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By Shaun Gary Whatling 

The main aim of the work described in this Thesis is the identification of the essential 
features of various mesogenic molecules, necessary for the formation of liquid crystals 
with the aim of simulating the formation and behaviour of the liquid-crystalline 
mesophase. 

The first two chapters introduce the various classes of liquid-crystalline mesophases and 
the techniques of computer simulation. This includes the calculation of various 
orientational, structural and dynamic properties used to classify the mesophase and a short 
review of the work done to date on the computer simulation of liquid crystals. This allows 
us to place our work in the appropriate context. 

In Chapter 3, we use the Gay-Berne potential to represent the triphenylene moiety, and 
while is not liquid-crystalline itself, it is the basis for many thermotropic discotic 
mesogens. Via suitable parametrisation of our potential, we have performed molecular 
dynamics simulations studies which show that in addition to isotropic and crystal phases, 
discotic nematic and hexagonal columnar phases are also formed. 

Chapter 4 uses the configurations generated from the simulation in the previous chapter to 
provide a basis for the calculation of X-ray diffraction patterns which allow us to gain 
further insight into the structure of the mesophase. 

In Chapter 5, again via suitable parametrisation of our Gay-Berne potential model, we 
hoped to simulate the formation of a discotic smectic phase in which the symmetry axis of 
each discogen is normal to the layer, and while not entirely successful in this aim, it did 
bring to light some deficiencies in the potential which we have tried to address and correct. 

Chapter 6 investigates the effect of the molecular anisotropy on the phase behaviour of the 
Gay-Berne potential, parametrised to represent a rod-shaped mesogen. We have formed 
nematic, smectic A and smectic B mesophases and by changing the shape anisotropy as 
well as the simulation density, we explore their effect on the nematic-isotropic transition 
temperature and the phase behaviour. 
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1. Liquid crystals 

1.1 Introduction 

The term liquid crystal describes one of the states of matter lying in between the crystalline 

solid and the isotropic liquid, another being the plastic crystal'''. This intermediate state is 

known as the liquid crystal mesophase and at the macroscopic level exhibits the fluidity of 

a liquid, while having anisotropic properties such as birefringence, usually associated with 

a solid phase. Depending on the structure of the constituent molecule, a system may exhibit 

several different mesophases and transitions to these intermediate states can be brought 

about by varying the temperature and, if it is a binary system, the solvent concentration. 

Lyotropic mesophases'" are formed by systems composed of amphiphilic molecules, 

containing polar and non-polar parts, and a solvent, usually water. These amphiphiles 

aggregate into clusters known as micelles, and if the micelles are anisotropic in shape then 

they can arrange themselves into various mesophases. 

Thermotropic mesophases'^' are usually composed of unassociated organic molecules and 

are obtained by heating and cooling pure mesogenic compounds. Several thousand organic 

and some inorganic compounds have shown liquid-crystalline mesophases, with the 

essential, but not sufficient, requirement for the formation of the liquid-crystalline phase 

being, that the constituent molecule must deviate from spherical symmetry. Thus the 

majority of thermotropic liquid crystals are composed of rod-shaped or disc-shaped 

molecules, though many new shapes of mesogen have been discovered, for example, 

phasmidic mesogens have three flexible, terminal substituents at each end of the molecule, 

while hemiphasmidic mesogens are a combination of both rod-shaped and disc-shaped 

moieties'^'. 

The main aim of this Thesis is to identify the features of mesogenic molecules essential for 

liquid crystal formation, and to then use them to see if we can model the formation and 

characteristics of the liquid-crystalline mesophase. First though, we shall describe the 

various types of liquid crystal phase, with particular emphasis on thermotropic liquid 

crystals formed by rod-shaped and disc-shaped molecules, the properties that define each 

phase and what happens at the transition from one phase to another. 



1.2 Mesophases formed by rod-shaped molecules 

The first liquid crystals were discovered in the 1880's''*', with their constituent molecules 

being rod-shaped, (see figure 1.1). The mesophases they form can be classified according 

to the long range molecular arrangement present within the phase and as such can be 

placed into three broad groups: nematic, chiral nematic and smectic. These mesophases are 

all distinguished from the isotropic phase by their long range orientational order with the 

constituent molecules tending to align themselves parallel to a common axis called the 

director. This is denoted by the unit vector n, with the states of the director, n or - n 

indistinguishable from each other. An important property we need to define is the order 

parameter S, introduced by Tsvetkov, which is used to give a quantitative measure of the 

degree of orientational order within a mesophase. Assuming the molecules have cylindrical 

symmetry, S is given as 

^ = ((3cos^p-l)/2>. (1.1) 

where (3 is the angle between the main symmetry axis of a molecule and the director, with 

the angular brackets denoting a statistical average. Perfect parallel order, as in a crystal, 

leads to a value for 5 of 1, total disorder, as in an isotropic phase gives S of 0, while in 

liquid-crystalline mesophases, S takes intermediate values which are strongly dependent on 

the temperature. 
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Figure 1.1: Some examples of rod-shaped mesogenic cores: a) biphenyl, b) azoxybenzene and c) cholesterol. 



1.2.1 The nematic phase 

The molecular arrangement within the nematic phase is the simplest of the three 

mesophase types, (see figure 1.2). The molecules are translationally disordered apart from 

some short range correlation but do possess long range orientational order. The nematic 

phase is uniaxial in its properties, in that there is a unique axis along which a property 

displays one value, which is different from any value measured along any perpendicular 

direction to this unique axis. A true uniaxial phase possesses point group symmetry, 

but for a nematic phase only second rank tensor properties have been measured, so in 

theory it should have symmetry where n > 3, but it is normally assumed to have 

symmetry. There is also the possibility of a biaxial nematic phase in which there are three 

distinct symmetry axes. This requires the constituent molecules to be biaxial and although 

a biaxial nematic phase in a lyotropic system has been discovered'^', a thermotropic biaxial 

Ng, remains elusive. 

O 
O Oo^O 
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Figure 1.2: A schematic of the molecular organisation in the nematic phase, both perpendicular and parallel 

to the director n. 

1.2.2 The chiral nematic phase 

Though we have classified it in a group on its own, the chiral nematic phase is a special 

example of the nematic phase i.e. the nematic phase can be considered as a chiral nematic 

of infinite pitch. At any point throughout the sample the phase has local nematic ordering. 

On moving away from that point, in a direction perpendicular to the director, it can be seen 

that the sample has a helical structure, in which the director orientation rotates 

continuously in a helix along a preferred axis, (see figure 1.3). The pitch p, is defined as the 

distance for a 2K rotation of the director and because n and -n are equivalent, the 

periodicity of the structure is pH. 



This spiral arrangement of the molecules is responsible for the unique optical properties of 

the chiral nematic phase such as reflection of circularly polarised light and a rotatory power 

many times greater than that of ordinary optically active substances, with the mesophase 

having point group symmetry. Some liquid crystals produce additional optically active 

phases between the chiral nematic phase and the isotropic liquid. Existing over a very 

narrow temperature range, ~ 1 "C, these phases are known as blue phases and are generally 

produced by a chiral nematic with a very short pitch. Three distinct types have been 

identified: BPI having a body centred cubic lattice structure, BPII with a simple cubic 

lattice and BPIII, called the "blue fog", the structure of which has yet to be determined, and 

all of which are optically isotropic. 

Figure 1.3: A schematic of the director organisation in the chiral nematic phase. 

1.2,3 The smectic phase 

There are at least 12 distinct smectic phases'^', S^, Sg, S^, Sj, differing in their long 

range order, which due to a higher degree of molecular long range translational ordering, 

generally appear at a lower temperature in a phase sequence than the nematic and chiral 

nematic. The smectic phases are layered structures and though they all have long range 

orientational order, they can be differentiated by the degrees of order within each 

mesophase. 



An exception is the or as it is now more commonly labelled, the D phase, which has a 

cubic lattice. The "one dimensional" smectic phases are the and Sg phases where the 

order describes the layered structure. The smectic A phase is the most disordered of all the 

smectic phases with only short range positional order within or between layers, (see figure 

1.4a). This structure results in the smectic A phase being uniaxial with symmetry. The 

smectic C phase is the tilted version of the smectic A phase, (see figure 1.4b), in which the 

director within each layer is now tilted with respect to the layer normal. Though possessing 

very little positional order, the tilt of the director means that the smectic C phase is 

optically biaxial with symmetry. For strongly polar molecules exhibiting these "one 

dimensional" smectic phases, there are a variety of modifications of the smectic A and 

smectic C phases possible. These phases show additional ordering created by 

antiferroelectric effects'®' but they are not really relevant here and so shall not be discussed 

further. 

The next class of smectic comprises the "two dimensional" phases, Sg, Sp and S,. These 

phases have a layered structure, but also possess positional order within each layer and 

though correlation between layers is absent, there is long range bond orientational order, 

that is, there is a correlation between "bonds", vectors describing the axes joining adjacent 

molecules. This implies that there can be long range bond orientational order without long 

range positional order. The smectic B phase, (see figure 1.4c), has hexagonal packing 

within each layer, this resulting in the phase having local symmetry and being uniaxial. 

The smectic F and smectic I are tilted analogues of the smectic B thus are biaxial with 

point group symmetry. 

The third class into which the smectic phases can be conveniently classified are the "three 

dimensional" orientationally disordered crystals. These include crystal B, E, G, H, J and K. 

Both the layered structure and positional order within each layer exist but now there is 

correlation between the positions of the molecules within different layers. Though these 

phases are crystal phases, the constituent molecules rotate about their long axes rather like 

a one dimensional plastic crystal, differentiating these phases from true crystals. The 

crystal B exhibits hexagonal packing within each layer and is uniaxial, (see figure 1.4d). 
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Figure 1.4: A schematic of the molecular organisation in various smectic phases, both parallel and 

perpendicular to the director, a) smectic A, b) smectic C, c) smectic B and d) crystal B mesophases. The 

small circles in the latter two diagrams represent the sites of an imaginary lattice, used to illustrate the 

increased positional order within the crystal B mesophase. 

Crystal G and J are tilted versions of the crystal B thus have quasi-hexagonal packing with 

biaxial symmetry. The crystal E phase has a herringbone packing pattern within the layers 

while crystal H and K are the tilted analogues. There are also chiral analogues of various 

smectic phases namely, S^*, Sp*, S,*, Sj* and S^* where the twist axis is normal to the 

layers'®^ All tilted smectic phases possess symmetry but when they become chiral the 



symmetry drops to Q , with the symmetry axis being perpendicular to the tilt direction and 

to the layer normal. For the S^* phase, the structure of the mesophase differs in that the 

helical axis is now parallel to the layers and consists of smectic A blocks separated by twist 

dislocations, giving rise to an alternative name, the "twist grain boundary" (TGA) phase. 

1.3 Mesophases formed by disc-shaped molecules 

In 1923, Vorlander^^' recognised that disc-shaped molecules should form mesophases but 

until twenty years ago, the vast majority of thermotropic mesogens were still composed of 

elongated, rod-shaped molecules. Then in 1977 the first discotic liquid crystals were 

synthesised by Chandrasekhar et the general shape of the molecules having a flat 

aromatic core with four, six or eight lateral alkyl chain substituents. Figure 1.5 shows the 

basic molecular structure of a variety of disc-shaped compounds which form discotic 

liquid-crystalline mesophases. Unlike rod-shaped molecules where they can play a small 

part, and sometimes are not needed at all, in mesophase formation, these lateral alkyl 

chains seem to be crucial for the formation of the discotic liquid-crystalline phase. 
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Figure 1.5: Some examples of disc-shaped mesogenic cores: a) benzene, b) truxene and c) pyrene. 
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The molecules align with their symmetry axes parallel, as in mesophases formed from 

rod-shaped molecules, and this leads to three main phase types, discotic nematic, columnar 

and discotic smectic. To avoid any confusion, for discotic mesogens, the symmetry axis is 

normal to the plane of the disc, so in contrast to the nematic phase in §1.2.1, these phases 

are generally optically negative, although this also depends on the molecular structure as 

well as the molecular organisation within the phase. 

1.3.1 The discotic nematic phase 

As with the nematic phase composed of rod-shaped molecules, the molecular arrangement 

within the discotic nematic phase is the simplest of the mesophase types, (see figure 1.6), 

and the first examples of this mesophase were discovered by Tinh et a/.'®', in the 

hexa-substituted ethers of triphenylene. The molecules are translationally disordered apart 

from the usual short range correlation but do possess long range orientational order. In a 

sense the term discotic is not needed because the phase is just like any other nematic phase, 

it is just the constituent molecules which are different, though we shall persist with the 

terminology in order to differentiate between mesophases formed by rod-shaped molecules. 

n 

Figure 1.6: A schematic of the molecular organisation in the discotic nematic phase. 

The discotic columnar nematic phase is a recently discovered phase''" '" which was found 

to be exhibited by a binary mixture of compounds that formed a charge-transfer complex. 

On their own both components are not liquid-crystalline but on mixing, a complex is 

formed composed of the two compounds stacking in short columns in such a way as to 

maximise the number of unlike contacts. These columns then behave as rod-shaped 

mesogens, forming a nematic phase with long range orientational order but only short 



range translational order, (see figure 1.7). However there is considerable doubt as to 

whether this is a new phase when the difference between it and the discotic nematic phase 

seems to be one of local packing. 

Figure 1.7: A schematic of the molecular organisation in the discotic columnar nematic phase. 

Figure 1.8: A schematic of the molecular organisation in the chiral discotic nematic phase. 
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1.3.2 The chiral discotic nematic phase 

Analogous to the chiral nematic phase formed by chiral rod-shaped mesogens, there also 

exists a chiral discotic nematic phase, (see figure 1.8), and as expected for a chiral phase, 

these mesophases are highly coloured. The first compounds to exhibit the twisted discotic 

nematic phase were the enantiomeric esters of hexa-substituted benzene, triphenylene and 

truxene"^^, where the chiral centre is located in the substituted chain. 

1.3.3 The columnar phase 

These were the first discotic phases to be discovered'^' and are characterised by columns of 

stacked molecules that have two dimensional long range translational order and three 

dimensional long range bond orientational order. The molecules within each column can be 

ordered, D ,̂ with respect to neighbouring molecules in the column, or disordered, D ,̂ 

producing liquid-like columns, and can be orthogonal or tilted with respect to the column 

axis. The columns themselves can either be parallel or tilted relative to the director, while 

the packing varies from a hexagonal net to a variety of rectangular lattices, (see figure 1.9). 

It is interesting to note that X-ray diffraction studies have shown that in most columnar 

phases, it is the molecular cores that are highly ordered with the terminal, flexible chains 

being conformational^ disordered"^'. 

1.3.4 The discotic smectic phase 

The class of molecules known as the metallomesogens"'" have been shown to form a wide 

range of mesophases, from the nematic, smectic and chiral nematic phases exhibited by 

rod-shaped mesogens to the discotic nematic and columnar phases previously discussed. 

But one of the most intriguing discoveries came in the form of a new class of mesophase 

formed by disc-shaped metallomesogens, (see figure 1.10), the discotic smectic phases. 

These phases are characterised by sheets of molecules in which there is no translational 

ordering and that the symmetry axis of each molecules can be perpendicular"'', (see figure 

1.11a) or possess a tilt, similar to the smectic C, with respect to the layer normal''®'. A 

discotic columnar smectic phase has also discovered"^' in which the molecules within each 

layer form columns, similar to the smectic B phase, (see figure 1.11b). Another possibility 

exists in which the discs in the layers have their symmetry axis perpendicular to the 

layers"^' and it is this mesophase we shall explore in Chapter 5. 
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a) 

Figure 1.9: A schematic of the packing within the various columnar phases. Structures of the orthogonal 

columnar phases, a) hexagonal (P6 2/m 2/m), b) rectangular (P2/a), c) oblique (Pi), d) rectangular (P/a) 

and tilted columnar phase e) rectangular face-centred {C2/m). 
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Figure 1.10: An example of the disc-shaped metallomesogens, a) the bis-(4-n-decylbenzoyl)methanato 

copper (II) series of compounds, and b) the acta- substituted metallo-phthalocyanine series of compounds. 

C 

Figure 1.11: A schematic of the molecular organisation within a) the discotic smectic phase and b) the 

discotic columnar smectic phase. 
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1.4 Phase transitions between liquid-crystalline mesophases 

1.4.1 Polymorphism 

An important point to note is that each liquid-crystaUine compound is not constrained to 

exhibit just one type of mesophase. In fact, many compounds exhibit a wide range of 

mesophases. But far from occurring in a haphazard order, we can usually predict the 

sequence in which the phases will appear, from the fact that raising the temperature results 

in progressive destruction of the long range molecular order. Thus generally, the sequence 

proceeds from the smectic phases at lower temperatures with a high degree of molecular 

ordering due to their layered structure, through the nematic or chiral nematic phases, to the 

isotropic fluid. There is also a predetermined order"®' within the smectic phase with 

increasing temperature. Starting from the disordered crystals, crystal B, E, G, H, J, K and 

D, which have three dimensional orientational and translational order to the two 

dimensionally ordered mesophases, smectic B, smectic F and smectic I. The smectic 

phases appearing at the highest temperatures are the one dimensional phases, smectic A 

and smectic C. As usual there are exceptions to these rules, and it concerns the 

phenomenon known as re-entrance. Usually occurring in strongly polar compounds, it 

involves the formation of a nematic or smectic phase in between a smectic and another 

smectic/crystal phase on cooling from the isotropic phase, e.g. Sg - - N -1. 

Discotic liquid crystals also exhibit a rich polymorphism. On heating from the crystal the 

columnar phases appear first with their highly ordered columns, then the discotic nematic 

phases onto the isotropic liquid. As with the smectic phases, there are a variety of phase 

transitions between the columnar polymorphs. Examples include ordered hexagonal 

columnar to disordered hexagonal columnar where the order refers to the stacking of the 

molecules within a column, and hexagonal columnar to rectangular columnar. This latter 

phase transition consists of a small distortion in the lattice combined with an orientational 

order-disorder transition of the molecular cores, in that the tilts in neighbouring columns 

are no longer rotationally correlated'^"'. As with rod-shaped mesogens, there also exists the 

possibility of re-entrant columnar and discotic nematic phases. The first example of 

re-entrant phases in discotic mesophases was found in a truxene derivative'^", (see figure 

1.12). 
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Figure 1.12: A typical disc-shaped mesogen exhibiting a variety of mesophases that include a columnar and 

a re-entrant discotic nematic phase. 

1.4.2 Phase transitions 

Most of these phase transitions are enantiotropic in that they take place reversibly on 

heating and cooling, though conversion to the solid phases is usually accompanied by some 

supercooling. There are also monotropic phase transitions, that is they are only observed on 

cooling a system from the isotropic liquid, as they occur below the melting point. We have 

discussed the types of mesophase that can be formed by liquid-crystalline compounds and 

the order in which the phases appear, but what happens at a phase transition and are there 

differences between the transitions? 

At the microscopic level, the positional and orientational ordering changes as the 

molecules respond to change in external stimuli such as temperature or pressure, while 

changes also occur in the macroscopic properties of the system, such as the density, 

refractive index and long range orientational order. But these changes are not the same at 

each transition, and so the phase transitions are classified into various types characterised 

by the thermodynamic properties of the system. We shall now discuss the Ehrenfest 

classification using the thermodynamic free energy and its derivatives. 
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The quantities'^^' used to classify a phase transition for a liquid-crystalline system of N 

particles at constant volume are the Helmholtz free energy A, and its first and second 

derivatives, that is, the entropy S and heat capacity Cy, defined respectively by 

,5== -(cW/a31r, (1.2) 

In the original classification by Ehrenfest, a phase transition is classified as being order 

if the first (n-l) derivatives of the free energy functions are continuous across the phase 

transition, while the derivative shows a discontinuity. Thus for a first order transition 

there is a finite discontinuous change in S but an infinite discontinuous change in Cy. 

Following this, for a second order transition, the entropy is continuous and the second 

derivative of the free energy, the heat capacity is discontinuous. The phase transitions of 

liquids crystals and other compounds can thus be classified as first order if there is a 

change in entropy, and second order or higher if no change in the entropy occurs. We 

should note that at constant pressure which applies for most experimental studies, we 

should use the Gibbs free energy G, instead of the Helmholtz free energy. 

For rod-shaped mesogens'^^', the nematic - isotropic and chiral nematic - isotropic 

transitions are weakly first order reflecting the low difference in molecular order between 

the various phases, with AS generally being in the range 1 - 5 J K ' mof', this value being 

smaller for disc-shaped mesogens. This is compared with a value of 5 - 15 J K"' mol"' or 

higher for strong first order transitions such as the smectic C - isotropic and smectic B -

smectic A transitions. An example of a second order transition is the smectic C - smectic A 

phase transition in which only the tilt of the director changes, with AS in the range of 1 - 2 

J K"' mol"'. Similar trends can be observed in systems of discotic liquid crystals'̂ "*', with the 

columnar - isotropic being an example of a strong first order transition. The columnar -

discotic nematic transition is weakly first order, while a second order transition can occur 

between different columnar mesophases. 

1.5 Summary of the remaining chapters 

In this Chapter we have given a basic text book introduction to the area of liquid crystals, 

laying out the various mesophases that can be formed and describing the properties of these 
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phases that are of interest to us in this Thesis. The next chapter, Chapter 2, is similar in that 

there we describe the techniques of computer simulation and how they can be applied to 

the area of liquid crystals, while also reviewing previous simulations of the 

liquid-crystalline mesophase. We also give definitions of the various order parameters and 

distribution functions that we use to investigate the phases. The remaining chapters will 

seek to show how we can use these computer simulations of model liquid crystals, to gain a 

better understanding of the physics of real liquid crystals. Specifically, we shall concentrate 

on the model used for the molecular interactions, the Gay-Berne potential. 

Chapter 3 describes our simulations of discotic liquid crystals based on the Gay-Berne 

potential model and illustrates some interesting aspects of phase behaviour. Chapter 4 

shows how we can use the various results from the preceding chapter to calculate X-ray 

diffraction patterns, allowing us to gain a better understanding of the structure of the 

mesophases and to make contact with experiment. Chapter 5 describes some additional 

simulations of discotic liquid crystals using the Gay-Berne potential, while also discussing 

some deficiencies that have arisen in the potential model used and Chapter 6 explores a 

system of Gay-Berne rods of varying length-to-breadth ratios and the effect of this on their 

phase behaviour. 
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2. Techniques in computer simulation 

2.1 Introduction 

2.1.1 Why use computer simulation? 

Before we discuss in detail the techniques of computer simulation, we should mention 

what we mean by computer simulation and our motivation in using it to study liquid 

crystals. The liquid-crystalline state, having characteristics of both the solid and liquid 

phases i.e. a combination of long range and short range order, is fairly complicated. 

Despite this, a great deal is known about the macroscopic properties of liquid crystals such 

as the structure of their mesophases and the transitions between them. Indeed, quite a lot is 

also known about the microscopic properties of liquid crystals and how subtle changes in 

molecular detail can have a profound effect on the macroscopic behaviour. There are also 

many theories, such as the molecular field and continuum theories^'\ describing the liquid 

crystal mesophases, yet many features still remain to be discovered and understood. This is 

where computer simulations can help us. 

By using the techniques of Monte Carlo^^^ simulation in which we use random numbers to 

generate a sequence of molecular configurations in phase space, and molecular dynamics^^\ 

where the newtonian equations of motion are solved for a limited number of particles, we 

can introduce our model of a liquid crystal. If we then run the simulation and observe the 

behaviour of the system, we can test the validity or otherwise of the initial model by 

comparing the results of the simulation with those obtained from real experiments. We can 

then refine and improve our models of how liquid crystals behave, in addition we can test 

various analytical theories and see how they might be improved. 

Computer simulation also has several other advantages that make it attractive to use in 

studying liquid crystals. We can control the majority of conditions with great accuracy and 

observe behaviour under various extremes of temperature, pressure and external fields, that 

could not be readily achieved by the usual experimental methods. It also allows us to 

calculate structural and dynamic properties, such as the distribution and correlation 

functions, not easily obtainable in the laboratory, giving us additional information on the 

behaviour and structure of liquid crystals. 
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2.1.2 Intermolecular forces 

We have previously indicated how we can use computer simulations by introducing our 

model of the intermolecular interactions. Well for liquid crystals, in fact for all systems, 

this is achieved by defining an intermolecular potential, an equation that describes the 

interaction between constituent molecules of the system as a function of the coordinates 

describing their positions. These interactions or forces between molecules can be 

conveniently divided into the attractive and repulsive components''^', and occur in all 

molecules, not just those which form liquid crystals. 

The attractive forces between molecules are generally represented by the van der Waals or 

dispersion interactions between molecules and they usually vary as a function of distance 

as 1// . These forces act over several molecular lengths and hence are known as long range 

attractive forces. We can also build into our intermolecular potential more explicit 

attractive forces such as dipole-dipole, quadrupole and charge-charge interactions which 

are longer ranged. 

The repulsive interactions between molecules occur when the molecules are squeezed close 

together causing electronic repulsions, these repulsions increase sharply, the closer the 

molecules approach each other. Producing a functional form for these repulsive 

interactions from first principles is extremely complicated, but again we can define the 

repulsive forces between molecules as a function of distance and this usually takes the 

form of l/r'2. These forces act as the molecules approach close together and hence are 

known as short range repulsive forces. We have just given an overview of the forces acting 

between molecules but we need a way of incorporating them into the simulation. This is 

achieved by the use of the pair potential. 

2.1.3 Pair potentials 

For a system of N molecules, the potential energy may be divided into terms depending on 

the coordinates of individual molecules, pairs of molecules, triplets etc. and as such can be 

written as 

[/ = E ^(r,) + Z Z [/2(r„r,) + Z Z E t/3(r,-,r,,r,) + ... (2.1) 
i i i>i i i>i k>l>i 
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though in the case of Hquid crystals we must build in anisotropic forces as well. Care must 

also be taken to sum over all distinct pairs i and j without counting any pair twice. The first 

term represents the effect of an external field, while the remainder define the 

intermolecular interactions. The second term U^ir., rp, the pair potential, is the most 

important; it represents the interaction between two molecules and contributes the most to 

the total energy. Higher terms also contribute but as they are very computationally 

expensive to calculate, they are often neglected. As we normally use only the pair term in a 

simulation this might not seem to be an accurate reflection of the various interactions, so 

we overcome this in part by defining the pair term as an effective pair potential in that it 

represents all the many body interactions, albeit in an approximate manner. This does mean 

that the effective pair potential will depend on the temperature and density of the system, 

where as the real pair potential does not. We have previously discussed representing 

repulsive and attractive forces in various functional forms, and as such, can be used on 

their own as pair potentials. One such potential is the hard sphere potential, where 

[/HS = 0 (r:> c), (2.2a) 

UHS=°° (r < G). (2.2b) 

Here, r is the separation between the interacting molecules and o is a range parameter 

known as the contact diameter, the distance at which two particles touch. Another 

approximation used is the soft sphere potential defined as: 

f/ss ==E:(o/r)", (2.3) 

where v is a parameter, often chosen to be an integer and as v is increased, the potential 

becomes "harder", tending to the shape of the hard sphere potential. An extension of the 

hard sphere potential that contains attractive forces is the square well potential defined as 

oo ( r < O i ) , (2.4a) 

f^sw=~£ (O) < r < (Jg), (2.4b) 

() ((32 < r), (2.4c) 

while one of the most commonly used pair potentials that incorporates attractive forces is 

the Lennard-Jones 12-6 potential and takes the form: 

[ / (r) = 4e[(G/r) - (c /r)^] , (2 .5) 
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with the repulsive part represented by the (a/r)'^ term and the attractive part by the (a/r)® 

term. At separations less than the molecular diameter a, the potential is repulsive with a 

steep wall, becoming increasingly steeper the closer the molecules approach. As the 

molecules move further away from each other, the attractive forces dominate. At very large 

separations though, the molecules do not interact between each other thus the energy and 

hence the potential tends to zero. To make these potentials model the behaviour of liquid 

crystals, an orientational dependence needs to be built in and we shall describe how this is 

achieved and the variety of potentials that are actually used to simulate liquid crystals in 

§2.5. 

2.1.4 Ensembles 

The aim of a computer simulation is to calculate the thermodynamic, structural and 

dynamic properties of a system, the macroscopic behaviour, from the microscopic 

behaviour via the pair potential. This conversion is achieved by statistical mechanics'^' and 

the use of ensembles. A basic postulate of statistical mechanics is that the time average of a 

mechanical property in a system is equal to an average over an imaginary array of replicas 

of the system so instead of following one system over time, we can take an average picture 

of a collection of systems, the so-called ensemble. As the original system is defined by 

fixed thermodynamic parameters, we can fix certain properties of the ensemble, allowing 

us to perform computer simulations under varying conditions. There are a variety of 

ensembles'®' that are currently used. 

The microcanonical or constant NVE ensemble, is most commonly used in molecular 

dynamics simulations (see §2.3). The total energy E, and volume V, of the system are fixed 

but the temperature and pressure vary. This means, especially in our system of Gay-Berne 

particles, a step is needed in which we scale the velocity of each particle so as to keep the 

temperature at the desired value. The canonical or constant NVT ensemble is mainly used 

in Monte Carlo simulation, where the temperature of the system is fixed. As with the 

microcanonical system, the pressure is free to fluctuate but as most experimental data is 

obtained at constant pressure, these two ensembles are generally considered unsuitable for 

some simulations. 
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Thus the isothermal-isobaric or constant NPT ensemble becomes particularly useful as we 

can now vary both the size and shape of the simulation box. This has the advantage in that 

you should not be able to observe two phases coexisting, an important feature when 

studying a series of phase transitions. In the grand canonical or constant V\xT ensemble, 

the chemical potential |X, is fixed, while the number of particles can fluctuate. Its great 

advantage is that the free energy of the system can be easily calculated, with its main use 

being the study of monolayer adsorption near a surface. In our discussion of ensembles, we 

should perhaps mention the Gibbs Monte Carlo technique'^' which is used to simulate fluid 

phase equilibria. It has two simulation boxes which consist of two coexisting phases in 

which the chemical potential is equal but the volume and number of particles can change. 

2.1.5 Small systems 

There is one major obstacle to be overcome with computer simulation and that is the 

problem of the system size. The number of molecules with which simulations are carried 

out, typically ranging from a hundred to several thousand, are well short of the numbers 

present in real systems. This limitation is due to the finite speed and limited storage and 

memory capacity of even today's computers. As we are interested in the bulk properties of 

liquid crystals, a legitimate question'^' is, can we compare the properties of the few hundred 

particles in a computer simulation with real systems composed of particles? Well, 

fortunately, the bulk properties of a system can be obtained from relatively few molecules 

provided the range of the intermolecular potential is relatively short and periodic boundary 

conditions are used to eliminate the effects of any free surfaces. 

As an example of periodic boundary conditions, let us take a square simulation box in two 

dimensions which is surrounded by exact replicas of itself, (see figure 2.1). Each rephca 

box is in turn surrounded by similar images to form an infinite lattice containing no 

surfaces. During the simulation, when a particle moves in the original box, all the images 

of the particle necessarily move in their corresponding boxes. If a particle leaves the 

original box, an image of it appears on the opposite side of the box, from a neighbouring 

box and this is illustrated by the particle D, thus a constant density is maintained in the 

simulation box. 
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Figure 2.1: A two dimensional periodic system with minimum image convention (square) and potential 

cut-off (circle). 

This method of periodic boundary conditions is not perfect for it inherently imposes a 

periodicity of half the box size, L, on the system but it is successful in allowing us to 

simulate systems using a small number of particles by removing the free surface. The 

minimum image convention needs to be used when employing periodic boundary 

conditions. This constrains each particle in the original box, to interact with every other 

particle or its periodic image only once, that is, a single particle interacts with the closest 

image of the other N-1 particles. This is equivalent to constructing a box of the same 

dimensions around one particle, and allowing it to interact only with the particles in the 

new box. Thus for particle B, instead of interacting with particle A in its own box, it will 

interact with the closest periodic image of A, that is particle C. 

Also, as the largest contribution to the potential energy comes from neighbours close to the 

particle of interest, we apply a spherical cut-off, r̂ . This means that if a particle is more 

than a pre-set distance away from the particle of interest, such as particle A, the pair 

potential for the two particles is set equal to zero. Though the number of such contributions 

increases with the separation, it is pointless to calculate essentially zero contributions to 
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U{r) and so the cut-off is applied in order to minimise the time a simulation takes. This will 

mean that the calculated potential energy will be incorrect, thus should be large enough 

to minimise any errors, though by applying long range corrections'®' we can estimate this 

lost energy of interaction. A particular problem encountered in molecular dynamics is that 

we need to stop the potential from being discontinuous at the cut-off point as this avoids 

problems in calculating the derivatives of the force. What we do is to "ramp" the potential 

from 0.95r^ to l.Or^, so that the potential is truncated at a U{r) of 0^", (see figure 2.2). 

0.95rj. l.Oij. 

a) b) 

Figure 2.2: a) A straight potential cut-ojf applied to an intermolecular potential, b) By "ramping" the 

potential from 0.95 r^ to 1.0 r^, we can avoid any discontinuity in the potential. 

But this still leaves us with the question, can we compare a small, infinitely, periodic 

system with a macroscopic one? This depends of the range of the intermolecular potential 

used and the type of phenomenon under investigation. If the potential is short ranged then a 

box of several molecular lengths should be long enough so that the system does not "sense" 

the symmetry imposed by periodic boundary conditions. If the potential is long ranged 

such as a charge-charge interaction, then there will be a substantial interaction between a 

particle and its own periodic images, thus in this case other techniques for handling long 

ranged forces are implemented'®'. 

2.2 Monte Carlo simulations 

The Monte Carlo technique gained its name from the use of random numbers, and was 

devised in 1953 by Metropolis et to evaluate statistical averages. If we have a system 

of known potential energy 

UN = ̂ 'LU(ri,Q.i,rj,^j), (2.6) 
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where r represents the position and Q, the orientation of a molecule i, then we can 

calculate any time independent property A for a certain configuration j, as an average (A). 

