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Abstract

FACULTY OF SCIENCE
School of Ocean and Earth Science / Dept. of Chemistry

Doctor of Philosophy

The determination of pure beta-emitters and their behaviour in a salt-marsh
environment

By
Phillip Edward Warwick

The thesis describes the development of analytical procedures for the isolation and
measurement of anthropogenic pure beta-emitting radioisotopes in low-level radioactive
wastes and environmental samples. The research focussed on three key pure beta-emitting
radioisotopes, namely Ni, *Sr and *Tc. Tron-55, which decays by electron capture, was also
investigated. Source preparation and measurement techniques based on liquid scintillation
counting were developed and optimised to permit the low-level measurement of all four
radioisotopes. In particular, a technique was developed for increasing the amount of stable Fe
that may be loaded into scintillant, reducing the limit of detection achievable for *Fe
measurement and increasing the sensitivity of analysis for »Fe in Fe-rich materials such as
sediments and steels.

Chemistries for the isolation of the four radioisotopes were studied and optimised. Solvent
extraction was chosen for the specificity offered by the technique. In most instances,
improvements in separation efficiency were achieved by adsorbing the extractant onto an
inert support producing an extraction chromatographic material. Key separation techniques
were then combined to produce a sequential separation scheme that permitted a more rapid
analysis of the four radioisotopes on a single sample. The sequential separation technique was
then optimised for the analysis of Fe, ©Ni, *°Sr and 9Tc in both low-level wastes and
environmental matrices (mainly sediments). Such separation schemes are crucial to the
efficient analysis of samples in limited time spans and are vital when the amount of sample
available is restricted.

The optimised methods were used to investigate levels of anthropogenic pure beta-emitters in
a saltmarsh sediment core collected from the Esk Estuary in Cumbria. Analysis of the four
beta emitting radioisotopes was complemented by the analysis of major elements, trace
elements and gamma emitting radioisotopes. This information was used to determine the
behaviour of the beta emitters following deposition within the saltmarsh environment.
Although all four beta emitters were detected in the core, only Sr and *Tc were at
sufficiently high levels to permit a more thorough investigation. The combination of
geochemical analysis and radiochemical analysis of this range of radioisotopes with widely
varying chemistries has allowed a range of possible pre- and post-depositional processes to be
investigated as well as providing data on the levels of previously unmeasured beta emitters in
the saltmarsh environment. Such information is essential in assessing the long-term retention
and potential re-release of these radioisotopes and their importance in radiological dose
assessment. The information also has wider implications to the behaviour of inorganic
pollutants in coastal waters.
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Notes on the structure of the thesis

Chapter 1 sets the context of the research. The main routes for production and release of pure beta-

emitting radioisotopes are discussed along with their behaviour in the environment following release.

The objectives of this study are then presented.

Chapter 2 is a review of the measurement techniques employed in the determination of pure beta-
emitters. Both radiometric and certain non-radiometric techniques are discussed and their application to

this study are investigated. A review of relevant chemical purification techniques is also presented.

Chapter 3 details the development and optimisation of measurement techniques that have been
developed as part of this study for the quantitative measurement of 55Fe, ©Ni, *°Sr and *Tc. In all cases

liquid scintillation counting is employed as the preferred measurement technique.

Chapter 4 is involved with the development of techniques for the isolation of *°Fe, “Ni, *’Sr and *Tc
and separatioh of these radioisotopes from other interfering radioisotopes. Optimisation of solvent

extraction techniques followed by the development of these techniques into chromatographic methods

is discussed.

Chapter 5 presents the incorporation of the separation techniques discussed in Chapter 4 into
sequential separation schemes permitting the isolation and purification of all four radioisotopes from a
single sample. The Chapter is divided into three main sub-sections concentrating on the sequential
separation of the radioisotopes from low-level wastes and from environmental samples with the final

sub-section focussing on the specific isolation of *Tc from environmental samples.

Chapter 6 discusses the application of the sequential separation techniques to the study of pure beta-
emitters in a saltmarsh environment. The profile of the beta emitters in a saltmarsh core collected from
the Esk estuary is presented in the context of discharges from the nearby BNFL site at Sellafield and

the geochemistry of the sediment core.

Notes on the presentation of papers

In a number of instances, the research has been published in papers in peer-reviewed journals. These
papers have been presented in their entirety as discrete sections within Chapters in the thesis. Where
this is the case, for clarity of the thesis, Figure and Table numbering are prefixed with ‘P’. Referencing
is in the style consistent with the overall thesis rather than that of the original paper. However, lists of

references that are specific to the paper are given at the end of the paper rather than at the end of the

thesis chapter.
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Chapter 1 — Beta-emitters in the environment

1 Beta emitters in the environment

1.1 Occurrence of beta emitters

Alpha, beta and beta/gamma emitting radioisotopes are routinely released into the
environment by nuclear power stations, nuclear fuel reprocessing facilities and other
nuclear facilities as part of their authorised discharge. These releases are either to the
atmosphere as gaseous discharges or to rivers or the sea via aqueous effluent discharges.
In addition, significant quantities of radioactivity have been released to the environment as

a result of the atmospheric testing of nuclear weapons’ and as a result of nuclear accidents.

The behaviour and ultimate fate of a radioisotope released into the marine environment
may depend on the oxidation state and chemical speciation of the radioisotope on
discharge, complexation and oxidation/reduction of the radioisotope following discharge
as well as the environment into which it is being discharged. The isotope may be
scavenged by particulates in the seawater column or assimilated by marine biota leading to
the accumulation of the isotope where it may be fixed or subsequently remobilised. If
none of these interactions occur, the isotope could remain dispersed in the water column

and may be used as a tracer for water movements.

The behaviour of alpha and beta/gamma emitting radioisotopes in the marine environment
has been extensively studied both due to their radiological significance and their use as
tracers in the study of natural processes in the environment. Natural radioisotopes |
including the U and Th decay series and cosmogenic radioisotopes, such as 3H, 14C and
1291, have found widespread application in the study of a range of environmental
processes. These have been complemented in environmental studies by the use of
anthropogenic radioisotopes, with their associated discrete and well-characterised source
term. Following the testing of nuclear weapons in the 1950s and 1960s the behaviour of
55Fe in the oceans was studied (e.g. Livingston ef al, 1979). Dispersion of the European
Coastal Current has been studied using 90Sr, 99T, 1258b and 137Cs discharged from La
Hague (Dahlgaard, 1995). 99Tc and 137Cs discharged from Sellafield have also been used
in the study of water transport from the Irish Sea to the North Sea. 137¢Cs is, however,
scavenged by particulate clays and once bound within the interstitial sites of the clay is
effectively immobilised. The extent of this effect depends on water salinity and on the

composition of the sediment (Bene3 ef al, 1989). An advantage of this scavenging process
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is that 137Cs- and 134Cs-derived from weapons fallout and the Chernobyl accident can be

used to determine accumulation rates.

Pure anthropogenic beta emitters have not been so thoroughly studied, mainly due to
difficulties associated with their measurement, their lower concentrations and hence their
perceived relatively low radiological importance. Of the anthropogenic pure beta-emitting
radioisotopes discharged, only 3H, 90Sr and 99Tc¢ have been studied in depth as they are
discharged in considerable quantities. 90Sr is the most important radiologically due to the
high-energy beta emission of its daughter 90y. Although of less significance
radiologically, 99T¢ in the marine environment has become more intensely studied
following the commissioning of EARP (Enhanced Actinide Recovery Plant) at Sellafield,
Cumbria, in 1994. Reprocessing of previously stockpiled Magnox wastes has resulted in a

significant increase in the levels of 997Tc discharged to the Irish Sea.

Few studies of the behaviour of other pure beta emitters in the marine environment have
been undertaken. Some work has been published on the behaviour of radioactive 63Nj
(Koide and Goldberg, 1985) and 121m+1268p in the marine environment (Koide and
Goldberg, 1985; Patton and Penrose, 1989). Levels of 147pm along with 3y, l4c, 90sr
and 99Tc are routinely monitored as part of British Nuclear Fuels Ltd (BNFL) and
Ministry of Agriculture, Fisheries and Foods (MAFF) surveillance programmes (e.g2.

BNFL, 1995).

1.2 Sources of pure beta emitters in the marine environment

There are three sources of radioisotopes in the marine environment, namely
a) Primordial
b) Cosmogenic

¢) Anthropogenic

1.2.1 Primordial radioisotopes

These are radioisotopes that were present when the Earth was formed and which have
sufficiently long half lives, compared to the age of the Earth (4.5 x 109 years), to have
survived to the present day. The most well known primordial radioisotopes are those of

uranium and thorium and 40K. Many elements also have isotopes which, although very
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long lived, are unstable and decay usually via alpha or beta decay or electron capture.

Table 1.1 summarises such isotopes

Table 1.1 Primordial radioisotopes

Nuclide Isotopic Decay mode and Half-life Bg/g Bq/g of
abundance particle energy (MeV) (years) nuclide element*
K 0.0117 B EC 1.31 1.26 x 10° 2.6x10° 30.7
4% 0.250 g EC (0.601) > 1.4 x 10" 0.0019 4.7x10°
¥Rb 27.83 § 0273 4.88 x 10" 3118 868
BIn 95.72 B-1.0 4.4x10" 0.26 0.250
BTe 0.905 EC (0.052) 1.3x 10" 8.28 0.075
BLa 0.092 B 1.06 x 10" 905 0.833
144Nd 23.80 a 2.1x 10" 0.044 0.010
7Sm 15.0 0223 1.06 x 10" 850 127
145Sm 11.3 o 1.96 7x 107 0.013 0.0014
YLy 2.59 B (1.188) 3.8x 10 1979 513
4Hf 0.162 a 2x 107 0.04 6.2x 107
¥Re 62.6 B (0.0025) 42x10" 1686 1055
190p¢ 0.012 o 6.5x 10" 107 0.013
2Th - o 1.41x 10" 4061 -
»y - o 4.49x 10° 12444 -

Values in parenthesis are decay energies. Derived from Choppin, 1996.
*Specific activity corrected for natural isotopic abundance

Many of these isotopes have found widespread application in geochemistry for dating
purposes. However, as the half-lives of these isotopes are so long, the specific activities

are extremely low and hence these isotopes are of limited interest in this study.

1.2.2 Cosmogenic radioisotopes

Cosmogenic radioisotopes are continually formed in the upper atmosphere through the
interaction of neutrons and protons with the gaseous elements of the atmosphere. The
neutrons and protons are produced either as a direct result of primary cosmic radiation or
from secondary cosmic radiation resulting from the annihilation of pions in the
atmosphere. The radioisotopes produced are washed out by rainfall and subsequently
deposit on land and water masses. Table 1.2 summarises the most important cosmogenic
radioisotopes. The isotopes tend to be neutron-rich and decay via beta-particle emission

although some are proton-rich, decaying via positron emission or electron capture.
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Table 1.2 Cosmogenic radioisotopes

Nuclide Half life Decay mode and Atmospheric
particle energy (MeV) production rate
(atoms m”s™)
Long lived
*H 1232y B 0.0186 2500
"Be 1.52x10°y B 0.555 300
HC 5715y B 0.1565 17 000 - 25 000
“Na 2.605y B70.545 0.5
%Al 7.1x10°y B"1.16 1.2
*Si 160y B 0.213 1.6
S 872d B 0.167 14
Cl 3.01x10°y B-0.709 60
PAr 268y B 0.565 56
>Mn 3.7x 10%y EC (0.596) -
$IKr 22x10°y EC (0.28) -
| 1.57x 100y i} -
Short lived
Be 53.28d EC (0.862) 81
*Na 1496 h B 1.389 -
BMg 21.0h $0.459 -
32p 1428d B 1.710 -
»p 253d B 0.249 -
*Cl 55.6m B 1.91 16

Values in parenthesis are decay energies - adapted from Choppin (1996)

As there is a relatively well-defined input of cosmogenic radioisotopes into the
environment they have been extensively used as tracers for environmental processes. Such
applications include determining exposure of meteorites to cosmic radiation (81Kr),
marine sediment dating (10Be and 26 Al), hydrological studies (3H and 36C1), glacial ice
dating (10Be), carbon dating (14C) and as natural tracers for atmospheric mixing and

precipitation processes (39Cl and 359).

1.2.3  Anthropogenic radioisotopes

Anthropogenic, or man-made, radioisotopes are produced in nuclear reactors, particle
accelerators and during the production and detonation of nuclear weapons. The majority of
the radioisotopes released into the environment originate from nuclear weapons detonation
and nuclear industry operations (in particular nuclear fuel reprocessing) with a much

smaller input from hospitals and research institutes.
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Anthropogenic radioisotopes found in the environment are mainly produced by either
nuclear fission or neutron activation. Radioisotopes produced by nuclear fission (such as
90Sr and 137Cs) are known as fission products. Isotopes produced via neutron activation

(such as 55Fe and 63Ni) are known as activation products.

1.2.3.1 Fission products

When certain isotopes of the actinides are struck by a neutron the isotope may capture a
neutron forming a heavier isotope or split into two smaller fragments (fission). Uranium-
233, 23 5U, 239py and 241py will all undergo fission when struck by thermalised neutrons
in a reactor. Uranium-238 and 232Th will undergo fission with fast neutrons. Other
actinide isotopes, such as 252Cf, undergo fission spontaneously. During the fission
process, further neutrons are released along with a significant amount of energy. These
neutrons strike other atorms and the process continues as a chain reaction. This reaction
can be carefully controlled and the energy released used to power turbines and generate
electricity forming the basis of the nuclear reactor. Under very exacting conditions the
chain reaction can be made to propagate rapidly, resulting in the release of very large ‘
amount of energy in a very short period of time. This is the basis of nuclear fission

weapons.

The fission process is dependent on the neutron energy and for 235U the most effective
neutron energy is < leV (thermal neutrons). Between 1 eV and 105 eV neutron capture
reactions leading to the formation of heavier isotopes is dominant. Neutrons in this energy
region are known as epithermal neutrons. Above 106 eV 235U fission dominates although
the neutron cross-section is far lower than for thermal neutrons and hence fission occurs at
a much slower rate. However, at this energy other actinides may undergo fission and this
is most important for the fission of 238y, Neutrons with energies greater than 105 eV are

known as fast neutrons.

Whilst effective fission of 235U requires thermal neutrons, neutrons released during
fission tend to have energies in the range of 105 - 107 eV (i.e. fast neutrons). In a thermal
nuclear reactor these fast neutrons are slowed down (moderated) to thermal energies to
encourage subsequent fission of more 235U nuclei. However, in a nuclear weapon, little

moderation is possible and subsequent fission reactions tend to be instigated by fast
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neutrons. The characteristics of fission are therefore different for nuclear reactors and

nuclear weapons. This is particularly noticeable in the formation of fission products.

When a fissile nucleus is struck by a neutron the resulting split is unsymmetrical. For
thermal neutrons and 235U, the most probable split leads to the formation of one nuclide
having a mass around 97 and one with a mass around 137. In fact the range of masses
produced is much larger. Over 400 fission fragments have been identified associated with

elements ranging from zinc to gadolinium. A typical thermal neutron fission yield curve is

shown in Figure 1.1
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Figure 1.1 Fission yield curve for **U irradiated with thermal neutrons
(adapted from Steinberg and Glendenin, 1956)

The fission of heavier nuclides yields similar curves to that shown in Figure 1.1 although
the left peak shifts to heavier masses. With increasing neutron energy, the trough between
the two peaks becomes less pronounced until, at very high energies, a single symmetrical
peak is found. Hence for nuclear weapons employing 239py and fast neutron irradiation,
the peaks would be shifted to higher masses with a less pronounced trough compared to a

nuclear reactor where the 235U fuel is irradiated with thermal neutrons.

The fission fragments formed during nuclear fission are unstable and neutron rich. These
fragments usually decay via beta emission to produce a less neutron rich daughter. Some
nuclides, however, will decay via a delayed emission of a neutron and approximately
0.016% of neutrons produced during the fission of 235U are delayed neutrons produced in
this manner. This process continues until a stable daughter is attained. In this way isobaric

chains are produced. One example is the A = 93 isobar shown below.
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93 ? 93 7 NByr.. 13s 93 5.8s 93 745min 93 10.1h 93 15My (93
aSe—> . Br——> K1 >, Rb > 35 oT >3 Y —> 0Lt >, Nb(stable)

The total yield for A = 93 is 6.375%. Delayed neutrons are produced by 93Se, 93Br, I3Kr
and 93Rb. The highest individual fission fragment yield is for 93Rb (2.96%) and 93Sr
(2.66%). The fission fragment yield for 937r is only 3 x 10-4 %. However, because of its
very long half life, compared to the other nuclides in the chain, 937r is the predominant A
= 93 nuclide found in fission product waste. There is normally a displacement of several
atomic numbers between the most probable isotope and the stable end isotope. In general
the distribution of isotopes in an isobar follows a Gaussian curve described by the

equation

Y(A,2) = y(A)s™ 2m) He @D

where y(A,Z) is the initial yield of the fission fragment with atomic number Z and mass A,
y(A) is the total yield of isobar mass A, s is the width parameter for the charge distribution
at mass A and Zj, is the most probable atomic number. A discussion of the distribution of

Z for a given isobar may be found in Pappas (1956)

Tt can be seen that fission of any fissile nucleus leads to the production of numerous
fragments which decay via a series of beta emissions to form a range of products which

are predominantly beta and beta/gamma emitters.

1.2.3.2 Activation products

When a nucleus of an atom is struck by a neutron, the neutron may be captured to produce

a heavier isotope of the same element. The process is summarised as
A 1 A+1
s X+n—>"X

The isotope produced is neutron rich and may decay via the emission of a beta particle. In
a reactor or during the detonation of a nuclear weapon the fissile material, construction

material and atmospheric gases may all undergo neutron activation producing a series of
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unstable beta-emitting radioisotopes. The nature and quantities of these activation
products will vary depending on the materials present and the energy and exposure time of
the irradiating neutrons. The probability of neutron interaction for a given isotope of an
element is known as the neutron cross section and is measured in units of barns (o). The
higher the neutron cross section, the more probable a given interaction is likely to occur
and the more of the particular product is formed. The neutron cross section will depend on
the energy of the neutron. More than one reaction may occur during the interaction of an
isotope with a neutron and cross sections for each reaction are quoted. For example when
a thermal neutron strikes 235U, the neutron may be elastically scattered with no change to
the 235U nucleus, captured to form 236y, or the 235U may undergo fission. The cross
sections for each reaction are Ggcat = 10b; G40t = 107b; of = 582b. The total reaction cross

section (Gtct) is equivalent to the sum of the individual cross sections.

A wide range of beta and beta/gamma emitting radioisotopes are produced during reactor
operation and weapons detonation through the neutron activation of reactor or weapon
components. Typical reaction cross sections for a range of materials used in the

construction of reactors and weapons along with the neutron activation products are given

in Table 1.3
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Table 1.3 : Neutron capture cross sections for some common reactor / weapon materials

Element Stable Component Thermal Reaction Isotope
isotope neutron formed
Cross
section (G)

H *H H,0 cooling water 5.0x 10" *H(n,yY’H *H
0 %0 H,0 cooling water %0(n,p)'°N N
R H,O cooling water BO(n,y)*0O 0

IXO(n’p)lgF 18F

Li SLi trace in cooling water 940.5 SLi(n,t)*He *He

weapon component
Be ‘Be weapon componerit 7.6 x 107 *Be(n,y)'"Be 1'Be
B g boric acid moderator 3843 °B(n,o)’Li Li
(PWR)
C BC carbon in steel BCn.p)"N BN
CO, in coolant water
or as coolant

N N N in cooling water n.a “N(n,2n)"*N BN
1.82 “N(n,p)“C e

S S 0.224 #S(n,y)**S 38
Cl 3¢l Contaminant in 3Cl(n,y)**Cl %l

graphite etc.
Ar PAr atmospheric gas found 0.68 PAr(n,y)" Ar “Ar
in cooling water

Cr Cr Stainless steel 15.97 Cr(n,y)*'Cr SICr
Mrl 53Mn 54Mn
Fe %Fe Ferrous metals / steel 2.59 *Fe(n,y)Fe %Fe
*Fe Ferrous metals / steel 1.27 Fe(n,y)*Fe Fe

Co *Co
¥Co 37.22 %Co(n,y)*Co “Co

Ni SNi Steel 4.62 SNi(n,y)°Ni “Ni
ONi Steel 14.43 ®Ni(n,y)°Ni ONi
Zn “Zn 0.76 “Zn(n,)*Zn “7n
Sb 25 433 "Sb(n,y)"**sb 248h

Neulron cross section data from Jef-PC database (version 2) for thermal neutrons with Maxweliian distribution around

0.0253eV

10
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1.3 Beta Decay

Neutron rich radioisotopes (such as those produced by neutron activation or during nuclear
fission) may decay by a number of routes but the most dominant is through the emission
of an electron from the nucleus. This process is known as B~ decay. A neutron in the
nucleus decays into a proton and an electron and hence the atomic number, Z, increases by
one unit but the mass, A, remains unchanged. Although this decay is quantised, the
emitted P~ particle (the electron) can have an energy distribution between near zero and
the maximum of the decay energy. This was explained by W. Pauli who suggested that a
second particle must be emitted with the electron and that the decay energy is shared

between the two particles. The second particle was subsequently identified as the anti-

neutrino, v . The beta decay process can therefore be summarised as
A A -
s X, X te +v

The continuous distribution of the beta particle energy prevents spectrometric
identification and quantification of a mixture of beta-emitting radioisotopes (c.f. alpha and
gamma spectrometry) although some information as to the identity of particular beta
emitters may be obtained using a spectrometric technique such as liquid scintillation
counting. The most probable beta decay energy is approximately one third of the
maximum beta decay energy. Either the maximum (Epax) or most probable (Eave) beta

particle energies are quoted in decay tables.

