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 
Abstract— We propose and demonstrate a phase retrieval 

method using a novel variant of the dispersion scan (‘d-scan’) 
technique via both simulations and experimental measurements 
on a femtosecond fiber laser. The method combines a map of 
group-delay-dispersion-scanned (d-scan) second-harmonic 
generation (SHG) spectra together with the fundamental spectrum 
as inputs. In order to ensure the technique is robust when pulse-
to-pulse fluctuations are present, we use only the wavelengths of 
the resulting SHG peaks, and avoid the areas with low signal in the 
borders of the data trace. Simulations confirmed the phase-
retrieval is accurate even with high levels of laser fluctuation. The 
trade-off is that pulses which have abruptly changing or highly 
modulated phase profiles are not retrievable. The d-scan uses the 
compressor gratings intrinsic to the fiber chirped-pulse 
amplification (CPA) systems so the method is low cost. For 
experimental verification, we used a 470 fs ytterbium-fiber CPA 
system, so the method is applicable to measurements on fiber 
based fs laser systems which generally have an order of magnitude 
less bandwidth than the Ti:sapphire lasers used to test earlier 
variants of the d-scan approach. 
 

Index Terms—) Fiber optics amplifiers and oscillators, 
Ultrafast measurements, Ultrafast nonlinear optics 
 

I. INTRODUCTION 

HE characterization of ultrashort laser pulses has been an 
active research field for many years and several 

measurement approaches are now available. For pulses that are 
close to transform-limited, the inclusion of spectral data enables 
full characterization, e.g. via PICASO [1], in cases where a 
second-harmonic generation (SHG) autocorrelation (AC) [1] 
would leave ambiguities about the pulse profile. In the more 
general case, the widely known SHG frequency resolved optical 
gating (FROG) technique [2, 3], which uses spectrally resolved 
autocorrelation (or cross-correlation) data is a good solution 
developed more than a decade ago. FROG has since led to 
variants such as GRENOUILLE, which is available as a 
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commercial instrument [4]. However, FROG is based on an 
interferometric scheme, which demands precise alignment. 
Methods related to the technique of spectral phase 
interferometry for direct electric-field reconstruction 
(SPIDER) [5] use an analytic formula to solve the problem of 
phase retrieval from the data but the data-recording setup is 
usually more complex than that used for FROG. 

To avoid the need for the precise interferometric alignment 
required for FROG and SPIDER, an alternative set of methods 
that do not require division of the pulse has emerged based on 
scanning an externally applied phase. One of the first such 
approaches, termed MIIPS (multiphoton intrapulse interference 
phase scan), uses an optical arrangement with a spatial light 
modulator (SLM) to apply computer controlled spectral-phase 
changes [6, 7].  

To enable non-interferometric measurements when a spectral 
phase controller is not available, d-scan methods were 
developed using the SHG spectra obtained when changing the 
applied GDD with prisms. Typically the fundamental spectrum 
has been used as a self-consistency check [8-11]. However, 
these are complex algorithms, and inclusion of data in the wings 
of the SHG spectra which are most sensitive to noise may mean 
the methods become less robust when characterizing lasers with 
significant output fluctuations. Indeed, when simpler 
algorithms have been tested, they were found to fail in cases 
where noise is present [12]. 

Motivated by the attractions of non-interferometric methods 
such as MIIPS and d-scans (i.e. simplicity; intuitive data-
interpretation) and the need for low-cost and robust 
characterization approaches, we developed a new phase 
retrieval method which is easy to implement and robust in the 
presence of pulse-to-pulse fluctuations. To this end, we 
developed a new hybrid d-scan approach with simple algorithm 
to enable rapid uptake by non-specialist users. 
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Fig. 1. (Color online.) Schematic of the phase retrieval process. (GDD: group 
delay dispersion.). See text for details of the algorithm. 

 
We were interested in supporting our fiber laser development 

which involved relatively long pulse durations of the order of 
300 fs (i.e. bandwidths approximately an order of magnitude 
less than that previously reported in d-scan retrieval papers 
using sub-30 fs pulses from Ti:sapphire lasers [8, 10, 13]). Our 
long pulse durations require a much larger GDD scan range, e.g. 
± 2 × 106 fs2 was used in our simulations and experiments 
compared to values of the order of ± 5 × 103 fs2 with a 30 fs 
Ti:sapphire laser. Our low-cost setup lacks the degrees of 
freedom provided by the SLM used in a MIIPS measurement, 
which would apply corrections to iteratively flatten the phase 
via repeated d-scans. There, the pulse quality is iteratively 
improved as phase corrections are applied. We use only a single 
d-scan and add the fundamental spectrum to improve the 
estimate of the pulse phase through computational iterations.  

We demonstrate the usefulness of the resulting method by 
showing that it correctly retrieves the phase of a wide range of 
pulse shapes with durations in the 100-500 fs range, with the 
exception of pulses having stepped phase profiles or phase 
profiles with high frequency modulations. (These modulated 
pulses are known to be challenging with d-scan methods [14].) 
We did not extensively focus on the requirement for 
mathematically proven properties but checked that the phase 
measurements remain correct via both simulations and 
experiments when the typical pulse-to-pulse fluctuations 
studied by others [15, 16] were present in the data.  

The structure of the paper is as follows: Section 2 describes 
the theory and outlines the algorithm. Section 3 shows the 
results of numerical simulations using data without pulse-to-
pulse fluctuations. Section 4 shows simulation results when 
pulse-to-pulse fluctuations are introduced. Section 5 shows 
experimental results from an Yb fiber CPA system. Finally, 
Section 6 provides a discussion and summary. 

II. THEORY 

A schematic of the measurements required and the steps of 
the retrieval algorithm are shown in Fig. 1. The input data are 

the fundamental spectrum and the SHG spectra vs. applied 
GDD, φa” = ∂2φa/∂ω2, i.e., the d-scan map. The applied GDD 
is determined by the compressor setting. As shown in step 1 the 
GDD is scanned to create the SHG d-scan map and the 
fundamental spectrum is also measured.  

