) is the scaled potential energy at a particular scaled separation r*.

3.3 The molecular dynamics simulation

The simulation was performed in the constant NVE or microcanonical ensemble, with 256
particles in a cubic box with periodic boundary conditions. A minimum image summation
and a spherical cut-off of 2.00, were also employed, the latter value chosen as at this point,
the potential energy for the model is essentially zero, (see figure 3.5). The scaled density
p* of 2.5 was used, this being chosen according to the arguments given in §3.1. The
simulation was started from an o-f.c.c. lattice with all 256 particles parallel. A scaled time
step Or* of 0.005 was used, with the simulations being performed on an IBM 3090-VF
mainframe, with each time step needing 1.5s of c.p.u. time. The phases were identified by
graphic visualisation of configurational snapshots and the calculation of various structural
distribution functions. Since it was not possible to melt a lattice with a scaled density p* of
2.5, the simulation was started from a lattice with a lower density of 1.8, which was

equilibrated at the scaled temperature 7* of 4.0, for 10,000 time steps.
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The density was then increased via the intermediate densities of 2.1 and 2.4 scaled units
until the desired density, p* of 2.5, had been reached. Equilibration stages of 10,000 time
steps were performed after each density rise with the orientational order parameter (P,) and
radial distribution function monitored to ensure that the system had melted. This left the
simulation at a temperature 7* of 4.0 and a density p* of 2.5, for which the order parameter
(P,) was 0.897. This indicated that the system was in a highly orientationally ordered state,
but from the g(r*) and graphic snapshots it was clear that the system was in a nematic
phase. The temperature was then raised by 1.0 to 2.0 scaled units, with equilibration stages
of 10,000 time steps and production stages of 8,000 time steps until 7* had reached 14.0.
From previous studies, this temperature should be high enough to form an isotropic liquid;
this proved to be the case with (P,) having fallen to a value of approximately 0.1, the value

not being zero due to the associated systematic error in the eigenvalue of the Q tensor (see

§2.4).

The scaled time step d¢* could have been adjusted at each state point to give acceptable
temperature and energy conservation, but was not necessary as the values were generally to
within a few parts in 10*. From the state point p* of 2.5 and T* of 14.0, the temperature
was lowered in steps of 0.5 to 1.0 scaled units until a temperature 7# of 0.5 was achieved.
By now the order parameter {(P,) had reached a value of 0.995, consistent with a very
highly orientationally ordered phase, probably a crystalline phase. For each state point, the
system underwent an equilibrium stage consisting of between 10,000 and 60,000 time
steps, until the temperature and order parameter had reached constant values. A production
stage was then performed in which the temperature scaling was turned off and the
simulation run until the values of the properties, T* and {(P,) had reached equilibrium. The

values of the important properties obtained from the cooling run are given in table 3.1.



Set T* Actual T* N, /10° N, /10° (U* Py
14 1341 +0.21 30 10 -6.56 £0.54 0.106 +0.051
13 12.88+£0.19 30 15 -721+041 0.094=0.013
12 12.05+0.24 30 10 ~8.07+0.61 0.102+0.019
11 11.05+0.14 30 25 -921£0.53 0.121 +0.025
10 10.77+0.12 30 20 -9.69+0.59 0.151+£0.021
9 9.09+0.14 60 10 -16.12+0.56 0.556 £ 0.025
8 8.11+0.09 20 10 -19.86+0.46 0.682+0.014
7 7.17+0.07 20 10 -23.94+ 047 0.797+0.011
6 5.94+0.08 15 10 —27.51+0.54 0.859+0.012
5 5.04+0.05 15 10 -30.02+0.32 0901 +£0.015
4 4.04£0.06 15 10 -32.73 £0.35 0.931+0.015
3 3.03+£0.04 15 10 —35.44+041 0.952+0.011
2 2.01+£0.02 20 10 -41.51£0.17 0.981 % 0.007
1 0.98+0.03 10 10 —44.32 +0.09 0.991 +0.003
0.5 0.55+0.01 10 10 —45.44 £ 0.08 0.995 + 0.002
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Table 3.1: Values of T+, {U*) and (P.) for the simulation at p* of 2.5, where N, and N, are the number of

time steps performed during the equilibrium and production stages.

3.4 Results and discussion

3.4.1 Orientational properties

Second and fourth rank order parameters: The variation of the second rank order
parameter (P,) with temperature T* for the cooling run of the simulation is shown in figure
3.6. As the temperature was lowered from 7* of 13.41 to 10.77, (P,) remained relatively
constant at around a value of 0.1, suggesting that the phase is isotropic. This value of (P,)
was not exactly zero because the system was probably fluctuating between the isotropic
and nematic phases, although there is also an inherent statistical uncertainty in the value of
(P,), when calculated from the Q tensor, of the order of 1NN i.e. 0.0625. When the system
was cooled from 7* of 9.09 to 0.55, the order parameter rose until it attained a value close
to unity, the gradual increase in the order parameter suggesting that we had formed

intermediate orientationally ordered phases. As with previous simulations'”, the change in
(P,) from the disordered phase (above T* of 9.09) to an ordered phase (7* of 9.09 and

below) was relatively sharp indicating a possible first order transition.
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Figure 3.6: Variation of the order parameters {P,) and (P ) with scaled temperature T*.
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Figure 3.7: The plot of ficosP) for the system at the scaled temperatures T* indicated.
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The variation of the fourth rank order parameter (P,) with the scaled temperature T* for the
cooling run is also shown in figure 3.6. The shape of the curve mimics that obtained for
(P,), though the values are lower as expected. There is also a rise in (P,) at the phase
transition, between 7* of 10.77 and 9.09, as for the second rank order parameter, though it

is not quite so pronounced.

Singlet orientational distribution function: The singlet orientational distribution function
f(cosP) for both the isotropic and discotic nematic phases are shown in figure 3.7. For the
isotropic phase, T* of 10.77, we can see that the probability is essentially the same for all
orientations, showing the randomness of the system. For the discotic nematic phase, at 7*
of 9.09, the plot of ficosP) peaks at cosP equal to one, as expected, indicating that there is a
preferred direction of orientation. The plot decays as the value of f increases towards an
orientation perpendicular to the director, telling us that very few particles lie with their
symmetry axes along this direction. As the temperature is lowered, the peak at cosp of 1
grows, reflecting the increased ordering of the particles with their symmetry axes parallel

to the director. A comparison of the orientational properties compared with the predictions

of the Maier-Saupe theory will be presented in §3.4.5.

3.4.2 Thermodynamic properties

Internal energy: The plot of the scaled internal energy per particle (U*) (= (U)/Ne,) against
scaled temperature T* is shown in figure 3.8. This graph indicates two changes in the slope
of the internal energy; the first change in (U*) between the temperatures 10.77 and 9.09,
agrees with the change in the second rank order parameter (P,), in that the system has
undergone a phase transition from a disordered to an ordered state, more than likely the
nematic - isotropic phase transition. The second discontinuity in the plot of {(U*) occurs
between the lower scaled temperatures, 7* of 3.03 and 2.01. This indicates another phase
transition, this time between two orientationally ordered phases. However at this stage we

do not have enough information to speculate on what mesophases these may be.
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Heat capacity: The plot of the scaled heat capacity (C,*) (= (C,)/Nk,;) against temperature
is shown in figure 3.9. This shows the heat capacity as calculated from both the
fluctuations in the kinetic energy and the differentiation of the internal energy (U*). The
graph from the fluctuation method yields no real information about the system, though
there seems to be a large peak corresponding to the nematic - isotropic transition at around
T* of 9.09 but this is only one value which may well be in error. The heat capacity from
the cubic spline differentiation of the internal energy only reveals the discontinuities
already present in the plot of (U*), and as such gives us no new insight into the behaviour

of the system.

3.4.3 Structural Properties

Graphic visualisation and g(r*): Of the various properties calculated during the course of
the simulation, the two with the most readily accessible information are the radial
distribution function g(r*), (see §2.4) and computer graphic visualisation. The latter
technique consists of taking a single configuration from the production run, and displaying
the image using the Silicon Graphics GL graphics library. This method represents each
particle as a solid three dimensional ellipsoidal body, giving a realistic view of the system.
But there is a fundamental difference between the technique and the g(r*) as it shows just
one configuration at one point in phase space, while the g(r*) is averaged over many

configurations of the simulation.

The radial distribution function g(r*), plotted against the scaled temperature for the
simulation is shown in figure 3.10. The first phase to be identified is that at 7* of 10.77 and
above, previously assigned as the isotropic fluid, due to the low orientational order present.
We can see that the plot of g(r*) shows no long range translational order and only a small
amount of short range order though even this appears to be more consistent with a gas
phase than an isotropic fluid, a point we shall discuss later. The small peak at r* of 0.8
seems to indicate that the particles, rather than existing in an edge-to-edge arrangement, as
would be given by a peak at 1.00, seem to prefer to lie in a slightly overlapping
arrangement. The configurational snapshot, (see figure 3.12), reveals no major

orientational or translational order, so we can safely assign this phase as the isotropic fluid.
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Figure 3.10: The radial distribution function g(r*) at the scaled temperatures T* indicated.
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The next phase to be investigated is that possessing orientational order, occurring between
the temperatures T* of 9.09 and 3.03, the boundaries indicated by the plot of the scaled
internal energy (U*), (see figure 3.8). At the higher temperature of 9.09, it is noticeable
that although the phase has a high orientational order, the plot of the g(r*) is essentially the
same as that of the isotropic fluid, showing once again the lack of long range translational
order. There is a slight peak at r* of 0.9, showing the preference for a slightly overlapping
edge-to-edge arrangement. Considering these factors, namely long range orientational
order but short range translational order, we identify this phase as the discotic nematic
phase. This is illustrated by the configurational snapshots, taken a) parallel and b)

perpendicular to the director and shown in figure 3.13.

Figure 3.12: The configurational snapshot for the isotropic phase at the scaled temperature T* of 10.77.
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Figure 3.13: The configurational snapshots taken a) parallel and b) perpendicular to the director for the

discotic nematic phase at the scaled temperature T* of 9.09.
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Inspection of the plot of the radial distribution function and the configurational snapshots
for T* of 3.03, the low temperature limit of the discotic nematic phase, revealed two
interesting features. First, a peak at r* = 0.5, which is present at higher temperatures and
probably represents the face-to-face arrangement, has become more prominent though its
maximum value was still lower than one i.e. the value for the gas phase. This suggests that
even though the face-to-face arrangement is still not favoured compared to the

edge-to-edge, the increase in the peak height reflects an increase in face-to-face ordering.

It might seem that this behaviour, as indicated by the plots of g(r*), is somewhat strange
but it is consistent with results obtained from theoretical and molecular dynamics

17.8]

studies'”® of hard, oblate ellipsoids and from the previous simulations of the Gay-Berne

discogen'

. The explanation for the low value of the peak at r* of 0.4 comes from the
definition of the radial distribution function”. It measures the number of particles in a
spherical shell of a certain width from the origin, scaled with the number of particles in an
ideal gas. Because of the excluded volume of the discogen, the number of particles that lie

within a spherical shell of radius ©, is necessarily less than that appearing in the scaling

factor.

The second feature of note is the peak found at r* of 0.9 when T* of 9.09, which has now
moved to r* of 1.0 at the lower temperature, showing that the particles in the edge-to-edge
arrangement, previously overlapping, have now moved into a real edge-to-edge
arrangement. Again this shows, that despite the phase still being a discotic nematic, there is
possible pretransitional, translational ordering occurring before the onset of a columnar
phase. The configurational snapshots do indeed show the phase as a discotic nematic. The
view of the image parallel to the director, (see figure 3.14a), shows a random distribution
of particles, while the view perpendicular to the director, (see figure 3.14b), illustrates the

presence of high orientational order but with short range translational order.

We have now identified two different phases, an isotropic fluid at temperatures 7* of 10.77
and above, and the liquid-crystalline discotic nematic phase between 7% of 9.09 and 3.03. It
now remains to characterise the highly orientationally ordered phase or phases at

temperatures lower than 7* of 3.03.
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Figure 3.14: The configurational snapshots taken a) parallel and b} perpendicular to the director for the

discotic nematic phase at the scaled temperature T of 3.03.
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The first feature of interest is the peak at »* of 0.46, which corresponds to the particles
approaching each other in a face-to-face arrangement. Though present in the nematic
phase, it was not of sufficient intensity to be considered as a structural feature, but as the
height of this peak is above one, this suggests that columnar order has been formed, but as

the thickness of a disc is 0.3456,, the particles are not close packed within each column.

The peaks around 1.00, seem to indicate an edge-to-edge arrangement though no definite
assignments can be made at this stage because we do not know the symmetry of the phase.
We can distinguish between two possible ordered phases by comparing the maximum
values of g(r*). For the temperatures 7* of 0.98 and 0.55, at r* of 0.46, the maximum
value of g(r*) = 6 and as the height of the peaks represents the number of nearest
neighbours, and assuming hexagonal or rectangular symmetry, which is not unreasonable,

we could assign the phases at these temperatures as crystals.

For the temperature 7* of 2.01 though the value of g(r*) is high, at around 3, we can
deduce that though it is highly ordered, it is not a crystalline phase. So what is it? Looking
at the configurational snapshots, (see figure 3.15b), it is obvious that the system has formed
a columnar phase, with particles in neighbouring columns being interleaved with respect to
each other. This is not remarkable in itself as exactly the same structure was observed in
earlier work™, via g|,(r|/*), which gave the distance between particles in a face-to-face
arrangement as 0.226,, half the actual difference as revealed by the g(r*). On closer
examination however, looking down the director, (see figure 3.15a), we can see that the
columns have arranged themselves into a hexagonal net. This is in contrast to the square

net produced at the higher densities p* of 2.7 and 3.0.

Having proposed a D, symmetry for the columnar phase and seen that the particles within
the columns are ordered and staggered with respect to particles in neighbouring columns,
we can now assign the peaks in the radial distribution function with greater certainty, (see
figures 3.10 and 3.11). The peak at r* = 0.5 represents the particles stacking face-to-face to

form columns.



Figure 3.15: The configurational snapshots taken a) parallel and by perpendicular to the director

columnar phase at the scaled temperature T of 2.01.
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The peak at around 0.9G, is from particles within the same column but an extra 0.46c, on,
while the peak at r* of 1.1 is the distance between particles in neighbouring columns,
which is slightly greater than 1 because they are not in the same plane but staggered. The
peaks at scaled distances greater than r* of 1.5 come from a complicated superposition of
particles in various arrangements with the main contributions being from the next shell of
columns packing in a hexagonal fashion, r* of 1.8 and 2.1, and from particles along a
column. But why are the particles within a columnar interdigitated rather than lying in
plane with particles in neighbouring columns? and why are the particles evenly spaced
within each column rather than in an random arrangement? These questions can be
answered by looking at the plots of the energy of interaction between two particles with
their symmetry axes parallel i.e. in a face-to-face and edge-to-edge arrangements, (see
figure 3.5). Within a column, the particles are about 0.460,, apart, inferred from the g(r*),
thus it seems that the minimum separation depends on the minimum energy distance, this
being = 0.50,. But why are the particles within a columnar interdigitated rather than lying
in plane with particles in neighbouring columns? We have seen in both the isotropic and
discotic nematic phases, that the particles prefer to pack in a slightly off edge-to-edge
arrangement. From the packing behaviour, we expect two hard ellipsoids to slip over each
other rather than lie in the same plane, and from figure 3.5, we can see that in a slightly
overlapping edge-to-edge arrangement, there is still a considerable attractive part of the
potential which will help stabilise this arrangement. But we must not overlook the effect,

the fixed size and shape of the simulation box might have on the packing of the columns.

The orientational correlation function: The graph of G(r¥) for various scaled temperatures
is shown in figure 3.16, the range of the graph being determined by the maximum size of
the simulation box i.e. 2.34c,,. For the isotropic fluid, 7* of 10.77, there is essentially no
long range orientational order as the limiting value of G,(r*) decays rapidly to zero. In the
nematic phase, 7* of 9.09, the plot of G,(r*) has a non-zero limiting value, equivalent to
(P,)*, (see table 3.2) showing the persistence of long range orientational order. This leads to
a value of 0.552 for the order parameter which is in good agreement with (P,) of 0.556,
obtained from the Q tensor. The plots for G,(r*) at the other values of T* all show

increasing long range orientational order as the system is cooled.
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The high values at separations less than 0.50,, indicate that the particles at these separation
are in a face-to-face arrangement, having their orientation vectors parallel, hence their
value of G,(r*) of 1, though this does not mean that the face-to-face arrangement is
necessarily favoured. Also noticeable for the higher temperatures, is a slight peak at around
r* of 1. This illustrates, that for particles at this distance apart, in an edge-to-edge

arrangement, there is a greater degree of short range orientational order.
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Figure 3.16: The pair orientational correlation function G,(r*) for the scaled temperatures T* indicated.

(P (Py)

T* from Q Jfrom
tensor G(r*)
10.77 £ 0.12 0.151 £0.021 0.138
9.09 £0.14 0.556 £0.025 0.552
5.94+0.08 0.859+x0.012 0.857
3.03+£0.04 0.952+0.011 0.951
201 +£0.02 0.981 +0.007 0.982
0.55+0.01 0.995+0.002 0.995

Table 3.2: Values of (P,) calculated from the Q tensor and the limiting values of G,(r*).
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Longitudinal and transverse pair correlation functions: These distribution functions are
essentially the radial distribution function along a direction either parallel or perpendicular
to the director. Figures 3.17 and 3.18 show the g |(r||*) for temperatures between T* of
12.05 and 0.55. We can see that for the isotropic phase, T* of 12.05 and 10.77, and the
nematic phase, between 7% of 9.09 and 3.03, there is little indication of any short range or
long range translational order along the director, though there is a very small, broad peak
centred at about 0.50, within the nematic phase. This does increase slightly in intensity as
the temperature is lowered and represents a build up of short range translational order in
the form of the face-to-face arrangement. For the columnar phase we expect the plot of
g1|(r)1*) to be very different. It shows a series of highly defined peaks which should
correlate to the inter-particle distances within the columns. The distance between the peaks
is about 0.22¢, which is half the value given by the radial distribution function g(r*) for
the face-to-face distance, thus what the g| (r||*) is actually showing is the vertical distance

between one particle and its next nearest neighbour in an adjacent column.

We can now investigate the translational structure perpendicular to the director by looking
at the transverse pair correlation function g (r *), (see figures 3.19 and figure 3.20). For the
isotropic phase at 7% of 10.77 and the nematic phase at 7* of 9.09, we see little structure
except for a small peak at around 0.96, indicating some correlation between particles in an
overlapping edge-to-edge arrangement. The absence of any particles in the face-to-face

arrangement is shown by the plot of g (r *) taking a value below 1 at r* of 0.0.

At T* of 3.03, the lowest temperature of the discotic nematic range, the graph of g (r *)
shows that the peak, originally at 0.96, has now moved to 1.0, indicating the preference
for the edge-to-edge arrangement. There is also an additional peak at r* of 0.0. This is
picking up particles directly above each other, in the process of forming columns i.e. in the
face-to-face arrangement. Again this is an indicator of the pretransitional ordering present
within the discotic nematic phase at this temperature. In the columnar phase, T* of 2.01,

the arrangement between the columns becomes more apparent.
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The peaks at r* of 0.0 and 1.0 indicate a columnar structure, the particles within the same
column being represented at r* of 0.0 with neighbouring columns being 1.0G, apart, and
not interpenetrating as in the square columnar phase. The peak at r* of 1.8 originates from

the next shell of columns in a hexagonal arrangement.

Density distribution functions: The density distribution functions p,(r|;*) and p,(r,*) for
the discotic nematic and columnar phases, again show the onset of long range translational
order at the lower temperature. The density distribution function p,|(r|*) illustrates nicely
the onset of long range translational order in the system along the director, (see figure 3.21
and figure 3.22). For the nematic phase, the plot is linear but for the columnar phase, T* of
2.01, the plot is dramatically different, with the peak position, being a measure of the
distance between particles within each column. This is given, from the plot of p|(r;/*) as
0.21 but again this does not agree with the value of 0.5 for the face-to-face arrangement as
given by the g(r*). As with the g|,(r|*), what this distribution function is revealing is the
distance between neighbouring particles in adjacent columns, backing up the conclusion

that the neighbouring columns are interdigitated.