1
1
1
]
i i} i1 3 ] i i1 3 1
™

3
T 1 v T

T 00 200 300 400 500 600 700 800 900 1000

Figure 1.2 : Typical liquid scintillation beta spectrum for “Ni (E,,, = 65.9 keV). The data is
plotted as counts registered versus channel numbers (proportional to log energy).

The daughter isotope produced by beta decay may itself be in a metastable state and will
decay via the emission of gamma photons. In these cases the metastable state is usually

short lived and gamma spectrometry may be used to identify and quantify the original beta

11
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emitter. For example, 60Co is routinely determined by measurement of the two gamma

photons at 1.173 and 1.332 MeV associated with the 60mN;j daughter

O Co—L 550" Ni—2 s “Ni(stable)

However, many other beta-emitting isotopes do not emit gamma photons as part of their
decay scheme. Such radioisotopes are known as pure beta emitters. These isotopes can
only be positively identified by specific chemical separation followed by some form of
beta counting technique. One of the best known pure beta-emitting radioisotope is the

fission product 90sr.

NGr—L 590y L %7y (stable )

1.4 Sources of anthropogenic radioactivity in UK coastal waters

Anthropogenic radioisotopes are released into the marine environment as part of
authorised discharges from nuclear power and reprocessing sites, military establishments,
and medical facilities. Significant quantities of anthropogenic radioisotopes have also been
released as a result of nuclear weapons testing in the 1950s and 1960s and catastrophic

nuclear accidents such as the Chernobyl accident in 1986.

1.4.1 Authorised releases from nuclear sites

The majority of UK nuclear sites are located on the coast (Figure 1.3) and discharge
directly into the marine environment. The main reactor types in the UK are Magnox and
Advanced Gas-Cooled Reactors (AGR) with one Pressurised Water Reactor (PWR) at
Sizewell. The magnitude and composition of any radioactive discharge will depend on the
operations being performed on the site with the greatest discharges being observed for
sites involved in nuclear fuel reprocessing (i.e. Sellafield and Dounreay). In general,
nuclear reprocessing operations release the whole range of fission products, activation
products and actinides. Nuclear power stations release lower levels of mainly activation
products, with Magnox reactors also releasing a proportion of 137Cs. Uranium enrichment
and fuel fabrication at Capenhurst and Springfields results in the release of uranium,
uranium-daughter radioisotopes and some fission products (originating from reprocessed
uranium). Airborne discharges from nuclear sites will also contribute to marine

radioactivity (although to a lesser extent than direct discharge to sea) with airborne
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radioisotopes returning to land via precipitation and subsequently being transported to the

sea via surface water run-off and river transport.

1.4.2  Atmospheric weapons testing

Atmospheric nuclear weapons testing began on July 16th 1945 with the Trinity test in New
Mexico and the subsequent nuclear weapons strikes at Hiroshima and Nagasaki.
Atmospheric weapons testing continued through the 1950s until a moratorium on -
atmospheric weapons testing was agreed in 1958. A peak in release of fission product
radioactivity was observed in 1958. Levels of radioactivity then fell until Russia broke the
moratorium in 1961 leading to a massive increase in atmospheric weapons testing and
resultant release of radioactivity. A second, much larger peak in weapons fallout was
recorded in 1963 at the height of the atmospheric weapons testing programmes. The
signing of a test ban treaty in 1963 by USA, UK and Russia led to a decrease in
radioactivity in' the atmosphere through the 1970s and 1980s although China, India and

France continued to conduct atmospheric testing up until 1980.

13
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Figure 1.3 :Location of UK nuclear sites
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Table 1.4 : Estimated fission yields of atmospheric tests

Year Country Number of Fission yield (~Mt)
detonations
1945 USA 3 0.05
1946 USA 2 0.04
1948 USA 3 0.1
1949 USSR 1 0.02
1951 USA/USSR 17 0.54
1952 UK/USA 11 6.62
1953 UK/USA 13 0.29
1954 USA/USSR 7 30.1
1955 USA/USSR 17 1.67
1956 UK/USA/USSR 27 12.3
1957 UK/USA/USSR 45 10.89
1958 UK/USA/USSR 83 28.94
1960 France 3 0.11
1961 France/USSR 51 25.42
1962 USA/USSR 77 76.55
1964 China 1 0.02
1965 China 1 0.04
1966 France/China 8 1.3
1967 . France/China 5 1.92
1968 France/China 6 5.3
1969 China 11 2
1970 France/China 9 4.55
1971 France/China 6 1.97
1972 France/China 5 0.24
1973 France/China 6 1.65
1974 France/China 8 1.55
1976 China 3 2.37
1977 China 1 0.02
1978 China 2 0.04
1980 China 1 0.45
Total 423 217

Source : UNSCEAR (1982)
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Figure 1.4 : Atmospheric weapons yield and total *’Sr deposition in the Northern Hemisphere
(note the delay between the peak in weapons testing and the peak in PSr deposition)
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1.4.2.1 Production of radioisotopes during defonation

The atmospheric weapons tests resulted in a significant input of radioisotopes into the
environment. Radioisotopes released during the weapons detonation originate either from
the fission of uranium and plutonium (fission products) or from the activation of weapon

components, rock, debris and the air in the vicinity of the test (activation products).

The quantity of fission-derived radioisotopes will depend on the flux and energy spectrum
of the neutrons produced during the detonation. The relative ratios of fission products will
be a function of their fission yields, which is again dependent on the neutron energy
spectrum as well as the isotope undergoing fission. Edvarson et al (1959) suggested that

the majority of the fission products released during nuclear weapons’ testing originated

from fast neutron fission.

The formation of activation products such as 3H, 14, 55Fe and 63Ni will depend on the
composition of materials in the nuclear weapon and on the environment surrounding the
detonation site. The quantity of activation products will also depend on the neutron flux
and neutron energy spectrum associated with the particular detonation. It is interesting to
note that 134Cs is not produced during a nuclear weapon’s detonation as the fission yield
is low. However, in a reactor, the A=133 isobar is produced which has sufficient time to
decay to 133Cs. This isotope may in-turn undergo neutron capture to produce 134Cs. The
presence of 134Cs is therefore a clear indication of a fresh reactor source as opposed to a

weapons source

1.4.2.2 Fractionation of weapons fallout radioisotopes

During a nuclear detonation soil, rock and other materials in the vicinity of the detonation
are volatilised and this debris is carried up into the expanding fireball. As the fireball
expands the volatilised debris condenses forming an aerosol 0.4 - 4.0 pm in diameter on
which the radioisotopes may condense. Large particle aerosols are formed at the early
stages of condensation within the fireball carrying radioisotopes that form refractory
oxides. The more volatile radioisotopes condense as the fireball continues to expand and
cool and tend to be associated with smaller particle sizes (< 0.4 um). The larger particles
tend to settle more rapidly in the vicinity of the test whereas the smaller particles, carrying
the more volatile radioisotopes, are carried further afield leading to fractionation of the
radioisotopes. The aerosol particle diameters will also be affected by the height of

detonation of the weapon above ground level. If a weapon is detonated near to the ground
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large quantities of rock and soil are volatilised, later condensing to form larger particle-
diameter aerosols. These processes result in primary fractionation of the radioisotopes
(Freiling, 1961). Further fractionation of the radioisotopes will then occur due to
environmental processes acting on the condensed fallout. In this way, more soluble
radioisotopes will be leached from the condensed fallout by seawater and small fallout
particles may be preferentially separated from larger particles. This leads to secondary

fractionation of the radioisotopes present in the fallout.

1.4.2.3 Transport of radioisotopes in the atmosphere

In low-yield (kilotonne) fission explosions, the radioactive aerosol is injected into the
troposphere whereas for thermonuclear explosions the aerosol is carried into the
stratosphere where the aerosol is distributed globally before being deposited back to Earth.
Stewart et al (1957) demonstrated that the physical half-life for dust in the lower
atmosphere was in the order of 20 days whilst the mean residence time for 90Sr in the
stratosphere has been estimated as 1 year (UNSCEAR, 1977). Much work has been
performed on the deposition on the fission products 90Sr and 137Cs and such data may be

used to estimate the deposition of other fission products.

The deposition of fallout varies with latitude and is greater in the Northern Hemisphere
than in the Southern Hemisphere. This variation has been quantified through the
measurement of 90Sr at numerous sampling stations located at various latitudes and has
enabled the total 90Sr deposited in the two Hemispheres to be determined (Playford et al,
1992).
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Figure 1.5 : Global deposition of *’Sr.

From 1966-1987 90Sr deposition has been estimated from 137Cs measurements adjusted by the
1375 t0 908y ratio. Cumulative 90Sr activity adjusted for radioactive decay. (After Playford et al,

1992)

1.4.3 Nuclear accidents

A number of accidents have occurred which have had a detectable impact on

anthropogenic radioisotope activities in UK coastal waters. The most notable of these are

the Windscale Pile fire in 1957 and the Chernobyl disaster in 1986. Both accidents

resulted in a substantial release of fission and activation products into the environment

(Table 1.6).

Table 1.6 : Major nuclear accidents and releases affecting the UK

Location Date Isotope Activity
x 10" Bq
Windscale, UK 10™ October 1957 By 600
B7Cs 18
+ others
Chernobyl, USSR 26™ April 1986 BIY 1760 000
¥7Cs 85000
+ others

Data from Sanderson ef al, 1997
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1.5  Behaviour of radicisotopes in coastal waters and sediments

1.5.1 Dispersion of radioisotopes in seawater

The behaviour of a radioisotope once it has been released into the marine environment
may be described as either conservative or non-conservative depending on its affinity for
particulate materials in the seawater. Conservative radioisotopes only interact weakly with
the particulate phases in seawater and tend to remain predominantly in the aqueous phase.
The dispersal of these radioisotopes will therefore be controlled by local current patterns.
Examples of conservative elements are alkali and alkaline earth elements such as Na and
Cs and low-charged anionic species such as TcOg4~. Non-conservative radioisotopes
interact more strongly with the particulate phase of seawater and rapidly become
incorporated within seabed sediments. Such radioisotopes can become concentrated in the
local environment and their dispersal is dependent on sediment transport mechanisms.
Examples of non-conservative elements are highly charged transition metal, lanthanide,
actinide and metalloid species. The oxidation state and speciation of the element will
determine the extent to which it associates with the particulate phase and variable

behaviour of an element may be observed depending on the prevailing local conditions.

Conservative and non-conservative radioisotopes may also be adsorbed and / or
assimilated by marine biota. The mechanism of uptake will depend on the organism and
the radioisotope being considered. Filter feeding and scavenging organisms are more
likely to concentrate non-conservative radioisotopes associated with particulate matter
whereas other marine biota will concentrate radioisotopes directly from the aqueous phase.
For example fucoid seaweeds are particularly effective at concentrating iodine and
technetium isotopes and other species of seaweed including Porphyra umbilicalis have

been shown to concentrate 106Ru to a significant extent (Mauchline et al, 1964).
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1.5.2  Sea-to-land transfer

Liquid effluents discharged to the sea can also have a significant impact on the
radioactivity detected on land. Mechanisms for sea-to-land transport of particle-bound
actinides include (1) direct suspension of the sea surface in the wind as sea-spray; (2)
conversion of the sea surface into an aerosol by bubble bursting; (3) injection of seawater
and suspended sediment into the air by waves breaking in the surf zone; (4) movement of
sediment to intertidal regions with subsequent resuspension by wind (Cambray and
Eakins, 1982). One characteristic of the sea-to-land transfer is that the actinides are
preferentially enriched in the spray compared with 137Cs suggesting that the mechanism
is related to sediment transport. It is estimated that 10-4 of the discharged Pu returns to

coastal areas via this process.

1.5.3 Interaction of radioisotopes with particulates

In general, most radioisotopes will show some affinity for uptake on particulate matter
present in seawater. Even radioisotopes that are considered conservative in their
behaviour, such as 137Cs and 99TcO4- may be detected at appreciable levels in
particulate matter. The mechanism of interaction will depend heavily on the radioisotope
and the composition of the aqueous and particulate phases. In the Sellafield area, Pu and
Am are mainly associated with iron and manganese oxyhydroxides (as determined by
sequential leaching experiments — Tessier et al, 1979; Malcolm er al, 1990). Geochemical
cycling of Fe and Mn may play an important role in the uptake and redistribution of
certain radioisotopes in sediments although initial studies by Malcolm et al (1990) found
no evidence for the redissolution of Pu and Am from marine sediments where reductive
dissolution of Fe and Mn had occurred. Cations, such as Cs*, will exchange with cations
present within clays effectively locking the cation into the clay lattice. More exchangeable
substitutions may also occur with the clay acting as an ion exchanger. Some radioisotopes,
including 1291, are biophilic, being associated with organic matter in the sediment. In the
Irish Sea, organic coatings on particulate matter have been observed to increase during the
summer months with a corresponding decline over the winter (Hamilton, 1998). Such a
fluctuation in organic matter may potentially result in a biannual fluctuation in the
concentration of biophilic radioisotopes on particulate matter. Such radioisotopes may also

be absorbed by phytoplankton and will therefore be subject to the effect of algal blooms.
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Aqueous phase

Figure 1.6 : Transfer of radioactivity from the water column to sediment

One way of quantifying the magnitude of radioisotope uptake on particulate matter is
through the use of the distribution coefficient or Kq. The distribution coefficient is defined
as the ratio between the concentration of a radioisotope per gram of particulate to the
concentration of the radioisotope per gram of seawater. The K4 will depend heavily on the
mechanism of adsorption and hence on the composition of the seawater and particulate
matter as well as the chemical form of the radioisotope. For this reason, Kq’s for a given
element will vary markedly with location, season, discharge source etc. and published
K{’s can therefore only be treated as an approximation. The IAEA (1985) have reviewed

existing data on K values for the majority of elements (Table 1.7).
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Table 1.7 : Reported K, values for coastal areas (IAEA,1985)

Element Mean Maximum Minimum
Fe 5x 104 2x 103 1x 104
Ni 1x 103 5% 103 2x 104
Co 2x 103 1x 106 2 x 104
Sr 1x103 5x103 1x102
Zr 1 x 106 5x 106 2x 105
Tc 1x102 1x 103 1x 101
Sn 1x103 5x103 2x 102
I 2x 101 1 x 102 5x 100
Cs 3x 103 2x 104 1x 102
Pu 1 x 105 1x 106 1x104
Am 2x 106 2x 107 1x 103

1.5.4 Post-depositional migration of radioisotopes in sediments
Following the deposition of radioisotope-labelled sediments, the radioisotope may remain
bound to the sediment in the location where it was deposited or the radioisotope may

subsequently migrate through the sediment column. This migration may be a physical or

chemical process.

In physical mixing, the labelled sediment is mixed with depth down the core. Physical
mixing mainly results from tidal and storm action on the surface of the sediment or
through bioturbation of the sediment both by roots of surface vegetation penetrating down
the sediment or through the action of burrowing fauna. Species know to be active in the
Irish Sea area include Amphiura filiformis, Maxmulleria lankesteri and Callianassa
subterranea (Swift and Kershaw, 1987; Swift 1990). Lateral transport of sediment over
considerable distance will also occur. The transport of the radioisotope-labelled sediment
will be governed by local sediment transport mechanisms with finer-grained sediments
being transported the greatest distance. Tracking of radioisotope-labelled sediments has

therefore permitted the study of sediment transport mechanisms (Olsen et al, 1980).

Chemical migration of certain radioisotopes occurs when changes in the prevailing

chemistry render the radioisotope soluble. The radioisotope may then pass from the
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sediment into the porewaters where it may migrate laterally and down the sediment

column.

Sediment cores normally possess three distinct regions, known as the oxic, post-oxic and
sulphidic zones. The oxic zone is characterised by lack of Fe(II) in porewaters. As oxygen
penetrates the sediment this zone is relatively oxidising. At a given depth, the atmospheric
oxygen can no longer penetrate effectively. The oxygen that is present is utilised by
bacteria to oxidise organic carbon in the sediment. This post-oxic zone is oxygen deficient
and is characterised by reductive dissolution of Fe and Mn, the presence of Fe(II) and
Mn(Il) in porewaters and a subsequent reduction in particle-associated Fe(IIT) and Mn(IV)
oxyhydroxides. At greater depth, sulphate-reducing bacteria produce a sulphide-rich or
sulphidic zone at depth in the sediment core. The presence and depth of these zones will
depend on the sediment type and local environmental conditions. For areas with relatively
coarse-grained sediments, oxygen penetration will occur to a much greater depth and the

post-oxic and sulphidic zones will be correspondingly deeper.

The variation in redox potential within the sediment column may potentially affect the
post-depositional migration of radioisotopes down the sediment column. The change in
redox potential down the sediment column will affect the solubility and speciation of the
radioisotopes and the presence of high concentration of sulphides may lead to the
precipitation or adsorption of certain radioisotopes as sulphides. A key example is the case
of Te. Tc is present normally as the soluble TcO4~ anion. This anion would be expected to
migrate rapidly through the sediment column. However, at the oxic/post-oxic boundary,
the concentration of Fe(I) may be expected to increase. Fe(ll) reduces Te(VID) to the
more particle-reactive Tc(IV) which would be more strongly retained on the sediment. In
addition, any TcO4- migrating as far as the sulphidic zone would be rapidly converted to
the highly insoluble TcpS7 again rendering the species highly immobile. Both

mechanisms would result in the retention of Tc within the sediment column.

1.5.5 The saltmarsh environment

A saltmarsh is a sediment flat high in the intertidal zone that has been colonised by
halophytic plants and which is regularly inundated by seawater. It is estimated that around
44,370 ha of active saltmarsh exist around the UK (Allen and Pye, 1992). Saltmarshes in
the vicinity of Sellafield act as sinks for radioactivity discharged from the Sellafield site.

Relatively high sedimentation rates and stabilisation of the sediment resulting from the
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vegetative root mat result in a high-resolution record of pollution history covering a period
of approximately 50 years. As well as providing a record of depositional history, the study
of radioisotope uptake in the saltmarsh environment is vital in determining the potential
effect of saltmarsh-bound radioisotopes on human dose assessment. Saltmarsh vegetation
may absorb radioisotopes from the sediment substrate or be contaminated with sediment-
bound radioisotopes. This vegetation may be grazed by herbivores which in-turn may be
consumed by man. In addition the erosion of the saltmarsh may result in the re-release of

radioisotopes into the marine environment long after nuclear operations have ceased in the

area.

1.6  The importance of pure beta-emitting radioisotopes

Numerous beta-emitting radioisotopes are produced during nuclear reactor operations,
nuclear fuel reprocessing and testing of nuclear weapons. Certain of these pure beta-
emitting isotopes, such as 3H, 14C and 90Sr have been extensively studied due to their
radiological impact on the environment and man. Others, such as 35Fe, 63Ni and 99T,
occur at much lower activities. Although the presence of these radioisotopes is not of
radiological concern compared to other fission products such as 90Sr and 137Cs the long
half lives of these radioisotopes means that they are of considerable concern in the long

term storage of nuclear waste (Figures 1.7 and 1.8).

Others

1%
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63%

Figure 1.7 : Composition of fission products in Figure 1.8 : Composition of fission products
low-level waste (LLW) on disposal in high-level waste (HLW) 1000 years after
reprocessing

Data from Chapman and McKinley, 1987
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The Royal Society (1994) listed the radioisotopes of concern in radioactive waste disposal
and commented on the characteristics of these nuclides. The section pertaining to beta-

emitting radioisotopes is reproduced in Table 1.8

Table 1.8 : Key characteristics in the context of waste disposal (from Royal Society, 1994)

z e

“Tritium CH)

.

. lon— orBed
Carbon-14 (**C) Long-lived, soluble, non-sorbed
Chlorine-36 (*°Cl) Long-lived, non-sorbed
Cobalt-60 (*°Co) Abundant, high energy gamma emissions
Nickel-59 (*°Ni) Long-lived, fairly abundant, not strongly sorbed
Selenium-79 (Se) Long-lived, not strongly sorbed
Strontium-90 (*°Sr) Abundant
Zirconium-93 (**Zr) Long-lived, may not be strongly sorbed
Niobium-94 (*Nb) . Long-lived, high energy gamma emissions
Technetium-99 (**Tc) Long-lived, non-sorbed in some conditions
Tin-126 (***Sn) Long-lived, not strongly sorbed
Todine-129 ("*1) Very long lived, non-sorbed
Caesium-135 ("*°Cs) Long-lived
Caesium-137 (*’Cs) Abundant, high energy gamma emission

Sorbed refers to the extent to which the radioisotopes are retained by man-made and
geological media during their transport from the repository with groundwaters

The above information can be used to select pure beta emitters with significant half-lives
which are likely to be present in the nuclear waste and hence may be present in liquid
waste discharges. Using these criteria the following pure beta-emitting nuclides can be

identified.

31, 1086, 14C, 355, 36C1, 55Fe, 63Ni, 79S¢, 90Sy, 937r, 99Tc, 107pd, 121m+1265n,

Of the above list of radioisotopes, S55Fe, 63Ni, 903y, and 99Tc, were chosen for the current
study as there is a significant interest in measuring these radioisotopes in routine low-level
and decommissioning wastes and their discharge from certain nuclear sites has been

reported.
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1.7  Summary and aims of the study

From the above it can be seen that there is a real need for the development of techniques
for the effective determination of pure beta-emitting radioisotopes and to understand how
these long-lived radioisotopes may behave in the marine environment. In addition it is
important to assess the potential for sediment deposits and saltmarshes to act as sinks for
these long-lived radioisotopes and the potential for re-release into the environment.
Finally, there is an opportunity to exploit the routine discharge of these radioisotopes for
studies of environmental processes and in particular the interaction of trace elements

(radioisotopes) with particulate matter.
The aims of this study were three-fold

1. To develop methods for the determination of pure beta emitters in low-level wastes and
environmental samples

2. To determine whether levels of key beta-emitters in saltmarsh sediments are detectable

3. To interpret the above results in terms of the behaviour of pure beta-emitters in the

saltmarsh environment

The thesis is therefore divided into three main research themes. Firstly, a review of
techniques suitable for the determination of the relevant pure beta emitters was performed
(Chapter 2). From this suitable techniques were identified and developed for the routine

and sensitive measurement of the pure beta-emitting radioisotopes of interest (Chapter 3).