This can be written for the NVT ensemble as 

which is approximated by 

"'•tSS-
with the value of A for this configuration being A'^\ If we repeat this process M times, then 

the average (A) in equation (2.7b) would now be 

1 M 
</*> = (2.8) 

M 

with M being large enough to reduce any significant statistical errors in {A). Providing the 

system is ergodic, we can replace the average in equation (2.8) with an ensemble average, 

1 M 
(^)ens — 2j^(ry)Pens(r/), (2.9) 

where our collection of systems of points in phase space are distributed with a probability 

PensCn? with the property A of the system having a value F at that instance. Thus the aim of 

a Monte Carlo simulation is to generate a trajectory in phase space which samples from a 

chosen statistical ensemble defined by a set of fixed parameters. One vital part of the 

Monte Carlo technique that we should briefly mention is importance sampling'''' in which 

we concentrate on performing the simulation in regions of phase space that make important 

contributions to the integral in equation (2.7a). Sampling from this non-uniform 

distribution, allows us to simulate more quickly and efficiently. The main steps in a Monte 

Carlo simulation include: 

i) The initial configuration: The first step is to set up a starting configuration with N 

particles contained in a cubic box or similar boundary conditions. In theory we could start 

from any state as the ergodic hypothesis means that any state can be reached from any 

other, given infinite time. But as we need to reach an equilibrium state within a finite time. 
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we need choose a reasonable starting configuration. For example, it is generally considered 

difficult to generate a crystal from an isotropic fluid via one state point, so in practice a 

number of intermediate state points are simulated, each run using the final configuration of 

the previous run as its starting point. Usually in the initial run of a simulation, especially if 

a new system is being studied, the position of each particle is associated with a lattice. 

Historically an a-f.c.c. lattice has been used for liquid crystal simulations, the initial 

orientations, being chosen either at random, or selected from a gaussian distribution. 

Especially with simulations of liquid crystals, there is the problem of hysteresis, that is, the 

system remembers the order from a previous simulation i.e. the starting configuration. This 

will impose various degrees of order that would otherwise not be present in the system, this 

being particularly true when starting from a lattice configuration. This would be a big 

problem in liquid crystal simulations where we are trying to form liquid-crystalline phases 

spontaneously. So we try to minimise this effect by heating the starting crystal structure 

into the isotropic fluid, so hopefully destroying all residual order within the system. This 

process can be monitored to see if it is successful by calculating properties of the system 

such as the translational order parameter'®'. Once we are confident that all order has been 

removed, we would be ready to proceed with the simulation by cooling the system. Once 

an initial configuration has been generated, be it either a lattice or from a previous 

simulation, the energy of the configuration is calculated: 

= C2 10) 

ii) Moving the molecules: Once the initial configuration has been set up and the energy 

calculated, the particles are then ready to be moved one at a time. The first particle, either 

picked at random or sequentially, is given a uniform, random, translational displacement 

according to the equation 

i.new _ „oW 4-(:2S - l)f)rmax. (2.11) 

This is repeated along each of its coordinate axes with being the maximum 

displacement that a particle is allowed and ^ a random number. If is too large then 

most of the attempted moves are rejected and the phase space is explored very slowly. If 

is too small then most moves are accepted but the particles never move any 
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significant distance. The maximum displacement is usually adjusted during the simulation 

so that half the moves are accepted and half the moves are rejected. The rotational motion 

of the particles is handled in a similar fashion to the translational motion. The orientation 

of the particles u, can be described in terms of the Euler angles, and the new component is 

calculated by selecting a laboratory axis at random, in this case the % axis, and rotating the 

particle about an angle (j) so that: 

==,*:% 4-(2!;-- l)64,nmx, (2.i:z) 

where 6(|)^ is the maximum displacement of the Euler angle and ^ is a random number. 

Hi) Calculating the change in energy: Once the first particle has been moved, the change in 

energy hU between the old and new configurations is calculated by comparing the energy 

of the first particle, i, with all other particles before and after the move, so that 

5t/ — U new U old 

.;=i 7=1 
(213) 

iv) Accepting or rejecting the move: Once the particle move has been attempted and the 

change in energy 6t/ calculated, it must be decided whether to accept or reject the move as 

being significant to the system. If the move is downhill in energy, dU < 0, then the move 

and the new configuration are accepted and the new energy of the configuration becomes 

+ 6(7. If the move is uphill in energy, dU > 0, then the value exp(-p5L0 is compared 

with a random number uniformly distributed between 0 and 1. If the random number is 

less than exp(—(35f/) then the move is accepted. If a move is rejected the particle is returned 

to its original position and the old configuration retained and counted again in the 

averaging. This strategy is performed to allow the simulation to explore other regions of 

phase space with possible potential minima, instead of locating and residing within the first 

potential well found. 

v) Equilibration: Once the process of selecting and moving a particle, calculating the 

change in energy hU and accepting or rejecting the move, has been performed N times, one 

Monte Carlo cycle has been completed. The simulation is then run for many thousands of 

cycles until properties such as the order parameter and energy are constant within the 
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desired limits. Once the system is regarded as being in equilibrium, the various properties 

of interest can then be calculated. As we have performed only molecular dynamics 

simulations in this thesis, we shall not go into any further detail about Monte Carlo 

t echn iques 'bu t instead concentrate on molecular dynamics. 

2.3 Molecular dynamics simulations 

It was first recognised that Newton's equations of motion could be solved numerically for 

many interacting particles by Alder and Wainwright in 1957'"'. The system is treated by 

setting up the newtonian equations of motion, which are coupled with the interaction 

potential between the particles via the forces and torques. This set of equations is then 

solved numerically to give the positions, orientations and velocities of all particles as a 

function of time. We have shown that in Monte Carlo simulations we calculate 

thermodynamic observables by taking an ensemble average, but in a molecular dynamics 

simulation, the system evolves in a real time sense and so we obtain physical properties by 

taking a time average. Even so, we do employ the use of ensembles as a means of defining 

the thermodynamic state of the system we are to study. If a property A at a particular point 

r , in phase space has a value A(r) and the system evolves in time t, the macroscopic 

property (A) can be thought of as a time average given by 

t 

(/l> ==(/l(rXf))>dn* =li:n df. (2.14) 
°° 0 

This equation can be rewritten to average over a long finite time t consisting of a number n 

of time steps of length ht = tin so that 

<A> = <A>,ime = i Z A ( r W ) . (2.15) 
n=\ 

i) The initial configuration: The same criteria used to generate an initial configuration for a 

Monte Carlo simulation are used in a molecular dynamics simulation but an extra process 

is needed to define the initial translational and rotational velocities of the particles. They 

may all be assigned a value of zero or selected from a Maxwell-Boltzmann distribution 

which matches the initial starting temperature. Additionally, the total translational 

momentum, which is conserved throughout the simulation, and the angular momentum are 

set to zero to stop the box from moving in space. 
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ii) Calculating the force: Once the starting configuration has been set up, the forces and 

torques are calculated, using a double loop over all distinct pairs of molecules with the 

minimum image convention and a spherical cut-off being employed. To do this we need a 

potential function with which to define the interaction between the constituent particles. 

The intermolecular potential can have a multitude of forms, common ones being the hard 

sphere potential and the Lennard-Jones 12-6 potential, (see §2.1.3). For liquid crystal 

simulations, an orientational dependence is built into the potential, the forms of which are 

discussed in section §2.5. In this Thesis, we will use continuous potentials, so we shall 

discuss how the system is treated with this type of interaction in mind, as different methods 

are used when handling discontinuous potentials as for example with hard particles''^'. 

Hi) Moving the molecules: Once the forces and torques have been calculated using the 

appropriate potential, the molecules can be advanced forward one time step by integrating 

the newtonian equations of motion. The most fundamental form of these is the lagrangian 

equation of motion, 

^(3L/3q^) - (3L/3q^) = 0, (2.16) 

where q̂  represents the coordinates of the particles and L the difference between the kinetic 

and potential energies. If we express q̂  in terms of cartesian coordinates, U the potential 

energy, in terms of the sum of the pair interaction energies and K the kinetic energy, as the 

sum of the momenta, then we obtain from equation (2.16), 

ma, = F, (2.17) 

where F = -dU/dr. is the total force acting on the particle of mass m, with centre of mass r. 

and acceleration a.. An equivalent set of equations can also be constructed for the rotational 

motion and assuming axial symmetry, can be written as 

/q ) ,= t , (2.18) 

where T is the torque, I is the moment of inertia and d) the angular acceleration of each 

particle. For a rigid body, the torque is the sum of the forces acting on each site in the 

particle, but we use the Gay-Berne potential, a single site potential, in this Thesis. Thus we 

can define the torque as equivalent to a force acting on a point at unit distance from the 

centre of mass, in a direction perpendicular to the symmetry axis"^'. This force is the 
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derivative of the potential at these coordinates, where the centre of mass is taken as the 

origin, and is given by. 

E: 

^ (9[//9ux) ^ 

(dU/dUy) 

(ac/zauz) 

(2.19) 

where u, represents the orientation of the particle. The torque is now defined as 

T = u X E. (2.20) 

Once these equations of motion have been set up, the integration method used to solve 

them must be chosen. The object of any integration procedure is to determine the phase 

point representing the state of the system at time = t^ + At. The state point is 

calculated by means of a power series in At and for continuous potentials, we can use a 

variety of finite difference methods. The procedure for choosing the integration algorithm 

can be found in any general reference'® ' ''*' and, amongst other factors, will depend on the 

type of system being simulated and the computer resources available. The algorithm used 

in our simulations, being present in the original program, is that developed by Verlet''^'. 

The Verlet method is computationally cheap in that only one evaluation of the forces is 

performed, but it does have some disadvantages in that the calculation of the velocities is 

prone to errors and it is not self-starting in that we need to generate the first few points in 

phase space before the main routine takes over. The Verlet algorithm is based on a Taylor 

series expansion of the positions at time t + dt and t - dt, where bt is the time step, such 

that for an atomic system: 

r(t + 6t)= r{t) + \(t)dt + j8t^a(t) , (2.21) 

r{t-bt)= r(t)-\{t)6t+^bt^a{t) , (2.22) 

where r are the coordinates, v is the velocity and a the acceleration. Addition of these two 

equations produces the algorithm for the translational coordinates, 

r(? + 50 = 2r(0 - r(t-dt) + dt^a(t). (2.23) 

The algorithm for the rotational coordinates is slightly non-standard but is a Verlet-type 

algorithm as used by Luckhurst et in their molecular dynamics simulations of 

Gay-Berne mesogens. 
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Equation (2.23) can be written for the angular coordinates so that, 

u(t+dt)= 2u(f) - u ( f + 50+ (2.24) 

where u is the vector defining the orientation of a particle and d) is the angular acceleration. 

But to constrain the vector u(f + 6f) to have unit length, a corrective force f(r) is applied, 

parallel to the symmetry axis of the particle, so at time t 

f(0 = Xu(f), (2.25) 

where A, is a scalar quantity. So the corrected orientation at time t + dtis 

u(t+?)t) = u(t+dt) + ka(t), (2.26) 

where 

X - -u{t+dt).u(t) ± {[u(?+ 60.u(0]^ - [u(t+6t).u{t+8t)] + 1} (2.27) 

The positive root is taken to minimise the corrective force. Similar to the maximum 

displacement in the Monte Carlo method, the time step dt, controls how well the 

phase space of the system is explored. Too small a time step and the particles never move 

any significant distance. Too large a time step and the solutions to the equations of motion 

become unstable i.e. the energy is not conserved. The procedure to obtain the optimum bt 

is discussed in reference'®'. The velocities do not appear directly in the equations but can be 

calculated from 

v(? + 5f) = •;r^[r(f+5?) — r(r — 5?)], ( 2.28) 
lot 

with a similar analogue for the rotational velocities: 

u(? + 5?) = + 6?) — u(? — 5?)]. (2.29) 

iv) Equilibration: The main problem, especially with liquid-crystalline systems, is that near 

a phase transition, large fluctuations in the thermodynamic and structural properties can 

occur, so considerable periods of time are needed for the system to reach an equilibration 

state. Before a new state point is reached in the simulation, the system is run at a certain 

temperature until it has lost all memory of its starting configuration. This is called the 

equilibration period. This part of the simulation is especially important in a molecular 

dynamics simulation as the temperature is not a constant of motion and so will drift from 

its initial value. When this happens the integration must be periodically halted, usually 



32 

every time step, though in our simulations we wait until the temperature has reached a 

certain tolerance level. Then the translational and rotational velocities can be multiplied by 

a scaling factor {T/TY' to restore the temperature to its desired value. The components of 

this scaling factor are T, the desired temperature and T, the actual value as calculated from 

the sum of the translational and orientational kinetic energies of the particles. Once the 

system has reached equilibrium at a certain configuration, that is the temperature drift is 

replaced by a fluctuation about a desired value T, temperature scaling of the velocities is 

ceased and the production period begins in which the various properties of interest are 

calculated. 

2.4 Calculation of thermodynamic, structural and dynamic properties 

Once a system has been equilibrated at a certain state point, the production period begins, 

where in a molecular dynamics simulation, the temperature scaling has been turned off, and 

the thermodynamic, structural and dynamic properties of interest are calculated. For the 

essential properties, such as the temperature, internal energy and orientational order 

parameters, it is usual to calculate them during the course of the simulation, at each time 

step and then average them according to the procedure described in equation (2.15). Other 

properties such as time correlation functions are more usually calculated after the 

simulation has finished, from a tape file that contains the positions, orientations and 

velocities, both translational and orientational, of the particles stored at, say, every 5 or 10 

time steps. 

2.4.1 Thermodynamic properties 

Temperature: In a molecular dynamics simulation, temperature is not a constant of the 

motion, and so it has to be calculated from the translational and rotational components, 

obtained from the equipartition principle, 

= (2.30) 

and 

= (2.31) 
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where Nj and are the number of translational and rotational degrees of freedom 

respectively. In our simulations = 3, corresponding to three dimensional movement 

while = 2 as we assume each particle to be uniaxial in symmetry. The average 

temperature T can then be calculated from, 

„ N i T j + A r̂ Z'R 
NJ + A^R 

(2.32) 

Internal energy: The average total potential energy per particle (U) is calculated from the 

sum of just the pairwise interactions such that, 

= i Z (2.33) 
I <i %i < N 

where U(r., Q., r̂ ., Q.), the effective pair potential, is summed over all time steps. 

Heat capacity: At constant volume, the heat capacity Cy is defined as 

= C2 34) 

Calculation of this could involve using a cubic spline fit to values of (U), the average 

internal energy, over a range of temperatures, and performing a numerical differentiation 

with respect to the temperature. An alternative way to calculate the heat capacity is from 

fluctuations in the potential or kinetic components of the energy. Thus, 

= (NF/2)m^7^(l - 3mB/2Cv), (2.35) 

where K is the total kinetic energy, the number of degrees of freedom, which takes the 

value of 5 for our system and 

= (2.36) 

However, as this property is calculated from fluctuations, we would expect it to be affected 

by larger errors than values for the heat capacity calculated from equation (2.34) especially 

near phase transitions. Against this, the heat capacity can be obtained from this method 

using a single simulation state points whereas for 9U/9T, at least three simulation state 

points are needed. 
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2.4.2 Orientational properties 

Orientational order parameters: The calculation of these properties are particularly 

important in the simulations, as it gives us a quantitative measure of the orientational order 

in the system, which is the essential feature of hquid crystals. For a uniaxial phase in which 

the director is known, the second rank order parameter {P^ at any one time step is, 

<f2> = ^ Z ( 3 c o s : ' P , - i y 2 , (2.37) 
i = i 

where p is the angle between the symmetry axis of the particle and the director n. However 

in our simulations, the director orientation is not known, so the order parameter is obtained 

by maximising the expression 

(f2> = ^ Z f 2 ( u , . n ) . (2.38) 

with respect to the unit vector n which renders {P^ a maximum, u defines the orientation 

of the particle in the laboratory frame. Equation (2.38) can be rewritten as 

<f2> = §<n.Q.nX (2.39) 

where the tensor Q is 

Q = - h - (2.40) 
N , - = 1 

After diagonalising Q and averaging the elements after each time step, the eigenvalues of 

the ordering matrix are, in decreasing size, A,̂ , and with the order parameter being 

obtained from the largest positive eigenvalue, so that 

(jPz) = (3/2))L+, CZ/ll) 

and the corresponding eigenvector being the director orientation. If n is parallel to the z 

axis of the simulation box, Q in its diagonalised form is 

^-(l/3)<f2> + e 
-(l/3)(f2>-e 

(2/3)<f2> 

(2.42) 

where e is a measure of the phase biaxiality. Thus in a uniaxial phase, e is zero, but the 

small system size in the simulation means it deviates from zero. The use of gives a good 
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estimate of {Pj) in the nematic phase, but leads to an order parameter of \ N n in the 

isotropic phase, instead of zero, as we are always averaging a positive quantity. Eppenga 

and Frenkel'"'' recommend that in certain applications it may be preferable to use the 

middle eigenvalue In the nematic phase, ~ X_ = -l/2?i_,_, resulting from Q being 

traceless, thus the order parameter is equal to -2\. In the nematic phase this would make 

very little difference, however in the isotropic phase, (Pj) would be closer to zero, as we 

are averaging \ which can change from positive to negative, having an associated error of 

l/N. An alternative route to the order parameter is the pair orientational correlation 

coefficient Gjir), the use of which will be discussed later. 

We can also calculate the fourth rank orientational order parameter (P^), a quantity which is 

difficult to measure using experimental methods, though the use of polarised Raman 

scattering has provided a route to obtaining some experimental values''^'. (P^) is the 

average of the fourth rank Legendre polynomial and is defined as 

4> = &35 cos'^p - 30 cos^P + 3>. (2.43) 

O 

This calculation is possible in our simulation as we have already calculated the director 

orientation and hence can quite easily find p, the angle between the symmetry axis of each 

particle and the director. 

Singlet orientational distribution function: The orientational order of an ensemble of 

molecules can be specified by the distribution function P(r, Q) which gives the probability 

of finding a molecule at a particular position r with a particular orientation Q. For the 

nematic phase, 

where p is the number density and f{D) is the orientational distribution function with Q 

being the set of angles a , p and y, the molecule makes with the laboratory frame. In a 

uniaxial phase such as the nematic phase the distribution depends on just P, so the particles 

have their long axes at an angle between P and p + dcosP, with respect to the director. We 

can expand XP) in terms of Legendre polynomials, and because n = -n, it follows thatX^t 
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-(3) =XP) as cos(n - P) = cos((3), thus this implies that only even terms can occur, so^P) 

becomes, 

/(P) == IE: l)/LfL(G()s(S). (2/15) 
L = 0 & even ^ 

We can evaluate the expansion coefficients from the orthogonality of the Legendre 

polynomials, so that the first three coefficients are 

/b = (fo(cosp))= 1, (2.46) 

fi = (P2(cos (3)) = (3 cos^P - l)/2, (2.47) 

/it = (f 4(cos p)> = (35 cos'^p - 30 coŝ ^P + 31>/8, (2.48) 

where ̂  can be recognised as the order parameter introduced in equation (1.1) and as that 

calculated in the simulation, and the fourth rank order parameter (FJ as defined in 

equation (2.43). Substituting equations (2.46) - (2.48) into (2.45) givesXP) as 

/CP) = 1(1 + 5<f 2(cos P)>2 + 9<f 4(cos P)): ). (2.49) 

To obtain the singlet orientational distribution function in the simulation, we calculate the 

angle between the symmetry axis of the particle and the director. We then sort the angles 

into histograms bins over the range cosp = 0 - 1 , normalising with the number of particles 

present in each bin and the number of configurations used. 

2.4.3 Structural properties 

The radial distribution function: The radial distribution function g{r), is a widely used 

quantity with which to investigate the translational order within a system; it can be defined 

as 

g{r) = ^ ~ — ^ fexp(-pC/(ri,r2 ryv))dr3....drA,, (2.50) 
9 ZN •' 

where p is the number density and is the configurational partition function. It gives the 

probability of finding a particle at a distance r from the origin of another particle, relative 

to the probability in an ideal gas. At large separations, the positions of any two particles 

will be largely uncorrelated, so the probability will tend to the density p of the fluid, but as 

g{r) is normalised by p, g{r) will tend to the value of one. For particles with a hard 
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repulsive core there is a zero probability of finding another particle closer than a minimum 

distance a, the molecular diameter, so g(r) takes the value of 0 at separations less than CT. 

The position of the peaks can be used to identify shells of neighbouring particles and the 

area under each peak is the number of neighbouring particles, thus helping to determine the 

structure of the phase under investigation. The radial distribution function in the simulation 

is calculated by constructing a histogram of all the minimum image particle 

separations, where each bin has a width 5r and extends from r - 6r/2 to r + 6r/2. To obtain 

g(r), each interval in the histogram is then divided by the number of particles in an ideal 

gas at the same density which is given by: 

_ 47Cp 
ideal — g 

4KP 

(2.51a) 

(2.51b) 

As 5r is small, the term involving 6 / is usually neglected. The g(r) at a certain separation 

can now be given by 

g(r) = (2.52) 

The orientational pair correlation coejficient: The pair distribution function g{r, Q) is 

dependent on the orientation as well as the separation between two particles and is easy to 

determine via the simulation but difficult to represent graphically though it can be 

expanded in terms of Legendre polynomials. Thus for one set orientation Q, it can be 

defined as 

g(r, O) = ^ E (2L + l/647r'')GL(r)f L(cos P), (2.53) 

where (3 is now the angle between the symmetry axis of the two particles and not between 

one particle and the director, while g(r) is the radial distribution function defined in the 

previous section. The coefficients Gjir), are averages of the Legendre functions, 

GL(r) = (fL(cosP(r))>. (2.54) 

Go(r) is the radial distribution function, and G^(r) is the second rank orientational pair 

correlation coefficient. 
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These can be easily calculated during the course of the simulation for each time step by, 

G2(r) = ^ E E ^ 2 ( c o s p y ( r ) ) . (2.55) 
^ (=1 i*j 

At large separations, i.e. the limit r —> oo, angular correlations between particles are lost 

and so, 

g2(r) = <f2(cosp)>\ (2.56) 

Thus the limiting value of G2(r) provides an alternative method for the calculation of the 

order parameter {P^. For small separations, G2(r) takes a value of approximately one, even 

in the isotropic phase. This behaviour can be explained as follows: as the separation 

between the particles approaches the smallest dimension of a particle, the particles must be 

essentially parallel to each other, i.e. the orientational vectors are parallel, and hence of 

1. The pair correlation coefficient 62(7') is calculated in a similar fashion to the radial 

distribution function in that a histogram of minimum image separations is constructed, that 

also depends on the relative orientations of the particles as well. Each bin is then divided 

by the corresponding bin from the g{f) histogram giving the plot of G2(r). 

The longitudinal and transverse pair correlation functions: The functions g| |(r] |) and 

gj^(r^) are calculated in a similar way to the radial distribution function g{r), in that a 

histogram of all interparticle separations is calculated then normalised by a suitable volume 

element. These correlation functions provide additional information by allowing us to 

probe in greater detail the structure of the mesophase, revealing such detail as the onset of 

columnar ordering. In the simulation we transform the simulation box into the director 

frame, with the director now placed along the z axis of the transformed simulation box. 

Histograms of the interparticle separations of the specific components, r̂  for g] |(r 11), and r̂  

and Ty along the orthogonal xy plane for are then calculated. 

The density distribution function: The density distribution functions, P||(^|i) and p^{r^), 

measure the density of particles in directions parallel and perpendicular to the director. 

Pj(/-j) is calculated by first transforming the particle coordinates such that the director is 

oriented along a reference direction, for example the z axis. A histogram is then complied 

of all the z coordinates and then normalised by dividing each histogram bin by the number 
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of particles and the number of configurations analysed. Though this function does suffer 

from the problem of the director origin fluctuating during the simulation, resulting in the 

smearing out of any peaks in the distribution curve. 

2.4.4 Dynamic properties 

The velocity autocorrelation function: Perhaps the most informative way of analysing the 

dynamic properties of liquids is via time autocorrelation functions"^' which describe the 

relationship between a property at a certain time and its value at a later time. From the area 

of these functions we can calculate the macroscopic transport coefficients such as the 

diffusion coefficient D'®'. In general, for ergodic systems, a time correlation function of a 

property A is defined by, 

"Cmax 
CaaW = lim — [ (Ax̂ )̂{At +x)dT. (2.57) 

Lmax J 
0 

The property we have chosen to illustrate these ideas is the translational velocity of the 

particles v, and thus the velocity autocorrelation function Cyy, at a time x is given by, 

C w(T) = (v(x).v(0)>, (2.58) 

At long time intervals where there is little or no correlation between velocities, the Cyy 

decays to zero, while at the initial stages of the simulation, the velocities are highly 

correlated. In the simulation, we calculate the dynamic properties from a tape file that 

contains the positions, orientations and velocities for the whole state point. The velocities 

are stored at time intervals 8t, with each step labelled as x i.e. t = x5?. We have x̂ ^̂  time 

origins and calculate the averages of Cyy at time Xq5? and then at a time xdt later. In our 

simulations, we use 200 time steps with time origins every 5 steps and calculate the Cyy for 

the system as a whole or transform into the director frame and calculate the Cyy parallel and 

perpendicular to the director. The normalised Cyy is defined as 

The mean squared displacement: This dynamic property measures the square of the 

distance a particle travels relative to its initial position. It is important though to use the 

coordinates that represent the actual movement in space, rather than those resulting from 
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the application of periodic boundary conditions. The mean squared displacement m{t) is 

extremely useful in indicating the translational movement of the particles and hence to 

what extent a system is "liquid-like" or "solid-like"; it is defined by 

OT(0 = ( | r , (0- r , (0) |^ ) . (2.60) 

In the simulation this is calculated as 

1 ^ 
= — f = (m - n)6f. (2.61) 

i=i 

We can also resolve the mean squared displacement parallel and perpendicular to the 

director yielding extra information about the phase behaviour and dynamics. At sufficiently 

long times, the mean squared displacement becomes linear, the diffusion coefficient D can 

then be obtained from the Einstein relationship'®', 

D = lim (2.62) 
( — > o o f ) f 

An alternative method of obtaining the diffusion coefficient is from the integration of the 

velocity autocorrelation function C^, such that 

j(v(f).ir(0)>df. (2X53) 
0 

2.4.5 Calculating and estimating errors 

As with all experiments, real or numerical, the results obtained by computer simulations 

are subject to errors. Systematic errors are of the most concern and include system size, the 

use of random numbers and poor equilibration. Statistical errors occur when calculating 

equilibrium averages of the various properties of interest, (A). We calculate these averages 

in our molecular dynamics simulations by the general formula. 

<A>mn = : ^ Z A ( T ) . (2.64) 
(run x= l 

If we divide the simulation into sub-chains and in each chain a, calculate the average (A)^ 

together with (A) over the whole chain, the statistical error of (A) is estimated as the 

standard deviation from the average 
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c2.65) 

where is the number of sub-averages. An ahernative method is to calculate the standard 

statistical variance, 

G (̂W>mn) = O^W)/Trun, (2.66) 

where 
1 r̂un 

W) = (&4̂ >run = E WW - <^>run)". (2.67) 
T̂run 

The estimated error is then given by 

G((v4>run). (2.68) 

2.4.6 Scaled variables 

In computer simulations it is common to calculate static and dynamic properties in 

dimensionless, scaled variables, normally indicated by an *. The most common scaled 

variables used are 

Internal energy per particle U* - U/Ne, 

Temperature T* - k^T/e, 

Density p* = Na^/V, 

Time t* = 

Distance r* - rl<3^. 

In this section we have outlined some of the techniques available to the computer 

simulator, and in the final part of our introduction, we review how these techniques have 

been applied previously to the simulation of the liquid-crystalline mesophases. 

2.5 Molecular models of liquid crystals 

2.5.1 Introduction 

The liquid-crystalline state, having characteristics of both the solid and liquid phases is 

very complex, thus modelling this phase is quite a challenge to the computer simulator. 

This is compounded by the intricate nature of most mesogens at the molecular level, as 

even the simplest of mesogenic molecules have at least nineteen atoms, thus constructing a 

realistic atom-atom potential for a liquid crystal molecule will involve a large, complicated 
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superposition of interacting force sites. As liquid crystals sometimes undergo weak phase 

transitions and possess long range order, large system sizes are desirable, so most realistic 

simulations are long and expensive to perform. However, these problems can be overcome 

and the simulations of liquid crystals have used increasingly detailed and realistic models 

as the power of computers has increased. 

For the purpose of discussing the simulations of rod-shaped and disc-shaped mesogens we 

shall neglect the various lattice models, the most widely studied being the Lebwohl-Lasher 

model''̂ "^ '̂ where the particles are restricted to the sites of a simple cubic lattice, and 

concentrate on models that allow full translational and orientational degrees of freedom. 

These various models can be classified into three general types of increasing complexity, a) 

hard, non-spherical models, b) soft, non-spherical models and c) atom-atom models. The 

first two do not attempt to model the behaviour of actual liquid crystal compounds, but try 

to identify the essential features which are responsible for mesophase formation. It is worth 

reviewing the range of simulations that have been performed on liquid-crystalline systems, 

but this is not meant to be an exhaustive survey, rather it highlights the major results and 

places our work in context. 

2.5,2 Hard, non-spherical models 

These models were developed based on the view that the structure of simple liquids is 

governed by short range repulsive forces'^^l In broad terms, the liquid state is dominated by 

the harsh electronic repulsions between molecules and this can be represented at one 

extreme by the infinitely steep hard sphere potential, (see §2.1.3). Indeed the freezing of an 

atomic liquid incorporating only these repulsive forces was successfully modelled as early 

as 1957'"^ The problem we encounter is that, in these simulations, the particles are 

represented as spheres, but as we know from experiment, molecules must deviate from 

spherical symmetry to form a liquid-crystalline mesophase, so this raises several 

questions^^'''. First, what shape of particle is needed to represent the liquid crystal 

molecules? secondly, can these repulsive forces or excluded volume effects be used alone to 

model liquid crystals? and thirdly, if hard repulsive forces can be used to cause a phase 

transition, can it be assumed that these are responsible for the transitions in real liquid 

crystals? 
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In answer to the first question, it has emerged that for non-atomistic potentials, several 

basic anisotropic shapes can be used to model liquid crystals, with the majority of the 

pioneering work being performed by Frenkel and co-workers. The obvious feature that 

these models have in common, are that they are all anisotropic in shape, but as we shall 

see, they must still possess a certain minimum length-to-breadth ratio to exhibit 

liquid-crystalline mesophases. These shapes include prolate ellipsoids and spherocylinders 

used to model rod-shaped mesogens, and oblate ellipsoids and cut spheres used to represent 

disc-shaped mesogenic molecules. It must be remembered that these are only rigid, 

idealised shapes and do not include characteristics of real liquid crystal molecules such as 

flexible chains and specific attractive interactions, though increasingly, researchers are 

extending the complexity of their simulations to include such common features. 

The second question, as to whether repulsive forces can produce orientationally ordered 

phases, has been answered by the theory of Onsager'^''. The second law of thermodynamics 

states that an isolated system tends to maximise its entropy and hence its disorder, so it 

seemed surprising that Onsager used this tendency to maximise entropy as an ordering 

force. He showed that, at a sufficiently high density and constant volume, a system of 

infinitely thin spherocylinders with length L and diameter D, could spontaneously order, 

from an isotropic fluid, to form an orientationally ordered nematic phase. Although the 

entropy associated with the orientational degrees of freedom decreases, this is offset by the 

increase in the translational entropy of the system. This is because the excluded volume of 

two rods in a nematic phase is smaller than in the isotropic f l u i d ' T h i s theory was borne 

out by the early computer simulations'̂ '̂̂ ^^ of rod-shaped mesogens in the 1970's though it 

was only until the 1980's that we saw the first simulation of a nematic - isotropic transition 

in a system of disc-shaped mesogens'̂ ®'. We shall now look more closely at the results 

obtained from the simulations using these anisotropic shapes. 

Spheroids: The first type of hard particle to be extensively studied were the spheroids 

which could be divided into two classes, ellipsoids of revolution a^b-c and biaxial 

ellipsoids a^b-tc, where a, b and c are the three semi-axes of the ellipsoid. The first really 

successful simulations were of the hard ellipsoids of revolution'^"'^", the shape of which is 

characterised by the aspect ratio alb, where the major axis of the ellipsoid has length 2a 
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and the minor axis length 2b. This system was extensively studied over the years allowing 

a phase diagram to be constructed, (see figure 2.3). This shows the existence of isotropic, 

nematic and solid phases for both prolate and oblate hard ellipsoids, where the regions of 

nematic stability and two phase coexistence, the black lines, were established by free 

energy calculations. The diagram also raises several interesting points. First, there is a high 

degree of symmetry between oblate and prolate ellipsoids under the operation e <=> 1/e on 

the length-to-breadth ratio alb. Secondly, the phase diagram also shows that a minimum 

non-sphericity is needed to form a stable nematic phase, a/b being roughly < 0.4 for discs 

and > 2.5 for rods, though the precise values have been challenged^^ '̂, the authors claiming 

that the alb ratio needs to be greater than 3 to exhibit a nematic phase. It should be noted 

that for all db ratios, the nematic phase was formed by spontaneous ordering from the 

compression of the isotropic phase. 

Another point of interest is why does the system of hard ellipsoids not produce any smectic 

or columnar phases'^^'? Consider the case for smectic mesophases, they have a large degree 

of orientational order and to a first approximation can be represented by a system of 

perfectly aligned non-spherical molecules. A system of hard ellipsoids parallel to an 

arbitrary direction, say the director n, can be mapped onto hard spheres by scaling the 

system with the factor bla along the director. Since hard spheres do not form smectics, a 

system of parallel ellipsoids should not be able too either. So unless orientational degrees 

of freedom can stabilise a smectic phase, which intuitively seems unlikely, it can be 

concluded that a system of freely rotating, hard ellipsoids can only produce a nematic 

phase. This fact is of particular relevance to us, as hard ellipsoids resemble the shape of the 

particles used in the simulations in this thesis. 

Recent simulations have shown a biaxial nematic phase can be formed by a hard ellipsoid 

with three distinct s e m i - a x e s ' t h a t is a^b^c. The mesophase was found using the 

parameters da = 10, bla = VlO and 1 < bla <10. While of importance in itself, it would be 

interesting to study the effect of molecular biaxiality on the strength of the nematic -

isotropic transition. Theory'̂ '̂ '̂ ^̂  predicts that the transition weakens with increasing 

biaxiality and this would help to explain the difference between the weak transition seen in 

experiment and the stronger ones predicted by theory. 