Figures 3.23 and 3.24 shows the distribution of the particles perpendicular to the director,
p,(r,*). For the discotic nematic phase, T* of 3.03, we can see some small amount of order
within the simulation box, while for the columnar phase at 7* of 2.01, the plot of the
p,(r *) indicates the formation of the columns across the box, each one being roughly
1.00, apart. It is unfortunate that the plane of r * is not unique in that we cannot
distinguish between the two orthogonal planes x and y, perpendicular to the director, as this
would yield greater information about the structure of the phase under investigation. A

similar restriction occurs when we calculate both the g (r *) and the X-ray diffraction

patterns in the next chapter.
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Figure 3.17: The longitudinal pair correlation function g |(r|*) at the scaled temperatures T* indicated.
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Figure 3.18 The longitudinal pair correlation function g||(r|*) at the scaled temperatures T* indicated.
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3.4.4 Dynamic properties

One of the advantages of using the molecular dynamics technique over Monte Carlo is that
we can calculate the dynamic as well as the static properties of a system; this can be
especially useful in characterising highly ordered phases such as the columnar and solid
phases. The two dynamic or time dependent properties that we have calculated are the
mean squared displacement and the velocity autocorrelation function. But before we
investigate these properties, we should discuss the mass and the moment of inertia which
are used to scale other quantities in these simulations such as the time. As we have seen,
(see §2.4), the motion of the simulation particles can be separated into two components,
translational and rotational motion. The translational movement of the particles is
dependent on their mass which is given a value of 1, while the rotational motion is
governed by the moment of inertia tensor /. But when the trajectories of the particles are
calculated by solving the equations of motion, a value of 4 is given for the moment of
inertia I* to ensure that the optimum translational and rotational time steps are
approximately the same. This value is not the same as that calculated from the equation,

_ 1+ (c./o5)?

! 20 ’

(3.2)
for an ellipsoid with mass of 1. Using this equation leads to a value for I* of 0.05 for our
Gay-Berne ellipsoid. Thus to be perfectly rigorous, any quantitative dynamic measurement
obtained from the simulation will be incorrect, but the use of these correlation functions in
a purely qualitative manner in determining and analysing the various mesophases is
undiminished. It is with this in mind, that we will now discuss the results for the time

dependent properties.

The mean squared displacement: By measuring the distance moved by a particle with time,
a plot of the scaled mean squared displacement m*(¢#*) can show how fluid a system is,
particles being able to move more freely in a liquid phase than in a solid while the motion
is also qualitatively different between the two phases. The total mean squared displacement
for a variety of scaled temperatures is shown in figures 3.25 and 3.26. These were
calculated using the method described in §2.4, with the tape file, consisting of particle

position, orientation and velocity, extending to 10,000 time steps i.e. 200 data points.
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It is interesting to see that in the discotic nematic phase at T* of 9.09 the particles are less
mobile than in the isotropic phase, 7* of 10.77. This is in contrast to the results at the
higher density of p* of 3.0, in which particles in the discotic nematic phase had more
translational freedom than particles in the isotropic phase. As the temperature is lowered to
T* of 3.03, the slope of the m*(¢*) plots decrease indicating the increasing viscosity of the
phases, though the plots are linear with time, highlighting the liquid-like behaviour of the
discotic nematic mesophase. Figure 3.26 shows the mean squared displacement for scaled
temperatures lower than 7* of 3.03. The different form of the m*(¢*) for these
translationally ordered phases, compared to the discotic nematic phase, can be explained by
the high degree of rattling motion within the former, resulting in the steep feature at the

origin i.e. librational motion about a mean position.

The mean squared displacement can also be resolved into two components, parallel and
perpendicular to the director. Figure 3.27 shows both the parallel m ) *(#*) and
perpendicular m *(¢*) components for the simulation at a selection of scaled temperatures.
Both plots of the m™(¢*) within the isotropic phase are very jagged due to the orientation of
the director rapidly changing as the mean squared displacement is being calculated. Within
the nematic phase, 7* of 9.09, the particles have more translational freedom in a direction
perpendicular rather than parallel to the director. This is to be expected as the disc-shaped
particles are able to slip over each other relatively easy in this direction. But again these
plots deviate from linearity with a distinct plateau at long times. This raises the question as
to are we following the behaviour for long enough times to be in the diffusional limit. As
the temperature is lowered, the behaviour of the system remains the same, in that the
particles have greater translational freedom perpendicular to the director, as shown by the
lowest temperature, 7* of 3.03, (see figure 3.27d), of the discotic nematic phase, though

the actual extent of the motion is less than at the higher temperatures.

The phase transition between the discotic nematic and columnar/crystal phases is shown by
the major change in the mean squared displacement at T* of 2.01, (see figure 3.27¢). It is
interesting to see that the particles find it easier to move side-to-side within rather than
along a column. For the crystal phase we can see that the particle motion has essentially

ceased, (see figure 3.271).
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The diffusion coefficient D can be obtained from the plot of the mean squared
displacement via the Einstein relationship, (see equation (2.62)). It can also be calculated
from integration of the velocity autocorrelation function, (see equation (2.63)). We give the
results from these calculations in table 3.3. For the scaled total diffusion coefficient D*, we
can see that it decreases as the translational order within the system increases. The same
situation applies to the components of the diffusion tensor parallel and perpendicular to the
director. From the ratio of these components, D*,|/D* , for the nematic phase, 7* between
9.09 and 3.03, the difference between the motion in these directions increases as the
ordering builds up. It becomes easier for the particles to move perpendicular to the director
i.e. for the ellipsoidal particles to slip over each other. Unfortunately, the values obtained
from integration of the C,(*), do not correlate with those obtained from the m*(¢*). This
is probably due to errors associated with the truncation of the plots of C,(#*), which as
observed in figure 3.29, do not decay exactly to zero after r* of 0.25, the limit of our

calculation due to limitations in computer storage.

There can also be another problem when calculating the diffusion coefficient by these
differing methods. The velocity autocorrelation function decays to zero relatively quickly,
sometimes over the first 250 - 500 time steps of a simulation, while the diffusion
coefficient from the mean squared displacement is obtained when the slope of the function
is linear which can be many thousands of time steps in to a simulation. In theory, if the
system is in equilibrium, this should not make any difference, though in practice it seems

that the statistics are better at longer time scales.

D* D*
T* Phase Sfrom Sfrom D* D*| D*,\/D*
m¥(t*) Crralt*)
10.77 I 1.612 0.023 - - -
9.09 N 1.318 0.025 0.432 0.579 0.78
5.94 N 1.123 0.027 0.162 0.51 0.32
3.03 N 0.367 0.023 0.04 0.154 0.26
2.01 D, 0.002 0.005 0.003 0.005 0.6

Table 3.3: The values of the scaled diffusion coefficients for the system at the scaled temperatures T*

indicated.
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The velocity autocorrelation function: Figures 3.28 and 3.29 show the plots of the total
velocity autocorrelation function C,,(t*) as a function of scaled time #* for a variety of
scaled temperatures throughout the simulation. At ¢* of 0, C,,(#*) has the value of one, by
definition of C,(t*) as a normalised quantity, indicating that the velocities are the same.
Then as the simulation proceeds, the value of C,,(#*) drops gradually as the velocities from
the current time step v(t*) become less correlated with the initial velocity v(0). Eventually
the graph decays to a value approaching zero as the velocities from the two time steps
under comparison become uncorrelated. In contrast to the mean squared displacement,
which can be measured over large time scales, t* of 10, the C,(¢*) is calculated over just
the first 250 time steps of the simulation, #* of 0.25. This is an order of magnitude less

indicating that velocity correlations are lost over a relatively short time scale.

Looking at the plot for the total C,,(#*), (see figures 3.28 and 3.29), in greater detail, we
can see that, for the isotropic and nematic phases, the correlation of the velocities decays
rapidly after #* of 0.05 and approaches zero within #* of 0.10. The behaviour at 7* of 3.03
is slightly different however, perhaps reflecting the pretransitional ordering within the
phase. The plot does not decay to zero until * of 0.175, having become negative in sign.
This reflects the particles undergoing collisions with each other which reverses the
direction of the original motion. The behaviour in the columnar phase, T* of 2.01, is
dramatically different, with a large negative region, indicating the increased rattling motion

within each column, this effect being observed in the plot of m*(¢*).

As with most correlation functions, the velocity autocorrelation function for the
translational motion can be resolved parallel and perpendicular to the director, giving
additional information about the dynamics within the phase. In the isotropic phase, the
motion in both directions is very similar, with the C,,(#*) decaying to zero after about #* of
0.07, (see figure 3.30a). The plot of the C,,(¢*) for the discotic nematic phase at T* of 9.09
shows, as expected, that the movement of the particles parallel to the director is more
hindered than in a direction perpendicular to the director. This can be deduced from the
plot as the C, (t*) decays quicker and the sign of the C,,(t¥) in the parallel direction is

negative indicating a reversal of the velocity, resulting from a particle collision.
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At the lower temperature 7* of 3.03, for the discotic nematic phase, the shape of the
C,(t™) is the same as at 7* of 9.09 but the features are more pronounced, for example,
C,y) (™) falls to a very low value and even C,,, (¢*) undergoes a sign reversal, in contrast to
the system at 7* of 9.09. This shows the greater structure and hence slower movement of
the particles at the lower temperature, resulting from a more significant cage effect.
Inspection of the plot for C,(t*) for the columnar phase at T* of 2.01, shows that
movement in both directions is strongly hindered, especially in the parallel direction where
the many oscillations in the plot indicate a rattling motion caused by particle collisions. It is
also interesting to note that the particle movement perpendicular to the director decays to
zero very slowly, only after about ¢* of 0.2 indicating considerable residual movement

perpendicular to the director.

3.4.5 Location of the phase transitions

We have just discussed in depth the behaviour of the Gay-Berne discogen via the
calculation of various structural and dynamic properties and have shown that on cooling
from the isotropic fluid, discotic nematic, hexagonal columnar and crystal phases are
formed. But it still remains to determine more precisely, or at least a more accurately the
discotic nematic - isotropic transition temperature and the range of the hexagonal columnar

phase.

Discotic nematic to isotropic transition: We have carried out additional simulations to
locate the discotic nematic - isotropic transition with a greater accuracy. We know from the
initial simulation that the transition lies between the scaled temperatures 7* of 10.77 and
9.09. So starting from the isotropic phase at 7* of 10.77, we reduced the temperature in
steps of 0.1 to 0.2 scaled temperature units, with equilibration runs of between 30,00 and
60,000 time steps being performed at each state point. Production runs of between of
10,000 and 25,000 time steps were then performed. Looking at the temperature dependence
of the order parameter (P,), (see figure 3.31), we can see that the values exhibited by the
system in the isotropic phase are non-zero, so deciding where the phase transition can be
difficult. For real systems of rod-shaped molecules, it is generally thought that the order
parameter has a value of = 0.35 at the transition, and as the transition between discs seems

to be weaker, we could deduce that the transition might be between 7* of 9.84 and 9.73.
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Set T* Actual T* N, 110° N, /10° (U (P

10 10.77 £ 0.21 30 10 ~9.69+0.54 0.151+0.051
9.9 9.91+0.19 30 15 ~10.84+ 041 0.178+0.013
9.8 9.84 + 0.24 30 10 ~11.63£0.61 0.274=0.019
9.7 9.73+0.14 30 25 ~1241£0.53 0.339+0.025
9.6 9.61+0.22 30 20 ~12.11£0.59 0.285=0.021
9.5 9.52+0.14 60 10 ~123940.56 0.315=0.025
9.4 9.36+0.11 60 20 ~15.85+028 0.517+0.018
9.2 9.21+0.29 60 10 ~15.9940.25 0.538+0.022
9 9.09 + 0.4 60 10 ~16.12+0.55 0.556+0.025

Table 3.4: Values of T* (U*) and (P,) for the simulation of the nematic - isotropic transition at p* of 2.5,

where N, and N, are the number of time steps performed during the equilibrium and production stages.
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Figure 3.31: Location of the discotic nematic - isotropic transition as shown by (P,) and (U*).
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But it is good practice to look at many different properties of the system before making any
firm conclusions about the phase behaviour. If we now add the plot of the internal energy
per particle (U*), we can make a slightly different interpretation of the order parameter.
Any discontinuity in the plot of (U*) usually demonstrates a first order phase transition,
though at constant volume the transition is more continuous as there will be a biphasic

region, and from this we can see that the discotic nematic - isotropic phase transition

occurs between T of 9.52 and 9.36.

Discotic nematic to columnar transition: To locate this phase transition we followed a
similar procedure to that for the discotic nematic - isotropic transition. Starting from the
discotic nematic phase at T* of 3.03, we slowly decreased the temperature in steps of 0.1
scaled units, with equilibrium runs ranging from between 15,000 to 100,00 time steps and
production runs from 10,000 to 40,000 time steps. The actual location of the transition
temperature for the columnar - discotic nematic transition is relatively easy. Inspection of a
plot of the longitudinal distribution function g (r|*), (see figure 3.32), reveals the onset
of translational order along the director indicating that the transition occurs between T* of

2.73 and 2.61.

Once we had located the columnar - discotic nematic transition we decided to continue and
find the range of the columnar phase and if possible, locate a crystal - columnar phase
transition. The temperature was further reduced in 0.1 steps until 7* of 1.5. Looking at
plots of (P,), {P,), (U*) and (C,*) revealed no discontinuity or indication of a phase
transition. The only distribution/correlation function that showed a possibility of any phase
transition was the total mean squared displacement, (see figure 3.33). For comparison, we
have also included the plot for the discotic nematic phase T* of 2.73. This shows that in the
nematic phase, the particles undergo considerable translational diffusion as the plot
deviates from a horizontal plateau and is linear with time. The next three temperatures T*
of 2.61, 2.49 and 2.37 show a markedly different form of the m*(#*¥). Initially there is a
steep part, then there is a change in slope, but it still increases with time showing that the
particles within the system are still moving, albeit through small distances when compared
with the nematic phase. So, more than likely, we can identify this phase as a columnar

phase.



Set T* Actual T* N, /10° N, /10° (U* (P

3 3.03%0.12 15 10 ~35.44£0.10 0.9520.009
2.9 2.88+0.10 20 20 ~35.98+0.11 0.956+0.011
2.8 2.81+0.11 30 30 -36.19£0.13 0.957+0.010
2.7 2.73+0.09 30 20 -36.70£0.12 0.960 +0.011
2.6 2.61+0.06 55 30 -39.24%0.10 0.968 + 0.007
25 249+ 0.08 30 30 ~39.73£0.09 0.972+0.011
2.4 237+0.08 100 25 —40.17£0.08 0.974 +0.009
23 228+ 0.06 30 40 ~40.48 £ 0.09 0.975+0.010
22 2.19+0.07 50 30 ~40.73+0.10 0.976+0.011
2.1 2.010.06 70 30 —4131£0.11 0.979 +0.010

2 1.98 0.05 30 20 ~4137+0.08 0.980+0.011
1.9 1.90 + 0.03 50 30 —41.60 £0.09 0.980 £ 0.008
1.8 1.81+0.02 35 10 ~41.85+0.10 0.981 +0.006
1.7 1.70 £ 0.01 30 20 —42.18£0.09 0.983 + 0.003
1.6 1.58+0.02 30 20 ~42.49£0.08 0.984 +0.003
1.5 1.52+0.01 25 10 ~42.68+0.08 0.986 +0.003

100

Table 3.5: Values of T* (U*) and (P,) for the simulation of the crystal - columnar - discotic nematic

transition at p* of 2.5, where N, and N, are the number of time steps performed during the equilibrium and

production stages.

The plots below T* of 2.37 have a similar shape to those of the columnar phase, but after
the initial step, the graph becomes horizontal with time, essentially showing that the
particles have stopped moving. This is obviously analogous to a crystal phase, so on this
basis the crystal - columnar transition could be said to occur between 7* of 2.37 and 2.28.
If this analysis of the data is correct, it is interesting to note the extremely small
temperature range of the columnar phase, just 0.3 scaled temperature units compared with
the discotic nematic phase of 6.8 scaled temperature units, in all just 4% of the entire
mesophase range. This is not entirely out of the ordinary as hexa-6-alkoxybenzoate of
triphenylene, (see figure 3.1) exhibits a rectangular columnar phase of 7 °C compared with

81 °C for the discotic nematic phase!'’], which is about 8% of the entire mesophase range.
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3.4.6 Comparisons with the Maier-Saupe theory.

One of the most popular theories used in describing the behaviour of nematic liquid
crystals is the Maier-Saupe theory developed in the late 1950's!"'?l and based on the
molecular field approximation. It has been used extensively to understand the behaviour of
the nematic mesophase and the predications have been found to be in good agreement with
many of the properties of the nematic - isotropic transition in real systems. It does,
however, neglect certain important features of liquid crystals such as biaxiality and
flexibility. We shall only give a very brief outline of the Maier-Saupe theory and the
properties of interest to us, but for a deeper understanding, the reader is directed to the

previous references!"’l,

In the original work, Maier and Saupe made some general assumptions about how liquid
crystal mesogens interact. The first was that the dominant contribution to the stability of
the nematic phase came from the anisotropic dispersion forces between molecules (see
§2.1.2) and secondly, that the nematic phase is made up of cylindrically symmetrical
particles. The central equation in the theory is the potential of mean torque experienced by
a molecule in the field generated by its anisotropic interactions with the other molecules in

the system. This is written as

U(B) = ~&(P2)Pa(cos B), (3.3)
where P,(cosP) is the second Legendre polynomial, {(P,) is its ensemble average, the second
rank orientational order parameter and € is a function of molecular structure and density.
This now leads us to the question, what can we do with U(B)? Well, we can calculate the
second and fourth rank orientational order parameters as a function of temperature using

the assumption that the singlet orientational distribution function can be truncated at the

second rank term,

ficos B) = Zlexp {aP2(cosP)}, (3.4)

where the normalisation factor Z is defined as

Z= j exp{aP>(cosP)}sinf dp, (3.5)
0

where
= £(Py). (3.6)
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This leads to the self consistency equation
7t
(Pyy=2"" J.Pz(cos[f'))exp {aPy(cosP)}sinP dp. (3.7)
0

By then plotting the values of the order parameter against 7%/, *, (see figure 3.34), we can
see that the Maier-Saupe theory predicts a nematic - isotropic transition with the value of
the order parameter being 0.429 at the transition. By now plotting our simulation results for
(P,) and (P,) onto the graph obtained from the Maier-Saupe theory, we can see how our
results from the simulation compare with the theory. Very close to the transition, there is
reasonable agreement between theory and experiment in the nematic phase, though there is
some deviation as the temperature is increased into the columnar phase. This is also
illustrated to some extent by plotting (P,) vs. (P,) for both simulation data and values
obtained from the Maier-Saupe theory, (see figure 3.35), where there seems to be
reasonable agreement between both sets of data, confirming the quality of the fit of the
second rank form of the distribution. We can also compare the singlet orientational

distribution function f{cosp), given by

exp {aP>(cos B)}
[exp {aP;(cos B)}sin Bdp

flcos B) = (3.8)

To predict the form for the scaled temperature in our simulation, we first need to calculate
the coefficient a, given by equation (3.6). In the Maier-Saupe theory, € is predicted to be

proportional to the nematic - isotropic transition temperature by,
€=4.539T,. (3.9)

From our simulations, (see §3.4.4), T*,, = 9.45. This means that a is now, in scaled units,

from equation (3.8),

(P2)

=42, ,
a 89 T

(3.10)

and by using the appropriate values of (P,) and 7* from our simulations, we are able to
predict the singlet orientational distribution function f{cosf). From figure 3.36, we can see,
that for the scaled temperatures of 9.09 and 3.03, the agreement of the simulation data and
that from the Maier-Saupe predication is reasonably good, underlining the predication that

the coefficient a is related to the second rank orientational order parameter (P,).
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Figure 3.34: Plot of (P,) and (P,) from our simulations (circles) and those predicted by the Maier-Saupe

theory (solid lines) against the scaled transition temperature T*/T*.
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Figure 3.35: Plot of the order parameters (P,) vs. (P,) from our simulations (circles) against that predicted

by the Maier-Saupe theory (solid line).
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Figure 3.36: Plot of the singlet orientational distribution function f{cosB) from our simulations (circles)

against that predicted by the Maier-Saupe theory (dotted lines) for the scaled temperatures of a) T* of 9.09

and b) T* of 3.03.
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Order parameter for the intermolecular vector: One of the other assumptions that Maier
and Saupe made, was that the intermolecular vector between two particles is spherically
distributed in the nematic phase, that is all values are equally probable. We can test this
distribution of the intermolecular vector with respect to the director for our simulations, by

calculating the order parameter (P,"(r*)) for the intermolecular vector as a function of the

scaled separation r* (= r/c,) between a pair of particles.

