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Abstract The parameter of interest considered is the unique solution to a
set of estimating equations, such as regression parameters of generalised linear
models. We consider a design-based approach; that is, the sampling distribu-
tion is specified by stratification, cluster (multi-stage) sampling, unequal selec-
tion probabilities, side information and a response mechanism. The proposed
empirical likelihood approach takes into account of these features. Empirical
likelihood has been mostly developed under more restrictive settings, such as
independent and identically distributed assumption, which is violated under a
design-based framework. A proper empirical likelihood approach which deals
with cluster sampling, missing data and multidimensional parameters is absent
in the literature. This paper shows that a cluster-level empirical log-likelihood
ratio statistic is pivotal. The main contribution of the paper is to provide the
rigorous asymptotic theory and underlining regularity conditions which im-
ply
√
n-consistency and the Wilks’s theorem or self-normalisation property.

Negligible and large sampling fractions are considered.

Keywords design-based approach · estimating equations · response mech-
anism · response propensities · stratification · side information · unequal
probabilities

1 Introduction

We consider that the sample data are selected with a stratified cluster (mul-
tistage) sampling design with unequal probabilities. Side information is also
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included. Empirical likelihood approaches for missing data have been devel-
oped under more restrictive settings, which do not take into account of the
complexity of the design and parameters. For example, Qin et al’s (2009)
empirical likelihood approach for missing data, does not includes cluster sam-
pling, unequal probabilities and population level information. The complexity
of the sampling design is the primarily focus of this paper. Standard empirical
likelihood approach based on the complete case cannot be straightforwardly
implemented, because it would not take into account of the sampling design
and response mechanism. We proposed a general empirical likelihood approach
which accommodates these complex features. It naturally includes adjustments
for missing data. In §6, we give regularity conditions which imply the Wilks’s
theorem and

√
n-consistency.

Parameters are often multidimensional, such as parameters of generalised
linear models. However, most of the design-based literature on missing data
deals with unidimensional parameters, such as totals, means, ratios and quan-
tiles (e.g. Haziza and Lesage 2016). However, in the presence of non-response,
the parameter is multidimensional, because the parameter of interest depends
on non-response parameters. For example, if we wish to estimate a mean and
we have c re-weighting classes. We have a multidimensional parameter of size
c + 1 containing the mean and c response probabilities, one for each class. It
is common practice to treat the estimated response probabilities as determin-
istic, which may affect confidence intervals (Valliant 2004). In their simplest
forms, these estimated response probabilities reduces to response rates. For
example, when all the units have the same response probability, we have one
re-weighting class and an estimator of this probability is the overall response
rate. It is common practice to ignore the estimation of these probabilities and
to treat them as if they were deterministic. The randomness of these probabil-
ities is taken into account within the empirical likelihood confidence intervals
proposed.

Pseudo-likelihood (Binder 1983) can be used for regression parameters.
However, pseudo-likelihood confidence intervals are based on Wald’s statis-
tics, involving linearisation. There is no Wilks’s type theorem for pseudo-
likelihood. Empirical likelihood has the advantage of having data driven and
range preserving confidence intervals, based on a self-normalising empirical
log-likelihood ratio statistic. The empirical likelihood approach proposed may
provide better confidence intervals than those based on Wald’s type statistics.

The mainstream empirical likelihood theory under independent and iden-
tically distributed (i.i.d.) observations, was developed by Owen (1988) and
Qin and Lawless (1994). Wang and Rao (2002a) proposed several empirical
likelihood approaches for imputed estimators of means, under a i.i.d. setting.
It has been extended for linear models and estimating equations by Wang and
Rao (2002b); Wang and Chen (2009); Qin et al (2009). We consider a differ-
ent situation when we have a stratified cluster sampling design with unequal
probabilities and side information.

Survey data are often clustered; that is, the population frame is split into
small groups of units, called clusters. A specified number of clusters are sam-
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pled. Units are selected within each cluster sampled. This is a widely used
technique for social surveys. We have a single-stage design when all the units
are selected within each cluster sampled. In both cases, the observations are
not i.i.d., and the customary empirical likelihood approach (Owen 2001) can-
not be straightforwardly extended. We shall see that this customary empirical
likelihood approach based on the completed cases produces confidence inter-
vals with coverages significantly different from the nominal value.

Chen and Sitter’s (1999) pseudo-empirical likelihood is based on a weighted
empirical likelihood function. It was extended for stratified simple sample with
missing data by Fang et al (2009, 2010). The pseudo-empirical log-likelihood
ratio statistic is not pivotal (Wu and Rao 2006). Hence, the self-normalisation
property does not hold. Confidence intervals can still be obtained using lin-
earisation or by adjusting the pseudoempirical log-likelihood ratio statistic by
a ratio of variance estimates, as in Wu and Rao (2006) and Wang and Rao
(2002b). This adjustment is limited to unidimensional parameters, and cannot
be used with multidimensional parameters. Chen and Kim’s (2014) population
empirical likelihood approach is based on single-stage Poisson sampling with
random sample size, which is not considered in this paper, because we consider
that the number of clusters sampled is deterministic.

Berger and Torres (2016) extended Owen’s (1988) approach for single-
stage unequal probabilities sampling and full response, when we have a single
estimating equation and fixed sample size. Oǧuz-Alper and Berger (2016) gen-
eralised this approach for multidimensional parameters under full response.
The fact that the self-normalisation property holds is major advantage over
the pseudo-empirical likelihood approach. A comparison between Oǧuz-Alper
and Berger’s (2016) approach and pseudo-empirical likelihood can be found in
Berger (2018). Berger and Torres (2016) proposed an extension for multi-stage
design and a single estimating equation. They conjectured that the empirical
log-likelihood ratio statistic is pivotal, under full response. In this paper, we
proof this conjecture, under a more general setting involving missing data
and multidimensional parameters. The contribution of this paper is to provide
regularity conditions on the design which ensures that the profile cluster-level
empirical log-likelihood ratio statistic is pivotal. The primarily focus of this
paper is the complexity of the sampling design, rather than missingness. The
former is add-on feature which cannot be avoided with clustered samples. Im-
putation is not covered and is beyond the scope of this paper.

The aim of this paper is to develop a rigorous asymptotic theory of em-
pirical likelihood under multistage designs and nonresponse. We shall use re-
sponse propensities to adjust for missing data, as in Qin et al (2009), but we
consider a different setting when we have a stratified cluster sampling design
with unequal probabilities and side information. We show that the indepen-
dence between the response mechanism and the sampling design implies that
the empirical log-likelihood ratio statistic is pivotal and does not need to be
adjusted for missing data. The empirical log-likelihood ratio statistic takes
the response mechanism into account. First, we show that this result holds for
negligible sampling fractions. Then, we show how the empirical log-likelihood
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ratio statistic can be adjusted for large sampling fractions. We provide the
regularity conditions on the multistage sampling design and response mech-
anism which ensure that the empirical likelihood estimator is consistent and
that the empirical log-likelihood ratio statistic is pivotal.

It is common practice to treat the estimated response propensities as deter-
ministic within variance estimators. This may shortened the confidence inter-
vals (Valliant 2004). We show that the empirical log-likelihood ratio statistic
possesses the self-normalising property, while taking into account of the esti-
mation of these propensities. This allows confidence intervals which reflect the
estimation of these propensities.

Inverse probability weighting approaches for handling missing data is well
developed in the survey sampling literature (e.g. Brick and Kalton 1996; Brick
and Montaquila 2009). Most of them are based on a propensity model, with
stochastic response as a second phase (Särndal and Swensson 1987), with un-
known response propensities. Non-response bias reduction can be achieved
under accurate estimation of the response propensities. The propensity model
used is often a logistic model containing categories or classes, as in Little
(1986). We shall use a similar approach. Another approach is a non-response
weighting adjustment based on calibration (Särndal and Lundström 2005),
based on auxiliary information at sample or population level (Brick and Kalton
1996; Lundström and Särndal 1999). Other technique involves calculating an
upper bound for the non-response bias (Montaquila et al 2008).

There are three main approaches for variance estimation: Jackknife (Rao
and Shao 1992; Berger and Rao 2006), bootstrap (Kovar et al 1988; Rust and
Rao 1996) and linearisation (Wolter 2007; Binder 1983; Deville 1999). Asymp-
totic theory of bootstrap is restricted to simple settings. Its properties is often
limited to means, and solely based on simulations. Valliant (2004) compared
these approaches via simulation. Brick and Montaquila (2009) pointed out
that more research is needed on the effect of non-response weighting on con-
fidence intervals. We proposed to fill this gap, by showing how this effect can
be taken into account, by using a profile empirical log-likelihood ratio statis-
tic. Its implementation does not involves variance estimation, re-sampling or
linearisation.