Once suitable measurement techniques had been developed, chemical separation
techniques were required to separate the isotope of interest from any other isotopes likely
to be present in a complex mixture of fission and activation products. A review was made
of the specific chemistries of the elements of interest (Chapter 2) and this information was
used to develop an efficient sequential separation scheme that could be used to isolate all
the isotopes of interest from a range of matrices including effluents, swabs, laboratory

wastes and environmental samples (Chapter 4 & 5).

Finally, levels of pure beta-emitting radioisotopes in a saltmarsh environment in the

vicinity of the nuclear fuel reprocessing plant at Sellafield were investigated. A sediment
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core sample was collected from the Ravenglass saltmarsh in Esk Estuary. Full
geochemical investigation of the core was performed along with an assessment of the
gamma and beta radioisotope activities of the core. This information was used to assess

the potential mobility of these isotopes in the saltmarsh environment (Chapter 6).
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2 Review of techniques for the determination of pure beta emitters

2.1 Detection of beta-emitting radioisotopes

The measurement of a beta-emitting radioisotope may be performed either through the
detection of the emitted beta particle (radiometric technique) or through direct measurement of
the number of atoms of the specific radioisotope that are present in the sample (mass-
spectrometric technique). In general, radioisotopes with relatively short half-lives and
correspondingly high specific activity (activity per unit mass of the isotope in Bq/g) are best
determined using a radiometric technique. Radioisotopes with long half-lives and low specific
activity are best determined using a mass spectrometric technique. Of the radioisotopes
considered in this study, only "¢ (t,= 2.13 x 10° y) is sufficiently long-lived to be measured
at low level by mass-spectrometric techniques. Mass-spectrometric determination of these
radioisotopes is discussed further in Chapter 3. Radiometric techniques were also considered

for these radioisotopes, as well as for the other shorter-lived radioisotopes.

The decay energy of a pure beta-emitting radioisotope is shared between the emitted beta
particle and an anti-neutrino. The beta particle emitted is not monoenergetic but may possess
energies ranging from nearly the total decay energy (Ema) to near zero. Beta spectrometry is
therefore of limited application in the qualitative determination of a mixture of beta-emitting
radioisotopes. Qualitative detection and quantitative measurement of a pure beta emitter must
therefore consist of a specific chemical separation of the element of interest followed by the
measurement of the beta activity associated with that purified fraction. The specific chemical
separations employed are reviewed further in Section 2.7. The detection systems used to

measure the beta activity of final purified fractions are discussed in Section 2.2 and 2.3.

A wide range of detectors has been used for the determination of total beta activity. Detectors
include Geiger-Miiller tubes, ion chambers, solid anthracene scintillation detectors, surface
barrier detectors (and the more recent passivated ion-implanted devices) and gas-flow
proportional counters. However, one of the most versatile counting systems for the detection of

beta-emitting radioisotopes is liquid scintillation counting
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2.2 Liquid scintillation counting

2.2.1 Physics of the scintillation process

Liquid scintillation counting is suitable for the measurement of alpha, beta and some electron
capture radioisotopes. Most modern counters incorporate a sample changing mechanism
allowing the counter to be used continuously with limited operator interaction. The
incorporation of an multi-channel analyser (MCA) allows spectrometric information to be
recorded that can aid in the identification of the radioisotopes as well as permitting the

deconvolution of signals from relatively simple mixtures of radioisotopes.

Central to the liquid scintillation counting technique is the scintillation vial and its contents.
The scintillation vial contains the sample and a mixture, or cocktail, of organic compounds
which enable energy associated with radioactive decay to be converted into light photons that
are subsequently detected. Energy from radiation associated with the sample, construction
material or background/cosmic radiation excites the scintillant solvent. This solvent molecule
then interacts with an aromatic organic compound known as a primary scintillant. The excess
energy is transferred to the primary scintillant molecule raising the molecule to an excited
energy state and de-exciting the solvent molecule. The primary scintillant then de-excites to
produce the ground state primary scintillant molecule and a photon of light with a wavelength
between 350 and 400 nm. In some cocktail mixtures, however, the primary scintillant
molecule de-excites by interaction with a secondary scintillant molecule. The excited
secondary scintillator then de-excites with the emission of a photon of wavelength 400 - 430
nm. The use of a secondary scintillator causes a shift in emitted photon wavelength to one that
is more efficiently detected by the photomutiplier tubes. Developments in photomultiplier
technology have in general eliminated the need for the secondary scintillator. The process is

summarised below for a beta particle.
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Where B represents a beta particle of energy E1 or E2
Sv represents the solvent molecule

Sc, and Sc, are the primary and secondary scintillant molecule respectively

* represents an excited energy state

hv represents the energy of a light photon of frequency v

Not all of the energy associated with the beta particle is transferred to a single solvent
molecule and multiple interactions are normal. The attenuated beta particle can continue
through the solvent exciting many solvent molecules. For a given scintillant cocktail, the
number of solvent molecules excited, and hence the final number of light photons produced,

will increase with increasing beta particle energy.

The number of solvent molecules excited for a given beta energy depends on the solvent type.
The radiolysis of a solvent leads to the formation of a range of species including ions and
singlet and triplet excited state solvent molecules (as well as free radicals and molecular
fragments). The energy deposited in the solvent leading to excitation/ionisation is also small
compared to the energy of the ionising particle and is typically 4-6% of an electron’s kinetic
energy, 0.5-0.7% of an alpha particle’s kinetic energy and 1.0% of a proton’s kinetic energy.
The remainder of the ionising particle energy is dissipated as heat (Horrocks, 1976). For polar
solvents, such as water or methanol only ion pairs are produced, which do not participate in the
scintillation process. However, for non-polar solvents such as xylene, a mixture of singlet and
triplet excited states and very few ions are detected. It is also known that the recombination of
ion pairs formed during radiolysis can lead to the secondary production of excited states and it
has been suggested that even in non-polar solvents ion pair formation is significant, although
all ion pairs formed recombine producing the excited state molecules. In polar solvents the ion
pairs are stabilised by increased solvation of the ions and hence excited species are not formed
(Thomas and Beck, 1980). It is for this reason that non-polar solvents are used in liquid
scintillation cocktails. The ratio of singlet to triplet excited states also depends on the solvent

and on the excitation source (alpha particles produce more triplet excited states than beta
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particles).

Primary and secondary fluors are added to the solvent to convert energy from the excited
solvent molecule to light photons. Solvent molecules are unsuitable by themselves as they
have low photon emission probabilities, long fluorescence lifetimes (around 30ns, increasing
the probability for quench) and emit photons at a wavelength unsuitable for detection by most
liquid scintillation photomultiplier systems. As solvents are present at high concentrations
there is also an increased probability of re-adsorption of any light photons emitted. Scintillator
molecules have a much higher photon emission probability and much shorter fluorescence
lifetimes (1-2 ns) and, as they are usually present at low concentrations, the probability of re-
absorption of emitted photons is low (Horrocks, 1976). Voltz et al (1963) noted that energy
transfers from one solvent molecule to the next, prior to the transfer of energy to the scintillator
molecule, is via non-radiative processes (i.e. does not occur via emission of a photon from the
solvent and readsorption and subsequent re-emission of a photon by a second solvent
molecule). This transfer of energy between one solvent molecule and another is expected
considering the much higher concentrations of solvent molecules compared to scintillator
molecules. Horrocks (1976) also observed that the transfer of energy from solvent molecule to

scintillator was non-radiative.

The total number of photons produced will depend on the initial energy of the beta particle. It
is interesting to note that, below 300keV, the number of photons produced per unit energy is
not constant but also depends on the total energy of the beta particle. Above 300keV the

photons produced per unit energy is constant (Figure 2.1).
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Figure 2.1 : Photons produced per unit energy for a range of beta energies

From Horrocks, 1976

2.2.2  Factors affecting the excitation process - Inhibition of the scintillation process

The detection of light photons produced from the interaction of ionising radiation with the
scintillant cocktail can be adversely affected by the photons interacting with other compounds,
contaminants etc. present prior to reaching the photomultiplier tubes. This reduction in
efficiency of the detection system is known as quench. The effect of quench is to decrease the
number of decay events that are registered by the photomultiplier tubes (decrease in counting
efficiency) and to shift the energy spectrum of a nuclide to a lower energy region as fewer

photons are registered for a given particle energy.

2.2.2.1 Chemical quench

The chemical reactions that transfer the energy of the beta particle to produce a light photon
can be inhibited. This is known as chemical quench. The excited solvent or primary scintillant
molecule interacts with a molecule other than the secondary scintillant. The solvent or primary
scintillant is de-excited and the second molecule is excited. This excited molecule then de-
excites emitting the excess energy as heat instead of a light photon. No signal is therefore

produced in the photomultiplier tubes and the event is not detected.

35



Chapter 2 - Review of techniques for the determination of pure beta emitters

*

ﬂE1+SV——>ﬂE2+SV
SV*+SCI—)SV+SC>{
Sc; +0 - Scl+Q*

Qﬁ< — O + heat

where Q is the quenching agent

A wide range of compounds can induce chemical quench. These include, amongst many

others, dissolved oxygen, chlorinated organic compounds, acetone and water. The chemical

quench process can be sub-divided as follows

il.

iii.

v.

Acid quenching. Protonation of the primary or secondary scintillator modifies the
excitation energy levels of the scintillator creating a mis-match for solvent- scintillator

energy transfer.

Concentration quenching. The concentration of a component within the scintillator

mixture is present at such a level as to interfere with the scintillation process.

Dilution quenching. Dilution of the sample with any molecule that does not
participate in the scintillation process increases the effective distance between solvent
molecules and reduces the efficient transfer of energy from the ionising radiation and

the scintillant molecule.

Dipole-dipole quenching. Certain materials interact with the excited solvent
molecule with subsequent transfer of energy via dipole-dipole interactions and
dissipation of energy via non-radiative processes. Oxygen and nitromethane quench in

this fashion.

Capture of secondary electrons. Part of the excitation process involves the emission
of secondary electrons by the solvent molecule after interaction with the ionising
radiation. These secondary electrons can go on and excite further solvent molecules.
Any molecule that captures these secondary electrons will effectively quench the

scintillation process. Halogenated molecules quench effectively via this process.
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Chemical quenching has a marked effect on the pulse height spectrum. As quenching of the
sample increases the total number of observed events decreases as the counting efficiency
drops. The pulse height spectrum shifts to lower energy channels as fewer photons are
produced for a given keV of ionising radiation and the spectrum shifts towards lower energy.
The extent of chemical quench for a given quantity of quenching agent depends on the cocktail

being used (ter Wiel, 1992) and in particular the solvent.

Chemical quench due to dissolved oxygen can be removed by bubbling nitrogen through the
sample. However, when using after-pulsing corrections (in time-resolved-LSC) a reduction

rather than an increase in counting efficiency may be observed after purging of the O,.

In most other cases quenching is limited by sample purification prior to liquid scintillation
measurement and by correction of the final measurement for any unavoidable quenching that is

still occurring.

2.2.2.2 Colour / physical quench

Another cause of quench occurs when the light photon is produced but is prevented from
reaching the detector. The light photon is either absorbed by a molecule dissolved in the
sample/cocktail mixture (colour quench) or is physically prevented from reaching the detector

by an obstruction such as particulate matter suspended in the mixture (physical quench).

In colour quench, the quenching agent has an absorbance band that overlaps with the emission
band of the scintillator. The light photons are absorbed and hence do not reach the
photomultiplier tubes for detection. As scintillators usually emit in the blue region of the
visible spectrum the greatest quenching is observed with red compounds. Colour quench is an
absorbance process and therefore obeys Beer’s law. Hence, the pathlength of the process (in
this case the distance between the photon production site and the edge of the vial) is critical to
the degree of absorbance observed. Colour quench therefore differs from chemical quench in
that it is dependent on the vial size. In practice this results in broader pulse height spectra with

a lower maximum energy as compared to a sample chemically quenched to the same counting

efficiency.

37



Chapter 2 - Review of techniques for the determination of pure beta emitters

In physical quenching the light photons produced are prevented from reaching the
photomultiplier tubes by a physical barrier. Particulate matter seriously quenches the sample.
Physical quench also occurs if the sample adsorbs onto the surface of the vial and is therefore
not intimately mixed with the solvent. Any ionising radiation emitted cannot interact with the
solvent under these conditions. Furthermore, if the adsorbed sample is in intimate contact with
the scintillant, the counting efficiency will still be significantly reduced as only those
radiations emitted towards the contents of the vial will excite the solvent molecule whereas

those radiated towards the vial wall are lost.

2.2.2.3  Emulsions and micelle formation

Micelle formation is necessary in dispersing aqueous samples uniformly throughout an organic
solvent that is normally hydrophobic in nature. However, as the aqueous-to-organic ratio
increases, the micelles formed will get larger. For low energy beta emitters such as tritium
(with a maximum beta range of 6 pm) the majority of the beta decay energy may be deposited
within the large micelles prior to the beta particle reaching the organic phase and hence the
number of scintillation events is decreased. Typical beta particle ranges for a number of

common radioisotopes are given in Table 2.1.

Table 2.1 : E,.. and beta range for selected beta-emitting radioisotopes

Nuclide Eax keV Maximum range
(mm)
3H 18.6 0.006
l4¢ 156 0.285
35g 167 0.315
45Ca 254 0.600
32p 1709 7.8

2.2.2.4 Determination of sample counting efficiency

Even following chemical separation and purification of an analyte the degree of quench may
still vary from sample to sample although the range of quench should be narrow. The degree of
quench associated with each sample and hence the counting efficiency of each sample may be
determined using one of a range of techniques. The most direct way of determining the

counting efficiency for a sample is to first count the sample, then to spike the sample with a
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known amount of the analyte and finally to recount the sample. The increase in count rate
coupled with the activity of the added spike can be used to calculate the counting efficiency
and then to determine the activity of the analyte using the initial count-rate data. However, this
technique requires two counts. For samples containing relatively high activities, the initial
count rate of the sample may be used to determine the degree of quench using techniques such
as the sample channels ratio to determine counting efficiency. However, this is not readily

applicable to low-level environmental samples where insufficient counts are detected to permit

such a correction procedure.

Other quench-correction procedures include the use of external standards which work by
inducing Compton-derived events in the solvent which subsequently lead to scintillations. The
apparent maximum (Ey.,) observed on the liquid scintillation Compton spectrum is dependent

on the gamma photon energy (E,) of the external standard and is given by the equation

2E?
Epp = z
" 2E +0.51MeV

The intensity of the scintillations depends on, amongst other factors, the degree of sample
quench. By positioning an external gamma source adjacent to the sample vial and measuring
the effect of the radiation from the external source on the scintillation mixture a measure of
quench which is independent of the sample activity may be made. In Wallac instruments the
External Standard Spectral Quench Parameter, SQP(E), is determined. The spectrum of the
external standard is stored in a 1024 channel MCA and the SQP(E) is described as the channel
number which is the upper boundary to the spectrum containing 99.5% of the total counts of
the spectrum. The SQP(E) value can then be used to determine the counting efficiency of the

sample by comparison with standards of known counting efficiency and quench level.

2.2.3  Factors affecting the scintillation process — Interference from non-beta derived

scintillation processes

2.2.3.1 Chemiluminescence

Chemical quenching inhibits the production of photons by de-excitation of the solvent and/or

scintillator molecules. However, it is possible for chemical reactions to occur which initiate
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the excitation of solvent and scintillator molecules in the absence of ionising radiation. This is

known as chemiluminescence. It is characterised by a number of properties as follows

ii.

1v.

Vi.

It is short lived. Chemiluminescence declines with time (typically 1-4 hours) and leaving
samples in the dark following preparation can reduce the magnitude of the effect.

The number of photons produced for a chemiluminescence event is low and similar to a
10-20 keV beta emitter. The chemiluminescence peak therefore occurs at the low energy
end of the liquid scintillation spectrum and only interferes with the determination of low
energy beta nuclides such as tritium.

As with any chemical reaction, the chemiluminescence reaction is temperature dependent.
Lowering the temperature inhibits the chemiluminescence reactions allowing beta
measurements to be made. However, as the sample warms up the chemiluminescence
reactions will begin again. Heating the samples to about 45°C increases the reaction rate
and allows the chémiluminescence reactions to reach completion quickly before the
sample is counted.

Chemiluminescence reactions do not produce an isotropic burst of light. If the sample is
monitored with two photomultiplier tubes counting in coincidence the chemiluminescence
event will not trigger both photomultiplier tubes. However, chemiluminescence can give
very high rates of photon production and it is possible for both photomultiplier tubes to be
triggered simultaneously by two separate chemiluminescence events.

Chemiluminescence is more likely to occur in alkaline solutions. pH adjustment can be

used to minimise the problem.

Chemiluminescence correction through counting electronics can be achieved using a number

of techniques although in general it is better to modify the sample preparation technique to

limit the chemiluminescence.

2.2.3.2 Photoluminescence

Photoluminescence occurs when photo-initiated reactions excite the solvent molecules, which

then increase the number of light photons produced. As the process is light-initiated

photoluminescence can be reduced by leaving the vials in the dark (dark-adapting) for a few

hours prior to counting.
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2.3 Liquid scintillation counters

Most commercial scintillation counters consists of two photomultiplier tubes that detect
photons emitted from the vial via the scintillation process. The associated electronics register
both the number of counts detected within a specified time (related to the total activity of the
sample) and also the intensity of each photon burst. The intensity of the burst is directly related
to the energy of the beta particle that initiated the scintillation process. By incorporating a
multichannel analyser (MCA) into the electronic circuitry, the number of events with a given

intensity can be recorded separately allowing an energy spectrum to be derived.

In addition to the two photomultiplier tubes monitoring the sample vial, the Wallac
‘Quantulus’ has a further two photomultiplier tubes monitoring a chamber of scintillant gel
(the guard chamber) directly above the sample chamber. These are set to count in anti-
coincidence with the sample photomultiplier tubes. Any cosmic events that would normally
trigger the sample photomultiplier tubes will also initiate a scintillation event in the guard
chamber. When an event is registered in both sets of photomultiplier tubes it is regarded as a
cosmic background event and subsequently rejected. In this way the Wallac ‘Quantulus’ liquid
scintillation counter can differentiate between genuine decay events originating in the sample
and cosmic background events originating outside the counter. For these reasons the observed

background for the Quantulus counter is superior to that provided by the Packard 2250CA and
Wallac 1410 counters.

Finally all liquid scintillation counters have associated lead shielding to reduce background
derived from external radiation sources, sample changing mechanisms to permit the automatic
counting of sample batches, and associated electronics and software to permit signal

processing, data collection and manipulation.
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Figure 2.2 : Configuration of the Wallac 1220 ‘Quantulus’ liquid scintillation counter (after
Wallac, 1996)
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2.4 Preparation of samples for liquid scintillation counting

With the exception of Cerenkov counting for high energy beta emitters (Section 2.5), all liquid
scintillation counting techniques require that the purified beta emitter is intimately mixed with
a liquid scintillation cocktail containing a solvent, co-solvent, primary fluor and, in many
instances, a secondary fluor. In all cases, the solvent is usually an aromatic hydrocarbon such
as benzene, toluene, linear alkyl benzenes (LABs) or di isopropyl naphthalene (DIPN). Source
preparation therefore requires the mixing of the radioisotope being measured with the solvent.
This is most readily achieved by preparing the radioisotope in a solution of an aromatic solvent
often by extraction of the radioisotope into the aromatic solvent containing a suitable
extractant. It is important that the extractant does not cause significant chemical quenching. An
extreme of this approach is used in the low-level measurement of C where the stable carbon
and 'C is chemically converted to benzene and used directly as the scintillant solvent.
Extraction of the analyte into an organic solvent followed by mixing with liquid scintillation
cocktails has also been widely used in the determination of *?Rn in aqueous samples where the

radon is quantitatively extracted into toluene.

In most instances, the purified sample is present in an aqueous solution. Although the aqueous
solution will not mix directly with the aromatic solvents, emulsifiers can be added to the liquid
scintillation cocktail to permit direct intimate mixing of the aqueous and organic phases.
Quenching of the samples will be significantly higher than that found for a purely aromatic
system as water is an effective quenching agent. The scintillant will also have a limited
capacity for the aqueous phase and once exceeded the counting efficiency will fall
dramatically. The exact loading capacity will depend on the scintillant cocktail, the acidity and

the dissolved salt content of the aqueous phase.

Solid samples may be counted in two ways by liquid scintillation counting. Precipitation of the
analyte with an organic precipitant is often employed as a method for determining the chemical
recovery of the analyte following separation chemistry. Many of these precipitates can be
directly dissolved in the aromatic solvent of the liquid scintillation cocktail producing a
homogeneous source with low chemical quench. Other precipitates will not readily dissolve in
the cocktail. These must either be dissolved in an aqueous solution prior to mixing with the

cocktail or can be suspended as a finely divided powder in the cocktail producing a
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heterogeneous mixture. To ensure that the solid remains suspended it is important to form a gel
in the scinitillant. This is achieved by using a purpose-designed gel cocktail that forms a gel on

mixing with water, or by adding silica to the cocktail. In either case the counting efficiency is

lower than for a homogeneous sample.

Choice of vial is also an important consideration. Glass vials have elevated levels of natural
isotopes such as K compared with polythene vials. In order to reduce the background still

further, polythene vials were used throughout the study.

The use of plastic vials can lead to other problems. The liquid scintillation spectrum can be
distorted by scintillant permeating into the wall of the vial. This is particularly a problem when
using external standardisation for quench correction. The introduction of ‘environmentally
friendly’ cocktails which employ low vapour pressure solvents has reduced this problem.