45 

Figure 2.3: Schematic of the phase diagram for hard ellipsoids of revolution'^'L The x axis represents the 

aspect ratio under the operation e <=> 1/e, while they axis reflects the packing density. 

Spherocylinders: To explore further the possibility of smectic ordering in a system of hard 

particles, a subtle change of shape to a spherocylinder was performed. Spherocylinders are 

represented as a cylindrical rod of length L and diameter D with hemi-spherical caps each 

of diameter D, thus the length-to-breadth ratio is {L+D)ID. After the initial work by 

Vieillard-Baron'^^', a full study was carried out on a system of parallel spherocylinders'^'"'"' 

i.e. the particles only possessed translational freedom. At high densities, the system formed 

a close packed crystal, and as the particles were confined to be perfectly aligned, the low 

density fluid phase was always a nematic phase. Systems of LID ratios, 0.25. 0.5, 1, 2 and 3 

were studied using the Monte Carlo technique with smectic ordering occurring when LID > 

0.5. There was no bond orientational order present in the phase and so it was deduced that 

it was a smectic A phase. The transition from the smectic A phase to the nematic showed 

strong pretransitional fluctuations but there was no observable change in density, thus it 

was tentatively assigned as a second order transition. 

Further work'̂ '̂ produced a columnar phase for LID > 5 with a system size of 270 particles, 

(see figure 2.4a). This columnar phase was investigated further for LID > 5 with a system 

consisting of 1080 particles'^'' to produce a different phase diagram, (see figure 2.4b), in 

which the columnar phase was replaced by a AAA stacking hexagonal crystalline phase. 
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The columnar phase observed with the lower system size was believed to be a consequence 

of the fact that the small system size allowed unphysical diffusion of the columns, with the 

range of stability dependent on the system size. These results indicate another important 

reason in using simple models, in that it allows us to investigate fully the effect of system 

size, boundary conditions etc. on the phase behaviour of the system, before we proceed 

with more detailed and realistic models. 
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Figure 2.4: Phase diagrams for hard parallel spherocylinders where the number of particles in simulation 

are a) N - 270 and b) N = 1080. 

Even though these systems of spherocylinders were constrained to lie parallel to each 

other, it showed how a change in shape of the particle can dramatically alter the phase 

behaviour. The next step was to study the same system but with full translational and 

orientational degrees of freedom allowed. Intuitively this would change the phase 

behaviour in two possible ways. First, there would be an isotropic fluid at low densities 

instead of a perfectly aligned nematic phase, while the orientational degrees of freedom 
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could quite possibly destroy the smectic ordering. For a LID ratio of af.c.c. crystal 

was expanded to an isotropic fluid. On compression, nematic and smectic A phases were 

produced. A tentative phase diagram, (see figure 2.5), for LID ratios between 0 (hard 

sphere case) and 5, was produced'"'^' showing the formation of liquid-crystalline 

mesophases for LID > 3.5. It is interesting that compared to parallel spherocylinders, the 

orientational degrees of freedom do indeed destroy the liquid-crystalline phases for a wide 

range of LID ratios. It is also worth noting that just the shape of a particle i.e. the hard 

repulsive forces, can produce a thermodynamically stable smectic that was generally 

thought to be exclusive to models that incorporate attractive forces, though theories can 

now predict the hard core smectic phases''* '̂. 
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Figure 2.5: Schematic phase diagram for hard spherocylinders. 

Cut spheres: We have seen that while prolate ellipsoids only form a nematic phase, a 

spherocylinder will produce a smectic phase, in addition to a nematic, thus it seems 

reasonable to see if an oblate counterpart of the spherocylinder could produce a columnar 

phase. The actual geometric shape that fitted this description was the sphewplatelet but 

this proved difficult to use because of numerical considerations in calculating the overlap 

so the shape that was decided on was of a cut sphere^'^\ 

It consists of a sphere of diameter D with the top and bottom removed, these flat parts are 

separated by a thickness L. This has the advantages that it is numerically easier to cope 
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with and in the limit LID - 1, reduces to a hard sphere. Compressing the isotropic fluid, for 

a system of cut spheres with LID of 0.1, causes the spontaneous formation of nematic and 

columnar phases, though the columns in the latter where somewhat buckled. Expansion of 

the crystal phase produced a defect free columnar phase with hexagonal packing of the 

columns. Further simulations'"^' were carried out with the aspect ratios of 0.2 and 0.3. At 

LID of 0.2, the system exhibited isotropic, columnar and solid phases, but no stable 

nematic phase in contrast to LID of 0.1, instead a cubatic phase was found. This consisted 

of columnar stacks of 4 or 5 particles packing against each other, frequently at 90° angles 

and though there is short range translational order, the columns themselves are 

orientationally disordered. 

As the LID ratio was increased to 0.3, all liquid-crystalline behaviour disappeared, the 

isotropic liquid crystallising directly to the solid phase; the full phase diagram is shown in 

figure 2.6. After taking into account the example of hard parallel spherocylinders, where 

the finite system size induced spurious columnar ordering, a range of simulations with 

differing numbers of particles was performed to test the stability of the columnar phase. It 

was found that the crystal - columnar phase transition appeared to be continuous, the 

columnar - nematic strongly first order and the nematic - isotropic weakly first order. 

0 . 8 -
SOLID 

0--

NEMATC 
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0 .4 

Figure 2.6: Schematic phase diagram for hard cut spheres. 

It has been shown that the hard model potentials with only short range repulsive forces can 

produce liquid-crystalline mesophases, though the nature of these phases is dependent on 
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the shape of the molecule used. The question as to whether repulsive forces are also 

responsible for transitions in real liquid crystals is much harder to answer. It is true that for 

a molecule to form a liquid-crystalline mesophase it must deviate from spherical 

symmetry, and that hard models with a non-spherical core have shown some of the 

characteristics of the nematic - isotropic phase transition as well as other mesophase 

behaviour. It is also true that a system that contains only attractive forces will collapse, but 

it is thought that the inclusion of attractive forces is necessary for the stability of all 

mesophases. 

2.5.3 Soft, non-spherical models 

The hard model, though successful in describing certain liquid crystal mesophases, only 

involves the repulsive forces between molecules, thus the soft model of liquid crystals tries 

to take into account the attractive as well as the repulsive forces between molecules. The 

main advantage over the hard repulsive model, is that raising the temperature and not just 

the density can cause transitions from disordered phases into liquid-crystalline phases i.e. 

hard models do not exhibit thermotropic phase transitions. When studying liquid crystals, 

the intermolecular potential must be dependent not on just the separation between 

molecules but on their orientation, so these models are essentially anisotropic versions of 

the Lennard-Jones potential: 

[/(f) = 4e[(G/r) - (c/r)^], (2.69) 

where o and e are the length and energy parameters, respectively. At large molecular 

separations, attractive forces dominate, while at small separations the repulsive forces take 

over. By the addition of attractive forces and by splitting up the potential into repulsive and 

attractive components, we can investigate the relative contributions each makes to the 

stability of the liquid-crystalline mesophase^^^l For instance, it has been shown that, for the 

Gay-Berne system at least, the attractive forces play a crucial role in the formation and 

stability of the more ordered phases'"* '̂. 

The Gay-Berne potential: The Gay-Berne potential falls into the category of a soft 

non-spherical model, in that it takes into account the role of attractive forces as well as 

repulsive forces in the formation of liquid crystal mesophases. The ground work was laid 

by Corner as far back as 1948, when he suggested that linear non-spherical molecules 
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could be modelled by placing a number of Lennard-Jones force centres, equidistant along 

the symmetry axis. However this gave a complicated interaction between many force sites, 

so Corner'"'®' overcame this by proposing a single site potential where the multi-site 

potential was fitted numerically to a single 12-6 Lennard-Jones potential, obtaining range 

and energy parameters which were orientation dependent. The potential had the interaction 

between two particles as a function of the distance between their centres and was scaled by 

a range parameter a(Q) giving the form of the potential as, 

[/comer = e(Qy(r/0(Q)). (2.70) 

Both the strength e(Q) and range o(Q) parameters were dependent upon the orientations Q 

of the molecules and of the intermolecular vector r. Berne and Pechukas''* '̂ then developed 

forms for the strength and range parameters using the gaussian overlap model. The 

gaussian function of a three dimensional vector x is defined by 

where 

G(x) = .x), 

Y = ( 0 | | - a i ) u u + a i l , 

(2 71) 

(2.72) 

u is the unit vector of the orientation of the particle and I is the unit matrix with the surface 

of constant G producing an ellipsoid of revolution about the symmetry axis. 

Figure 2.7: Geometry of two ellipsoids used in the gaussian overlap model. 

They then calculated the overlap between two ellipsoids of revolution using the geometry 

of figure 2.7, obtaining 

G ( u i , U2, r) = |YI| ^J^/x e x p ( - x . Y i ' . x - ( x - r ) . y 2 ' . ( x - r ) ) , (z73) 
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where | % | is the determinant of the range matrix y. and 

yi = (a%-o^JUiUi + C5^J. (2.74) 

Equation (2.73) can be expressed in the simplified form 

G(u 1, U2, r) = e(u 1,U2)exp [-r^/o^(ui,U2, r)], (2.75) 

where e(ui,u2) and a(ui, U2, r) are assumed to be the orientation dependent strength and 

range parameters which are of prime interest to us. These parameters are calculated by 

finding the eigenvectors and eigenvalues of (y, + y )̂ and in the case that both interacting 

ellipsoids have the same dimensions, we find 

e(ui,U2) = eo[l-X^(ui,U2)^] \ 

and 

G ( a i , u 2 , r ) = c o n X (Ui.r + U2.r)^ ^ (Ui.r-U2.r)^ 

_ l+X(Ul.U2) l-X(Ui.U2)_ 

(2.76) 

(2.77) 

The parameter % is defined by 

o f i + a i 
(2.78) 

This overlap model, the BPK model, was first used to simulate liquid crystals by Berne and 

Kushick'"^®', and Decoster et using the forms for a and e generated by Berne and 

Pechukas, in a Lennard-Jones 12-6 potential, 

6 " 

C/BPK(UI , U 2 , r ) = 4e(ui, U 2 ) 
f 0 (u i ,u2 , r ) l 12 f a (u i ,u2 , r )^ 

I ; I ^ J 
(2.79) 

However, it was realised by Gay and Berne'^°' that the potential possessed a number of 

unrealistic features. First, as the well depth, (see equation (2.76)), depends on the relative 

orientation of the particles and not on the orientation with respect to the intermolecular 

vector, the well depth for various orientations are identical, when they should be different, 

(see figure 2.8). Further, the width of the attractive well varies with orientation of the 

particles with respect to the intermolecular vector, thus the potential becomes softer for 

different orientations, though the distance dependence should be independent of the 

orientation'^". 
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Figure 2.8: The distance dependence for the BPK intermolecular potential for two orientations, illustrating 

how the well width varies with the orientation of the particles, with ojo^ of 3.0. 
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Figure 2.9: The distance dependence for the Gay-Berne intermolecular potential for two orientations, 

showing how the deficiency with the well widths has been corrected, with of 3.0. 
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In order to rectify these problems in the BPK model, a number of modifications were tried 

by Walmsley'"', and by Tsykalo and Bagmet'^^', but by far the most important and 

successful modification was the further development of the overlap model by Gay and 

B e r n e ' T h e y first changed the potential by using a shifted form, analogous to that 

proposed by Kihara'̂ "*' rather than the scaled versions used previously, thus the potential 

now took the form. 

(/(ui,u2,r) = 4e(ui,u2,r) 1 
N 12 

r -a (u i ,u2 , r )+ 1 
1 

r -a (u i ,u2 ,r ) + 1 
. (2.80) 

This now meant that the well width was independent of the molecular orientations i.e. the 

form of the potential was now the same for any orientation, (see figure 2.9). The range 

parameter is the same as in the BPK potential, but the strength parameter was redefined. 

.A A A. w /A 
e(ui,u2,r) = e0e^(ui,u2)e,(ui,u2,r), (2 81) 

similar to that used by Walmsley, and by Tsykalo and Bagmet, and with the exponential 

parameters as |i, of 1 and v of 2, took the form. 

ei(Ui,U2,f)= 1 - y 
(Ui.r + U2.r)^ (Ui.r-U2.r)' 

4"' 

where 

% 

_ l + X ' ( U i . U 2 ) l - 5 c ' ( U l - U 2 ) 

/ l-(Ee/Es); 

l + (ee/es)^ 

(2.82) 

(2.83) 

Here, e/e, is the ratio of the well depth for the end-to-end and side-by-side configurations. 

The values of [i of 1, v of 2 and e/e, of 0.2 were obtained by fitting the potential to a linear 

array of four Lennard-Jones centres placed 2G/3 apart, chosen as they have been used to 

model diatomics. The fitting to this array of Lennard-Jones sites, was by comparison of the 

maximum well depths and separation at the maximum well depths for a range of five 

configurations between the two particles. The first simulations using the dimensionally 

correct Gay-Berne potential, (equation (2.84)), were by Adams et who successfully 

simulated a nematic - isotropic transition in a system of rod-shaped mesogens. 

\ 12 / _ \6^ 
[/(ui,u2,r) = 4e(ui,u2,r) Go 

r -a (u i ,U2 , r ) + ao 
Go 

r - a (u i ,U2 , r ) + ao 
(2.84) 
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Luckhurst et used the same potential form, but with ^ of 2 and v of 1, leading to the 

formation of smectic A and smectic B, in addition to the usual isotropic, nematic, and 

crystal phases. A more detailed study of the Gay-Berne fluid composed of prolate particles 

was performed by de Miguel et and using the Monte Carlo method they showed the 

existence of a tilted smectic B phase as well as producing a full phase diagram'^^'. Further 

simulations on prolate particles with of 3.0 were performed by Berardi et who 

using the parameters il of 1 and v of 3, demonstrated how the orientational and structural 

properties of the system can change depending on the parametrisation. The structure of the 

smectic B phase has also been investigated by Hashim et revealing it to contain 

rippled layers. 

Up to now, the parameters employed in the Gay-Berne potential have been obtained by 

comparison with a line of four Lennard-Jones centres and as such, might not be 

representative of those for mesogenic molecules. To obtain more typical values for the 

parameters, and e/E,, Luckhurst and Simmonds"'"' compared the Gay-Berne potential 

with a site-site potential for the rod-shaped mesogen /)-terphenyl, obtaining values for o / c , 

of 4.4 and of 1/39.6, compared with the original Gay-Berne^^"' values of of 3.0 

and e/e, of 1/5. Using these new parameters they successfully simulated nematic and 

smectic A phases. In order to model chiral systems, Memmer et a/."'" added a chiral term 

C/j, to the Gay-Berne potential. The potential now took the form 

[ / ( U | , U 2 , r ) = a [ / a ( u i , U 2 , r ) 4- c U c i u ^ , U 2 , r ) , (2.85) 

where 

f n y 
f/e(u,,U2,r) = 4e(u,,A2,r) . 7 [(uixu2).r](u,.u2), (2.86) 

yr-G{uun2,r) + Oo J 

and U.̂  is the normal Gay-Berne potential as in equation (2.84). Simulating along an 

isotherm, they produced isotropic, cholesteric and BPII phases, while additional 

simulations cooling the system along an isochiral, c being 0.8, managed to produce a 

helical smectic A* phase, the so-called twist grain boundary phase. But the simulation of 

these chiral systems raised the question of what type of boundary conditions to use? In 

their initial work, Memmer et al. used ordinary cubic boundary conditions, so they 

addressed this by using the twisted boundary conditions as used by Allen and Masters'® '̂, 
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and as a result, the potential energy of the system '̂'̂ ^ was reduced and the pitch increased 

when compared with the results of their earlier work''''l 

All of the simulations up to now have used parametrisation for rod-shaped mesogens, 

mainly achieved by using the value of of 3.0. The first simulations of disc-shaped 

mesogens were performed by Emerson et who used a value for a/a^ of 0.345 in 

producing discotic nematic and columnar phases, the detailed results of which will be 

discussed in later chapters. Apart from using the Gay-Beme potential to calculate the 

properties of liquid-crystalline mesophases, it has been used as a solvent in studying the 

conformations of flexible molecules'®^^ and in the calculation of the dependence on density 

of the orientational order via the parameter which will again be discussed in a later 

chapter. There has also been investigations into modelling systems other than liquid 

crystals with the Gay-Berne potential and these have tended to concentrate on molecules 

such as benzene''̂ -̂''̂ ^ and napthalene'*^''^"'. 

At this point we should mention the shape of the Gay-Berne particle'*'"'^''. Up to now, we 

have described the Gay-Berne particle as being ellipsoidal in shape but this only holds true 

when two particles are in a parallel arrangement. Though these are prevalent in liquid 

crystals phases, there are other situations, such as when two particles are in the tee 

arrangement, that the zero potential energy contour deviates from an ellipsoid, and in this 

case is spherical. 

Hybrid GBLR potential: The other main soft potential that has been used for the simulation 

of liquid crystals is that based on the potential first developed by Luckhurst and Romano'^^' 

to study the classical nematic phase. The particles interact via a scalar Lennard-Jones 

potential but with an additional anisotropic term [ / . The potential has the form: 

=4E[(o//') - (G/r)^] 4- 2(cos p)], (2.87) 

and with ^ of 0.15, the simulations show a weak first order nematic - isotropic transition. 

Though all of the models we have discussed here are single site potentials, there lies the 

possibility of joining force centres together in an array of complex geometries to model 
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more accurately the interactions within real mesogens. This approach suffers from the same 

problem of the complex models to be discussed later, in that the system becomes 

computationally very expensive. To overcome this problem, De Luca et have 

developed a potential that takes a 1/10* of the computational time of the Gay-Berne 

potential, while still retaining some of its more important features. They took the 

Luckhurst-Romano potential, (see equation (2.87)), and scaled the total potential by an 

energy term with the same functional form as that in the Gay-Berne potential'^"', 

/ r . A A A A.f} .A A A 

+ ,2.88) 
2 [ l + % / ( U i . U 2 ) l - x ' ( U i . U 2 ) J 

where 

, (l-Ee/E,)" 
%' = - (2.89) 

(l+8e/Es)^' 

such that the potential now became, 

[ / = E / ( U , , U 2 , r ) ( [ /o + [/a). (2.90) 

This allowed the potential to differentiate not only between orientations with their 

orientational vectors parallel and perpendicular, as only the Luckhurst-Romano potential 

could, but between face-to-face, edge-to-edge, cross and tee orientations. By then allowing 

the well depth ratio to take a form suitable for disc-shaped molecules, i.e. the face-to-face 

orientation is favoured over all others, the formation of a discotic nematic and 

columnar-like phase, consisting of short stacks of particles, were observed. 

2.5.4 Atom-atom models 

The increase in computing power over the years, and the desire to produce more realistic 

models has led to the simulation of liquid crystals using atom-atom models. Whereas the 

previous potentials have represented mesogenic molecules as a variety of solid geometric 

shapes with just one interacting force centre, these realistic potentials include the atomic 

detail, by having force centres at each atomic site. The molecular charge distribution, 

obtained by ab initio calculations, is then incorporated by the addition of a Coulomb term 

to the potential. Once this molecular framework is established, we can introduce some 

measure of flexibility by adding extra potentials for bond stretching, bending and torsion, 

though this increase in the complexity of the model potential is only allowed by reducing 
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the size of the system to approximately 100 particles. There have been many studies on 

rod-shaped mesogens with a variety of approaches being taken. A number of bulk studies 

have been undertaken^ '̂*'̂ '̂̂ '''"'̂ '̂ on mesogens such as ^mM^-4-(^mw-4-M-pentylcyclohexyl) 

cyclohexylcarbonitrile (CCH5), 4-ethoxy benzylidene-4'-M-butyaniline (EBBA) and 

4-n-pentyl-4'-cyanobiphenyl (5CB), while other work has concentrated on pairs of 

molecules'^'''. Systems such as thin films'^"' and molecules adsorbed onto a variety of 

surfaces'^''have also been investigated. 

Discotic systems suffer, in that the number of atoms in even the smallest mesogens are so 

much greater than in a simple rod-shaped mesogen such as 5CB, so to date there has only 

been one study on a real discotic mesogen. Ono and Kondo'^^' undertook a study of 

hexakis(pentyloxy)triphenylene (THE5) in an attempt to investigate the behaviour of the 

diffusion coefficients. The system was assumed to be in the 0,̂ ^ phase as the particles were 

arranged into 9 columns each containing 6 molecules. Each molecule had a coulomb 

potential, with charges obtained from ab initio calculations, placed at each site but with 

united atoms representing the alkyl chain. Then performing molecular dynamics 

simulations in the NVT ensemble, they found the diffusion coefficient to be greater 

perpendicular to the director as expected'^^l They measured the order parameter {P^ to be 

== 0.95 for the aromatic core, a result verified by N.M.R studies'̂ '*'. 
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3. The Gay-Berne discogen I 
3.1 Introduction 

We have seen in the previous chapter, (see §2.5), that for model mesogens, a sufficient 

condition for the system to form a nematic phase is for the constituent particles to deviate 

from spherical symmetry. However, whether the mesophase is observed or not depends on 

the freezing point. It is recognised as result of computer simulations studies that a subtle 

change in shape is all that is needed for the system to exhibit the more ordered mesophases, 

such as the smectic phase for rod-shaped particles and columnar phase for disc-shaped 

particles. These simulations have used hard particle models in which each molecule 

interacts via repulsive forces alone. Obviously this oversimplifies the behaviour of real 

mesogens, as it neglects the other intermolecular forces, and so the next stage would be to 

incorporate attractive forces into the model. This would allow us to investigate the thermal 

behaviour of the model mesogen as well as seeing whether these forces might be able to 

stabilise mesophases not observed with hard particle models. 

o 
R = CAHisO 

Q 
coo 

1860C 1930C 2740C 
c Drd N D 1 

Figure 3.1: A typical disc-shaped mesogen based on triphenylene, which forms the starting point for our 

model Gay-Berne discogen. 

In Chapter 2 we discussed the various types of models that can be used to simulate the bulk 

properties of liquid crystals, paying special attention to the Gay-Berne potential as this is a 

particularly successful model for the liquid-crystalline mesophase, while still retaining 

computational and conceptual simplicity. 
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For these reasons, we chose to use this potential in our studies of hquid crystals. The 

Gay-Berne potential can be thought of as representing each interacting particle as an 

ellipsoid, and though the definition of the shape is not straightforward, (see §2.5), it has 

been used to model rod-shaped mesogens by using prolate ellipsoids. This has proved 

successful in terms of simulating a range of mesophases including nematic, smectic A and 

smectic This illustrates that the addition of attractive forces can stabilise the 

translationally ordered phases, previously absent in the corresponding system of hard 

ellipsoids. The next logical step is to model a discotic liquid crystal, (see figure 3.1), and 

this is one of the great attractions of the Gay-Berne potential in that it is very simple to 

change the shape of the interacting ellipsoids from prolate to oblate or disc-shaped. 

The initial work on these systems was carried out by Emerson^^^ who performed molecular 

dynamics simulations of the Gay-Berne discogen at the scaled densities p* of 2.7 and 3.0 

(p* = Na^^/V). The results were similar in that isotropic, discotic nematic, columnar and 

crystal phases were produced for both densities, again proving the value of this potential in 

that it can provide a range of mesophases. The only difference between the two densities 

were the transition temperatures, which were lower at the lower density p* of 2.7. This is 

to be expected, because at higher densities the particles are closer together so the 

intermolecular forces experienced by each particle are stronger, with the increased 

attractive forces stabilising the ordered phases so causing the transition temperatures to 

rise. 

Of greater interest to us is the structure of the columnar phase, in which the columns are 

arranged in a square lattice, (see figure 3.2). The particles within each column are not tilted 

as might be expected with the normal square or rectangular phase'^', but lie with their 

symmetry axes parallel to the column axis. This results from the fact that the particles 

within each column are staggered with respect to particles in the neighbouring columns, 

thus allowing the columns to penetrate each other. Such an interdigitated structure is 

analogous to that observed in some smectic phases. The extent of interdigitation was 

quantified by the transverse pair correlation function gj,r_*) which gave the distance 

between particles as 0.9, instead of 1.0 or greater, expected for non inter-penetrating 

columns, (see figure 3.3). 
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Figure 3.2: View parallel to the director for the columnar phase at p* of 2.7 with the ellipsoids shown at 

half the correct size for ease of visualisation, illustrating the square packing structure of the columns. 

( r , * ) -

Figure 3.3: The transverse pair correlation function for the square columnar phase at the density 

p* of 2.7. The peak at r^ of 0.9 indicates that the columns penetrate each other as the particle diameter is 

defined as ].0Og. 
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Though the structure might be seen as an artefact produced by the constant volume and size 

of the box shape, a square columnar phase has been observed experimentally in a lyotropic 

system'"*̂  in which the constituent micelles, lie horizontally within each column. The 

staggered arrangement and the square lattice within the columnar phase were the same for 

both densities p* of 2.7 and 3.0. This led us to ask why a hexagonal phase was not 

observed as this would certainly allow the most efficient packing of the columns within the 

phase? 

It seemed reasonable therefore to perform further simulations at other densities in the 

expectation of, a) observing hexagonal packing between columns, and b) to see if the 

columnar phase exists at all at lower densities. These experiments can be thought of as 

being analogous to various pressure studies performed on a variety of systems. From 

similar experiments on real rod-shaped mesogens'^', we know that, at constant temperature, 

as the pressure is decreased any smectic phase present will slowly disappear, with, in most 

cases, all mesogenic behaviour ceasing at extremely low pressures, though the stability of 

the phase depends on AS and AV at the transition via the Clapeyron equation. This 

behaviour could conceivably be applied to disc-shaped mesogens, with the columnar 

phases being present at higher pressures, then gradually vanishing as the pressure is 

reduced. 

The starting point for the choice of the simulation density is the phase diagram determined 

by Frenkel'^' for hard ellipsoids, (see figure 2.3). It would be more useful to redraw the 

phase diagram by defining the density as a number density, as used in this Thesis, in units 

No^lV, where TV is the number of particles and Fthe volume of the simulation box, and the 

aspect ratio alh, (defined in §2.5), in a simple linear scale, (see figure 3.4). The enclosed 

area of the graph represents the regions of two phase coexistence, while it is interesting to 

note that the nematic - isotropic density is essentially independent of the alh ratio. The 

original densities p* of 2.7 and 3.0 were chosen as they lay either side of the nematic -

isotropic transition boundary as defined by the phase diagram for hard ellipsoids. A density 

greater than p* of 3.0 could have been chosen, and although this lay in the nematic region 

of the phase diagram, there is a danger that the density could be too high, leading to the 

system being locked in an ordered phase at all temperatures. 
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Conversely, choosing too low a density might mean that no liquid crystal phase would be 

formed, the particles being too far apart to experience sufficient anisotropic, attractive 

forces from other particles to hold them in an ordered state. Thus to maximise the 

probability of forming liquid-crystalline phases as well as exploring the Gay-Berne 

discogen phase diagram further, a scaled density p* of 2.5 was chosen which lay just 

outside of the nematic region of densities for hard oblate ellipsoids. We must remember 

that the hard ellipsoid phase diagram is only used as a rough guide in helping us choose the 

correct density, since the shape and nature of the intermolecular forces of the Gay-Berne 

particle does not represent a true hard, ellipsoid. 

I 
I 
Z 

Discotic 
nematic 

Isotropic 

0 . 3 4 5 

a/b ratio 

Figure 3.4: A schematic of the phase diagram for hard ellipsoids'^' redrawn with different axes scales from 

the original reference. Previous densities used'^' are marked by O, with the density used in this Thesis 

indicated by • . 
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3.2 Parametrisation of the Gay-Berne potential 

The development of the Gay-Beme potential, and the variety of parameters used to model 

rod-shaped mesogens are described in Chapter 2. The Gay-Berne potential has the form 

[/(«,,u2,r) = 4e(u,,u2,r) Go 
\I2 

r - a (u i ,U2 , r ) + ao j L r -o (u i ,u2 , r ) + (7o 
, (3.1) 

where u, and uz are the unit vectors for the orientations of the symmetry axes of the two 

particles and r denotes the intermolecular vector. In the original development of the 

potential, the four adjustable parameters, e/e,, [i and v, were used to model a best fit 

for a row of four Lennard-Jones centres'''', each centre being 2/3(Tg apart. For oblate 

particles, a best fit to a ring or plate of Lennard-Jones centres could be used, but the aim 

was also to keep some conformity and simplicity to the model. Though rather than 

arbitrarily choosing the value of these parameters, there has been some attempt to mimic a 

real disc-shaped mesogen, so the parameters first used to represent the Gay-Berne discogen 

were based on triphenylene, and although not liquid-crystalline itself, it is the basis for 

many discotic mesogens, (see figure 3.1). 

The range parameter d/cr^ is the ratio of the separation when the two particles are in a 

face-to-face (a^) or an edge-to-edge ( c j arrangement, and in reality controls the shape 

anisotropy of the particles, thus for the disc-shaped particles of triphenylene, a/a^ takes the 

value of 0.345. The energy parameter e/e, is just the ratio of the well depths for the 

face-to-face and edge-to-edge arrangements and for our study, the value of 5.0 was used. 

The variety of values for the parameters, and v are discussed in Chapter 2. Previous 

simulations of Gay-Berne discogens used the values, ^ o f l and v of 2, which were chosen 

because they stabilise the face-to-face and edge-to-edge arrangements relative to the cross 

and tee arrangements, thus enhancing the formation of translationally ordered phases. For 

our choice of parameters in this work, it must be remembered that we wanted to investigate 

the effect of the density of the system, thus it would be sensible to use these same 

parameters as Emerson to be consistent with previous simulations, thus we kept the values, 

|i of 1 and V of 2. The form of the potential energy with respect to the intermolecular 

separation for the different arrangements of the Gay-Berne discogen is shown in figure 3.5. 
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Figure 3.5: The Gay-Berne potential parametrised for disc-shaped mesogens with c /Oj . of 0.345, e/e^ of 5.0, 

|X o / 7 and v of 2. U*(r'*) is the scaled potential energy at a particular scaled separation r*. 

3.3 The molecular dynamics simulation 

The simulation was performed in the constant NVE or microcanonical ensemble, with 256 

particles in a cubic box with periodic boundary conditions. A minimum image summation 

and a spherical cut-off of 2.00^ were also employed, the latter value chosen as at this point, 

the potential energy for the model is essentially zero, (see figure 3.5). The scaled density 

p* of 2.5 was used, this being chosen according to the arguments given in §3.1. The 

simulation was started from an a-f.c.c. lattice with all 256 particles parallel. A scaled time 

step bt* of 0.005 was used, with the simulations being performed on an IBM 3090-VF 

mainframe, with each time step needing 1.5s of c.p.u. time. The phases were identified by 

graphic visualisation of configurational snapshots and the calculation of various structural 

distribution functions. Since it was not possible to melt a lattice with a scaled density p* of 

2.5, the simulation was started from a lattice with a lower density of 1.8, which was 

equilibrated at the scaled temperature T* of 4.0, for 10,000 time steps. 
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The density was then increased via the intermediate densities of 2.1 and 2.4 scaled units 

until the desired density, p* of 2.5, had been reached. Equilibration stages of 10,000 time 

steps were performed after each density rise with the orientational order parameter {P^ and 

radial distribution function monitored to ensure that the system had melted. This left the 

simulation at a temperature T* of 4.0 and a density p* of 2.5, for which the order parameter 

(Pj) was 0.897. This indicated that the system was in a highly orientationally ordered state, 

but from the g(r*) and graphic snapshots it was clear that the system was in a nematic 

phase. The temperature was then raised by 1.0 to 2.0 scaled units, with equilibration stages 

of 10,000 time steps and production stages of 8,000 time steps until T* had reached 14.0. 

From previous studies, this temperature should be high enough to form an isotropic liquid; 

this proved to be the case with {P^ having fallen to a value of approximately 0.1, the value 

not being zero due to the associated systematic error in the eigenvalue of the Q tensor (see 

§24). 

The scaled time step could have been adjusted at each state point to give acceptable 

temperature and energy conservation, but was not necessary as the values were generally to 

within a few parts in lO'*. From the state point p* of 2.5 and T* of 14.0, the temperature 

was lowered in steps of 0.5 to 1.0 scaled units until a temperature T* of 0.5 was achieved. 

By now the order parameter {P^ had reached a value of 0.995, consistent with a very 

highly orientationally ordered phase, probably a crystalline phase. For each state point, the 

system underwent an equilibrium stage consisting of between 10,000 and 60,000 time 

steps, until the temperature and order parameter had reached constant values. A production 

stage was then performed in which the temperature scaling was turned off and the 

simulation run until the values of the properties, T* and had reached equilibrium. The 

values of the important properties obtained from the cooling run are given in table 3.1. 



69 

s a T * A c t u a l T * 

1 4 1 3 . 4 1 ± 0 . 2 1 3 0 1 0 - 6 . 5 6 ± 0 . 5 4 0 . 1 0 6 ± 0 . 0 5 1 

1 3 1 2 . 8 8 ± 0 . 1 9 3 0 1 5 - 7 . 2 1 ± 0 . 4 1 0 . 0 9 4 ± 0 . 0 1 3 

1 2 1 2 . 0 5 ± 0 . 2 4 3 0 1 0 - 8 . 0 7 ± 0 . 6 1 0 . 1 0 2 ± 0 . 0 1 9 

1 1 1 1 . 0 5 ± 0 . 1 4 3 0 2 5 - 9 . 2 1 ± 0 . 5 3 0 . 1 2 1 ± 0 . 0 2 5 

1 0 1 0 . 7 7 ± 0 . 1 2 3 0 2 0 - 9 . 6 9 ± 0 . 5 9 0 . 1 5 1 ± 0 . 0 2 1 

9 9 . 0 9 ± 0 . 1 4 6 0 1 0 -16.12 ±0 .56 0 . 5 5 6 ± 0 . 0 2 5 

8 8 . 1 1 ± 0 . 0 9 2 0 1 0 - 1 9 . 8 6 ± 0 . 4 6 0 . 6 8 2 ± 0 . 0 1 4 

7 7 . 1 7 ± 0 . 0 7 2 0 1 0 - 2 3 . 9 4 ± 0 . 4 7 0 . 7 9 7 ± 0 . 0 1 1 

6 5 . 9 4 ± 0 . 0 8 1 5 1 0 - 2 7 . 5 1 ± 0 . 5 4 0 . 8 5 9 ± 0 . 0 1 2 

5 5 . 0 4 ± 0 . 0 5 1 5 1 0 - 3 0 . 0 2 ± 0 . 3 2 0 . 9 0 1 ± 0 . 0 1 5 

4 4 . 0 4 ± 0 . 0 6 1 5 1 0 -32.73 ± 0.35 0 . 9 3 1 ± 0 . 0 1 5 

3 3 . 0 3 ± 0 . 0 4 1 5 1 0 - 3 5 . 4 4 ± 0 . 4 1 0 . 9 5 2 ± 0 . 0 1 1 

2 2 . 0 1 ± 0 . 0 2 2 0 1 0 - 4 1 . 5 1 ± 0 . 1 7 0 . 9 8 1 ± 0 . 0 0 7 

1 0 . 9 8 ± 0 . 0 3 1 0 1 0 - 4 4 . 3 2 ± 0 . 0 9 0 . 9 9 1 ± 0 . 0 0 3 

0 . 5 0 . 5 5 ± 0 . 0 1 1 0 1 0 - 4 5 . 4 4 ± 0 . 0 8 0 . 9 9 5 ± 0 . 0 0 2 

Table 3.1: Values o f f * , (U*) and {P,} for the simulation at of 2.5, where and TVp are the number of 

time steps performed during the equilibrium and production stages. 