The algorithm is then based on the equation for the SHG 
spectrum shown below [14]:  

ܵሺଶሻሺ2߱ሻ ∝ ׬| ሺ߱ܧ| ൅ ሺ߱ܧ||ሻߗ െ  |ሻߗ

 ൈ ሼ݅ሾ߮ሺ߱݌ݔ݁ ൅ ሻߗ ൅ ߮ሺ߱ െ ሻሿሽߗ  ଶ. (1)|ߗ݀
Here ω and 2 ω are optical frequencies, S(2) (2ω) represents the 
SHG power spectrum, E (ω) represents the fundamental 
amplitude spectrum, φ	ሺωሻ	 is the spectral phase and Ω is the 
integration variable. Typically only ranges of Ω in which the 
phase argument φ	ሺω	൅	Ωሻ	൅	φ	ሺω	–	Ωሻ	is constant or slowly 
varying, can make significant contributions to this integral. The 
main assumptions in Eq. (1) are that the SHG process is 
instantaneous and spectrally uniform, both of which are 
reasonable for the longer-than 100-fs pulses typical for fiber 
lasers. In many practical cases, the phase can be expanded as a 
Taylor series around ω, as shown in Equation (2),  

 
φሺω ൅ Ωሻ ൅ φሺω െ Ωሻ ൌ 2φሺωሻ ൅ φᇱᇱሺωሻΩଶ ൅

	∑ ଶ

ሺଶ୬ሻ!
φሺଶ୬ሻሺωሻΩଶ୬ஶ

୬ୀଶ . (2) 

 
This function is symmetric in Ω. If the phase variations are 

sufficiently smooth, then the dominant contribution to the 
integrand in Eq. (1) is expected to occur when φ”	ሺωሻ	ൌ	0. If 
an additional GDD of φ௔

ᇱᇱሺωሻ	 is applied, then the SHG maxima 
are expected to occur for values of ω where the second 
derivative of the phase of the pulse, φ”	ሺωሻ,	exactly cancels that 
of the applied GDD so that φ௧௢௧௔௟

ᇱᇱ ሺωሻ ൌ 0	.  
Therefore, like MIIPS, our approach starts by applying a 

known wavelength-dependent GDD function and assumes that 
the majority of the SHG at a given frequency arises where the 
applied GDD matches that of the pulse. In MIIPS, the applied 
GDD is re-scanned iteratively to further optimize the GDD 
estimate because Eq. (1) shows that the SHG at frequency 2 ω 
also contains a contribution from pairs of frequencies offset by 
± Δ from ω. It is possible that these contributions result in a 
slowly-varying phase of the integrand in Eq. (1) over an 
extended range of frequencies, and thus become significant, for 
an applied GDD function which differs from that for which 
φ௧௢௧௔௟
ᇱᇱ ሺωሻ = 0. To take this global influence into account, the 

MIIPS scan is run repeatedly with refined GDD functions to 
improve the flatness of the phase of the final pulse until it finds 
the GDD function f" (which includes higher order dispersion) 
that makes the pulse essentially transform limited and thus 
cancels the original phase of the pulse, typically after 
approximately five iterations.  

Table I lists definitions for the symbols. The subscripts 
denote the stage of the algorithm progress: ‘o’ – the original 
measured d-scan data, used to provide the first estimate of the 
GDD of the pulse: ‘i’ – the estimate of a parameter on the ith 
iteration; and ‘r’ - the retrieved value after algorithm 
convergence has been completed and ‘a’ is the applied GDD.  
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Next, with reference to the steps in Fig. 1, we describe the 
algorithm in detail. Step 1 records So

(2) (2ω, f”) and S (ω)). 
In step 2, the algorithm estimates the GDD of the pulse by 

assuming that at each wavelength, the pulse GDD is equal in 
amplitude and opposite in sign to the applied GDD for which 
the SHG reaches its maximum. An estimate of the spectral 
phase (phase vs. frequency) is then obtained by integrating 
twice. Thus, for each ω, attain φo” (ω) = Go” (ω) as the 
positions of the maxima of So

(2) (2ω, f”) and integrate twice to 
get φo (ω).  

In step 3, this phase estimate is used together with the 
measured fundamental spectrum to synthesize a d-scan map, 
which will be similar to, but slightly different from, the 
measured d-scan map. i.e., an updated d-scan map, Si

(2) (2ω, f”) 
is created through simulations based on S (ω) and most recently 
found phase φi (ω) (starting from φo (ω)). 

Step 4 is similar to step 2, but uses the synthesized d-scan 
map instead of the measured one to re-estimate the GDD 
positions of the SHG peaks to obtain a revised Gi” (ω).  

In step 5, we use the difference between the synthesized and 
measured SHG maxima from step 4 to assess the retrieval 
quality and hence the degree of success of the process. If this is 
not adequate, then the phase profile is updated and steps 3 – 6 
are repeated until the retrieval process is deemed to have 
succeeded, or alternatively failed. After typically five iterations 
there is close agreement between the synthesized and measured 
d-scan map. The error metric is given by ݎீݎܧ ௜ ൌ
௘௜ܩ|׬	

ᇱᇱሺ߱ሻ|݀߱	 as shown in Eq. (3) and explained below.  
In step 6, the positions of the synthesized and measured SHG 

maxima are both used to update the estimate of the pulse GDD, 
φ"(), from the previous step using a spectrally weighted 
fraction of the difference between the GDD-values of the 
synthesized (Gi”) and measured (Go”) SHG maxima using 
Gei” (ω) = SM (ω) (Gi” (ω  – Go” (ω)). The spectral weighting 
is to make the convergence more consistent. The GDD estimate 
is updated to φi+1” (ω) = φi” (ω) + Gei” (ω) and this is 
integrated twice to obtain the new spectral phase φi+1 (ω). We 
then take φr (ω) = φi+1 (ω) as final retrieved phase. 

(In step 6 we also tried to adjust the GDD estimate by the 
whole and half of the difference, but the convergence was 
inconsistent.)  

 
TABLE I 

DEFINITION OF SYMBOLS IN THE PAPER 

Symbol Definition 

࣓ Angular frequency 
 ሺ࣓ሻ Fundamental power spectrumࡿ
 = ሺ࣓ሻ Fundamental power spectrum scaled so that max SM (ω)ࡹࡿ

1 

࢘,࢏,࢕ࡿ
ሺ૛ሻ ሺ૛࣓ሻ SHG power spectrum 

 (original/ith iteration/retrieved) 
 ሺ࣓ሻ Phase profile in frequency domainࢇ,࢘,࢏,࢕࣐

(original/ith iteration/retrieved/applied) 
ࢇ,࢘,࢏,࢕࣐
ᇱᇱ ሺ࣓ሻ Estimated GDD (group delay dispersion)  

(original/ith iteration/retrieved/applied) 
  ᇱᇱ applied GDD for d-scanࢌ

࢘,࢏,࢕ࡿ
ሺ૛ሻ ሺ૛࣓, ࢐ࢌ

ᇱᇱሻ d-scan SHG spectrum map 
(original/ith iteration/retrieved) 

࢘,࢏,࢕ࡳ
ᇱᇱ ሺ࣓ሻ GDD vs. frequency as determined as the values of the 

applied GDD for which the SHG ࢘,࢏,࢕܁
ሺ૛ሻ ሺ2૑, ܒ܎

ᇱᇱሻ reaches 
its maximum for each ω. 
(original/ith iteration/retrieved)  

 Integrated spectrally weighted phase error Eq. (5) ࣐࢘࢘ࡱ
 ᇱᇱሺ࣓ሻ Local spectrally weighted GDD error Eq. (3)ࢋࡳ
׬ Integrated spectrally weighted GDD error ࡳ࢘࢘ࡱ  ᇱᇱሺ૑ሻ݀߱܍۵

Eq. (3) 
 Integrated global d-scan map error Eq. (4) ࢓࢘࢘ࡱ

 
As a refinement to ensure convergence when the simulated 

or experimental data includes noise, a numerical smoothing step 
was applied to Gi” (ω) by using the ‘Loess’ function [17] within 
Matlab. This applies a local regression using weighted linear 
least squares and a 2nd degree polynomial model. The weighting 
of the Loess function was chosen to be the nearest ~10% of the 
total spectrum.  