In §2, we define the response mechanism and the sampling design. The
class of multi-stage designs is defined in §3. The parameters of interest and
side information are defined in §4. In §5, we describe the empirical likelihood
approach proposed. The asymptotic results can be found in §6. The key results
is Theorem 1, which shows that the empirical log-likelihood ratio statistic is
pivotal. The approach proposed is extended for two-stage designs with large
sampling fraction in §7. The proofs are given in in the online supplement.
Simulation results, found in §8, show that the approach proposed is robust
against skewed data, extreme values, and large sampling fraction. An example
of application to real survey data can be found in §9.
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2 Response mechanism, sampling design and sample data

Consider a population U = {1, . . . ,N} containing N units. Let

ξ := (ξ1, . . . , ξi, . . . , ξN )>,

ζ := (ζ1, . . . , ζi, . . . , ζN )>,

y := (y1, . . . ,yi, . . . ,yN )>,

where ξi ∈ Rdξ , ζi ∈ Rdζ and yi ∈ Rdy denote vectors of constant values
attached to unit i ∈ U . The vectors ξ, ζ and y are called respectively the ‘non-
response variables’, the ‘design variables’ and the ‘variables of interest ’. We
consider that some components of y are subject to missingness. The variables
ξ and ζ are not subject to missingness.

We consider a ‘design-based approach’ (Neyman 1938); that is, ξ, ζ and y
are treated as constants. This is a non-parametric approach, because we do no
assume any distribution for ξi,ζi and yi. The design-based approach is differ-
ent from mainstream statistics and is the core of survey data estimation. The
response mechanism and the sampling design are respectively defined in §2.1
and 2.2. The response mechanism specifies the random process which deter-
mines which unit i is missing (Rubin 1976). The sampling design characterises
the random selection of a sample within U . We assume that the response
mechanism and the sampling design are independent random processes.

2.1 Response mechanism

Let ri denotes the response indicator of i ∈ U , where ri = 1 if i is not missing
and ri = 0 if i is missing. The response mechanism is characterised by the
probability space {Ωr, σ(Ωr),Pr}, where

Ωr = {r := (r1, . . . , ri, . . . , rN )> : ri = 0 or 1}, (1)

generates the σ-algebra σ(Ωr). The probability Pr : σ(Ωr)→ [0, 1] is given by

Pr(r, ξ,λ0) :=
∏
i∈U

Pi(λ0)ri{1− Pi(λ0)}1−ri , (2)

where

Pi(λ) := z−1(ξ>i λ), (3)

where z−1 : R → (0, 1] is the inverse of a link function z (e.g. logit, probit,
complementary log-log). Definition (2) means that ri ∼ Bernoulli(ρi), with
ri ⊥⊥ rj for i 6= j and

ρi := Pi(λ0)· (4)

The quantity ρi is called the ‘response propensity ’ of unit i ∈ U and λ0 ∈ Rdξ
is called the ‘response parameter ’. The ξi denotes variables that explains the



6 Yves G. Berger

missingness. For example, the ξi may contain some geographical variables or
variables available in a population register or census. We shall assume that
the ρi are unknown and correctly specified by (3).

The choice of ξi is discussed in Kalton (1983), Särndal and Lundström
(2005), Little and Vartivarian (2005). In practice, it is preferable to have ξi
being a set of dichotomous variables representing re-weighting classes, with
uniform response propensities within classes (Little 1986; Haziza and Beau-
mont 2007; Brick and Montaquila 2009), since logistic model with continuous
variable may give unstable estimates (Little 1986). Little (1986) proposed to
create quantile classes from fitted response probabilities, and use them in a
logistic model to obtain more stable propensities. In this case, ξi is a matrix
of dummy variables specifying the classes, and λ0 is a vector containing the
response rates for each classes.

2.2 Sampling design

A sample is a collection of units from U . A sample is not necessarily a subset of
U , because the same unit can be sampled several times, under with replacement
sampling. Let di denote the number of time a unit i ∈ U is selected, with di = 0
when the unit i is not selected. The sample size is ν :=

∑
i∈U di. Consider the

set Ωd of all possible samples:

Ωd = {d := (d1, . . . , di, . . . , dN )> : di ∈ N}·

We consider the probability space {Ωd, σ(Ωd),Pd}, where Pd : σ(Ωd) →
[0, 1] is a probability measure called ‘sampling design’. This probability is de-
noted by Pd(d, ζ) and is a function of design variables ζ, which includes infor-
mation about strata, clusters or selection probabilities. The class of sampling
designs considered is defined in §3.

2.3 Product space and sample data

The key assumption is the independence between the response mechanism and
the sampling design. This is a weak assumption often met in practice. It means
that ρi does not depend on the sample selected. Thus, we have the product
probability space {Ωr × Ωd, σ(Ωr) ⊗ σ(Ωd),Pr,d}, where Pr,d(r,d, ξ,λ0, ζ) =
Pr(r, ξ,λ0) × Pd(d, ζ). A random variable is a real measurable function on
that product probability space.

An outcome of Ωr × Ωd is ωr,d := {(ri, di)> : i ∈ U}, with ξi, ζi and yi
being associated to i ∈ U . We adopt the convention that ξi , ζi and yi are
only known for i such that di 6= 0, with some components of yi missing when
ri = 0. Instead of the outcome ωr,d, we prefer to use the equivalent concept of
‘sample data’ given by

Dr,d :=
{

(ri, di, ξ
>
i , ζ

>
i ,y

>
i )> : i ∈ U , di 6= 0

}
,
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because the variables ξi , ζi and yi are vectors of constants. A real Borel-
measurable function of Dr,d is a random variable. For example, the sample
mean of the non-missing values, (

∑
i∈U diri)

−1∑
i∈U diriyi, is a random vari-

able with a sampling distribution specified by Pr,d. Note that this random
variable is usually a biased estimator of the population mean of yi, because it
does not contains non-response adjustments.

The design-based framework described in this § is different from main-
stream statistics, because the ξi, ζi and yi are constants. The sampling dis-
tribution is specified by probability space {Ωr × Ωd, σ(Ωr) ⊗ σ(Ωd),Pr,d} or
equivalently, by the response mechanism and the sampling design. The ad-
vantage is that it is not necessary to specify a distribution for the variable of
interest, and it provides robust non-parametric approach for estimation.

2.4 Some remarks

Response mechanisms are often classified as ‘missing completely at random’
(mcar), ‘missing at random’ (mar) and ‘not missing at random’ (nmar)
(Rubin 1976; Little and Rubin 2002). We have a mcar mechanisms, when
there is no correlation between ξ and y. We should not view this correlation
from a probabilist point of view, but simply as the descriptive correlation
measured between the N -vectors of constants within ξ and y. We have a
nmar mechanism, when ξ and y have common variables or are correlated. We
do not consider nmar mechanisms. We assume that the response mechanism is
mar. In §4, we will see that the mar assumption is linked with the estimating
function. In §8.2, a simulation study evaluates the approach proposed under
a nmar mechanism.

Even under mar, there is still a non-response component within the vari-
ance. Response propensities need to be taken into account within the weights
to reflect the fact that the complete case sample is smaller that the sample
selected. Ignoring the response mechanism under-estimates the variance. Our
profile empirical log-likelihood ratio statistic takes the response mechanism
into account within confidence intervals and p-values. Since we assume that
the response mechanism is independent of the sampling design, we can con-
sider that non-response occurs before sampling as in Fay (1991) and Shao and
Steel (1999). This allows to have the effect of the design and non-response in-
cluded within a single term, which is captured by the empirical log-likelihood
ratio statistic. Since, non-response is stochastic, the fact that it occurs before
or after sampling, has no implication for the expectation and variance of point
estimates (Fay 1991).

Equation (2) implicitly assumes that ξ explains missingness. In §5, response
propensities will be used to adjust for missing data. Even under mar, the
response mechanism needs to be taken into account for propensity weighting.
Within the variance, there is also a component due to missingness, to reflect
the loss of efficiency that occurs because of the non-response mechanism.
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The sampling design is informative when some variables of ξ are correlated
with ζ (Pfeffermann et al 1998). Ignoring informativeness may result in invalid
inference. Informativeness will be taken into account by incorporating ζ within
the estimating equations (see (7)). We assume that the design variables ζ are
known for all the sampled units.

3 Cluster sampling design

In practice, sampling designs commonly used, involves stratification, clusters
and unequal selection probabilities (e.g. Brewer and Gregoire 2009). In this §,
we define the class of sampling designs considered.

Suppose that the population U is split into N non-overlapping subsets Ũk
called clusters, where k ∈ Ũ = {1, . . . , N}, Ũ denotes the population of N

clusters and ∪k∈Ũ Ũk = U . Note that N is different from the population size

N . We assume that Ũ is split into H non-overlapping strata, Ũ1, . . . , ŨH , such
that ∪Hh=1Ũh = Ũ . We assume that a sample S̃h of nh clusters is selected

independently with-replacement within Ũh, with probabilities πk/nh, where∑
k∈Ũh πk = nh. The sample S̃h contains nh clusters’ labels selected after nh

successive draws. The overall sample of psu’s is denoted S̃ = ∪Hh=1S̃h and

contains n =
∑H
h=1 nh cluster labels. An important feature of this design is

that the clusters are selected with unequal probabilities.
Within each cluster Ũk sampled, we select a without replacement sample

Sk of νk units. Let πi|k denote the conditional inclusion probability of a unit

i in Ũk. Any sampling designs can be used to select Sk. The final sample
S = ∪k∈S̃Sk contains ν =

∑
k∈S̃ νk units. We have a single-stage sampling

design when we select all the units of each cluster sampled; that is, Sk = Ũk.
The sample S contains the labels of units selected, some of them can appear

several times within S. There is a bijection between all possible samples S and
Ωd, because each S can be paired with a single d ⊂ Ωd. Thus, the probability
space {Ωd, σ(Ωd),Pd} also describe the random, selection of the sample S.