However, when using xylene-based scintillants glass vials are often more appropriate.
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2.5 Review of Cerenkov counting

2.5.1 Introduction

Cerenkov counting is a valuable technique for the determination of medium to high-energy
beta emitters (> 300 keV E,,) in solution using conventional liquid scintillation counters. The
technique does not require scintillant allowing the sample to be recovered following counting
and does not produce organic wastes that require a specific disposal procedure. As no
scintillants are used, chemical quench is not significant, acidic samples are easily counted and
backgrounds tend to be lower. Colour quench is still of importance. Counting efficiencies for
Cerenkov counting are lower than for conventional liquid scintillation counting (e.g. for 0y
the counting efficiency drops from Ca. 100% with liquid scintillation counting to Ca. 40%
with Cerenkov counting). Another potential benefit is that the low background obtained using
Cerenkov counting results in a higher signal-to-background ratio than conventional liquid

scintillation counting.

2.5.2 Theory of Cerenkov radiation

Cerenkov radiation is produced by a charged particle passing through a medium at a velocity
greater than the speed of light in that medium. A good summary of Cerenkov radiation is given
by Parker and Elrick (1970). As the charged particle passes through a dielectric medium,
electronic polarisation is produced along the path of the charged particle. After the charged
particle has passed the polarised molecules de-excite with the emission of electromagnetic
radiation. The electromagnetic radiation produced is propagated with a phase velocity of c¢/n
where c is the speed of light and n is the refractive index of the medium. If the velocity of the
charged particle, v, is less than the velocity of the propagated electromagnetic radiation (i.e. v

< ¢/n) then the electromagnetic radiation will interfere destructively and no radiation is

emitted.
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Figure 2.3 Half-angle of cone of emission of Cerenkov light in water as a function of electron

energy (after Parker and Elrick, 1970)

If v > c/n some constructive interference will occur in certain directions and a pulse of
electromagnetic radiation is observed. Cerenkov radiation is therefore analogous to the sonic
boom produced by aircraft travelling faster than the speed of sound. As with a sonic boom, the
Cerenkov radiation is emitted in a cone with a half-angle, ¢. The half-angle is dependent on the
velocity of the charged particle inducing the radiation and on the refractive index of the

medium and is given by the equation cos¢ = ¢/vn.
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Figure 2.4 Electron Threshold Energy for Cerenkov emission as a fanction of the refractive index of the

medium. (After Parker and Elrick, 1970)
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For a given medium it can therefore be seen that the charged particle must possess a certain
minimum energy, or threshold energy, for Cerenkov radiation to be observed. The threshold
can be calculated using the equation below. For practical purposes a threshold of 300 keV in
water is normally assumed. In the equation 0.511 is the rest mass of the electron in MeV, and n

is the refractive index of the medium.

E_. =0.511(1- —12-)'0-5 ~1)MeV
n

Equation 1 - Calculation of threshold energy for production of Cerenkov radiation

(after Kessler, 1989)

A wide range of wavelengths are produced predominantly in the ultra-violet region, extending
into the visible region but becoming negligible towards the infra-red region. The duration of
the flash of light is very short (around Ins) and the number of photons produced during the
passage of the charged particle through the medium is lower than that encountered in liquid
scintillation counting. For this reason the spectrum of a beta emitter appears at the low end of
the energy spectrum, usually in the tritium region of a liquid scintillation counter. The number
of photons produced (Ng) is dependent on the energy (E) of the beta particle entering the

medium and is given by the equation below

1

ﬂ2n2

N =c[™ (1= ——)dx

Equation 2-Calculation of the number of photons produced, Ng, for a given beta energy, E.

2.5.3  Factors affecting Cerenkov counting efficiency

Only electrons with energies above the threshold energy will produce photons and the number
of photons produced will depend on the actual energy of the electron. As a beta decay results
in the production of beta particles (electrons) with a distribution of energies, only the
proportion of beta articles in the distribution with energy above the threshold energy will result
in observable Cerenkov radiation (see Table 2.2). As a consequence of this Cerenkov counting
always results in lower counting efficiencies than conventional liquid scintillation counting as

there is always a proportion of the beta spectrum that is below the threshold energy and
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therefore does not contribute to the production of Cerenkov radiation. Counting efficiency is

hence dependent on the beta decay energy of the nuclide.

Table 2.2 : Average number of Cerenkov photons produced (360-700nm) per beta decay in water

Photons per disintegration

Maximum % of B-spectrum above
Radioisotope Emax (MeV) Mean Energy Cerenkov threshold
e 0.71 7 40 60
2041 0.77 5 47 53
24
Na 1.39 30 160 84
32p 1.71 40 210 90

From Parker and Elrick, 1970

The production of Cerenkov radiation is influenced considerably by the refractive index of the
medium and density of the solvent (which affects the ‘stopping power’ of the solvent). An
increase in refractive index of 0.01 results in an increase in counting efficiency of less than 1%
for K and "Ce/"**Pr but an increase in efficiency of nearly 10% for **C1 and ***T1 showing
that the effect is more pronounced for beta emitters with energies nearer the threshold energy.
A decrease in density of 7% results in an increase in efficiency of 10% for **'T1 but less than
1% for the high energy beta emitter, ’P. The decrease in density reduces the stopping power of
the solvent and hence increases the path length of the beta particle in the medium, increasing

the number of excitations that occur. Again this is more significant for low energy beta

emitters.
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Figure 2.5-Effect of volume on Cerenkov counting efficiency (Ross, 1976)

The volume of the sample will affect the counting efficiency of the sample. A volume greater
than 10ml has been found to give the maximum counting efficiency with efficiencies dropping

by between 10% (*°St/°Y) and 22% (**Cl) on reducing the volume to 1ml (Kessler, 1989).

Once the Cerenkov radiation has been produced, its attenuation may limit the intensity
reaching the photomultiplier and further reduce counting efficiencies. As shown earlier, the
Cerenkov radiation is emitted directionally in a cone and hence coincidence circuitry may not
efficiently detect Cerenkov events (c.f. scintillation events are isotropic and hence will trigger
two photomultiplier tubes simultaneously). However, counting without coincidence will result

in excessive backgrounds due to photomultiplier noise and chemiluminescence events.

The type of vial will affect the efficiency of Cerenkov measurement. As the majority of the
emitted Cerenkov spectrum is in the ultra-violet region, significant absorption of Cerenkov
radiation by the glass vial will occur. The use of polythene vials minimises this effect and
increases counting efficiency. The diffusive nature of plastic vials also helps to overcome the
directional nature of the Cerenkov radiation emission. The use of wavelength shifters which
absorb the ultra-violet radiation and re-emit in the visible region have also been successfully

used to overcome problems associated with the absorption of ultra-violet radiation in the glass
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vials and photomultiplier envelope. The properties of some wavelength shifters are

summarised in Table 2.3.

Table 2.3 - Wavelength Shifters used in Cerenkov counting

Shifter Concentration Effect on counting efficiency
2-naphthylamine-6,8- 100mg/litre Doubled counting efficiency up
disulphonic acid, Na or K salt to 2 MeV'
B-methyl umbelliferone Effect dependent on pH'
1000ppm 30-50% increase®
7-amino-1,3-naphthalene SmM By <1 MeV not stated’

disulphonic acid 2.5mM E,p > 1 MeV

Esculin 5-1000mg/litre 50-70% increase in counting

efficiency’
30-50% increase’

10-30% increase’

B-naphthylamine 5-5000mg/litre

B-naphtoic acid 5-1000mg/litre

p-terphenyl 500-1000mg/litre 10-30% increase”
naphthalene 5-1000mg/litre -5-+5% increase”
Ca tungstate 100-1000mg/litre -5-+5% increase’

Data from  'Parker and Elrick, 1970
*Francois, 1973

The wavelength shifters improve counting efficiency considerably. However, as the
wavelength shifter is dissolved in the solvent and acts in a similar manner to the secondary
fluor in conventional liquid scintillant, the wavelength shifter can be subject to chemical
quench and also prevents any recovery of the sample after counting. Hence a number of the
advantages of Cerenkov counting are lost. One solution is to coat the surfacé of the
photomultiplier tube with a thin layer of solid wavelength shifter such as lithium fluoride. This
reduces the absorption of ultra-violet radiation by the glass envelope of the photomultiplier
tube and its use does not affect the chemistry in the counting vial. However, this approach

requires modification to counting equipment that is usually used for other purposes.

50



Chapter 2 - Review of techniques for the determination of pure beta emitters

Screw Cap

Figure 2.6 — Two-chamber vial proposed by Ross (1976) for Cerenkov counting

To overcome this Ross (1976) suggested the use of a two-chamber quartz vial. The inner
chamber contained the sample whilst the outer chamber contained the wavelength shifter. As
there was no mixing of the sample with the wavelength-shifter chemical quench could not

occur and the sample was still recoverable after counting.

The effect of the two-chamber vial can be seen in Table 2.4. The inner sample chamber
contained ¥’Sr in 0.01M HCL. The relative counting efficiency for ¥Sr with various compounds
in the outer compartment was determined. Strong chemical quenching agents in the inner
sample chamber had no effect on the relative counting efficiency as Cerenkov radiation is not

affected by chemical quench.

Table 2.4 : Relative counting efficiency of *’Sr in a two chamber vial.

Outer chamber contents Concentration Relative counting efficiency
water 100% 1.00
ethanol 95% 1.02
benzene 100% 1.06
toluene 100% 1.07
dimethyl-POPOP 0.7 g/litre in toluene 1.88
4-methyl-umbelliferone 0.5 g/litre in 75% ethanol 1.69
2-naphthol-3,6-disulphonic acid, 0.1 g/litre in water 1.59

Na salt

B-naphthol 0.1 g/litre in 50% ethanol 1.37
1-naphthylamine 0.1 g/litre in 50% ethanol 1.22

From Ross, 1976
Colour quench is of considerable importance in Cerenkov counting as many organic molecules

absorb in the ultra-violet region. Colour quenching has proved of most concern when using

Cerenkov counting in the measurement of biological materials. Francois (1973) noted a
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decrease in counting efficiency of “’K in urine of 50% compared with ’K in water. Careful
sample pre-treatment and chemical separation of the assayed radioisotope, although prohibitive
in the biological sciences, is normally effective when using Cerenkov counting in
radioanalytical chemistry. The effects of colour quenching can be corrected for by utilising
quench correction techniques applicable to liquid scintillation counting although the technque

of “channels ratios’ has been reported as the most successful correction technique (Ross, 1976).

2.5.4 Application of Cerenkov counting

Cerenkov counting has found a range of applications in biomedical studies. Measured nuclides
have included *’Sr in urine, “’K in urine, *Na in tissue media and **Rb in plant ion transport
studies. Cerenkov counting has also been used for the determination of **P in a wide range of

matrices.

Cl (as chlorobenzene) has been determined using methyl salicylate as a medium. The methyl
salicylate has a high refractive index and also exhibits wavelength shifting properties. A
counting efficiency of 82% was measured compared to 28.4% for **Cl in toluene alone (Wiebe
and Ediss, 1976). However, the methyl salicylate was shown to be more resistant to chemical

quench than a toluene-scintillant mixture.

In environmental monitoring, Cerenkov counting has found more limited application. Again
the technique has mainly been applied to the determination of **Sr/”°Y and **P. Cerenkov

counting provides a low background, non-destructive technique with counting efficiencies for
Y around 45%.

P has been determined in reactor effluents using Cerenkov counting (Baker et al, 1973).
Following the removal of interfering ions on a mixed cation exchange resin/antimonyl chloride
column and precipitation of *°S as barium sulphate, the **P was precipitated as ammonium

phosphomolybdate and then re-dissolved in 5M ammonium hydroxide prior to Cerenkov

counting.
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2.6 Comparison of liquid scintillation counting with non-radiometric techniques

For short-lived radioisotopes with correspondingly high specific activities, radiometric
techniques offer the most sensitive means for quantification of the radioisotope. For long-lived
radioisotopes, the specific activities of the isotopes are sufficiently low that the isotope can be
detected with sufficient sensitivity using non-radiometric techniques. In order to obtain
isotopic information most non-radiometric techniques rely on mass spectrometry. A wide
range of mass spectrometric techniques has been developed that differ mainly in their method

for ion production (Table 3.5).

Table 3.5: Examples of mass spectrometric techniques that have been applied to measurement of
long-lived radioisotopes

Mass Acronym Ion production Sample
spectrometric introduced as
technique '
Thermal ionisation TIMS Thermally (electrical heating of a filament Purified solid
mass spectrometry supporting the sample) (loaded onto
filament)
Inductively coupled ICP-MS Introduction of sample into a gas plasma Solution
plasma mass gl
spectrometry Hry
Vapour (Laser
ablation)
Secondary ion mass SIMS Sputtering of secondary ions from the Solid
spectrometry surface of a solid following impact by a
primary ion (e.g. O,")
Resonance RIMS Laser-induced specific ionisation of a Solid
ionisation mass separately atomised sample
spectrometry
Accelerator mass AMS Tandem accelerator-produced particles Purified solid
spectrometry

Of the techniques listed in Table 3.5 only ICP-MS and TIMS were readily available and hence
considered further.

Of the isotopes studied in this project, only Tc has a sufficiently long half-life to be

considered for measurement using a non-radiometric technique.
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Table 3.6 : Half-lives and specific activities for selected radionuclides

Isotope Half-life Specific activity
(Years) Bqg/g
*Fe 2.7 8.9x 10"
SNi 100.04 2.1x10"%
*Sr 29.12 5.1x 10"
“Tc 2.13x10° 6.3x10®

Determination of *Tc has been performed by a number of investigators using Thermal
Ionisation Mass Spectrometry. TIMS relies on the precise measurement of the ratio of one
isotope to another. *Tc will form a positive ion and hence could potentially be measured using
the VG Sector 54 TIMS. However, there are no natural isotopes of Tc to ratio the *Tc to. One
option is to spike the sample prior to chemical separation with a known quantity of a suitably
long-lived isotope of Tc other than *’Tc. The concentration of *’Tc in the sample can then be
determined using the technique of isotope dilution by measuring the ratio of T to the second
Tc isotope of known concentration. Two isotopes of Tc, *"Tc (t, = 2.6 x 10%) and *Tc (t, =
42 x 10%), have sufficiently long half-lives to be suitable for use as a TIMS spike.
Unfortunately, neither of these isotopes is readily available and so TIMS was not considered

further for the determination of *Tc.

ICP-MS has found wider application in the routine analysis of long-lived radioisotopes. *Tc
has been determined in a range of samples by ICP-MS (Tagami and Uchida, 1993; Thsanullah
and East, 1994; Yamamoto et al, 1994). Following chemical separation, the concentration of
*Tc can be determined either by comparison with a calibration curve or by isotope dilution
(c.f TIMS). An isobaric interference from Ru is observed and must be removed by
chemically separating Ru from Tc. However, the limit of detection for *Tc using ICP-MS is
only marginally superior to radiometric techniques. In addition, the developed chemical
separation scheme for *Tc (see Chapter 4) was more easily integrated with liquid scintillation
measurement of “Tc activity. ICP-MS was therefore not adopted in this study for *Tc

determination.
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Table 3.7: Published mass-spectrometric techniques for the analysis of radioisotopes

Mass spectrometric Isotope Typical detection limit Reference
technique pg/ml or ppt
SIMS U isotopes in particles Toole (1998)
RIMS PTc 0.0016 pg Trautmann (1993)
U and Pu Donohue (1984)
AMS “c
e Beasley (1992)
®Ni
*Te
129I
Gore (1987)
ICP-MS 2y 2 pg/ml® Berryman (1997)
(pneumatic nebuliser) S7r Not reported Alonso (1994)
“Tec 4 pg/ml Thsanullah (1994)
1297 300 pg/ml Brown (1988)
226Ra 0.2 pg/ml Hodge (1994)
232Th
“Np Ca. 0.01 pg/m!l® Yamamoto (1994)
238U
#%py, #%py
TIMS Ra Cohen (1991)
B3Py Taylor (1998)
2082 Edwards (1986/7)
Pu McCormick (1992)

“Using electrothermal vaporisation
® with ultrasonic nebulisation

pg=1x10"%g
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2.7 Review of chemical separation techniques employed prior to liquid
scintillation counting

A wide range of radioanalytical separations has been developed for the separation of pure beta-
emitting radioisotopes. In many cases, the techniques were developed for the analysis of
reactor effluents or air filters used to sample nuclear weapon debris. In such cases the matrix is
relatively simple and the chemical separation is optimised for the separation of radioisotopes
from one another rather than from bulk matrix elements. In most cases the analysis of the

specific radioisotope in an environmental matrix is more complex, requiring further method

development (Chapters 4 & 5).

A summary of the published methods for Fe, Ni, Sr, and Tc isotopes is given below.
Radioisotopes of each element with half-lives greater than 30 days are listed along with the
main production route. Only neutron capture (n,y) and fission (n,f) reactions are considered.
For fission reactions, both thermal and fast neutron fission yields are listed. Thermal fission
yields give an indication of likely production rates in nuclear reactors whilst fast neutron
fission yields relate to detonation of nuclear weapons. In all cases the cumulative fission yield
is quoted. For neutron activation, integrated thermal neutron cross sections for neutron
energies between 1 x 10° and 10 eV are quoted. Fast neutron cross sections are not quoted, as
they will be highly dependent on the neutron energy spectrum present during the detonation

and the coincidence of fast neutron energies with resonance energies of the capturing nucleus.

2.7.1 Iron radioisotopes

Main production route : neutron capture of stable iron

Isotope Half life B decay Parent Natural Thermal
energy Emax isotope abundance neutron cross
keV (yield) section (barns)

*Fe 270y e.c. SFe 5.845 % 2.59

*Fe 45.10d 132 (1.3%) Bre 0.282 % 127

275 (45.3%)
467 (53.1%)

e.c. — decay via electron capture

Iron-55 is produced along with *Fe by neutron activation of stable Fe isotopes. “Fe in low-

level wastes has been determined following limited chemical purification via its x-ray
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emission. Sensitive determination of **Fe requires more rigorous chemical separation followed
by liquid scintillation analysis. However, chemical separation is usually complicated by the
large amounts of stable iron often present in the sample. Preconcentration of *Fe has been
achieved by precipitating Fe(OH);. Although this step will effectively preconcentrate Fe and
separate it from the alkali elements, many other radioisotopes will co-precipitate with the
Fe(OH);. If ammonia is used to precipitate the Fe(OH); elements that form soluble amine
complexes, such as Co and Ni, will remain in solution improving the degree of purification
achieved in this step. Precipitation of a white ferriphosphate complex has also been used to
purify Fe and provide a source suitable for liquid scintillation counting (Eakins and Lally,
1965). The ferriphosphate is prepared by dissolving Fe(OH); in orthophosphoric acid and
adding an alcoholic solution of 0.01M ammonium chloride. The compound thus formed has

the reported stoichiometry of NH,H,[Fe(PO4),],.H,0.

Purification of Fe has béen performed using anion exchange chromatography (e.g. Baker ef al,
1973). Fe is retained as the FeCly species in HCI concentrations greater than 6M and can either
be eluted using dilute HCI or more rapidly using HNO;. Extraction chromatography has been
less widely used although methods based on Chelex 100 resin (K&nig ef al, 1995) and TRU®
resin have been reported. Fe is readily purified from most other radioisotopes by extracting the
iron chloro- complex from >6M HCI into a solvent such as di isopropyl ether, methyl
isobutylketone or ethyl acetate. Extraction of Fe into di(2-ethylhexyl) phosphoric acid
(HDEHP), diluted with toluene, has also been used to both separate Fe and produce a source

suitable for liquid scintillation counting (Cosilito ef al, 1968)

2.7.2  Nickel radioisotopes

Main production route : neutron capture of stable nickel

Isotope Half life B decay energy Parent isotope Natural Thermal
E oy keV abundance neutron cross
(yield) section (barns)
*Ni 75x 10%y EC Ni 68.3 4.64
®Ni 100y 66 (100 %) Ni 3.59 14.25
Ni 2.5h 655 (28.1%) #Ni 0.91 1.49
1021 (9.8%)
2137 (60.7%)
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Nickel-63 is produced via the 62Ni(n,y)“Ni reaction . Although ®Ni is only present in natural
Ni at an abundance of 3.59%, the isotope has the highest neutron capture cross section of all
the nickel isotopes and so activation of stable nickel will produce significant quantities of “Ni.
*Ni will also be produced via the *Ni(n,y)*Ni reaction. However the neutron cross section for

**Ni is low and the ratio of *Ni/**Ni produced by thermal neutron irradiation of stainless steel

is approximately 1:100 (Holm et al, 1990)

Dimethylglyoxime is by far the most commonly used complexing agent for nickel. The
reagent is only slightly soluble in water and is usually dissolved in ethanol or acetone.
However the sodium salt is more soluble in water and can be uéed instead. Palladium and
bismuth (in the presence of chloride) will also form complexes, as will cobalt and copper, but
to a lesser extent. Cobalt and copper interference is more significant if the sodium salt of
dimethylglyoxime is used. o-furildioxime has been used for complex formation with nickel.
Cyclohexane-1,2-dionedioxime and cycloheptan-1,2-dionedioxime have also received
attention for nickel determination by gravimetry as the compounds are water soluble and allow

determination of smaller quantities of nickel. (Voter and Banks, 1949)

Testa et al (1991) took the separation of nickel a stage further by developing a method for
preparing columns of dimethylglyoxime loaded onto a Microthene® support. This column was
then used to extract nickel from solutions buffered at pH 8. Nickel was removed from the

column using 0.1M HCI and recoveries (determined gravimetrically) were claimed to be 95-
100%.