3.4 Results and discussion 

3.4,1 Orientational properties 

Second and fourth rank order parameters: The variation of the second rank order 

parameter with temperature T* for the cooUng run of the simulation is shown in figure 

3.6. As the temperature was lowered from T* of 13.41 to 10.77, {P^) remained relatively 

constant at around a value of 0.1, suggesting that the phase is isotropic. This value of 

was not exactly zero because the system was probably fluctuating between the isotropic 

and nematic phases, although there is also an inherent statistical uncertainty in the value of 

(f;), when calculated from the Q tensor, of the order of INNI.Q. 0.0625. When the system 

was cooled from T* of 9.09 to 0.55, the order parameter rose until it attained a value close 

to unity, the gradual increase in the order parameter suggesting that we had formed 

intermediate orientationally ordered phases. As with previous simulations'^', the change in 

(Pj) from the disordered phase (above T* of 9.09) to an ordered phase {T* of 9.09 and 

below) was relatively sharp indicating a possible first order transition. 
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Figure 3.6: Variation of the order parameters (P^) and {P^ with scaled temperature T*. 
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Figure 3.7: The plot of / ( c o s ( i ) / o r the system at the scaled temperatures T* indicated. 
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The variation of the fourth rank order parameter {P^ with the scaled temperature T* for the 

cooling run is also shown in figure 3.6. The shape of the curve mimics that obtained for 

(Pj). though the values are lower as expected. There is also a rise in {P^ at the phase 

transition, between 7* of 10.77 and 9.09, as for the second rank order parameter, though it 

is not quite so pronounced. 

Singlet orientational distribution function: The singlet orientational distribution function 

/(cosp) for both the isotropic and discotic nematic phases are shown in figure 3.7. For the 

isotropic phase, T* of 10.77, we can see that the probability is essentially the same for all 

orientations, showing the randomness of the system. For the discotic nematic phase, at T* 

of 9.09, the plot of/(cosl3) peaks at cosP equal to one, as expected, indicating that there is a 

preferred direction of orientation. The plot decays as the value of (3 increases towards an 

orientation perpendicular to the director, telling us that very few particles lie with their 

symmetry axes along this direction. As the temperature is lowered, the peak at cosp of 1 

grows, reflecting the increased ordering of the particles with their symmetry axes parallel 

to the director. A comparison of the orientational properties compared with the predictions 

of the Maier-Saupe theory will be presented in §3.4.5. 

3.4.2 Thermodynamic properties 

Internal energy: The plot of the scaled internal energy per particle ([/*) (= {U)/Nef) against 

scaled temperature T* is shown in figure 3.8. This graph indicates two changes in the slope 

of the internal energy; the first change in (U*) between the temperatures 10.77 and 9.09, 

agrees with the change in the second rank order parameter (P^), in that the system has 

undergone a phase transition from a disordered to an ordered state, more than likely the 

nematic - isotropic phase transition. The second discontinuity in the plot of {[/*) occurs 

between the lower scaled temperatures, T* of 3.03 and 2.01. This indicates another phase 

transition, this time between two orientationally ordered phases. However at this stage we 

do not have enough information to speculate on what mesophases these may be. 
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Figure 3.8: Variation of the internal energy (U*) with the scaled temperature T*. 
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Figure 3.9: Variation of the heat capacity (Cy*) with the scaled temperature T*. 
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Heat capacity: The plot of the scaled heat capacity (C ,̂*) (= (Cy)/ATCg) against temperature 

is shown in figure 3.9. This shows the heat capacity as calculated from both the 

fluctuations in the kinetic energy and the differentiation of the internal energy {U*). The 

graph from the fluctuation method yields no real information about the system, though 

there seems to be a large peak corresponding to the nematic - isotropic transition at around 

T* of 9.09 but this is only one value which may well be in error. The heat capacity from 

the cubic spline differentiation of the internal energy only reveals the discontinuities 

already present in the plot of (f/*), and as such gives us no new insight into the behaviour 

of the system. 

3.4.3 Structural Properties 

Graphic visualisation and g(r*): Of the various properties calculated during the course of 

the simulation, the two with the most readily accessible information are the radial 

distribution function g(r*), (see §2.4) and computer graphic visualisation. The latter 

technique consists of taking a single configuration from the production run, and displaying 

the image using the Silicon Graphics GL graphics library. This method represents each 

particle as a solid three dimensional ellipsoidal body, giving a realistic view of the system. 

But there is a fundamental difference between the technique and the g(r*) as it shows just 

one configuration at one point in phase space, while the g(r*) is averaged over many 

configurations of the simulation. 

The radial distribution function g(r*), plotted against the scaled temperature for the 

simulation is shown in figure 3.10. The first phase to be identified is that at T* of 10.77 and 

above, previously assigned as the isotropic fluid, due to the low orientational order present. 

We can see that the plot of g(r*) shows no long range translational order and only a small 

amount of short range order though even this appears to be more consistent with a gas 

phase than an isotropic fluid, a point we shall discuss later. The small peak at r* of 0.8 

seems to indicate that the particles, rather than existing in an edge-to-edge arrangement, as 

would be given by a peak at LOa^, seem to prefer to lie in a slightly overlapping 

arrangement. The configurational snapshot, (see figure 3.12), reveals no major 

orientational or translational order, so we can safely assign this phase as the isotropic fluid. 
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Figure 3.10: The radial distribution function g(r*) at the scaled temperatures T* indicated. 
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Figure 3.11: The radial distribution function g(r*) at the scaled temperatures T* indicated. 
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The next phase to be investigated is that possessing orientational order, occurring between 

the temperatures T* of 9.09 and 3.03, the boundaries indicated by the plot of the scaled 

internal energy ((/*), (see figure 3.8). At the higher temperature of 9.09, it is noticeable 

that although the phase has a high orientational order, the plot of the g{r*) is essentially the 

same as that of the isotropic fluid, showing once again the lack of long range translational 

order. There is a slight peak at r* of 0.9, showing the preference for a slightly overlapping 

edge-to-edge arrangement. Considering these factors, namely long range orientational 

order but short range translational order, we identify this phase as the discotic nematic 

phase. This is illustrated by the configurational snapshots, taken a) parallel and b) 

perpendicular to the director and shown in figure 3.13. 

Figure 3.12: The configurational snapshot for the isotropic phase at the scaled temperature T* of 10.77. 
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b) 

Figure 3.13: The configurational snapshots taken a) parallel and b) perpendicular to the director for the 

discotic nematic phase at the scaled temperature T* oj 9.09. 
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Inspection of the plot of the radial distribution function and the configurational snapshots 

for T* of 3.03, the low temperature limit of the discotic nematic phase, revealed two 

interesting features. First, a peak at r* = 0.5, which is present at higher temperatures and 

probably represents the face-to-face arrangement, has become more prominent though its 

maximum value was still lower than one i.e. the value for the gas phase. This suggests that 

even though the face-to-face arrangement is still not favoured compared to the 

edge-to-edge, the increase in the peak height reflects an increase in face-to-face ordering. 

It might seem that this behaviour, as indicated by the plots of g(r*), is somewhat strange 

but it is consistent with results obtained from theoretical and molecular dynamics 

studies'^ *̂̂  of hard, oblate ellipsoids and from the previous simulations of the Gay-Berne 

discogen'^'. The explanation for the low value of the peak at r* of 0.4 comes from the 

definition of the radial distribution function'* '̂. It measures the number of particles in a 

spherical shell of a certain width from the origin, scaled with the number of particles in an 

ideal gas. Because of the excluded volume of the discogen, the number of particles that lie 

within a spherical shell of radius is necessarily less than that appearing in the scaling 

factor. 

The second feature of note is the peak found at r* of 0.9 when T* of 9.09, which has now 

moved to r* of 1.0 at the lower temperature, showing that the particles in the edge-to-edge 

arrangement, previously overlapping, have now moved into a real edge-to-edge 

arrangement. Again this shows, that despite the phase still being a discotic nematic, there is 

possible pretransitional, translational ordering occurring before the onset of a columnar 

phase. The configurational snapshots do indeed show the phase as a discotic nematic. The 

view of the image parallel to the director, (see figure 3.14a), shows a random distribution 

of particles, while the view perpendicular to the director, (see figure 3.14b), illustrates the 

presence of high orientational order but with short range translational order. 

We have now identified two different phases, an isotropic fluid at temperatures T* of 10.77 

and above, and the liquid-crystalline discotic nematic phase between T* of 9.09 and 3.03. It 

now remains to characterise the highly orientationally ordered phase or phases at 

temperatures lower than T* of 3.03. 
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a) 

b) 

Figure 3.14: The configurational snapshots taken a} parallel and b) perpendicular to the director for the 

discotic nematic phase at the scaled teniperatiire T* of .^.03. 
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The first feature of interest is the peak at r* of 0.46, which corresponds to the particles 

approaching each other in a face-to-face arrangement. Though present in the nematic 

phase, it was not of sufficient intensity to be considered as a structural feature, but as the 

height of this peak is above one, this suggests that columnar order has been formed, but as 

the thickness of a disc is 0.345(7^, the particles are not close packed within each column. 

The peaks around l.Oag seem to indicate an edge-to-edge arrangement though no definite 

assignments can be made at this stage because we do not know the symmetry of the phase. 

We can distinguish between two possible ordered phases by comparing the maximum 

values of g(r*). For the temperatures T* of 0.98 and 0.55, at r* of 0.46, the maximum 

value of g(r*) ~ 6 and as the height of the peaks represents the number of nearest 

neighbours, and assuming hexagonal or rectangular symmetry, which is not unreasonable, 

we could assign the phases at these temperatures as crystals. 

For the temperature T* of 2.01 though the value of g(r*) is high, at around 3, we can 

deduce that though it is highly ordered, it is not a crystalline phase. So what is it? Looking 

at the configurational snapshots, (see figure 3.15b), it is obvious that the system has formed 

a columnar phase, with particles in neighbouring columns being interleaved with respect to 

each other. This is not remarkable in itself as exactly the same structure was observed in 

earlier work'^', via g| |(r | |*), which gave the distance between particles in a face-to-face 

arrangement as O.llOg, half the actual difference as revealed by the g(r*). On closer 

examination however, looking down the director, (see figure 3.15a), we can see that the 

columns have arranged themselves into a hexagonal net. This is in contrast to the square 

net produced at the higher densities p* of 2.7 and 3.0. 

Having proposed a D,̂  symmetry for the columnar phase and seen that the particles within 

the columns are ordered and staggered with respect to particles in neighbouring columns, 

we can now assign the peaks in the radial distribution function with greater certainty, (see 

figures 3.10 and 3.11). The peak at r* ~ 0.5 represents the particles stacking face-to-face to 

form columns. 
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a) 

b) 

Figure 3.15: The configurational snapshots taken a) parallel and h) perpendicular to the director for the 

columnar phase at the scaled temperature T" of 2.01. 



81 

The peak at around O.Qag is from particles within the same column but an extra 0.460,, on, 

while the peak at r* of 1.1 is the distance between particles in neighbouring columns, 

which is slightly greater than 1 because they are not in the same plane but staggered. The 

peaks at scaled distances greater than r* of 1.5 come from a complicated superposition of 

particles in various arrangements with the main contributions being from the next shell of 

columns packing in a hexagonal fashion, r* of 1.8 and 2.1, and from particles along a 

column. But why are the particles within a columnar interdigitated rather than lying in 

plane with particles in neighbouring columns? and why are the particles evenly spaced 

within each column rather than in an random arrangement? These questions can be 

answered by looking at the plots of the energy of interaction between two particles with 

their symmetry axes parallel i.e. in a face-to-face and edge-to-edge arrangements, (see 

figure 3.5). Within a column, the particles are about 0.46(7^ apart, inferred from the g(r*), 

thus it seems that the minimum separation depends on the minimum energy distance, this 

being ~ 0.5(7 .̂ But why are the particles within a columnar interdigitated rather than lying 

in plane with particles in neighbouring columns? We have seen in both the isotropic and 

discotic nematic phases, that the particles prefer to pack in a slightly off edge-to-edge 

arrangement. From the packing behaviour, we expect two hard ellipsoids to slip over each 

other rather than lie in the same plane, and from figure 3.5, we can see that in a slightly 

overlapping edge-to-edge arrangement, there is still a considerable attractive part of the 

potential which will help stabilise this arrangement. But we must not overlook the effect, 

the fixed size and shape of the simulation box might have on the packing of the columns. 

The orientational correlation function: The graph of GjCr*) for various scaled temperatures 

is shown in figure 3.16, the range of the graph being determined by the maximum size of 

the simulation box i.e. 2.34(7 .̂ For the isotropic fluid, T* of 10.77, there is essentially no 

long range orientational order as the limiting value of decays rapidly to zero. In the 

nematic phase, T* of 9.09, the plot of GjCr*) has a non-zero limiting value, equivalent to 

(see table 3.2) showing the persistence of long range orientational order. This leads to 

a value of 0.552 for the order parameter which is in good agreement with (P^) of 0.556, 

obtained from the Q tensor. The plots for G^ir*) at the other values of T* all show 

increasing long range orientational order as the system is cooled. 
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The high values at separations less than O.SOg, indicate that the particles at these separation 

are in a face-to-face arrangement, having their orientation vectors parallel, hence their 

value of GjCr*) of 1, though this does not mean that the face-to-face arrangement is 

necessarily favoured. Also noticeable for the higher temperatures, is a slight peak at around 

r* of 1. This illustrates, that for particles at this distance apart, in an edge-to-edge 

arrangement, there is a greater degree of short range orientational order. 

r* = 2.oi 
r* = 3.03 

0.8 -

T* = 5.94 

0 .4 -

T* = 9.09 

0.2 -

r* = 10.77 

Figure 3.16: The pair orientational correlation function G^{r*)for the scaled temperatures T* indicated. 

Y* from Q from 

tensor 

10.77 ±0.12 0.151 ±0.021 

9.09 ±0.14 0.556 ± 0.025 0^52 

5.94 ±0.08 0.859 ±0.012 0.857 

3.03 ± 0.04 0.952 ±0.011 0.951 

2.01 ±0.02 0.981 ±0.007 0.982 

0.55 ±0.01 0.995 ± 0.002 0.995 

Table 3.2: Values of{P^ calculated from the Q tensor and the limiting values ofG^(r*). 
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Longitudinal and transverse pair correlation functions: These distribution functions are 

essentially the radial distribution function along a direction either parallel or perpendicular 

to the director. Figures 3.17 and 3.18 show the g| |(r | |*) for temperatures between T* of 

12.05 and 0.55. We can see that for the isotropic phase, T* of 12.05 and 10.77, and the 

nematic phase, between T* of 9.09 and 3.03, there is little indication of any short range or 

long range translational order along the director, though there is a very small, broad peak 

centred at about 0.5oQ within the nematic phase. This does increase slightly in intensity as 

the temperature is lowered and represents a build up of short range translational order in 

the form of the face-to-face arrangement. For the columnar phase we expect the plot of 

g| |(r | l*) to be very different. It shows a series of highly defined peaks which should 

correlate to the inter-particle distances within the columns. The distance between the peaks 

is about 0.22(7^ which is half the value given by the radial distribution function g(r*) for 

the face-to-face distance, thus what the g| |(r||*) is actually showing is the vertical distance 

between one particle and its next nearest neighbour in an adjacent column. 

We can now investigate the translational structure perpendicular to the director by looking 

at the transverse pair correlation function (see figures 3.19 and figure 3.20). For the 

isotropic phase at T* of 10.77 and the nematic phase at T* of 9.09, we see little structure 

except for a small peak at around 0.9ag indicating some correlation between particles in an 

overlapping edge-to-edge arrangement. The absence of any particles in the face-to-face 

arrangement is shown by the plot of taking a value below 1 at r* of 0.0. 

At T* of 3.03, the lowest temperature of the discotic nematic range, the graph of 

shows that the peak, originally at 0.90^ has now moved to 1 .OOg indicating the preference 

for the edge-to-edge arrangement. There is also an additional peak at r* of 0.0. This is 

picking up particles directly above each other, in the process of forming columns i.e. in the 

face-to-face arrangement. Again this is an indicator of the pretransitional ordering present 

within the discotic nematic phase at this temperature. In the columnar phase, T* of 2.01, 

the arrangement between the columns becomes more apparent. 
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The peaks at r* of 0.0 and 1.0 indicate a columnar structure, the particles within the same 

column being represented at r* of 0.0 with neighbouring columns being l.OOg apart, and 

not interpenetrating as in the square columnar phase. The peak at r* of 1.8 originates from 

the next shell of columns in a hexagonal arrangement. 

Density distribution functions: The density distribution functions p| |(r| |*) and for 

the discotic nematic and columnar phases, again show the onset of long range translational 

order at the lower temperature. The density distribution function Pj |(r| |*) illustrates nicely 

the onset of long range translational order in the system along the director, (see figure 3.21 

and figure 3.22). For the nematic phase, the plot is linear but for the columnar phase, T* of 

2.01, the plot is dramatically different, with the peak position, being a measure of the 

distance between particles within each column. This is given, from the plot of p| | (r | |*) as 

0.21 but again this does not agree with the value of 0.5 for the face-to-face arrangement as 

given by the g(r*). As with the g| |(r | |*), what this distribution function is revealing is the 

distance between neighbouring particles in adjacent columns, backing up the conclusion 

that the neighbouring columns are interdigitated. 

Figures 3.23 and 3.24 shows the distribution of the particles perpendicular to the director, 

For the discotic nematic phase, T* of 3.03, we can see some small amount of order 

within the simulation box, while for the columnar phase at T* of 2.01, the plot of the 

P±(̂ _L*) indicates the formation of the columns across the box, each one being roughly 

l.OOg apart. It is unfortunate that the plane of r* is not unique in that we cannot 

distinguish between the two orthogonal planes x and y, perpendicular to the director, as this 

would yield greater information about the structure of the phase under investigation. A 

similar restriction occurs when we calculate both the and the X-ray diffraction 

patterns in the next chapter. 
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0.0 0.5 
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1.0 1.5 

7*= 12.05 

7* = 10.77 

7* = 9.09 

r* = 5.94 

2.0 2.5 

Figure 3.17: The longitudinal pair correlation function g| [(/"i |*) at the scaled temperatures T* indicated. 
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Figure 3.18 The longitudinal pair correlation function |(''| |*) at the scaled temperatures T* indicated. 
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2.0 

1.5 -

1.0 -

0.5 -

0.0 

0.0 0.5 

r * = 12.05 

7* = 10.77 

T* = 9.09 

r* = 5.94 

1.0 

"1 ' 1 ' 

1.5 2 .0 2.5 

Figure 3.19: The transverse pair correlation function gj(r^*) at the scaled temperatures T* indicated. 

T* = 3.03 

r* = 0.98 

2.0 -

Figure 3.20: The transverse pair correlation function gjir^*) at the scaled temperatures T* indicated. 
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3.0 

2 .5 -

2.0 

P| | (r | 

1.5 

1.0 -

0.5 -

0.0 

r * = 12.05 
T* = 10.77 
r* = 9.09 
T* = 5.94 

Figure 3.21: The density distribution function P| |(r| |*) at the scaled temperatures T* indicated. 

r* = 3.03 T* 

T* = 0.98 T* 

3.0 -

P | | ( r | | * ) 
2.0 -

1.0 -

Figure 3.22: The density distribution function p| |(r| |*) at the scaled temperatures T* indicated. 
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Figure 3.23: The density distribution function pj^(rj^*) at the scaled temperatures T* indicated. 
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Figure 3.24: The density distribution function pj^(rj^*) at the scaled temperatures T* indicated. 
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3.4.4 Dynamic properties 

One of the advantages of using the molecular dynamics technique over Monte Carlo is that 

we can calculate the dynamic as well as the static properties of a system; this can be 

especially useful in characterising highly ordered phases such as the columnar and solid 

phases. The two dynamic or time dependent properties that we have calculated are the 

mean squared displacement and the velocity autocorrelation function. But before we 

investigate these properties, we should discuss the mass and the moment of inertia which 

are used to scale other quantities in these simulations such as the time. As we have seen, 

(see §2.4), the motion of the simulation particles can be separated into two components, 

translational and rotational motion. The translational movement of the particles is 

dependent on their mass which is given a value of 1, while the rotational motion is 

governed by the moment of inertia tensor I. But when the trajectories of the particles are 

calculated by solving the equations of motion, a value of 4 is given for the moment of 

inertia /* to ensure that the optimum translational and rotational time steps are 

approximately the same. This value is not the same as that calculated from the equation, 

J* _ 1 + ((Te/Gs)̂  /o 
' - 20 ' I ^ 

for an ellipsoid with mass of 1. Using this equation leads to a value for /* of 0.05 for our 

Gay-Berne ellipsoid. Thus to be perfectly rigorous, any quantitative dynamic measurement 

obtained from the simulation will be incorrect, but the use of these correlation functions in 

a purely qualitative manner in determining and analysing the various mesophases is 

undiminished. It is with this in mind, that we will now discuss the results for the time 

dependent properties. 

The mean squared displacement: By measuring the distance moved by a particle with time, 

a plot of the scaled mean squared displacement can show how fluid a system is, 

particles being able to move more freely in a liquid phase than in a solid while the motion 

is also qualitatively different between the two phases. The total mean squared displacement 

for a variety of scaled temperatures is shown in figures 3.25 and 3.26. These were 

calculated using the method described in §2.4, with the tape file, consisting of particle 

position, orientation and velocity, extending to 10,000 time steps i.e. 200 data points. 
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T* = 12.05 

= 10.77 
m*{t*) -

T* = 5.94 

r* = 3.03 

Figure 3.25: The mean squared displacement m*{t*) at the scaled temperatures T* indicated. 

0,10 

T* = 3.03 

0.08 -

0.06 -
r * = 2 . 0 1 

0.02 -

Figure 3.26: The mean squared displacement m*(t*) at the scaled temperatures T* indicated. 
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It is interesting to see that in the discotic nematic phase at T* of 9.09 the particles are less 

mobile than in the isotropic phase, T* of 10.77. This is in contrast to the results at the 

higher density of p* of 3.0, in which particles in the discotic nematic phase had more 

translational freedom than particles in the isotropic phase. As the temperature is lowered to 

r * of 3.03, the slope of the plots decrease indicating the increasing viscosity of the 

phases, though the plots are linear with time, highlighting the liquid-like behaviour of the 

discotic nematic mesophase. Figure 3.26 shows the mean squared displacement for scaled 

temperatures lower than 7* of 3.03. The different form of the for these 

translationally ordered phases, compared to the discotic nematic phase, can be explained by 

the high degree of rattling motion within the former, resulting in the steep feature at the 

origin i.e. librational motion about a mean position. 

The mean squared displacement can also be resolved into two components, parallel and 

perpendicular to the director. Figure 3.27 shows both the parallel M?||*(f*) and 

perpendicular components for the simulation at a selection of scaled temperatures. 

Both plots of the within the isotropic phase are very jagged due to the orientation of 

the director rapidly changing as the mean squared displacement is being calculated. Within 

the nematic phase, T* of 9.09, the particles have more translational freedom in a direction 

perpendicular rather than parallel to the director. This is to be expected as the disc-shaped 

particles are able to slip over each other relatively easy in this direction. But again these 

plots deviate from linearity with a distinct plateau at long times. This raises the question as 

to are we following the behaviour for long enough times to be in the diffusional limit. As 

the temperature is lowered, the behaviour of the system remains the same, in that the 

particles have greater translational freedom perpendicular to the director, as shown by the 

lowest temperature, T* of 3.03, (see figure 3.27d), of the discotic nematic phase, though 

the actual extent of the motion is less than at the higher temperatures. 

The phase transition between the discotic nematic and columnar/crystal phases is shown by 

the major change in the mean squared displacement at T* of 2.01, (see figure 3.27e). It is 

interesting to see that the particles find it easier to move side-to-side within rather than 

along a column. For the crystal phase we can see that the particle motion has essentially 

ceased, (see figure 3.271). 
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a) T* = 10.77 b) T* = 9 .09 

c) T* = 5.94 d T* = 3 .03 

o r * = 0 .55 e) 7-* = 2.01 

Figure 3.27: The mean squared displacement resolved parallel, m| |*(r*), and perpendicular, m*{t*), to the 

director, at the scaled temperatures T* indicated. 
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The diffusion coefficient D can be obtained from the plot of the mean squared 

displacement via the Einstein relationship, (see equation (2.62)). It can also be calculated 

from integration of the velocity autocorrelation function, (see equation (2.63)). We give the 

results from these calculations in table 3.3. For the scaled total diffusion coefficient D*, we 

can see that it decreases as the translational order within the system increases. The same 

situation applies to the components of the diffusion tensor parallel and perpendicular to the 

director. From the ratio of these components, D* | \ ID*for the nematic phase, r* between 

9.09 and 3.03, the difference between the motion in these directions increases as the 

ordering builds up. It becomes easier for the particles to move perpendicular to the director 

i.e. for the ellipsoidal particles to slip over each other. Unfortunately, the values obtained 

from integration of the do not correlate with those obtained from the w *(?*). This 

is probably due to errors associated with the truncation of the plots of which as 

observed in figure 3.29, do not decay exactly to zero after t* of 0.25, the limit of our 

calculation due to limitations in computer storage. 

There can also be another problem when calculating the diffusion coefficient by these 

differing methods. The velocity autocorrelation function decays to zero relatively quickly, 

sometimes over the first 250 - 500 time steps of a simulation, while the diffusion 

coefficient from the mean squared displacement is obtained when the slope of the function 

is linear which can be many thousands of time steps in to a simulation. In theory, if the 

system is in equilibrium, this should not make any difference, though in practice it seems 

that the statistics are better at longer time scales. 

T* Phase 
D* 

from 
m*{t*) 

D* 
from 

C U*) 
^vvuny- ) 

D*s| D\ 

10.77 1 1.612 0.023 - - -

9.09 N 1.318 0.025 0.432 0.579 0.78 

5^4 N 1.123 0.027 0.162 0.51 0 J 2 

3.03 N 0.367 0.023 0.04 0.154 0 2 6 

2.01 Dh 0.002 0.005 0.003 0.005 0.6 

Table 3.3: The values of the scaled diffusion coefficients for the system at the scaled temperatures T* 

indicated. 
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The velocity autocorrelation function: Figures 3.28 and 3.29 show the plots of the total 

velocity autocorrelation function Cyy(t*) as a function of scaled time t* for a variety of 

scaled temperatures throughout the simulation. At t* of 0, Cyy(t*) has the value of one, by 

definition of Cyy(t*) as a normalised quantity, indicating that the velocities are the same. 

Then as the simulation proceeds, the value of Cyy(t*) drops gradually as the velocities from 

the current time step v(f*) become less correlated with the initial velocity v(0). Eventually 

the graph decays to a value approaching zero as the velocities from the two time steps 

under comparison become uncorrelated. In contrast to the mean squared displacement, 

which can be measured over large time scales, t* of 10, the Cyy(t*) is calculated over just 

the first 250 time steps of the simulation, t* of 0.25. This is an order of magnitude less 

indicating that velocity correlations are lost over a relatively short time scale. 

Looking at the plot for the total Cyy{t*), (see figures 3.28 and 3.29), in greater detail, we 

can see that, for the isotropic and nematic phases, the correlation of the velocities decays 

rapidly after t* of 0.05 and approaches zero within t* of 0.10. The behaviour at T* of 3.03 

is slightly different however, perhaps reflecting the pretransitional ordering within the 

phase. The plot does not decay to zero until t* of 0.175, having become negative in sign. 

This reflects the particles undergoing collisions with each other which reverses the 

direction of the original motion. The behaviour in the columnar phase, T* of 2.01, is 

dramatically different, with a large negative region, indicating the increased rattling motion 

within each column, this effect being observed in the plot of m*(t*). 

As with most correlation functions, the velocity autocorrelation function for the 

translational motion can be resolved parallel and perpendicular to the director, giving 

additional information about the dynamics within the phase. In the isotropic phase, the 

motion in both directions is very similar, with the Cyy(t*) decaying to zero after about t* of 

0.07, (see figure 3.30a). The plot of the Cyy(f*) for the discotic nematic phase at T* of 9.09 

shows, as expected, that the movement of the particles parallel to the director is more 

hindered than in a direction perpendicular to the director. This can be deduced from the 

plot as the Cyy(t*) decays quicker and the sign of the Cyy{t*) in the parallel direction is 

negative indicating a reversal of the velocity, resulting from a particle collision. 
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Figure 3.28: The velocity autocorrelation function Cyy(t*) at the scaled temperatures T* indicated. 
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Figure 3.29: The velocity autocorrelation function Cyy{t*) at the scaled temperatures T* indicated. 
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a) 7"*= 10.77 b) T* = 9.09 
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c) T* = 5.94 
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Figure 3.30: The velocity autocorrelation function resolved parallel, Cyy\ and perpendicular, Cy^,J^t*), 

to the director, at the scaled temperatures T* indicated. 
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At the lower temperature T* of 3.03, for the discotic nematic phase, the shape of the 

Cyjit*) is the same as at T* of 9.09 but the features are more pronounced, for example, 

|(r*) falls to a very low value and even Cyyjit*) undergoes a sign reversal, in contrast to 

the system at T* of 9.09. This shows the greater structure and hence slower movement of 

the particles at the lower temperature, resulting from a more significant cage effect. 

Inspection of the plot for C^f* ) for the columnar phase at T* of 2.01, shows that 

movement in both directions is strongly hindered, especially in the parallel direction where 

the many oscillations in the plot indicate a rattling motion caused by particle collisions. It is 

also interesting to note that the particle movement perpendicular to the director decays to 

zero very slowly, only after about t* of 0.2 indicating considerable residual movement 

perpendicular to the director. 

3.4.5 Location of the phase transitions 

We have just discussed in depth the behaviour of the Gay-Berne discogen via the 

calculation of various structural and dynamic properties and have shown that on cooling 

from the isotropic fluid, discotic nematic, hexagonal columnar and crystal phases are 

formed. But it still remains to determine more precisely, or at least a more accurately the 

discotic nematic - isotropic transition temperature and the range of the hexagonal columnar 

phase. 

Discotic nematic to isotropic transition: We have carried out additional simulations to 

locate the discotic nematic - isotropic transition with a greater accuracy. We know from the 

initial simulation that the transition lies between the scaled temperatures T* of 10.77 and 

9.09. So starting from the isotropic phase at T* of 10.77, we reduced the temperature in 

steps of 0.1 to 0.2 scaled temperature units, with equilibration runs of between 30,00 and 

60,000 time steps being performed at each state point. Production runs of between of 

10,000 and 25,000 time steps were then performed. Looking at the temperature dependence 

of the order parameter (f^), (see figure 3.31), we can see that the values exhibited by the 

system in the isotropic phase are non-zero, so deciding where the phase transition can be 

difficult. For real systems of rod-shaped molecules, it is generally thought that the order 

parameter has a value of = 0.35 at the transition, and as the transition between discs seems 

to be weaker, we could deduce that the transition might be between r* of 9.84 and 9.73. 
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Setr* Actual T* #p/10' <[ /* ) 

10 10.77 ±0.21 30 10 -9.69 ± 0.54 0.151 ±0.051 

9.9 9.91 ±0.19 30 15 -10.84 ±0.41 0.178 ±0.013 

9.8 9.84 ± 0.24 30 10 -11.63 ±0.61 0.274 ±0.019 

9.7 9.73 ±0.14 30 25 -12.41 ±0.53 0.339 ±0.025 

9.6 9.61 ±0.22 30 20 -12.11 ±0.59 0.285 ±0.021 

9.5 9.52 ±0.14 60 10 -12.39 ±0.56 0.315 ±0.025 

9.4 9.36 ±0.11 60 20 -15.85 ±0.28 0.517 ±0.018 

9.2 9.21 ±0.29 60 10 -15.99 ±0.25 0.538 ±0.022 

9 9.09 ± 0.44 60 10 -16.12 ±0.55 0.556 ±0.025 

Table 3.4: Values ofT*, (U*) and {P^ for the simulation of the nematic - isotropic transition at p* of 2.5, 

where and TVp are the number of time steps performed during the equilibrium and production stages. 
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Figure 3.31: Location of the discotic nematic - isotropic transition as shown by {P^ and {U*}. 
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But it is good practice to look at many different properties of the system before making any 

firm conclusions about the phase behaviour. If we now add the plot of the internal energy 

per particle (U*), we can make a slightly different interpretation of the order parameter. 

Any discontinuity in the plot of (U*) usually demonstrates a first order phase transition, 

though at constant volume the transition is more continuous as there will be a biphasic 

region, and from this we can see that the discotic nematic - isotropic phase transition 

occurs between r* of 9.52 and 9.36. 

Discotic nematic to columnar transition: To locate this phase transition we followed a 

similar procedure to that for the discotic nematic - isotropic transition. Starting from the 

discotic nematic phase at T* of 3.03, we slowly decreased the temperature in steps of 0.1 

scaled units, with equilibrium runs ranging from between 15,000 to 100,00 time steps and 

production runs from 10,000 to 40,000 time steps. The actual location of the transition 

temperature for the columnar - discotic nematic transition is relatively easy. Inspection of a 

plot of the longitudinal distribution function g| |(r| |*), (see figure 3.32), reveals the onset 

of translational order along the director indicating that the transition occurs between T* of 

2.73 and 2.61. 