The design variables ζ specify the clusters, the stratification, the πk and the
πi|k. We assume that the design variables ζ are known for the sampled units.
However, these variables may be not available to survey data users. Most of the
standard survey sampling literatures (e.g. Särndal et al 1992; Wolter 2007) rely
on this assumption. Exact analytic approaches for variance estimation are not
possible without this information. Proxies need to be used when some of these
variables are not available. For example, with the “European Union Statistics
on Income and Living Conditions” (eu-silc) survey (Eurostat 2012), the πk
are available, geographical variables can be used as proxies for stratification
and survey weights can used within the sums where πi|k is needed (see (10)
and (11)). Details on how to create these proxies can be found in Osier et al
(2013). We also have an example in §9.
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4 Parameters of interest and side information

The parameter of interest τ 0 is a function of ξ, ζ and y, which is the solution
to p estimating equations,

G(τ ) :=
∑
i∈U

gi(τ ) = 0p, (5)

where gi(τ ) = g(τ , ξi, ζi,yi) ∈ Rp is an estimating function of τ , ξi, ζi
and yi. Here, τ 0 ∈ T ⊂ Rp′ and τ ∈ T , where T is compact and p′ 6 p.
The vector 0p is the p-vector of zeros. We assume that the solution to (5) is
unique. For example, τ 0 can be a vector of population regression coefficient of
a generalised linear regression model (e.g. Binder and Patak 1994; Chen and
Van Keilegom 2009). Examples of logistic and poisson regression parameters
can be found in §8.

Asymptotically unbiased estimation of G(τ ) is the key aspect of the the-
ory of estimating equation in survey sampling (e.g. Godambe and Thompson
2009). In order for weighted estimator of G(τ ) to be unbiased, the response
mechanism must be such that there is no correlation between gi(τ ) and ρi
given by (4). This derived from the standard theory of weighted estimator
of totals (e.g. Haziza and Beaumont 2007; Haziza 2009). When gi(τ ) is a
non-linear function of y, the covariance between gi(τ ) and ρi could be negli-
gible, even if y and ρi are dependent, under a non-ignorable (nmar) response
mechanism. Hence, ignorability of the response mechanism depends on the
estimating function gi(τ ) or the parameter to estimate. An example can be
found in §8.2.

We may have some ‘side information’ in the form of population-level
means, counts or proportions from large external censuses or surveys, known
without sampling errors as in (Owen 2001 §3.10). In the econometric literature,
this is known as ‘deterministic macro-level information’ or ‘exact knowledge’
(Imbens and Lancaster 1994). In other words, we assume that we know a
vector ϕ0 ∈ Φ ⊂ Rq′ , which is the solution to q estimating equations (q′ 6 q),∑

i∈U
fi(ϕ) = 0q, (6)

where fi(ϕ) := f(ϕ, ξi, ζi,yi) ∈ Rq, ϕ ∈ Φ and Φ is compact. We assume
that fi(ϕ) is not subject to missingness. Thus, fi(ϕ) is a function of the
components of yi which are not subject to missing values. In (6), fi(ϕ) is
a unit level function. When ϕ0 describe cluster level characteristics, we use

fi(ϕ) = f̃k(ϕ)πi|k ν
−1
k , where i ∈ Ũk and f̃k(ϕ) is a cluster level function. In

this case, (6) reduces to
∑N
k=1 f̃k(ϕ) = 0q, because

∑
i∈Ũk πi|k = νk.

The fi(ϕ0) are called ‘auxiliary variables’ in the survey sampling literature
(e.g. Hartley and Rao 1968; Deville and Särndal 1992). In what follows, we
shall replace fi(ϕ0) by fi, because ϕ0 is a vector of known constants.
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5 Empirical likelihood approach

We have two unknown parameters: the parameter of interest τ 0 and the re-
sponse parameter λ0. Let ψ0 = (τ>0 ,λ

>
0 )> denotes the overall parameter and

ψ = (τ>,λ>)>, where ψ0,ψ ∈ Ψ ⊂ Rp+dξ and Ψ denotes the compact pa-
rameter space of ψ0.

Consider the “cluster-level empirical likelihood function”:

`max(ψ) := max
pk:k∈S̃

{∑
k∈S̃

log pk : pk > 0, n
∑
k∈S̃

pk
πk
ĉ ?k (ψ, r) = C?

}
, (7)

where r is defined within (1) and

ĉ ?k (ψ, r) :=
{
âk(ψ, r)>, ĉ>k

}>
, ĉk :=

{
Nn−1z>k , f̂

>
k

}>
, (8)

C? :=
(
0>dξ+p,C

>)>, C := (Nn−1n>H ,0
>
q )>, (9)

âk(ψ, r) :=
∑
i∈Sk

π−1i|k ai(ψ, r), (10)

f̂k :=
∑
i∈Sk

π−1i|k fi, (11)

ai(ψ, r) :=
[
Pi(λ)−1ri gi(τ )>, ξ>i {ri − Pi(λ)}

]>
, (12)

zk := (zk1, . . . , zkh, . . . , zkH)>,

nH := (n1, . . . , nH)>,

zkh :=

{
πk for k ∈ Uh,
0 otherwise,

dξ = dim{ξi} and log denotes the natural logarithm. The Pi(λ) are defined
by (3). Note that gi(τ ) is function of yi. Thus, when ri = 0, we have that
gi(τ ) is missing, and rigi(τ ) = 0p. When πi|k are unknown, survey weights

can used within (10) and (11) instead of π−1
i|k .

The zk are the ‘stratification variables’. The f̂k are related to constraint
imposed by (6). The information about the parameter is included within
âk(ψ, r). Expression (7) is a cluster-level function because of the sum over

k ∈ S̃ within (7). The key idea of the paper is to show that (7) can be used for
consistent point estimation and gives a pivotal empirical log-likelihood ratio
statistic. One of the unique feature of the approach is the inclusion of a set
of stratification constraints, n

∑
k∈S̃ pkπ

−1
k zk = nH , given by (8) and (9), not

motivated by moment conditions. The other feature is the weights π−1k included
within the constraint of (7).

It can be shown that the constraint within (7) implies
∑
k∈S̃ pk = 1, which

is known as the leading constraint. The definition (7) resembles the standard
empirical likelihood function (Owen 1988), apart from the weight π−1k within
the constraint. The pk play the same role as the g-weights as in (e.g. Särndal
et al 1992, p.232) or calibration factor (Deville and Särndal 1992).
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Using Lagrangian multiplier, we have that

`max(ψ) =
∑
k∈S̃

log p̂k(ψ)·

where

p̂k(ψ) = n−1
{

1 + η(ψ)>ĉ ?k (ψ, r)π−1
k

}−1
·

Here, η(ψ) is such that p̂k(ψ) > 0 and the following constraint holds.

n
∑
k∈S̃

π−1
k p̂k(ψ) ĉ ?k (ψ, r) = C?·

We assume that ψ is such that C? is an inner point of the convex conical hull
of {ĉ ?k (ψ, r) : k ∈ S̃}, so that a unique solution η(ψ) exists.

5.1 Point estimation

The ‘maximum empirical likelihood estimator ’ is

ψ̂ := arg max
ψ∈Ψ

`max(ψ)· (13)

It can be shown that ψ̂ is also the solution to

Â(ψ) := n
∑
k∈S̃

p̂k π
−1
k âk(ψ, r) = 0t+p, (14)

where

p̂k := n−1
(
1 + η>ĉk π

−1
k

)−1· (15)

Here, η is such that p̂k > 0 and n
∑
k∈S̃ p̂k π

−1
k ĉk = C, where ĉk and C are

respectively defined by (8) and (9). Note that the constraint always implies∑
k∈S̃ p̂k = 1.
By using (12) and (10), we have that (14) reduces to sample-based esti-

mating equations: ∑
k∈S̃

∑
i∈Sk

wi|kξi{ri − Pi(λ)} = 0dξ , (16)

∑
k∈S̃

∑
i∈Sk

wi|kfi = 0q, (17)

∑
k∈S̃

∑
i∈Sk

ri Pi(λ)−1wi|k gi(τ ) = 0p, (18)

where wi|k := m̂k π
−1
i|k and m̂k := n p̂k π

−1
k . The quantities m̂k and π−1

i|k are

respectively the cluster-level empirical likelihood weights and the unit-level



12 Yves G. Berger

weight. The quantities Pi(λ)−1 are ‘propensity-score adjustments’. In § 6, we

will see that they ensure consistency of ψ̂. The non-response parameter λ0 is
estimated from (16), which is the sample-level weighted estimating equation
of a generalised linear model. Equation (17) takes into account of the side
information. The parameter τ 0 is estimated from the equation (18). Note that
(18) (17) are sum over the non-missing unit i, with ri = 1.