We calculate (P,"(r*)) by constructing two histograms every 50 time steps, from a series of
10,000 time steps stored on a tape file. The x axis is just the interparticle distance r* with a
bin width Ar* of 0.05. The y axis was just the sum of P,(cosP,) for pairs of molecules with
separation between r* and r* + Ar*. The second histogram contained the number of
particles between r* and r* + Ar*, and was used to normalise the P,(cosP.) histograms. The
results of these calculations are shown in figure 3.37. The large non-zero values found for
the order parameter clearly demonstrate that the intermolecular vector is not distributed
with a spherical symmetry at short range as assumed by the Maier-Saupe theory. This
result is not unexpected as a similar conclusion was reached by Emerson et al.'* for a

system of rod-shaped Gay-Berne mesogens exhibiting a nematic phase.

The results for (P,"(r*)) can be explained as follows. There is a large, positive peak at r* =
0.4 corresponding to pairs of particles in a face-to-face arrangement, though from the plot
of the radial distribution function we know that there are not many of these. The peak is
positive, because for this arrangement, the intermolecular vector is parallel to the director.
The next peak is a minimum at r* = 1.0, approximating to particles in the edge-to-edge
arrangement. But for this arrangement, the intermolecular vector is now orthogonal to the
director resulting in the negative value for order parameter. Beyond these peaks the
distribution of the intermolecular vector decays to zero, corresponding to a spherical

distribution of the intermolecular vector.



107

0.5

04 — Y T* =594
] R R T* =3.03

0.3 —

<P2+(r*)> 7]
0.2

0.1

0.0

-0.1 T
0.0 0.5 1.0 1.5 2.0 2.5

Figure 3.37: (P,"(r*)) for the intermolecular vector, at the scaled temperatures T* indicated.

3.5 Conclusions

Liquid crystals can be investigated using a variety of potential models, ranging from the
simple lattice model to a full atom-atom potential. We have chosen to use the Gay-Berne
potential which in terms of complexity lies in between these two extremes. Each particle
has full translational and orientational degrees of freedom but only represents each
mesogenic molecule as a single force centre having an ellipsoidal core but with anisotropic

attractive forces built in.

By a weak parametrisation of the shape anisotropy and the energy of interaction between
particles to resemble a disc-shaped mesogen we have successfully simulated isotropic,
discotic nematic and columnar phases. We have investigated further the orientational,
structural and dynamic behaviour of these mesophases by the calculation of various
distribution and time correlation functions such as the radial distribution function g(r*) and
the mean squared displacement m*(z*). We have found a discotic nematic - isotropic phase

transition and a columnar - discotic nematic phase transition.



108

The columnar phase exists over a very small temperature range. We have demonstrated
that the symmetry of the columnar phase is hexagonal at lower densities but forms a
rectangular phase at higher densities'”. In most thermotropic rectangular phases, either the
columns or the molecules within each columnar are tilted, but for the Gay-Berne
rectangular phase, the neighbouring columns are interdigitated allowing the particles and

the column axes to remain orthogonal to the director.

Unlike most real discotic systems, the range of the discotic nematic phase is quite large and
considering the strength of the face-to-face interaction, we would expect a more defined
columnar phase. But these observations can be rationalised if we consider the nature of our
model compared to real discogens. First we have neglected the role of flexible alkyl chains,
that while playing a vital role in disrupting the strong interaction between molecular cores,
would also increase the effective radius of the particle, making it easier to form a columnar
phase. In a sense, instead of our model being a generic model for a whole range of
disc-shaped mesogens, it could be regarded as having the general features of discogens but
due its fixed size and shape, resembles only a specific mesogen, as one compound is only

one member of a homologous series.

Further Work

Although we have been reasonably successful in achieving our aim of simulating and
understanding somewhat better the behaviour of the various mesophases formed, there are
problems that still need to be addressed. The major problem that afflicts all computer
simulations of complex liquids, is the limited number of particles with which we perform
our simulations. This has two consequences when applied to our work. The first is the
effect on the nature and the position of the various transitions between different phases. It
has been noted, that small system sizes can affect the order of the nematic - isotropic

115}

transition"” and in some cases could force a phase transition on the system. If the model of

the nematic - isotropic transition, proposed by Luckhurst and Zannoni"®

is considered,
they state that in the isotropic phase, there are small clusters of orientationally ordered
molecules and that the transition to the nematic phase is just the extension of orientational

order between these clusters.
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So the problem we face, is what if these clusters present in the isotropic phase are of
equivalent size to the numbers used in our simulation? The next logical step is the increase

in the number of particles used in the simulation!”".

The next problem relates to the essentially artificial nature of our simulation, in that we
have a fixed size and shape box in which we place our molecules. This would especially
manifest itself in the translationally ordered phases such as the columnar phases. We have
seen that the columns can pack into a hexagonal lattice, though that does not pose any
problem as that is what we would expect. But what about the square columnar phase,
where, due to the higher densities, the columns are forced to penetrate each other to
accommodate the columns. What would be the effect on allowing the box size and shape to
relax, to attain an equilibrium position? This would have to be investigated by performing

constant pressure simulations.

We have just discussed work that could be performed on the present systems, but we could
also extend this work to encompass the search for other mesophases, such as the addition
of dipoles and quadrupoles, with the possibility of forming tilted phases. We could also
investigate particles with additional flexible chains or chiral centres. But we must not
forget, that we need to examine the techniques we use, in particular the effect system size,

different ensemble and boundary conditions would have.
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4. X-Ray diffraction from Gay-Berne mesophases.

4.1 Introduction

X-Ray diffraction is generally used to investigate the structure of matter at the molecular
level with probably the most common application being the determination of the positions
of atoms in crystals. However, the technique is far more versatile than this. For example,
biologists use X-ray diffraction to determine the arrangement of molecules in complicated
systems such as viruses and cell membranes. The technique is also used as a common
analytical method for identifying the structural and chemical composition of mixtures. We
can also use X-ray diffraction for the characterisation of the various liquid-crystalline
mesophases, especially for translationally ordered phases where it is an essential method

for distinguishing between the various smectic and columnar phases.

But apart from a purely qualitative use, we can also gain some quantitative measurements
of the orientational order in a mesophase from the technique and we shall discuss these
matters in greater depth at the appropriate time. We begin with a brief discussion of X-ray
diffraction, followed by some explanation of how we extract the essential information from
a real diffraction experiment. We shall then talk about how we apply the technique to
liquid crystals, discuss the aims of our simulation experiments, the models we shall use and
finally the results of our initial studies on the system of Gay-Berne discogens discussed in

Chapter 3.

4.1.1 X-Ray and neutron beams

X-Rays are produced"’ by bombarding a metal with high energy electrons. When these
electrons hit the metal they decelerate, producing radiation with a range of wavelengths.
Superimposed on this continuum radiation are a few sharp, high intensity peaks. These
arise from the interaction of the incoming electrons with electrons in the inner shells of the
metal atoms. The collision expels one electron and an electron of higher energy drops into
the vacancy left, emitting the excess energy as an X-ray photon; a typical target metal
being copper which produces X-rays at 0.154 nm. We can also use neutron beams,
generated from within a nuclear reactor, to determine the structure of a system and as they

produce similar diffraction phenomena as X-rays, they will arise further in our discussion.
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4.1.2 The diffraction process

We have just described the variety of energy beams that can be used for diffraction
experiments but what can they be used for? As the wavelengths of these beams are
approximately 0.1 nm, which is comparable to the atomic spacing in crystals, Von Laue
suggested that they might be diffracted by crystals and hence give some idea about the
structure of the material. Thus the idea of X-ray diffraction was born, with the first pattern
recorded in 1913, Diffraction is produced by the interference of waves that are scattered
from an object. When the amplitudes are in phase the waves augment each other and the
intensity increases and vice versa, thus out of phase waves destructively interfere with each
other. It can thus be distinguished from scattering phenomena, of which it is a subset,
where the scattered rays do not necessarily interfere. Before we deal with the actual
diffraction experiment, we should say what happens when X-rays interact with matter. The

scattering of X-ray beams from matter occurs by two processes:

(1) Incoherent or Compton scattering is a billiard ball effect. Incident X-rays can be
considered as photons. When an X-ray photon hits an electron, the electron is knocked
aside and the X-ray photon is scattered through an angle 20. Energy from the X-ray photon
has been used to move the electron, thus the wavelength of the scattered X-ray photon is
different from that of the incident X-ray photon. There is no phase relationship between the
scattering events and so one cannot assign positions to the scattering pattern, thus this is
known as incoherent scattering. Its only effect is to give rise to an overall background

scattering.

(i) Coherent or Thomson scattering occurs when, as the X-ray hits an electron, the
electromagnetic field of the X-ray causes the electron to oscillate with the same frequency
as the X-ray. This change in frequency forms the source of a secondary scattered ray which
has the same wavelength as the X-ray but differs in phase by & radians. All the scattered
waves have the same phase relationship to the incident beam, hence the scattering is

coherent.
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Both X-ray and neutron diffraction are similar in that they are an indirect method of finding
the structure, in that a direct image cannot be formed. As X-rays and neutrons cannot be
focused, the scattered beam is intercepted by a detecting system such as photographic film
or electronic counter. This means that the phase relationship is lost but through the use of
Fourier synthesis®l, the recombination of the scattered rays can be simulated. Optical
microscopy on the other hand gives an enlarged image with a continuous flow of radiation

that can be recombined by a lens system to maintain the phase relationship.

4.1.3 The diffraction experiment
To develop the theory of X-ray diffraction we start with the most fundamental equation that
usually describes scattering from a crystal. Consider a series of parallel lattice planes of a

crystal, (see figure 4.1).

incident
ray 1

scattered
ray 2

Figure 4.1: Schematic diagram of Bragg scattering from a series of crystal planes.

If the separation between planes of atoms is d, then the path difference between the

incident radiation, ray 1, and the scattered radiation, ray 2, AB + BC can be written as
AB+ BC = 2dsin®. 4.1

For most scattering, the angle 6 will not result in an integral wavelength difference and so
will be out of phase and the intensity will decrease. But at some angles, 4B + BC will be an

exact integral multiple 7, of the wavelength A, of the incident X-ray, so that,
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AB+BC=n\. (4.2)

For this case, the amplitudes will be in phase and constructive interference will occur.

Combining equations (4.1) and (4.2) leads to
2dsin® = nA. 4.3)

This is known as Bragg's law which is used to predict the position in space of diffracted
rays. The problem with this, is that it only applies to diffraction from crystals i.e. structures
with long range positional order, so we need to extend this theory to encompass diffraction
from fluid phases. Figure 4.2 illustrates a basic diffraction experiment by considering
parallel beams of monochromatic X-rays of wavelength A impinging on a body of electron
density that contains two scattering centres O and P, i.e. we have an electron density p(r) at

position r from the centre O.

Figure 4.2: Scattering from a body of electron density.

In figure 4.2, k,, is the wavevector for the incident X-ray beam with wavelength A and K,
that for the scattered radiation. There will be a path difference between the X-rays scattered
from O and P both of which are scattered through an angle 26. By analogy with the Bragg
experiment, this path difference is

S—p=nA. (4.4)

This can be rewritten as
rks—r.ko= }’17\,, (4.5)

with r being the vector describing the position of P, and hence a phase difference of
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r.(ks — ko) = % (4.6)

A vector Q, (see figure 4.3), is used to define the scattering vector k¢ — k,, where
Q= 2mA)(ks — ko), 4.7)

and so the phase difference can now be defined as

Q.r. (4.8)

The vector Q, far from being a convenient notation, is also used to describe a position in

diffraction or reciprocal space, in the same way as r does in real space, with its magnitude

defined by
|Q| = 4msin /M. (4.9)

Figure 4.3: Definition of the vector Q used to measure positions in diffracted space.

The scattering by a small unit volume dv at position r relative to O has an amplitude
proportional to the electron density p(r) and a phase of Q.r. Thus the scattering at a

distance r from the origin is
p(r) exp(iQ.r)dr. 4.10)

Thus the total wave scattered by the entire volume V is given as
F(Q) = | p(r) exp(iQ.r)dr, (4.11)

where F(Q) is known as the form factor which describes the effective scattering or

amplitude of the sample'.



116

We now know the amplitude of the diffracted X-ray, it just remains to calculate the

intensity /(Q) and this is related to the scattering amplitude or form factor by

Q)= FQ)F*(Q),
=[] p(r)p(r2) exp[iQ.(ri —r2)ldrdr>, (4.12)

where F*(Q) is the complex conjugate of F(Q). If integration of F(Q) is over all space,
then F(Q) is the Fourier transform of p(r), thus the diffraction of scattered X-rays can be
explained using the properties of the Fourier transform"!. But equation (4.12) encompasses
all scattering from the body of electron density p(r), so we need to extend the theory to
extract the forms for the scattering we are interested in. If we now consider N fixed,
discrete scattering sites within a sample of electron density,

N

p(r) = Il/ .gl a;d(r —ry), (4.13)

where g, is a generalised atomic scattering factor, applicable to either X-ray or neutron
radiation, and is dependent on the property of the atom under investigation. Substituting

(4.13) into equation (4.11) the form factor now becomes
N
FQ) =2, j a;exp(iQ.r)d(r — r;)dr,
i=1

N
=2 a;exp(iQ.r). (4.14)
i=I
Thus the intensity ofithe diffracted radiation, be it X-ray or neutron, is given as
N N .
1Q) = X X{aia;exp(iQ.ry)), (4.15)
iJ

where the brackets represent an ensemble average and the vector for scattering from site i
to site j is r, = r, — r, and includes both r,= -r, and r, = 0. We still need to separate this
expression for the total intensity given by equation (4.15) into coherent and incoherent, self

and interference and intra- and intermolecular terms. In general,

(i) = (a)a)y+8;({af - (aiXa)). (4.16)
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Substituting equation (4.16) into (4.15) allows the expression to be separated into self,

where i = j, and interference terms, where i # j, giving,

Q) = Xa}) + X X (aiajexp(iQ.ry)), (4.17)

— Iself(Q) + Iinter(Q).

It is more usual to divide equation (4.17) into incoherent and coherent terms so that,
1Q) = X(a} ) —(a)*) + X XfaiajexpQ.ry)), (4.18)
i j

= Iincuh(Q) + ICOh(Q),

where terms for i = j have been removed from the self scattering term and added to the
interference scattering term. The incoherent scattering is the major contributor to the

background and so is of no interest to us, but the coherent scattering is, and is given by
Q) = X 2{aa;exp(iQ.ry)). (4.19)
i
This can be subdivided into terms depending on whether the two scattering sites i and j are
in the same molecule or not. First, we need to define the quantities
ri=R,+r" and r; =Rn+r;, (4.20)
where the vector r, of the i site is the sum of the vector to the origin of the m"™ molecule
fixed frame, R , plus the vector from the origin to the i" site in this frame, r”. Thus
r; =r,'——rj=(Rm—R,,)+(rf"—r]'.'). 4.21)

Putting equation (4.21) into the expression for the total coherent scattering (4.19) gives

Nlﬂ Nm Nn N"

1MQ) =2 X % Maaexp[1Q{(Rn —Ro)+ &' =1} ) (4-22)
m n i j

where the summatijons are performed over the N, molecules each containing N, nuclei i.e.

the total number of sites N=N N .
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Separating terms for m = n and m # n, produces

Q= XX X @exp[iQ-{(Rn —Ra) +(r} =)} ])

m#En n
+Np E(a,ajexp[lQ.(r,- —r} ):I). (4.23)
i
= I”"Q) + NaI""(Q).
intermolecular intramolecular
term term

When we set out on this analysis, we stated that this would be a general derivation for
fluids, thus for neutron scattering, g, is the nuclear scattering length, while for X-rays, we
can replace a, with the atomic scattering amplitude which, for the spherical atom

approximation, is given by
sin(Q. r)

=fi@=p—g—

(4.24)

We have just outlined how, from the measured intensity, we can divide the scattering into
various parts, that arising from individual molecules and interference scattering from a
collection of molecules, but what we need to do now is to outline briefly how X-ray
diffraction is applied to the specific problems encountered with liquid-crystalline

mesophases.

4.2 X-Ray diffraction from real liquid-crystalline mesophases

X-Ray diffraction studies on real liquid-crystalline mesophases can be divided into two
categories, those that employ unoriented or "powder" samples and those where the
sample under investigation is oriented by the use of an external force. A powder sample
consists of many director domains giving all possible orientations ofithe particles, thus all
possible diffraction peaks can be seen. This manifests itself as a pattern consisting ofl
concentric circles, (see figure 4.4a). These patterns are often used for the initial
characterisation of mesophases and can give details ofimolecular packing such as layer and
correlation lengths. Diffraction patterns from oriented samples, (see figure 4.4b), provide
much more information. They allow us to achieve more detailed conclusions on the
packing and structure within the mesophase, both parallel and perpendicular to the director,
information unobtainable from unoriented samples. The results obtained from these
oriented patterns can also be used quantitatively, it is claimed, to determine aspects such as

the singlet orientational distribution function f{cosp)®.
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4.2.1 Effect of ordering on diffraction patterns

We begin by discussing the effect, of the type of ordering found in liquid-crystalline
mesophases, on the diffraction pattern. But what do we mean by the type of ordering?
Well, we have both short range and long range, as well as translational and orientational

ordering.

X-Ray source

>

a) Powder sample

Magnet  \ N /

Detector

/f

\

X-Ray source
> >
b) Oriented sample
Detector

Figure 4.4: Production of a) powder and b) oriented X-ray diffraction patterns.

If we consider the scattering from a perfect crystal, we obtain a series of infinitely sharp
Bragg peaks, (see figure 4.5a), resulting from the infinite range translational order.
Quasi-long range ordering, of the type found in the highly ordered smectic and columnar
phases, is temperature dependent, with the correlation between particles decaying
algebraically with distance, the effect being to smear out the Bragg peak, (see figure 4.5b).
If there is only short range translational order, decaying exponentially over the sample, as
present in the nematic phase, the peak now broadens out quite substantially, with a width

proportional to the positional correlation length, &, (see figure 4.5¢).
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1/ gp

b) c)
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Figure 4.5: The effect of a) infinite range, b) quasi-long range and c) short range translational order on a

diffraction peak, and d) and e) the effect of orientational disordering on a simple diffraction patternm.

The effect of orientational order can also have a similar effect on the appearance of the
diffraction pattern. If we consider a series of evenly spaced chains of particles, that are
translationally disordered within each chain, (see figure 4.5d), we can see that the
diffraction pattern™ has both meridional, representing the average end-to-end length, and
equatorial peaks arising from the side-by-side correlations. The effect of an orientational
distribution of these monodomains of local directors, on the patterns can now be clearly

observed, as the peaks are smeared out into diffuse arcs, (see figure 4.5¢).
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4.3 X-Ray diffraction from model liquid-crystalline mesophases

4.3.1 Motivation

We have just described how X-ray diffraction can be a powerful technique for the
determination of both molecular structure and macroscopic order, i.e. characterisation
between various liquid-crystalline mesophases. So there is no reason why we should not
apply the same techniques to study mesophases generated from the results of computer
simulation. There are two main aims as to why we should generate X-ray diffraction
patterns. The first is to probe in greater detail the structure of our simulated phases and
allow differentiation between them. In this respect, the diffraction patterns complement
graphic snapshots and distribution functions which are normally used to determine

structure. Secondly, they provide us with a further test on the validity of our model used.