Ion-exchange purification can also be used to remove interfering radioisotopes from *Ni.
Nickel differs from other transition metals in not forming an anionic chloro-complex and hence
is not retained on an anion exchange column in HCI media. By passing a sample in
hydrochloric acid through an anion exchange column, most transition metals of significance
are adsorbed, whereas nickel passes through the resin bed. Such an approach was adopted by
Williams ez al (1994) who used it to successfully decontaminate **Ni from a number of other
activation products, although a final tri-octylphosphine oxide (TOPO) extraction was required
to remove all traces of chromium. The technique is useful in separating Ni from small

quantities of Co that follow the Ni through the dimethylglyoxime column.
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2.7.3  Strontium radioisotopes

Main production route : fission product

Radioisotope  Half-life B decay By Py Py ®pu
energy thermal fast neutron thermal fast neutron
E o keV fission yield  fission yield fission yield fission yield
(yield)
Sr 64.84 d e.c.y 2.9x10™ % - 470x10°% 543x10°%
¥sr 50.5d 1492 (100%) 477 % 439 % 1.68 % 1.69 %
Sy 29.12y 546 (100%) 5.85% 525 % 1.97 % 2.08 %

e.c. —decay via electron capture

"Sris a major fission product that is usually concentrated by co-precipitation with calcium
carbonate, oxalate (Doshi ef al, 1968) or phosphate (from samples with high phosphate content
such as milk or soils). Purification of the strontium from the calcium is achieved by selective
precipitation of strontium nitrate through the addition of fuming nitric acid to aqueous
solutions containing Sr. Barium and the associated fission product '*'Ba, is separated from Sr
by precipitating barium chromate at controlled pH. The Y daughter is removed by co-
precipitation with iron hydroxide and the final source is counted periodically over about two
weeks to monitor the Y in-growth (for example RADREM, 1989). A method has also been
developed whereby fuming nitric acid is replaced by concentrated nitric acid (Bojonowski and
Knapinska-Skiba, 1990). Water volumes are kept to a minimum and precipitates are washed

with acetone to remove calcium.

Alternatively the *°Sr activity can be determined indirectly through the measurement of the Y
daughter which is allowed to attain equilibrium. The *°Y fraction can then be purified and
counted to determine the activity of the *’Y. This approach has been used in the determination
of *Sr in uranium fission products (Bajo and Tobler, 1996), reactor waste (Martin, 1987) and
in grass and soil samples (Bajo and Keil, 1994). In all cases the Y was separated by solvent
extraction into tributyl phosphate from nitric acid. The activity of *’Sr can then be calculated
from the Y activity. This approach is useful if the presence of *Sr is suspected, as this would
interfere with the monitoring of *°Y in-growth in the *°Sr source. Final counting can be

performed using a technique suitable for beta counting..
The separation of Ca and Sr has also been reported using zirconium molybdate (ORNL, 1956).
Columns (10cm x 0.19cm?) of the material were prepared and 0.1IM NH,C1/0.005M HCI

solutions containing the alkaline earth elements were loaded onto the columns. Ca was eluted
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with 10 column volumes of 0.2M NH,C1/0.005M HCL. Sr was eluted with 4 column volumes
of 0.5M NH,Cl/0.005M HCIL. Ba and Ra were eluted with 10 column volumes 1M
NH4C1/0.005M HCl and 5 column volumes of saturated NH,C1/0.01M HCI respectively.

The use of macrocyclic ether extractants for the separation of radiostrontium has been reported
(Kimura ef al, 1979). Strontium was extracted into 0.012M dicyclohexyl 18-crown-6 in

chloroform. Picrate was found to be the most effective counter-ion for the extraction

More recently the separation of Sr from Ca has been achieved using Sr-resin® resins supplied
by Eichrom Industries. The resin, comprising of a crown ether (tert-butyl dicyclohexano-18-
crown-6) supported on a polymeric macroporous resin (for example Amberlite™ XAD-7),
selectively absorbs Sr without retaining the Ca. The resins have found many applications
including the separation of *°Sr from effluents and milk, although care must be taken as
quantities of Ca can reduce the adsorption of Sr. It is interesting to note that the adsorption of
Sr on the column is more seriously affected by the presence of K that must be removed prior to
the sample being loaded onto the column (R Shaw, pers. comm.). Sr-resin® columns have been

used for the separation of *’Sr from up to 1 litre of milk samples (Jetter and Grob, 1994).

Cryptands as well as crown ethers have been used for the isolation of Sr from matrix elements,
particularly Ca. 199 pumol of Cryptand C-222 on Chelite S resin adsorbed 90% Sr from a
100ml milk sample at pH 7 after 48 hours (Tait er al, 1995). Cs was retained to a limited

degree but was easily removed by washing the resin. Sr was eluted with dilute nitric or

hydrochloric acid.

2.7.4  Technetium radioisotopes

Main production route : fission product

Radioisotope ~ Half-life B decay Py By Ppu Ppy
cnergy thermal fast neutron  thermal fast neutron
Eoax keV fission yield  fission yield  fission yield fission yield
(yield)
Te 260x 10°y - - - 323x10°%  5.12x107%
B¢ 420x10°y 397 (100%) 6.13x10°% 1.6x10™°% 20x107% 3.4x107 %
#Te 212x10°y 294 (100%) 6.18 % 5.96 % 6.18 % 5.84 %
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Pre-concentration of Tc from 1 - 100 litres of seawater has been achieved by co-precipitating

the Te(IV) on Fe(OH); Tc(VII) must first be reduced to Te(IV) by adding 0.7g/litre of FeSO,.

7 Hy0 to the acidified water (Holm, 1984). It is more usual to use Fe(OH); co-precipitation to
remove contaminating radioisotopes whilst leaving the Te(VII) in the supernate for further

purification (for example Harvey et al, 1991).

Te has been purified by co-precipitation on either rhenium sulphide (Harvey et al, 1991) or

copper sulphide (Golchert and Sedlet, 1969) formed by adding thioacetamide to an acidic

solution containing Tc and Re .

Final preparation of Tc sources is often achieved by co-precipitating the Tc on a precipitate of
tetraphenyl arsonium perrhenate. This precipitate acts as a gravimetric yield monitor for Re
(and hence Tc) and provides a source suitable for gas flow proportional counters, Geiger
Miiller tubes and liquid scintillation counting (the precipitate readily dissolves in scintillant).
Harvey et al (1991) noted that co-precipitation of the Tc may not be quantitative below a
certain concentration of tetraphenyl arsonium chloride (TPAC). 100% Tc was co-precipitated
when only 30 mg of TPAC was present. However, 60 mg of TPAC was required to fully
precipitate the Re (total of 10 mg Re present).

Carbonate co-precipitation has been used to remove contaminants such as the actinides,
transition metals, lead, strontium and calcium from the Tc that remains in the supernate (Chu

and Feldstein, 1984)

Chen et al (1990) used three 13 x 2.5 cm Dowex AG1-X4 (100-200 mesh) anion exchange
resin columns running in parallel and conditioned with 0.5M sulphuric acid to extract Tc from
200 litre of acidified sea water. The columns were washed with 1M nitric acid and the Tc was

striped from the columns with 10M nitric acid.

Harvey et al (1991) used anion exchange for a purification stage. A column of 1.5 ml of AG1-
X8 (100-200 mesh) conditioned in 2M sodium hydroxide was used. A total of 100 ml of
Washings was passed through the column. The Tc and Re were eluted with sodium perchlorate
reagent. It was noted that the Re eluted prior to the Tc and care was required to ensure that a

sufficient volume of eluent had been passed through the column to completely elute both
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elements. The perchlorate ions needed to be removed before precipitating the Re(Tc) as the

tetraphenyl arsonium perrhenate. This was achieved by co-precipitation on rhenium sulphide.

Extraction of Tc from dilute sulphuric acid solutions into a 5% TOA-xylene mixture has been
used to purify Tc (Golchert and Sedlet, 1969; Chen ez al, 1990). Tc is back extracted into
sodium hydroxide. Tc has also been extracted from nitric acid solutions using 30%TOA in
Xylene, although care must be taken as nitric acid concentrations above 4M lower the

efficiency of the extraction (Hirano, 1989). Again the Tc was back-extracted into 5M sodium

hydroxide.

TBP (Holm, 1984; Garcia-Leon, 1990) has been used to extract Tc from dilute sulphuric acid
solutions.  Formation of the tetraphenyl arsonium complex of Tc followed by solvent

extraction into chloroform has also been used for Tc purification (Martin and Hylko, 1987)

The extraction of Tc as an amine complex can be achieved in two ways. The amine can be
added to the aqueous phase to produce an amine complex, which can be extracted into an
organic hydrocarbon. Alternatively, the amine can be dissolved in the organic phase, which is
then used to extract Tc from the aqueous phase. The choice of method depends on the amine
being used and its solubility in aqueous media. Generally the solubility of an amine decreases
with molecular mass and in practice all amines containing more than six carbon atoms are
regarded as insoluble (Morrison and Boyd, 1987). For quaternary amines all amines above tri-

hexyl amine are insoluble.

Boyd and Larson (1956) investigated the extraction of Tc by a number of amines. A maximum
distribution coefficient of 105 was noted using 0.3g cetyl dimethyl benzyl ammonium chloride
(CDMBA) in 100 ml of chloroform. 5% TOA in benzene, 5% dimethyl octyl amine in
benzene, Hyamine 10X and Hyamine 1622 exhibited distribution coefficients of 598, 53.1,
52.3 and 50 respectively (all extractions from 1IN sulphuric acid). The distribution
coefficients of Tc between a 5% TOA solution in various organic solvents and IN sulphuric
acid was also measured. The highest distribution coefficient was measured for 5% TOA in
xylene (110.6). Distribution coefficients for benzene, trichloroethylene, carbon tetrachloride

and chloroform were also measured (63.5, 52.2, 37.5 and 30.6 respectively).
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Maeck er al (1961) studied the extraction of a wide range of elements including Tc and Re as
quaternary propyl, butyl and hexyl amine complexes. The amine was added to the aqueous
phase (except for the hexylamine, which was dissolved in methyl isobutyl ketone) and the
aqueous phase mixed with methyl isobutyl ketone, which extracted any amine complex
formed. It was noted that, in general, extraction efficiency increased with increasing molecular
mass of the amine. Tc and Re were quantitatively extracted from sodium hydroxide (1 - 5N),
sulphuric acid (1 - 5N) and hydrofluoric acid (1 - 5N) although the extraction of Re fell slightly
in high HF concentrations. In the nitric acid system, extraction of Tc and Re fell with
increasing nitric acid concentrations. In the hydrochloric acid system, Tc was quantitatively
extracted over all acid concentrations. However, the extraction of the propylamine complex of

Re fell with increasing acid concentration. It was proposed that the Tc and Re were extracted

as species [(R4N)+.(Tc(Re)O4)'].
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3 Development of source preparation and measurement techniques

3.1 Stability of the Wallac 1220 Quantulus liquid scintillation counter

The performance and stability of the liquid scintillation counter was assessed throughout the project
by routinely counting a '*C standard and blank sample that were supplied with the liquid scintillation
counter. The two test sources were prepared in glass vials, purged with N, and sealed to ensure that
the sources were stable over long periods of time. The count rates observed for the two sources are

plotted in Figure 3.1. The distribution of observed counts all lie within two standard deviations of

the mean count rate.
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Figure 3.1 : Scatter of measured standard and blank counts over the period of the study.
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3.2 Deconvolution of isotopes of the same element

The nature of the beta spectrum resulting from the continuous distribution of the decay energy
between the beta particle and the antineutrino makes spectral deconvolution of all but simple binary
mixtures of beta emitters highly imprecise. For radioisotopes of different elements, this limitation in
deconvolution may be overcome by chemically isolating the radioisotopes of interest. However, for

radioisotopes of the same element this is not applicable.

All the pure beta-emitters studied, with the exception of **Tc, may be present in association with
other radioisotopes of the same element. Strontium-90 will be accompanied by ¥Sr (t,, = 50.5 days).
Deconvolution of mixtures of *Sr, *Sr and the daughter *°Y may be achieved by making use of

their varying half-lives and repeated counting. This has been discussed in Section 3.9.

Iron-59 (t,, = 45.10 days) will be produced along with Fe. The presence of *Fe may be readily
determined using gamma spectrometry (E, = 1099 keV [56.5%] and 1292 keV [43.2%]). If
convenient the *Fe may then be allowed to decay prior to **Fe measurement. Alternatively, the
liquid scintillation counter should be configured to distinguish between the *Fe (Epmax = 275 keV
[45.3%] and 467 keV [53.1%]) and the lower energy >*Fe with appropriate corrections being applied
for the spill-over of *’Fe into the **Fe energy window. The deconvolution of *Fe from **Fe was not
considered as part of this study as any Fe originally present in the samples of interest had decayed
prior to sample analysis. However, for waste characterisation, the potential for *Fe to interfere with

55 .
the ’Fe measurement must be taken into account.

Nickel-59 (t,, = 74, 950 years)is produced along with *Ni by neutron activation of Ni. However, the
typical activity ratio of ®*Ni:*Ni has been estimated as 100:1 (Holm et af, 1990). Again, suitable
windowing of the liquid scintillation counter and correction for spill-over of counts should be

applied if the presence of **Ni is suspected.
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3.3 Optimisation of source preparation techniques for liquid scintillation counting

A number of source preparation techniques have been investigated as part of this study. These are :

1. Extracting the radioisotope into an organic solvent that is then mixed directly with the
scintillant (*Tc).

2. Mixing an acidic solution containing the purified radioisotope directly with the scintillant
(®Ni, and the special case of *°Fe — see Section 3.6).

3. Precipitating the radioisotope with a stable carrier and counting the precipitate (*Ni,
Te).

In addition, the counting of high-energy beta emitters may also be accomplished with minimal
source preparation using the technique of Cerenkov counting. The application of Cerenkov counting

to the measurement of *°Sr is discussed in Sections 3.8 & 3.9.

3.4 The extraction of a radioisotope into an organic solvent

Many non-halogenated organic solvents employed in solvent exrtaction will readily mix with liquid
scintillant to produce a source that exhibits low quench. Such an approach is an integral part of a
separation procedure. As such, the specific case of *Tc will be discussed in detail in Chapter 4. In
general, with careful choice of the organic solvent, quenching is significantly reduced in such

systems and improved counting efficiencies compared to an aqueous-based system are achieved.

One drawback to extracting the analyte into the organic phase prior to mixing with scintillant is that,
in many cases, it is difficult to determine the overall chemical recovery of the method including the
final extraction stage. Although the final extraction procedure may be assumed to be 100% efficient,
the nature of solvent extraction makes this assumption unreliable. For *Tc this is overcome by using
the gamma-emitting radioisotope “™Tc that can be measured in the final source to determine the
overall chemical recovery of the method. The *™Tc is then allowed to decay prior to measurement
of PTc by liquid scintillation counting, hence the *™Tc added to the sample does not seriously

interfere with the final *Tc measurement.

The extension of this approach to other analytes is limited to those for which a technique is available
to determine the overall chemical recovery of the method that includes the final extraction stage.

This means that the approach of organic extraction for source preparation is limited to a small range

of radioisotopes.
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3.5 Measurement of acidic solutions by liquid scintillation analysis

The chemical purification of ®Ni and **Fe results in an acidic solution containing the purified
radioisotope. This solution may be mixed with a commercially available liquid scintillant prior to
liquid scintillation counting. The miscibility of commercially available scintillants varies widely and
is dependent on the acid type and acid concentration. In general miscibility is improved with
reducing acid strength and the final stages in the chemical purification of ®Nij are designed to limit

the final acid strength for this reason.

3.5.1 Miscibility of scintillants with acid solutions

A range of commercial scintillants was tested to study their miscibility with IM HNO; and 1M HCL
A known volume of the scintillant was shaken with increasing volumes of the acid. At first the acid
and scintillant mixed completely to produce a homogenous, stable gel. However, as the acid volume
was increased, the gel became less stable reaching a point where occluded bubbles, which did not
dissipate on standing, were clearly visible. This condition is referred to as partial mixing. On further
increasing the acid volume a white emulsion was formed that was unstable and not suitable for
liquid scintillation counting. The volumes of acid resulting in these stages depends on the acid type

and scintillant used (Figure 3.2 a and b).

The highest miscibility with acidic solutions was observed for Ultima Gold AB scintillant. This
scintillant has been specifically designed to tolerate high acid loadings for simultaneous alpha / beta
measurements in acidic solutions. However, the scintillant is expensive and its routine use is not
financially justifiable. The second highest loadings were observed for Gold Star scintillant, a
general-purpose scintillant suitable for routine use. Although the acid loadings are lower than for

Ultima Gold AB they are still sufficiently high to be of use.
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Figure 3.2 : Mixing characteristics of various commercal scintillants with
(a) 1IM HNO; (b) IM HCI

All assessments made at 22°C
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Better miscibility is observed with 1M HNO; compared with 1M HCI. For a fixed mixing ratio of
scintillant with acid, the counting efficiencies for “Ni in 1M HNO; vary only slightly with differing
scintillants (Figure 3.3). Gold Star and Ultima Gold AB gave comparable counting efficiencies for
Ni at both the 19:1 and 5:1 scintillant-to-1M HNO; mixing ratios.

@ 19:1

Ni-63 counting efficiency

Hisafe 3 |

Gold Star |
Quicksafe 400 Ev
Hionic Fluor |
Gold XR
Gold AB |

Figure 3.3 : Counting efficiency of “Ni in 1M HNO; with different scintillants.
Total sample volume = 10ml in a 22ml polythene vial. Measurements were performed at two scintillant-to-
acid ratios of 19:1 and 5: 1. All measurements made on a Packard 2250CA liquid scintillation counter

Counting efficiencies for ®Ni in 1M HNO; mixed with Gold Star and Ultima Gold AB scintillants
were constant for scintillant-to-acid ratios of 20:1 to 5:1 and then declined with increasing acid
loadings (Figure 3.4). Although, on visual observation, it appears that Ultima Gold AB has a higher
effective loading capacity for IM HNOs, the ®Ni counting efficiencies for both Gold Star and
Ultima Gold AB drop rapidly at about the same 1M HNOs loading. Both scintillant types over the
range of scintillant-to-acid ratios were stable over a period of eleven days following sample

preparation. This suggests that there is no benefit in using the more expensive Ultima Gold AB for

the measurement of **Ni.
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Figure 3.4 : Effect of scintillant-to-1M HNO; ratio on Ni counting efficiency.
Total sample volume = 10ml in a 22ml polythene vial. All measurements made on a Packard 2250CA liquid
scintillation counter

3.5.2 Dependence of “Ni counting efficiency on stable Ni mass

As well as the acid concentration and scintillant type, the **Ni counting efficiency will also depend
on the amount of stable Ni present in solution and hence on the chemical recovery of stable Ni.
Samples containing between 0.5 to 10mg Ni and 200 Bq *Ni were dissolved in 1ml 1M HCI and
2ml of water. 15ml Gold Star scintillant was added and the samples were counted on the Wallac

1220 Quantulus liquid scintillation counter.

The counting efficiency decreased as the quantity of stable Ni increased although the effect was
limited (Figure 3.5). The small drop in counting efficiency was the result of an increase in sample
quench which was apparent in the lower measured SQPE values. The measured SQPE quench index
could therefore be used to determine the counting efficiency for each sample. The relationship

between the SQPE and “Ni counting efficiency is given by the equation
E = 0.0077463(SQPE)*-11.701(SQPE)+4487

where E = the counting efficiency for “Ni.
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Figure 3.5 (a): Relationship between ®Ni counting efficiency and mass stable Ni
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3.6 Paper in Radioact. Radiochem., 9(2), 19-25 (1998):

An Optimised Method for the Measurement of >Fe Using Liquid Scintillation
Analysis.

P.E. Warwick', .W. Croudace' and M.E.D. Bains®
!School of Ocean & Earth Science, Southampton Oceanography Centre, European Way, Southampton,
SO16 3NH
‘AEA Technology, Winfrith, Dorchester, Dorset, DT2 8DH
3.6.1 Introduction

Iron-55 is produced during nuclear weapons’ detonation and nuclear power station operation. It has
been estimated that a total of 700 PBq (i.e. 10" Bq) of *Fe was released into the environment
during weapons’ testing (Hoang et al, 1968) with a further 5-6 TBq (i.e. 10" Bq) released as
authorised discharge from BNFL Sellafield up to 1996. Iron-55 is produced via neutron activation of
stable **Fe (natural abundance = 5.8%) and is present in steel components and waste streams of
nuclear reactors. Quantitative determination of the isotope is therefore important for waste disposal
auditing purposes. Measurement of “Fe has been achieved using low-energy gamma-ray
spectrometry and gas-flow proportional counting (Cosilito et al, 1968) but the most common

measurement technique is liquid scintillation counting.

Iron-55 (t,, = 2.7 years; Browne and Firestone, 1986) decays via electron capture to >>Mn with the
emission of Auger electrons and low-energy X-rays (5.89 keV, 16.2%). Both the K-Auger electron
and the K-X ray emission are detected during the liquid scintillation measurement (Gibson and
Marshall, 1972). In samples recently collected from operating nuclear reactor systems and effluent
streams *Fe is accompanied by the gamma emitter *Fe (t,, = 44.5 days). Iron-59 will interfere with
the accurate determination of >’Fe by liquid scintillation counting and suitable corrections must be
applied to correct for the spill-over of *Fe counts into the *Fe counting window. Methods for such a
correction are discussed elsewhere (De Filippis, 1991). The low decay energy of Fe also makes it
difficult to distinguish from chemiluminescence and care must be taken to eliminate this prior to

counting by dark-adapting the scintillant mixture.