In the particular case when we have a simple random sample with no
stratification, clustering and side information, the estimating equations (16)–
(18) are indeed those obtained by Qin et al (2009), under an i.i.d. setting.

The constant ϕ0 can be estimated by including fi(ϕ) within gi(τ ), where
fi(ϕ) is defined in (6). Equation (17) implies that the maximum empirical
likelihood estimator of ϕ0 is an almost surely constant random variable tak-
ing a single value ϕ0. This property is known as the ‘calibration’ in survey
sampling literature (Deville and Särndal 1992). Calibration is the consequence
of the maximisation (13). In survey sampling literature, calibration is viewed
as weighting procedure, rather than the consequence of the maximisation of
an empirical likelihood function.

5.2 Profile empirical likelihood ratio statistic

To allow hypotheses testing and computation of confidence intervals, we need
a pivotal statistics. We propose to use the profile empirical log-likelihood ratio
statistic defined by (19). Theorem 1 shows that (19) is a pivotal.

Consider that the parameter of interest θ0 is a sub-vector of ψ0 =
(τ>0 ,λ

>
0 )>. The remaining parameter is µ0; that is, ψ0 = (θ>0 ,µ

>
0 )>. The

respective maximum empirical likelihood estimators are denoted θ̂ and µ̂. In
practice, λ0 is usually not a parameter of interest and is therefore part of µ0.

Let `max(θ,µ) := `max(ψ), where θ ∈ Θ, µ ∈M and ψ = (τ>,λ>)> =
(θ>,µ>)>. Here, Θ and M denote the parameter space of θ0 and µ0. The
profile empirical log-likelihood ratio statistic is defined by the following function
of θ.

R̂(θ) := 2
{
`max(ψ̂)− max

µ∈M
`max(θ,µ)

}
· (19)

It can be shown that `max(ψ̂) =
∑
k∈S̃ log(p̂k), where p̂k is defined by (15).

Theorem 1 in §6.2 shows that (19) is pivotal. Thus, (19) can used as tradi-
tional ratio statistic to test or construct confidence regions for θ0 (see §8).
The algorithm proposed by Oǧuz-Alper and Berger (2016, pp 457–458) can be
used to compute (19).

6 Asymptotic results

The asymptotic framework considered is based on an infinite nested sequence
of sampling designs, samples and populations as in Isaki and Fuller (1982). We
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assume that n→∞, where n is the number of clusters sampled. The number
of strata H is constant. Let op(·) and Op(·) be the orders of convergence in
probability with respect to the response mechanism and the sampling design.
The orders Op(a) and Op(a) are matrices (or vectors) which are such that
‖Op(a)‖ = Op(a) and ‖Op(a)‖ = op(a), where ‖·‖ denotes the Frobenius norm.

6.1 Regularity conditions

We assume the following conditions

[C1] max
k=1,...,N

Ñk = O(1)·

[C2] max
i∈U

(ρ−1i ) = O(1)·

[C3] Nn−1 max
k=1,...,N

(πk) = O(1)·

[C4] N−1n max
k=1,...,N

(π−1k ) = O(1)·

[C5] max
k=1,...,N

max
i∈Ũk

(π−1i|k) = O(1), where πi|k is the conditional inclusion proba-

bility of a unit i in Ũk.
[C6] nhn

−1 = ψh, where ψh is a strictly positive fixed constant that does not
vary as n→∞ (∀h = 1, . . . ,H).

[C7] NhN
−1 = Ψh, where Ψh is a strictly positive fixed constant that does not

vary as n→∞ (∀h = 1, . . . ,H).
[C8] There exists a set of vectors of constants C̄h, such that

H∑
h=1

NhC̄h = C?, n
1
2

h

(
N−1
h Ĉ0h − C̄h

)
= Op(1) and C̄h = Op(1),

∀ h = 1, . . . H, where

Ĉ0h :=
∑
k∈S̃h

π−1k ĉ
?
k (ψ0, r)· (20)

[C9] n−
1
2 max
k∈S̃
‖ĉ ?k (ψ0, r)‖ = op(1)·

[C10] N−µnµ−1
∑
k∈S̃

π−µk ‖ĉ
?
k (ψ0, r)‖µ = Op(1), (µ = 1, 2, 3, 4)·

[C11] There exists a matrix of negative constants S such that Ŝ0 − S = Op(1),
S = O(1) and −S is positive definite, where

Ŝ0 := −nN−2 ∑
k∈S̃

π−2k ĉ
?
k (ψ0, r) ĉ ?k (ψ0, r)>· (21)

[C12] N−1
∑
i∈U
‖ξi‖2 = O(1)·
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[C13] N−1
∑
i∈U
‖gi(τ 0)‖2 = O(1)·

[C14] N−1
∑
i∈U
‖fi‖2 = O(1)·

[C15] N−1 ∂Â(ψ)

∂ψ
is continuous in ψ ∈ Ψ , with

∥∥∥N−1 ∂Â(ψ0)

∂ψ0

∥∥∥ �p 1·

[C16] N−1 ∂
2Â(ψ)

∂ψ2 = Op(1) uniformly for ψ ∈ Ψ ·

[C17] ψ̂ −ψ0 = Op(1)·
[C18] N−1Ä(ψ0)

d−→N(0,V0),

where I denotes the identity matrix,

Ä(ψ0) := Â0π + B̂
>
0 (C − Ĉ), (22)

Â0π :=
∑
k∈S̃

π−1k â0k, (23)

B̂0 :=
(∑
k∈S̃

π−2k ĉk ĉ
>
k

)−1 ∑
k∈S̃

π−2k ĉk â
>
0k, (24)

Ĉ :=
∑
k∈S̃

π−1k ĉk,

V0 := V
{
N−1Ä(ψ0)

}
(25)

and â0k := âk(ψ0, r). The operator V(·) denotes the variance with respect to
the response mechanism and the sampling design.

We assume that there exist positive random variables Hi, Fi and Bij which
do not depends on n and N , such that for all n

[C19] E(Hi) <∞ and nN−2
∑
k∈S̃

π−2k â2
0ki 6 Hi, ∀i,

[C20] E(Fi) <∞ and nN−2
∑
k∈S̃

π−2k f̂
2

0ki 6 Fi, ∀i

[C21] E(Bij) <∞ and |B̂0ij | 6 Bij , ∀i, j;

where f̂0ki and â0ki are respectively the i-th component of f̂0k := f̂k and
â0k. Here, B̂0ij is the (i, j) component of B̂0 defined by (24). The operator
E(·) denotes the expectation with respect to the response mechanism and the
sampling design.

Condition [C1] ensure that the clusters’ sizes are bounded. This condition
is usually met in practice, because these sizes are rarely large. Condition [C2]
excludes situations when the response propensities tend to zero. Conditions
[C4] and [C3] are standard requirement for πk (e.g. Krewski and Rao 1981;
Fuller 2009, p.49). It excludes πk disproportionally smaller or larger than n/N .
Condition [C5] means that the πi|k are not disproportionally small. Conditions
[C6] and [C7] imply that nh (and Nh) tends to ∞, with the same rate as n
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(and N). The condition [C8] assumes that the law of large numbers holds
for (20). Using Markov’s inequality it can be shown that [C9] holds when
E(‖ĉ ?k (ψ0, r)‖4) = O(1) (Chen and Sitter 1999, Appendix 2). The condition
[C10] is a Lyapounov’s type conditions for the existence of sample moments
(Krewski and Rao 1981§6.4.1). Condition [C11] assumes that the matrix of
moments (21) is consistent. Condition [C12], [C13] and [C14] are standard
moment conditions. Conditions [C15] and [C16] are smoothness requirement

for Â(ψ) (e.g Godambe and Thompson 1974). Both ensure that the Taylor

expansion of Â(ψ) exists. Condition [C17] is a standard requirement for so-
lutions to estimating equations (e.g. Godambe and Thompson 2009, p 90). It

relies on conditions on A(ψ) and Â(ψ) proposed by Van Der Vaart (1998 §5).
Condition [C18] assumes that the central limit theorem holds for N−1Ä(ψ0).
It can be justified by Fuller’s (2009, Ch.2) regularity conditions. Conditions
[C19]–[C21] ensure that an estimator of (25) is asymptotically unbiased (see
Lemma 2).

6.2 Pivotal property of (19) and
√
n-consistency

The pivotal property is based on the consistency of the following variance.