To expand on the latter reason, in Chapter 3 we used a generic model of a disc-shaped
mesogen to see if we could identify some of the essential features responsible for the
formation of discotic nematic and columnar mesophases. We did indeed show that our
model, the Gay-Berne model, has the necessary characteristics of both anisotropic shape
and attractive forces, to be able to form these two phases. To see if these models were
representative, if only in a qualitative sense, of real mesophases we also calculated various
orientational and structural properties, such as the singlet orientational distribution function
flcosP) and the radial distribution function g(r*), which are not available directly from
experiment. But when assessing the quantitative accuracy of a model potential in
representing the real mesophase, it is necessary to compare as many of these orientational
and structural properties as possible. Thus by calculating X-ray diffraction patterns and
comparing them with those obtained from real systems, we obtain an additional test to see

if we have modelled the liquid-crystalline mesophase correctly.

4.3.2 The spherical scattering model

The Gay-Berne potential represents each interacting particle essentially as an ellipsoid of
revolution with a length-to-breadth ratio 6,/6.. Initial simulations of rod-shaped mesogens,
with 6 /o, of 3.0 produced isotropic, nematic, smectic A, smectic B and crystal phases'’. It
was with configurations taken from these simulations that the first attempts at calculating

(8]

the X-ray diffraction pattern were performed. Hamley's initial model*™ was to place a series
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of spherical or point scattering centres along the major axis of each ellipsoid. As the
Gay-Berne potential was originally parametrised as a row of four interacting
Lennard-Jones centres'”, a tetratomic particle with the same overall length was used, but
this resulted in the problem of the intramolecular terms producing bands of intense
scattering over all values of Q*, (see figure 4.6a). These could mask other, more interesting

features of the diffraction pattern such as the intermolecular diffraction features.

His solution was to increase the number of spherical atoms, placed along the symmetry
axis of each particle to sixteen. As we can see from figure 4.6b, the only band of scattering
is now at Q* = 0, and though it is very intense, it would obscure less of the pattern at
medium to high Q* values, allowing the intermolecular scattering to dominate. By using
this linear hexadecatomic particle, various diffraction patterns of the isotropic, nematic,
smectic A and smectic B phases were calculated and, in general, reproduced, at least
qualitatively, those exhibited by their real counterparts. The intramolecular diffraction
patterns were quite smooth with a low signal-to-noise ratio. In a direction parallel to the
director, the plots were generally isotropic as expected for these uniaxial phases, while in
the plane perpendicular to the director, the anisotropy of the patterns increased with
increasing (P,). Both of these results were encouraging as they gave confidence in the

calculation of the structure factor.

For the intermolecular diffraction patterns, the wide angle arcs of the nematic phase were
modelled quite successfully, while in the smectic A phase, sharp peaks were observed
which were consistent with the layer spacing obtained from the density distribution
function p|(r) *). Parallel to the director, the six-fold symmetry of the smectic B phase
was revealed by six sharp, Bragg peaks, but due to the small system size, it was not
possible to distinguish between a hexatic or crystal B phase from the diffraction pattern.
Though calculations from further simulations, using constant NPT Monte Carlo, have
suggested a hexatic B"”. It is worth noting that these were actually neutron diffraction
patterns as the scattering from each particle was Q* independent, i.e. the nuclear scattering
length was set to unity. This is in contrast to our studies, in which we calculate the X-ray

diffraction pattern, where the scattering is Q* dependent.
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Figure 4.6: Diffracted intensity in the plane perpendicular to the major symmetry axis for a single a) linear

tetratomic, b) linear hexadecatomic and c) ellipsoid of revolution, each having a length of 36,
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Many of these intermolecular plots were noisy, but they could in principal have been
improved by averaging the calculation over more configurational snapshots. However this
procedure is still imperfect as there is no easy way of lining up the phase symmetry axes
from one configuration to the next, a problem we encountered when calculating
distribution functions such as the g (r *) and p (r,*). But the main drawback of using
these spherical scattering centres is the inability to extend this model to oblate particles. It
is possible to construct a disc of spheres but this would be time consuming because so
many spheres would be needed, so the ideal solution, for the purposes of calculating the
X-ray diffraction patterns, is to put a three dimensional ellipsoid of revolution at each
particle position. Though this does not accurately mimic the actual shape of the Gay-Berne
mesogen, (see §2.5.3) it allows the model to be extended from disc-shaped to rod-shaped
particles just by the variation of one parameter, the length-to-breadth ratio 6/, while also

giving a better signal-to-noise ratio.

4.3.3 The ellipsoidal scattering model

To illustrate the advantage of using an ellipsoid instead of a set of spherical particles we
should look at the scattering from a single ellipsoid having the 6 /o, ratio of a rod-shaped
ellipsoid as used in the simulations of Luckhurst et al.”\. Figure 4.6c shows that when the
X-ray beam impinges on the ellipsoid perpendicular to the main symmetry axis, the
scattering is generally uniform over the whole Q* range of interest, which is controlled by
the size of the diffracting particle, and comparing it to that of the 4 and 16 atom system, we
can see that it is less intense. This should make the diffraction patterns smoother, as we are
mainly concerned with diffraction arising from interference between different particles
rather than the single particle and, thus in theory, should allow an easier calculation of
flcosP) from the intensity of the wide angle arcs in the nematic phase!®l. For our model of
the structure factor, we start from the expression for the total coherent intensity, (see

equation (4.19)), which can be written as
N N
I°M(Q) = Fr(Q)F1(Q) =X Xaiajexp(iQ.r)), (4.25)
i

where for neutron diffraction experiments, a,=a,= 1.
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But for X-ray diffraction from solid, geometrical particles we need to replace a, with the

atomic scattering factor fQ), which for a sphere!'!! is

_ 3(51nu—|;3ucosu)’ (4.26)

Q)

where u = Qx, and x is the radius of the sphere. We can modify this equation for an
ellipsoid of revolution, having semi-axes x and y, (defined as o, and o, in the Gay-Berne

potential) simply by writing u as
u = Qux(cos’P + i/—z sin’B) :, 4.27)

where B is the angle between the symmetry axis of the ellipsoid and the direction of the

scattering vector Q, (see figure 4.7).

,,,,,,,,,,,,,,,,,,,,,,,,,,,

X

Figure 4.7: Representation of the geometry of the model used to calculate the X-ray or neutron diffraction
pattern from an ellipsoid at the position of each Gay-Berne particle in a configuration taken from the

simulation.
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The form factors, in equation (4.25), for the total scattering thus become
N ' N
Fr(Q) =Z;ﬂQ)eXp(lQ-l’i) and F1(Q) =X AQ)exp(-iQ.r)), (4.28)
i= i=1

where r, is the position vector for the i site in the laboratory frame, and the summation is
over the N particles in the configuration. It was found that it was computationally less
expensive to calculate the trigonometric forms of the form factors than the exponential

version, thus the total coherent scattering is written as

I7(Q) =Fr(Q)F1(Q)

N N
= 21, f(Q)[cos(Q.r,«)+isin(Q.r,-)]; AQ)[cos(Q.r,)—isin(Q.r))].  (4.29)
i= J=

It should be noted that in our program, we calculate F'(Q) and F*(Q) by summing over all
particles and thus we do not need to look at all pairs which is far more computationally
expensive. As well as calculating the total intensity, we can also calculate the

intramolecular or single particle scattering in the same way so that
I5(Q) = F5(Q)Fs"(Q)

N
=if(Q)[cos(Q.rf)+isin(Q.rf)]ZﬂQ)[cos(Q.rb—isin(Q.rf)], (4.30)
i=1 i=1

where r/ is the position vector in of the i molecule in the k" director frame. From a real
X-ray diffraction pattern we only obtain the total scattering, /(Q), from the sample; this
highlights another advantage of a computer simulation in that we can separate out the
interference or intermolecular scattering, which is given by the difference between the total

and intramolecular scattering,

1H(Q) =1t(Q) - Is(Q). (4.31)

4.3.4 Computational procedure

We start from the results of our simulations, having stored on magnetic tape the positions,
orientations and director orientation of a series of configurations, each separated by 50 time
steps. The maximum number of configurations stored was a thousand with any number
from 10 to a 1000 configurations being used for the calculation of the diffraction pattern
for the 256 particle system. Having generated these coordinates in the simulation box

frame, we need to transform them into the director frame. This is necessary, as on average
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the director does not lie parallel to a side of the simulation box and will change orientation
throughout the simulation. So by transforming into a director frame, we can put the director
along a fixed box edge, namely the Z axis, so making the calculations easier as we can
always locate the director and thus maintain a constant relationship to the scattering vector.
The coordinates from the simulation frame (X, Y, Z) are transformed into the director

frame (X, Y, Z ) by the relationship

Xn 1‘XnXa ]“XnY() l‘XnZn X()
Yo |=| lrx, v, v,z Y, | (4.32)
Z, iz,x, lz,v, 1z,z, Z,

This rotation matrix of direction cosines 1, can be defined in terms of the Euler angles o, B
and y'*! (see figure 4.8), so that
cocPey—sosy —cocPsy—socy cosp
D =| socBey+casy —socPsy+cocy sosB | (4.33)
—sBcy sBsy cp
where s denotes sine and ¢, cosine. This procedure simply rotates the whole configuration

into a new axis frame, conserving the number of particles in the original simulation box.

Z

+

x4q- -

>Y

X

Figure 4.8: An ellipsoid having semi-axes a, b and c with a representation of the Euler angles (0., B, y) used

to define the relationship between the particle fixed axes (x, y, z) and the axes of the director frame (X, Y, Z).
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Once we have transformed the coordinates into the director frame, we can now calculate
the total, I.(Q), and intramolecular, /(Q), scattering, (from equations (4.29) and (4.30)
respectively), both parallel and perpendicular to the director. The patterns are calculated in

reciprocal or Q space, but as we use a scaled separation of * = /G, in real space, we can

similarly scale Q space such that Q* = Q/(2n/c,) = 1/r*. As the director now lies along the
Z axis in the new coordinate system, the diffraction pattern parallel to the director is
calculated in the (Qx*, Qy*) plane with Qz* set to zero, while for the perpendicular
direction, the (Qx*, Qz*) and (Qy*, Qz*) planes are used to check on the symmetry of the
phase. Once we have calculated the pattern for one frame, we perform the same calculation
for consecutive frames, summing up as we go. The patterns are plotted using the Gnuplot
program!™l, The optimum number of configurations used and the influence of the system
size will be discussed in the following section. We shall now go on to discuss the simulated

intramolecular and total scattering patterns obtained.

4.4 Results and discussion

4.4.1 Intramolecular diffraction patterns

As with previous studies!®., the main aim of calculating the intramolecular scattering was to
check the procedure for the calculation of the total diffraction pattern. The system we have
investigated is that from the previous chapter of this Thesis, a system of 256 Gay-Berne
ellipsoids interacting with c/c, of 0.345 and €/e, of 5.0, in which isotropic, discotic
nematic and hexagonal columnar phases at p* of 2.5, and a rectangular columnar phase at
p* of 2.7, were formed. First, we shall look at the scattering parallel to the director, in the
(Qx*, Qy*) plane, then proceed onto the perpendicular direction, the (Qx*, Qz*) plane and
since all of these patterns are generally well-averaged and smooth with a small
signal-to-noise ratio, they are calculated from just 10 configurations. We will represent
each diffraction pattern as a three dimensional graph with a corresponding contour plot, the

axes being the plane in which the pattern was calculated.

First, however, it may be useful to look at the diffraction for just a single ellipsoidal
particle, along its symmetry axis. From this direction, the ellipsoid will appear circular and
hence should show a symmetrical diffraction pattern. As we can see from figure 4.9a, the

pattern for a single ellipsoid does indeed appear to be isotropic, giving us some confidence
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in our calculation of the structure factor. We can now move onto the intramolecular
patterns for the liquid-crystalline mesophases under investigation. For the subsequent
patterns of the isotropic phase, (figure 4.9b), the nematic phase at 7% of 9.09, (figure 4.9¢c),
the nematic phase at T of 3.03, (figure 4.10a), the hexagonal columnar phase (figure
4.10b) and the rectangular columnar phase, (figure 4.10c), we can see that the diffraction
pattern is also isotropic in this direction. Some of the diffraction patterns are not perfectly
isotropic, as there is a slight difference in the Q,, and Q,, elements, (see §2.2.5), of the
ordering Q tensor i.e. the phases are very slightly biaxial. It is also interesting to note that
the peaks become sharper as the temperature is decreased, this reflecting the increased

orientational order the particles are under in the mesophase.

We obtain a different diffraction pattern for Q* perpendicular to the director, in the (Qx*,
Qz*) plane. For the single ellipsoid, (see figure 4.11a), there is a band of scattering
concentrated along the X axis. This reflects the anisotropic shape of the ellipsoid in this
plane. But in the isotropic phase, (see figure 4.11b), we can see that this pattern is again
essentially isotropic, then as the orientational order increases, the pattern becomes less
isotropic (see figure 4.12) reflecting the increased anisotropic environment the particles
find themselves in. As the orientational order increases, the band of diffraction narrows.

We obtain similar patterns in the (Qy*, Qz*) plane.

One further check on the appearance of these diffraction patterns is in the intensity of the
diffraction pattern. For an ideal crystal, the intramolecular scattering is simply, N, the
number of particles in the simulation multiplied by the scattering intensity from one
molecule, multiplied by the number of configurations used. Thus, as the scattering
intensity, I(Q*), from one, oblate ellipsoid has a value of 1, the maximum total intensity
for each of the different phases should be 1 x 256 x 10 = 2560, which as we can see from
the various patterns is observed. Having satisfied ourselves about the intramolecular

diffraction we shall now move onto the total diffraction patterns.
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Figure 4.12: The intramolecular X-ray diffraction patterns for Q* perpendicular to the director, in the (Qx*,

Qz*) plane, for a) the discotic nematic phase at T* of 3.03 from 10 configurations, b) the hexagonal

columnar phase at T* of 2.01 from 10 configurations and c) the rectangular columnar phase at T* of 2.04

from 10 configurations. The director is parallel to the Qz* axis.
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4.4.2 Total diffraction patterns

We have calculated the total diffraction patterns both paréllel and perpendicular to the
director, by transforming from the simulation axes frame to that of the director, which is
now aligned along the Z axis of the new coordinate system. The diffraction patterns are
again visualised via a three dimensional surface representation and a corresponding contour
plot. For these total diffraction patterns we need to remove the central area, as a peak at Q*
of 0 dominates; this arises from the term exp(iQ.r) in equation (4.28), this procedure being
similar to using a beam stop in a real experiment. Initially, the size of the beam stop
allowed just separations of the order of the box length to remain. Again, the systems we
have investigated are the phases produced in the previous chapter, namely, isotropic,
discotic nematic, hexagonal columnar and rectangular columnar phases produced from a
system of Gay-Berne ellipsoids interacting with /G, of 0.345 and e/e, of 5.0. The system
consists of 256 particles and in general 10 configurations were used to generate the
diffraction patterns. We could quite easily extend the number of configurations used, as
this would improve the signal-to-noise ratio, but as we shall see, the improvement of the
pattern is small compared to the extra computer resources needed to calculate the
scattering. On average, it requires about 10s of c.p.u. time to calculate a diffraction pattern
from one configuration. In the contour plots, there are 10 contours evenly spaced at a
distance automatically set by the plotting software. We can add more contours but this
generally complicates the contour plot. Thus the contour plot only reveals the more intense
structural features and in some cases, can appear much different from that of the three

dimensional surface plot.

Isotropic phase T* of 10.77: Figure 4.13a shows the diffraction patterns for the isotropic
phase parallel to the director. For this first pattern, the radius of the beam stop is 0.43Q*,
but even with this, we can see that two spurious peaks at the centre, dominate the pattern.
We shall discuss these later. The remainder of the pattern is generally isotropic as expected
in the diffraction plane with a very weak diffuse ring at ~ 1.1Q* corresponding to »* = 0.9.
This is in reasonable agreement with the position of the peak in the radial distribution
function obtained from the simulation, but as this peak in the g(r*) is very weak we would
also expect the resultant X-ray diffraction feature to be very weak i.e. there are very few

particles at this separation.
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An isotropic phase has no orientational order, but due to our method of calculating the
order parameter, (see §2.4.2), we observe (P,) to be 0.15, and thus we can define a director.
So we can calculate the diffraction patterns perpendicular to the director, (see figure 4.13b
and 4.13c). We can see a weak circular area of scattering which correlates with the
isotropic phase even though there is a small degree of orientational order. We could
calculate the diffraction patterns without having to transform into a director frame, by the
use of a common laboratory frame, giving the advantage of providing more isotropic
averaging but we found that this method did not improve the patterns significantly. We
now return to the issue of the origin of the central peaks which are present in the total
diffraction patterns. They are at Q* of 0.5, which equates to a distance of * of 2.0. This
does correspond to a real separation in the simulation box as the maximum length of the
simulation box is 2.340,, but inspection of the corresponding g(r*), (see figure 3.10 in
§3.4.3), reveals that at this separation, there appears to be no correlation between particles,
so we speculate that they might come from the small, finite size of the simulation box, an

idea we shall explore in §4.4.3.

Discotic nematic phase 7+ of 9.09: The next set of diffraction patterns we shall look at,
are for the discotic nematic phase, just below the discotic nematic - isotropic phase
transition. Parallel to the director in the (Qx*, Qy*) plane, we do not expect the pattern to
be significantly different from that of the isotropic phase, with just a diffuse ring visible at
=~ 1.1Q*, representing the edge-to-edge correlations within the phase as seen in the g(r*).
From figure 4.14a, we do indeed see a scattering feature at = 1.0Q* with another less
intense ring at = 2.0Q*, this probably being the second order reflection from the main ring.
Again we see four dominant peaks, the presence of which we shall ignore for now as they
do not interfere with the pattern. Perpendicular to the director in both the (Qx*, Qz*) plane,
(see figure 4.14b), and the (Qy*, Qz*) plane, (see figure 4.14c), we expect two weak arcs
of scattering located on the equatorial axis, Qz* = 0.0 on our pattern. Unfortunately these
patterns are dominated by both the spurious peaks and by a band of scattering in the
meridional axis, Qx* = 0.0. Though in the (Qy*, Qz*) plane, there seems to be an intense
peak at Qy* = 0.9. This corresponds to a distance of 7* of 1.1 and as they lay off the Qz*

axis by about 10 - 15° they could suggest a staggered edge-to-edge arrangement of
particles.
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Figure 4.14: The total scattering for the nematic phase at T* of 9.09 from 10 configurations, a) parallel to

the director in the (Qx* Qy*) plane, b) perpendicular to the director in the (Qx* Qz*) plane and c)

perpendicular to the director in the (Qy* Qz*) plane for N of 256.
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Discotic nematic phase T* of 3.03: As we lower the temperature during the simulation to
just above the columnar - discotic nematic phase transition, there is increased long range
orientational and short range translational order within the mesophase; this is reflected in
the diffraction patterns, (see figure 4.15). With Q* parallel to the director, we can see that
the diffraction pattern corresponds well with the data obtained from various distribution
functions we have calculated such as the g(*) and g (r,*), (see §3.4.3). We can see an
isotropic scattering feature, as the phase should be uniaxial in this plane, at = 1.0Q* or r*
of 1.0, this corresponding to particles in an edge-to-edge arrangement without any
interdigitation while there is the second order reflection at = 2.0Q*, this being very much
weaker in intensity. This is due to the positional order being short range. We can also
observe a structure within the diffraction circle and this could signal that only certain

orientations are preferred within the phase.

The scattering pattern for Q* perpendicular to the director is again dominated by the
spurious peaks and the intramolecular scattering in the meridional plane, but we do see two
diffraction peaks, along the equatorial axis at Qx* = 1.0, representing the increased
edge-to-edge correlations and agreeing with both the distribution function g (r,*) and the
parallel diffraction pattern. There also appears to be the beginnings of a concentrated

diffraction feature at Qz* = 2.0, this corresponds to r* of 0.5 i.e. face-to-face ordering.