Three error metrics have been used to quantify the retrieval 
quality. The first two show the difference between the retrieved 
and measured d-scan data. The first calculates the local error of 
the SHG peak position, as that is the quantity used by the 
algorithm to find the phase and to check the convergence. It 
shows the spectrally weighted difference between SHG maxima 
positions G” on the measured and synthesized d-scan map: 

 
ݎீݎܧ ൌ ߱݀|௘ᇱᇱሺ߱ሻܩ|׬	 ൌ ׬ ܵெሺ߱ሻ|ܩ௥ᇱᇱሺ߱ሻ െ  ௢ᇱᇱሺ߱ሻ|݀߱. (3)ܩ

 
Gr” (ω) is the line through the SHG maxima on the 

synthesized d-scan map, Go” (ω) is the line of SHG maxima 
from the measured d-scan map. The weighting from the 
fundamental spectrum, SM (ω), is scaled so that the maximum 
of SM (ω) equals unity, i.e. SM (ω) = S(ω) /max (S(ω)), and 
Ge” (ω) =SM (ω) (Gi”(ω)–Go”(ω)).  

The second error metric captures the global error across the 
entire d-scan, including points at the edges, to check that the 
local convergence leads to global convergence across the d-
scan. It uses the root-mean-square (rms) difference between the 
measured and synthesized data for all the data points in the d-
scan map. The calculation is similar to that used to quantify a 
FROG retrieval error and could also be used to compare our 
method with other d-scan methods. 

Err୫ ൌ ට
ଵ

୒౟୒ౠ
∑ ൫S୭

ሺଶሻሺ2ω୧, f୨
ᇱᇱሻ െ μS୰

ሺଶሻሺ2ω୧, f୨
ᇱᇱሻ൯

ଶ
୧,୨ . (4) 

Here Sr
(2) (2	ωi, fj”) and So

(2) (2	ωi, fj”) are the normalized 
retrieved and measured SHG spectral power densities at 
frequency 2	ωi and GDD fj” (which is scanned across the GDD 
range so fj” is the scan variable), and μ is a factor that minimizes 
the error [10].  

For the simulations the applied phase profile of the pulse is 
known, enabling a third error metric, Errφ, to be used as a direct 
measure of the phase retrieval accuracy:  

 

Err஦ ൌ ׬
ௌಾ	ሺఠሻ

׬ ୗ౉ሺఠሻௗఠ
		|φ୰ሺωሻ െ φ୭ሺωሻ|dω.  (5) 

 
Here φr (ω) and φo (ω) are the retrieved and original spectral 

phase profiles.  
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Fig. 2. (Color online.) Illustrative data at different steps of the phase retrieval. 
(a) Stitched-colormap showing SHG spectra calculated using Eq. (1) for 
different applied GDD (d-scan map); (b) fundamental spectrum; (c) estimated 

phase φ(ω) obtained by second integral of estimated GDD φ”(ω); 
(d) Estimated retrieved GDD in successive iterations, Gi” (ω), (e) Synthesized 
d-scan using retrieved phase and the fundamental spectrum; (f) spectrally 
weighted retrieved GDD error (Eq. 3) and global error (Eq. 4) illustrating 
typical evolution to a low plateau value vs. iteration number; (g) comparison of 
finally retrieved phase and the applied spectral phase.  

 
Typical data are illustrated in Fig. 2. The simulations show a 

pulse with a modulated Gaussian spectrum. Fig. 2(a) shows the 
d-scan map So

(2) (2ω, f”). The frequencies shown in this and 
subsequent figures are the offset from the pulse’s centroid 
frequency. The colormap has a logarithmic scale running from 
0 dB in dark shades to –20 dB in white. The SHG maxima, 
Go” (ω), are linked by the overlaid black line. The pulse 
spectrum is shown in Fig. 2(b). The iterative phase retrieval is 
illustrated by the arrows. The estimated phase φi (ω) is shown 
in Fig. 2(c). The GDD Gi” (ω) as the SHG maxima of the 
synthesized d-scan map at 1, 2 and 5 iterations is shown in 
Fig. 2(d). A synthesized d-scan Si

(2) (2ω, f”) as obtained using 
the estimated phase and the fundamental spectrum is shown in 
Fig. 2(e). The line shown through the data at the SHG maxima, 
Gi” (ω), is compared with that in Fig. 2(a) so a correction can 
be calculated for the next iteration. The resulting ErrG and 
global error, Errm, both rapidly decrease as the algorithm 
converges (Fig. 2(f)). The finally retrieved phase φr (ω) and 

actual phase of the simulated pulse are a close match as shown 
in Fig. 2(g). 

The applied phase in this simulation has third and fourth 
order dispersion (TOD, FOD) of: TOD = -0.1 ps3; FOD = 
0.03 ps4. The pulse bandwidth was 5 nm (full width at half 
maximum, (FWHM)) and the central wavelength was 1045 nm. 
This corresponds to a transform-limited Gaussian pulse with 
duration of 133 fs. We chose a GDD step of 0.094 ps2, and a 
scan range of ±2.34 ps2 which is the same as the experimental 
parameters (section V). The maximum applied GDD of 
±2.34 ps2 stretched the pulse to ~ 20 ps. In the algorithm, we set 
the total time range to be 100 ps (frequency step 0.01 THz) and 
so the 4096 grid-points provide a time-step of 24 fs. All 
simulations used 500 GDD steps and show results after five 
iterations. 

III. EVALUATION OF APPROACH  
WITH NUMERICAL SIMULATIONS 

Our simulations used both symmetric and asymmetric test-
spectra and applied even, odd and random phase distortions as 
detailed in section III A. We investigated the algorithm 
performance where the dispersion scanning instrument (e.g., a 
grating compressor) has a calibration error (section III A). Self-
phase-modulation (SPM) is a known distortion in fiber laser 
systems so the ability of the method to retrieve the phase-profile 
of a pulse with distortions from SPM is also shown (section III 
A). Special cases where the algorithm fails to perform are 
shown in section III B. The algorithm was next tested with 
double-pulses (section III C). Finally, to test retrieval in the 
presence of pulse-to-pulse fluctuations, we created averaged 
results for ensembles of pulses and then ran the retrieval 
algorithm on those datasets (section III D). All of the 
parameters and results are summarized in Table II.  