V̂0 := N−2
H∑
h=1

(∑
k∈S̃h

π−2k êkê
>
k −

1

nh

∑
k∈S̃h

π−1k êk
∑
`∈S̃h

π−1` ê
>
`

)
, (26)

where

êk := â0k − b̂
>
0 f̂0k,

b̂0 :=
(
Ŝff − Ŝ

>
zf Ŝ

−1
zzŜzf

)−1(
Ŝfa − Ŝ

>
zf Ŝ

−1
zzŜza

)
, (27)

Ŝzz :=
∑
k∈S̃

π−2k zkz
>
k , Ŝzf :=

∑
k∈S̃

π−2k zk f̂
>
0k, Ŝff :=

∑
k∈S̃

π−2k f̂0k f̂
>
0k,

Ŝfa :=
∑
k∈S̃

π−2k f̂0kâ
>
0k, Ŝza :=

∑
k∈S̃

π−2k zkâ
>
0k,

â0k := âk(ψ0, r) and f̂0k := f̂k.

Lemma 1 There exists a vector β0 = O(1) such that b̂0−β0 = Op(1), where

b̂0 is defined by (27).

Lemma 1 follows from [C11] and a first-order Taylor expansion of b̂0.
Consider

Ṽ0 := N−2
H∑
h=1

(∑
k∈S̃h

π−2k ε̂kε̂
>
k −

1

nh

∑
k∈S̃h

π−1k ε̂k
∑
`∈S̃h

π−1` ε̂
>
`

)
, (28)
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where

ε̂k := â0k − β>0 f̂0k, (29)

and β0 is defined in Lemma 1. Note that Ṽ0 is a function of the constant β0.

On the other hand, V̂0 is a function of the random variable b̂0.

Lemma 2 When nN−1 = o(1), we have that

nV0 = O(1), (30)

nE(Ṽ0) = nV0 + O(1), (31)

where V0 is defined by (25).

The proof can be found in Appendix C of the online supplement.

Lemma 3 When nN−1 = o(1), we have that

n(V̂0 − V0) = Op(1), (32)

where V̂0 is defined by (26).

The proof can be found in Appendix B in the online supplement.

Theorem 1 Assuming that ĉ ?k (ψ, r) is differentiable with respect to µ (see
§5.2), conditions [C1]–[C21] imply

R̂(θ0) = N−2Ä(ψ0)>(I − Â0) V̂ −1
0 Ä(ψ0) + n−

1
2Op(1), (33)

where,

Â0 := V̂
− 1

2
0 ∇̂0

(
∇̂>0 V̂ −1

0 ∇̂0

)−1∇̂>0 V̂ − 1
2

0 , (34)

∇̂0 := N−1 ∂Ä(ψ)

∂µ

∣∣∣
ψ=ψ0

·

The proof can be found in Appendix B in the online supplement.
Using [C18] and Lemma 3, the Slutsky’s Theorem implies

V̂
− 1

2
0 N−1Ä(ψ0)

d−→N (0, I)· (35)

Thus, when nN−1 = o(1), expressions (35) and (33) imply

R̂(θ0)
d−→ χ2

df=t, (36)

because (I − Â0) is a symmetric idempotent matrix with trace t, where t =
dim(θ0).

Theorem 2 Under [C3], [C4], [C8], [C9], [C10], [C11], [C15], [C16] and [C17],

we have that ψ̂ is
√
n-consistent; that is,

n
1
2 (ψ̂ −ψ0) = Op(1)·

The proof of Theorems 1 and 2 can be found in Appendix B of the online
supplement.
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7 Cluster sampling with large sampling fractions

In this §, we extend the approach proposed when the clusters are selected
without replacement and with a large sampling fraction n/N . For instance,
this is can be the case for the “National Health and Nutrition Examination
Survey” (National Center for Health Statistics 2016). Note that in §5, we al-

low the within-cluster sampling fractions νk/Ñk to be large. For the extreme

case when νk/Ñk = 1, we have a single stage design and Berger and Torres’s
(2016) empirical likelihood approach for single stage designs with large sam-
pling fractions can used. This §’s extension is not be based upon Berger and
Torres’s (2016) approach.

Our point estimator ψ̂ is still
√
n-consistent when n/N is large, because

Theorem 2 does not rely on n/N = o(1). It is also not necessary to have
n/N = o(1), for Theorem 1 to hold. However, (36) may not hold any longer
when n/N is large; because of the condition of Lemma 3 is not satisfied. that

is, R̂(θ0) converges to a distribution which is different from a χ2-distribution.
Since (33) holds when n/N is large, standard results on the distribution of
quadratic forms (e.g. Scheffé, 1959 p.418; Rao, 1973 and Wu et al, 2017) can

be used to show that (33) and [C18] imply that R̂(θ0) converges to a linear
combination of χ2-distribution; that is,

R̂(θ0)
d−→

p∑
`=1

λ`Z2
` , (37)

where Z1, . . . ,Zp are independently distributed standard normal variables
and λ1, . . . , λp are the eigenvalues of

L0 = V0(I − Â0) V̂ −1
0 (38)

where V0, V̂0 and Â0 are respectively given by (25), (26) and (34). In Appendix

A, we propose an estimator L̂0 of (38). Let λ̂1, . . . , λ̂p be the eigenvalues of

L̂0. The inference can be based upon R̂(θ) and the quantiles of
∑p
`=1 λ`Z2

`

estimated numerically from the empirical distribution of
∑p
`=1 λ̂`Z2

` .

When n/N = o(1), Lemma 3 holds and by substituting V0 by V̂0 within
(38), we obtain t eigenvalues equal to 1 and p− t eigenvalues equal to 0, which
indeed implies (36).

It is common practise to have θ0 scalar (t = 1), for example, when we are
interested in confidence intervals of a component of ψ0. In this case, we have
a single strictly positive eigenvalue, say λ1 and p − 1 eigenvalues equal to 0.
Hence, (37) reduces to

R̂(θ0)λ−11
d−→ χ2

df=1 when t = 1· (39)

After replacing λ1 by its estimates, (39) can be used for inference.
The simulation study on §8.4 shows that confidence intervals based on (39)

are slightly shorter than those based (36). The more conservative confidence
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interval based on (36) seems preferable. We have a simple interpretation for
the minor differences between the confidence intervals based on (39) and (36).

The variance V̂0 within the quadratic form (33) converges to the random ma-

trix Ṽ0 (see (B.27) in Appendix B in the online supplement). The expectation

of Ṽ0 is a sum of a between and within-cluster variances (see (C.15) and (C.37)

in the online supplement). Thus, V̂0 captures both terms of the two-stage vari-
ance. However, the between variance does not contain any finite population
corrections, such as joint-inclusion probabilities or Hájek’s (1964) finite popu-
lation correction. Hence, the lack of finite population corrections increases the
bias of V̂0. One of the terms due to non-response is the variance due to the
non-response mechanism of the design expectation. This non-response term
is of order N−1 (see (C.13) in the online supplement), which is still small
compared to the overall variance of order n−1 (see (30)). When n/N → 0,

this term is ignored within V̂0, because it is asymptotically negligible. When
n/N 6→ 0, the absence of this non-response term within V̂0 decreases the bias

of V̂0. Finally, the increase in bias due to the lack of finite population correc-
tion and the decreases in bias due to the absence of one of the non-response
term may compensate each other, and produce a negligible bias for V̂0, even
when n/N 6→ 0.

8 Numerical results

We consider the following parameters of interest: population mean and pois-
son regression parameters, multiple logistic regression parameters, quantiles
and distribution functions. We consider that θ0 is a scalar θ0. Thus, the 95%
confidence intervals can be constructed using (36); that is,

ci(θ0) :=
{
θ : R̂(θ) 6 3.8415

}
, (40)

where 3.8415 is the upper 95% quantile of the χ2-distribution with one degree
of freedom. In §§ 8.1, 8.2 and 8.3, we report the observed coverages of (40).
Single-stage sampling without side information is considered in §§ 8.1 and 8.2.
This allows to investigate the effect of non-response without the clustering
effect. In §§ 8.3 and 8.4, we consider cluster (two-stage) sampling designs. Side
information is considered in §8.3. In §8.4, we consider large sampling fractions.

In all the simulation studies, we have multidimensional parameters, because
of the response parameter needs to be estimated and is part of ψ0. Indeed,
we have ψ0 = (τ>0 ,λ

>
0 )>, where τ 0 is the parameter of interest and λ0 is the

response parameter. The profile empirical log-likelihood ratio statistic (19)
allows to construct the confidence interval (40) for each scalar components θ0

of τ 0.
The simulation was done in R (R Development Core Team 2014). Some of

the R codes used in this §, are available on the author’s web-page:
http://www.yvesberger.co.uk.
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8.1 Population mean

Consider artificial populations ofN = 10 000 values yi generated from a skewed
distribution given by

yi = 3 + ζi + xi + ψ(ei − 1),

where ζi ∼ exp(1), xi ∼ exp(1) and ei ∼ χ2
df=1. Five populations are generated

with ψ = 20, 3.5, 1.5, 0.6 and 0.1. We consider a single-stage randomised
systematic sampling design (e.g. Hartley and Rao 1962); that is, Sk = Ũk =
{k} and νk = 1. We select 10 000 samples of size 100. The πi are proportional
to |ζi| + 2. Different values of ψ allows the correlation between πi and yi to
vary between 0.02 and 0.7. Missing values for yi are generated from (2) with
z in (3) being the logit function, ξi = (1, ξi)

> and λ0 = (−1, 1)>. Here,
ξi ∼ Γ (shape = 1, scale = 2). The response propensities (4) lie between
0.27 and 1, with an average of 0.6. Side information is not considered. The
parameter of interest is the mean τ 0 := N−1∑

i∈U yi. We use gi(τ ) = yi − θ
with τ = θ.