Hexagonal columnar phase T* of 2.01: The next two mesophases we shall investigate are
the translationally ordered columnar phases. From the results of our simulations we have a
hexagonal columnar phase, D,, where the columns are arranged in a hexagonal net, and a
rectangular columnar phase, D, with four fold symmetry. For both of these phases, the
particles within each column are ordered and are correlated with those in neighbouring
columns but with a periodicity of half the molecular thickness. For the hexagonal columnar
phase, with Q* parallel to the director, (see figure 4.16a), we can indeed see the six peaks
representing the hexagonal packing, while it is also possible to see the second order
reflections resulting from these peaks, an indication of the long range nature of the

translational order and its non-sinusoidal character.
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perpendicular to the director in the (Qy*, Qz*) plane for N of 256.
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The position of the main peaks are at = 1.1Q* which gives a real distance for r * of 0.9,
and though it does not seem to correspond to the distances observed in the g (r *), it is
consistent with the columns being close packed i.e. 1.00, as observed in a graphic
snapshot of a configuration, (see figure 3.14). This is because the diffraction pattern is
actually picking up the closest distance between planes of columns as seen in figure 4.17.
We should also mention the hexagonal packing of the columns is not perfect as is shown
by the slightly distorted nature of the six peaks and the difference in the intensity. This
illustrates the power of X-ray diffraction, as although we could tell this by looking at the

graphic snapshots, no other distribution function could pick this up so effectively.

Perpendicular to the director, we should pick up both edge-to-edge and face-to-face
correlations. Looking at the contour plot, (see figure 4.16b), we can see that along the Qz*
axis, the director, there are peaks at = 2.2Q* or r* of 0.45, which corresponds well to the
g(r*) value of 0.46 for particles in a face-to-face orientation. The edge-to-edge or
intercolumn correlations are represented along the Qx* axis at = 1.1Q* which gives r* of
0.9. This is similar to the values obtained parallel to the director, and is the closest distance

between planes of neighbouring columns.

We also see that the face-to-face peaks at Qz* = 2.2 are off axis by about 10°. This possibly
indicates that the columns are slightly tilted with respect to the director. Again this
illustrates the potential of X-ray diffraction, as from our results in Chapter 3, it was not
obvious that the columns were tilted. If indeed, the columns are tilted what would cause
this, as there is no term in the intermolecular potential which could explain this
phenomenon, though a tilted phase was observed by Chalam ez al."" in their studies of a
rod-shaped Gay-Berne mesogen. Perhaps the fixed shape and volume of our constant NVE
ensemble simulation box forces the columns to be tilted, in order to be commensurate with

the periodic images.
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Figure 4.16: The total scattering for the hexagonal columnar phase at T* of 2.01, from 10 configurations, a)

parallel to the director in the (Qx*, Qy*) plane, b) perpendicular to the director in the (Qx*, Qz*) plane and

¢) perpendicular to the director in the (Qy*, Qz*) plane for N of 256.



142

Figure 4.17: A representation of the relationship between the g(r*) and X-ray diffraction values for the

distance between neighbouring columns, that are a) close packed and b) with an expanded packing lattice.

Rectangular columnar phase T* of 2.04: For the rectangular columnar phase, at p* of
2.7, the constituent columns actually penetrate each other, the distance being 0.9G, between
the centres, and as with the hexagonal columnar phase, this is picked up by the diffraction
pattern. Parallel to the director, (see figure 4.18a), the four peaks are at = 1.0Q* = 1.00,
and using the same arguments for the hexagonal packing, gives the columns at a distance
less than 1.0c, apart. For Q* perpendicular to the director, we can see the face-to-face
peaks at = 2.2Q* and the edge-to-edge features at =~ 1.0Q*. It is surprising that the
edge-to-edge peaks are stronger and the face-to-face weaker than the hexagonal phase.
Though still not perfect, it is interesting to see that the patterns for both the columnar
phases are much better resolved and more realistic than those for the isotropic and discotic
nematic phases. This is probably due to the scattering being concentrated in smaller regions

of Q* space, giving a more intense peak, thus allowing a good signal-to-noise ratio.
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Figure 4.18: The total scattering for the rectangular columnar phase at T* of 2.04 from 10 configurations,

a) parallel to the director in the (Qx* Qy*) plane, b) perpendicular to the director in the (Qx*, Qz*) plane

and c) perpendicular to the director in the (Qy*, Qz*) plane for N of 256.
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Problems encountered

Though the intramolecular diffraction patterns obtained from the simulations produced the
expected results, all is not perfect with the total diffraction patterns. As we have seen in
various diffraction patterns, (most notably figures 4.15b and 4.17a) there is apparently a
series of peaks with four fold symmetry at a distance of 0.5Q* or 2.0G,, As we had
previously discussed, we have speculated that these arise from the small, finite system size.
But can we improve the patterns and find with a greater certainty the origin of the spurious
peaks. These peaks can be observed more clearly in the scattering from one configuration

of a discotic nematic phase with Q* parallel to the director, (see figure 4.19).
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Figure 4.19: The total diffraction pattern from one configuration of the discotic nematic phase at T* of 9.09

for 256 particles, with Q* parallel to the director, showing the presence of four spurious peaks.

From the simulation, we expect on average to find particles in an overlapping edge-to-edge
orientation with a distance of r* = 0.9 between the centre of masses of each ellipsoid, this
is indicated by the transverse pair correlation function g (r,*), (see §4.4). This arrangement
of the particles should give a diffuse ring at a distance 1/7* i.e. 1.1Qx* in the diffraction
pattern, with maybe a second, weaker ring at twice this distance = 2.2Qx*. But as we can
see from our pattern, there are a series of peaks, with fourfold symmetry and which
correspond to physical distances in the real simulation box, i.e. they represent a distance of
~ 2.00,, while the size of the simulation box is 2.34G,. At first we thought they may have
been part of the intramolecular scattering but subtraction of this quantity from the total

pattern to give the intermolecular scattering, (see equation (4.32)), did not remove them.
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This can be illustrated for the discotic nematic phase at 7* of 9.09, with Q* perpendicular
to the director as shown in figure 4.20. So it seems that the peaks arise from either the
method used to calculate the diffraction patterns or from some artefact caused by the small

size of the box.

1Q*

a)

+2.52 -2.52

b)

+2.52

Figure 4.20: The diffraction pattern from one configuration of the discotic nematic phase at T* of 9.09 for
256 particles, with Q* perpendicular to the director, showing a) the presence of the spurious peaks discussed
previously in the total diffraction pattern and b) the effect of subtracting the intramolecular scattering from

- the total scattering to give the intermolecular scattering and how the peaks are still visible.

Even excluding the unidentified peaks present, the form of the diffraction patterns is not
consistent with those from real experiments. Again, this could be due to the small system
size of the simulation. Another factor, could be that the simulation box contains an uneven
density of particles along each axis. As is evident from the graphic snapshots of the
mesophases generated from our simulations, (see §4.4), in some instances the director does
not lie parallel to a side of the simulation box. However, when we transform into the
director frame, by lining up the director with the Z axis, we can still be left with the

director along a box diagonal, which for the columnar mesophase, results in an uneven
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numbers of particles in each column. This can lead to some artificial weakening, and even
the disappearance, of some diffraction features. So to ensure an even number of particles
throughout each column we need to define a new box with the director along an edge. We
do this by generating the next shell of periodic images and then starting from the centre of
the original simulation box, form a cubic box with the same dimensions, which may or
may not include particles from the periodic images. Thus we find that sometimes the
number of particles within the new box may be larger or smaller than in the original
simulation box, which is usually by < 10 particles. In theory, the uniform density of
particles along the columns should improve the pattern, but as we can see from figure 4.21,
it had the effect of smearing out the diffraction pattern while not succeeding in removing

the spurious, central peaks.
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Figure 4.21: The effect of constructing a new simulation box, with the same number of particles in cach
column, from a series of periodic images. lllustrated here is the total scattering parallel to the director for
the rectangular columnar phase ar T* of 2.04, in a) a box with an uneven particle density along the columns

and b) a box with an even particle density along the columns.
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Even though we lined up the X and Y axes of the simulation frame from one configuration
to another, it is impossible to line up the phase symmetry axes, thus if the phase rotates
slightly from one configuration to another this will produce the smearing effect. It is
interesting to see that in the box without the uniform density the spurious peaks are at an
angle with respect to the X axis, while in the box with the uniform density of particles these
peaks had now lined up with the axes. This lead us to the conclusion that they might be due
to the small, finite size of the system. This same effect can be seen in the optical transforms

of a series of model configurations i.e. masks with a series of spherical holes in"”.
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Figure 4.22: An optical mask of a rectangular box with an uneven number of particles in each column and

its diffracted transform.
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Figure 4.23: An optical mask of a rectangular box with an even number of particles in each column and its

diffracted transform.
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These transforms are masks containing an image of a geometric configuration projected
onto a plane that will diffract a monochromatic beam of light. Figure 4.22 shows the
optical mask and its corresponding transform of a oriented rectangular box containing a
series of spherical diffraction centres. As expected we can see a regular scattering pattern.
An important observation is the subsidiary features of the central peaks which lie at an
angle to the central peaks but are orthogonal to the initial orientation of the initial
scattering pattern. This is equivalent to a simulation box that has an uneven density of
particles within each column. Figure 4.23 illustrates the effect of rotating the box so that
each column now has the same number of particles in each column. This has a minimal
effect on the overall pattern but it is interesting to note that the subsidiary scattering
features of the central peaks have rotated, to remain orthogonal with respect to the optical
mask. This same behaviour is observed with the spurious peaks, leading us to the

conclusion that these peaks are somehow due to the small, finite size of the system.

4.5 Conclusions

In this Chapter we have investigated the possibility of calculating X-ray diffraction patterns
of the model mesophases generated from computer simulations. Initial results for a system
of prolate particles using a series of spherical scattering centres placed in line along the
symmetry axis of each particle gave promising results. But to extend these ideas to oblate
particles, such as the disc-shaped mesogens studied in this Thesis, it was decided to place a
three dimensional ellipsoid at each site instead. This approach produced mixed results. The
intramolecular X-ray scattering mainly provided a means to check the calculation
procedure, and as such showed the expected results. All these diffraction patterns were
smooth with a good signal-to-noise ratio and produced isotropic peaks parallel to the
director but with an anisotropic peak perpendicular to the director, the anisotropy of this

peak increasing with increasing orientational and translational order of the mesophase.

But of greatest interest to us, were the total X-ray diffraction patterns, which would
hopefully give us detailed information on the molecular packing within each mesophase. In
comparison to the intramolecular scattering, these patterns were considerably noisier and

provided less clear cut information than we had hoped for.
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The first thing we noticed was the presence of a large number of intense peaks between Q*
of 0.4 - 0.8, but these were attributed to the small, finite size of the system studied. Of all
the mesophases investigated, the isotropic and discotic nematic phases produced the worst
patterns. Though scattering with Q* parallel to the director seemed to show the uniaxial
nature of these phases, scattering perpendicular to the director yielded no real information.
It did not help that any feature would be very weak, as the corresponding radial distribution
functions g(r*) did not exhibit many intense peaks. The diffraction patterns for the
hexagonal and square columnar phases were reasonably sharp and well-defined as expected
for more ordered phases. Scattering with Q* both parallel and perpendicular to the director
produced information on the structure within the phase, with peaks corresponding to both
edge-to-edge and face-to-face orientations. It seems that only good patterns are produced,
at least for this system, when the scattering is concentrated into small regions of Q space

thus giving intense diffraction peaks.

There are several ways of trying to improve the diffraction patterns, the most obvious
being the inclusion of more configurations into the scattering calculation. This seemed to
bring some improvement for the isotropic and nematic phases, but had little effect on the
columnar phases as these were already well-resolved. Though not strictly an ideal method,
increasing the size of the beam stop, to remove the spurious peaks created by the finite
system size, also brought about some improvement in the patterns. Another method would
be to recreate the simulation box with an even density particles throughout, but as we had
no easy way of lining up the x and y axis or the phase symmetry axis, the procedure just

smeared out the patterns.

A more drastic way to improve the patterns would be to increase the number particles in
the system. Although in theory it is possible to calculate the singlet orientational
distribution function f(cosp) from the intensity of the wide angle arcs, it was not attempted
as we felt that the patterns did not produce the expected quality needed to make a
reasonable estimate. We have shown that it is possible to calculate the X-ray diffraction
patterns for a series of computer generated model liquid-crystalline mesophases. Overall,
some meaningful information could be extracted especially from the more ordered

columnar phases but the patterns for the nematic phase were disappointing. It seems that as
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with the simulations themselves, the use of computer X-ray diffraction will only produce

results similar to experimental patterns, as the size of system grows.
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5. The Gay-Berne discogen II

5.1 Introduction

In §1.3.4, we briefly described the variety of smectic phases formed by disc-shaped
metallomesogens''! but in all cases, the symmetry axes of the constituent molecules lay
parallel to the layers. But we can envisage another scenario in which the symmetry axis of
each particle lays perpendicular to the layers. This would be analogous to the behaviour
observed in several lyotropic systems™ in which the micelles, ellipsoidal in shape, are
claimed to remain intact on transition from the discotic nematic to form what is know as a
discotic lamellar phase (L,). It is this intriguing behaviour that we aim to look at in greater

detail.

5.2 Parametrisation of the Gay-Berne potential

As with simulations of the discotic mesogen in Chapter 3, we need to use a much
simplified model incorporating just the essential features which we feel are needed to
model accurately the main characteristics of the mesophase in question. The potential we
have chosen is the Gay-Berne potential, which as well as having an ellipsoidal repulsive
core, incorporates the attractive forces that would be needed in order to induce and stabilise

any translationally ordered mesophases.

We now move on to the problem of how to parametrise the Gay-Berne potential in order to
represent the behaviour of a discotic smectic system. In order to model the columnar phase
shown by the Gay-Berne discogen, we parametrised the potential so that the face-to-face
arrangement of the ellipsoids was energetically favoured. This was achieved by setting the
well depth anisotropy, €/€,, to have a value of 5.0. But now we do not want the system to
form columns, instead we want the particles to associate in horizontal sheets thus the
edge-to-edge arrangement should be preferred to the face-to-face arrangement. To achieve
this by the parametrisation of the well depth term means setting €/€, to a value less than 1
but having no prior knowledge of what this value should be, we simply invert the value
used by Emerson et al.' in their system of disc-shaped thermotropic mesogens and choose
g/e, to be 0.2. These simulations are of interest in their own right, as they allow us to

explore further the phase behaviour of particles interacting via the Gay-Berne potential.
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model a system of ellipsoidal particles, having the

Figure 5.2: The Gay-Berne potential parametrised to model a system of ellipsoidal particles, having the

parameters, 6/0, of 0.345 and e/, of 0.2.
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Thus to examine the effect of this parametrisation of the well depth term, we keep the
exponent parameters |L and v the same as those used by Emerson', namely pt of 1 and v of
2. The potential energy diagram for the Gay-Berne potential parametrised in this way is
shown in figure 5.2. We can see how the potential energy curve for the edge-to-edge
arrangement is now favoured. But one effect is to allow the cross arrangement to be the
next preferred arrangement. This happens as the well depth equation for both the
face-to-face and tee arrangements contain terms relating to the strength parameters € /€.
Comparing to the original Gay-Berne potential parametrised for disc-shaped particles, the
cross and end-to-end arrangements remain the same but it is the tee and face-to-face that

have reduced well depths.

5.3 The molecular dynamics simulation

The simulation was performed in the constant NVE (microcanonical) ensemble, with 256
particles in a cubic box with periodic boundary conditions. A minimum image summation
and a spherical cut-off of 2.4, were also employed. This cut-off is larger than previously
used, (see §3.3), as the attractive tail of the potential is longer for the parametrisation used
in this Chapter. The scaled density used was between 2.7 and 3.0, again larger than before,
as the trial simulations at lower densities produced cavities within the box. The simulation
was started from an o-f.c.c. lattice with all 256 particles parallel to the x axis. A scaled time
step &t* of 0.001 was used, the simulations being performed on a Silicon Graphics Iris

Indigo R3000 workstation, with each time step taking about 1s of c.p.u. time. The phases

were identified by graphic visualisation and various structural distribution functions.

The initial simulation was performed at the scaled density p* of 2.7. The system was set up
by starting with a crystal at the low density p* of 1.8, g/e_ of 0.2 and T* of 10.0. After
30,000 time steps, {P,) had reached a value of 0.092, consistent with the isotropic phase.
The system was then compressed in steps of 0.3 scaled density units until the desired
density, p* of 2.7 had been reached. After 50,000 time steps the value of (P,) was now
0.087, showing that the system had remained in the isotropic phase. From this state point
the system was cooled until 7* of 0.1. By now (P,) had a value of 0.998, but looking at the

graphic snapshot of the lowest temperature phase, (see figure 5.3), it can be seen that the
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At each state point an equilibrium run of between 50,000 and 300,000 time steps was
performed, the actual number dependent on how quickly an equilibrium state was reached.
This was followed by a production run, in which the temperature scaling was turned off, of
between 20,000 and 50,000 time steps, again the length of the simulation was dependent on
how quickly the important properties had stabilised about a constant value. The various

orientational and thermodynamic properties are shown in table 5.1.

Set T* Actual T* N, /10° N, /10° (U*) (P,

6 5.97 £0.09 100 20 ~1.35+0.041 0.079 £0.015
55 545+0.11 50 20 ~1.96 +0.034 0.095 +0.032
5 4.83 +0.09 50 20 ~2.88+0.027 0.131 £0.056
4.75 474 +0.07 100 50 ~2.87+0.023 0.118 £0.047
45 4.43 +0.08 100 50 ~3.53+0.018 0.178 +0.045
4.25 4.14 +0.05 200 100 ~7.14+0.018 0.623 £0.031
4 4.02 +0.09 100 50 ~7.83£0.021 0.667 +0.030
375 3.75+0.06 100 50 ~9.72+0.015 0.768 £ 0.024
35 3.57 +0.05 300 50 ~10.94 = 0.013 0.814 + 0.027
3.25 3.27+0.04 100 100 ~12.59 £ 0.019 0.863 £0.013
3 3.01 +0.07 100 40 ~13.61 £0.023 0.887 +0.014
275 2.87 +0.05 200 100 ~14.21 £ 0.015 0.901 £0.011
25 2.48 + 0.06 100 40 ~15.47 £0.016 0.924 £0.014
225 2.29 +0.06 100 100 ~16.03 £0.011 0.933 £0.012
2 2.03 % 0.05 100 40 ~16.77 £ 0.015 0.944 £ 0.015
1.75 1.77 +0.03 100 50 ~17.54 £+ 0.011 0.954 +0.011
1.5 1.51 +0.03 100 40 ~18.24 = 0.009 0.962 +0.012
1.25 1.25 + 0.01 100 50 ~19.02 = 0.004 0.971 = 0.009
1 1.06 + 0.01 100 40 ~19.82 + 0.008 0.977 + 0.008
0.75 0.76 + 0.01 100 50 ~20.66 + 0.006 0.984 + 0.005
0.5 0.51 +0.02 100 40 ~21.33 = 0.006 0.989 + 0.006
0.25 0.23 + 0.01 100 50 ~2204 +0.003 0.994 + 0.004
0.1 0.07 + 0.01 50 40 ~22.44 +0.002 0.997 + 0.003

Table 5.1: Values of T* (U*) and {(P,) from the cooling run at p* of 3.0. Ny and N, are the number of time

steps performed during the equilibrium and production stages, respectively.
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5.4 Results and discussion

5.4.1 Orientational properties

Second and fourth rank order parameters: The variation of the order parameters (P,) and
(P,y with temperature T* for the cooling run are shown in figure 5.4. Between T of 5.97
and 4.43, (P,) remains between the values 0.1 to 0.2. This near but not total absence of
orientational order is generally a characteristic of an isotropic phase in a molecular
dynamics simulation. The main reason for the values not being zero is discussed in §2.4.2,
but also at constant volume, the system goes through a biphasic region so that (P,) from the
simulation is the weighted average of the order parameter for the isotropic and nematic
phases. As the temperature is lowered, the system undergoes a phase transition with (P,)
rising sharply to a value of 0.67, then as the system is cooled further, the order slowly
increases with decreasing temperature until near perfect orientational order is reached. At
this stage we can only speculate on the variety of phases formed. More than likely, the high
temperature phase is isotropic while at temperatures of 1.06 and below, a crystal phase
could exist. The sharp rise in the order parameter at the transition from the isotropic phase

to an orientationally ordered phase probably indicates a first order transition.
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Figure 5.4: Variation of (P,) and {P,) with the scaled temperature T*.
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The variation of the fourth rank order parameter (P,) with temperature 7* is also shown in
figure 5.4. The shape of the curve for (P,) is similar to that of (P,), though having lower
values at all temperatures. In figure 5.5 we plot (P,) against {P,). This is useful as there are

various predications as to what this curve should bePl. Here, we have included the

Maier-Saupe curve (see §3.4.6), and as in Chapter 3, the curve fits well to the simulation

data.