A. Phase retrieval for pulses with symmetric and asymmetric 
spectral profiles 

Tests were performed on pulses with a (symmetric) Gaussian 
power spectrum, and with an (asymmetric) right-triangle power 
spectrum. In all cases we aim for phase distortions that lead to 
the same temporal stretch ratio r = τrms/τTL, where τrms is the 
duration of the distorted pulse and τTL is the transform limited 
pulse duration (rms). We tested Taylor series dispersion profiles 
and a randomly generated phase profile which was created by 
first generating random phases in the range ± π/2 at each 
frequency grid-point, then applying a 0.2 THz low-pass filter to 
smooth the phase.  

In Fig. 3, results for the right-triangle spectrum are shown. 
(Good results were also obtained for the Gaussian.) From the 
retrieval error values, Errφ shown inset, the best match was 
obtained with a 3rd order phase profile (Fig. 3(d)). In all cases 
the results converged to a stable phase profile in less than five 
iterations. 

We chose to use a small GDD step size for all simulations as 
well as for the experiment to both maintain consistency and to 
ensure a single line of SHG maxima would be evident in the d-
scan map. We tested whether a fine resolution for the applied 
GDD steps was required by simulating a Gaussian spectrum 
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with 4th order dispersion (0.03 ps4) and with GDD step sizes 
ranging from 0.001 ps2 to 0.01 ps2. The results (not shown) 
indicated that as the GDD step increased, the retrieval error, 
ErrG, (Eq. 3), also increased from 0.0048 ps2 to 0.012 ps2. 
Furthermore, when we extended the investigation to pulses 
where the d-scan was more complex and had multiple 
secondary maxima, as was the case in the experimental section, 
we found that a coarse scan resulted in the algorithm making 
rapid switches between subsidiary maxima. Hence the coarse 
scan would, in general, need some form of pre-processing 
algorithm that analyzed the d-scan and the fundamental 
spectrum in order to fit the line through the global GDD vs. 
SHG maxima (i.e., G”).  

 
Fig. 3. (Color online.) Simulation results for pulse with an asymmetric right-
triangular spectrum corresponding to a 133 fs transform-limited pulse with 3rd, 
4th, 5th order dispersion or a randomly generated phase. (a) Pulse spectrum; (b) 
Time-domain profiles; (c)-(f) Test and retrieved phase profiles (retrieval error 
inset): (c) random phase; (d) 3rd order dispersion distortion; (e) 4th order 
dispersion; (f) 5th order dispersion.  

We considered the effect of applied dispersion calibration 
errors potentially caused by uncertainty in the parameters of the 
compressor using the Gaussian test spectrum and the same 
phase profiles described above for the triangular pulse, but 
where the scanned GDD from the grating pair had an error of 
5%, so that the GDD used in the retrieval algorithm was 5% 
larger than the true GDD. In the simulations without this 
calibration offset the retrieval errors Errφ were 0.0282, 0.0575, 
0.0569 and 0.0291 for the 3rd, 4th, 5th order and random phase 
profiles. With the calibration discrepancy, the retrieval error 
remained constant at 0.028 for the 3rd-order profile, and 
increased to 0.087, 0.0824 and 0.119 for the respective higher-
order phase profiles. In principle the increase in retrieval error 
can, as with the case of FROG, be used not only to check the 
probable accuracy of the retrieved phase, but also can draw 

attention to the need for accurate calibration of the compressor 
GDD e.g. using a time-domain measurement such as the SHG 
autocorrelation to experimentally check the GDD calibration. 

Finally in this section, we considered a pulse subject to self-
phase-modulation (SPM) because in fiber lasers this 
nonlinearity is often a key limitation on pulse energy. We 
wished particularly to consider CPA systems so whereas for all 
other simulated pulses, the amplitude and phase profiles were 
parametrized directly, for this example only, we have 
performed additional calculations to obtain a realistic phase. 
We started with the above Gaussian spectrum, stretched the 
pulse to a duration of 1.0 ns by applying GDD, applied SPM 
with a peak nonlinear phase shift (B-integral) of 3 rad, then 
recompressed with the opposite GDD. (Note: Fourier grid based 
calculations would require an unwieldy 104 increase in grid size 
to directly calculate the SPM induced phase change on the 
stretched pulse so we used the simplified but still accurate phase 
calculation method developed in Ref. [18].) The retrieval 
results are shown in Fig. 4(a) and (b) and it is clear that across 
the majority of the pulse the phase retrieval is accurate.  

 
Fig. 4. (Color online.) Simulation results for Gaussian pulse with SPM applied 
(B-integral = 3 radians). (a) d-scan map.; and (b) simulated and retrieved phase 
profiles. (See text and Table 2 for details.).  

 

B. Limitations from special cases 

Cases that pose a special challenge for the algorithm are 
considered here. The auto-convolution in Eq. 1 shows that 
several frequencies offset to the side from the (2/2) frequency, 
 contribute via sum-frequency generation [10]. For simple 
phase profiles that can be represented using a few terms in a 
Taylor series, the phase of the sum-frequency generation will 
normally oscillate rapidly for frequencies away from the point 
where φ்௢௧௔௟

ᇱᇱ ሺωሻ ൌ 0	in Eq. (1, 2) and therefore they do not 
contribute significantly to the SHG. Then the dominant 
contributor to the SHG at each point is from the directly related 
fundamental frequency as is assumed by the algorithm. 
However, when the phase varies in a less regular manner the 
SHG data can be distorted by the sum-frequency components. 
Pulses for which the spectral phase has abrupt changes or is 
highly modulated thus pose a challenge: e.g. rapid periodic 
phase modulations across a pulse could mean that if there are 
two or more equally offset frequencies that share the same GDD 
then they could contribute to a SHG maximum at an 
intermediate frequency where the GDD of the fundamental is 
in fact different. We therefore investigated this and some other 
special cases to check for errors.  

The first results shown are for the standard Gaussian 
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spectrum with stepped phase change of π as shown in 
Fig. 5(a), (b). Accurate phase retrieval was not possible and the 
high error, Errφ = 1.18, compared to 0.029 for the Gaussian 
spectrum with randomly generated but smoothly varying phase, 
confirms this. The performance is similar to MIIPS [19] ; but 
not as good as G-MIIPS [20] or FROG [3]. 

Next, a Gaussian spectrum with smoothly varying sinusoidal 
phase between 0 and π and one complete period within the 
spectral bandwidth (FWHM) was studied. The results in Fig. 5 
(c), (d) show the retrieval is largely successful, with the phase 
being accurate at the center of the pulse and then showing small 
deviations at the edges. Here, Errφ = 0.263 is, correspondingly, 
higher than the case of a Gaussian with random phase (Errφ = 
0.029 ) but below that of the stepped phase (Errφ = 1.18). When 
the modulation frequency increased so there are four periods of 
a sinusoid with amplitude of π within the spectral half-
bandwidth then the retrieval failed, as indicated in Fig. 5 (e), 
(f). In summary, expected challenges, e.g. a stepped-phase 
profile or a rapidly varying spectral phase profile were 
encountered, but the algorithm performed well provided the 
phase was slowly varying across the spectral bandwidth.  