The customary two-phase point estimator of τ 0 is

θ̂c := N̂−1∑
i∈S

ri(πiρ̂i)
−1yi, (41)

where N̂ :=
∑
i∈S ri(πiρ̂i)

−1 is an estimator of N and ρ̂i are the fitted proba-
bilities of a logistic model with an intercept and ξi. The customary two-phase
variance estimator (Särndal et al 1992 §9.4) is

V̂2(θ̂c) := N̂−2
[∑
i∈S

ri
∑
j∈S

rj
(
π−1i π

−1
j − π

−1
ij

)
ρ̂ −1ij (yi − θ̂c)(yj − θ̂c)

+
∑
i∈S

ri π
−2
i ρ̂ −2i (yi − θ̂c)2(1− ρ̂i)

]
, (42)

where ρ̂ij = ρ̂i ρ̂j for i 6= j and ρ̂ii = ρ̂i. Here, πij := Pd(di = 1, dj = 1) denote
joint-inclusion probabilities, which can be computed with Hartley and Rao’s
(1962) formula.

[Table 1]
In Table 1, we have the observed coverages of the empirical likelihood

confidence interval (40) and the standard confidence interval based on (42) and

the normality assumption for θ̂c. We observe a low coverage for the standard
approach, because of the skewness of the data. We also have significantly
large right error rates and low left error rates. The coverage of the empirical
likelihood approach are closed to 95%. They are however significantly different
from 95%, because 10 000 sample are selected. The left and right error rates
are more balanced, with some not significantly different from 2.5%. We do not
observed difference between the mean squared errors (mse) of the empirical
likelihood point estimator and (41), because side information is not used.
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8.2 Poisson regression

Consider artificial populations of approximately 40 000 values yi generated
from a poisson distribution with mean ϑxiui, where xi ∼ N (10, σ2) and
ui ∼ N (100, 302) is an offset. We exclude the units with ϑxiui 6 0. Sev-
eral population data are generated with ϑ = -0.5, -0.4, -0.2, 0.005; and σ =
0.5, 1.0, 2.0, 3.0 or 4.0. The parameter of interest is the poisson regression
parameter θ0 = τ 0, which is the solution to (5) with

gi(τ ) = xi
{
yi − ui exp(θxi)

}
·

Here, τ = θ and yi = (yi, xi, ui)
>. For simplicity, we did not include an

intercept and side information is not considered.
We select 10 000 single-stage randomised systematic samples, as described

in §8.1. The sample size is 400. The πi are proportional to |ζi + 10|, where
ζi = 0.7(yi −Y )σ−1y + ei, ei ∼ N (0, 0.51), Y = N−1∑

i∈U yi and σ2
y = (N −

1)−1
∑
i∈U (yi −Y )2. The correlation between πi and yi is approximately 0.7.

Missing values for yi are generated from (2) with z in (3) being the logit
function, ξi = (1, ξi)

> and λ0 = (−8, 1)>. Here, ξi = 0.8(xi −X)σ−1x + εi,
εi ∼ N (0, 0.36), X = N−1∑

i∈U xi and σ2
x = (N − 1)−1

∑
i∈U (xi −X)2. The

correlation between ξi and xi is approximately 0.8. The response propensities
(3) lie between 0.02 and 1, with an average of 0.88. We have a non-mar
response mechanism, because we may have a correlation between yi and ρi.

We compare the proposed empirical likelihood approach proposed with
the näıve approach based on maximum likelihood from the set of non-missing
values. This näıve approach is not likely to perform well, because it does not
contain adjustment for missing data and yi can be correlated with ρi. This
näıve approach is used as a benchmark.

[Table 2]
In Table 2, the 9-th column shows that the mse of the empirical likeli-

hood point estimator is smaller than the mse of the näıve estimator, when
σ is small. We also notice that the overall coverage is well below 95%, with
coverages increases with ϑ. The empirical likelihood approach gives coverages
closer to 95%, when the correlation between yi and ρi is negligible. Even with
large correlation (non-mar), we obtain acceptable coverages. The error rates
are also significantly different than 2.5% with the näıve approach. With the
empirical likelihood approach, the coverages and error rates are respectively
not significantly different from 95% and 2.5%, except in very few cases, despite
that 10 000 sample were selected.

8.3 Logistic model with income and living conditions data

The “European Union Statistics on Income and Living Conditions” (eu-silc)
collects information on income, living conditions and poverty (Eurostat 2012).
We use Alfons et al (2011) synthetic dataset called amelia, based on eu-silc.
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amelia maintains the association between key variables. A full description of
amelia can be found in Alfons et al (2011).

We consider a subset of amelia defined by the 3 regions (prov=1, 2, 3),
and individuals between 19 and 79 years of age. These three regions will be
used as strata. This subset is replicated twenty times to create an artificial
population of 1 539 368 individuals. The strata sizes are 148 236, 567 376 and
823 756 respectively. Individuals are grouped into communities (variable cit),
which play the role as clusters. The first stratum contains 1420 clusters, the
second stratum contains 2 540 clusters, and the third stratum contains 2640
clusters. We select respectively 72, 128 and 132 clusters within strata 1, 2 and
3. A randomised systematic sample of clusters are selected with probabilities
proportional to clusters’ sizes. Within each clusters selected, 20% of individuals
(with a minimum of 5) are sampled with simple random sampling. Missing
values are generated from (2) with z being the logit function,

ξi = [1, ξ
(a)
i , ξ

(b)
i , δ{Urbi = 1}, δ{Urbi = 3}]>,

λ0 = (0.5,−0.2, 0.2,−0.2, 0.2)>,

where ξ
(a)
i and ξ

(b)
i are values generated independently form a Bernoulli(0.05)

distribution. Here Urbi is the level of urbanisation of individual i: Urbi = 1
for densely-populated areas, Urbi = 2 for intermediate-populated areas and
Urbi = 3 for thinly-populated areas. The function δ{A} = 1 when A is true
and δ{A} = 0, otherwise. The response probabilities generated lies between
0.52 and 0.72.

The model of interest is the following logistic model

Logit{Pr(Unempi = 1)} = β0 + β1Agei + β2Educi + β3Marriedi + β4Malei,

where Unempi = 1 if the individual i is unemployed and Unempi = 0 other-
wise. The explanatory variables are:

(I) Agei, the age of i,
(II) Educi = 1 if the Highest ISCED level attained is strictly larger than 3 and

Educi = 0 otherwise,
(III) Marriedi = 1 if i is married and Marriedi = 0 otherwise,
(IV) Malei = 1 if i is male and Malei = 0 otherwise.

The estimating function of this logistic model is

gi(τ ) := xiyi − xi exp(x>i τ )
{

1 + exp(x>i τ )
}−1

, (43)

where yi := Unempi and xi := (Agei,Educi,Marriedi,Malei)
>. The param-

eter is ψ0 = (τ>0 ,λ
>
0 )>, where τ 0 are the regression coefficients of xi in the

model (43). The response parameter λ0 contains the coefficient of ξi in the
model (2). Hence, ψ0 ∈ R10. The side information are the fractions of in-
dividuals within densely-populated areas (35.57%), and within intermediate-
populated areas (22.73%). Thus, fi = {δ(Urbi = 1), δ(Urbi = 2)}>−ϕ0, where
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ϕ0 = (0.3557, 0.2273)>. The fraction of remaining thinly-populated areas is
redundant and does not need to be included within ϕ0.

We compare the proposed empirical likelihood approach proposed with
the näıve approach based on maximum likelihood from the set of non-missing
values. This näıve approach is used as a benchmark. We also consider Owen’s
(2001) customary empirical likelihood approach (Column “Cust. el”) based
on the complete cases.

[Table 3]
We selected 1000 clustered (two-stage) samples to compute the observed

expectation, mse and coverages of the confidence intervals. In Table 3, we
have the observed coverages of the 95% confidence intervals and the tail error
rates. The customary empirical likelihood approach and the näıve approach
give similar coverages and rates. The näıve approach can give coverages as
high as 98.0%, and tail error rate as low as 0.91%. None of the coverages of
the empirical likelihood approach proposed are significantly different from the
nominal value (95%). The tail error rates are not significantly different from
2.5%, except the right tail error rate of β2.