Sensitive measurement of *’Fe is highly dependent on sample preparation as the distinct yellow
colour of Fe(IIl) is a very effective colour quenching agent. For example, the presence of only 20-
mg of stable Fe in 1M HCI will result in a drop in counting efficiency to less than 1% (compared to
| 40% for an identical sample containing negligible stable Fe). A number of approaches have been
adopted to reduce colour quenching from Fe(Ill). Solvent extraction of the Fe into di(2-

ethylhexyl)phosphoric acid (Cosilito et al, 1968) resulted in severe quenching at Fe loadings greater
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than 30 mg. Yonezawa et al (1985) extracted the Fe complex of 2,4-diphenyl-1,10 -phenanthroline
into toluene containing diphenyloxazole. Cobalt was also co-extracted but was preferentially back-
extracted with 0.005M EDTA. The Fe complex is brightly coloured and significant colour quench
occurs even at quite low Fe concentrations (>10-pg Fe). Colour quenching by Fe(IIT) can be largely
overcome by reducing Fe(IIl) to Fe(Il) using a suitable reductant. Konig ez a/ (1995) used ascorbic
acid to achieve this reduction. Counting efficiencies ranged from 26% (5 mg Fe loading) to 23%
(100-mg loading). However, on standing for between 7 and 25 days the yellow colouration of Fe(III)
returned. This may be restrictive when counting large numbers of samples or when counting for
prolonged count times. Alternatively, for more stable sources, a colourless Fe-phosphate complex
can be formed. Eakins and Brown (1965) precipitated Fe as a white ammonium ferriphosphate
complex by adding an alcoholic solution of ammonium chloride to a solution of Fe in phosphoric
acid. The precipitate was suspended in a gel and counted by liquid scintillation counting. This
method was limited to an effective loading of 10-mg Fe. Although this approach overcame colour
quenching, the technique required additional centrifugation stages prior to counting and was

therefore more time-consuming.

Bains initially suggested dissolving a purified Fe fraction directly into dilute phosphoric acid to
produce a colourless solution, which could be directly mixed with scintillant. Subsequent
improvements in the mixing characteristics of scintillant cocktails with acids have meant that greater
quantities of phosphoric acid solutions (and hence greater quantities of iron) may be added to
scintillant. In this study phosphoric acid is used to dissolve the purified Fe fraction forming a
colourless iron phosphate. This phosphoric acid solution is then mixed with scintillant producing a
source suitable for liquid scintillation analysis. The scintillant type, volume and molarity of
phosphoric acid and counting conditions are investigated and the minimum achievable limits of

detection are determined.

3.6.2 Methodology

3.6.2.]1 Reagents

Phosphoric acid was supplied by Merck Ltd, Poole, Dorset. Instagel, Ultima Gold AB, Ultima Gold
XR and Hionic Fluor were supplied by Packard UK Ltd, Pangbourne, Berkshire, UK. Quicksafe 400
was supplied by Zinsser Analytic, Maidenhead, Berkshire, UK. Gold Star scintillant was supplied by
Meridian, Epsom, Surrey, UK. Iron-55, as a calibrated solution, was supplied by the National
~ Physical Laboratory, Teddington, Middlesex, UK. Other reagents were supplied by Fisher Scientific,
Loughborough, UK. All reagents used were analytical grade. Milli-Q® water was used throughout.
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All measurements were made on a Wallac 1220 ‘Quantulus’ ultra low-level liquid scintillation

counter.

3.6.2.2 Chemical separation of ”Fe and LSA preparation

The pH of an acid leachate was adjusted to pH 5-6 with ammonia solution to precipitate Fe(OH)s.
The Fe(OH); precipitate was dissolved in 20 ml 8M HCI and transferred to a separating funnel. The
Fe in the aqueous phase was extracted twice into 25 ml 3:1 mixture of ethyl acetate and butyl
acetate. The organic layer was washed with 8M HCI and then the Fe was back-extracted into 6M
HNOs. The acid fraction was diluted to 10 ml and an aliquot was removed for stable Fe
measurement using atomic absorption spectroscopy to determine the chemical yield of Fe. The
remainder of the solution was evaporated to near dryness and the residue was dissolved in a few
drops of 6M HCI. The HCI solution was evaporated again to near dryness producing a residue of
iron (III) chloride. This residue was dissolved in the minimum amount of 2M H;PO,. Care was
required not to allow the Fe fraction to completely evaporate to dryness prior to adding the H;PO, as
prolonged heating converts the iron (III) chloride residue to the much more intractable oxide. The
solution was transferred to a 20 ml polyethylene scintillation vial and scintillant was added. Iron-55

was then determined by liquid scintillation counting. Typical measurement parameters are shown in
Table P1.

Table P1 : Liquid scintillation counting conditions (Wallac 1220 Quantulus counter)

Vial type 20 ml polyethylene vial
Count time 60 minutes
Optimised window (MCA 1.1) 1-200
PSA / PAC correction Deactivated
Bias Low

The capacity of various, commercially available, scintillants for phosphoric acid varies markedly.
Mixing characteristics of various scintillants with 2M H;PO, have been determined and are shown
in Figure P1. Ultima Gold AB (Packard) was chosen for subsequent studies as it exhibited the
highest loading capacity for H;PO,.
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Figure P1 : Mixing characteristics of various scintillants with 2M H;PO, at 22°C

3.6.3 Discussion

For samples containing very little stable Fe, the **Fe counting efficiency is dependent on the amount
of phosphoric acid and the total aqueous volume present. The relationship between acid volume and

counting efficiency for three acid concentrations is shown in Figure P2. In routine analysis 2M

H3POy is used to dissolve the chloride residue.
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Figure P2 : The effect of phosphoric acid volume and concentration on Fe counting efficiency

(Note) Ultima Gold AB scintillant, total volume 10 mi

A maximum of 6 ml of 2M H;PO, can be added to 14 ml of scintillant to produce a source suitable
for counting. It was found that approximately 300ul of 2M H;PO, is required to completely
dissolve/decolourise 10-mg of Fe. This places an upper limit of 200 mg Fe which can be counted.
The counting efficiency of the sample depends on the amount of Fe present and a typical
relationship is shown in Figure P3. The efficiency rapidly drops as more Fe is added to the
scintillant although even at a loading of 200 mg Fe the counting efficiency of 12% is acceptable.
The fall in efficiency is due to rising quench resulting from the increase in Fe loading and an

increase in the amount of H;PO, required to decolourise the Fe.
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Figure P3 : The effect of Fe loading on the *Fe counting efficiency
Curve (a) *Fe counting efficiency vs Fe content. The minimum amount of 2M phosphoric acid was added to
decolourise the sample. The fall in efficiency is a result of the Fe content and the added phosphoric acid.
Curve (b) shows the effect of Fe mass on counting efficiency when a constant excess volume of 2M phosphoric
acid (3ml) is used. The shallower gradient of this line compared to the first plot suggests that the phosphoric
acid is the main factor controlling sample quench.

The increased loadings of Fe obtained in this study allow more sensitive measurement of Fe in
samples with high Fe content such as soils and steel construction material. The limit of detection for

**Fe measurement is calculated from Equation 1 (derived from Currie, 1968).

2.71+4.65JC 100 100 1
X X X

L,(Bq/g)= ; I R ;1‘ [Eqn. 1]

where C represents background counts, t is the count time in seconds, E is the counting efficiency, R
is the chemical recovery and m is the mass of sample analysed in grams. For a given count time and
chemical recovery the limit of detection is governed by the mass of the sample analysed and the
counting efficiency. Increasing the mass of the sample would be expected to lower the limit of
detection. However, for samples containing iron as a major constituent, an increase in sample mass
results in an increase in iron content of the final source leading to a reduction in counting efficiency.
This effect is outweighed by the increase in sample mass being measured (Figure P4) and lower
limits of detection are still achieved by analysing a greater mass of sample. The relationship between
sample Fe content, maximum sample mass that may be analysed and the minimum achievable limit
- of detection are shown in Figures P5 and P6. All limits of detection are determined for the Wallac

1220 ‘Quantulus’ with count times of 60 minutes.
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Figure P4 : The relationship between sample loading and >°Fe limit of detection (in Bq/g Fe) for a
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Figure P5 : The relationship between sample Fe content and the maximum sample mass which may be
analysed
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Figure P6 : The relationship between sample Fe content and minimum achievable limit of detection in
Bq/g (assuming that the maximum amount of sample permissible is analysed - see Figure 3.10)
(Note) The minimum limit of detection shown above is theoretical and does not take into account the practical
problems of analysing the very large maximum theoretical masses of samples

3.6.4 Conclusions

The dissolution of *°Fe as iron (III) chloride in phosphoric acid produces a source suitable for liquid
scintillation counting. The procedure is simple, rapid and produces a colourless solution, which is
stable. The stability allows larger numbers of samples to be dark-adapted and counted in batches.
Resulting quench levels are low with correspondingly high counting efficiencies. Careful selection
of liquid scintillant results in total Fe loadings in the scintillant of up to 200 mg permitting sensitive
measurement of Fe in samples containing high levels of stable Fe. Care is required to prevent

interference from chemiluminescence and dark-adaption of the sample is essential.
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3.6.6 Addendum to Paper : An Optimised Method for the Measurement of P Fe Using
Liguid Scintillation Analysis

3.6.6.1 The relationship between *>Fe counting efficiency and sample quench level (SOPE)
In the paper, relationships were found between the mass of stable Fe, the scintillant-to-phosphoric

acid ratio and the *Fe counting efficiencies. However, having optimised the method for routine
measurement of *°Fe it is more useful to know the relationship between the **Fe counting efficiency
and the quench level of the sample as measured by the sample Spectral Quench Parameter
(External) or SQPE value (Section 2.2.2.4). The quench level of each individual sample may then be
determined at the start of the measurement and this can be used to calculate the *’Fe counting

efficiency for that sample.

3.6.6.2 Determination of sample SOPE

A solution of 200mg/ml Fe solution was prepared by dissolving an accurately weighed mass of
Fe,O; (Johnson Matthey — Spectroscopic grade material) in 6M HCl and diluted with water to
achieve the required concentration. 0.05, 0.10, 0.15, 0.20, 0.25, 0.50 and 1.0ml of this solution was
pipetted into seven 50ml beakers along with 200Bq of *’Fe to give solutions of Fe containing 10,
20, 30, 40, 50, 100 and 200mg of stable Fe. The solutions were evaporated to incipient dryness and
dissolved in the minimum of 2M H3;PO, to produce a colourless solution. The solution was
transferred along with 1ml of water washings to a 22ml polythene scintillation vial. 10ml of Ultima
Gold AB scintillant was added and the samples were counted on a Wallac 1220 Quantulus liquid
scintillation counter as described in Section 3.6.2.2. The SQPE and count rate were recorded for

each sample and used to determine the relationship between the two parameters.

3.6.6.3 Results & Discussion

Table 3.1 : Counting efficiency and quench levels for a range of Fe loadings

Mass of stable Fe Volume of H;PO, SQPE Counting efficiency
required for >°Fe
10 1000 798.82 45.0
20 1500 780.44 40.5
30 2000 774.23 36.5
40 2500 759.91 324
50 2500 748.61 29.2
100 3500 687.29 15.5
200 . 3500 682.18 124
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Figure 3.6 : Relationship between *Fe counting efficiency and SQPE for the H;PO,-Ultima Gold AB
counting system

A fairly rapid decline in Fe counting efficiency corresponds with decreasing SQPE value and this
reflects the increase in stable Fe loading (Figure 3.6). The relationship between *Fe efficiency and

SQPE is given by the equation
E = 0.000643(SQPE)’ - 0.67799(SQPE) + 176.54
Where E is the percentage counting efficiency for Fe.
Even at low SQPE values it is possible to measure Fe, however for routine measurement SQPE

values of < 680 would indicate that unacceptably high sample quench was occurring and that the

measurement should be rejected.
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3.7 Counting precipitates by liquid scintillation analysis

3.7.1 Introduction

Many radiochemical separations employ gravimetric analysis of a stable element following chemical
purification to determine the chemical recovery of a radioisotope. It is desirable to count the
precipitate produced in the gravimetric determination directly, without any further chemical
treatment that may result in further loss of the analyte. Counting of solid samples by liquid
scintillation counting may be achieved in two ways. An insoluble solid may be suspended in a liquid
scintillation gel producing a heterogeneous mixture. The gel is formed either using a commercially
available specialised cocktail (such as Optiphase MP scintillant) that will form a gel when mixed
with water or alternatively by mixing the sample with fine silica flour prior to adding the scintillant.
As the analyte is not intimately in contact with the scintillant cocktail, the counting efficiencies
achieved in heterogeneous counting are generally lower than would normally be expected with
homogeneous mixing of the sample and scintillant cocktail. In heterogeneous counting, it is critical

that the sample is finely divided to prevent settling during counting.

Alternatively certain solids are soluble in the organic solvent base of scintillant cocktails and may
dissolve to produce a homogeneous sample. Such sources tend to be more stable and give the
highest counting efficiencies as there is no water or acid present to cause chemical quench.
Compounds relevant to this study that may be used for gravimetric yield determination and which

are soluble in commercial scintillant cocktails are shown in Table 3.2.

Table 3.2: Compounds used for gravimetric determination of stable elements of interest

Compound Analyte Empirical formula Gravimetric factor
Nickel pyridine thiocyanate ®Ni [Ni(CsHsN),](SCN), 8.403
Strontium carbonate Ny SrCO; 3.328
TPAR*(Re) “Tc (Re proxy) (CeHs)sAsReO; 3.402

*Tetraphenyl arsonium perrhenate

With the exception of SrCOs, the precipitates in Table 3.2 are based on an organic precipitant and
are highly soluble in commercial scintillant cocktails. All of the precipitates are suitable for
gravimetric determination of the stable analogue of the isotope of interest. SrCOjs is insoluble in

scintillants but is readily dissolved in dilute acid prior to Cerenkov counting (Section 3.8).

3.7.2  Counting ®Ni as the Ni-pyridine thiocyanate complex

Harvey and Sutton (1970) noted that Ni could be precipitated as a pale blue nickel pyridine

thiocyanate The precipitation of Ni as the pyridine thiocyanate complex produces a crystalline
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precipitate with a gravimetric factor of 8.403. The high gravimetric factor means that the precipitate
may be handled easily and weighed accurately even at low Ni spiking levels of Smg. The precipitate,
if oven-dried, is difficult to dissolve directly into commercially available, environmentally friendly
liquid scintillation cocktails. This is overcome by first drying the Ni-pyridine thiocyanate in a

vacuum dessicator and then slurrying the precipitate with 1ml of water.

The counting efficiency for Ni was determined as 71% using an optimised window of 10-400. The
counting efficiency did not vary with precipitate mass between 16 and 40 mg (Ni masses between 2-
5Smg) comparing well with other methods of source preparation (Table 3.3). The source was stable
for a period of at least one week. The counting efficiency may also be determined by counting the
Ni-pyridine thiocyanate in scintillant, spiking with a known amount of ®Ni and recounting. The
difference in count rates can be used to determine the counting efficiency. It was found that this
approach was suitable even though the ®Ni associated with the pyridine thiocyanate is in a different
chemical form to the ®Ni spike. The limit of detection (as defined by Currie, 1968) with an

instrument background of 2.0 cpm and a count time of 60 mins, is 13 mBg/sample.

Table 3.3 : Comparison of LSC counting efficiencies for some Ni complexes
9 = G R <~j //\\ 7 5 \ ek G
imethylglyoxime <5%

Ni-
Ni-pyridine thiocyanate 71 %
Ni-amine ~70 %'
Ni(II) in dilute HCI 69 %"’

'Data from Kojima and Furukawa, 1985
Ni in 1ml 1M HCI, 2ml water and 15ml Gold Star scintillant

All other data determined in this study

To improve the efficiency of transfer of precipitate, the filter membrane can be added to the cocktail.
Membrane filters become translucent in scintillant cocktail and have little detrimental effect on the
counting efficiency. Even with this pretreatment, the sample only slowly dissolves into scintillant
and sufficient time must be allowed to permit total dissolution. To determine the rate of dissolution
from the filter and the effect of the filter on counting efficiency, 12 samples were prepared
containing 2mg Ni and 200 Bq of ®*Ni. The Ni was precipitated as Ni pyridine thiocyanate using the
procedure detailed above. The precipitate was filtered onto a previously weighed polycarbonate
membrane filter, washed and dried in a vacuum dessicator overnight. The mass of the precipitate
was determined and the chemical recovery calculated. A mean chemical recovery of 85% was
obtained. Six samples and filters were then transferred directly into scintillation vials. 0.5ml of
toluene was added and the samples thoroughly shaken. 10ml Gold Star scintillant was then added
and the samples counted repeatedly over a period of 30 hours. The remaining six samples were

removed from their filters and transferred into pre-weighed scintillation vials. The mass of
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precipitate was weighed. A mean recovery of 57% was obtained showing the extent of losses
incured through the transfer of the precipitate from the filter membrane to the vial. 0.5ml of toluene
was added along with 10ml of Gold Star scintillant and the samples were again counted repeatedly
over a 30 hour period. All measurements were made using a Wallac 1220 Quantulus liquid
scintillation counter. The mean count rate, corrected for chemical recovery was calculated at various
times for all the samples. The mean counting efficiency for samples with and without filters for each

time was calculated along with the standard deviation of the six measurements (Figure 3.7).
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Figure 3.7 : Counting efficiency versus time (days:hours:minutes) for 63Ni—pyridine thiocyanate complex

Although the inclusion of the filter significantly improved the percentage of the sample that was
transferred to the vial, the presence of the filter membrane had little effect on the overall counting
efficiency. However, the dissolution of the complex into the scintillant was apparently slow and the

time required for a stable solution to be formed was approximately 9 — 12 hours.

A set of test samples were prepared by spiking 10ml of dilute HCI with a known activity of ®Ni and
3mg of stable Ni. The pH of the solution was adjusted to pH 7 with ammonia solution. 0.5g of
ammonium thiocyanate was added and the solution was heated to around 80°C, 1.5ml of pyridine
was added and the mixture allowed to stand for 30 minutes. The pale blue precipitate that formed
was filtered onto a 0.45 um polycarbonate membrane filter. The precipitate was washed and dried at
50°C overnight. The precipitate was carefully removed from the filter and transferred to a tared
20ml polythene scintillation vial. The scintillation vial was weighed to determine the mass of nickel
pyridine thiocyanate. The precipitate was slurried in 1ml of water and 15ml Gold Star scintillant was

added. The sample was then counted on the Wallac 1220 ‘Quantulus’ to determine “*Ni activity.
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Chemical recovery, as determined by the mass of Ni pyridine thiocyanate, varied between 50 and
86%. Most of the losses occurred in transferring the precipitate from the membrane filter to the vial
with some of the precipitate remaining entrained on the filter membrane. The calculated “*Ni activity
varied markedly from the theoretical “Ni added in an unsystematic manner (Figure 3.8). Spiking of
the source and recounting showed that the quench levels in all the samples was similar and no solid
precipitate was observed at the bottom of the vial. The samples were left to stand for one week and
then recounted. No difference was observed in the count rates between the two count times, again
suggesting that the precipitate had totally dissolved. The observed variability in count rate probably
results in the incomplete drying of the sample or static build-up on the vial during weighing
resulting in an imprecision in the measurement of the chemical yield. However, for certain

applications, the variability in measured result is sufficiently low for the procedure to be of use.
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Figure 3.8 : Analysis of standards using Ni-pyridine thiocyanate as a gravimetric yield monitor
Error bars are at the 26 confidence level. The uncertainty in the ®*Ni added activity is 2% 2 s.d.

3.7.3  Counting of ’Tc as the tetraphenyl arsonium perrhenate (TPAR) complex

Final preparation of Tc sources is often achieved by co-precipitating the Tc with a precipitate of
tetraphenyl arsonium perrhenate. This precipitate acts as a gravimetric yield monitor for Re (and
hence Tc) and provides a source suitable for gas flow proportional counters, Geiger-Miiller tubes
and liquid scintillation counting (the precipitate readily dissolves in scintillant). Harvey ef al (1991)
noted that co-precipitation of the Tc may not be quantitative below a certain concentration of
tetraphenyl arsonium chloride (TPAC). Although 100% Tc was co-precipitated when only 30 mg of
TPAC was present, 60 mg of TPAC was required to fully precipitate the Re (total of 10 mg Re

present).
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The counting efficiency of *Tc by liquid scintillation counting is independent of the mass of
tetraphenyl arsonium perrhenate in the range of 10-60mg. Typical counting efficiencies for *Tc
coprecipitated with tetraphenyl arsonium perrhenate on a Packard 2250CA counter, using 10ml of
Instagel scintillant, is 95%. However, although Re has been widely employed as a yield monitor for
#Tc, the separation chemistry must be carefully selected and optimised to ensure that Re and Tc
behave in an identical manner. Even then it is debatable whether Re is totally effective as a yield

monitor.

3.7.4 Counting *Tc on TEVA® resin directly by liquid scintillation counting

Many recent radiochemical separations for *Tc employ the extraction of Tc onto TEVA® resin as a
procedure for purification of Tc from Ru (e.g. Bohnstedt et al, 1998). Elution of #Tc from the
TEVA® resin requires strong nitric acid that must then be removed by evaporation. Eichrom
Industries (pers. comm.) had suggested that the TEVA® resin containing the %T¢ could be added

directly to scintillant and this approach was investigated further.

Water must be used to transfer the TEVA® resin from the column to the liquid scintillation vial and
this is likely to have the most effect on chemical quench. Four TEVA columns, each containing 0.4g
of resin, were prepared and conditioned with water. Four Sml water samples, each containing 2Bq of
*Tc¢, were prepared and transferred to the TEVA® columns. The columns were washed with 5ml of
water and all eluents were collected and checked for *Tc breakthough. Each TEVA® resin sample
was then transferred to a 22ml polythene vial with a measured volume of water. One TEVA® resin
sample was transferred to the vial by cutting the column close to the top of the TEVA® resin bed and
ejecting the resin with air. Gold Star scintillant was then added and the samples dark-adapted for one
hour. Each sample was then counted on a Wallac 1220 Quantulus liquid scintillation counter to

determine the counting efficiency.