 
Fig. 5. (Color online.) Simulation results for special cases. The left column 
shows the d-scan maps. The right column shows the simulated and retrieved 
phase profiles. (a), (b) Gaussian with step change in phase profile; 
(c), (d) Gaussian with slowly varying sinusoidal phase profile; (e), (f) Gaussian 
with rapidly varying sinusoidal phase. (See text and Table 2 for details.)  

 

C. Double pulse 

Satellite pulses are commonly observed in practice and can 
be either created intentionally or appear via unwanted etalon 
effects or polarization splitting. A double pulse is normally 

considered more straightforward to detect with time domain 
measurements, such as a SHG autocorrelation, than with 
frequency based techniques such as d-scans, so it represents an 
important test. 
1) Pre- or post-pulse replicas 

The standard Gaussian pulse (Table II) was replicated and 
the replica’s energy reduced to 4% of the main pulse. A 
temporal offset of ±5 ps was then applied to create a pre- or 
post-pulse, as is shown in Fig. 6 (a) (b). Fig. 6 (c) and (d) show 
the fundamental spectra with the expected modulations. The d- 
scans in Fig. 6 (e) and (f) are clearly different for pre- and post-
pulses, enabling the temporal order to be determined. We found 
that the patterns remained qualitatively similar for other pulse 
separations and relative pulse phases, which suggests (but does 
not prove) that the approach is valid in general. In contrast, the 
widely adopted SHG autocorrelation technique would not 
clearly identify a pre-pulse or post-pulse, so this is valuable 
information, even though it requires consideration of the SHG 
spectral data across the d-scan map, not just the positions of the 
SHG maxima used by the algorithm. 

 
Fig. 6. (Color online.) Simulation results for a 4% replica pre-pulse (shown in 
(a,c,e)) and post-pulse (shown in (b,d,f)). Both the main pulse and the replica 
have identical, transform-limited, phase profiles. (a), (b) temporal profiles 
(c), (d) fundamental spectral profiles (same for pre- and post-pulse). (e), (f) d-
scans. (The central line across the SHG data does have power density 
modulations similar to those in the fundamental spectra although the dB scale 
for the d-scan map in the lower row insets does not display this very clearly.)  
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2) Duplicate pulse having different phase profile from parent 
 

 
Fig. 7. (Color online.) Simulation results for complex double pulse profile (see 
text for details). (a) double pulse in time domain; (b) fundamental spectrum; 
(c) d-scan map; (d) actual (original) and retrieved phase results.  

 
As a second test of double pulses, offset spectra and different 

phase profiles were considered. Two pulses were created with 
identical Gaussian spectra and the main pulse had a flat phase. 
Considering the spectral domain, the energy of the second pulse 
was 80% of that of the main pulse, and it had a frequency offset 
of 2 THz. At frequencies >1 THz from the center of the main 
pulse we applied a 4th order dispersion term centered on the 
secondary pulse. (The phase was made continuous at the join 
by offsetting the peak of the phase of the second pulse. See 
Table II.) Figure 7 (a, b) show the pulse is double-peaked in 
both the time and frequency domains. Figure 7(c) shows the d-
scan data and Fig. 7(d) shows the applied and retrieved phase 
profile after five iterations. There is a discrepancy where the 
slope of the spectral-phase has a discontinuity, but otherwise 
the retrieval is reasonably accurate. The phase retrieval error, 
Err஦,was 0.5  

 

D. Simulations with pulse-to-pulse fluctuations 

This section assesses the effects of pulse-to-pulse 
fluctuations that will be present in any averaged experimental 
data. This is useful when the measurement equipment is unable 
to acquire required data from a single pulse and therefore has to 
average over several pulses. These effects are indeed perhaps 
the most significant uncertainty in a practical measurement. 
(For shot data, noise is normally not a large source of 
measurement uncertainty.) The pulse-to-pulse fluctuations 
considered are taken from ref [15], which reported a MIIPS 
based phase measurement. The authors described the range of 
potential fluctuations and how they may be inferred from 
different measurement systems [15, 16]. Firstly amplitude and 
secondly bandwidth fluctuations were chosen because they are 
commonly observed in Ti:sapphire lasers [15], and, thirdly, 
GDD fluctuations were considered because they have been 
reported when air-flows are present in laser compressors [16]. 
They indicated that their new ‘fidelity’ parameter provided an 

indicator of expected statistically-averaged laser performance 
in the context of image contrast in multiphoton microscopy so 
that given two otherwise similar laser sources, the one with 
higher fidelity would lead to brighter SHG images. As well as 
the practical need to be able to use our approach on lasers with 
fluctuations, our simulations were motivated by the possibility 
of using a d-scan to perform fidelity measurements in the future. 
As a first step, here we show that our algorithm correctly 
retrieves the average phase for the types of fluctuations 
considered in ref [15].  

A spectrometer might record data over 10 ms, and would 
hence average over thousands of pulses during the data 
acquisition process if the laser has a repetition rate in the MHz 
range or just over tens of pulses for higher energy systems 
operating in the tens of kHz range. We created ensembles of 24 
randomly generated pulses with amplitude or bandwidth 
fluctuations that had a Gaussian distribution and standard 
deviation of up to 20% of the mean value in 2% steps so there 
were a total of 11 simulations performed for each case.  

The SHG spectra were calculated for every pulse in the 
ensemble and the SHG spectra were then averaged to create a 
target ‘measurement’ for our algorithm to fit. The fundamental 
spectrum used in the retrieval algorithm did not have pulse-to-
pulse fluctuations applied. The fundamental spectrum would 
not show any variation when phase fluctuations are applied so 
it is expected to be more stable than the SHG. A further 
refinement could in principle consider noise applied to this data 
in addition to the SHG spectra. We considered the standard 
Gaussian and triangular pulses with 3rd, 4th, 5th and randomly 
generated GDD distortions (Table II). The results in Fig. 8. 
extend down to a standard deviation of zero, i.e. the fluctuation-
free case. 

The simulations with amplitude fluctuations used scaling 
ratio ra that had a Gaussian distribution with unity mean and 0-
20% standard deviation. It was applied by multiplying the 
spectrum with the scaling variable: ra × S (ω – ω0), where ω0  is 
the centroid frequency (ω0 = ߱׬	ܵሺ߱ሻ݀߱ ⁄ሺ߱ሻ݀߱ܵ׬   

Simulations with spectral bandwidth fluctuations used a 
similar scaling variable rb, applied using: ܵሺሺ߱ െ ߱଴ሻ/ݎ௕ሻ ⁄௕ݎ .  