8.4 Cluster (two-stage) sampling with large sampling fractions

We consider a cluster sampling design with large sampling fractions. Consider
an artificial populations of N clusters with totals values Yk generated from a
skewed distribution given by

Yk = 100× {3 + ζk + ψ(ek − 1)},

where ζi ∼ exp(1) and ei ∼ χ2
df=1. Here, ψ = 0.5 or 2.3. The probabilities πk

are proportional to ζk. We have an informative design when ψ = 0.5, since the
correlation between πk and Yk and is approximately 0.8. With ψ = 2.3 the cor-
relation is 0.3 and the design is less informative. Let Ñk ∼ Uniform(200, 500).

Within clusters Ñk values yi are generated from the normal distribution

yi ∼ N
(
Yk, 0.5Yk

)
for i ∈ Ũk,

where Yk := YkÑ
−1
k . Missing values for yi are generated as in §8.1.

Two populations are created, by generating two data sets of N = 2000
and N = 12500 clusters. The resulting size N of the population U is approxi-
mately 706 000 and 442 500. We select 1000 randomised systematic samples of
n = 500 clusters. This gives non-negligible sampling fractions 0.25 and 0.4. A
simple random sample of 20% of units is selected, within each clusters sampled.
Stratification and side information are not used.

The parameters of interest are the quantiles Yα, with α = 0.1, 0.2 and 0.3.
The gi(τ ) for quantiles can be found in Berger and Torres (2016 §7.1). Thus,
τ 0 = θ0, where θ0 = Yα. Another parameter of interest is the distribution
function of the yi,

F (Y ) := N−1∑
i∈U

δ{yi 6 Y },
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for a given value Y . Here, δ{yi 6 Y } = 1, if yi 6 Y and δ{yi 6 Y } = 0
otherwise. In this cases, gi(τ ) = δ{yi 6 Y } − θ. We consider F (Y0.1) and
F (Y0.3). Thus, θ0 = 0.1 or 0.3. Here, τ 0 = θ0, where θ0 = F (Y0.1) = 0.10 or
F (Y0.3) = 0.3

In all cases, we have three unknown parameters: the parameter of interest
and two response parameters within λ0; that is, ψ0 = (τ>0 ,λ

>
0 )>, with τ 0 = θ0

being either a quantile or a distribution function, and λ0 = (−1, 1)>. The 95%
confidence intervals are constructed using (39); that is,

ci(θ0) :=
{
θ : R̂(θ)λ̂−11 6 3.8415

}
· (44)

This confidence interval will be compared with the non-adjusted empirical
likelihood confidence interval (40) and the standard confidence interval based
on linearisation (e.g. Deville 1999) and the central limit theorem with the
traditional two-stage variance (e.g. Särndal et al 1992, p137) containing a
variance component due to non-response, as in Shao and Steel (1999). The
confidence interval (40) and (44) are range preserving; that is, the bound are
within the parameter space. Thus, since 0 < θ0 < 1, the lower bound is always
larger than 0 and the upper bound is always smaller than 1. Range preserving
is not guaranteed with the standard confidence interval.

[Table 4]
The coverages and tail error rates are given in Table 4. The standard lin-

earisation approach suffers from a low coverage, due to a bias in the variance
estimator, the lack of normality and the fact that the bounds could be out-
side the parameter space. The bias and lack of normality can be explained by
the skewness of the data. The low coverage of confidence intervals based on
linearised variance is a know issue (Valliant 2004; Graf and Tillé 2014). The
empirical likelihood approaches gives coverages closer to the nominal value
(95%). These coverages seems not to be related to the correlation between πk
and Yk. The range of the correction λ̂1 is [0.77, 1.07] with an average of 0.93.
As a result, the confidence intervals (44) gives coverages slightly smaller than
those obtained with (40). With the larger sampling fraction (N = 1250), we

have a larger difference between the coverages and a smaller correction λ̂1.
The simulation suggests that the effect of λ̂1 is small compared to the differ-
ence between the coverage and the nominal value. Overall, the non-adjusted
confidence interval (40) gives coverages closer to 95%. Thus, the simulation
study suggests that the more conservative confidence interval based on (40)
seems preferable. More explanation can be found at the end of §7.

9 An application to the educational survey data (PISA)

The empirical likelihood approach proposed is applied to the 2006 PISA survey
data (OECD 2006, 2007) for the United Kingdom, containing information
on the skills and knowledge of 13 152 fifteen year-old students. This dataset
has missing values. A two-stage sampling design was used. The schools are
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the clusters and the pupils are the units. We use the reciprocal unit level
and cluster level weights as proxies for the inclusion probabilities πk and πi|k
defined in §3.

We consider the logistic model (43) to explain the probability of a mathe-
matics achievement score below 497.27, which is the mean observed from the
data. The vector xi contains the following explanatory variables

– Parent-tertiary : 1 if parents have tertiary education, 0 otherwise
– Male: 1 for males, 0 for females
– Large-class: 1 for class size over 25, 0 otherwise
– City : 1 for city located schools, 0 otherwise

One component of xi is 1 for the intercept. The response variable yi and the
variables Parent-tertiary, Large-class and City contains missing values.

The side information is the fraction of fifteen year-old males in 2006, which
is 51.5%, according to the oecd website: http://stats.oecd.org. Thus,
fi = Malei − ϕ0, where ϕ0 = 0.515. The males are under-represented in
the PISA survey, because the weighted estimates of the proportion of males
is 49.5%, which is lower than 51.5%. The side information corrects for this
under-representation.

For the non-response mechanism, we consider the following additional vari-
ables

– Scotland : 1 for schools in Scotland, 0 for schools in England and Wales
– Public: 1 for public school, 0 otherwise

The variables Scotland and Public are cross-classified into four groups. A de-
scriptive analysis reveals that these groups and the variable Male are sig-
nificant to explain non-response. Hence, ξi contains the variable Male, three
dichotomous variables specifying the groups and a variable equal to 1 for the
intercept. The baseline group is the public schools in England and Wales. The
model (2) is considered with z being the logit function.

The parameter is ψ0 = (τ>0 ,λ
>
0 )>, where τ 0 are the regression coefficients

of xi in the model (43). The response parameter λ0 contains the coefficient
of ξi in the model (2). Hence, ψ0 ∈ R10. The pivotal statistics (19) is used
to compute the p-values for each component θ0 of τ 0. Indeed, (36) implies

that R̂(θ0) converge to a χ2-distribution with one degree of freedom, under
H0 : θ0 = 0.

In Table 5, we have the empirical likelihood estimates and p-values com-
puted from (19) and the p-values of Owen’s (2001) customary empirical like-
lihood approach (Column “Customary EL”) based on the complete cases. We
also have those obtain from the näıve approach which consists in fitting a
logistic model from the complete cases, using maximum likelihood. There is
no difference between the p-values of the näıve and customary empirical like-
lihood approach. This is in-line with the coverages and error rates observed
in Table 3. However, the empirical likelihood approach proposed give differ-
ent p-values. Parent-tertiary and Male are significant in all cases, but with
different estimates. The intercept is not significant with the approach pro-
posed. Note that Large-class is only significant with the approach proposed,
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despite that this effect is not significant with the other approaches. The clus-
ter effect and non-response may explain the differences between the p-values
of the intercept and Large-class. Unlike, the customary empirical likelihood
and näıve approaches ignore the weights, the empirical likelihood approach
proposed takes into account of the clustering, the weights, the non-response
mechanism and the estimation of the response parameter.

Appendix A

In this Appendix, we propose an estimator for (38). We have that (see (C.10) and (C.11) in
Appendix C of the online supplement)

V0 = V0
I + V0

II + O(1)· (A.1)

where

V0
I := Er{Vd(ε̄π | r)}

V0
II := Vr{Ed(ε̄π | r)}

ε̄π := N−1 ∑
k∈S̃

π−1k ε̂k (A.2)

and ε̂k is defined by (29). The operators Er(·) and Vr(·) denote the expectation and vari-
ance with respect to the response mechanism. The operators Vd(· | r) and Ed(· | r) denote
the conditional expectation and variance with respect to the sampling design, given r. An
asymptotically unbiased estimator of V0I is

V̂0
I := V̂d(ε̄π | r) (A.3)

where V̂d(ε̄π | r) denotes the customary two-stage variance estimator of Vd(ε̄π | r) (e.g.
Särndal et al 1992, p137), treating r as constant. This estimator takes into account of large
sampling fractions, because it depends on the joint-inclusion probabilities of the clusters. The
second term V0II can be estimated by (see (C.12) in Appendix C of the online supplement)

V̂0
II := N−2 ∑

k∈S̃

π−1k
∑
i∈Sk

π−1
i|kκi(ψ0)>κi(ψ0) Pi(λ0)

{
1− Pi(λ0)

}
, (A.4)

where Pi(λ0) is defined by (3) and

κi(ψ0) :=
{
Pi(λ0)−1gi(τ0)>, ξ>i

}>· (A.5)

The unknown quantity β0 is substituted by b̂0 within (A.3) and (A.5).
Finally, (A.1), (A.3) and (A.4) gives the following estimator for (38)

L̂0 =
(
V̂0

I + V̂0
II
)
(I − Â0) V̂ −1

0 · (A.6)

The estimates λ̂1, . . . , λ̂p of λ1, . . . , λp are the eigenvalues of (A.6), after substituting ψ0 by

ψ̂ within the right hand side of(A.6).
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Supplement

The detailed proof of Lemma 2, Lemma 3 and Theorem 1 can be found in the online
supplement.
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Table 1 Observed coverages of 95% confidence intervals and (left and right) tail error
rates. ‘mse’: mean squared errors. Corr(yi,πi) denotes the correlation between yi and πi.
‘el’: empirical likelihood approach. ‘stand.’: standard approach based on (41) and (42).
10 000 samples.