Once we had located the columnar - discotic nematic transition we decided to continue and 

find the range of the columnar phase and if possible, locate a crystal - columnar phase 

transition. The temperature was further reduced in 0.1 steps until T* of 1.5. Looking at 

plots of (Pj), (P^), ([/*) and (Cy*) revealed no discontinuity or indication of a phase 

transition. The only distribution/correlation function that showed a possibility of any phase 

transition was the total mean squared displacement, (see figure 3.33). For comparison, we 

have also included the plot for the discotic nematic phase T* of 2.73. This shows that in the 

nematic phase, the particles undergo considerable translational diffusion as the plot 

deviates from a horizontal plateau and is linear with time. The next three temperatures T* 

of 2.61, 2.49 and 2.37 show a markedly different form of the m*(t*). Initially there is a 

steep part, then there is a change in slope, but it still increases with time showing that the 

particles within the system are still moving, albeit through small distances when compared 

with the nematic phase. So, more than likely, we can identify this phase as a columnar 

phase. 
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Set r * Actual T* Afp/10' < [ / * > 

3 3.03 ±0.12 15 10 -35.44 ±0.10 0.952 ± 0.009 

2.9 2.88±0.10 20 20 -35.98 ±0.11 0.956 ±0.011 

2.8 2.81 ±0.11 30 30 -36.19 ±0.13 0.957 ±0.010 

2.7 2.73 ± 0.09 30 20 -36.70 ±0.12 0.960 ±0.011 

2.6 2.61 ±0.06 55 30 -39.24 ±0.10 0.968 ± 0.007 

2.5 2 j 9 ± & 0 8 30 30 -39.73 ±0.09 0.972 ±0.011 

2.4 2.37 ±0.08 100 25 -40.17 ±0.08 0.974 ± 0.009 

2.3 2.28 ±0.06 30 40 -40.48 ± 0.09 0.975 ±0.010 

2.2 2.19 ±0.07 50 30 -40.73 ±0.10 0.976 ±0.011 

2.1 2.01 ±0.06 70 30 -41.31 ±0.11 0.979 ±0.010 

2 1.98 ±0.05 30 20 -41.37 ±0.08 0.980 ±0.011 

1.9 1.90 ±0.03 50 30 -41.60 ±0.09 0.980 ±0.008 

1.8 1.81 ±0.02 35 10 -41.85 ±0.10 0.981 ±0.006 

1.7 1.70 ±0.01 30 20 -42.18 ±0.09 0.983 ± 0.003 

1.6 1.58 ±0.02 30 20 -42.49 ± 0.08 0.984 ± 0.003 

1.5 1.52 ±0.01 25 10 -42.68 ± 0.08 0.986 ±0.003 

Table 3.5: Values of T*, ((/*) and {P^ for the simulation of the crystal - columnar - discotic nematic 

transition at p* of 2.5, where and Np are the number of time steps performed during the equilibrium and 

production stages. 

The plots below T* of 2.37 have a similar shape to those of the columnar phase, but after 

the initial step, the graph becomes horizontal with time, essentially showing that the 

particles have stopped moving. This is obviously analogous to a crystal phase, so on this 

basis the crystal - columnar transition could be said to occur between T* of 2.37 and 2.28. 

If this analysis of the data is correct, it is interesting to note the extremely small 

temperature range of the columnar phase, just 0.3 scaled temperature units compared with 

the discotic nematic phase of 6.8 scaled temperature units, in all just 4% of the entire 

mesophase range. This is not entirely out of the ordinary as hexa-6-alkoxybenzoate of 

triphenylene, (see figure 3.1) exhibits a rectangular columnar phase of 7 °C compared with 

81 °C for the discotic nematic phase''"', which is about 8% of the entire mesophase range. 
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Figure 3.32; Location of the hexagonal columnar - discotic nematic transition as shown by f/ie g| |(r| |*). 
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Figure 3.33: Location of the crystal - columnar transition as shown by the m*{t*). 
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3.4.6 Comparisons with the Maier-Saupe theory. 

One of the most popular theories used in describing the behaviour of nematic liquid 

crystals is the Maier-Saupe theory developed in the late 1950's^"''^' and based on the 

molecular field approximation. It has been used extensively to understand the behaviour of 

the nematic mesophase and the predications have been found to be in good agreement with 

many of the properties of the nematic - isotropic transition in real systems. It does, 

however, neglect certain important features of liquid crystals such as biaxiality and 

flexibility. We shall only give a very brief outline of the Maier-Saupe theory and the 

properties of interest to us, but for a deeper understanding, the reader is directed to the 

previous references''^'. 

In the original work, Maier and Saupe made some general assumptions about how liquid 

crystal mesogens interact. The first was that the dominant contribution to the stability of 

the nematic phase came from the anisotropic dispersion forces between molecules (see 

§2.1.2) and secondly, that the nematic phase is made up of cylindrically symmetrical 

particles. The central equation in the theory is the potential of mean torque experienced by 

a molecule in the field generated by its anisotropic interactions with the other molecules in 

the system. This is written as 

-E<JP2>JP2(C()S()), (3.3) 

where P2(005^) is the second Legendre polynomial, is its ensemble average, the second 

rank orientational order parameter and e is a function of molecular structure and density. 

This now leads us to the question, what can we do with [/(p)? Well, we can calculate the 

second and fourth rank orientational order parameters as a function of temperature using 

the assumption that the singlet orientational distribution function can be truncated at the 

second rank term, 

/(cos P) = Z~'exp {a/'2(cosP)}, (3.4) 

where the normalisation factor Z is defined as 

7t 
Z = J exp{aP2(cosP)}sin|3 dp, (3.5) 

0 

where 

(3.6) 
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This leads to the self consistency equation 

71 
{Pi) = J P2(cos|3)exp {aP2(cosp)}sinp d p . (3.7) 

0 

By then plotting the values of the order parameter against (see figure 3.34), we can 

see that the Maier-Saupe theory predicts a nematic - isotropic transition with the value of 

the order parameter being 0.429 at the transition. By now plotting our simulation results for 

{P^ and (P4) onto the graph obtained from the Maier-Saupe theory, we can see how our 

results from the simulation compare with the theory. Very close to the transition, there is 

reasonable agreement between theory and experiment in the nematic phase, though there is 

some deviation as the temperature is increased into the columnar phase. This is also 

illustrated to some extent by plotting {P^ V5. {P^ for both simulation data and values 

obtained from the Maier-Saupe theory, (see figure 3.35), where there seems to be 

reasonable agreement between both sets of data, confirming the quality of the fit of the 

second rank form of the distribution. We can also compare the singlet orientational 

distribution function/(cos (3), given by 

To predict the form for the scaled temperature in our simulation, we first need to calculate 

the coefficient a, given by equation (3.6). In the Maier-Saupe theory, e is predicted to be 

proportional to the nematic - isotropic transition temperature by, 

6 = 4.5397^;. (3.9) 

From our simulations, (see §3.4.4), ~ 9.45. This means that a is now, in scaled units, 

from equation (3.8), 

a (3.10) 

and by using the appropriate values of {P^ and T* from our simulations, we are able to 

predict the singlet orientational distribution function/(cos(3). From figure 3.36, we can see, 

that for the scaled temperatures of 9.09 and 3.03, the agreement of the simulation data and 

that from the Maier-Saupe predication is reasonably good, underlining the predication that 

the coefficient a is related to the second rank orientational order parameter {P^. 
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Figure 3.34: Plot of {P^ and {P^) from our simulations (circles) and those predicted by the Maier-Saupe 

theory (solid lines) against the scaled transition temperature T*IT^^*. 
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Figure 3.35: Plot of the order parameters (P^) V5. {P2) from our simulations (circles) against that predicted 

by the Maier-Saupe theory (solid line). 
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Figure 3.36: Plot of the singlet orientational distribution function ficos^) from our simulations (circles) 

against that predicted by the Maier-Saupe theory (dotted lines) for the scaled temperatures of a) T* of 9.09 

and b) T* of 3.03. 
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Order parameter for the intermolecular vector: One of the other assumptions that Maier 

and Saupe made, was that the intermolecular vector between two particles is spherically 

distributed in the nematic phase, that is all values are equally probable. We can test this 

distribution of the intermolecular vector with respect to the director for our simulations, by 

calculating the order parameter for the intermolecular vector as a function of the 

scaled separation r* {= rla^ between a pair of particles. 

We calculate (P/(r*)> by constructing two histograms every 50 time steps, from a series of 

10,000 time steps stored on a tape file. The x axis is just the interparticle distance r* with a 

bin width Ar* of 0.05. The _y axis was just the sum of PjCcosP^) for pairs of molecules with 

separation between r* and r* + Ar*. The second histogram contained the number of 

particles between r* and r* + Ar*, and was used to normalise the PjCcosPj.) histograms. The 

results of these calculations are shown in figure 3.37. The large non-zero values found for 

the order parameter clearly demonstrate that the intermolecular vector is not distributed 

with a spherical symmetry at short range as assumed by the Maier-Saupe theory. This 

result is not unexpected as a similar conclusion was reached by Emerson et for a 

system of rod-shaped Gay-Berne mesogens exhibiting a nematic phase. 

The results for (P/(r*)) can be explained as follows. There is a large, positive peak at r* = 

0.4 corresponding to pairs of particles in a face-to-face arrangement, though from the plot 

of the radial distribution function we know that there are not many of these. The peak is 

positive, because for this arrangement, the intermolecular vector is parallel to the director. 

The next peak is a minimum at r* = 1.0, approximating to particles in the edge-to-edge 

arrangement. But for this arrangement, the intermolecular vector is now orthogonal to the 

director resulting in the negative value for order parameter. Beyond these peaks the 

distribution of the intermolecular vector decays to zero, corresponding to a spherical 

distribution of the intermolecular vector. 
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Figure 3.37: {P^ir*)) for the intermolecular vector, at the scaled temperatures T* indicated. 

3.5 Conclusions 

Liquid crystals can be investigated using a variety of potential models, ranging from the 

simple lattice model to a full atom-atom potential. We have chosen to use the Gay-Berne 

potential which in terms of complexity lies in between these two extremes. Each particle 

has full translational and orientational degrees of freedom but only represents each 

mesogenic molecule as a single force centre having an ellipsoidal core but with anisotropic 

attractive forces built in. 

By a weak parametrisation of the shape anisotropy and the energy of interaction between 

particles to resemble a disc-shaped mesogen we have successfully simulated isotropic, 

discotic nematic and columnar phases. We have investigated further the orientational, 

structural and dynamic behaviour of these mesophases by the calculation of various 

distribution and time correlation functions such as the radial distribution function g(r*) and 

the mean squared displacement We have found a discotic nematic - isotropic phase 

transition and a columnar - discotic nematic phase transition. 
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The columnar phase exists over a very small temperature range. We have demonstrated 

that the symmetry of the columnar phase is hexagonal at lower densities but forms a 

rectangular phase at higher densities'^'. In most thermotropic rectangular phases, either the 

columns or the molecules within each columnar are tilted, but for the Gay-Berne 

rectangular phase, the neighbouring columns are interdigitated allowing the particles and 

the column axes to remain orthogonal to the director. 

Unlike most real discotic systems, the range of the discotic nematic phase is quite large and 

considering the strength of the face-to-face interaction, we would expect a more defined 

columnar phase. But these observations can be rationalised if we consider the nature of our 

model compared to real discogens. First we have neglected the role of flexible alkyl chains, 

that while playing a vital role in disrupting the strong interaction between molecular cores, 

would also increase the effective radius of the particle, making it easier to form a columnar 

phase. In a sense, instead of our model being a generic model for a whole range of 

disc-shaped mesogens, it could be regarded as having the general features of discogens but 

due its fixed size and shape, resembles only a specific mesogen, as one compound is only 

one member of a homologous series. 

Further Work 

Although we have been reasonably successful in achieving our aim of simulating and 

understanding somewhat better the behaviour of the various mesophases formed, there are 

problems that still need to be addressed. The major problem that afflicts all computer 

simulations of complex liquids, is the limited number of particles with which we perform 

our simulations. This has two consequences when applied to our work. The first is the 

effect on the nature and the position of the various transitions between different phases. It 

has been noted, that small system sizes can affect the order of the nematic - isotropic 

transition"^' and in some cases could force a phase transition on the system. If the model of 

the nematic - isotropic transition, proposed by Luckhurst and Zannoni"®' is considered, 

they state that in the isotropic phase, there are small clusters of orientationally ordered 

molecules and that the transition to the nematic phase is just the extension of orientational 

order between these clusters. 
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So the problem we face, is what if these clusters present in the isotropic phase are of 

equivalent size to the numbers used in our simulation? The next logical step is the increase 

in the number of particles used in the simulation''^'. 

The next problem relates to the essentially artificial nature of our simulation, in that we 

have a fixed size and shape box in which we place our molecules. This would especially 

manifest itself in the translationally ordered phases such as the columnar phases. We have 

seen that the columns can pack into a hexagonal lattice, though that does not pose any 

problem as that is what we would expect. But what about the square columnar phase, 

where, due to the higher densities, the columns are forced to penetrate each other to 

accommodate the columns. What would be the effect on allowing the box size and shape to 

relax, to attain an equilibrium position? This would have to be investigated by performing 

constant pressure simulations. 

We have just discussed work that could be performed on the present systems, but we could 

also extend this work to encompass the search for other mesophases, such as the addition 

of dipoles and quadrupoles, with the possibility of forming tilted phases. We could also 

investigate particles with additional flexible chains or chiral centres. But we must not 

forget, that we need to examine the techniques we use, in particular the effect system size, 

different ensemble and boundary conditions would have. 
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4. X-Ray diffraction from Gay-Berne mesophases. 

4.1 Introduction 

X-Ray diffraction is generally used to investigate the structure of matter at the molecular 

level with probably the most common application being the determination of the positions 

of atoms in crystals. However, the technique is far more versatile than this. For example, 

biologists use X-ray diffraction to determine the arrangement of molecules in complicated 

systems such as viruses and cell membranes. The technique is also used as a common 

analytical method for identifying the structural and chemical composition of mixtures. We 

can also use X-ray diffraction for the characterisation of the various liquid-crystalline 

mesophases, especially for translationally ordered phases where it is an essential method 

for distinguishing between the various smectic and columnar phases. 

But apart from a purely qualitative use, we can also gain some quantitative measurements 

of the orientational order in a mesophase from the technique and we shall discuss these 

matters in greater depth at the appropriate time. We begin with a brief discussion of X-ray 

diffraction, followed by some explanation of how we extract the essential information from 

a real diffraction experiment. We shall then talk about how we apply the technique to 

liquid crystals, discuss the aims of our simulation experiments, the models we shall use and 

finally the results of our initial studies on the system of Gay-Berne discogens discussed in 

Chapter 3. 

4.1.1 X-Ray and neutron beams 

X-Rays are produced^by bombarding a metal with high energy electrons. When these 

electrons hit the metal they decelerate, producing radiation with a range of wavelengths. 

Superimposed on this continuum radiation are a few sharp, high intensity peaks. These 

arise from the interaction of the incoming electrons with electrons in the inner shells of the 

metal atoms. The collision expels one electron and an electron of higher energy drops into 

the vacancy left, emitting the excess energy as an X-ray photon; a typical target metal 

being copper which produces X-rays at 0.154 nm. We can also use neutron beams, 

generated from within a nuclear reactor, to determine the structure of a system and as they 

produce similar diffraction phenomena as X-rays, they will arise further in our discussion. 
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4.1.2 The diffraction process 

We have just described the variety of energy beams that can be used for diffraction 

experiments but what can they be used for? As the wavelengths of these beams are 

approximately 0.1 nm, which is comparable to the atomic spacing in crystals, Von Laue 

suggested that they might be diffracted by crystals and hence give some idea about the 

structure of the material. Thus the idea of X-ray diffraction was born, with the first pattern 

recorded in 1913'^'. Diffraction is produced by the interference of waves that are scattered 

from an object. When the amplitudes are in phase the waves augment each other and the 

intensity increases and vice versa, thus out of phase waves destructively interfere with each 

other. It can thus be distinguished from scattering phenomena, of which it is a subset, 

where the scattered rays do not necessarily interfere. Before we deal with the actual 

diffraction experiment, we should say what happens when X-rays interact with matter. The 

scattering of X-ray beams from matter occurs by two processes: 

(i) Incoherent or Compton scattering is a billiard ball effect. Incident X-rays can be 

considered as photons. When an X-ray photon hits an electron, the electron is knocked 

aside and the X-ray photon is scattered through an angle 20. Energy from the X-ray photon 

has been used to move the electron, thus the wavelength of the scattered X-ray photon is 

different from that of the incident X-ray photon. There is no phase relationship between the 

scattering events and so one cannot assign positions to the scattering pattern, thus this is 

known as incoherent scattering. Its only effect is to give rise to an overall background 

scattering. 

(ii) Coherent or Thomson scattering occurs when, as the X-ray hits an electron, the 

electromagnetic field of the X-ray causes the electron to oscillate with the same frequency 

as the X-ray. This change in frequency forms the source of a secondary scattered ray which 

has the same wavelength as the X-ray but differs in phase by K radians. All the scattered 

waves have the same phase relationship to the incident beam, hence the scattering is 

coherent. 
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Both X-ray and neutron diffraction are similar in that they are an indirect method of finding 

the structure, in that a direct image cannot be formed. As X-rays and neutrons cannot be 

focused, the scattered beam is intercepted by a detecting system such as photographic film 

or electronic counter. This means that the phase relationship is lost but through the use of 

Fourier synthesis'^', the recombination of the scattered rays can be simulated. Optical 

microscopy on the other hand gives an enlarged image with a continuous flow of radiation 

that can be recombined by a lens system to maintain the phase relationship. 

4.1.3 The diffraction experiment 

To develop the theory of X-ray diffraction we start with the most fundamental equation that 

usually describes scattering from a crystal. Consider a series of parallel lattice planes of a 

crystal, (see figure 4.1). 

incident 

ray 1 

scattered 
ray 2 

Figure 4.1: Schematic diagram of Bragg scattering from a series of crystal planes. 

If the separation between planes of atoms is d, then the path difference between the 

incident radiation, ray 1, and the scattered radiation, ray 2, AB + BC can be written as 

AB + BC = 2(isin0. OLl) 

For most scattering, the angle 0 will not result in an integral wavelength difference and so 

will be out of phase and the intensity will decrease. But at some angles, AB + BC will be an 

exact integral multiple n, of the wavelength X, of the incident X-ray, so that, 



AB + BC = nX. 
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(4 2) 

For this case, the amphtudes will be in phase and constructive interference will occur. 

Combining equations (4.1) and (4.2) leads to 

IdsinQ - nk. (4 3) 

This is known as Bragg's law which is used to predict the position in space of diffracted 

rays. The problem with this, is that it only applies to diffraction from crystals i.e. structures 

with long range positional order, so we need to extend this theory to encompass diffraction 

from fluid phases. Figure 4.2 illustrates a basic diffraction experiment by considering 

parallel beams of monochromatic X-rays of wavelength X impinging on a body of electron 

density that contains two scattering centres O and P, i.e. we have an electron density p(r) at 

position r from the centre O. 

ko 

Figure 4.2: Scattering from a body of electron density. 

In figure 4.2, kg is the wavevector for the incident X-ray beam with wavelength X and kg, 

that for the scattered radiation. There will be a path difference between the X-rays scattered 

from O and P both of which are scattered through an angle 20. By analogy with the Bragg 

experiment, this path difference is 

s - p = nX. (4.4) 

This can be rewritten as 

r.ks - r.ko = nX, (4.5) 

with r being the vector describing the position of P, and hence a phase difference of 



r.(ks - k o ) = 

A vector Q, (see figure 4.3), is used to define the scattering vector - Rq, where 

Q = (27i/A,)(ks — ko), 

and so the phase difference can now be defined as 

Q.r. 
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(4.6) 

(4.7) 

(4 8) 

The vector Q, far from being a convenient notation, is also used to describe a position in 

diffraction or reciprocal space, in the same way as r does in real space, with its magnitude 

defined by 

|Q| =47csin0/?i. (4.9) 

Figure 4.3: Definition of the vector Q used to measure positions in diffracted space. 

The scattering by a small unit volume dv at position r relative to O has an amplitude 

proportional to the electron density p(r) and a phase of Q.r. Thus the scattering at a 

distance r from the origin is 

p(r) exp(iQ.r)i/r. (4.10) 

Thus the total wave scattered by the entire volume V is given as 

F(Q) = J p(r) exp(iQ.r)Jr, OLll) 

where F(Q) is known as the form factor which describes the effective scattering or 

amplitude of the sample''^'. 
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We now know the amplitude of the diffracted X-ray, it just remains to calculate the 

intensity /(Q) and this is related to the scattering amplitude or form factor by 

/(Q) = F ( Q ) r ( Q ) , 

= JJp(ri)p(r2) exp[iQ.(ri -r2)]t/ri^/r2, (4.12) 

where F*(Q) is the complex conjugate of F(Q). If integration of F{Q) is over all space, 

then F(Q) is the Fourier transform of p(r), thus the diffraction of scattered X-rays can be 

explained using the properties of the Fourier transform'''. But equation (4.12) encompasses 

all scattering from the body of electron density p(r), so we need to extend the theory to 

extract the forms for the scattering we are interested in. If we now consider N fixed, 

discrete scattering sites within a sample of electron density, 

P(r) = i X «/S(r - r,), (4.13) 

where a. is a generalised atomic scattering factor, applicable to either X-ray or neutron 

radiation, and is dependent on the property of the atom under investigation. Substituting 

(4.13) into equation (4.11) the form factor now becomes 

N 

F(Q) = Z [ fl/exp(iQ.r)5(r - r,)(ir, 
;=! 

N 

= % a;exp(iQ.r/). (4.14) 
i=\ 

Thus the intensity of the diffracted radiation, be it X-ray or neutron, is given as 

KQ) = E Z(«iayexp(iQ.ry)), (4.15) 
' j 

where the brackets represent an ensemble average and the vector for scattering from site i 

to site j is r,. = r, - r and includes both r̂ . = -r,. and r-. = 0. We still need to separate this 

expression for the total intensity given by equation (4.15) into coherent and incoherent, self 

and interference and intra- and intermolecular terms. In general, 

((af ) - (4.16) 
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Substituting equation (4.16) into (4.15) allows the expression to be separated into self, 

where i = j, and interference terms, where i # j, giving. 

/(Q) = > + S Z <a,a;exp(iQ.ry)), (4.17) 
i M 

It is more usual to divide equation (4.17) into incoherent and coherent terms so that, 

/(Q) = S ( ( a - ) - ( a i f ) + E Z(a,a;exp(iQ.r,))>, (4.18) 
i j 

= / ' ^ ( Q ) + 

where terms for i - j have been removed from the self scattering term and added to the 

interference scattering term. The incoherent scattering is the major contributor to the 

background and so is of no interest to us, but the coherent scattering is, and is given by 

/"'/'(Q) = ^ X<«/«;exp(iQ.ry)). (4.19) 
' j 

This can be subdivided into terms depending on whether the two scattering sites i and j are 

in the same molecule or not. First, we need to define the quantities 

r,- = + rf and rj = R„ + r", (4.20) 

where the vector r of the site is the sum of the vector to the origin of the m* molecule 

fixed frame, R ,̂ plus the vector from the origin to the site in this frame, r Thus 

Ty = r,' — Tj = (Rm — R«) + (r™ — rp- (4.21) 

Putting equation (4.21) into the expression for the total coherent scattering (4.19) gives 

/VfM 
E Z E I 
m f j 

^ in ^ m _ _ 

/ -"(Q) = E E E E<a/a,exp [iQ.{(Rm - R») + ( r r - (4.22) 

where the summations are performed over the molecules each containing nuclei i.e. 

the total number of sites N = NN. 
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Separating terms foxm = n and m^n, produces 

/""(Q) = E E Z Z<a,a,exp [iQ.{(Rm - R«) + (r^ - r;)}]> 
m^n n i J 

+ Â mX Z(a,a/exp [iQ.(r;" - r")]). (4.23) 
' J 

= 

intermolecular intramolecular 

term term 

When we set out on this analysis, we stated that this would be a general derivation for 

fluids, thus for neutron scattering, a. is the nuclear scattering length, while for X-rays, we 

can replace a, with the atomic scattering amplitude which, for the spherical atom 

approximation, is given by 

cii =/i(Q) = J (4.24) 

We have just outlined how, from the measured intensity, we can divide the scattering into 

various parts, that arising from individual molecules and interference scattering from a 

collection of molecules, but what we need to do now is to outline briefly how X-ray 

diffraction is applied to the specific problems encountered with liquid-crystalline 

mesophases. 

4.2 X-Ray diffraction from real liquid-crystalline mesophases 

X-Ray diffraction studies on real liquid-crystalline mesophases can be divided into two 

categories'^^ those that employ unoriented or "powder" samples and those where the 

sample under investigation is oriented by the use of an external force. A powder sample 

consists of many director domains giving all possible orientations of the particles, thus all 

possible diffraction peaks can be seen. This manifests itself as a pattern consisting of 

concentric circles, (see figure 4.4a). These patterns are often used for the initial 

characterisation of mesophases and can give details of molecular packing such as layer and 

correlation lengths. Diffraction patterns from oriented samples, (see figure 4.4b), provide 

much more information. They allow us to achieve more detailed conclusions on the 

packing and structure within the mesophase, both parallel and perpendicular to the director, 

information unobtainable from unoriented samples. The results obtained from these 

oriented patterns can also be used quantitatively, it is claimed, to determine aspects such as 

the singlet orientational distribution functionXcosp)'*"'. 
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4.2.1 Effect of ordering on diffraction patterns 

We begin by discussing the effect, of the type of ordering found in liquid-crystalline 

mesophases, on the diffraction pattern. But what do we mean by the type of ordering? 

Well, we have both short range and long range, as well as translational and orientational 

ordering. 

X-Ray source 

a) Powder sample 

X-Ray source 

b) Oriented sample 

! S ^ Detector 

Figure 4.4: Production of a) powder and b) oriented X-ray diffraction patterns. 

Detector 

Magnet ^ N / 

If we consider the scattering from a perfect crystal, we obtain a series of infinitely sharp 

Bragg peaks, (see figure 4.5a), resulting from the infinite range translational order. 

Quasi-long range ordering, of the type found in the highly ordered smectic and columnar 

phases, is temperature dependent, with the correlation between particles decaying 

algebraically with distance, the effect being to smear out the Bragg peak, (see figure 4.5b). 

If there is only short range translational order, decaying exponentially over the sample, as 

present in the nematic phase, the peak now broadens out quite substantially, with a width 

proportional to the positional correlation length, ^p, (see figure 4.5c). 
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Figure 4.5: The effect of a) infinite range, b) quasi-long range and c) short range translational order on a 

diffraction peak, and d) and e) the effect of orientational disordering on a simple diffraction pattern^^K 

The effect of orientational order can also have a similar effect on the appearance of the 

diffraction pattern. If we consider a series of evenly spaced chains of particles, that are 

translationally disordered within each chain, (see figure 4.5d), we can see that the 

diffraction pattern^^^ has both meridional, representing the average end-to-end length, and 

equatorial peaks arising from the side-by-side correlations. The effect of an orientational 

distribution of these monodomains of local directors, on the patterns can now be clearly 

observed, as the peaks are smeared out into diffuse arcs, (see figure 4.5e). 
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4.3 X-Ray diffraction from model liquid-crystalline mesophases 

4.3.1 Motivation 

We have just described how X-ray diffraction can be a powerful technique for the 

determination of both molecular structure and macroscopic order, i.e. characterisation 

between various liquid-crystalline mesophases. So there is no reason why we should not 

apply the same techniques to study mesophases generated from the results of computer 

simulation. There are two main aims as to why we should generate X-ray diffraction 

patterns. The first is to probe in greater detail the structure of our simulated phases and 

allow differentiation between them. In this respect, the diffraction patterns complement 

graphic snapshots and distribution functions which are normally used to determine 

structure. Secondly, they provide us with a further test on the validity of our model used. 

To expand on the latter reason, in Chapter 3 we used a generic model of a disc-shaped 

mesogen to see if we could identify some of the essential features responsible for the 

formation of discotic nematic and columnar mesophases. We did indeed show that our 

model, the Gay-Berne model, has the necessary characteristics of both anisotropic shape 

and attractive forces, to be able to form these two phases. To see if these models were 

representative, if only in a qualitative sense, of real mesophases we also calculated various 

orientational and structural properties, such as the singlet orientational distribution function 

/(cos(3) and the radial distribution function g{r*), which are not available directly from 

experiment. But when assessing the quantitative accuracy of a model potential in 

representing the real mesophase, it is necessary to compare as many of these orientational 

and structural properties as possible. Thus by calculating X-ray diffraction patterns and 

comparing them with those obtained from real systems, we obtain an additional test to see 

if we have modelled the liquid-crystalline mesophase correctly. 

4.3.2 The spherical scattering model 

The Gay-Berne potential represents each interacting particle essentially as an ellipsoid of 

revolution with a length-to-breadth ratio Initial simulations of rod-shaped mesogens, 

with of 3.0 produced isotropic, nematic, smectic A, smectic B and crystal phases'^'. It 

was with configurations taken from these simulations that the first attempts at calculating 

the X-ray diffraction pattern were performed. Hamley's initial model'̂ '̂ was to place a series 
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of spherical or point scattering centres along the major axis of each ellipsoid. As the 

Gay-Berne potential was originally parametrised as a row of four interacting 

Lennard-Jones centres'®', a tetratomic particle with the same overall length was used, but 

this resulted in the problem of the intramolecular terms producing bands of intense 

scattering over all values of Q*, (see figure 4.6a). These could mask other, more interesting 

features of the diffraction pattern such as the intermolecular diffraction features. 

His solution was to increase the number of spherical atoms, placed along the symmetry 

axis of each particle to sixteen. As we can see from figure 4.6b, the only band of scattering 

is now at Q* = 0, and though it is very intense, it would obscure less of the pattern at 

medium to high Q* values, allowing the intermolecular scattering to dominate. By using 

this linear hexadecatomic particle, various diffraction patterns of the isotropic, nematic, 

smectic A and smectic B phases were calculated and, in general, reproduced, at least 

qualitatively, those exhibited by their real counterparts. The intramolecular diffraction 

patterns were quite smooth with a low signal-to-noise ratio. In a direction parallel to the 

director, the plots were generally isotropic as expected for these uniaxial phases, while in 

the plane perpendicular to the director, the anisotropy of the patterns increased with 

increasing (P^). Both of these results were encouraging as they gave confidence in the 

calculation of the structure factor. 

For the intermolecular diffraction patterns, the wide angle arcs of the nematic phase were 

modelled quite successfully, while in the smectic A phase, sharp peaks were observed 

which were consistent with the layer spacing obtained from the density distribution 

function p| |(r | |*). Parallel to the director, the six-fold symmetry of the smectic B phase 

was revealed by six sharp, Bragg peaks, but due to the small system size, it was not 

possible to distinguish between a hexatic or crystal B phase from the diffraction pattern. 

Though calculations from further simulations, using constant NPT Monte Carlo, have 

suggested a hexatic B'"". It is worth noting that these were actually neutron diffraction 

patterns as the scattering from each particle was Q* independent, i.e. the nuclear scattering 

length was set to unity. This is in contrast to our studies, in which we calculate the X-ray 

diffraction pattern, where the scattering is Q* dependent. 
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Figure 4.6: Diffracted intensity in the plane perpendicular to the major symmetry axis for a single a) linear 

tetratomic, bj linear hexadecatomic and c) ellipsoid of revolution, each having a length ofSOg. 
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Many of these intermolecular plots were noisy, but they could in principal have been 

improved by averaging the calculation over more configurational snapshots. However this 

procedure is still imperfect as there is no easy way of lining up the phase symmetry axes 

from one configuration to the next, a problem we encountered when calculating 

distribution functions such as the and But the main drawback of using 

these spherical scattering centres is the inability to extend this model to oblate particles. It 

is possible to construct a disc of spheres but this would be time consuming because so 

many spheres would be needed, so the ideal solution, for the purposes of calculating the 

X-ray diffraction patterns, is to put a three dimensional ellipsoid of revolution at each 

particle position. Though this does not accurately mimic the actual shape of the Gay-Berne 

mesogen, (see §2.5.3) it allows the model to be extended from disc-shaped to rod-shaped 

particles just by the variation of one parameter, the length-to-breadth ratio cyjo^, while also 

giving a better signal-to-noise ratio. 

4.3.3 The ellipsoidal scattering model 

To illustrate the advantage of using an ellipsoid instead of a set of spherical particles we 

should look at the scattering from a single ellipsoid having the ratio of a rod-shaped 

ellipsoid as used in the simulations of Luckhurst et alP. Figure 4.6c shows that when the 

X-ray beam impinges on the ellipsoid perpendicular to the main symmetry axis, the 

scattering is generally uniform over the whole Q* range of interest, which is controlled by 

the size of the diffracting particle, and comparing it to that of the 4 and 16 atom system, we 

can see that it is less intense. This should make the diffraction patterns smoother, as we are 

mainly concerned with diffraction arising from interference between different particles 

rather than the single particle and, thus in theory, should allow an easier calculation of 

y(cosP) from the intensity of the wide angle arcs in the nematic phase'®'. For our model of 

the structure factor, we start from the expression for the total coherent intensity, (see 

equation (4.19)), which can be written as 

r°/'(Q) = FT(Q)F;(Q)=EE((f,a,exp(iQ.r,y)X (4.25) 
< j 

where for neutron diffraction experiments, a.= a - 1. 
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But for X-ray diffraction from solid, geometrical particles we need to replace a. with the 

atomic scattering factor/(Q), which for a sphere'"' is 

3(s inu-ucosu) 
#Q) = 

u 
(4.26) 

where u = Qx, and x is the radius of the sphere. We can modify this equation for an 

ellipsoid of revolution, having semi-axes x and y, (defined as o, and in the Gay-Berne 

potential) simply by writing u as 

u = Q % ( c o s ^ p + ^ s i n ^ P ) 2. (4 27) 

where (3 is the angle between the symmetry axis of the ellipsoid and the direction of the 

scattering vector Q, (see figure 4.7). 