The third set of simulations applied GDD fluctuations 
corresponding to vibrations of the grating in the CPA 
compressor. A compressor mirror offset, ΔL, was considered by 
adding a term to the spectral phase using the formula φ (ω – ω0) 

+ β2 ΔL (ω – ω0)2/2, where β2 = 0.94 ps2/rad/mm. The parameter 
 had a mean of zero and standard deviation extending up to ܮ߂
0.1 mm in 0.01 mm steps such that there were a total of 
11 separate simulations. 
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Fig. 8. (Color online.) The influence of pulse-to-pulse fluctuations on the 
phase retrieval accuracy. The test pulses are the same as in Section A, namely, 
a Gaussian (figures (a)-(c)) and right-triangular spectrum (figures (d)-(f)) with 
applied 3rd, 4th 5th order GDD and random GDD profiles. (See Table 2.) Each 
row shows the test results for a different type of pulse fluctuation.(See text for 
details.)  

The results for the Gaussian pulse appear in the first column 
of Fig. 8. The results for the right-triangular shaped pulse in the 
second column of Fig. 8. Although there is no strong trend for 
in the retrieval error with increasing levels of fluctuations for 
either pulse shape for the case of amplitude fluctuations or 
GDD fluctuations, for the case of bandwidth fluctuations the 
triangular pulse showed a gradually increasing retrieval error. 
Even when applying the maximum error, we still were of the 
view when looking at the phase data (not shown) that the 
retrievals were largely successful. We are unsure why, the 
shape of the pulse is apparently important when considering 
bandwidth fluctuations. It may be due, at least in part, to the 
hard edged shape we selected. To enable comparison of the 
algorithm evaluation error with the results in the experimental 
section, we note that for the right-triangular spectrum with 
randomly generated GDD profile and bandwidth fluctuations of 
15%, ErrG = 5.59 × 10-3 ps2.  

In general, the results in Fig. 8 demonstrated that the retrieval 
error did not steadily increase as the level of fluctuations 
increased. We concluded that since the method robustly 
retrieved the phase in the presence of high levels of the 
fluctuations considered that it should perform well in practice 

given the lower level of fluctuations that might be expected 
experimentally. 

To test how the retrieval error changes with the number of 
pulses in the ensemble we considered the case of a triangular 
spectrum with randomly generated GDD and 15% bandwidth 
fluctuations. In the single shot-case (ensemble size of one pulse 
at each applied GDD value in the d-scan map), the data for 
sequential GDD points could include wide fluctuations in the 
pulse profiles, so retrieval of a self-consistent pulse profile is 
harder. We would then expect the retrieved profile and retrieval 
error to change each time the simulation was re-run. To 
investigate the minimum required ensemble size, simulations 
(not shown as a figure) were run with ensemble sizes between 
1 and 24 pulses. They demonstrated that there were significant 
variations in the retrieval error when the number of pulses was 
in the range 1-15, but that with larger ensemble sizes the 
retrieval error had only small fluctuations. We therefore suggest 
using at least 15 pulses to reduce the probability that outliers in 
the distributions strongly influence the measurements.  

 

IV. EXPERIMENTAL WORK 

 
Fig. 9. Schematic of the experimental d-scan setup. See Ref. [21] for the CPA 
system amplifier configurations and performance details.  

 
Our experimental testbed was developed in house and based 

closely on the Yb fiber CPA with a bendable final amplifier-
fiber reported in [21]. In brief, we used a femtosecond Yb-
doped fiber laser oscillator based on nonlinear polarization 
rotation, followed by an EOM pulse picker (not active here), a 
grating-based pulse stretcher, core-pumped pre-amplifiers, a 
large-mode-area cladding-pumped power amplifier and a 
standard Treacy compressor. The system was operated at the 
40 MHz repetition rate of the seed oscillator to avoid nonlinear 
effects. The pulse energy was 20 nJ and the operating power 
was 0.8 W. The compressor setup and diagnostics for the d-scan 
are shown schematically in Fig. 9. A PC based Matlab 
algorithm recorded the fundamental spectrum output from the 
compressor (restricted-bandwidth), controlled the motorized 
stage under the horizontal-roof to perform the d- scan, recorded 
the SHG spectra, and operated the retrieval algorithm.  
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The compressor had a horizontal roof mirror to generate two 
passes of a single large grating and avoiding the need for a pair 
of gratings requiring independent alignment. The spectral phase 
offset applied by the compressor was: 

 
߮ሺ߱ሻ ൌ ෤߮ሺ߱ሻ ൅ ଶሺ߱ߚሾܮ߂ െ ߱଴ሻଶ/2 ൅ ሺ߱ െ ߱଴ሻଷ/6 ൅
ସሺ߱ߚ െ ߱଴ሻସ/24 ൅ ହሺ߱ߚ െ ߱଴ሻହ/120ሿ. (6) 
 
Here, ∆L is the change in compressor grating separation when 
the horizontal roof-mirror is moved away from the minimum 
pulse-width position, and β2, β3, β4, and β5, are the second, third, 
fourth and fifth order dispersion coefficients: –0.0937 ps2/mm, 
0.001100 ps3/mm, –2.1046 × 10-5 ps4/mm, and 5.7001 × 10-7 

ps5/mm, respectively, at the central wavelength of 1045.0 nm. 
( ෤߮ ሺ߱ሻ accounts for the carrier-envelope offset and the time of 
transit of the pulse through the compressor, neither of which 
change the shape of the pulse envelope in the time domain.) The 
dispersion parameters were calculated to be accurate to within 
<0.2%, in view of the grating alignment tolerance of ~1 mrad 
and accurate measurement of the groove density on the grating. 
By far the dominant term is β2, so in the algorithm we used β2 = 
–0.0937 ps2/mm to represent the applied GDD. The 50 mm 
travel motorized stage under the horizontal roof mirror adjusted 
the applied GDD range of ±2.350 ps2 and 0.1 mm steps 
(0.094 ps2) required 500 data points (i.e. SHG spectra). The 
acceleration and deceleration were set to low values and the 
data-acquisition was briefly delayed following each motion 
before recording the spectra to avoid vibrations. It takes a few 
seconds to move the grating and acquire an SHG spectrum. 
Typically, the total acquisition time was a few minutes. As 
noted in the Theory section, although the fine resolution 
increases the d-scan acquisition time it has benefits in terms of 
the retrieval process. 

The diagnostics comprised an OSA (AQ6370, Yokogawa) 
for the fundamental spectrum, lens (f=10 cm) and SHG crystal 
(Type II BBO 10 mm × 10 mm × 0.5 mm), a dichroic mirror to 
separate out the residual fundamental and a spectrometer 
(HR4000, Ocean Optics) to record the SHG spectra. In the time-
domain, a non-collinear SHG autocorrelator was used to verify 
the accuracy of the results obtained.  