Coverages (%) Left rates (%) Right rates (%) mse
Corr(yi,πi) el (40) stand. el (40) stand. el (40) stand. el (40) stand.

0.02 96.3† 91.0† 2.68 0.71† 0.72† 8.34† 17.83 17.85
0.2 95.7† 92.2† 2.91† 0.97† 1.19† 6.81† 0.57 0.57
0.4 94.0† 93.0† 3.29† 1.54† 2.57 5.46† 0.14 0.14
0.6 94.4† 93.7† 2.99† 2.08† 2.61 4.20† 0.05 0.05
0.7 94.9 94.1† 2.71 1.86† 2.33 4.07† 0.04 0.04

† Coverages (or rates) significantly different from 95% (or 2.5%): p-value ≤ 0.05.
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Table 2 Observed coverages of 95% confidence intervals and (left and right) tail error rates.
‘el’: empirical likelihood approach. In the 9-th column, we have the mse of the empirical
likelihood point estimator divided by the mse of the Näıve estimator. Corr(yi,ρi) denotes
the correlation between yi and ρi. 39600 6 N 6 39960. 10 000 samples.

Coverages (%) Left rates (%) Right rates (%) mse(EL)
σ ϑ el (40) Näıve el (40) Näıve el (40) Näıve mse(Näıve) Corr(yi,ρi)

0.5 −0.5 94.8 78.2† 2.72 21.72† 2.44 0.05† 0.47 −0.17
−0.4 94.9 79.3† 2.43 20.63† 2.69 0.10† 0.47 −0.19
−0.2 94.6 86.9† 2.72 12.92† 2.64 0.16† 0.63 −0.18

0.005 95.0 93.3† 2.50 5.86† 2.52 0.79† 0.91 0.01
1.0 −0.5 95.1 80.2† 2.48 19.68† 2.42 0.09† 0.50 −0.31

−0.4 94.9 83.5† 2.66 16.33† 2.42 0.14† 0.55 −0.37
−0.2 95.3 88.5† 2.25 11.16† 2.41 0.36† 0.67 −0.35

0.005 95.0 94.3† 2.58 4.87† 2.41 0.84† 0.94 0.01
2.0 −0.5 94.7 89.5† 2.81† 10.04† 2.47 0.45† 0.76 −0.54

−0.4 95.0 90.6† 2.50 8.83† 2.50 0.53† 0.77 −0.58
−0.2 95.0 92.2† 2.41 7.15† 2.56 0.62† 0.82 −0.55

0.005 95.4† 93.5† 2.32 5.52† 2.25 0.94† 0.90 0.03
3.0 −0.5 94.9 94.4† 2.56 4.43† 2.51 1.21† 0.99 −0.48

−0.4 94.9 94.0† 2.58 4.84† 2.52 1.11† 0.98 −0.58
−0.2 94.9 94.0† 2.55 5.00† 2.51 0.95† 0.93 −0.64

0.005 95.0 93.5† 2.55 5.62† 2.45 0.91† 0.90 0.03
4.0 −0.5 94.5† 95.2 2.74 2.68 2.71 2.07† 1.06 −0.31

−0.4 95.1 95.3 2.42 3.08† 2.45 1.65† 1.02 −0.42
−0.2 95.3 94.5† 2.41 4.20† 2.31 1.26† 0.97 −0.66

0.005 95.0 93.9† 2.48 5.27† 2.51 0.82† 0.90 0.05
† Coverages (or rates) significantly different from 95% (or 2.5%): p-value ≤ 0.05.

Table 3 Observed coverages of 95% confidence intervals and (left and right) tail error rates.
‘el’: empirical likelihood approach. 1000 samples.

Coverages (%) Left rates (%) Right rates (%)
el (40) Cust. el Näıve el (40) Cust. el Näıve el (40) Cust. el Näıve

β0: Intercept 94.9 97.1† 97.1† 2.10 1.50† 1.45† 3.00 1.40† 1.45†
β1: Age 94.5 98.1† 98.0† 2.80 1.00† 1.09† 2.70 0.90† 0.91†
β2: Educ 93.8 95.0 95.1 2.40 1.70 1.73 3.80† 3.30 3.18
β3: Married 94.2 93.8 93.9 2.90 3.70† 3.64† 2.90 2.50 2.45
β4: Male 94.1 94.5 94.5 3.20 2.80 2.73 2.70 2.70 2.73
† Coverages (or rates) significantly different from 95% (or 2.5%): p-value 6 0.05.
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Table 4 Observed coverages of 95% confidence intervals and (left and right) tail error
rates. ‘el (44)’: empirical likelihood approach based upon (44). ‘el (40)’: empirical likelihood
approach based upon (40). ‘Lin.’: linearisation approach. 1000 samples of size n = 500.
n/N = 0.4 with N = 1250 and n/N = 0.25 with N = 2000

Coverages (%) Left rates (%) Right rates (%)
N Corr(πk,Yk) θ0 el (44) el (40) Lin. el (44) el (40) Lin. el (44) el (40) Lin.

1250 0.8 Y0.1 91.5† 93.1† 95.3 5.45† 3.98† 4.30† 2.91 2.81 0.40†
Y0.2 92.5† 94.0 91.1† 5.58† 4.16† 8.80† 1.81 1.71 0.10†
Y0.3 93.4† 94.8 89.5† 5.07† 3.67† 10.10† 1.41† 1.41† 0.40†
F (Y0.1) 91.2† 92.8† 95.0 3.00 2.90 3.80† 5.62† 4.17† 1.20†
F (Y0.3) 93.4† 94.7 87.3† 2.70 2.40 5.30† 3.63† 2.64 7.40†

0.3 Y0.1 95.0 96.3 90.7† 3.45 2.26 9.00† 1.30† 1.20† 0.30†
Y0.2 93.9 95.2 88.2† 4.22† 3.20 11.50† 1.61 1.41† 0.30†
Y0.3 92.8† 94.5 90.3† 4.69† 3.30 8.90† 2.41 2.11 0.80†
F (Y0.1) 95.2 96.7† 86.0† 1.20† 1.00† 2.20 3.33 2.14 11.80†
F (Y0.3) 92.2† 93.5† 86.0† 2.20 2.00 4.90† 5.45† 4.39† 9.10†

2000 0.8 Y0.1 93.0† 93.1† 93.6† 4.18† 4.07† 5.80† 2.61 2.61 0.60†
Y0.2 96.1 96.6† 89.7† 2.17 1.95 9.90† 1.51† 1.31† 0.40†
Y0.3 95.3 95.7 88.8† 2.13 1.79 10.60† 2.31 2.21 0.60†
F (Y0.1) 93.0† 93.2† 93.5† 2.60 2.60 3.70† 4.27† 4.06† 2.80
F (Y0.3) 95.3 95.6 87.0† 2.00 2.00 4.10† 2.48 2.14 8.90†

0.3 Y0.1 93.6† 94.2 85.4† 3.94† 3.44 13.80† 2.01 1.91 0.80†
Y0.2 92.9† 93.6† 86.5† 3.89† 3.53† 12.60† 2.71 2.41 0.90†
Y0.3 91.4† 92.3† 88.2† 5.86† 5.10† 10.60† 2.51 2.41 1.20†
F (Y0.1) 93.4† 94.1 83.7† 1.80 1.70 2.60 4.42† 3.81† 13.70†
F (Y0.3) 91.8† 92.6† 85.0† 2.70 2.40 5.50† 5.23† 4.79† 9.50†

† Coverages (or rates) significantly different from 95% (or 2.5%): p-value 6 0.05.

Table 5 Estimates and p-values of the logistic regression based upon the 2006 PISA survey
data (OECD 2006, 2007) for the United Kingdom.

Empirical likelihood Customary EL Näıve
Estimates p-value Estimates p-value Estimates p-value

Intercept 0.13 0.257 0.28 < 0.001† 0.28 < 0.001†
City 0.13 0.443 0.06 0.159 0.06 0.159
Large-class 0.31 0.010† 0.03 0.477 0.03 0.477
Parent-tertiary −0.52 < 0.001† −0.49 < 0.001† −0.49 < 0.001†
Male −0.46 < 0.001† −0.32 < 0.001† −0.32 < 0.001†
† p-value 6 0.01.