Qx 

Figure 4.7: Representation of the geometry of the model used to calculate the X-ray or neutron diffraction 

pattern from an ellipsoid at the position of each Gay-Berne particle in a configuration taken from the 

simulation. 
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The form factors, in equation (4.25), for the total scattering thus become 

FT(Q)=Zy(Q)exp(iQ.r,) and F;(Q)=i:y(Q)exp(-iQ.r,), (4.28) 
/=! /=1 

where r is the position vector for the z"' site in the laboratory frame, and the summation is 

over the N particles in the configuration. It was found that it was computationally less 

expensive to calculate the trigonometric forms of the form factors than the exponential 

version, thus the total coherent scattering is written as 

/T(Q)=^FTCQ)F;(Q) 

= Zy(Q)[cos(Q.r,)+isin(Q.r;)]E/(Q)[cos(Q.ry)-isin(Q.ry)]. (4.29) 
(=1 , / = ! 

It should be noted that in our program, we calculate Fj(Q) and F\{Q) by summing over all 

particles and thus we do not need to look at all pairs which is far more computationally 

expensive. As well as calculating the total intensity, we can also calculate the 

intramolecular or single particle scattering in the same way so that 

/s(Q) = F^(Q)Fr(Q) 

= Zy(Q)[cos(Q.r^)+isin(Q.r*)]Zy(Q)[cos(Q.rj:)-isin(Q.r^)], (4.30) 
(=1 ;=1 

where rl' is the position vector in of the molecule in the A:"' director frame. From a real 

X-ray diffraction pattern we only obtain the total scattering, from the sample; this 

highlights another advantage of a computer simulation in that we can separate out the 

interference or intermolecular scattering, which is given by the difference between the total 

and intramolecular scattering, 

/i(Q) = /T(Q)-;s(Q). (4.31) 

4.3.4 Computational procedure 

We start from the results of our simulations, having stored on magnetic tape the positions, 

orientations and director orientation of a series of configurations, each separated by 50 time 

steps. The maximum number of configurations stored was a thousand with any number 

from 10 to a 1000 configurations being used for the calculation of the diffraction pattern 

for the 256 particle system. Having generated these coordinates in the simulation box 

frame, we need to transform them into the director frame. This is necessary, as on average 
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the director does not lie parallel to a side of the simulation box and will change orientation 

throughout the simulation. So by transforming into a director frame, we can put the director 

along a fixed box edge, namely the Z axis, so making the calculations easier as we can 

always locate the director and thus maintain a constant relationship to the scattering vector. 

The coordinates from the simulation frame ZJ are transformed into the director 

frame ZJ by the relationship 

(4.32) 

This rotation matrix of direction cosines can be defined in terms of the Euler angles a , p 

and 7"̂ ^ (see figure 4.8), so that 

Xn ' 
( 

^X„Yr, 'Xo 

Yn ly.z. Yr, 

Zn J ^z„y„ tZnZ. J V Z„ 

D = 
^ cacpcy-^a^y -cacpyy-^acy cai'p ^ 

5acPc7+ca5Y -jacP5'y+cacy ̂ a^p 

-^Pcy i'Pyy cp 

(4^3) 

where 5 denotes sine and c, cosine. This procedure simply rotates the whole configuration 

into a new axis frame, conserving the number of particles in the original simulation box. 

x^-

A 

X 

Figure 4.8: An ellipsoid having semi-axes a, b and c with a representation of the Euler angles (a, p, yj used 

to define the relationship between the particle fixed axes (x, y, z) and the axes of the director frame (X, Y, Z). 
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Once we have transformed the coordinates into the director frame, we can now calculate 

the total, /p(Q), and intramolecular, /^(Q), scattering, (from equations (4.29) and (4.30) 

respectively), both parallel and perpendicular to the director. The patterns are calculated in 

reciprocal or Q space, but as we use a scaled separation of r* = in real space, we can 

similarly scale Q space such that Q* = Q/(27i/aJ = 1/r*. As the director now lies along the 

Z axis in the new coordinate system, the diffraction pattern parallel to the director is 

calculated in the (Qx*, Qy*) plane with Qz* set to zero, while for the perpendicular 

direction, the (Qx*, Qz*) and (Qy*, Qz*) planes are used to check on the symmetry of the 

phase. Once we have calculated the pattern for one frame, we perform the same calculation 

for consecutive frames, summing up as we go. The patterns are plotted using the Gnuplot 

program'"'. The optimum number of configurations used and the influence of the system 

size will be discussed in the following section. We shall now go on to discuss the simulated 

intramolecular and total scattering patterns obtained. 

4.4 Results and discussion 

4.4.1 Intramolecular diffraction patterns 

As with previous studies'^', the main aim of calculating the intramolecular scattering was to 

check the procedure for the calculation of the total diffraction pattern. The system we have 

investigated is that from the previous chapter of this Thesis, a system of 256 Gay-Berne 

ellipsoids interacting with o / o , of 0.345 and e/e^ of 5.0, in which isotropic, discotic 

nematic and hexagonal columnar phases at p* of 2.5, and a rectangular columnar phase at 

p* of 2.7, were formed. First, we shall look at the scattering parallel to the director, in the 

(Qx*, Qy*) plane, then proceed onto the perpendicular direction, the (Qx*, Qz*) plane and 

since all of these patterns are generally well-averaged and smooth with a small 

signal-to-noise ratio, they are calculated from just 10 configurations. We will represent 

each diffraction pattern as a three dimensional graph with a corresponding contour plot, the 

axes being the plane in which the pattern was calculated. 

First, however, it may be useful to look at the diffraction for just a single ellipsoidal 

particle, along its symmetry axis. From this direction, the ellipsoid will appear circular and 

hence should show a symmetrical diffraction pattern. As we can see from figure 4.9a, the 

pattern for a single ellipsoid does indeed appear to be isotropic, giving us some confidence 
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in our calculation of the structure factor. We can now move onto the intramolecular 

patterns for the liquid-crystalline mesophases under investigation. For the subsequent 

patterns of the isotropic phase, (figure 4.9b), the nematic phase at T* of 9.09, (figure 4.9c), 

the nematic phase at T* of 3.03, (figure 4.10a), the hexagonal columnar phase (figure 

4.10b) and the rectangular columnar phase, (figure 4.10c), we can see that the diffraction 

pattern is also isotropic in this direction. Some of the diffraction patterns are not perfectly 

isotropic, as there is a slight difference in the and elements, (see §2.2.5), of the 

ordering Q tensor i.e. the phases are very slightly biaxial. It is also interesting to note that 

the peaks become sharper as the temperature is decreased, this reflecting the increased 

orientational order the particles are under in the mesophase. 

We obtain a different diffraction pattern for Q* perpendicular to the director, in the (Qx*, 

Qz*) plane. For the single ellipsoid, (see figure 4.11a), there is a band of scattering 

concentrated along the X axis. This reflects the anisotropic shape of the ellipsoid in this 

plane. But in the isotropic phase, (see figure 4.1 lb), we can see that this pattern is again 

essentially isotropic, then as the orientational order increases, the pattern becomes less 

isotropic (see figure 4.12) reflecting the increased anisotropic environment the particles 

find themselves in. As the orientational order increases, the band of diffraction narrows. 

We obtain similar patterns in the (Qy*, Qz*) plane. 

One further check on the appearance of these diffraction patterns is in the intensity of the 

diffraction pattern. For an ideal crystal, the intramolecular scattering is simply, N, the 

number of particles in the simulation multiplied by the scattering intensity from one 

molecule, multiplied by the number of configurations used. Thus, as the scattering 

intensity, /(Q*), from one, oblate ellipsoid has a value of 1, the maximum total intensity 

for each of the different phases should be 1 x 256 x 10 = 2560, which as we can see from 

the various patterns is observed. Having satisfied ourselves about the intramolecular 

diffraction we shall now move onto the total diffraction patterns. 
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Figure 4.9: The intramolecular X-ray diffraction patterns for Q* parallel to the director, in the (Qx*, 

plane, for a) a single, oblate ellipsoid from I configuration, b) the isotropic phase at T* of 10.77 from 10 

configurations and c) the discotic nematic phase at 7* of 9.09 from W configurations. The director is 

orthogonal to this plane. 
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Figure 4.10; The intramolecular X-ray diffraction patterns for Q* parallel to the director, in the (Qx*, Qy*) 

plane, for a) the discotic nematic phase at T* of 3.03 from 10 configurations, b) the hexagonal columnar 

phase at T* of 2.01 from 10 configurations and c) the rectangular columnar phase at T* of 2.04 from 10 

configurations. The director is orthogonal to this plane. 
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Figure 4.11: The intramolecular X-ray dijfraction patterns for Q* perpendicular to the director, in the (Qx*, 

Qz*) plane, for a) a single, oblate ellipsoid from 1 configuration, b) the isotropic phase at T* of 10.77 from 

10 configurations and c) the discotic nematic phase at T* of 9.09 from 10 configurations. The director is 

parallel to the Qz* axis. 
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Figure 4.12: The intramolecular X-ray dijfraction patterns for Q* perpendicular to the director, in the (Qx*, 

Qz*) plane, for a) the discotic nematic phase at T* of 3.03 from 10 configurations, b) the hexagonal 

columnar phase at T* of 2.01 from 10 configurations and c) the rectangular columnar phase at T* of 2.04 

from 10 configurations. The director is parallel to the Qz* axis. 
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4.4.2 Total diffraction patterns 

We have calculated the total diffraction patterns both parallel and perpendicular to the 

director, by transforming from the simulation axes frame to that of the director, which is 

now aligned along the Z axis of the new coordinate system. The diffraction patterns are 

again visualised via a three dimensional surface representation and a corresponding contour 

plot. For these total diffraction patterns we need to remove the central area, as a peak at Q* 

of 0 dominates; this arises from the term exp(iQ.r) in equation (4.28), this procedure being 

similar to using a beam stop in a real experiment. Initially, the size of the beam stop 

allowed just separations of the order of the box length to remain. Again, the systems we 

have investigated are the phases produced in the previous chapter, namely, isotropic, 

discotic nematic, hexagonal columnar and rectangular columnar phases produced from a 

system of Gay-Berne ellipsoids interacting with O/Og of 0.345 and e/e^ of 5.0. The system 

consists of 256 particles and in general 10 configurations were used to generate the 

diffraction patterns. We could quite easily extend the number of configurations used, as 

this would improve the signal-to-noise ratio, but as we shall see, the improvement of the 

pattern is small compared to the extra computer resources needed to calculate the 

scattering. On average, it requires about 10s of c.p.u. time to calculate a diffraction pattern 

from one configuration. In the contour plots, there are 10 contours evenly spaced at a 

distance automatically set by the plotting software. We can add more contours but this 

generally complicates the contour plot. Thus the contour plot only reveals the more intense 

structural features and in some cases, can appear much different from that of the three 

dimensional surface plot. 

Isotropic phase T* of 10.77: Figure 4.13a shows the diffraction patterns for the isotropic 

phase parallel to the director. For this first pattern, the radius of the beam stop is 0.43Q*, 

but even with this, we can see that two spurious peaks at the centre, dominate the pattern. 

We shall discuss these later. The remainder of the pattern is generally isotropic as expected 

in the diffraction plane with a very weak diffuse ring at = I.IQ* corresponding to r* ~ 0.9. 

This is in reasonable agreement with the position of the peak in the radial distribution 

function obtained from the simulation, but as this peak in the g{r*) is very weak we would 

also expect the resultant X-ray diffraction feature to be very weak i.e. there are very few 

particles at this separation. 
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Figure 4.13: The total scattering for the isotropic phase at T* of 10.77 from 10 configurations, a) parallel to 

the director in the (Qx*, Qy*) plane, b) perpendicular to the director in the (Qx* Qz*) plane and c) 

perpendicular to the director in the (Qy*, Qz*) plane for N of256. 
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An isotropic phase has no orientational order, but due to our method of calculating the 

order parameter, (see §2.4.2), we observe to be 0.15, and thus we can define a director. 

So we can calculate the diffraction patterns perpendicular to the director, (see figure 4.13b 

and 4.13c). We can see a weak circular area of scattering which correlates with the 

isotropic phase even though there is a small degree of orientational order. We could 

calculate the diffraction patterns without having to transform into a director frame, by the 

use of a common laboratory frame, giving the advantage of providing more isotropic 

averaging but we found that this method did not improve the patterns significantly. We 

now return to the issue of the origin of the central peaks which are present in the total 

diffraction patterns. They are at Q* of 0.5, which equates to a distance of r* of 2.0. This 

does correspond to a real separation in the simulation box as the maximum length of the 

simulation box is 2.34aQ, but inspection of the corresponding g(r*), (see figure 3.10 in 

§3.4.3), reveals that at this separation, there appears to be no correlation between particles, 

so we speculate that they might come from the small, finite size of the simulation box, an 

idea we shall explore in §4.4.3. 

Discotic nematic phase T* of 9.09: The next set of diffraction patterns we shall look at, 

are for the discotic nematic phase, just below the discotic nematic - isotropic phase 

transition. Parallel to the director in the (Qx*, Qy*) plane, we do not expect the pattern to 

be significantly different from that of the isotropic phase, with just a diffuse ring visible at 

~ I.IQ*, representing the edge-to-edge correlations within the phase as seen in the g(r*). 

From figure 4.14a, we do indeed see a scattering feature at ~ l.OQ* with another less 

intense ring at = 2.0Q*, this probably being the second order reflection from the main ring. 

Again we see four dominant peaks, the presence of which we shall ignore for now as they 

do not interfere with the pattern. Perpendicular to the director in both the (Qx*, Qz*) plane, 

(see figure 4.14b), and the (Qy*, Qz*) plane, (see figure 4.14c), we expect two weak arcs 

of scattering located on the equatorial axis, Qz* = 0.0 on our pattern. Unfortunately these 

patterns are dominated by both the spurious peaks and by a band of scattering in the 

meridional axis, Qx* = 0.0. Though in the (Qy*, Qz*) plane, there seems to be an intense 

peak at Qy* ~ 0.9. This corresponds to a distance of r* of 1.1 and as they lay off the Qz* 

axis by about 10 - 15°, they could suggest a staggered edge-to-edge arrangement of 

particles. 
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Figure 4.14: The total scattering for the nematic phase at T* of 9.09 from 10 configurations, a) parallel to 

the director in the (Qx*, Qy*) plane, b) perpendicular to the director in the (Qx*, Qz*) plane and c) 

perpendicular to the director in the (Qy*, Qz*) plane for N of256. 
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Discotic nematic phase T* of 3.03: As we lower the temperature during the simulation to 

just above the columnar - discotic nematic phase transition, there is increased long range 

orientational and short range translational order within the mesophase; this is reflected in 

the diffraction patterns, (see figure 4.15). With Q* parallel to the director, we can see that 

the diffraction pattern corresponds well with the data obtained from various distribution 

functions we have calculated such as the g(r*) and (see §3.4.3). We can see an 

isotropic scattering feature, as the phase should be uniaxial in this plane, at = 1 .OQ* or r* 

of 1.0, this corresponding to particles in an edge-to-edge arrangement without any 

interdigitation while there is the second order reflection at ~ 2.0Q*, this being very much 

weaker in intensity. This is due to the positional order being short range. We can also 

observe a structure within the diffraction circle and this could signal that only certain 

orientations are preferred within the phase. 

The scattering pattern for Q* perpendicular to the director is again dominated by the 

spurious peaks and the intramolecular scattering in the meridional plane, but we do see two 

diffraction peaks, along the equatorial axis at Qx* = 1.0, representing the increased 

edge-to-edge correlations and agreeing with both the distribution function gjr^*) and the 

parallel diffraction pattern. There also appears to be the beginnings of a concentrated 

diffraction feature at Qz* = 2.0, this corresponds to r* of 0.5 i.e. face-to-face ordering. 

Hexagonal columnar phase T* of 2.01: The next two mesophases we shall investigate are 

the translationally ordered columnar phases. From the results of our simulations we have a 

hexagonal columnar phase, D,„ where the columns are arranged in a hexagonal net, and a 

rectangular columnar phase, D ,̂ with four fold symmetry. For both of these phases, the 

particles within each column are ordered and are correlated with those in neighbouring 

columns but with a periodicity of half the molecular thickness. For the hexagonal columnar 

phase, with Q* parallel to the director, (see figure 4.16a), we can indeed see the six peaks 

representing the hexagonal packing, while it is also possible to see the second order 

reflections resulting from these peaks, an indication of the long range nature of the 

translational order and its non-sinusoidal character. 
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Figure 4.15: The total scattering for the nematic phase at T* of 3.03 from 10 configurations, a) parallel to 

the director in the (Qx*, Qy*) plane, b) perpendicular to the director in the (Qx*, Qz*) plane and c) 

perpendicular to the director in the (Qy*, Qz*) plane for N of 256. 
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The position of the main peaks are at ~ I.IQ* which gives a real distance for r * of 0.9, 

and though it does not seem to correspond to the distances observed in the it is 

consistent with the columns being close packed i.e. LOOq, as observed in a graphic 

snapshot of a configuration, (see figure 3.14). This is because the diffraction pattern is 

actually picking up the closest distance between planes of columns as seen in figure 4.17. 

We should also mention the hexagonal packing of the columns is not perfect as is shown 

by the slightly distorted nature of the six peaks and the difference in the intensity. This 

illustrates the power of X-ray diffraction, as although we could tell this by looking at the 

graphic snapshots, no other distribution function could pick this up so effectively. 

Perpendicular to the director, we should pick up both edge-to-edge and face-to-face 

correlations. Looking at the contour plot, (see figure 4.16b), we can see that along the Qz* 

axis, the director, there are peaks at = 2.2Q* or r* of 0.45, which corresponds well to the 

g(r*) value of 0.46 for particles in a face-to-face orientation. The edge-to-edge or 

intercolumn correlations are represented along the Qx* axis at ~ I.IQ* which gives r* of 

0.9. This is similar to the values obtained parallel to the director, and is the closest distance 

between planes of neighbouring columns. 

We also see that the face-to-face peaks at Qz* ~ 2.2 are off axis by about 10°. This possibly 

indicates that the columns are slightly tilted with respect to the director. Again this 

illustrates the potential of X-ray diffraction, as from our results in Chapter 3, it was not 

obvious that the columns were tilted. If indeed, the columns are tilted what would cause 

this, as there is no term in the intermolecular potential which could explain this 

phenomenon, though a tilted phase was observed by Chalam et in their studies of a 

rod-shaped Gay-Berne mesogen. Perhaps the fixed shape and volume of our constant NVE 

ensemble simulation box forces the columns to be tilted, in order to be commensurate with 

the periodic images. 
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Figure 4.16: The total scattering for the hexagonal columnar phase at 7* of 2.01, from 10 configurations, a) 

parallel to the director in the (Qx* Qy"^) plane, b) perpendicular to the director in the (Qx* QzV plane and 

c) perpendicular to the director in the (Qy*, Qz*) plane for N of256. 
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Figure 4.17: A representation of the relationship between the g(r*) and X-ray diffraction values for the 

distance between neighbouring columns, that are a) close packed and b) with an expanded packing lattice. 

Rectangular columnar phase T* of 2.04: For the rectangular columnar phase, at p* of 

2.7, the constituent columns actually penetrate each other, the distance being O.Qag between 

the centres, and as with the hexagonal columnar phase, this is picked up by the diffraction 

pattern. Parallel to the director, (see figure 4.18a), the four peaks are at = l.OQ* = LOOq 

and using the same arguments for the hexagonal packing, gives the columns at a distance 

less than l.OOg apart. For Q* perpendicular to the director, we can see the face-to-face 

peaks at = 2.2Q* and the edge-to-edge features at = l.OQ*. It is surprising that the 

edge-to-edge peaks are stronger and the face-to-face weaker than the hexagonal phase. 

Though still not perfect, it is interesting to see that the patterns for both the columnar 

phases are much better resolved and more realistic than those for the isotropic and discotic 

nematic phases. This is probably due to the scattering being concentrated in smaller regions 

of Q* space, giving a more intense peak, thus allowing a good signal-to-noise ratio. 
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Figure 4.18: The total scattering for the rectangular columnar phase at T* of 2.04 from 10 configurations, 

a) parallel to the director in the Qy*) plane, b) perpendicular to the director in the (gx* plane 

and c) perpendicular to the director in the (Qy* Qz*) plane for N of256. 
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Problems encountered 

Though the intramolecular diffraction patterns obtained from the simulations produced the 

expected results, all is not perfect with the total diffraction patterns. As we have seen in 

various diffraction patterns, (most notably figures 4.15b and 4.17a) there is apparently a 

series of peaks with four fold symmetry at a distance of 0.5Q* or 2.0OQ, A S we had 

previously discussed, we have speculated that these arise from the small, finite system size. 

But can we improve the patterns and find with a greater certainty the origin of the spurious 

peaks. These peaks can be observed more clearly in the scattering from one configuration 

of a discotic nematic phase with Q* parallel to the director, (see figure 4.19). 

1(0* 

3 % ) -

ino - 0 Qx* 

Qy' 

Figure 4.19: The total diffraction pattern from one configuration of the discotic nematic phase at T* of 9.09 

for 256 particles, with Q* parallel to the director, showing the presence of four spurious peaks. 

From the simulation, we expect on average to find particles in an overlapping edge-to-edge 

orientation with a distance of r* = 0.9 between the centre of masses of each ellipsoid, this 

is indicated by the transverse pair correlation fiinction gj^(r^*), (see §4.4). This arrangement 

of the particles should give a diffuse ring at a distance 1/r* i.e. 1.1 Qx* in the diffraction 

pattern, with maybe a second, weaker ring at twice this distance ~ 2.2Qx*. But as we can 

see from our pattern, there are a series of peaks, with fourfold symmetry and which 

correspond to physical distances in the real simulation box, i.e. they represent a distance of 

~ 2.0(?Q, while the size of the simulation box is 2.340^. At first we thought they may have 

been part of the intramolecular scattering but subtraction of this quantity from the total 

pattern to give the intermolecular scattering, (see equation (4.32)), did not remove them. 
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This can be illustrated for the discotic nematic phase at T* of 9.09, with Q* perpendicular 

to the director as shown in figure 4.20. So it seems that the peaks arise from either the 

method used to calculate the diffraction patterns or from some artefact caused by the small 

size of the box. 
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Figure 4.20: The diffraction pattern from one configuration of the discotic nematic phase at T* of 9.09 for 

256 particles, with Q* perpendicular to the director, showing a) the presence of the spurious peaks discussed 

previously in the total diffraction pattern and b) the effect of subtracting the intramolecular scattering from 

the total scattering to give the intermolecular scattering and how the peaks are still visible. 

Even excluding the unidentified peaks present, the form of the diffraction patterns is not 

consistent with those from real experiments. Again, this could be due to the small system 

size of the simulation. Another factor, could be that the simulation box contains an uneven 

density of particles along each axis. As is evident from the graphic snapshots of the 

mesophases generated from our simulations, (see §4.4), in some instances the director does 

not lie parallel to a side of the simulation box. However, when we transform into the 

director frame, by lining up the director with the Z axis, we can still be left with the 

director along a box diagonal, which for the columnar mesophase, results in an uneven 



146 

numbers of particles in each column. This can lead to some artificial weakening, and even 

the disappearance, of some diffraction features. So to ensure an even number of particles 

throughout each column we need to defme a new box with the director along an edge. We 

do this by generating the next shell of periodic images and then starting from the centre of 

the original simulation box, form a cubic box with the same dimensions, which may or 

may not include particles from the periodic images. Thus we find that sometimes the 

number of particles within the new box may be larger or smaller than in the original 

simulation box, which is usually by < 10 particles. In theory, the uniform density of 

particles along the columns should improve the pattern, but as we can see from figure 4.21, 

it had the effect of smearing out the diffraction pattern while not succeeding in removing 

the spurious, central peaks. 
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Figure 4.21: The effect of constructing a new simulation box, with the same number oj particles in cach 

column, from a series of periodic images. Illustrated here is the total scattering parallel to the director for 

the rectangular columnar phase at 7* of 2.04, in a) a box with an uneven particle density along the columns 

and b) a box with an even particle density along the columns. 



147 

Even though we lined up the X and Y axes of the simulation frame from one configuration 

to another, it is impossible to line up the phase symmetry axes, thus if the phase rotates 

slightly from one configuration to another this will produce the smearing effect. It is 

interesting to see that in the box without the uniform density the spurious peaks are at an 

angle with respect to the X axis, while in the box with the uniform density of particles these 

peaks had now lined up with the axes. This lead us to the conclusion that they might be due 

to the small, finite size of the system. This same effect can be seen in the optical transforms 

of a series of model configurations i.e. masks with a series of spherical holes in"^'. 

- # ' , # # # # » 

Figure 4.22: An optical mask of a rectangular box with an uneven number of particles in each column and 

its diffracted transform. 

Figure 4.23: An optical mask of a rectangular box with an even number of panicles in each column and its 

diffracted transform. 
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These transforms are masks containing an image of a geometric configuration projected 

onto a plane that will diffract a monochromatic beam of light. Figure 4.22 shows the 

optical mask and its corresponding transform of a oriented rectangular box containing a 

series of spherical diffraction centres. As expected we can see a regular scattering pattern. 

An important observation is the subsidiary features of the central peaks which lie at an 

angle to the central peaks but are orthogonal to the initial orientation of the initial 

scattering pattern. This is equivalent to a simulation box that has an uneven density of 

particles within each column. Figure 4.23 illustrates the effect of rotating the box so that 

each column now has the same number of particles in each column. This has a minimal 

effect on the overall pattern but it is interesting to note that the subsidiary scattering 

features of the central peaks have rotated, to remain orthogonal with respect to the optical 

mask. This same behaviour is observed with the spurious peaks, leading us to the 

conclusion that these peaks are somehow due to the small, finite size of the system. 

4.5 Conclusions 

In this Chapter we have investigated the possibility of calculating X-ray diffraction patterns 

of the model mesophases generated from computer simulations. Initial results for a system 

of prolate particles using a series of spherical scattering centres placed in line along the 

symmetry axis of each particle gave promising results. But to extend these ideas to oblate 

particles, such as the disc-shaped mesogens studied in this Thesis, it was decided to place a 

three dimensional ellipsoid at each site instead. This approach produced mixed results. The 

intramolecular X-ray scattering mainly provided a means to check the calculation 

procedure, and as such showed the expected results. All these diffraction patterns were 

smooth with a good signal-to-noise ratio and produced isotropic peaks parallel to the 

director but with an anisotropic peak perpendicular to the director, the anisotropy of this 

peak increasing with increasing orientational and translational order of the mesophase. 

But of greatest interest to us, were the total X-ray diffraction patterns, which would 

hopefully give us detailed information on the molecular packing within each mesophase. In 

comparison to the intramolecular scattering, these patterns were considerably noisier and 

provided less clear cut information than we had hoped for. 
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The first thing we noticed was the presence of a large number of intense peaks between Q* 

of 0.4 - 0.8, but these were attributed to the small, finite size of the system studied. Of all 

the mesophases investigated, the isotropic and discotic nematic phases produced the worst 

patterns. Though scattering with Q* parallel to the director seemed to show the uniaxial 

nature of these phases, scattering perpendicular to the director yielded no real information. 

It did not help that any feature would be very weak, as the corresponding radial distribution 

functions g(r*) did not exhibit many intense peaks. The diffraction patterns for the 

hexagonal and square columnar phases were reasonably sharp and well-defined as expected 

for more ordered phases. Scattering with Q* both parallel and perpendicular to the director 

produced information on the structure within the phase, with peaks corresponding to both 

edge-to-edge and face-to-face orientations. It seems that only good patterns are produced, 

at least for this system, when the scattering is concentrated into small regions of Q space 

thus giving intense diffraction peaks. 

There are several ways of trying to improve the diffraction patterns, the most obvious 

being the inclusion of more configurations into the scattering calculation. This seemed to 

bring some improvement for the isotropic and nematic phases, but had little effect on the 

columnar phases as these were already well-resolved. Though not strictly an ideal method, 

increasing the size of the beam stop, to remove the spurious peaks created by the finite 

system size, also brought about some improvement in the patterns. Another method would 

be to recreate the simulation box with an even density particles throughout, but as we had 

no easy way of lining up the jc and } axis or the phase symmetry axis, the procedure just 

smeared out the patterns. 

A more drastic way to improve the patterns would be to increase the number particles in 

the system. Although in theory it is possible to calculate the singlet orientational 

distribution function/(cosp) from the intensity of the wide angle arcs, it was not attempted 

as we felt that the patterns did not produce the expected quality needed to make a 

reasonable estimate. We have shown that it is possible to calculate the X-ray diffraction 

patterns for a series of computer generated model liquid-crystalline mesophases. Overall, 

some meaningful information could be extracted especially from the more ordered 

columnar phases but the patterns for the nematic phase were disappointing. It seems that as 
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with the simulations themselves, the use of computer X-ray diffraction will only produce 

results similar to experimental patterns, as the size of system grows. 
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5. The Gay-Berne discogen II 

5.1 Introduction 

In §1.3.4, we briefly described the variety of smectic phases formed by disc-shaped 

metallomesogens"' but in all cases, the symmetry axes of the constituent molecules lay 

parallel to the layers. But we can envisage another scenario in which the symmetry axis of 

each particle lays perpendicular to the layers. This would be analogous to the behaviour 

observed in several lyotropic systems'^'^' in which the micelles, ellipsoidal in shape, are 

claimed to remain intact on transition from the discotic nematic to form what is know as a 

discotic lamellar phase (LJ. It is this intriguing behaviour that we aim to look at in greater 

detail. 

5.2 Parametrisation of the Gay-Berne potential 
As with simulations of the discotic mesogen in Chapter 3, we need to use a much 

simplified model incorporating just the essential features which we feel are needed to 

model accurately the main characteristics of the mesophase in question. The potential we 

have chosen is the Gay-Berne potential, which as well as having an ellipsoidal repulsive 

core, incorporates the attractive forces that would be needed in order to induce and stabilise 

any translationally ordered mesophases. 

We now move on to the problem of how to parametrise the Gay-Berne potential in order to 

represent the behaviour of a discotic smectic system. In order to model the columnar phase 

shown by the Gay-Berne discogen, we parametrised the potential so that the face-to-face 

arrangement of the ellipsoids was energetically favoured. This was achieved by setting the 

well depth anisotropy, e/E,, to have a value of 5.0. But now we do not want the system to 

form columns, instead we want the particles to associate in horizontal sheets thus the 

edge-to-edge arrangement should be preferred to the face-to-face arrangement. To achieve 

this by the parametrisation of the well depth term means setting e/e^ to a value less than 1 

but having no prior knowledge of what this value should be, we simply invert the value 

used by Emerson et in their system of disc-shaped thermotropic mesogens and choose 

e/e, to be 0.2. These simulations are of interest in their own right, as they allow us to 

explore further the phase behaviour of particles interacting via the Gay-Berne potential. 
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(/*(r*) 

Figure 5.1: The Gay-Berne potential parametrised to model a system of ellipsoidal particles, having the 

parameters, of 0.345 and E/e, of 5.0. 

[/*(r*) 

- 1 0 -

Figure 5.2: The Gay-Berne potential parametrised to model a system of ellipsoidal particles, having the 

parameters, o/a^ of 0.345 and e/e^ of 0.2. 
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Thus to examine the effect of this parametrisation of the well depth term, we keep the 

exponent parameters |a, and v the same as those used by Emerson''^^ namely |a, of 1 and v of 

2. The potential energy diagram for the Gay-Berne potential parametrised in this way is 

shown in figure 5.2. We can see how the potential energy curve for the edge-to-edge 

arrangement is now favoured. But one effect is to allow the cross arrangement to be the 

next preferred arrangement. This happens as the well depth equation for both the 

face-to-face and tee arrangements contain terms relating to the strength parameters e/e,. 

Comparing to the original Gay-Berne potential parametrised for disc-shaped particles, the 

cross and end-to-end arrangements remain the same but it is the tee and face-to-face that 

have reduced well depths. 

5.3 The molecular dynamics simulation 

The simulation was performed in the constant NVE (microcanonical) ensemble, with 256 

particles in a cubic box with periodic boundary conditions. A minimum image summation 

and a spherical cut-off of 2.40^ were also employed. This cut-off is larger than previously 

used, (see §3.3), as the attractive tail of the potential is longer for the parametrisation used 

in this Chapter. The scaled density used was between 2.7 and 3.0, again larger than before, 

as the trial simulations at lower densities produced cavities within the box. The simulation 

was started from an a-f.c.c. lattice with all 256 particles parallel to the % axis. A scaled time 

step dt* of 0.001 was used, the simulations being performed on a Silicon Graphics Iris 

Indigo R3000 workstation, with each time step taking about Is of c.p.u. time. The phases 

were identified by graphic visualisation and various structural distribution functions. 

The initial simulation was performed at the scaled density p* of 2.7. The system was set up 

by starting with a crystal at the low density p* of 1.8, e/e^ of 0.2 and T* of 10.0. After 

30,000 time steps, (P^) had reached a value of 0.092, consistent with the isotropic phase. 

The system was then compressed in steps of 0.3 scaled density units until the desired 

density, p* of 2.7 had been reached. After 50,000 time steps the value of (P^) was now 

0.087, showing that the system had remained in the isotropic phase. From this state point 

the system was cooled until T* of 0.1. By now (Pj) had a value of 0.998, but looking at the 

graphic snapshot of the lowest temperature phase, (see figure 5.3), it can be seen that the 
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system had indeed crystallised and that the particles had come away from the sides of the 

box. This indicated that at least for this highly ordered phase with a well depth anisotropy 

e/Eg of 0.2, the density p* of 2.7 is too low. If we used a higher density, the system would 

be slightly compressed perhaps solving the problem of the particles coming away from the 

box sides. So we tried a simulation at the higher density p* of 3.0 by compressing the 

system at a low temperature and then crystallising it to investigate the behaviour of the 

particles. It was observed that in the crystal phase at the higher density the particles 

remained well behaved in that they did not come away from the sides of the box. It was 

decided, therefore, to perform a fuller simulation at this density p* of 3.0. 

Figure 5.3: Configumtional snapshot for the crystal phase at p* of 2.7, using the IBM WINGS vector 

graphics package where the particles are represented as squares; they are half the correct size in relation to 

the simulation box to aid visualisation. The director is represented as a line in the centre of the box, the 

length being proportional to (P^), thus when (Pj) has a value of 1, the director is the same size as the length 

of one side of the box. 