The results in Fig. 10 are shown with frequency offsets 
relative to the pulse central wavelength. In the d-scan map of 
Fig. 10(a), the dot-dash line shows Go” (ω), i.e. the positions on 
the grid where the SHG maxima were recorded. (The GDD scan 
range (y-axis) is -2.0 ps2 to +2.7 ps2 because the motor travel 
was not in the center of the movement range at the position 
generating the shortest pulse.) The measured fundamental 
spectrum is shown in red in Fig. 10(d). The rapid convergence 
within five iterations of the algorithm is demonstrated by the 

plot of both the retrieved local error ErrG and global error Errm 
in Fig. 10(b). The retrieved temporal pulse profile in Fig. 10(c) 
shows a small pre-pulse approximately 1 ps before the main 
pulse. The retrieved phase shown in blue in Fig. 10(d) is flat 
across the central part of the pulse spectrum but has a distortion 
on the high-frequency side. 

 
Fig. 10. (Color online.) Experimental d-scan phase retrieval results. Frequency 
offsets shown are relative to the pulse central wavelength of 1045 nm. 
(a) Colormap showing SHG spectra as a function of the applied GDD (d-scan); 
(b) retrieved GDD error, ErrG, and global error, Errm, (c) calculated temporal 
pulse profile (d) retrieved phase and independently measured fundamental 
spectrum (e) measured autocorrelation trace compared with both the phase-
distorted and transform limited calculated autocorrelation traces (f) measured 
and retrieved (calculated) SHG spectrum with the horizontal-roof mirror at the 
position that corresponds to the shortest measured SHG autocorrelation.  

 
To verify the accuracy of the result, we used the retrieved 

phase with zero applied GDD to calculate the compressed pulse 
SHG autocorrelation. The calculated and measured data shown 
in Fig. 10(e) are in good agreement. (The transform limited 
pulse (blue curve) is shown for reference.) The pulse 
is ~ 1.1  times the transform-limited duration of 430 fs (rms). 
The corresponding measured and calculated SHG spectra are 
shown in Fig. 10(f).  
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V. DISCUSSION AND SUMMARY 

Phase retrieval and noise characterization of ultrashort pulse 
lasers is an important area of study that has led to several 
widely-used techniques. However, the cost and complexity of 
existing methods is typically only justified in research 
laboratories. The next generation of machining and ultrafast 
nonlinear imaging users require less complex and hence 
cheaper options. We report a method that quickly and 
inexpensively measures the phase of the pulses from fiber-
based laser systems, which typically have narrower bandwidth 
and higher pulse-to-pulse fluctuations compared to Ti:sapphire 
lasers. It retains the intuitive interpretation and the ability to 
measure the average phase profile when pulse-to-pulse 
fluctuations are present which are demonstrated benefits of 
MIIPS. By using the fundamental laser spectrum to provide a 
self-consistency constraint an iterative algorithm calculates the 
spectral phase without requiring an SLM based pulse shaper. 
The technique has been shown to work reliably in the majority 
of cases except where the phase contained abrupt changes. 
Robust phase retrieval in the presence of laser fluctuations was 

confirmed using simulations on ensemble-averaged data and 
experimentally. 

The experimental validation used data from an Yb-fiber CPA 
system with a motorized translation stage on the existing 
compressor grating setup to provide a dispersion scan through 
the position corresponding to the shortest output pulse. The 
retrieved phase results were in good agreement with the 
independently measured SHG autocorrelation. Although we 
treated an Yb-fiber CPA system in our simulations and 
experimental work, our approach can also be used with other 
lasers e.g., Er, Ho, and Tm fiber systems and Yb-solid state fs 
lasers. We suggest that this is a valuable addition to the range 
of characterization methods available. 
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TABLE II 
SUMMARY OF SIMULATION RESULTS FOR SECTION 3. 

Simulated pulse  
τTL_RMS 
(fs) 

τRMS 
(fs) 

ΔfFWHM (THz)  τRMS / τTL_RMS  Applied phase profile 
 ࡳ࢘࢘ࡱ
(ps2) 

 ૎ܚܚ۳ Fig. no. 

Gaussiana  133   960   1.37  7.2 

 ଷ = 0.1 ps3ߚ 0.98 x 10‐3  0.0282 

NA 
 ସ =0.03 ps4ߚ 4.6 x 10‐3  0.0575 
 ହ =0.013 ps5ߚ 4.1 x 10‐3  0.0569 
Random phase  9.7 x 10‐3  0.0429 

Right‐triangleb  204   1600   1.37  7.8 

 ଷ = 0.1 ps3ߚ 0.3 x 10‐3  0.0032 

3 
 ସ =0.03 ps4ߚ 1.2 x 10‐3  0.0082 
 ହ =0.013 ps5ߚ 1.7 x 10‐3  0.0173 
Random phase  3.0 x 10‐3  0.0291 

Gaussiana with SPM 
appliedc 

133   380  1.37   2.9 
peak nonlinear phase = 3 

radians 
6.5 x 10‐3  0.0391  4(a, b) 

Gaussiana: Step change 
in phase profile 

133   1200   1.37  9.0 

Phase: 
‐0.3 ~ +0.3 THz 

0 
< ‐0.3 or > 0.3 THz 

‐π 

61.5 x 10‐3  1.18  5(a, b) 

Gaussiana: slowly 
varying sinusoidal phase 

profile 
133   364   1.37  2.7 

Period=3 THz 
Amplitude=±π /2 

4.06 x 10‐3  0.039  5(c, d) 

Gaussiana: rapidly 
varying sinusoidal phase 

profile 
133   2200   1.37  16.5 

Period = 0.5 THz 
Amplitude=±π /2 

0.31   1.32  5(e, f) 

Double pulse: delayed 
replica d 

133  969  1.37  7.3  Flat phase  NA  NA  6 

Double pulse: Offset 
spectra, and different 

phase profiles e 
83  216  3.15  2.6 

Second pulse: 
 offset 2 THz 

Dispersion applied: 
< 1 THz=0 

> 1 THz = ߚସ=0.03 ps4 
centered at +2 THz 

3.74 x 10-3 0.097  7 

Right‐triangleb with 
pulse‐to‐pulse 
fluctuationsf 

204   1600   1.37  7.8  Random phase  5.59 x 10‐3  0.068  8 

a corresponds to Gaussian pulses having a Gaussian spectral power density with bandwidth of 5 nm centered at 1045 nm.  
b corresponds to right-triangle shaped spectrum with a bandwidth of 5 nm and centered at 1045 nm. 
c when the pulse is strongly chirped (applied GDD is 100 ps2) 
d with relative pulse energies of E2=4% of E1: temporal offset of 5 ps. 
e with relative energy of E2=4% of E1: second pulse has different spectral phase from that of the main pulse. 
f only list the result of bandwidth fluctuations of 15%, other results are shown in fig. 8. 



JQE-134889-2018.R1 
 
 

11

REFERENCES 
[1] J. W. Nicholson, J. Jasapara, W. Rudolph, F. G. Omenetto, and A. 

J. Taylor, "Full-field characterization of femtosecond pulses by 
spectrum and cross-correlation measurements," Optics Letters, vol. 
24, no. 23, pp. 1774-1776, 1999. 