Py

P,

Figure 5.5: Plot of the order parameters (P,) vs. (P,) from our simulations (circles) against that predicted by

the Maier-Saupe theory (solid line).

Singlet orientational distribution function. The behaviour of the singlet orientational
distribution function f{cosP), follows that to be expected from a system exhibiting isotropic
and nematic phases, (see figure 5.6). In the isotropic phase, T* of 4.43, we can see that
there is no preferred direction of orientation as f{cosp) takes the value = 0.55, which is in
good agreement with the expected value of 0.5. Once in the nematic phase, between the
scaled temperatures of 4.14 and 3.57, the plot of f{cosP) shows a large peak at the value of
B =0 i.e. along the director. This peak increases in intensity with an associated decrease in

width as the orientational order increases with decreasing temperature.
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Figure 5.6: Variation of ficosB) with cosf at the scaled temperatures T* indicated.

5.4.2 Thermodynamic properties

Internal energy: The plot of the scaled internal energy per particle (U*) against scaled
temperature is shown in figure 5.7. This is slightly more revealing than the plot of (P,), in
that it shows two possible discontinuities, each indicative of a phase transition. The first
transition visible is between the temperatures 4.43 and 4.14, mirroring that shown by the
orientational behaviour of the system. The sharp drop in (U*) backs up the view that this
could be a first order transition, though to be precise we would have to calculate the free
energy. The next transition is between 3.57 and 3.27 and the last possible sign of a phase
transition is between T* of 1.25 and 1.06 where there is a change, albeit slight, in the slope
of the graph. The first drop could be attributed to a nematic - isotropic transition, the
second could be between a smectic - nematic phase and the third between a smectic and
another ordered phase, possibly crystal. Though, we really need a lot more data points to be
able to say that we have a definite transition for these latter two. We must also tale into

account that phase transitions also appear more continuous in the NVE ensemble.
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Figure 5.7: Variation of {U*) with the scaled temperature T*.

Heat capacity: The plot of the scaled heat capacity against temperature is shown in figure
5.8. The heat capacity calculated by the fluctuation method, (see §2.4.1), shows that the
values are subject to large errors and as such the graph yields no real information about the
system, though we do observe a large peak close to the discotic nematic - isotropic
transition and another peak around the region of the scaled temperature 3.5. There also
seems to be evidence of a transition at around T* of 1.25 and 1.06, though again there is
not enough data points to conclusively prove the existence of a transition. We can also
calculate the heat capacity from a plot of the internal energy (U*). The derivative of a cubic
spline fit to the internal energy gives the (C,*). This has essentially the same shape as the
(C,*) calculated directly from the simulation, and it highlights the discontinuities in the

plot of (U*) already discussed. The origin of the difference between the values obtained
from the two methods can be explained. One is the differentiation of a potential energy plot

while the other is calculated from fluctuations in the kinetic energy
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Figure 5.8: Variation of (C,*) with the scaled temperature T*.

5.4.3 Structural properties

From the orientational and thermodynamic properties, we have identified several possible
mesophases. At temperatures of 4.43 and above, we seem to observe an isotropic phase. On
cooling, we see the presence of two orientationally ordered phases, one between T* of 4.14
and 3.57 and the other between 3.27 and 1.25. Then at temperatures of 7% of 1.06 and
below, the phase attains near perfect orientational order, possibly indicating a crystal phase.
But to understand fully which mesophases are produced during the simulation, we need to
calculate various structural properties, thus in the following section, we attempt to
characterise, by means of these properties, each phase more accurately and for the sake of

clarity, we shall only discuss the scaled temperatures bordering the phase boundaries.

Graphic visualisation and g(r*): The first two structural properties we have calculated are
the radial distribution function g(r*), (see §2.4.3) and a graphic visualisation of the system,
(see §3.4.3). Although we cannot describe fully the detailed structure of the phase from

these techniques and in some cases, especially the graphics, they can be misleading,
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they are a useful starting point from which to distinguish between the isotropic, nematic

and possible smectic phases.

The first temperature we shall deal with is 7% of 4.43, at the boundary between a possible
discotic nematic - isotropic transition as indicated by the graphs of (P,) and (U*). The plot
of the g(r*), (see figure 5.9), confirms our initial characterisation as it shows the typical
shape for an isotropic phase!®’! where the limiting value tends to the ideal fluid value of
one. There are two peaks present, the one at r* of 0.9 probably indicates particles in a
slightly staggered edge-to-edge arrangement. There is also an additional peak at r* of 0.35,
which corresponds to particles in a face-to-face arrangement though as the height of this
peak is below one it is not expected to be significant. We can also see from the graphic
image, (see figure 5.11), that the particles are more or less random in their orientations as

expected for an isotropic phase.

If we inspect g(r*) for T* of 4.14, there is a small but significant change in shape, as the
peaks at r* of 0.3 and 1.0 have become sharper and more pronounced, indicating the
increased tendency to find particles in the edge-to-edge arrangement i.e. the phase has
increased short range translational order, though from the configurational snapshot, we can
identify a nematic at this temperature (see figure 5.12). At the lower end of the range of
this mesophase, at T* of 3.57, the plot of g(r*) has a similar shape, though the peak at r* of
0.3 has reached a value of just over one, indicating that there is now significant face-to-face
ordering. Though if this is the case, it indicates that there seems to be some physical
overlap between the particles as the thickness is 0.3450,. The configurational snapshot
reveals the presence of the more ordered nematic structure of the phase, but it does not
show clearly, the suspected particle overlap. Looking down the director, (see figure 5.13a),
shows that even though the orientational order is high, there is still a random distribution of
the centres of mass of the particles. Taking a configurational snapshot perpendicular to the
director, (see figure 5.13b), indicates some short range translational order in the form of
face-to-face ordering, between several pairs of particles, as indicated by the g(r*), though
the considerable degree of translational disorder confirms the presence of a discotic

nematic phase.
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Figure 5.9: The radial distribution function g(r*) for the scaled temperatures T* indicated.
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Figure 5.10: The radial distribution function g(r*) for the scaled temperatures T* indicated.



163

Figure 5.12: The configurational snapshot of the nematic phase at T* of 4.14.
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Figure 5.13: The configurational snapshors of the discotic nematic phase at T* of 3.57, a) parallel and b)

perpendicular to the director.



165

The next mesophase to characterise lies between the scaled temperatures of 3.27 and 1.25.
At T* of 3.27, the peak at r* of 0.3 in the g(r*), (see figure 5.10), has increased in intensity,
quite considerably, showing the onset of ordering with a face-to-face arrangement, possibly
indicating a columnar phase. There is also a large peak developing at r* of 2.0, the origin
of which we shall discuss presently. At the scaled temperature of 1.25, the general shape of
the g(r*) curve remains unchanged, with peaks at * of 0.3 and 1.0 increasing in intensity
as the translational order increases. The large peak at r* of 2.0 has become more clearly
defined, resolving into two peaks at r* of 1.8 and 2.1. This is a "fingerprint" for a phase
possessing hexagonal ordering, and this fact is borne out by the configurational snapshots,

parallel to the director (see figure 5.14a).

Looking at the configurational snapshot perpendicular to the director, should reveal the
columnar ordering within the phase and as we can see from figure 5.14b, this is the case.
Though there seems to be considerable disorder within the columns with some particles
tilted with respect to the column axes. The view orthogonal to this snapshot, but still
perpendicular to the director (see figure 5.15) is even more revealing. It shows the structure
to consist of short columns of particles usually about three, arranged in layers. The
columns in the adjoining layers, seem to be "shifted", lying in between the columns of the
next layer. Though it is had to tell the precise structure from a graphic snapshot, by
manipulating the image in three dimensions via computer of both this phase and the
crystal, it seems to consist of columns of 2 to 3 particles arranged in a hexagonal net. The

next layer of columns then lies in the holes of the adjoining layer, (see figure 5.16), in an

ABAB packing.

For the scaled temperature of 1.06, the shape of the radial distribution function has
changed, compared with T* of 1.25, (see figure 5.10). The peak at r* of 1.8 has increased
greatly while the peaks at #* of 1.0 has been resolved into additional peaks. This change in
the g(r*) backs up the assumption that a phase transition occurs between these two
temperatures. The configurational snapshots at T of 1.06, (see figure 5.17), reveals the
almost perfect orientational and translational order. Taking this, and the evidence such as

the value of the order parameter into account we can identify this phase as the crystal.
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Figure 5.14: The configurarional snapshots of a columnar phase at T* of 1.25, a) parallel and b)

perpendicular to the director.
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Figure 5.15: The configurational snapshots of a columnar phase at T* of 1.25, perpendicular to the director,

but in a direction orthogonal to that in figure 5.15b.
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Figure 5.16: Schematic of "shifted” columnar phase showing a) the ABAB packing of the columns and b) the

view perpendicular to the director.
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From an initial inspection of the radial distribution function and configurational snapshots,
we have clearly identified three possible phase transitions. Between the scaled temperatures
T* of 4.43 and 4.14, we have the discotic nematic - isotropic transition, characterised by
the onset of long range orientational order. There seems to be another phase transition
between the temperatures of 3.57 and 3.27, and from the configurational snapshots, this
transition is from the discotic nematic phase to a smectic columnar phase. We define the
smectic columnar phase as essentially a phase having smectic layers which are composed
of small columns of disc-shaped mesogens. Finally, from the form of g(r*), there is a
transition from this columnar phase to a crystal, between the temperatures 7™ of 1.25 and
1.06. In all of these phases, the particles seem to overlap when in a face-to-face orientation,

the separation being 0.36,, smaller than the thickness of a particle which is defined as

0.3456, but we shall leave the discussion of this situation for a later section.

Why should this structure in the columnar phase result? If two particles, say 1 and 2, are in
a face-to-face arrangement, (see figure 5.18), they can approach each other relatively
closely even overlapping without a major loss in energy as the depth of the face-to-face
energy well is small, (see figure 5.2). A third particle, 3, approaching particle 2 in a pure
edge-to-edge arrangement will have a strong energy of interaction with this particle. But as
particle 1 is overlapping with particle 2, its edge-to-edge arrangement with particle 3,
though not "pure", has increased, helping to stabilise its own interaction with its
overlapping neighbour, particle 2. Thus the propagation of the observed columns, are not
by the face-to-face interaction but by a series of edge-to-edge interactions from particles
within neighbouring columns. Thus the columnar phase in this system results from the
interaction between columns while in our columnar phase in Chapter 3, the structure arises
from the face-to-face interaction between particles within one column. But what causes the
shifted structure? The most likely explanation is that after 2 to 3 particles have formed a
column, the strong edge-to-edge interactions overcome the tendency to form columns.
There would also be some effect from having a fixed shape and size simulation box thus to

be commensurate with its periodic images, the system packs into this unusual structure.
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Figure 5.18: The propagation of columns within a system parametrised to form a smectic phase.
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The orientational correlation function: Figure 5.19 shows the pair orientational correlation
function G,(r*) for various scaled temperatures. The difference in the limiting value

between T* of 4.43 and 4.14 is further evidence of the discotic nematic - isotropic phase
transition. We can see from table 5.2, that the agreement of (P,) calculated from the

Jimiting value of G,(r*) with that obtained from the diagonalisation of the Q tensor is

reasonably good.

1.0
N —— T =1.06
. T% =125
0.8 T* =327
- T+ =357
0.6 —
% |
G,(r*) T* =4.14
0.4 —
0.2 —
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Figure 5.19: The pair orientational correlation functions for the scaled temperatures indicated.

™ (P (Py)
from Q tensor from G(r*)
443 +0.08 0.178 £ 0.045 0.179
4.14 £ 0.05 0.623 +£0.025 0.633
3.57+0.05 0.814 £ 0.027 0.813
3.27+0.04 0.863 £ 0.013 0.866
1.25+0.01 0.962 + 0.009 0.961
1.06 +0.01 0.977 £ 0.008 0.977

Table 5.2: Values of (P,) calculated from the Q tensor and the limiting values of G (r*).
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Longitudinal and transverse pair correlation functions: The longitudinal pair correlation
function g ((r|*), (see figures 5.20 and 5.21), will reveal the extent of any translational
structure in the various phases, along the vector parallel to the director. As expected for the
isotropic phase at T* of 4.43, there is no translational structure present. For the discotic
nematic phase at T* of 4.14 and 3.57, there is also very little translational structure though
there is a small peak emerging at r* of 0.3 indicating a degree of face-to-face correlation at
short range. Even in the smectic columnar phase, the plot of g|(r|;*), shows little structure
apart from this peak at r* of 0.3, though there is some evidence of a peak at r* of 0.6, this
probably indicating a particle in the second shell of neighbours within a column. It is
interesting to see that the plot of g (r|/*) cannot pick up the columnar ordering as it did
for the columnar phase in Chapter 3. This is most probably because there is no long range
correlation between particles in neighbouring columns, a feature, which to some extent, can

be seen in the configurational snapshots, especially of the crystal phase, (see figure 5.17).

The plots of the transverse pair correlation function g (r,*), (see figures 5.22 and 5.23), are
more revealing. In the isotropic phase, T* of 4.43, we see a broad peak at around r* of 0.9
but it is very small. As we lower the temperature, the shape of the g, (r,*) changes quite
dramatically. In the discotic nematic phase at 7* of 4.14 and 3.57, this peak at r* of 0.9
now becomes quite visible, with an additional peak at the origin which represents particles
lying above each other in a face-to-face arrangement, increasing in intensity. This indicates
the presence of short range order in which the particles stack on top of each other. At T* of
3.27, in the smectic columnar phase, g (r,*) now shows pronounced structure
perpendicular to the director. The peak at r* of 1.0 are particles in neighbouring columns,
but in a close packed edge-to-edge arrangement. The additional peak at +* of 1.8 is the next
nearest shell of hexagonal neighbours. We see further proof of the possible transition
between the columnar and crystal phases, in the plots of g, (r *) for the scaled temperatures
of 1.25 and 1.06, in which at T* of 1.06, the curve for the crystal shows a series of very
well-defined peaks. The peak at r* of about 0.5, represents the columns in adjoining

lamellae.
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Figure 5.20: The longitudinal pair correlation function g |(r||*) at the scaled temperatures T* indicated.
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Figure 5.22: The transverse pair correlation function g (r *) at the scaled temperatures T* indicated.
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Figure 5.23: The transverse pair correlation function g (r *) at the scaled temperatures T* indicated.
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5.4.4 Dynamic properties

The mean squared displacement: The mean squared displacements calculated as a function
of scaled time for a variety of scaled temperatures are shown in figures 5.24 and 5.25. For
most scaled temperatures, the plot is linear with time and we can see quite easily, that as
the temperature is decreased, the particles' translational motion decreases and hence the
phases becomes more solid-like, as the translational and orientational order increases.

From the slope of the m*(¢*), we can calculate the diffusion coefficient D*, (see table 5.3).

T* Phase D* DH* DL* DH*/DL*

Jfrom m*(t¥)

4.43 I 0.566 0.405 0.299 1.35
4.14 N 0.505 0.098 0.201 0.49
3.57 N 0.345 0.064 0.146 0.44
3.27 D, 0.171 0.032 0.078 0.41
1.25 D, 0.024 0.01 0.009 1.11
1.06 C 0.015 0.003 0.004 0.75

Table 5.3: The values of the scaled diffusion coefficient for the system at the scaled temperatures T*

indicated, where D, represents the column phase..

By looking at the mean squared displacement, parallel and perpendicular to the director,
(see figure 5.26), we can get a more detailed idea of the nature/anisotropy of the motion
within each phase. For the isotropic phase, T* of 4.43, the particles are extremely mobile in
both directions, though the plots are not linear with time and we must remember that we
can only define a director due to an artefact from the calculation of the order parameter,
(see §2.4.2). On cooling into the discotic nematic phase, the diffusion tensor has decreased
by a factor of two, again indicating the increased translational and orientational order. It is
also evident that the particles are more mobile in a direction perpendicular to the director,
but this is to be expected as this fits in with the results, from Chapter 3, where in the
discotic nematic phase composed of ellipsoidal particles, the ellipses are able to slide over

each other without encountering steric hindrance.



Figure 5.25: The total mean squared displacement m*(1*) at the scaled temperatures T* indicated.
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Figure 5.26: The total mean squared displacement m*(t*) at the scaled temperatures T* indicated.
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The mean squared displacement resolved, parallel (solid line) and perpendicular (dotted line)
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It is also noticeable that for several of these plots there is some deviation from linearity,
suggesting it would be useful to follow the calculation of the mean squared displacement
over longer time scales though limited computer resources prevent us from performing
such investigations. The transition between the discotic nematic, 7* of 3.57 and columnar
phases, T* of 3.27, is again highlighted, by a change of almost a factor of two in the
anisotropy of the diffusion tensor, in the relative motions, parallel and perpendicular to the

director.

As the columnar phase is cooled to the boundary of the crystal - columnar transition, the
differences between the directions orthogonal to the director are slowly being frozen out,
and the overall motion is very small. The lack of anisotropy in the diffusion tensors,
parallel and perpendicular for the temperatures T* of 1.25 and 1.06, is probably explained
by the rattling motion of a cage effect in which each particle vibrates about a central

position.

The velocity autocorrelation function: We can see from the shape of the total velocity
autocorrelation function, (see figures 5.27 and 5.28), that it decays to zero relatively

rapidly, indicating that correlations between the velocities of a particle are lost quickly.

The resolution of the velocity autocorrelation function into the components, parallel and
perpendicular to the director, provides slightly more detailed information on the dynamic
behaviour of the various mesophases, (see figure 5.29). Parallel to the director, the
C\y;|(t*) decays to zero much quicker than the in orthogonal direction, showing that the
motion is hindered in this direction. The change in sign, denotes a reversal in the direction
of movement, and as such indicates a cage effect where the particles undergo collisions and

rattle between nearest neighbours.
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Figure 5.27: The total velocity autocorrelation function Cy\(1*) at the scaled temperatures T* indicated.
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Figure 5.28: The total velocity autocorrelation function Cyy(t*) at the scaled temperatures T* indicated.
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Figure 5.29: The velocity autocorrelation functions resolved parallel, (solid line), and perpendicular,

(dotted line), to the director, at the scaled temperatures T* indicated.
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The behaviour of the particles, perpendicular to the director remains quite similar for
different temperatures. We can see from figure 5.29, that as the C,, (#*) decays quite
slowly to zero, the molecular motion must be hindered as the particles find it hard to
diffuse orthogonal to the director. We must assume that the strong edge-to-edge
interactions tend to slow the particles down. But we must also take into account the
respective time scales over which the mean squared displacement and the velocity
autocorrelation function are calculated. We could obtain the diffusion coefficient D* from
the integration of the velocity autocorrelation function, but as with our results in Chapter 3,

the calculations were not in agreement and shall not be repeated here.

5.4.5 Deficiencies in the Gay-Berne potential

We have used the Gay-Berne potential to represent an oblate mesogen, in the hope of
forming a variety of discotic mesophases, and in this respect we have met with varying
degrees of success. In Chapter 3, we observed the formation of an interdigitated hexagonal
columnar phase while in this Chapter we have tried to form a discotic smectic phase, but
only succeeded in forming a discotic nematic and "shifted" columnar phases. This lack of
success was partly due to the oversimplification of the forces involved and partly due to a

deficiency that has arisen in the potential used and it is this that we shall discuss first.