For the more detailed simulation, the system was prepared by compressing the state point, 

T* of 6,0 and p* of 2.7, an isotropic configuration, straight to the higher density. By now 

the order parameter (P,) had a value of 0.102, which though somewhat high for an 

isotropic phase with 256 particles, (see §3.4.1), indicated a generally disordered phase, a 

conclusion that was backed up by the graphic snapshots. These illustrations also confirmed 

the absence of any cavities in the simulation box. The temperature was then lowered in 

steps of 0.25 scaled units until T* of 0.1 was reached. 
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At each state point an equilibrium run of between 50,000 and 300,000 time steps was 

performed, the actual number dependent on how quickly an equilibrium state was reached. 

This was followed by a production run, in which the temperature scaling was turned off, of 

between 20,000 and 50,000 time steps, again the length of the simulation was dependent on 

how quickly the important properties had stabilised about a constant value. The various 

orientational and thermodynamic properties are shown in table 5.1. 

Set T* Actual T* N^no' /Vp/10' <%*> 

6 5.97 ± 0.09 100 20 -1.35 ±0.041 0.079 ±0.015 

5.5 5.45 ±0.11 50 20 -1.96 ±0.034 0.095 ±0.032 

5 4.83 ± 0.09 50 20 -2.88 ±0.027 0.131 ±0.056 

4.75 4.74 ± 0.07 100 50 -2.87 ±0.023 0.118 ±0.047 

4.5 4.43 ± 0.08 100 50 -3.53 ±0.018 0.178 ±0.045 

4.25 4.14 ±0.05 200 100 -7.14 ±0.018 0.623 ±0.031 

4 4.02 ± 0.09 100 50 -7.83 ±0.021 0.667 ±0.030 

3J5 3.75 ± 0.06 100 50 -9.72 ± 0.015 0.768 ± 0.024 

3.5 3.57 ± 0.05 300 50 -10.94 ±0.013 0.814 ±0.027 

3.25 3.27 ± 0.04 100 100 -12.59 ±0.019 0.863 ±0.013 

3 3.01 ±0.07 100 40 -13.61 ±0.023 0.887 ±0.014 

2.75 2.87 ± 0.05 200 100 -14.21 ±0.015 0.901 ±0.011 

2.5 2.48 ± 0.06 100 40 -15.47 ±0.016 0.924 ±0.014 

2.25 2.29 ± 0.06 100 100 -16.03 ±0.011 0.933 ±0.012 

2 2.03 ± 0.05 100 40 -16.77 ±0.015 0.944 ±0.015 

1.75 1.77 ±0.03 100 50 -17.54 ±0.011 0.954 ±0.011 

1.5 1.51 ±0.03 100 40 -18.24 ±0.009 0.962 ±0.012 

1.25 1.25 ±0.01 100 50 -19.02 ± 0.004 0.971 ± 0.009 

1 1.06 ±0.01 100 40 -19.82 ± 0.008 0.977 ± 0.008 

0.75 0.76 ±0.01 100 50 -20.66 ± 0.006 0.984 ± 0.005 

0.5 0.51 ±0.02 100 40 -21.33 ± 0.006 0.989 ± 0.006 

0^5 0.23 ± 0.01 100 50 -2204 ± 0.003 0.994 ± 0.004 

0.1 0.07 ±0.01 50 40 -22.44 ± 0.002 0.997 ± 0.003 

Table 5.1: Values ofT*, (U*) and {P^from the cooling run at p* of 3.0. and Np are the number of time 

steps performed during the equilibrium and production stages, respectively. 
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5.4 Results and discussion 

5.4,1 Orientationai properties 

Second and fourth rank order parameters: The variation of the order parameters (Pj) and 

{P^ with temperature T* for the cooling run are shown in figure 5.4. Between T* of 5.97 

and 4.43, remains between the values 0.1 to 0.2. This near but not total absence of 

orientationai order is generally a characteristic of an isotropic phase in a molecular 

dynamics simulation. The main reason for the values not being zero is discussed in §2.4.2, 

but also at constant volume, the system goes through a biphasic region so that {P^ from the 

simulation is the weighted average of the order parameter for the isotropic and nematic 

phases. As the temperature is lowered, the system undergoes a phase transition with {P )̂ 

rising sharply to a value of 0.67, then as the system is cooled further, the order slowly 

increases with decreasing temperature until near perfect orientationai order is reached. At 

this stage we can only speculate on the variety of phases formed. More than likely, the high 

temperature phase is isotropic while at temperatures of 1.06 and below, a crystal phase 

could exist. The sharp rise in the order parameter at the transition from the isotropic phase 

to an orientationally ordered phase probably indicates a first order transition. 

O-W u o o o 
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Figure 5.4: Variation of {P^ and {P^ with the scaled temperature T*. 
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The variation of the fourth rank order parameter {P^) with temperature T* is also shown in 

figure 5.4. The shape of the curve for (P^) is similar to that of (P^), though having lower 

values at all temperatures. In figure 5.5 we plot (P^) against (P^). This is useful as there are 

various predications as to what this curve should be'^'. Here, we have included the 

Maier-Saupe curve (see §3.4.6), and as in Chapter 3, the curve fits well to the simulation 

data. 

0.8 -
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Figure 5.5: Plot of the order parameters {P^ vs. (P^) from our simulations (circles) against that predicted by 

the Maier-Saupe theory (solid line). 

Singlet orientational distribution function: The behaviour of the singlet orientational 

distribution function/cosp), follows that to be expected from a system exhibiting isotropic 

and nematic phases, (see figure 5.6). In the isotropic phase, T* of 4.43, we can see that 

there is no preferred direction of orientation as^cosp) takes the value = 0.55, which is in 

good agreement with the expected value of 0.5. Once in the nematic phase, between the 

scaled temperatures of 4.14 and 3.57, the plot ofy(cosP) shows a large peak at the value of 

P = 0 i.e. along the director. This peak increases in intensity with an associated decrease in 

width as the orientational order increases with decreasing temperature. 
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Figure 5.6: Variation off{cos^) with co^p at the scaled temperatures T* indicated. 

5.4.2 Thermodynamic properties 

Internal energy: The plot of the scaled internal energy per particle (t/*> against scaled 

temperature is shown in figure 5.7. This is slightly more revealing than the plot of in 

that it shows two possible discontinuities, each indicative of a phase transition. The first 

transition visible is between the temperatures 4.43 and 4.14, mirroring that shown by the 

orientational behaviour of the system. The sharp drop in ([/*) backs up the view that this 

could be a first order transition, though to be precise we would have to calculate the free 

energy. The next transition is between 3.57 and 3.27 and the last possible sign of a phase 

transition is between T* of 1.25 and 1.06 where there is a change, albeit slight, in the slope 

of the graph. The first drop could be attributed to a nematic - isotropic transition, the 

second could be between a smectic - nematic phase and the third between a smectic and 

another ordered phase, possibly crystal. Though, we really need a lot more data points to be 

able to say that we have a definite transition for these latter two. We must also tale into 

account that phase transitions also appear more continuous in the NVE ensemble. 
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Figure 5.7: Variation of{U*) with the scaled temperature T*. 

Heat capacity: The plot of the scaled heat capacity against temperature is shown in figure 

5.8. The heat capacity calculated by the fluctuation method, (see §2.4.1), shows that the 

values are subject to large errors and as such the graph yields no real information about the 

system, though we do observe a large peak close to the discotic nematic - isotropic 

transition and another peak around the region of the scaled temperature 3.5. There also 

seems to be evidence of a transition at around T* of 1.25 and 1.06, though again there is 

not enough data points to conclusively prove the existence of a transition. We can also 

calculate the heat capacity from a plot of the internal energy (t/*). The derivative of a cubic 

spline fit to the internal energy gives the ( C / ) . This has essentially the same shape as the 

(C/> calculated directly from the simulation, and it highlights the discontinuities in the 

plot of {U*) already discussed. The origin of the difference between the values obtained 

from the two methods can be explained. One is the differentiation of a potential energy plot 

while the other is calculated from fluctuations in the kinetic energy 
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Figure 5.8; Variation of{Cy*) with the scaled temperature T*. 

5.4.3 Structural properties 

From the orientational and thermodynamic properties, we have identified several possible 

mesophases. At temperatures of 4.43 and above, we seem to observe an isotropic phase. On 

cooling, we see the presence of two orientationally ordered phases, one between T* of 4.14 

and 3.57 and the other between 3.27 and 1.25. Then at temperatures of T* of 1.06 and 

below, the phase attains near perfect orientational order, possibly indicating a crystal phase. 

But to understand fully which mesophases are produced during the simulation, we need to 

calculate various structural properties, thus in the following section, we attempt to 

characterise, by means of these properties, each phase more accurately and for the sake of 

clarity, we shall only discuss the scaled temperatures bordering the phase boundaries. 

Graphic visualisation and g(r*): The first two structural properties we have calculated are 

the radial distribution function g(r*), (see §2.4.3) and a graphic visualisation of the system, 

(see §3.4.3). Although we cannot describe fully the detailed structure of the phase from 

these techniques and in some cases, especially the graphics, they can be misleading, 
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they are a useful starting point from which to distinguish between the isotropic, nematic 

and possible smectic phases. 

The first temperature we shall deal with is T* of 4.43, at the boundary between a possible 

discotic nematic - isotropic transition as indicated by the graphs of {P^ and ([/*). The plot 

of the g(r*), (see figure 5.9), confirms our initial characterisation as it shows the typical 

shape for an isotropic phase'®'̂ ' where the limiting value tends to the ideal fluid value of 

one. There are two peaks present, the one at r* of 0.9 probably indicates particles in a 

slightly staggered edge-to-edge arrangement. There is also an additional peak at r* of 0.35, 

which corresponds to particles in a face-to-face arrangement though as the height of this 

peak is below one it is not expected to be significant. We can also see from the graphic 

image, (see figure 5.11), that the particles are more or less random in their orientations as 

expected for an isotropic phase. 

If we inspect g(r*) for T* of 4.14, there is a small but significant change in shape, as the 

peaks at r* of 0.3 and 1.0 have become sharper and more pronounced, indicating the 

increased tendency to find particles in the edge-to-edge arrangement i.e. the phase has 

increased short range translational order, though from the configurational snapshot, we can 

identify a nematic at this temperature (see figure 5.12). At the lower end of the range of 

this mesophase, at T* of 3.57, the plot of g(r*) has a similar shape, though the peak at r* of 

0.3 has reached a value of just over one, indicating that there is now significant face-to-face 

ordering. Though if this is the case, it indicates that there seems to be some physical 

overlap between the particles as the thickness is 0.345(7o. The configurational snapshot 

reveals the presence of the more ordered nematic structure of the phase, but it does not 

show clearly, the suspected particle overlap. Looking down the director, (see figure 5.13a), 

shows that even though the orientational order is high, there is still a random distribution of 

the centres of mass of the particles. Taking a configurational snapshot perpendicular to the 

director, (see figure 5.13b), indicates some short range translational order in the form of 

face-to-face ordering, between several pairs of particles, as indicated by the g(r*), though 

the considerable degree of translational disorder confirms the presence of a discotic 

nematic phase. 
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T* = 4.43 

r* = 4.14 

r* = 3.57 

T* = 3.27 

Figure 5.9: T/ie radial distribution function g(r*)for the scaled temperatures T* indicated. 

g(r*) 

T* = 3.27 

T*= 1,25 

T*= 1.06 

T* = 0.07 

Figure 5.10: The radial distribution function g(r*)for the scaled temperatures T* indicated. 
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Figure 5.11: The configiirational snapshot of the isotropic phase at T* of 4.43. 

Figure 5.12: The configurational snapshot of the nematic phase at T* of 4.14. 
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a) 

b) 

Figure 5.13: The configurational snapshots of the discotic nematic phase at T* of 3.57, a) parallel and b) 

perpendicular to the director. 
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The next mesophase to characterise lies between the scaled temperatures of 3.27 and 1.25. 

At T* of 3.27, the peak at r* of 0.3 in the g(r*), (see figure 5.10), has increased in intensity, 

quite considerably, showing the onset of ordering with a face-to-face arrangement, possibly 

indicating a columnar phase. There is also a large peak developing at r* of 2.0, the origin 

of which we shall discuss presently. At the scaled temperature of 1.25, the general shape of 

the g(r*) curve remains unchanged, with peaks at r* of 0.3 and 1.0 increasing in intensity 

as the translational order increases. The large peak at r* of 2.0 has become more clearly 

defined, resolving into two peaks at r* of 1.8 and 2.1. This is a "fingerprint" for a phase 

possessing hexagonal ordering, and this fact is borne out by the configurational snapshots, 

parallel to the director (see figure 5.14a). 

Looking at the configurational snapshot perpendicular to the director, should reveal the 

columnar ordering within the phase and as we can see from figure 5.14b, this is the case. 

Though there seems to be considerable disorder within the columns with some particles 

tilted with respect to the column axes. The view orthogonal to this snapshot, but still 

perpendicular to the director (see figure 5.15) is even more revealing. It shows the structure 

to consist of short columns of particles usually about three, arranged in layers. The 

columns in the adjoining layers, seem to be "shifted", lying in between the columns of the 

next layer. Though it is had to tell the precise structure from a graphic snapshot, by 

manipulating the image in three dimensions via computer of both this phase and the 

crystal, it seems to consist of columns of 2 to 3 particles arranged in a hexagonal net. The 

next layer of columns then lies in the holes of the adjoining layer, (see figure 5.16), in an 

ABAB packing. 

For the scaled temperature of 1.06, the shape of the radial distribution function has 

changed, compared with T* of 1.25, (see figure 5.10). The peak at r* of 1.8 has increased 

greatly while the peaks at r* of 1.0 has been resolved into additional peaks. This change in 

the g(r*) backs up the assumption that a phase transition occurs between these two 

temperatures. The configurational snapshots at T* of 1.06, (see figure 5.17), reveals the 

almost perfect orientational and translational order. Taking this, and the evidence such as 

the value of the order parameter into account we can identify this phase as the crystal. 
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a) 

b) 

Figure 5.14: The configurationa! snapshots of a columnar phase a! T* of 1.25. a) parallel and b) 

perpendicular to the director. 
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Figure 5.15: The configurational snapshots of a columnar phase at T* of 1.25, perpendicular to the director, 

but in a direction orthogonal to that in figure 5.15b. 

b) 

Figure 5.16: Schematic of "shifted" columnar phase showing a) the ABAB packing of the columns and b) the 

view perpendicular to the director. 
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a) 

b) 

Figure 5.17: The configumtional snapshots of the crystal phase at T* of 1.06. a) parallel and b) 

perpendicular to the director. 
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From an initial inspection of the radial distribution function and configurational snapshots, 

we have clearly identified three possible phase transitions. Between the scaled temperatures 

r* of 4.43 and 4.14, we have the discotic nematic - isotropic transition, characterised by 

the onset of long range orientational order. There seems to be another phase transition 

between the temperatures of 3.57 and 3.27, and from the configurational snapshots, this 

transition is from the discotic nematic phase to a smectic columnar phase. We define the 

smectic columnar phase as essentially a phase having smectic layers which are composed 

of small columns of disc-shaped mesogens. Finally, from the form of g{r*), there is a 

transition from this columnar phase to a crystal, between the temperatures T* of 1.25 and 

1.06. In all of these phases, the particles seem to overlap when in a face-to-face orientation, 

the separation being O-SOq, smaller than the thickness of a particle which is defined as 

0.345(?Q but we shall leave the discussion of this situation for a later section. 

Why should this structure in the columnar phase result? If two particles, say 1 and 2, are in 

a face-to-face arrangement, (see figure 5.18), they can approach each other relatively 

closely even overlapping without a major loss in energy as the depth of the face-to-face 

energy well is small, (see figure 5.2). A third particle, 3, approaching particle 2 in a pure 

edge-to-edge arrangement will have a strong energy of interaction with this particle. But as 

particle 1 is overlapping with particle 2, its edge-to-edge arrangement with particle 3, 

though not "pure", has increased, helping to stabilise its own interaction with its 

overlapping neighbour, particle 2. Thus the propagation of the observed columns, are not 

by the face-to-face interaction but by a series of edge-to-edge interactions from particles 

within neighbouring columns. Thus the columnar phase in this system results from the 

interaction between columns while in our columnar phase in Chapter 3, the structure arises 

from the face-to-face interaction between particles within one column. But what causes the 

shifted structure? The most likely explanation is that after 2 to 3 particles have formed a 

column, the strong edge-to-edge interactions overcome the tendency to form columns. 

There would also be some effect from having a fixed shape and size simulation box thus to 

be commensurate with its periodic images, the system packs into this unusual structure. 
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Figure 5.18: The propagation of columns within a system parametrised to form a smectic phase. 
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The orientational correlation function: Figure 5.19 shows the pair orientational correlation 

function G^ir*) for various scaled temperatures. The difference in the limiting value 

between T* of 4.43 and 4.14 is further evidence of the discotic nematic - isotropic phase 

transition. We can see from table 5.2, that the agreement of {P^ calculated from the 

limiting value of G^{r*) with that obtained from the diagonalisation of the Q tensor is 

reasonably good. 

(jL(r*) 

0.8 -

0.4 -

0.2 -

-f* = 1.06 
~T*= 1.25 

7* = 3.27 

r* = 3.57 

7* =4.14 

7* = 4.43 

2.0 2.5 

Figure 5.19: The pair orientational correlation functions for the scaled temperatures indicated. 

T* 

from Q tensor from G,{r*) 

4.43 ± 0.08 0.178 ±0.045 0.179 

4.14 ±0.05 0.623 ± 0.025 &633 

3.57 ±0.05 0.814 ±0.027 0.813 

3.27 ±0.04 0.863 ±0.013 0.866 

1.25 ±0.01 0.962 ± 0.009 0.961 

1.06 ±0.01 0.977 ± 0.008 0.977 

Table 5.2: Values of {P^ calculated from the Q tensor and the limiting values ofG^{r*). 
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Longitudinal and transverse pair correlation functions: The longitudinal pair correlation 

function g| |(r | |*), (see figures 5.20 and 5.21), will reveal the extent of any translational 

structure in the various phases, along the vector parallel to the director. As expected for the 

isotropic phase at T* of 4.43, there is no translational structure present. For the discotic 

nematic phase at T* of 4.14 and 3.57, there is also very little translational structure though 

there is a small peak emerging at r* of 0.3 indicating a degree of face-to-face correlation at 

short range. Even in the smectic columnar phase, the plot of g| |(r| |*), shows little structure 

apart from this peak at r* of 0.3, though there is some evidence of a peak at r* of 0.6, this 

probably indicating a particle in the second shell of neighbours within a column. It is 

interesting to see that the plot of |(r| |*) cannot pick up the columnar ordering as it did 

for the columnar phase in Chapter 3. This is most probably because there is no long range 

correlation between particles in neighbouring columns, a feature, which to some extent, can 

be seen in the configurational snapshots, especially of the crystal phase, (see figure 5.17). 

The plots of the transverse pair correlation function g^(r^*), (see figures 5.22 and 5.23), are 

more revealing. In the isotropic phase, T* of 4.43, we see a broad peak at around r* of 0.9 

but it is very small. As we lower the temperature, the shape of the g^(/'ĵ *) changes quite 

dramatically. In the discotic nematic phase at T* of 4.14 and 3.57, this peak at r* of 0.9 

now becomes quite visible, with an additional peak at the origin which represents particles 

lying above each other in a face-to-face arrangement, increasing in intensity. This indicates 

the presence of short range order in which the particles stack on top of each other. At T* of 

3.27, in the smectic columnar phase, now shows pronounced structure 

perpendicular to the director. The peak at r* of 1.0 are particles in neighbouring columns, 

but in a close packed edge-to-edge arrangement. The additional peak at r* of 1.8 is the next 

nearest shell of hexagonal neighbours. We see further proof of the possible transition 

between the columnar and crystal phases, in the plots of for the scaled temperatures 

of 1.25 and 1.06, in which at T* of 1.06, the curve for the crystal shows a series of very 

well-defined peaks. The peak at r* of about 0.5, represents the columns in adjoining 

lamellae. 
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Figure 5.20: The longitudinal pair correlation function g| |(r| |*) at the scaled temperatures T* indicated. 
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Figure 5.21: The longitudinal pair correlation function g| |(/"| |*) at the scaled temperatures T* indicated. 
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Figure 5.22: The transverse pair correlation function gj^r^*) at the scaled temperatures T* indicated. 
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Figure 5.23: The transverse pair correlation function af the scaled temperatures T* indicated. 
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5.4.4 Dynamic properties 

The mean squared displacement: The mean squared displacements calculated as a function 

of scaled time for a variety of scaled temperatures are shown in figures 5.24 and 5.25. For 

most scaled temperatures, the plot is linear with time and we can see quite easily, that as 

the temperature is decreased, the particles' translational motion decreases and hence the 

phases becomes more solid-like, as the translational and orientational order increases. 

From the slope of the m*{t*), we can calculate the diffusion coefficient D*, (see table 5.3). 

Phase D* 

from m*{t*) 

D* 0 | , * / D / 

4 4 3 I 0.566 0.405 0.299 1.35 

4.14 N 0.505 0IB8 0.201 0 4 4 

3^7 N 0345 0.064 0.146 0.44 

3.27 DL 0.171 0.032 0.078 0.41 

1.25 Du 0.024 0.01 0.009 l . I l 

1.06 C 0.015 0.003 0.004 0.75 

Table 5.3: The values of the scaled dijfusion coefficient for the system at the scaled temperatures T* 

indicated, where represents the column phase.. 

By looking at the mean squared displacement, parallel and perpendicular to the director, 

(see figure 5.26), we can get a more detailed idea of the nature/anisotropy of the motion 

within each phase. For the isotropic phase, T* of 4.43, the particles are extremely mobile in 

both directions, though the plots are not linear with time and we must remember that we 

can only define a director due to an artefact from the calculation of the order parameter, 

(see §2.4.2). On cooling into the discotic nematic phase, the diffusion tensor has decreased 

by a factor of two, again indicating the increased translational and orientational order. It is 

also evident that the particles are more mobile in a direction perpendicular to the director, 

but this is to be expected as this fits in with the results, from Chapter 3, where in the 

discotic nematic phase composed of ellipsoidal particles, the ellipses are able to slide over 

each other without encountering steric hindrance. 



176 
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t* 

Figure 5.25: The total mean squared displacement m*{t*) at the scaled temperatures T* indicated. 
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Figure 5.26: The total mean squared displacement m*{t*) at the scaled temperatures T* indicated. 
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b) T*= 4.14 a) T* = 4.43 

c) T* = 3.57 D) 7"* = 3.27 

f)T*= 1.06 e) T*= 1.25 

Figure 5.27: The mean squared displacement resolved, parallel (solid line) and perpendicular (dotted line) 

to the director at the scaled temperatures T* indicated. 



178 

It is also noticeable that for several of these plots there is some deviation from linearity, 

suggesting it would be useful to follow the calculation of the mean squared displacement 

over longer time scales though limited computer resources prevent us from performing 

such investigations. The transition between the discotic nematic, T* of 3.57 and columnar 

phases, T* of 3.27, is again highlighted, by a change of almost a factor of two in the 

anisotropy of the diffusion tensor, in the relative motions, parallel and perpendicular to the 

director. 

As the columnar phase is cooled to the boundary of the crystal - columnar transition, the 

differences between the directions orthogonal to the director are slowly being frozen out, 

and the overall motion is very small. The lack of anisotropy in the diffusion tensors, 

parallel and perpendicular for the temperatures T* of 1.25 and 1.06, is probably explained 

by the rattling motion of a cage effect in which each particle vibrates about a central 

position. 

The velocity autocorrelation function: We can see from the shape of the total velocity 

autocorrelation function, (see figures 5.27 and 5.28), that it decays to zero relatively 

rapidly, indicating that correlations between the velocities of a particle are lost quickly. 

The resolution of the velocity autocorrelation function into the components, parallel and 

perpendicular to the director, provides slightly more detailed information on the dynamic 

behaviour of the various mesophases, (see figure 5.29). Parallel to the director, the 

Cyy| |(f*) decays to zero much quicker than the in orthogonal direction, showing that the 

motion is hindered in this direction. The change in sign, denotes a reversal in the direction 

of movement, and as such indicates a cage effect where the particles undergo collisions and 

rattle between nearest neighbours. 
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Figure 5.27: The total velocity autocorrelation function C^^(t*) at the scaled temperatures T* indicated. 
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Figure 5.28: The total velocity autocorrelation function Cyy(t*) at the scaled temperatures T* indicated. 
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Figure 5.29: The velocity autocorrelation functions resolved parallel, (solid line), and perpendicular, 

(dotted line), to the director, at the scaled temperatures T* indicated. 
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The behaviour of the particles, perpendicular to the director remains quite similar for 

different temperatures. We can see from figure 5.29, that as the CyyJ t̂*) decays quite 

slowly to zero, the molecular motion must be hindered as the particles find it hard to 

diffuse orthogonal to the director. We must assume that the strong edge-to-edge 

interactions tend to slow the particles down. But we must also take into account the 

respective time scales over which the mean squared displacement and the velocity 

autocorrelation function are calculated. We could obtain the diffusion coefficient D* from 

the integration of the velocity autocorrelation function, but as with our results in Chapter 3, 

the calculations were not in agreement and shall not be repeated here. 

5.4.5 Deficiencies in the Gay-Berne potential 

We have used the Gay-Berne potential to represent an oblate mesogen, in the hope of 

forming a variety of discotic mesophases, and in this respect we have met with varying 

degrees of success. In Chapter 3, we observed the formation of an interdigitated hexagonal 

columnar phase while in this Chapter we have tried to form a discotic smectic phase, but 

only succeeded in forming a discotic nematic and "shifted" columnar phases. This lack of 

success was partly due to the oversimplification of the forces involved and partly due to a 

deficiency that has arisen in the potential used and it is this that we shall discuss first. 

Though we encountered no problem in Chapter 3, in our study of a discogen, it became 

obvious, that when we parametrised the potential to represent a mesogen with strong 

edge-to-edge interactions, we observed significant particle overlap for the face-to-face 

arrangement. This is due to the relative softness of the potential for particles in this 

arrangement i.e. for a interparticle separation of < l.OOg, the energy of interaction is 

positive but relatively small, (see figure 5.30). This means that if there are other 

energetically favoured interactions, they can compensate, in terms of energy, for this slight 

overlap, as we only expect the potential to be infinitely repulsive when the molecular 

centres themselves overlap. If two particles approach each other in an edge-to-edge 

arrangement, when the particles start to overlap, the separation between the molecular 

centres is non-zero, but they will only infinitely repel each other when the separation 

between these molecular centres, and not the actual discs, is zero, so the potential must 

reflect this. 
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If the diameter of the spherical force centre is the thickness of a disc, when two particles 

are in a face-to-face arrangement, they will infinitely repel when the separation is zero. We 

can rewrite the Gay-Berne potential as: 

^ 12 f 1 6" 
t/(ui,u2, r) = 4e(ui,u2, r) CJv 

r -a(u i ,u2 , r) + Ox J [r - (u i ,u2 , r) + G% 
. (5.2) 

For the potential used in this thesis, is equal to a^, that is the width of one Gay-Berne 

particle. This means that the potential energy of a pair of discs becomes infinite when, 

r = a(ui,u2, r ) - O e . (5.2) 

For particles aligned in the face-to-face arrangement, they approach each other at a distance 

less than so the potential is infinite at unphysical negative separations. 

To make this more realistic, U*{r*) should tend to infinity at r* > 0, thus a(Ui,U2,r") 

should be larger than for all orientations. As the separation is smallest when in a 

face-to-face arrangement, should be equal to the thickness of a disc and not â .. Thus 

the modified Gay-Berne potential, the GBII model, for discs is given in equation (5.3) with 

the distance r still scaled by a^, so that; 

[/(u,,62,r) = 4e(a,,u2,r) ' Of 1 _j Of ~ 
r-(7(ui,u2, r) + OfJ [r -a (u i ,u2 , r) + af 

(5.3) 

The potential energy diagram for the modified potential is shown in figure 5.31. The 

potential now has the correct form for the repulsive core, and as we can see it now exhibits 

narrower well widths, so in effect the attractive part of the potential has reduced in range. 

There is also a slight change in the slope, thus the potential has become harder. The effect 

this has on the phase behaviour will need to investigated. One consequence is that the 

system should behave more like a system of hard ellipsoids, thus the tendency to form 

columnar phases will be reduced. This indeed has been shown to be the case, with a system 

of 512 particles interacting with e/e^of 0.2 showing just a discotic nematic phase'^' and a 

system of 2000 particles interacting with e/E, of 5.0, having a columnar phase range^'' over 

a reduced temperature range when compared with the system in Chapter 3. 
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[/*(r*) 

Figure 5.31: The potential energy diagram for the original Gay-Berne potential GBI, with of 0.345 and 

E/e, of 5.0. 

U*{r*) -

Figure 5.32: The potential energy diagram for the modified Gay-Berne potential GBII, with o/o^ of 0.345 

and e/e, of 5.0. 
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There are quantitative way of measuring the difference between these two models, and one 

which is suited to computer simulation is the calculation of the thermodynamic parameter 

r , and it is that which we shall define and discuss in the next section. 

The calculation of T 

At constant pressure, the change in the order parameter is thought mainly to be due to the 

temperature while there is a part due to the density change associated with the thermal 

expansion. To test this idea further, McColl""' studied the mesophase behaviour of 4, 

4'-dimethoxyazoxybenzene (PAA) at various pressures. While noting no dramatic changes 

in the nature of the isotropic to nematic transition with pressure, it was impossible to 

investigate the density dependence of {P^ without the equation of state. So instead he 

introduced as a measure of the relative importance of density and temperature in 

establishing nematic order, the thermodynamic parameter T, 

r = -Olnr/ainV)p .̂ (5.4) 

The experimental value of 4.0 ± O.l"" obtained by McColl agreed well with the results for 

PAA made by Alben"^' which gave T of 4.3, from the analysis of thermodynamic data not 

related to the order parameter. Despite this, to discuss the real significance of T, a 

comparison of the experimental values with some theoretical models was needed. One of 

the main models at the time was that developed by Maier and Saupe"^', which took into 

account the anisotropic dispersion forces between molecules thus leading to the potential of 

mean torque, which for rigid, cylindrically symmetrical particles can be expressed as 

[/(p) = 2>f 2(cos P), (5.5) 

where [3 is the angle between the director and the molecular symmetry axis, and e is a 

constant related to the molecular anisotropy. It was originally thought that y could be 

identified with T, but Cotter'"'' noted that if equation (5.5) was to be statistical 

mechanically correct then y had to take the value of 1. This was only for derivations of 

equation (5.5) based on the pair potential. For others, such as the variational approach, 

there is no such constraint on F. The exact dependence of the potential of mean torque on 

the density is not known but it is thought to be p ,̂ thus F was given the value of 2, which 

comes from the dispersion forces dependent on f^. 
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But compared to the experimental values for T of between 2 and 6, this model was not 

dependent enough on density. The other theoretical model that had been widely studied 

was the hard rod model^'^'. By its very nature, transitions between the different mesophases 

are completely driven by a change in density so that means that F = oo, clearly the hard rod 

model is too dependent on density. Thus from this, it can be implied that further theoretical 

models will have to blend both of these extremes, i.e. include both attractive and repulsive 

interactions. So from this, by calculating T for a potential model, we can deduce the role of 

the various forces within the model in determining T and hence how realistic it is when 

compared to experimental values. 

The only study done to date on model systems by computer simulation has been by Emsley 

et a/."®'. They chose to use the Gay-Berne potential parametrised to represent a system of 

rod-shaped mesogens with the length-to-breadth ratio of 3 and e/e^ of 5, this being a well 

studied system"^ '̂ '. We shall discuss the two methods used to determine T later, but from 

these they found T to be 8.0 ± 1.0. They then modified the potential, increasing the 

steepness of the repulsive part, being careful to retain the key features of the original 

potential, finding that T increased to 10.5 ± 1.0. This confirmed the ability of T to measure 

the balance of the attractive and repulsive forces in a potential model. The two methods of 

calculating T we shall discuss are, (i) the direct method, similar to the experimental 

technique used previously and (ii), from the density dependence of T^*. 

For the direct method of finding F, we calculate the variation of the order parameter (P^) 

with temperature T* at more than one constant density. For our purposes, we concentrate 

on the parametrisation of the Gay-Berne potential used in Chapter 3, i.e. e/e^ of 5.0. From 

this work, we have a plot of (P^) at p* of 2.5 and from previous simulations"®' we can also 

obtain data at p* of 2.7 and 3.0, (see figure 5.33). From this we then extract the values of 

temperature and volume at a constant value of {P^ for each density. It has been 

suggested'"'' that a value of (P^) should be chosen where it is changing most rapidly with 

temperature thus a value of (P^) of 0.4 should be used, as this would allow us to make a 

direct comparison with the previous determination of Emsley et a/.''®' 
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But as we can see, the value of{P^) of 0.4 lies in the middle of the transition and not clearly 

in the nematic phase, so to be rigorous we will extend the calculation to values of up to 

0.9. From this data, a graph of Inr* versus InV* was then constructed, (see figure 5.34), the 

slope of which being -P . The values of T obtained from this procedure are shown in table 

5.4. 

Value of 

constant 

(P.) 

r 

from direct 

method. 

0.4 1.12 

0.5 1.12 

0.6 1.45 

0.7 1.87 

0.8 1.51 

Table 5.4: Values ofT, obtained from the plot oflnT* versus InV* in figure 5.35 

Pairs of 

densities p 

used 

2.5,2.7 1.3 

2.5,3.0 0.99 

2.7,3.0 0.77 

Table 5.5: F calculated from the density dependence ofT^* with the pairs of densities used in brackets. 

As we can see, the value obtained for T was between 1.0 and 2.0. This did not change 

significantly depending on the value of (Pj) used. Using the potential model and its 

parametrisation from this Chapter, (T/a^ of 0.345 and e/E, of 0.2, we have also obtained a 

value r of 1.0. This illustrates that a different parametrisation, for a given potential model, 

makes little difference to the density dependence of the order parameter which is an 

unexpected result suggesting it is the overall potential model which has the main effect on 

the dependence rather than a subtle effect from the parametrisation. 
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We can also calculate F from the density dependence of T^* from equation (5.5) with y: 

r , leading to 

r = - ln 
/ t* a 

N I (5.6) 
\ / 

The values of T obtained are shown in table 5.5, and confirm, within experimental error, 

the results from the direct method. Simulations have been performed with the modified 

potential GBII''" and though we shall not discuss the results in depth here, we have made a 

preliminary attempt to calculate F. From our knowledge of how the new potential looks, 

(see figure 5.32), it should act more like a system of hard ellipsoids than the GBI model, 

thus from the inference that F measures the balance between attractive and repulsive 

forces, F should have a value greater than 1 found for GBI. 