Table 3.4 : Counting efficiencies for *Tc on TEVA® added directly to liquid scintillant

Volume H,O Volume Gold  Measured cpm Dpm *Tc % counting SQPE
Star scintillant (full window) added efficiency

0 10.0 103.4 1184 87.3 768.2

1.0 9.0 101.1 118.0 85.6 749.6

1.5 8.5 108.1 118.0 91.6 742.6

2.0 8.0 104.2 1183 88.1 7374

The counting efficiency of “’Tc was not noticeably affected by the increasing water content of the

sample even though the measured quench level of the sample fell slightly (Table 3.4). Counting
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efficiencies were high although slightly lower than for other source preparation techniques such as
TPAR precipitation (Section 3.7.3) and the TOA-xylene-scintillant mixture (Section 3.2). The
mixture of TEVA® resin and scintillant is stable for considerable periods of time even though the
resin (which is translucent in the scintillant) settles. This suggests that the Aliquat-336 extractant is

desorbed from the supporting polymer and dissolved in the scintillant cocktail.
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3.8 Optimisation of **Sr measurement by Cerenkov counting

3.8.1 Effect of sample volume on Cerenkov counting efficiencies of 205r/0y

The Cerenkov counting efficiency will depend on the vial geometry, the volume of solution within
the vial and to a lesser extent for *°Y on the refractive index of the solution. It was assumed that the
refractive index of the solution will be constant for all samples and that this would be dependent on
the reagents used to elute the Sr from the Sr-resin column. Hence only the vial geometry and volume

of solution were considered in the optimisation of counting conditions.

A pure *Sr standard was prepared by removing the *’Y daughter by co-precipitation with Fe(OH)s.
The supernatant containing the *°Sr was diluted to a known volume with dilute HNO;. Aliquots of
this solution were transferred to six 22ml polythene vials (Meridian, Epsom, UK) and five 6ml
polythene vials. The aliquots were diluted to a known volume using water. A further standard was
prepared from an aliquot of the *°Sr standard mixed with 15ml Gold Star scintillant. Background
samples containing no *°Sr were also prepared in an identical manner. Each sample was counted
three times over a period of two weeks to measure the in-growth of *°Y. The count rate of each
measurement was plotted against (1-e™) where A is the decay constant for %Y and t is the interval
between the initial *°Y separation and the time of measurement. The slope of the graph was
calculated to determine the *°Y count rate at equilibrium and the intercept of the line at 1-e™ =0 was
calculated to determine the *°Sr count rate at t = 0. The counting efficiency of *°Y and %0Sr for each

sample was then calculated.

The Cerenkov counting efficiency for all samples was reasonably constant for “Sr at 5% and
showed no relationship with the vial geometry or sample volume. The counting efficiency for 0y
was dependent on the vial geometry and the sample volume. For small volumes up to 4ml the
counting efficiency increased with increasing volume and was higher in the 6ml vial compared to
the 22ml vial. The counting efficiency of Y did fall slightly as the volume approached Sml in a 6ml
vial. For volumes greater than 10ml in a 22ml vial the %Y counting efficiency was reasonably

constant (Figure 3.9).
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Figure 3.9 : The effect of sample volume and vial geometry on *’Y Cerenkov counting efficiency

Although counting efficiencies were found to increase with increasing volume in the 22ml vial
background levels also increased and the corresponding figure of merit (FOM - defined as

Efficiency’/background) decreased (Table 3.5).

Table 3.5 : The effect of sample volume and vial geometry on counting efficiency and background

 Vialsize Volumeof *Sr Y  Bkgepm FOM
) aqueous  efficiency efficiency .

-
22‘ 1 | 56 595 B 0.70 5093
22 2 4.7 614 0.76 4961
22 5 52 62.9 0.84 4705
22 10 5.0 64.8 0.85 4966
22 15 5.0 64.8 1.02 4138
22 20 5.1 65.7 1.03 4205
6 1 4.6 64.5 0.62 6674
6 2 4.9 65.6 0.66 6537
6 3 5.0 65.8 0.64 6714
6 4 5.0 65.6 0.67 6425
6 5 5.8 59.9 0.77 4696
22 Std* 100 99.9 2.16 4627

* Standard sample consisting of 0.1ml of *’Sr standard and 15ml Gold Star scintillant for comparison
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3.6.2 The effect of the wavelength shifter, 7-hydroxy-4-methylcoumarin, on *°Y Cerenkov

counting efficiency

Ross (1976) had shown that the Cerenkov counting efficiency could be improved through the use of
a wavelength shifter contained in a jacket around the sample (Chapter 2). 7-hydroxy-4-
methylcoumarin (4-methyl-umbelliferone) had one of the greatest effects on the counting efficiency.
This wavelength shifter was therefore investigated to see if its use would lead to an appreciable

increase in counting efficiency.

Solutions of 2mg/ml, Img/ml, 0.5 mg/ml, 0.2 mg/ml and 0.1 mg/ml 7-hydroxy-4-methylcoumarin in
water were prepared. 10ml of each solution was transferred to a 22ml polythene vial. 0.2ml of a pﬁre
%Sr standard (prepared as described previously) was pipetted into a 6ml polythene vial and diluted
to 3ml. The 6ml vial was then placed inside the 22ml vial resulting in the 6ml vial being surrounded
with the wavelength shifter. Blank samples containing no *’Sr were prepared in an identical manner.
A second set of standards were prepared using 0, 3, 6, 9 and 12ml of 0.5 mg/ml 7-hydroxy-4-
methylcoumarin in the 22ml vial and 0.2ml of *°Sr standard diluted to 3ml in a 6ml vial. All samples
were counted three times in a period of two weeks following *°Y separation and the *°Sr and g

counting efficiencies were calculated as described previously.
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Figure 3.10 : Effect of the wavelength shifter 7-hydroxy-4-methylcoumarin on Y Cerenkov counting
efficiency
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Counting efficiencies for *°Y were not significantly affected by the presence of the wavelength
shifter (Figure 3.10). The *°Sr counting efficiency was also unaffected. Background count rates were
also similar for the samples ranging from 0.87 — 0.95 cpm (2mg/ml — 0.1 mg/ml wavelength shifter).
The corresponding figures of merit were therefore also reasonably constant ranging from 4873-
4372. Hence there appeared to be little advantage to the use of a wavelength shifter in the described
technique. The lack of an increase in counting efficiency probably stems from the use of polythene
vials instead of glass vials. As a high proportion of Cerenkov radiation is emitted in the UV region
glass vials, which are effective at absorbing UV radiation, will have a significant adverse effect on
the ultimate detection efficiency of the system. The use of a wavelength shifter, as described by
Ross, overcame this by shifting the emitted light away from the UV region. In polythene vials this
effect is non-existent hence the improvement in counting efficiency is not observed. This would also
suggest that the envelope around modern photomultiplier tubes is not as an efficient absorber of UV

radiation compared to the older photomultiplier envelopes.
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3.9 Paper in preparation :

Simplified determination of NS activity and 2Sr:3Sr ratios in low-level wastes using
Cerenkov counting and mathematical deconvolution

P.E. Warwick', LW. Croudace'., C.J. Dale’ and A.G. Howard’
'School of Ocean & Earth Science, Southampton Oceanography Centre, European Way, Southampton,
SO14 3ZH
NNC Ltd, Winfrith Technology Centre, Winfrith, Dorchester, Dorset, DT2 8DH
*Dept. of Chemistry, University of Southampton, Southampton, SO17 1BJ

3.9.1 Abstract

The routine determination of *Sr in fresh fission product wastes and environmental samples must
necessarily involve an assay of the short-lived fission product ¥Sr. The activity of ¥Sr may
significantly exceed that of *Sr and any assessment of radiological risk must include ¥Sr. The
presence of significant levels of *Sr may also interfere with the determination of Sr by in-growth
of Y. This paper presents a straightforward method for determining both the %Sr activity of a
sample and the *Sr:*Sr ratio. This is achieved by first chemically separating the Sr from the matrix
elements. At this point the sample is counted as a solution using Cerenkov counting to provide Sr.
After 10 days, when *°Y (from *°Sr) has grown-in, another Cerenkov count is made which provides
¥Sr+°°Y. Windowing is not required, permitting the rapid set-up and calibration of the counter. A
relationship between the two count-rates and the time between the two counts is used to calculate
both *Sr activity and isotope ratios. Derivation of the equations employed is described along with a

discussion on the uncertainties associated with this approach.

3.9.2 Introduction

Strontium-90 and ¥Sr are both produced by thermal neutron fission of *°U and **Pu and fast

neutron fission of 2°U, **U and **’Pu (Table P1).

Table P1 : Cumulative percentage fission yields for ¥Sr and *’Sr

Thermal neutrons Fast neutrons
H alf life 235U 238U 239Pu 235U 238U 239Pu
¥y 50.5d 477 - 1.68 4.40 2.75 1.69
*Sr 29.12y 5.85 - 1.97 525 3.34 2.08

All data from JEF-PC, 1997
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The measurement of *°Sr (t,, = 29.12 y) in solid and liquid wastes is of considerable importance in
estimating dose rates and fingerprinting of nuclear wastes. Strontium-89, with its much shorter half
life of 50.5 days and a comparable fission yield to *Sr will have a much higher activity than *°Sr in
a mixture of fresh fission products. The ¥'Sr:"’Sr activity ratio may approach 200:1 but it rapidly
declines as the ¥Sr decays and after one year the **Sr:*’Sr ratio will have fallen to near unity. The
measurement of *Sr:¥Sr ratios therefore give an indication of the age of the fission waste being

measured.
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Figure P1 : Change in *Sr:*’Sr ratio with time

Both ¥Sr and *°Sr are pure beta-emitting radioisotopes. *Sr decays to the pure beta emitter Y (ty, =
2.67d). Although most separation chemistries for Sr separate the Sr from Y, time dependent
ingrowth of *°Y is inevitable resulting in the Sr fraction always having a proportion of the Py

daughter present. Therefore the purified Sr fraction consists of a complex mixture of ®Sr, *°Sr and

QOY.

Table P2 : Decay data for *Sr, *°Sr and *°Y

Half life Beta decay energy (MeV)
(probability)
¥Sr 50.5 days 0.583 (0.0093%)
1.492 (99.99%)
*Sr 29.12 years 0.546 (100%)
0y (daughter of *°Sr) 2.67 days 0.523 (0.016%)
2.284 (99.98%)

All data from JEF-PC, 1997
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The simultaneous determination of ¥Sr and *°Sr can be achieved using a number of approaches.
Randolph (1975) separated the *°Y from the Sr fraction and then counted the Sr fraction by
Cerenkov counting. A window was set to discriminate the high-energy component of the ingrowing
Y spectrum. Scintillant was then added and the sample was recounted on a liquid scintillation
counter using two energy windows, one for *°Sr + ¥Sr + *°Y and a second for ¥Sr and *°Y alone.
The scintillant-based count was used to determine the activity of “Sr present, which was then used

to correct the Cerenkov count and calculate the ¥Sr activity present.

Buchtela and Tschurlovits (1975) did not separate the *°Y from the Sr fraction but counted the
sample by Cerenkov counting with and without a wavelength shifter. The contribution from ¥Sr and

%Y in the Cerenkov count could then be determined.

Dietz et al (1991) counted the purified Sr fraction, shortly after *°Y separation, on a liquid
scintillation counter with two counting windows. Simultaneous equations were derived for the
count-rates in these two windows, which could then be solved to give the ¥Sr and *’Sr activities. It
was assumed that the sample was counted within one day of *°Y separation and hence that the

contribution from 'Y was negligible.

Kimura et al (1979) measured ¥Sr + *°Sr + *°Y total activity on a low background beta counter
following a two week equilibration period. The source was dissolved and the %Y co-precipitated
with Fe(OH); which was counted to determine the %Y (and hence *°Sr) activity. ¥Sr activity was

then calculated from the two measurements by difference

If only the activity of *°Sr is required, the interference from ¥Sr may be overcome by allowing the
%Y to achieve equilibrium with the *Sr, chemically purifying and counting the Y using a
technique such as liquid scintillation or gas flow proportional counting (Bajo and Keil, 1994). The
presence of *'Y (t,,= 58.51 days; thermal fission yield = 2.9%) in fresh fission product waste would
seriously interfere with such an approach (Zhu et al, 1990) and would have to be corrected for (Bajo

and Tobler, 1996).

The above techniques all require at least two counts and often require counting the sample under
different conditions (with and without scintillant or wavelength shifter). Alternatively they employ
windowing of the counter incurring further errors in the set-up and sample counting. An alternative
simplified approach was therefore developed and optimised to reduce uncertainties inherent in the

other techniques.
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3.9.3 Methodology

The samples and standards must, as far as practical, be matrix-matched. To achieve this, the
chemical separation of Sr must produce a final source of consistent composition for counting. Stable
Sr (10mg) is routinely used for yield determination. Final measurement of the Sr is achieved using
ICP-AES. ¥Sr is not used as a yield monitor as it would interfere with the final Cerenkov
measurement. Many methods have been reported for the effective purification of PSr including
those based on the conventional precipitation of Sr(NOs), with fuming nitric acid (e.g. Gregory,
1972; RADREM, 1989). However, this technique is relatively slow, difficult to scale-up for large
sample throughput and potentially hazardous. A method was therefore developed (Warwick et al,
1998) whereby *°Sr was purified using the commercially available Sr resin (supplied by Hichrom,
UK). The resin consists of 4,4'(5') bis(tert-butylcyclohexano)-18-crown-6 dissolved in octan-1-ol
and supported on an inert Amberlite XAD-7 or Amberchrom CG71 support (Horwitz et al, 1991).
%Sr purification was achieved using a method described previously. A standard solution of 28y (in
equilibrium with its °°Y daughter) was passed onto a 4 x 0.7cm Sr resin column in 8M HNO;-0.5M
AI(NO;)3. The column was washed' with 8M HNO; to remove all the %y and the *°Sr was eluted
with water. The time of the last 8M HNO; wash was recorded as t = 0. The purified *’Sr solution
was then used to prepare a range of samples with differing **Sr activity. Samples were also spiked
with varying amounts of *Sr. The final volume of each sample was adjusted to 10ml in a 22ml
polythene scintillation vial giving a range of samples containing between 30 and 140 Bq of %Sr and
with *°Sr:*Sr ratios of 0.005 to 55. Samples were counted for 20 minutes directly following oy
separation and again after 10 days on a Wallac 1220 ‘Quantulus’ low-level liquid scintillation
counter. The two counts obtained were then used to calculate the *Sr:**Sr ratio and *°Sr activities.
The background count-rate was measured on 10ml 0.1M HNOj; as 0.97 cpm. The ¥Sr, *°Sr and Y

counting efficiencies were measured as 38, 3.8 and 63% respectively.

3.9.4 Discussion
3.9.4.1 Calculation of *’Sr:*Sr ratios and *’Sr activity

Cerenkov counting provides several advantages over other methods for the simultaneous

determination of ¥Sr and *Sr (via *°Y).

e It is more rapid than techniques based on a combined *Sr, *Sr and %Y measurement followed
by the chemical separation of Y and separate measurement of 2y,

e Itis also not affected by the presence of °'Y.

e The use of Cerenkov-only counting of a single sample solution reduces the uncertainties of the

measurement.
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Some published techniques assume that the counting efficiency for *’Sr in Cerenkov counting is
negligible. Although the counting efficiency for *°Sr by Cerenkov counting is low, it is not zero.
Hence the count-rate determined by extrapolation of the in-growth curve to t=0 originates from both
¥Sr and *°Sr. For high levels of *Sr and low levels of ®*Sr this can lead to significant errors in the
final activity calculation. Secondly, measured count-rates at intervals following separation of *°Y
will not only represent the increase in activity due to Y in-growth, but will also include the
decaying ¥Sr. There will therefore be a deviation from the expected in-growth curve, the magnitude

of which will depend on the ratio of *Sr to **Sr present in the original sample.
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Figure P2 : Variation in count-rate with time for samples containing *Sr and ¥’Sr.
Ny separated from %Sy at t=0. Results calculated for 1Bq *’Sr mixed with variable quantities of 88r. Note that
with no *’Sr present the curve rises exponentially reaching a maximum as Y attains equilibrium with the 23y,
When ®Sr is introduced the curve rises, reaches a maximum and then starts to decline as the *’Sr decays. This
decay would introduce significant errors in the calculated Y activity.

Although the presence of *Sr adversely affects the calculation of %Sr activity via *°Y in-growth, the
deviation of observed counts from the expected in-growth curve for °Y can be used to estimate the
amount of *Sr present in the sample and calculate a corrected **Sr activity. By counting the sample
twice over a period of two weeks by Cerenkov counting it is possible to determine both the 89/90
ratio and the *°Sr activity. It can be shown that the variation between two counts will be dependent
on the time interval between the two counts and the time of *°Y separation and the ratio of ¥'Sr to
*0Sr. The ratio of count-rates obtained at the two times can be compared against factors derived for
known *Sr activities and ¥Sr:*°Sr ratios and a best-fit analysis performed to obtain absolute values
(Sutherland, 1988). Alternatively, simultaneous equations can be written for both the 28r:¥Sr ratio
and the *°Sr activity at both times and solved to give absolute values. Such simultaneous equations
have been derived to calculate both the *¥Sr:*’Sr ratio and the **Sr activity from two counts (Regan
and Tyler, 1976) and multiple counts (Broadway and Guy, 1984). In this paper these equations are
incorporated into a spreadsheet in order to perform the calculations readily. The speadsheet also

calculates the propagated uncertainties as well showing individual stage uncertainties.

One form of the equation is shown below
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[eqn ]

Aty c —Aaly
Ao (e t XE89)_/C2(3 * X Eg)
Aso c/c2 la-e7)E, + B, |-la-e")E, + E,]

where A= Activity in Bq
M= Decay constant for *°Y
A= Decay constant for ¥Sr
Egomory =  Cerenkov counting efficiency for 89Sr, %8¢ and Y respectively

¢i and ¢;= count-rate at t; and t; (full window)

As windowing is not used, the total count-rate over a full energy range is recorded thereby

improving the counting statistics of the measurement. Uncertainties are also minimised by counting

twice using an identical counting regime.

Although two measurements at any interval following *°Y separation can be used, the deviation
between count-rates observed with no **Sr present and with ¥Sr present are greatest when certain
count times are chosen. To maximise the sensitivity of the technique for determining *’Sr and Sy it
is desirable to count at these times. The maximum deviation in count-rates observed in the presence

of ¥Sr is observed when the samples are counted shortly after °°Y separation and then again after at

least 10 days (Figure P3)
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Figure P3 : Difference between ratio of Sr-89/90 = 0 and Sr-89/90 = 0.1 for different measurement
. intervals.

The theoretical Cerenkov count-rate for a sample containing no *’Sr (S,) and one with an 89/90 ratio of 0.1
(S,) were calculated at increasing intervals following *°Y separation. The ratios of count-rates at different
times Syi=1/S1=2 and Sy—)/ Sy=3) were calculated for both samples. The ratio Sy=1/S1=; X Sa=o/ Sa=1 was then
calculated and is plotted above. The plot shows the measurement times at which the greatest deviation in ratio
occurs i.e. with measurements being performed straight after *’Y separation and at ten days following iy
separation. If measurements are made at these two time intervals the greatest sensitivity for ¥Sr determination
is achieved.

The *°Sr activity may be determined using equation II
[eqn II]

Ay :(01—k202)x( uZ

1
k, 'k kk,

)
where

k =[1-e™)E, +E,)
o= xE

and k3 and k4 are similar to k; and k, but for time 7,

The mathematical technique, as described above, is equally applicable to conventional liquid
scintillation counting or any other form of beta counting following substitution of the appropriate
counting efficiencies. However, as *°Sr will count with a much higher counting efficiency by liquid
scintillation counting, the deviations in count-rates caused by the *’Sr decay are less pronounced and

the technique is therefore less sensitive to low levels of *Sr. Cerenkov counting, with its low XSr
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counting efficiency and inherently low background, is therefore the most appropriate measurement

technique for low-level measurements.

As'Y is separated from the Sr fraction prior to counting, the presence of °'Y does not interfere in any

way with the determination of ¥Sr and *°Sr.

3.9.4.2  Precision of the technique

The uncertainty on both the *Sr activity and *Sr:*Sr ratio can be calculated by propagating the
uncertainty on the individual measured counts. The calculations result in an upper and lower limit to
both the *°Sr and *Sr:¥'Sr activity ratios. For the *’Sr activity, the upper and lower limits are
symmetrical around the calculated activity. However, for the *°Sr:*’Sr ratio, the upper and lower

limits are asymmetric around the calculated ratio.

The uncertainty on the *°Sr activity measurement is dependent on the *’Sr activity, the elapsed time
between the two counts (At) and the ratio of *Sr to *°Sr. For short At the corresponding uncertainty
is high. As At increases the uncertainty falls until for At greater than 10 days the uncertainty only

slightly decreases with increasing time. The uncertainty of the *Sr activity measurement also

increases with decreasing 28r:*Sr ratio (Figures P4 and P5).
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Figure P4 : Dependence of uncertainty in (2) ?Sr:¥Sr ratio and (b) *’Sr activity on the time of the 1*
count, t;.
In all cases the 2™ count is at t,=10 days. Count time 20 minutes. Y8y activity = 10Bq

The uncertainty on the *Sr:**Sr ratio is dependent on the ratio present and follows a hyperbolic

relationship. Ratios of between 0.5 and 10 can be measured with a relatively low uncertainty but

errors increase sharply outside this range (Figure P5 b).