[2] R. Trebino et al., "Measuring ultrashort laser pulses in the time-
frequency domain using frequency-resolved optical gating," 
Review of Scientific Instruments, vol. 68, no. 9, pp. 3277-3295, Sep 
1997. 

[3] R. Trebino, Frequency-Resolved Optical Gating: The 
Measurement of Ultrashort Laser Pulses. Boston: Kluwer 
Academic, 2002. 

[4] P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, "Highly simplified 
device for ultrashort-pulse measurement," Optics Letters, vol. 26, 
no. 12, pp. 932-934, 2001. 

[5] C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for 
direct electric-field reconstruction of ultrashort optical pulses," 
Optics Letters, vol. 23, no. 10, pp. 792-794, 1998. 

[6] V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse 
interference. IV. Ultrashort laser pulse spectral phase 
characterization and compensation," Optics Letters, vol. 29, no. 7, 
pp. 775-777, 2004. 

[7] Y. Coello et al., "Interference without an interferometer: a 
different approach to measuring, compressing, and shaping 
ultrashort laser pulses," Journal of the Optical Society of America 
B, vol. 25, no. 6, pp. A140-A150, 2008. 

[8] M. Miranda et al., "Characterization of broadband few-cycle laser 
pulses with the d-scan technique," Optics Express, vol. 20, no. 17, 
pp. 18732-18743, 2012. 

[9] A. Comin, R. Ciesielski, N. Coca-López, and A. Hartschuh, "Phase 
retrieval of ultrashort laser pulses using a MIIPS algorithm," 
Optics Express, vol. 24, no. 3, pp. 2505-2512, 2016. 

[10] M. Miranda, T. Fordell, C. Arnold, A. L’Huillier, and H. Crespo, 
"Simultaneous compression and characterization of ultrashort laser 
pulses using chirped mirrors and glass wedges," Optics Express, 
vol. 20, no. 1, pp. 688-697, 2012. 

[11] F. Silva, M. Miranda, B. Alonso, J. Rauschenberger, V. Pervak, 
and H. Crespo, "Simultaneous compression, characterization and 
phase stabilization of GW-level 1.4 cycle VIS-NIR femtosecond 
pulses using a single dispersion-scan setup," Optics Express, vol. 
22, no. 9, pp. 10181-10191, 2014. 

[12] M. Miranda et al., "Fast iterative retrieval algorithm for ultrashort 
pulse characterization using dispersion scans," Journal of the 
Optical Society of America B, vol. 34, no. 1, pp. 190-197, 2017. 

[13] V. Loriot, G. Gitzinger, and N. Forget, "Self-referenced 
characterization of femtosecond laser pulses by chirp scan," Optics 
Express, vol. 21, no. 21, pp. 24879-24893, 2013. 

[14] B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, 
"Quantitative investigation of the multiphoton intrapulse 
interference phase scan method for simultaneous phase 
measurement and compensation of femtosecond laser pulses," (in 
English), Journal of the Optical Society of America B, vol. 23, no. 
4, pp. 750-759, 2006. 

[15] V. V. Lozovoy, G. Rasskazov, D. Pestov, and M. Dantus, 
"Quantifying noise in ultrafast laser sources and its effect on 
nonlinear applications," Optics Express, vol. 23, no. 9, pp. 12037-
12044, 2015. 

[16] G. Rasskazov, V. V. Lozovoy, and M. Dantus, "Spectral amplitude 
and phase noise characterization of titanium-sapphire lasers," 
Optics Express, vol. 23, no. 18, pp. 23597-23602, 2015. 

[17] Mathworks. (2017). Smooth function in Matlab. Available: 
https://uk.mathworks.com/help/curvefit/smooth.html 

[18] D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, "The 
impact of spectral modulations on the contrast of pulses of 
nonlinear chirped-pulse amplification systems," Optics Express, 
vol. 16, no. 14, pp. 10664-10674, 2008. 

[19] A. Comin, M. Rhodes, R. Ciesielski, R. Trebino, and A. 
Hartschuh, "Pulse characterization in ultrafast microscopy: A 
comparison of FROG, MIIPS and G-MIIPS," in Conference on 
Lasers and Electro-Optics (CLEO) SW1H.5, 2015. 

[20] A. Comin, R. Ciesielski, G. Piredda, K. Donkers, and A. 
Hartschuh, "Compression of ultrashort laser pulses via gated 

multiphoton intrapulse interference phase scans," Journal of the 
Optical Society of America B, vol. 31, no. 5, pp. 1118-1125, 2014. 

[21] J. S. Feehan, J. H. V. Price, T. J. Butcher, W. S. Brocklesby, J. G. 
Frey, and D. J. Richardson, "Efficient high-harmonic generation 
from a stable and compact ultrafast Yb-fiber laser producing 
100 μJ, 350 fs pulses based on bendable photonic crystal fiber," 
Applied Physics B, vol. 123, no. 1, p. 43, 2017. 

 
  



JQE-134889-2018.R1 
 
 

12

 

 
Yujun Feng received the B.Eng. (2012) and the Ph.D. (2017) 
degree in engineering physics from Tsinghua University, 
Beijing, China. In 2015, he joined High Power Fiber Laser 
(HPFL) group at the Optoelectronics Research Centre (ORC), 
University of Southampton, as a visiting Ph.D. student and is 
now a research fellow in this group. His research interests focus 
on high power and ultrafast fiber laser systems. 
 

 
Johan Nilsson is a Professor at the ORC, University of 
Southampton, UK, and head of the High Power Fiber Lasers 
research group. In 1994, he received a doctorate in Engineering 
Science from the Royal Institute of Technology, Stockholm, 
Sweden, for research on optical amplification. Since then, he 
has worked on optical amplifiers and amplification in lightwave 
systems, optical communications, and guided-wave lasers, first 
at Samsung Electronics and later at ORC. His research has 

covered system, fabrication, and materials aspects, and in 
particular device aspects of high power fiber lasers and erbium-
doped fiber amplifiers. He has published over 400 scientific 
articles. He is a fellow of the OSA and the SPIE, and a 
consultant to, and co-founder of, SPI Lasers. He is a member of 
the advisory board of the Journal of the Optical Society of 
Korea and was guest editor of two issues on high-power fiber 
lasers in IEEE Journal of Selected Topics in Quantum 
Electronics in 2009. He is a former chair of the Laser Science 
and Engineering technical group in OSAs Science and 
Engineering Council and is currently program chair for the 
EuroPhoton and Advanced Solid State Lasers conferences. 
 

 
Jonathan H. V. Price received the Ph.D. degree in 
optoelectronics from the ORC, University of Southampton, 
U.K., in 2003. He then held a Royal Academy of Engineering 
Postdoctoral Research Fellowship at the ORC and has 
continued working in his main research areas of applied 
nonlinear fiber optics using novel glass types as well as silica 
microstructured optical fibers for ultrashort-pulse wavelength 
conversion applications / supercontinuum generation and the 
development of high-power femtosecond pulsed fiber laser 
sources. 
 
 
 

 