There was a problem that data from the GBII model simulations were performed at 

constant pressure, and that an accurate value for the volume had not been recorded from the 

simulation. To calculate F from the constant pressure simulations we first plotted the order 

parameter (P^) against the scaled temperature T* at the scaled pressures P* of 25 and 50. 

Then, taking a constant value of we found the corresponding T* value. Then for this 

value of 7^ on a plot of the scaled density p* against T*, we found the scaled density 

which corresponds to the constant value of first chosen. From the following 

relationship, 

p ' = - p . (5 7) 

we can find the volume V* and then by plotting the graph of InV* against InT*, as in the 

direct method, and making the assumption that the volume at the end of the simulation is 

not that much larger than during the simulation^^ '̂, we obtain a value of F ~ 8. This agrees 

with our thinking that the GBII potential is harder than the GBI potential. 



188 

1.0 

0.8 -

0 .6 -

* mi u * o 

0.4 

0.2 -

I 8 O 
• p* of 2.5 

• • ° • p* of 2.7 

. ° 
0 

o o p* of 3.0 

• • 

• o 
• - O 

Figure 5.33: The variation of ( f j with scaled temperature T* at the scaled densities indicated, for the 

Gay-Berne potential with the parameters o/0.345 andz^t^ ofS.Q. 
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Figure 5.34: A plot of InT* versus InV* at the constant order parameter the slope of which is -F , 

obtained using a best fit line to the data points. 
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5.5 Conclusions 

In this Chapter we have used the Gay-Berne potential in which the edge-to-edge 

arrangement is favoured over the face-to-face, in an attempt to model a discotic smectic 

phase, in which the particles lie with their faces parallel to the layer. We succeeded in 

forming discotic nematic and columnar phases in which the columns seem to consist of 

only three or four particles before a plane of columns gets shifted. This unusual columnar 

phase could have resulted from either the parametrisation used or the influence of the fixed 

shape and size of the simulation box. 

The next step would be to simulate the system using constant NPT ensemble in which the 

simulation box is allowed to vary in size. An increase in the number of particles used 

would also be desirable. The structure of both the nematic and columnar phases revealed a 

deficiency in the potential which allowed the constituent particles to physically overlap. 

We have highlighted how this could be rectified and the findings of the resultant 

simulations. 

To measure any quantitative differences between the original GBI and the modified GBII, 

potentials, we have calculated the parameter F with which to give us information on the 

role of attractive and repulsive forces within our model potentials in the stabilisation of 

liquid crystal phases. It has been suggested that this quantity be used to test the realism of 

the model by comparing values of F from the simulations with those from experiments. 
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6. The Gay-Berne mesogen 

6.1 Introduction 

The essential characteristic of a mesogenic molecule is that it deviates from spherical 

symmetry, but as we can see from figure 6.1, the molecule also needs to exceed a certain 

length-to-breadth ratio before it can exhibit any enantiotropic liquid-crystalline 

mesophases. We have deliberately chosen the polyphenyls as examples of this important 

behaviour as they come closest to an experimental analogue of the simple geometric shapes 

used in computer simulations. This dependence on the length-to-breadth ratio has been 

investigated in previous simulations using the spherocyUnder"^ and ellipsoid'^' hard core 

models to represent the mesogenic molecule. 

300 °C 

C 1 

380 °C 431 °C 

C N 1 

435 °C 465 °C 

c S 1 

Figure 6.1: Illustration of how a molecule needs to have a certain length-to-breadth ratio before it can 

exhibit enantiotropic liquid-crystalline mesophases^^K 

For a system of hard spherocylinders"^ of length L and diameter D, (see §2.5.2), we have 

seen that for length-to-breadth ratios LID < 3, no mesophases are formed. At LID of 3.0, a 

stable smectic phase appears while at values greater than 3, both nematic and smectic 

phases are formed. For a system of hard ellipsoids of revolution'^\ we can also observe a 

dependence on the length-to-breadth ratio, as to whether the system exhibits a mesophase. 

For prolate or rod-shaped ellipsoids the aspect ratio db must be greater than 3 for the 

system to form exhibit a nematic phase, otherwise the system crystallises on cooling from 

the isotropic fluid. The next stage in developing computer models of liquid crystals is to 

build attractive forces into the system. Taking the example of ellipsoids of revolution, the 

purely repulsive system only exhibits a nematic phase, predicted by Onsager'̂ *' for infinitely 

thin rods, but the addition of attractive forces might be the difference that allows the 
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system to form the translationally ordered smectic phases. The first simulations of such 

attractive ellipsoids, though the precise shape of real molecules deviates from a true 

ellipsoid of revolution'^', (also see §2.5.2), were those interacting via the Gay-Berne 

potential as performed by Luckhurst et a/.'®', and indeed, the addition of attractive forces 

stabilised the system enough for smectic A and smectic B phases to be formed. These 

simulations were for ellipsoids with a^/a, of 3.0, where o, is the distance between the 

centre-of-mass of two particles in an end-to-end arrangement and <3̂  when in a side-by-side 

arrangement. From the phase diagram of hard ellipsoids, we know that systems with 

ratios greater than 3 will form a liquid-crystalline mesophase, and indeed systems with 

a / a , of 4.4 are being investigated'^', and so to see what happens for smaller aspect ratios is 

of special interest. 

For <3J<3̂  ratios less than 3, we speculate that a liquid-crystalline mesophase might be 

stabilised by the addition of attractive forces. This should be possible as shown by the use 

of the Luckhurst-Romano'^' and Gay-Berne-Luckhurst-Romano''" potentials, (see §2.5.3), 

which do exhibit liquid-crystalline phases. These are of interest because these potentials 

have a spherical force centre which can be thought to be analogous to an ellipsoid in the 

limit of zero shape anisotropy. The Luckhurst-Romano potential model is defined as 

!7fJ,== C/o + [/a, (6 1) 

where 

f / „ = 4 e r f ^ V ' - f ; 2 : V l , (6.2) 

and 

ri2 i \rn 

C/g P2(cospi2), (6.3) 

where X is an adjustable parameter and is the intermolecular separation. The formation 

of the mesophases is possible through the addition of an anisotropic, attractive part, 

dependent on the (cos^j^) term of the potential. So for this work, we shall look at the 

C5j(5̂  ratios which are smaller than the commonly used value of 3, thus we shall concentrate 

on the values 2.5 and 2.0, for a system of prolate ellipsoids interacting via the Gay-Berne 

potential. 
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6.2 Parametrisation of the Gay-Berne potential 

For this study we examine tlie effect of changing the length-to-breadth ratio of the 

constituent particles on the phase behaviour, but it makes sense to remain as consistent as 

possible in all other ways with previous simulations. Thus we chose the parameters |i of 1, 

V of 2 and the well depth anisotropy parameter of 0.2. It should be noted that the 

values of |l and v are reversed from those used originally by Gay and Berne'"" as our 

choice favours the side-by-side arrangement over the cross and tee arrangements. We have 

plotted the scaled potential energy U*{r*) as a function of the scaled distance r*, (see 

figure 6.2), for particles with length-to-breadth ratios of a) oja^ of 2.5 and b) of 2.0. 

We can see that compared to the potential energy diagram for particles with oja^ of 3.0, 

(see figure 2.15), the well depth for side-by-side arrangement is less, thus the main driving 

force for nematic mesophase formation, the ratio between the side-by-side and tee 

arrangements, is reduced. This occurs because the well depth anisotropy term is dependent 

not on just the parameter E/e, but on the shape anisotropy parameter a ja^ via %. This can 

be seen by looking at the general expression for the well depth term for a Gay-Berne 

particle in a side-by-side arrangement; this is given as 

e ( u I , U 2 , r ) = e o e ^ ( u , , u 2 ) e ^ ( u i , U 2 , r ) , 

= Eo[l-%2(Ui.U2)^] 
(Ui.f + U2.r)^ (Ui.r-U2.r)^ 

where 

and 

X = 

X 

(Oe/gs) - 1 

(Ge/Os)̂  + 1 

1 -(Ee/Ss)^ 

l + (Ee/Es)̂  

(6.5) 

, (6.6) 

(6.7) 

(6.8) 

Thus as Gg/CT, is reduced, the corresponding well depth term is reduced. We justify keeping 

the actual well depth term e/e, the same as used in previous simulations in order to isolate 

the effect of changing the shape anisotropy. The other effect of changing the shape 

anisotropy can be observed in the plots of the scaled potential energy, (see figure 6.2), 

where the cross over points between the different potential energy wells decreases i.e. the 

difference in total shape anisotropy for the model is reduced. 
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Figure 6.2: The scaled potential energy U*(r*) as a function of the scaled distance r* for a system of 

prolate ellipsoids interacting via the Gay-Berne potential with length-to-breadth ratios of a) 2.5 and b) 2.0. 
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Having decided on the parameters we shall use for the Gay-Berne potential, we must now 

decide on the state variables at which to study the system i.e. the scaled temperature T* and 

the scaled number density p*. To assist in the selection of the density, we use the phase 

diagram for the corresponding system of hard ellipsoids of revolution, (see figure 2.5). As 

in Chapter 3, we can re-draw this phase diagram using the scaled number density used in 

our simulations rather than the more usual packing fraction, (see figure 6.3). We must state 

that this diagram is only used as a guide for locating the desired density when we consider 

that there is not a nematic - isotropic transition at ratios of 2.5 and 2.0. 

1.0 

0.9 

0.7 

I 
JD 0.6 

I 
0.5 

0.4 

0.3 

Solid 

Isotropic 
o 

o o 
nematic 

1.0 2.0 2.S 3.0 

a/b ratio 

Figure 6.3: The phase diagram for hard ellipsoids as a function of the scaled number density, as used in this 

Thesis, with the densities used in this study, p* of035 (O) and p* of OAS (•). 

It has been shown that this phase diagram is a good guide as to what density to use to 

stabilise the liquid-crystalline phases. Generally the density chosen is on or near the 

boundary between the nematic and isotropic phases. However as well as extending the 

search for different state points which show liquid-crystalline behaviour, we would like to 

retain some contact with previous simulations. So following this we have chosen to use the 

densities p* of 0.35 and 0.45 for ellipsoids with G/o, of 2.5 and 2.0. These are marked on 

the phase diagram together with that of 0.35 used for o / a , of 3.0. 
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6.3 The molecular dynamics simulation 

The procedure was very similar to that undertaken in Chapters 3 and 5 for a system of 

Gay-Berne discs. For both length-to-breadth ratios at each density, an initial a-f.c.c. lattice 

of 500 particles was set up with the particles pointing along the box diagonal. This was 

then heated to a temperature sufficiently high for the system to exhibit an isotropic phase 

and once this had been achieved, the system was cooled. Each simulation was performed in 

the constant NVE ensemble, with cubic periodic boundary conditions and a spherical 

potential cut-off of 3.So,,, which from the potential energy diagrams, (see figure 6.2), was 

sufficient to ensure that the interaction between particles had just ceased. The equilibrium 

stages consisted of between 10,000 and 250,000 time steps, and each production stage 

being between 10,000 and 20,000 time steps, the scaled time step of 0.005, which 

conserves the energy to a few parts in 10". The results of the important properties, {P )̂ and 

(f/*), determined during the simulation are shown in tables 6.1-6.5. 

Actual T* (P.) 

4 3.90 ±0.02 100 20 0.83 ±0.12 0.136 ±0.022 

3J5 3.82 ± 0.03 50 20 0.33 ±0.11 0.349 ± 0.025 

3.5 3.51 ±0.02 100 20 -0.92 ± 0.09 0.586 ±0.013 

325 3.20 ±0.04 50 20 -1.85 ±0.09 0.682 ±0.011 

3 3.01 ±0.05 50 20 -2.35 ±0.11 0.723 ± 0.009 

2.5 2.52 ±0.03 50 20 -3.53 ±0.15 0.801 ±0.011 

2 2 5 2.21 ±0.04 50 20 —4.66 ± 0.08 0.829 ±0.012 

2 1.99 ±0.01 50 20 -4.71 ±0.09 0.853 ±0.008 

1.75 1.73 ±0.03 50 20 -5.33 ±0.08 0.877 ±0.007 

1.5 1.53 ±0.03 50 20 -7.61 ±0.06 0.946 ± 0.003 

1 1.00 ±0.02 50 20 -9.01 ±0.11 0.972 ± 0.002 

0.5 0.49 ±0.01 50 20 -10.14 ±0.05 0.986 ± 0.002 

0.1 0.08 ±0.01 25 20 -11.07 ±0.01 0.996 ±0.001 

Table 6.1: The thermodynamic averages at p* o/0.35 for Gay-Berne particles with o/3.0. 
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S e t r * Actual T* N,/10" Np/10' 

1.3 1.32 ±0.03 25 20 -3.05 ±0.12 0.126 ±0.019 

1.2 1.19 ±0.02 100 50 -3.31 ±0.05 0.227 ±0.012 

1.1 1.10 ±0.03 300 20 -3.92 ± 0.06 0.603 ±0.013 

1 0.97 ±0.01 150 20 —4.31 ± 0.09 0.705 ±0.011 

0.9 0.89 ± 0.02 50 20 -4.58 ± 0.09 0.767 ± 0.008 

0.8 0.81 ±0.02 125 20 -4.86 ± 0.03 0.812 ±0.008 

0.7 0.72 ± 0.03 100 20 -5.80 ± 0.03 0.902 ± 0.008 

0.6 0.61 ±0.01 100 20 -6.30 ± 0.01 0.931 ±0.006 

0.5 0.50 ± 0.02 250 20 -6.65 ± 0.02 0.950 ± 0.003 

0.4 0.41 ±0.01 20 10 -6.89 ± 0.02 0.961 ±0.002 

0.3 0.29 ± 0.01 20 10 -7.22 ± 0.02 0.972 ± 0.002 

0.2 0.22 ± 0.02 20 10 -7.69 ± 0.01 0.980 ± 0.001 

0.1 0.09 ± 0.02 10 10 -8.01 ±0.01 0.990 ±0.001 

: The thermodynamic averages at p* of 0.35 for Gay-Berne particles with o / o , of 2.5. 

Set 7^ Actual T* Np/10' < [ / * > 

3 3.03 ± 0.09 40 20 0.96 ±0.19 0.064 ±0.019 

2.5 2.49 ± 0.05 25 20 0.02 ± 0.09 0.097 ± 0.022 

2.2 2.18 ±0.06 50 20 -0.68 ± 0.07 0.128 ±0.016 

2 1.97 ±0.02 125 20 -2.33 ± 0.08 0.680 ±0.011 

1.8 1.81 ±0.04 50 20 -2.85 ± 0.07 0.739 ±0.010 

1.6 1.59 ±0.03 50 20 -3.56 ± 0.05 0.798 ± 0.009 

1.4 1.39 ±0.03 50 20 -4.19 ±0.06 0.838 ± 0.005 

1.2 1.18 ±0.04 50 20 -4.80 ± 0.05 0.867 ± 0.006 

1 1.01 ±0.02 125 20 -6.56 ± 0.05 0.950 ± 0.004 

0.5 0.50 ± 0.01 40 20 -7.64 ± 0.03 0.965 ± 0.003 

0.1 0.09 ±0.01 10 20 -8.67 ±0.01 0.985 ± 0.002 

Table 6.3: The thermodynamic averages at p* o/0.45 for Gay-Berne particles with of 2.5. 
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S e t r * A c t u a l T * N / 1 0 " N p / 1 0 ' 

2 1 . 9 9 ± 0 . 0 4 5 0 1 0 - 1 . 9 0 ± 0 . 1 1 0 . 0 4 6 ± 0 . 0 0 4 

1 . 5 1 . 5 2 ± 0 . 0 3 2 5 1 0 - 2 . 1 6 ± 0 . 0 6 0 . 0 4 6 ± 0 . 0 0 7 

1 0 . 9 9 ± 0 . 0 1 2 5 1 0 - 2 . 4 8 ± 0 . 0 2 0 . 0 5 3 ± 0 . 0 0 9 

0 . 5 0 . 5 1 ± 0 . 0 1 2 5 1 0 - 2 . 9 2 ± 0 . 0 1 0 . 1 2 0 ± 0 . 0 1 2 

0 . 4 0 . 4 2 ± 0 . 0 2 1 0 0 2 0 - 4 . 0 1 ± 0 . 0 3 0 . 7 5 7 ± 0 . 0 0 5 

0 . 3 0 . 3 0 ± 0 . 0 1 1 0 0 2 0 - 5 . 5 2 ± 0 . 0 2 0 . 9 4 6 ± 0 . 0 1 0 

0 . 2 0 . 1 9 ± 0 . 0 2 5 0 2 0 - 5 . 8 7 ± 0 . 0 1 0 . 9 6 8 ± 0 . 0 0 8 

0 . 1 0 . 0 9 ± 0 . 0 1 2 5 2 0 - 6 . 2 0 ± 0 . 0 2 0 . 9 8 4 ± 0 . 0 0 2 

The thermodynamic averages at p* o / 0 . 3 5 / o r Gay-Berne particles with ojd^ of 2.0. 

S e t T * A c t u a l 7 * N , / 1 0 

1 0 . 9 9 ± 0 . 0 8 2 5 2 0 - 3 . 0 4 ± 0 . 0 5 0 . 1 0 5 ± 0 . 0 1 2 

0 . 9 0 . 9 0 ± 0 . 0 7 1 0 2 0 - 3 . 1 4 ± 0 . 0 4 0 . 0 7 2 ± 0 . 0 1 1 

0 . 8 0 . 8 1 ± 0 . 1 1 2 5 2 0 - 3 . 2 7 ± 0 . 0 3 0 . 0 9 3 ± 0 . 0 0 9 

0 . 7 0 . 6 9 ± 0 . 0 9 2 5 2 0 - 3 . 4 9 ± 0 . 0 2 0 . 1 5 6 ± 0 . 0 0 8 

0 . 6 0 . 6 2 ± 0 . 0 5 1 5 0 2 0 - 4 . 0 1 ± 0 . 0 3 0 . 6 2 6 ± 0 . 0 0 9 

0 . 5 0 . 5 0 ± 0 . 0 3 1 5 0 2 0 - 4 . 4 6 ± 0 . 0 3 0 . 7 8 4 ± 0 . 0 0 5 

0 . 4 0 . 4 2 ± 0 . 0 2 5 0 2 0 - 5 . 2 1 ± 0 . 0 3 0 . 9 0 0 ± 0 . 0 0 3 

0 . 3 0 . 2 9 ± 0 . 0 2 5 0 2 0 - 5 . 7 5 ± 0 . 0 1 0 . 9 5 1 ± 0 . 0 0 3 

0 . 2 0 . 1 9 ± 0 . 0 1 1 0 1 0 - 6 . 0 1 ± 0 . 0 2 0 . 9 6 9 ± 0 . 0 0 2 

0 . 1 0 . 0 9 ± 0 . 0 1 1 0 1 0 - 6 . 3 0 ± 0 . 0 1 0 . 9 7 8 ± 0 . 0 0 2 

Table 6.5: The thermodynamic averages at p* of 0.45 for Gay-Berne particles with o / o , of 2.0. 

6.4 Results and discussion 

We shall now discuss the results obtained using various orientational, thermodynamic and 

structural properties calculated from the molecular dynamics simulation. First we shall 

look at the plots of the second rank order parameter (P^) and the internal energy <C/*), 

which can be used to provide initial evidence of a phase transition, then we shall 

concentrate on the various structural distribution functions and configurational snapshots. 
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6.4.1. Length-to-breadth ratio ojo^ of 3.0 

The first system we shall look at is a set of Gay-Berne rods with of 3.0 which is one 

of the most widely investigated. Adams et a/."" first simulated this system at a scaled 

density of 0.32 with |l of 2 and v of 1. They observed a nematic - isotropic transition at T* 

of between 1.8 and 1.7. Phippen^'^' used |i of 2 and v of 1, and on heating 256 particles at 

p* of 0.35, could not form a isotropic phase. Reducing the density to 0.32 allowed a 

nematic - isotropic transition to be observed at T* of 1.8. Emerson''^' then repeated the 

simulation of Phippen but with N of 500 in order to investigate the system size effect. He 

observed hysteresis in the values of the order parameters and that the transition was 

lowered to a value of 1.5. Chalam et have also produced numerous simulations at 

both constant temperature and constant volume. Using the same parameters as the original 

Gay-Berne paper, they observed a nematic - isotropic transition at T * of 1.21 and a 

smectic B - nematic at T* of 0.8. Luckhurst et a/.'®' reversed the values of [I and v, taking 

the values of 1 and 2 respectively, forming isotropic, nematic, smectic A and smectic B 

phases. This procedure favoured the face-to-face and side-by-side over the tee and cross 

configurations, so enhancing the probability of mesophase formation. Thus it is these 

parameters that we have decided to use in this study. A brief summary of these simulations 

can be found in table 6.6. We have also decided to perform a simulation with parameters 

of 3.0, e/e, of 0.2, (x of 1 and v of 2 at a scaled density of 0.35, not only to act as a 

point of contact for the other length-to-breadth ratios but as a simulation in its own right. 

Reference E/E, v p* N 

Adams"" 3 0.2 2 1 0 ^ 2 256 

Chalam"'*' 3 0.2 2 1 0 3 2 256 

Phippen"^' 3 0.2 2 1 0 3 5 256 

Phippen"^' 3 0.2 2 1 0.32 256 

Emerson"^' 3 0.2 2 1 0 3 2 500 

Luckhurst'" 3 0.2 1 2 0.3 256 

Table 6.6: A summary of the parameters used in previous simulations of Gay-Berne rods with of 3.0. 
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From the plot of the second rank orientational order parameter {P^ for the density p* of 

0.35, we can observe a nematic - isotropic transition between 7* of 3.90 and 3.82, (see 

figure 6.4), though the value of (pj) of 0.136 for the isotropic phase does seem high, 

compared with the theoretical value of 1 / V n = 0 . 0 4 5 . Evidence of long range orientational 

order, necessary to identify a nematic phase, is given by the order parameter {P^ of 0 . 3 4 9 

and by the pair orientational correlation function g 2 ( r * ) , (see figure 6 . 5 ) . From this we can 

clearly observe the nematic - isotropic transition to be between T* of 3.90 and 3.82, as at 

long interparticle distances, there still remains some orientational correlation. 

From the scaled internal energy ([/*), we do not observe any indication of the nematic -

isotropic transition but we can see a change in the slope between r* of 1.73 and 1.53, 

indicating a possible phase transition. And though we really need more state points to be 

able to more readily identify the phase transition, it is accompanied by a corresponding 

increase in {P^. From the radial distribution function g(r*), (see figure 6.6), we can gather 

some information on the various phases present. At T* of 3.90, the g(r*) shows some short 

range translation correlations but as the order parameter {P-̂  has a value of only 0.14, we 

can identify this as the isotropic phase. As we decrease the temperature to 3.82, the shape 

of g(r*) changes very little. Again, we observe some short range, side-by-side ordering, the 

peaks at r* of 1.1 and 2.2 and end-to-end ordering, the peak at r* of 3.0. It is interesting to 

note that the peak representing the side-by-side arrangement is at the position of the 

potential energy minima, r* of 1.1, (see figure 6.2), rather than the particle diameter, r* of 

1.0. 

As we lower the temperature, the system remains in a nematic phase until 7* of 1.73. At 

temperatures below this, the g(r*), (see figure 6.7), reveals the presence of considerable 

short range and long range translational order. This is probably the onset of a more ordered 

smectic phase such as the crystal or smectic B. The split peak in the g(r*) at r* of 2 is 

consistent with the smectic B phase obtained from other simulations''^', though from the 

values of these peaks, the system is not close packed. For this system, we observe two 

important features, namely, the increased nematic - isotropic transition temperature, at T* 

of 3.82, and the absence of the smectic A phase when compared to the system at the lower 

density p* of 0.3'* '̂. At this density, the phase sequence is C-Sg-S^-N-I, with the nematic -
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isotropic transition temperature being between T* of 3.0 and 2.0. The first difference 

between the two densities is easily explainable, as at the higher density, the particles are 

compressed closer together, hence the attractive interaction that each particle experiences, 

increases. The loss of the smectic A phase is harder to quantify, but could result from the 

use of a constant volume simulation box. This is not an entirely unreasonable suggestion, 

as a similar phase sequence was observed in a similar system of Gay-Berne rods, a / a , of 

3.0, where a nematic to smectic B transition was seen, the simulation performed using 

constant WyZmolecular dynamics''^'. 
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Figure 6.4 The variation of the second rank orientational order parameter (P^) and the scaled internal 

energy per particle (U*) with scaled temperature T* at p* o/0.35. 
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Figure 6.5: The pair orientational correlation function at the scaled temperatures T* indicated. 
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Figure 6.6: The radial distribution function gir*) at the scaled temperatures T* indicated. 
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Figure 6.7: The radial distribution function g{r*) at the scaled temperatures T* indicated. 
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6.4.2. Length-to-breadth ratio of 2.5 

We shall now investigate the behaviour of a system of Gay-Berne particles with a smaller 

than usual length-to-breadth ratio, of 2.5 at the scaled densities of 0.35 and 0.45. For 

the system at p* of 0.35, from the radial distribution function g(r*), (see figure 6.11), we 

can see that there seems to be a variety of mesophases present. Due to a lack of transitional 

order and a small value of = 0.1, there is an isotropic phase present at T* of 1.19. 

Evidence of a phase transition from the isotropic phase at 7* of 1.19 to a nematic phase at 

T* of 1.10, comes from a number of sources. The most obvious is the increase in 

orientational order shown by the plot of the order parameter (P^), (see figure 6.9), and the 

pair orientational correlation function G2(r*), (see figure 6.10). There is also a 

corresponding increase in translational order of the phase. Peaks at r* of 1.1 and 2.2 in the 

g(r*) indicating shells of particles in side-by-side orientations. 

The phases at the other temperatures need further investigation before any firm conclusions 

can be drawn. Initially there seems to be a smectic A phase at T* of 0.81 and smectic B 

phase at T* of 0.72. These can be deduced by inspection of the g| |(f| |*), (see figure 6.13). 

This shows that there is no translational order along the director for the nematic phase at T* 

of 0.89. The broad peaks at T* of 0.81, reveal the slightly ordered layers of the smectic A 

phase, while for the smectic B phase, the intensity of the peaks is much greater. But to 

confirm our identification of the smectic A phase at T* of 0.81, we have performed an 

additional 50,000 time step simulation, then checked the form of the g| |(^| |*) to see if it 

had changed to that for a smectic B phase, (see figure 6.13). This problem was identified by 

de Miguel et who following this same routine, subsequently reclassified their phase 

as a smectic B. After our simulation, the plot of the g| |(r| |*) remained with this broad 

modulation and so was classified as a smectic A phase. Graphic snapshots fi-om just one 

configuration from each of the smectic phases, illustrates nicely the difference in the 

translational order of the layers, (see figure 6.14). 
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Figure 6.9: The variation of the second rank orientational order parameter (P,) and the scaled internal 

energy per particle {U*) with scaled temperature T* at p* of035. 
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Figure 6.10: The pair orientational correlation function G,(r*) at the scaled temperatures T* indicated. 
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Figure 6.11: The radial distribution function g(r*) at the scaled temperatures T* indicated. 

T* = 0.89 

r* = 0.81 
T* = 0.72 

Figure 6.12: The radial distribution function g{r*) at the scaled temperatures T* indicated. 
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Figure 6.13: The longitudinal pair distribution function g| |(rj |*) at the scaled temperatures T* indicated. 

a) b) 

Figure 6.14: Graphic snapshots of a configuration taken from a) the smectic A phase at T* 0/O.8I and b) 

the smectic B phase at T* of 0.12. 
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If we increase the scaled density to 0.45, we can see that the nematic - isotropic transition 

temperature has increased to be between T* of 2.18 and 1.97. From previous arguments in 

this Chapter, this is to be expected, though the rise is reasonably large. From the plots of 

the (U*), (see figure 6.15), there is another observable transition between T* of 1.18 and 

1.01. Figure 6.16 shows the g(r*) for the two phases. At 7* of 1.18 we have a form similar 

to the nematic, while at T* of 1.01, a highly ordered smectic B phase has been formed, with 

considerable in-plane hexagonal packing. The layer spacing of the smectic phase is 2.0OQ, 

reduced from 2.250,,, probably due to the increased density, (see figure 6.17). 

0.8 -

0.6 -

-

0.4 -

0.2 -

Figure 6.15: The variation of the second rank orientational order parameter (P^) and the scaled internal 

energy per particle (U*) with scaled temperature T*. 
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g(r*) . 

Figure 6.16: The radial distribution function g(r*) at the scaled temperatures T* indicated. 

g(r*) 

• T * = 1 . 1 8 

7"* = 1.01 

Figure 6.17: The radial distribution function g(r*) at the scaled temperatures T* indicated. 
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6.4.3 Length-to-breadth ratio ojo^ of 2.0. 

For the system at p* of 0.35, a phase transition occurs between T* of 0.51 and 0.42, as 

shown by the plot of (P^) and {U*), (see figure 6.18). Inspection of the g(r*), (see figure 

6.19) and the graphic snapshot, (see figure 6.20), reveal the phases to be the isotropic and 

nematic respectively. The graphic snapshot also reveals the formation of a cavity in the 

simulation box, indicating this particular system to be unstable, at least at this density. 
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Figure 6.18: The variation of the second rank orientational order parameter and the scaled internal 

energy per particle (U*) with scaled temperature T*. 



211 

5 -

g(r*) 

3 -

• 7* = 0.51 

T* = 0.42 

T* = 0.30 

r* 

Figure 6.19: The radial distribution function g{r*) at the scaled temperatures T* indicated. 

Figure 6.20: The graphic snapshot at T* of 0.42, showing the formation of a cavity in the simulation box. 
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From the plot of {P^ at the scaled density p* of 0.45, (see figure 6.21), we can see the 

orientational order-disorder phase transition between T* of 0.69 and 0.62. This backed up 

by the (see figure 6.23), in which the plot at 7* of 0.62 does not decay to zero, 

indicating residual long range orientational order. From the g(r*), we can see that the 

system remains in the nematic phase until V of 0.42, where we observe a smectic B phase, 

with the hexagonal order revealed by the characteristic feature of a split peak at r* of 2, 

(see figures 6.23 and 6.24). Inspection of the g\ [(̂ i |*) reveals the layers within the smectic 

B phase to be interdigitated with a layer spacing of l.Vag, (see figure 6.25). It is also 

interesting to see that the interdigitation causes the layer structure in the g| |(r| |*) to be 

weak, similar to the smectic A structure observed for of 3.0, (see figure 6.13). Overall 

it seems that at the higher density, the system is stable enough to exhibit liquid crystalline 

mesophases. 
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Figure 6.21: The variation of the second rank orientational order parameter (P,> and the scaled internal 

energy per particle (U*) with scaled temperature T*. 
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Figure 6.22: The pair correlation function Ĝ Ĉ *) at the scaled temperatures T* indicated. 
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Figure 6.23: The radial distribution function g{r*) at the scaled temperatures T* indicated. 
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Figure 6.24: The radial distribution function g(r*) at the scaled temperatures T* indicated. 
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Figure 6.25: The longitudinal pair distribution function g| |(r|, *) at the scaled temperatures T* indicated. 
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6.5 Conclusions 

In this Chapter we have investigated the phase behaviour of a series of Gay-Berne rods 

with differing length-to-breadth ratios. The idea was to see if the attractive forces present in 

the potential model could induce the less anisotropic ellipsoidal particles to form 

liquid-crystalline mesophases. This has proved a great success in that liquid-crystalline 

phases have been observed in systems of Gay-Berne ellipsoids with length-to-breadth 

ratios of 2.5 and 2.0, though their appearance is greatly dependent on the simulation 

density. 

If we produce a table of the transition temperatures and layer spacing for all of our 

simulations, (see table 6.7), there seems to be several trends observable in the phase 

behaviour. First, as the scaled density is increased for a particular system, the nematic -

isotropic transition temperature increases, and at of 3.0, the smectic A phase present 

at lower densities, disappears as the density increases. Similar trends can be seen for a 

fixed density, that as the anisotropy of the particles is reduced, the nematic - isotropic 

transition temperature is reduced, presumably because the smaller the particle, the less 

attractive forces it experiences, thus a lower temperature is needed to overcome these 

forces. The reduced shape anisotropy would also contribute to the reduced transition 

temperature. 

There also appears to be a trend in the layer spacing of the smectic B phases. For a j a^ of 

3.0, the layer spacing is approximately S.OOq, the length of the constituent Gay-Berne 

mesogen. But for of 2.5, the layer spacing of 2.25 and 2.0, for the densities of 0.35 

and 0.45 respectively, is less than the length of the constituent particles. This aspect is also 

present for of 2.0, where the layer spacing is 1 This leads to smectic layers which 

are interdigitated. It would be sensible to perform a constant NpT simulation in order to 

investigate the effect of fixed boundary conditions on the layer spacing. By looking at the 

value of the second rank order parameter (P^) at the nematic - isotropic transition, we can 

see that apart from the simulation at of 3.0, the value of (Pj) is approximately the 

same at 0.4. This value is obtained by taking the value of the middle of the nematic 

- isotropic transition as identified by the simulation points which are in the nematic and 

isotropic phases. 
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N P' I N Sa ^ 

3 500 0.35 1 8 6 L63 3 0 2 8 

2.5 500 0.35 1.15 0.8 0.72 2 J 5 0.4 

2.5 500 0.45 2.08 1.01 2 0.4 

2 500 0.35 - - - -

2 500 0.45 0.65 0.42 1.7 0.4 

Table 6.7: A summary of the phase transition temperatures for the simulations at o/o^ of 2.0, 2.5 and 3.0. 

In conclusion, it seems that the attractive part of the Gay-Berne potential allows less 

elongated particles than usual (in terms of previous simulations) to form liquid-crystalline 

mesophases, though the repulsive forces seem to dominate in the nematic phase, in that, 

the system must still be sufficiently dense for the orientational ordered phases to be 

observed. 
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