Though we encountered no problem in Chapter 3, in our study of a discogen, it became
obvious, that when we parametrised the potential to represent a mesogen with strong
edge-to-edge interactions, we observed significant particle overlap for the face-to-face
arrangement. This is due to the relative softness of the potential for particles in this
arrangement i.e. for a interparticle separation of < 1.0c,, the energy of interaction is
positive but relatively small, (see figure 5.30). This means that if there are other
energetically favoured interactions, they can compensate, in terms of energy, for this slight
overlap, as we only expect the potential to be infinitely repulsive when the molecular
centres themselves overlap. If two particles approach each other in an edge-to-edge
arrangement, when the particles start to overlap, the separation between the molecular
centres is non-zero, but they will only infinitely repel each other when the separation
between these molecular centres, and not the actual discs, is zero, so the potential must

reflect this.
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If the diameter of the spherical force centre is the thickness of a disc, when two particles
are in a face-to-face arrangement, they will infinitely repel when the separation is zero. We

can rewrite the Gay-Berne potential as:

12 6
A A A A A 0 G
Uuy,uz, r)=4g(u,uy, r —x - —X . (5.2
(U1, 42, 1) (U, H2 )Hr—c(ul,uz, r)+6x} {r—(ul,uz, r)+6x}} (>-2)

For the potential used in this thesis, G, is equal to ©,, that is the width of one Gay-Berne

particle. This means that the potential energy of a pair of discs becomes infinite when,
r=(5(ﬁ],ﬁ2, f‘)—O’e. (5.2)

For particles aligned in the face-to-face arrangement, they approach each other at a distance

less than G, so the potential is infinite at unphysical negative separations.

To make this more realistic, U*(#*) should tend to infinity at #* > 0, thus o(u;, 0, F)

should be larger than o for all orientations. As the separation is smallest when in a
face-to-face arrangement, 6, should be equal to G, the thickness of a disc and not ©,. Thus
the modified Gay-Berne potential, the GBII model, for discs is given in equation (5.3) with

the distance r still scaled by G,, so that:

12 6
A A A A A Gf Gf
U, uy, r)=4e(u,us, r — - — . (53
(1, 12, 1) (12 )Hr—c(ul,uz,r)+cf} {r—c(ul,uz,r)+0f}} (>-3)

The potential energy diagram for the modified potential is shown in figure 5.31. The
potential now has the correct form for the repulsive core, and as we can see it now exhibits
narrower well widths, so in effect the attractive part of the potential has reduced in range.
There is also a slight change in the slope, thus the potential has become harder. The eftect
this has on the phase behaviour will need to investigated. One consequence is that the
system should behave more like a system of hard ellipsoids, thus the tendency to form
columnar phases will be reduced. This indeed has been shown to be the case, with a system
of 512 particles interacting with & /e of 0.2 showing just a discotic nematic phase! and a
system of 2000 particles interacting with € /e_ of 5.0, having a columnar phase range!”) over

a reduced temperature range when compared with the system in Chapter 3.
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Figure 5.31: The potential energy diagram for the original Gay-Berne potential GBI, with 6/c, of 0.345 and
ele, of 5.0.
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Figure 5.32: The potential energy diagram for the modified Gay-Berne potential GBII, with 6/o, of 0.345
and g/e, of 5.0.
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There are quantitative way of measuring the difference between these two models, and one
which is suited to computer simulation is the calculation of the thermodynamic parameter

T, and it is that which we shall define and discuss in the next section.

The calculation of I

At constant pressure, the change in the order parameter is thought mainly to be due to the
temperature while there is a part due to the density change associated with the thermal
expansion. To test this idea further, McColl'” studied the mesophase behaviour of 4,
4'-dimethoxyazoxybenzene (PAA) at various pressures. While noting no dramatic changes
in the nature of the isotropic to nematic transition with pressure, it was impossible to
investigate the density dependence of (P,) without the equation of state. So instead he
introduced as a measure of the relative importance of density and temperature in

establishing nematic order, the thermodynamic parameter I',
I'=—(0In7/0InV);,. (5.4)

The experimental value of 4.0 + 0.1""/ obtained by McColl agreed well with the results for
PAA made by Alben"? which gave I' of 4.3, from the analysis of thermodynamic data not
related to the order parameter. Despite this, to discuss the real significance of I, a
comparison of the experimental values with some theoretical models was needed. One of

(13}

the main models at the time was that developed by Maier and Saupe', which took into

account the anisotropic dispersion forces between molecules thus leading to the potential of

mean torque, which for rigid, cylindrically symmetrical particles can be expressed as
U(B) =—€V™(P2)P2(cos B), (5.5)

where B is the angle between the director and the molecular symmetry axis, and € is a
constant related to the molecular anisotropy. It was originally thought that y could be
identified with T, but Cotter'™ noted that if equation (5.5) was to be statistical
mechanically correct then 7y had to take the value of 1. This was only for derivations of
equation (5.5) based on the pair potential. For others, such as the variational approach,

there is no such constraint on I'. The exact dependence of the potential of mean torque on

the density is not known but it is thought to be p? thus I" was given the value of 2, which

comes from the dispersion forces dependent on r°.
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But compared to the experimental values for I" of between 2 and 6, this model was not

dependent enough on density. The other theoretical model that had been widely studied

was the hard rod model™

. By its very nature, transitions between the different mesophases
are completely driven by a change in density so that means that I" = oo, clearly the hard rod

model is too dependent on density. Thus from this, it can be implied that further theoretical

models will have to blend both of these extremes, i.e. include both attractive and repulsive
interactions. So from this, by calculating T for a potential model, we can deduce the role of
the various forces within the model in determining " and hence how realistic it is when

compared to experimental values.

The only study done to date on model systems by computer simulation has been by Emsley
et al."®. They chose to use the Gay-Berne potential parametrised to represent a system of
rod-shaped mesogens with the length-to-breadth ratio of 3 and g/g, of 5, this being a well
studied system'”'®. We shall discuss the two methods used to determine I later, but from
these they found I' to be 8.0 + 1.0. They then modified the potential, increasing the
steepness of the repulsive part, being careful to retain the key features of the original
potential, finding that " increased to 10.5 + 1.0. This confirmed the ability of I to measure
the balance of the attractive and repulsive forces in a potential model. The two methods of
calculating T we shall discuss are, (i) the direct method, similar to the experimental

technique used previously and (ii), from the density dependence of T *.

For the direct method of finding ', we calculate the variation of the order parameter (P,)
with temperature T* at more than one constant density. For our purposes, we concentrate
on the parametrisation of the Gay-Berne potential used in Chapter 3, i.e. £/¢€, of 5.0. From

! we can also

this work, we have a plot of (P,) at p* of 2.5 and from previous simulations
obtain data at p* of 2.7 and 3.0, (see figure 5.33). From this we then extract the values of
temperature and volume at a constant value of (P,) for each density. It has been
suggested" that a value of (P,) should be chosen where it is changing most rapidly with

temperature thus a value of (P,) of 0.4 should be used, as this would allow us to make a

direct comparison with the previous determination of Emsley et al."®
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But as we can see, the value of (P,) of 0.4 lies in the middle of the transition and not clearly
in the nematic phase, so to be rigorous we will extend the calculation to values of (P,) up to
0.9. From this data, a graph of InT* versus In¥* was then constructed, (see figure 5.34), the

slope of which being —T". The values of I" obtained from this procedure are shown in table

5.4.

Value of r
constant from direct
<P2> method.
0.4 1.12
0.5 1.12
0.6 1.45
0.7 1.87
0.8 1.51

Table 5.4: Values of T, obtained from the plot of InT* versus InV* in figure 5.35

Pairs of

densities T
used

2.5,2.7 1.3

2.5,3.0 0.99

2.7,3.0 0.77

Table 5.5: T calculated from the density dependence of T\, * with the pairs of densities used in brackets.

As we can see, the value obtained for I was between 1.0 and 2.0. This did not change
significantly depending on the value of (P,) used. Using the potential model and its
parametrisation from this Chapter, 6/c, of 0.345 and g/e_ of 0.2, we have also obtained a
value I of 1.0. This illustrates that a different parametrisation, for a given potential model,
makes little difference to the density dependence of the order parameter which is an
unexpected result suggesting it is the overall potential model which has the main effect on

the dependence rather than a subtle effect from the parametrisation.
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We can also calculate I' from the density dependence of T,,* from equation (5.5) with y =

I', leading to

r:-m(f/;f ) (5.6)

The values of T" obtained are shown in table 5.5, and confirm, within experimental error,

the results from the direct method. Simulations have been performed with the modified
potential GBII! and though we shall not discuss the results in depth here, we have made a
preliminary attempt to calculate I'. From our knowledge of how the new potential looks,
(see figure 5.32), it should act more like a system of hard ellipsoids than the GBI model,

thus from the inference that I' measures the balance between attractive and repulsive

forces, I should have a value greater than 1 found for GBI

There was a problem that data from the GBII model simulations were performed at
constant pressure, and that an accurate value for the volume had not been recorded from the
simulation. To calculate I from the constant pressure simulations we first plotted the order
parameter {P,) against the scaled temperature T* at the scaled pressures P* of 25 and 50.
Then, taking a constant value of {P,) we found the corresponding T* value. Then for this
value of T* on a plot of the scaled density p* against T*, we found the scaled density
which corresponds to the constant value of (P,) first chosen. From the following

relationship,
pr= v (5.7)

we can find the volume V* and then by plotting the graph of InV* against InT*, as in the

direct method, and making the assumption that the volume at the end of the simulation is

[22]

not that much larger than during the simulation™, we obtain a value of I' = 8. This agrees

with our thinking that the GBII potential is harder than the GBI potential.
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Figure 5.33: The variation of {P,) with scaled temperature T* at the scaled densities indicated, for the

Gay-Berne potential with the parameters 6/, of 0.345 and £/¢_ of 5.0.
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Figure 5.34: A plot of InT* versus InV* at the constant order parameter (P, the slope of which is -T,

obtained using a best fit line to the data points.
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5.5 Conclusions

In this Chapter we have used the Gay-Berne potential in which the edge-to-edge
arrangement is favoured over the face-to-face, in an attempt to model a discotic smectic
phase, in which the particles lie with their faces parallel to the layer. We succeeded in
forming discotic nematic and columnar phases in which the columns seem to consist of
only three or four particles before a plane of columns gets shifted. This unusual columnar
phase could have resulted from either the parametrisation used or the influence of the fixed

shape and size of the simulation box.

The next step would be to simulate the system using constant NPT ensemble in which the
simulation box is allowed to vary in size. An increase in the number of particles used
would also be desirable. The structure of both the nematic and columnar phases revealed a
deficiency in the potential which allowed the constituent particles to physically overlap.
We have highlighted how this could be rectified and the findings of the resultant

simulations.

To measure any quantitative differences between the original GBI and the modified GBII,
potentials, we have calculated the parameter I" with which to give us information on the
role of attractive and repulsive forces within our model potentials in the stabilisation of
liquid crystal phases. It has been suggested that this quantity be used to test the realism of

the model by comparing values of I from the simulations with those from experiments.
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6. The Gay-Berne mesogen

6.1 Introduction

The essential characteristic of a mesogenic molecule is that it deviates from spherical
symmetry, but as we can see from figure 6.1, the molecule also needs to exceed a certain
length-to-breadth ratio before it can exhibit any enantiotropic liquid-crystalline
mesophases. We have deliberately chosen the polyphenyls as examples of this important
behaviour as they come closest to an experimental analogue of the simple geometric shapes
used in computer simulations. This dependence on the length-to-breadth ratio has been
investigated in previous simulations using the spherocylinder'” and ellipsoid™ hard core

models to represent the mesogenic molecule.

0-0-0-0 ==
0-0-0-0-0 =
0~0-0-0-0-0 5=

Figure 6.1: Illustration of how a molecule needs to have a certain length-to-breadth ratio before it can

exhibit enantiotropic liquid-crystalline mesophases"'.

For a system of hard spherocylinders'" of length L and diameter D, (see §2.5.2), we have
seen that for length-to-breadth ratios L/D < 3, no mesophases are formed. At L/D of 3.0, a
stable smectic phase appears while at values greater than 3, both nematic and smectic
phases are formed. For a system of hard ellipsoids of revolution'”, we can also observe a
dependence on the length-to-breadth ratio, as to whether the system exhibits a mesophase.
For prolate or rod-shaped ellipsoids the aspect ratio a/b must be greater than 3 for the
system to form exhibit a nematic phase, otherwise the system crystallises on cooling from
the isotropic fluid. The next stage in developing computer models of liquid crystals is to
build attractive forces into the system. Taking the example of ellipsoids of revolution, the
purely repulsive system only exhibits a nematic phase, predicted by Onsager'™ for infinitely

thin rods, but the addition of attractive forces might be the difference that allows the
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system to form the translationally ordered smectic phases. The first simulations of such
attractive ellipsoids, though the precise shape of real molecules deviates from a true
ellipsoid of revolution'”, (also see §2.5.2), were those interacting via the Gay-Berne
potential as performed by Luckhurst et al.”, and indeed, the addition of attractive forces
stabilised the system enough for smectic A and smectic B phases to be formed. These
simulations were for ellipsoids with 6,/0, of 3.0, where o, is the distance between the
centre-of-mass of two particles in an end-to-end arrangement and o, when in a side-by-side
arrangement. From the phase diagram of hard ellipsoids, we know that systems with 6/,
ratios greater than 3 will form a liquid-crystalline mesophase, and indeed systems with
G,/0, of 4.4 are being investigated”!, and so to see what happens for smaller aspect ratios is

of special interest.

For ©_/c, ratios less than 3, we speculate that a liquid-crystalline mesophase might be
stabilised by the addition of attractive forces. This should be possible as shown by the use
of the Luckhurst-Romano®® and Gay-Berne-Luckhurst-Romano' potentials, (see §2.5.3),
which do exhibit liquid-crystalline phases. These are of interest because these potentials
have a spherical force centre which can be thought to be analogous to an ellipsoid in the

limit of zero shape anisotropy. The Luckhurst-Romano potential model is defined as

Ur=U,+U,, (61)
where
o \'2 o\
UO = 48[(;2‘) — (75) :‘, (6.2)
and
6
Ud =—4xe(r%) Pa(cos Pra), (6.3)

where A is an adjustable parameter and r,, is the intermolecular separation. The formation
of the mesophases is possible through the addition of an anisotropic, attractive part,
dependent on the P, (cosp,,) term of the potential. So for this work, we shall look at the
G,/c, ratios which are smaller than the commonly used value of 3, thus we shall concentrate

on the values 2.5 and 2.0, for a system of prolate ellipsoids interacting via the Gay-Berne

potential.
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6.2 Parametrisation of the Gay-Berne potential

For this study we examine the effect of changing the length-to-breadth ratio of the
constituent particles on the phase behaviour, but it makes sense to remain as consistent as
possible in all other ways with previous simulations. Thus we chose the parameters |4 of 1,
v of 2 and the well depth anisotropy parameter €/e_ of 0.2. It should be noted that the
values of W and v are reversed from those used originally by Gay and Berne'” as our
choice favours the side-by-side arrangement over the cross and tee arrangements. We have
plotted the scaled potential energy U*(r*) as a function of the scaled distance r*, (see
figure 6.2), for particles with length-to-breadth ratios of a) /o, of 2.5 and b) ¢./G, of 2.0.
We can see that compared to the potential energy diagram for particles with 6 /o, of 3.0,
(see figure 2.15), the well depth for side-by-side arrangement is less, thus the main driving
force for nematic mesophase formation, the ratio between the side-by-side and tee
arrangements, is reduced. This occurs because the well depth anisotropy term is dependent
not on just the parameter /¢, but on the shape anisotropy parameter ¢,/G, via . This can

be seen by looking at the general expression for the well depth term for a Gay-Berne

particle in a side-by-side arrangement; this is given as

A A A A A u A A A
g(uy, Uy, r) =gpe"(Ur, U2)€; (Uy, Uy, T), (6.5)

v / A A A ALY AoA A A 3
=80[1_X2(ﬁ1.ﬁz)2]2{1_x_{(u1.r+u2.r) +(u1.r u,.r) H . (6.6)

21 +X/(ﬁ1.ﬁ2) 1 _X,(ﬁl-ﬁz)
where
2 —
- Ms_)z_l, 6.7)
(c./0s)" +1
and
1
X/ — ]. - (Se/es)Pl (6.8)

1+ (se/ss)ﬁ

Thus as 6,/0, is reduced, the corresponding well depth term is reduced. We justify keeping
the actual well depth term € /e, the same as used in previous simulations in order to isolate
the effect of changing the shape anisotropy. The other effect of changing the shape
anisotropy can be observed in the plots of the scaled potential energy, (see figure 6.2),
where the cross over points between the different potential energy wells decreases i.e. the

difference in total shape anisotropy for the model is reduced.
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a)

b)

Figure 6.2: The scaled potential energy U*(r*) as a function of the scaled distance r¥*, for a system of

prolate ellipsoids interacting via the Gay-Berne potential with length-to-breadth ratios of a) 2.5 and b) 2.0.
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Having decided on the parameters we shall use for the Gay-Berne potential, we must now
decide on the state variables at which to study the system i.e. the scaled temperature 7* and
the scaled number density p*. To assist in the selection of the density, we use the phase
diagram for the corresponding system of hard ellipsoids of revolution, (see figure 2.5). As
in Chapter 3, we can re-draw this phase diagram using the scaled number density used in
our simulations rather than the more usual packing fraction, (see figure 6.3). We must state
that this diagram is only used as a guide for locating the desired density when we consider

that there is not a nematic - isotropic transition at ratios of 2.5 and 2.0.

1.0

0.9 —

0.8

0.7 —

0.6

Number density

0.5 Isotropic

0.4 —

0.3 nematic

1.0 2.0 2.5 3.0

a/b ratio

Figure 6.3: The phase diagram for hard ellipsoids as a function of the scaled number density, as used in this

Thesis, with the densities used in this study, p* of 0.35 (O) and p* of 0.45 [@O).

It has been shown that this phase diagram is a good guide as to what density to use to
stabilise the liquid-crystalline phases. Generally the density chosen is on or near the
boundary between the nematic and isotropic phases. However as well as extending the
search for different state points which show liquid-crystalline behaviour, we would like to
retain some contact with previous simulations. So following this we have chosen to use the

densities p* of 0.35 and 0.45 for ellipsoids with 6/, of 2.5 and 2.0. These are marked on

the phase diagram together with that of 0.35 used for ¢, /o, of 3.0.
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6.3 The molecular dynamics simulation

The procedure was very similar to that undertaken in Chapters 3 and 5 for a system of
Gay-Berne discs. For both length-to-breadth ratios at each density, an initial o-fc.c. lattice
of 500 particles was set up with the particles pointing along the box diagonal. This was
then heated to a temperature sufficiently high for the system to exhibit an isotropic phase
and once this had been achieved, the system was cooled. Each simulation was performed in
the constant NVE ensemble, with cubic periodic boundary conditions and a spherical
potential cut-off of 3.85,, which from the potential energy diagrams, (see figure 6.2), was
sufficient to ensure that the interaction between particles had just ceased. The equilibrium

stages consisted of between 10,000 and 250,000 time steps, and each production stage
being between 10,000 and 20,000 time steps, the scaled time step &r* of 0.005, which
conserves the energy to a few parts in 10*. The results of the important properties, (P,) and

(U*), determined during the simulation are shown in tables 6.1-6.5.

Set T* Actual T* N, /10° N, /10, (U* (P,
4 3.90+0.02 100 20 0.83+0.12 0.136 £ 0.022
3.75 3.82+£0.03 50 20 0.33+£0.11 0.349 £ 0.025
3.5 3.51+£0.02 100 20 -0.92 £0.09 0.586 + 0.013
3.25 3.20+£0.04 50 20 ~1.85+0.09 0.682 £0.011
3 3.01 £0.05 50 20 —2.35+0.11 0.723 £ 0.009
25 2.52+0.03 50 20 -3.53+£0.15 0.801+0.011
2.25 2.21+0.04 50 20 —4.66 £ 0.08 0.829 + 0.012
2 1.99 +0.01 50 20 —-4.71 £0.09 0.853 + 0.008
1.75 1.73£0.03 50 20 -5.33+£0.08 0.877 £ 0.007
1.5 1.53+0.03 50 20 -7.61 £0.06 0.946 = 0.003
1 1.00 £ 0.02 50 20 -9.01 £0.11 0.972 + 0.002
0.5 0.49 + 0.01 50 20 -10.14 £ 0.05 0.986 + 0.002
0.1 0.08 £ 0.01 25 20 -11.07+0.01 0.996 £ 0.001

Table 6.1: The thermodynamic averages at p* of 0.35 for Gay-Berne particles with ¢ /o, of 3.0.



SetT*  ActwalT*  N,/10° N /10° (U (P

1.3 1.32+0.03 25 20 -3.05+0.12  0.126 0.019
1.2 1.19£0.02 100 50 -331+005  0.227+0.012
L1 1.10£0.03 300 20 -3.92+006  0.603 +0.013

1 0.97 £ 0.01 150 20 -431+0.09  0.705+0.011
09  0.89x0.02 50 20 -458+0.09  0.767 =0.008
0.8 0.81£0.02 125 20 -486+0.03  0.812+0.008
0.7 0.72+0.03 100 20 -580+0.03 0902 +0.008
06 061001 100 20 -630+0.01  0.931+0.006
0.5 0.50£0.02 250 20 —6.65£0.02  0.950+0.003
04  041%001 20 10 -6.89£0.02  0.961 +0.002
0.3 0.29 x 0.01 20 10 —722+002  0.972+0.002
02 022002 20 10 -7.69+0.01  0.980 =0.001
0.1 0.09 = 0.02 10 10 -8.01+0.01  0.990 % 0.001

Table 6.2: The thermodynamic averages at p* of 0.35 for Gay-Berne particles with 6,/G, of 2.5.

SetT*  AcwalT*  N./10° N, /10° (U*) (P,

3 3.03 + 0.09 40 20 096+0.19  0.064+0.019
25 2.49 +0.05 25 20 002009  0.097%0.022
2.2 2.18 + 0.06 50 20 —0.68+0.07  0.128 +0.016

2 1.97 +0.02 125 20 233+008 06800011
1.8 1.81+0.04 50 20 285+007  0.739+0.010
1.6 1.59 + 0.03 50 20 -356+005  0.798 +0.009
1.4 1.39 £ 0.03 50 20 —419+006  0.838 +0.005
12 1.18 + 0.04 50 20 ~480+005  0.867 +0.006

1 1.01 +0.02 125 20 656005 0950 +0.004
0.5 0.50 + 0.01 40 20 764+003  0.965 +0.003
0.1 0.09 +0.01 10 20 —8.67+001  0.985+0.002

Table 6.3: The thermodynamic averages at p* of 0.45 for Gay-Berne particles with 6 /o, of 2.5.
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SetT*  Actwal T*  N,/I0° N, /10’ (U*) (P,)

2 1.99 + 0.04 50 10 —1.90+0.11  0.046 +0.004
1.5 1.52 +0.03 25 10 —2.16+£0.06  0.046 + 0.007

1 0.99 + 0.01 25 10 248+0.02  0.053 +0.009
0.5 0.51 +0.01 25 10 292+001  0.120+0.012
0.4 042002 100 20 —401+0.03  0.757 +0.005
0.3 0.30 +0.01 100 20 552+002 0946 £0.010
0.2 0.19 + 0.02 50 20 ~5.87+0.01  0.968 = 0.008
0.1  0.09=0.01 25 20 —620+0.02  0.984 +0.002

Table 6.4: The thermodynamic averages at p* of 0.35 for Gay-Berne particles with 6 /6, of 2.0.

Set T* Actual T* N./10° N, /10° (U*Y (P

1 0.99 + 0.08 25 20 -3.04+0.05 0.105%0.012
0.9 0.90 +0.07 10 20 -3.14+0.04  0.072x0.011
0.8 0.81+0.11 25 20 —327+0.03  0.093 +0.009
0.7 0.69 +0.09 25 20 -3.49+002  0.156 £ 0.008
0.6 0.62 = 0.05 150 20 -4.01+0.03  0.626 +0.009
0.5 0.50 £ 0.03 150 20 -446+0.03  0.784 £0.005
0.4 0.42 +0.02 50 20 -521+0.03 0900+ 0.003
0.3 0.29 + 0.02 50 20 -575+0.01  0.951+0.003
0.2 0.19 +0.01 10 10 -6.01+£0.02 0969 + 0.002
0.1 0.09 + 0.01 10 10 -6.30+0.01 0978 +0.002
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Table 6.5: The thermodynamic averages at p* of 0.45 for Gay-Berne particles with 6 /G, of 2.0.

6.4 Results and discussion

We shall now discuss the results obtained using various orientational, thermodynamic and
structural properties calculated from the molecular dynamics simulation. First we shall
look at the plots of the second rank order parameter (P,) and the internal energy (U*),

which can be used to provide initial evidence of a phase transition, then we shall

concentrate on the various structural distribution functions and configurational snapshots.
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6.4.1. Length-to-breadth ratio ¢ /o of 3.0

The first system we shall look at is a set of Gay-Berne rods with ¢,/c, of 3.0 which is one
of the most widely investigated. Adams et al.!'" first simulated this system at a scaled
density of 0.32 with p of 2 and v of 1. They observed a nematic - isotropic transition at T*

(121

of between 1.8 and 1.7. Phippen" used W of 2 and v of 1, and on heating 256 particles at

p* of 0.35, could not form a isotropic phase. Reducing the density to 0.32 allowed a
nematic - isotropic transition to be observed at T* of 1.8. Emerson'” then repeated the
simulation of Phippen but with N of 500 in order to investigate the system size effect. He
observed hysteresis in the values of the order parameters and that the transition was
lowered to a value of 1.5. Chalam et al!'* have also produced numerous simulations at
both constant temperature and constant volume. Using the same parameters as the original
Gay-Berne paper, they observed a nematic - isotropic transition at T * of 1.21 and a
smectic B - nematic at T* of 0.8. Luckhurst et al.' reversed the values of u and v, taking
the values of 1 and 2 respectively, forming isotropic, nematic, smectic A and smectic B
phases. This procedure favoured the face-to-face and side-by-side over the tee and cross
configurations, so enhancing the probability of mesophase formation. Thus it is these
parameters that we have decided to use in this study. A brief summary of these simulations
can be found in table 6.6. We have also decided to perform a simulation with parameters
oo, of 3.0, e /e, of 0.2, p of 1 and v of 2 at a scaled density of 0.35, not only to act as a

point of contact for the other length-to-breadth ratios but as a simulation in its own right.

Reference c,/o, gle, u v p* N

Adams'"! 3 0.2 2 1 0.32 256
Chalam"'* 3 0.2 2 1 0.32 256
Phippen'"*! 3 0.2 2 1 0.35 256
Phippen'”! 3 0.2 2 1 0.32 256
Emerson'"”! 3 0.2 2 1 0.32 500
Luckhurst® 3 0.2 1 2 0.3 256

Table 6.6: A summary of the parameters used in previous simulations of Gay-Berne rods with 6/0, of 3.0.
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From the plot of the second rank orientational order parameter (P,) for the density p* of
0.35, we can observe a nematic - isotropic transition between T* of 3.90 and 3.82, (see
figure 6.4), though the value of (P,) of 0.136 for the isotropic phase does seem high,
compared with the theoretical value of 1/¥N = 0.045. Evidence of long range orientational
order, necessary to identify a nematic phase, is given by the order parameter (P,) of 0.349
and by the pair orientational correlation function G,(r*), (see figure 6.5). From this we can
clearly observe the nematic - isotropic transition to be between T* of 3.90 and 3.82, as at

long interparticle distances, there still remains some orientational correlation.

From the scaled internal energy (U*), we do not observe any indication of the nematic -
1sotropic transition but we can see a change in the slope between T* of 1.73 and 1.53,
indicating a possible phase transition. And though we really need more state points to be
able to more readily identify the phase transition, it is accompanied by a corresponding
increase in (P,). From the radial distribution function g(r*), (see figure 6.6), we can gather
some information on the various phases present. At 7* of 3.90, the g(r*) shows some short
range translation correlations but as the order parameter (P,) has a value of only 0.14, we
can identify this as the isotropic phase. As we decrease the temperature to 3.82, the shape
of g(r*) changes very little. Again, we observe some short range, side-by-side ordering, the
peaks at 7* of 1.1 and 2.2 and end-to-end ordering, the peak at »* of 3.0. It is interesting to
note that the peak representing the side-by-side arrangement is at the position of the

potential energy minima, #* of 1.1, (see figure 6.2), rather than the particle diameter, r* of

1.0.

As we lower the temperature, the system remains in a nematic phase until 7* of 1.73. At
temperatures below this, the g(r*), (see figure 6.7), reveals the presence of considerable
short range and long range translational order. This is probably the onset of a more ordered
smectic phase such as the crystal or smectic B. The split peak in the g(r*) at r* of 2 is
consistent with the smectic B phase obtained from other simulations!"®, though from the
values of these peaks, the system is not close packed. For this system, we observe two
important features, namely, the increased nematic - isotropic transition temperature, at 7*
of 3.82, and the absence of the smectic A phase when compared to the system at the lower

density p* of 0.3°. At this density, the phase sequence is C-S,-S,-N-I, with the nematic -
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isotropic transition temperature being between T* of 3.0 and 2.0. The first difference
between the two densities is easily explainable, as at the higher density, the particles are
compressed closer together, hence the attractive interaction that each particle experiences,
increases. The loss of the smectic A phase is harder to quantify, but could result from the
use of a constant volume simulation box. This is not an entirely unreasonable suggestion,
as a similar phase sequence was observed in a similar system of Gay-Berne rods, /G, of
3.0, where a nematic to smectic B transition was seen, the simulation performed using

constant NVT molecular dynamics'!,
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Figure 6.4 The variation of the second rank orientational order parameter {P,) and the scaled internal

energy per particle (U*) with scaled temperature T* at p* of 0.35.
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Figure 6.5: The pair orientational correlation function G,(r*) at the scaled temperatures T* indicated.
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Figure 6.6: The radial distribution function g(r*) at the scaled temperatures T* indicated.

Figure 6.7: The radial distribution function g(r*) at the scaled temperatures T* indicated.
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6.4.2. Length-to-breadth ratio 6 /o, of 2.5

We shall now investigate the behaviour of a system of Gay-Berne particles with a smaller
than usual length-to-breadth ratio, 6,/c, of 2.5 at the scaled densities of 0.35 and 0.45. For
the system at p* of 0.35, from the radial distribution function g(r*), (see figure 6.11), we
can see that there seems to be a variety of mesophases present. Due to a lack of transitional
order and a small value of (P,) = 0.1, there is an isotropic phase present at 7* of 1.19.
Evidence of a phase transition from the isotropic phase at 7* of 1.19 to a nematic phase at
T* of 1.10, comes from a number of sources. The most obvious is the increase in
orientational order shown by the plot of the order parameter (P,), (see figure 6.9), and the
pair orientational correlation function G,(r*), (see figure 6.10). There is also a
corresponding increase in translational order of the phase. Peaks at ¥* of 1.1 and 2.2 in the

g(r*) indicating shells of particles in side-by-side orientations.

The phases at the other temperatures need further investigation before any firm conclusions
can be drawn. Initially there seems to be a smectic A phase at 7* of 0.81 and smectic B
phase at 7* of 0.72. These can be deduced by inspection of the g (r|*), (see figure 6.13).
This shows that there is no translational order along the director for the nematic phase at 7*
of 0.89. The broad peaks at 7* of 0.81, reveal the slightly ordered layers of the smectic A
phase, while for the smectic B phase, the intensity of the peaks is much greater. But to
confirm our identification of the smectic A phase at 7* of 0.81, we have performed an
additional 50,000 time step simulation, then checked the form of the g (r;*) to see if it
had changed to that for a smectic B phase, (see figure 6.13). This problem was identified by
de Miguel et al.!"*!, who following this same routine, subsequently reclassified their phase
as a smectic B. After our simulation, the plot of the g (r|*) remained with this broad
modulation and so was classified as a smectic A phase. Graphic snapshots from just one
configuration from each of the smectic phases, illustrates nicely the difference in the

translational order of the layers, (see figure 6.14).
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Figure 6.9: The variation of the second rank orientational order parameter (P,) and the scaled internal

energy per particle (U*) with scaled temperature T* at p* of 0.35.
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Figure 6.10: The pair orientational correlation function G,(r*) at the scaled temperatures T* indicated.



206

2.0
. T =1.19
S T*=1.10
. """"""" T% = 0.89
g(r*) -
- =T ania
0.5 —
0.0 ' | I I I l
0 4 5 |

Figure 6.11: The radial distribution function g(r*) at the scaled temperatures T* indicated.
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Figure 6.12: The radial distribution function g(r*) at the scaled temperatures T* indicated,
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Figure 6.13: The longitudinal pair distribution function g||(r|*) at the scaled temperatures T* indicated.

a) b)

Figure 6.14: Graphic snapshots of a configuration taken from a) the smectic A phase at T* of 0.81 and b)

the smectic B phase at T* of 0.72.
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If we increase the scaled density to 0.45, we can see that the nematic - isotropic transition

temperature has increased to be between 7* of 2.18 and 1.97. From previous arguments in

this Chapter, this is to be expected, though the rise is reasonably large. From the plots of

the (U*), (see figure 6.15), there is another observable transition between 7* of 1.18 and

1.01. Figure 6.16 shows the g(r*) for the two phases. At 7* of 1.18 we have a form similar

to the nematic, while at 7* of 1.01, a highly ordered smectic B phase has been formed, with

considerable in-plane hexagonal packing. The layer spacing of the smectic phase is 2.00,,

reduced from 2.256,, probably due to the increased density, (see figure 6.17).
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Figure 6.15: The variation of the second rank orientational order parameter (P,) and the scaled internal

energy per particle (U*) with scaled temperature T*.
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Figure 6.16: The radial distribution function g(r*) at the scaled temperatures T* indicated.

Figure 6.17: The radial distribution function g(r*) at the scaled temperatures T* indicated.
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6.4.3 Length-to-breadth ratio 6,/c, of 2.0.

For the system at p* of 0.35, a phase transition occurs between 7™ of 0.51 and 0.42, as
shown by the plot of (P,) and (U*), (see figure 6.18). Inspection of the g(r*), (see figure
6.19) and the graphic snapshot, (see figure 6.20), reveal the phases to be the isotropic and

nematic respectively. The graphic snapshot also reveals the formation of a cavity in the

simulation box, indicating this particular system to be unstable, at least at this density.

1.0
S o
o L 4
| o (P
o (Un| |
0.8 — -
O -
’ -0
0.6 — J’_ (U?
2
[ J
(Py) 1] . ° 5
0.4 — ® — -4
-1 ®
e °* — -6
0.2 — -
o o q
0 0 ] I i I T I ¥ 10
0.0 0.5 1.0 15 2.0
T*

Figure 6.18: The variation of the second rank orientational order parameter (P,) and the scaled internal

energy per particle (U*) with scaled temperature T*.
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Figure 6.20: The graphic snapshor at T* of 0.42, showing the formation of a cavity in the simulation box.
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From the plot of (P,) at the scaled density p* of 0.45, (see figure 6.21), we can see the
orientational order-disorder phase transition between T* of 0.69 and 0.62. This backed up
by the G,(r*), (see figure 6.23), in which the plot at T* of 0.62 does not decay to zero,
indicating residual long range orientational order. From the g(r*), we can see that the
system remains in the nematic phase until 7* of 0.42, where we observe a smectic B phase,
with the hexagonal order revealed by the characteristic feature of a split peak at r* of 2,
(see figures 6.23 and 6.24). Inspection of the g||(r|*) reveals the layers within the smectic
B phase to be interdigitated with a layer spacing of 1.7c,, (see figure 6.25). It is also
interesting to see that the interdigitation causes the layer structure in the g (r|*) to be
weak, similar to the smectic A structure observed for 6,/c, of 3.0, (see figure 6.13). Overall

it seems that at the higher density, the system is stable enough to exhibit liquid crystalline

mesophases.
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Figure 6.21: The variation of the second rank orientational order parameter (P,) and the scaled internal

energy per particle (U*) with scaled temperature T*.
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Figure 6.22: The pair correlation function G (r*) at the scaled temperatures T* indicated.

Figure 6.23: The radial distribution function g(r*) at the scaled temperatures T* indicated.
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Figure 6.24: The radial distribution function g(r*) at the scaled temperatures T* indicated.
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Figure 6.25: The longitudinal pair distribution function g |(r||*) at the scaled temperatures T* indicated.
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6.5 Conclusions

In this Chapter we have investigated the phase behaviour of a series of Gay-Berne rods
with differing length-to-breadth ratios. The idea was to see if the attractive forces present in
the potential model could induce the less anisotropic ellipsoidal particles to form
liquid-crystalline mesophases. This has proved a great success in that liquid-crystalline
phases have been observed in systems of Gay-Berne ellipsoids with length-to-breadth

ratios of 2.5 and 2.0, though their appearance is greatly dependent on the simulation

density.

If we produce a table of the transition temperatures and layer spacing for all of our
simulations, (see table 6.7), there seems to be several trends observable in the phase
behaviour. First, as the scaled density is increased for a particular system, the nematic -
isotropic transition temperature increases, and at 6,/c, of 3.0, the smectic A phase present
at lower densities, disappears as the density increases. Similar trends can be seen for a
fixed density, that as the anisotropy of the particles is reduced, the nematic - isotropic
transition temperature is reduced, presumably because the smaller the particle, the less
attractive forces it experiences, thus a lower temperature is needed to overcome these
forces. The reduced shape anisotropy would also contribute to the reduced transition

temperature.

There also appears to be a trend in the layer spacing of the smectic B phases. For 6./, of
3.0, the layer spacing is approximately 3.0G,, the length of the constituent Gay-Berne
mesogen. But for ¢ /o, of 2.5, the layer spacing of 2.25 and 2.0, for the densities of 0.35
and 0.45 respectively, is less than the length of the constituent particles. This aspect is also
present for 6./c, of 2.0, where the layer spacing is 1.76,. This leads to smectic layers which
are interdigitated. It would be sensible to perform a constant NpT simulation in order to
investigate the effect of fixed boundary conditions on the layer spacing. By looking at the
value of the second rank order parameter (P,) at the nematic - isotropic transition, we can
see that apart from the simulation at 6,/c, of 3.0, the value of (P,) is approximately the
same at 0.4. This value is obtained by taking the value of (P,) at the middle of the nematic

- isotropic transition as identified by the simulation points which are in the nematic and

isotropic phases.
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ofo, N p |1 N Sa Sy | dioy) (PyatT*,,
3 500  0.35 3.86 - 1.63 3 0.28

2.5 500 0.35 1.15 0.8 0.72 2.25 0.4

2.5 500 045 2.08 - 1.01 2 0.4

2 500 0.35 - - - - -

2 500 045 0.65 - 0.42 1.7 0.4

Table 6.7: A summary of the phase transition temperatures for the simulations at 6/G_ of 2.0, 2.5 and 3.0.

In conclusion, it seems that the attractive part of the Gay-Berne potential allows less
elongated particles than usual (in terms of previous simulations) to form liquid-crystalline
mesophases, though the repulsive forces seem to dominate in the nematic phase, in that,
the system must still be sufficiently dense for the orientational ordered phases to be

observed.

6.6 References

[1] D.Frenkel, HN.W.Lekkerkerker and A.Stroobants. Nature. (1988) 332 §822.

[2] D.Frenkel. Molec.Phys. (1987) 60 1.

[3] D.Demus, H.Demus and H.Zaschke. Fliissige Kristallen in Tabellen. VEB (1972).
[4] L.Onsager. Ann.N.Y.Acad.Sci. (1949) 51 627.

[5] G.R.Luckhurst and P.S.J.Simmonds. Molec. Phys. (1993) 80 233.

[6] G.R.Luckhurst, R.A.Stephens and R.W.Phippen. Lig.Cryst. (1990) 8 451.

[7]1 M.A.Bates and G.R.Luckhurst. To be submitted (1995).

[8] G.R.Luckhurst and S.Romano. Proc.R.Soc.Lond. (1980) A373 111.

[9] M.D.De Luca, M.P.Neal and C.M.Care. Lig.Cryst. (1994) 16 257.

[10] J.G.Gay and B.J.Berne. J. Chem. Phys. (1981) 74 3316.

[11] D.J.Adams, G.R.Luckhurst and R.W.Phippen. Molec. Phys. (1987) 61 1575.

[12] R.W.Phippen. Ph.D. Thesis, University of Southampton. (1988).

[13] A.P.J.Emerson. Ph.D. Thesis, University of Southampton (1991).

[14] M.K.Chalam, K.E.Gubbins, E. de Miguel and L.F.Rull. Molec.Sim. (1991) 7 357.
[15] E.de Miguel, L.F.Rull, M.K.Chalam and K.E.Gubbins. Molec. Phys. (1991) 74 405.