The uncertainty on the %S activity increases as the ratio of 98r:¥Sr decreases. The relative
magnitude of this effect does not vary with *°Sr activity greater than 1 Bq. Below this activity the
counting statistical uncertainty is significant compared to the uncertainty introduced by the presence

of ¥Sr. Hence the overall uncertainty is less dependent on the %0Sr:*Sr ratio (Figure PS c).
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The uncertainty on the **Sr:¥'Sr ratio is highly dependent on the activity of *°Sr present. For a given

ratio, the uncertainty decreases with increasing activity as the counting statistical uncertainty

decreases. The uncertainty increases significantly with increasing *°Sr:*’Sr ratio but this increase

becomes smaller with increasing total activity.
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Figure P5a : The variation of uncertainty in 2Sr activity with time of 2" count, t,
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The counting efficiencies are critical to the calculation of both the *Sr activity and the *°Sr:*’Sr ratio
Even a small change in the counting efficiencies can lead to significant errors in the final calculated
values. The counting efficiency of *°Y is the most critical in the determination of the **Sr:¥Sr ratio.
For a 10Bq Sr source with a *’Sr:*Sr ratio of 2 and counted for 100 minutes, a change of 10% in the
%Y counting efficiency results in a deviation of around 12% in the final value. By comparison a
similar change in *Sr and *°Sr counting efficiencies results in a deviation of 10% and 2%
respectively in the final measured ratio. The relationship between the *°Y counting efficiency and
deviation in **Sr:¥Sr ratio is quadratic and hence it is more pronounced at greater deviations of *°Y
counting efficiency. The relationship between the variation of both ®Sr and Sr counting

efficiencies and the deviation in the final calculated ratio is linear.

The *°Y counting efficiency is also critical in the calculation of %Sr activity. Again a quadratic
relationship is observed although the magnitude of the effect is slightly lower than for the 208r:*8r
ratio. A variation of 10% in the **Y. counting efficiency alters the calculated *Sr activity by 10%. A
similar variation in the *°Sr counting efficiency results in a variation on the *Sr activity of only

0.1%. Variation of the **Sr counting efficiency has no effect on the final *’Sr activity calculated.

The limit of detection for **Sr and **Sr will depend on the quantity of the other isotope present. If
there is no *’Sr present then the limit of detection for *’Sr can be calculated assuming that the first
count at t; = 0.1 days must show a significant count above background. This gives a limit of
detection (based on Currie, 1968) of 0.4 Bq for a 20 minute count and an instrument background of
1 cpm. If ¥Sr is not being measured this limit of detection may be lowered by counting the sample
slightly later following *°Y separation to allow more *°Y to grow in. If t; is delayed to 0.5 days after
Y separation, the limit of detection is reduced to 0.2 Bq. However, the overall uncertainty

increases as the difference between the two count-rates at t; and t, becomes smaller.
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Figure P6 : The effect of varying the time of the initial count, t;, on the calculated limit of detection of
*Sr and the percentage uncertainty on the measurement of a 0.5 Bq *’Sr source. No *Sr is present.
Count times are 20 minutes, ¢, is 10 days.

The measured **Sr activity agreed well with the actual values over the range of *°Sr:¥'Sr ratios from
0.1 — 55. For ratio values below 0.1 the agreement between the measured and actual *°Sr activities

were poorer although the results were still within the 2 s.d. uncertainty of 40%.
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Figure P7 : Measured *’Sr activity versus actual activity for a range of samples. The "Sr:*Sr ratio
varies from 0.005 to 55.
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Figure P8: Measured versus actual 90/89 Sr ratios

Measured *°Sr:¥'Sr ratio values were also in good agreement with actual values over the range
0.005-10. The agreement of the measured value with the actual value appeared to be only slightly
affected by the total *°Sr activity. Agreement was poor for samples with ratios over 50, but this is
due to the large uncertainties in the measurement at this ratio. This is most probably due to the
uncertainty in the counting efficiencies becoming more prominent in the overall measurement
uncertainty. This may be overcome by constructing experimental calibration curves and normalising
the measured/calculated values to these measured standards. However, even with such a
normalisation procedure, the counting statistical uncertainties are still significant and accurate

measurement of the **Sr:*Sr ratio is not possible.

3.9.4.3 Testing the method

A standard sample was supplied blind to the first author by NNC Ltd. This was a certified solution
containing *°Sr. The sample was analysed using the proposed method. The activity of *’Sr measured

was in close agreement with the certified value (Table P3). No *'Sr was detected in the sample

Table P3 : Measurement of standard *’Sr sample

Measured value Certified value

St By/litre 25+ 3 24

20m] of sample analysed. Chemical recovery 70.5%.
Uncertainties at the 2c confidence level
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3.9.5 Conclusion

The method described provides a simple means to determine both the *°Sr activity and the *°Sr:*Sr

ratio. The method has several advantages.

It is more rapid than techniques based on a combined *Sr, *Sr and *°Y measurement followed
by the chemical separation of Y and separate measurement of *°Y.

It is also not affected by the presence of °'Y.

The use of Cerenkov-only counting of a single sample solution reduces the uncertainties of the
measurement.

Its limits of detection and measurement uncertainties have been assessed and found to be
acceptable for the application in low-level waste analysis.

It is suitable for the analysis of environmental samples under emergency conditions where levels
of *°Sr and *Sr in the local environment may be higher than the levels found routinely resulting

from weapons’ fallout and the Chernobyl incident.
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3.9.8 Derivation of equations
Y8r/°Sr activity ratio
At a given time t, following *’Y separation the measured activity of the Sr fraction will be a function

of the initial *°Sr activity, the ingrown *°Y activity, the *Sr activity and the respective counting
efficiencies for each radioisotope.

cps, = (Ao x Eoo) +[(1 =€) A E, 1+ (e ™ A Egy)  fegnyy

where Agg, Ago Activities of *°Sr and ¥Sr at t=0
Eogo, Ego and E, Counting efficiencies of 0y ¥Sr and Y
A Decay constant for °°Y
A Decay constant for *Sr

cps, =[(1- et VE, + Eoy 1 4gy + (&7 x Eyo) Ay
=k Aoy + ky Ay

[eqn 2]
The ratio of count-rates at two different times t; and t, can be defined as follows
cps, _¢,/ _ KAy +ky Ay
CcpS C
[eqn 3]

where k3 and k4 are similar to k; and k; but for t,

Rearranging equation 3 gives
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C/Cz (ks Aoy +kyAgy) = by Agy + ky Ay

(/)k A9o+[/)k Agy =k Ay + k, Agg
/kA90 = K Ay + K, Agy — /k 4,
% kydgy — ki Aoy =k, Agy — % k, Ag,

2 2

C
[ ks _kI]A% — (kz ~ 5 k4)A89
02 02

k, -/ k
Ay _ c, *
Ay g ks =k,
)
Ay (e x Ey)— c/cz (e7" x Ey)
B 4
A C/cz (1-e)E, + Ey|-[1-e)E, +E, ] vean ]

'Sr activity

From equation 2

cps, =¢ = k Ay +k, Ay,
CPS,Z =C, = k3A9O +k4A89 [eqn 5]

Hence
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A89 'I‘C“_FA%

Substituting equation 6 for Agy in eqn 5

k,c k. k

¢, =k Ay + 242 - ;{43 Ay,
k,c k,k

¢ — ']26—42—: ki Ay — k43 Agy

Rearranging equation 7 gives Agy

kCZ)x k,

A9(1k4 ko kk,

)
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Uncertainties on the *”’Sr ratio and *’Sr activity

It is assumed that the counting efficiencies for the individual isotopes are well characterised and

hence the uncertainty is mainly derived from the counting statistical uncertainties oc; and cc,.

The main uncertainty in equation 4 derives from the counting statistical uncertainty on the ratio

ci/c,. This uncertainty, oR, on the ratio, R (equal to ¢,/c,) is defined as

2 2
Or _ O ¢, 4+ O ¢,
= _ 8
R c, cz [eqn 8]
where

O-c1 = Vcl [eqn 9]

At the 2 sigma confidence interval, the absolute uncertainty is therefore

2
O'c2

(o ’
2(0 ) =2x%x R x — | +

10
c, c, [eqn 10]

Propagation of this uncertainty will place an upper and lower limit on the calculated YBGr activity

as follows.

Upper limit of ratio

A (e x Eg)—(R+20,)e ™" x Ey)

—2 (upper) = s T |
Ay (R+20)|(1—e™)E, + Eyy |- |(1—e™)E, + Ey, |

[eqn 11]

Lower limit of ratio
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(e x Ey)—(R~-20, e x Ey)

T R-20 (1= )Ey + Eg |- [1—¢ " )E, + Eyy]
[eqn 12]

A
22 (lower)

89

Likewise an upper and lower uncertainty limit can be set on the calculated *°Sr activity by

combining equations 7 and 9.

k(Cyo=20.) 1k
upper) =[(C, + 20, ) — 2 Ix (———2
Ay (upper) =[(C, ) 3 ] (k1 kzks)
[eqn 13]
and
ky(c, +20.) 1k
Ay (lower) =[(c, — 20 )— k, Ix ('k_l‘ — k2;€3 )
[eqn 14]
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3.16 Conclusions

In all cases the chosen method for the measurement of the radioisotope of interest was liquid
scintillation counting. In most cases the liquid scintillation counter offered the highest sensitivity of
any technique. Counting efficiencies are in general very high compared to other radiometric
techniques as the analyte is intimately mixed with the liquid scintillant ‘detector’ giving a 4=
counting geometry. The figure-of-merit obtainable was further increased by using the Wallac 1220
Quantulus ultra low-level liquid scintillation counter, which incorporates a range of features
designed to significantly reduce background count rates. Although it is assumed that mass-
spectrometric techniques would provide greater sensitivity for the long-lived radioisotopes, it was
found in practice that the presence of isobaric interferences and operational difficulties meant that
the available mass-spectrometric techniques of TIMS and ICP-MS gave no benefit in sensitivity

compared with the Quantulus counter.

The sensitivity achievable using liquid scintillation counting is highly dependent on the source
preparation technique employed. For ¥Sr and *°Sr, the beta decay energy is sufficiently high to
permit Cerenkov counting of the isotope. In this instance no scintillant is added resulting in no
chemical quench and very low background count rates. Colour quench is still a concern and the final
Sr fraction must be rendered colourless through chemical separation of the isotope. Deconvolution
of the ¥Sr, °Sr and *°Y present in the source was achieved by deriving simultaneous equations
associated with two count rates measured at two time intervals following initial °°Y separation. The

use of the wavelength shifter 4-methyl coumarin was not found to improve the counting efficiencies.

For *Fe, ®Ni and *Tc, the beta decay energy was too low to permit Cerenkov counting. Methods
were therefore developed to permit mixing of the purified isotope with commercial liquid
scintillation cocktails. Extraction of the isotope into a non-quenching organic solvent was found to
give the highest counting efficiencies and was adopted for the low-level measurement of *Tec.
However, difficulties in determining the chemical recovery following organic extraction meant that

this approach was not suitable for the other radioisotopes of interest.

Precipitation of the radioisotope with a carrier was found in many cases to provide a source suitable
for liquid scintillation counting. Ideally the precipitate was organic in nature and readily dissolved in
the organic cocktail. Formation of a precipitate also permitted the determination of chemical yield
gravimetrically. Precipitation of *Ni as nickel pyridine thiocyanate and *Tc as tetraphenyl arsonium
perhenate (using Re as the carrier in the absence of a stable Tc isotope) produced source that readily

mixed with commercial liquid scintillation cocktails. Although Ni pyridine thiocyanate gave
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excellent counting characteristics, the counting efficiency was not significantly different to that
found for “Ni dissolved in a small volume of dilute HCL. In addition it was found that the precipitate
was difficult to obtain in a dry state resulting in unacceptable uncertainties in the final yield
determination. Although oven drying improved the reproducibility of the gravimetric yield
determination it also resulted in a precipitate that was extremely difficult to dissolve totally in the
scintillant increasing the measurement uncertainty. Co-precipitation of Tc with Re as the tetraphenyl
arsonium perrhenate did provide good gravimetric yield data as well as a source that mixed readily
with scintillant. However, Ru would not be separated during this precipitation and hence the organic
extraction was still required to separate Ru from the Tc. In addition, the observed counting
efficiency for the organic extract was higher than for the precipitate and hence the precipitate-based
source preparation technique was not routinely used. However, direct mixing of *’Tc extracted onto
TEVA resin was of considerable interest for certain applications where the ultimate limit of

detection was not being sought.

For **Fe and ®Ni, the radioisotope was dissolved in a small volume of mineral acid and mixed with
a suitable liquid scintillant. Chemical recovery is determined by removing a small quantity of the
purified sample, diluting it and measuring the stable Fe and Ni using ICP-AES. For ®Ni, the source
was prepared from dilute HCL. For *Fe H;PO, was chosen to decolourise the Fe and minimise
colour quenching in the sample. The Fe measurement was seriously affected by the quantity of
stable Fe present in the sample. This effect was investigated fully and optimised conditions derived

to maximise the sensitivity of *’Fe measurement in high-Fe samples.
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4. Solvent extraction and extraction chromatographic techniques

4.1 Introduction

Many radiochemical separation techniques employ ion exchange chromatography to either preconcentrate
and/or purify the analyte. Although ion exchange chromatography has found widespread application in many
procedures, solvent extraction can, in numerous instances still offer a higher degree of specificity. In
addition, the combination of an extractant and a solid support to produce a chromatographic material
combines the specificity of solvent extraction with the improved separation efficiency and hence high
decontamination factors offered by a chromatographic technique. The application of solvent extraction and
extraction chromatography were therefore studied for the isolation and purification of pure beta emitting

radioisotopes.

4.2 Definition of partition coefficient, distribution coefficient and k'

Separation of an element by solvent extraction relies on the partitioning of the analyte between two
immiscible phases. In most cases one of the phases is aqueous whilst the other phase is either a pure organic
liquid or extractant dissolved in an organic solvent. Ideally, separation is achieved through the quantitative
extraction of one component into the organic layer whilst the second component remains in the aqueous
phase. However, in reality, extraction may not be quantitative and the extracted component will partition
between the two phases with only a certain percentage of the component being extracted. The percentage
extracted will depend on the volumes of aqueous and organic phases. However, the degree of partitioning is

defined by the partition coefficient, Kp.

[ 4],

[ A]aq at equilibrium

K,=

where [A],, and [A],q are the concentrations of the analyte in the organic and aqueous phases respectively at
equilibrium. At low concentrations the partition coefficient is independent of the analyte concentration.
However, at high concentrations, the organic phase may become saturated and reach a maximum loading.
The maximum loading capacity of an extractant is therefore potentially another important parameter in

assessing the suitablity of an extractant in an analytical separation.

In extraction chromatography, the extractant is loaded onto an inert support which is then packed into

columns to permit chromatographic separation. On loading a sample onto the column, the components will
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partition between the mobile (solution) phase and the stationary (solid) phase. Chromatographic separation
is achieved when the components of a mixture partition to differing degrees between the mobile and
stationary phase. The degree of partitioning is defined as the ratio of a component on the solid phase to that
in the mobile phase and is called the distribution coefficient, Kp. The distribution coefficient are
determined experimentally by mixing a known mass of solid phase with a known mass of mobile phase
containing the component being evaluated. The mixture is shaken to achieve equilibrium and the amount of

the component in either the mobile or stationary phase is determined. The Ky, is then calculated as follows

Asolid X M mobile

at equilibrium
A x M solid

K, =

mobile

where Agg and Apopile are the masses/activities of the analyte in the solid and mobile phases respectively

and M,qpite and Mgiq are the masses of mobile and solid phases respectively.

In much recent literature on extraction chromatographic materials, the parameter k' is used to indicate the

magnitude of the affinity of the extractant for the analyte. k™ is defined as the peak elution volume to free

column volume ratio (Figure 4.1)
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Figure 4.1 : Definition of k°
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4.3 Separation and purification of iron
4.3.1 Purification of  Fe by solvent extraction

Many metals including Fe may be extracted as protonated metal halo-complexes from strong acid solution.
Singly charged complexes are preferentially extracted and higher extraction coefficients are noted for
divalent and trivalent metal ions that form singly charged anionic halo- complexes. Fluoro complexes
exhibit low extraction coefficients as the fluoride ion preferentially forms highly negatively charged
complexes. Chloro-complexes are the most common complexes for practical extraction although bromo- and
iodo-complexes have been used. Iron can be extracted from > 6M HCI into a number of solvents as the
FeCl4- anion. Sb(V), As(III), Ga(IIl), Ge(IV), Au(lIl), Hg(11), Mo(VI), Nb(V), Pt(1l), Po(Il), Pa(V), TI(11L),
Sc(IIT) are also extracted as chloro complexes. Sb(IIl), As(V), Co(ID), In(IlT), Te(IV), Sn(Il) and Sn(IV) are
partially extracted. Between 15 and 30% of Sn is extracted from HCI into ethyl ether (Morrison and Freiser,
1962). Many oxygen-containing solvents have been employed. Ethers, such as diisopropyl ether (e.g. Konig
et al, 1995) are commonly used for the extraction. Ethers are known to photochemically reduce Fe(III) to
Fe(IT) which is not extracted and hence the extraction into ether should be performed in subdued light
(Vogel, 1978). Esters such as ethyl acetate and butyl acetate are also effective at extracting large quantities
of Fe and have the benefit of low volatility. Esters are hydrolysed by strong HCI and mixtures must not be

allowed to stand for too long during the separation.
4.3.2 Evaluation of three solvents for the extraction of Fe

Three solvents were investigated for their effectiveness at extracting iron. Ethyl acetate, diisobutyl ketone

and di isopropyl ether were chosen as these solvents have been used routinely in the purification of *°Fe.

The distribution coefficient for Fe was determined for each solvent. Approximately 25mg of Fe,O; was
dissolved in 50ml 6M HCI giving an iron standard of approximately 500 ppm. 5 ml of this solution was
extracted with 10 ml of the solvent under investigation for approximately 5 minutes. The aqueous and
organic fractions were allowed to separate and 1 ml of the aqueous phase was removed and diluted with 2%
nitric acid prior to Fe measurement by atomic absorption spectrometry. The distribution coefficient of Fe
from 6M HCI for each solvent was then calculated (Table 4.1). These values should be taken as a guide only
as it has been shown that the observed distribution coefficient for the extraction of FeCl, will depend on the

amount of Fe present initially in the aqueous phase (Morrison and Freiser, 1962).
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Figure 4.2 : Effect of hydrochloric acid concentration on the extractability of chlorides by ethyl ether
(Morrison and Freiser, 1962)

The effective Fe loading capacity of each solvent was determined as follows. 5 ml of a 0.1g/ml Fe standard
in 6M HCI was shaken with Sml of the solvent for 5 minutes in a 50 ml separating funnel. The phases were
allowed to separate and the aqueous phase run to waste. The organic phase was washed with Sml 6M HCI to
remove any acid occluded in the organic phase and adhering onto the funnel walls. The aqueous phase was
run to waste and the organic phase was transferred to a clean separating funnel. The Fe in the organic phase
was back-extracted from the organic phase into 2 x S5ml 1.6M nitric acid. 0.1ml of each nitric acid fraction

was diluted to 10m! and the Fe concentration measured by atomic absorption spectrometry.

Table 4.1 : Distribution coefficients and loading capacities of Fe for various solvents

Solvent Distribution coefficient Effective loading capacity

mg Fe/ml solvent

Ethyl acetate 65 95
Di isobutyl ketone 38 49
Di isopropyl ether 4 59

The highest distribution coefficients and highest effective loading capacity for Fe was observed when using
ethyl acetate. During the routine separation of iron it was noted that the ethyl acetate was quite rapidly
hydrolysed by the 6M HCI. Mixing ethyl acetate with butyl acetate, which is more slowly hydrolysed,
reduced the rate of volume change. Butyl acetate alone was not used as the distribution coefficients for Fe
are lower than for ethyl acetate. A ratio of two-thirds ethyl acetate to one-third butyl acetate was suggested
by Bains and Warwick (1993). It should be noted that the effective loading capacity measured is not a true

loading capacity as the solvent containing the Fe was washed with fresh 6M HCI, resulting in two
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partitioning stages. However, the effective loading capacity represents more accurately the practical capacity

of the solvent.
4.3.3 Co-extraction of Sn with Fe

Morrison and Freiser (1962) noted that, along with the Fe, approximately 30% of Sn was also extracted into
ethyl acetate from HCI solutions. However, extraction of Fe into di isopropyl ether has also been used to
separate Fe from Sn during the radiochemical separation of Sn (Patten, 1989). These apparently

contradictory observations possibly suggest that the efficiency of Sn extraction is dependent on the type of

organic extractant used.

10 Bq of '*Sn was dissolved in 10ml of 6M HCI. This solution was shaken with 10ml1 of either 3:1 ethyl
acetate/butyl acetate, di isobutyl ketone or di isopropyl ether for 5 minutes. The volumes of the aqueous and
organic phases were measured and Sml of the organic phase was removed and diluted to 20ml. The solution
was left to stand for 24 hours to permit '"*In to re-establish secular equilibrium with the '*Sn parent. The

activity of "’In (and hence the activity of '*Sn) in the organic phase was determined by gamma

spectrometry.

The extent of Sn extraction from 6M HCl is dependent on the type of solvent used for the extraction. No Sn
was extracted into di isopropyl ether whilst 8% and 38% of Sn was extracted into di isobutyl ketone and
ethyl/butyl acetate respectively. This is in agreement with the observations made by both Morrison and
Freiser (1962) and Patton and Penrose (1989). Diisopropyl ether is therefore a more appropriate choice of

extractant if radio-tin is likely to be present in the samples.

4.3.4 Extraction chromatographic techniques for the purification of > Fe

Little has been published on the extraction chromatographic purification of *>Fe. One of the main limitations
in the use of this technique is the requirement for large loading capacities necessary to accommodate the
levels of stable Fe routinely found in samples. Konig et al (1995) used Chelex 100 resin to preconcentrate Fe
from steel and concrete samples. The technique was not Fe-specific and solvent extraction was still required
to purify the >Fe prior to liquid scintillation counting. TRU® resin (supplied by Eichrom Industries) has also
been employed for the isolation of >Fe. Fe is retained from 8M HNO; and subsequently eluted with 2M
HNO;. However, the maximum Fe loading for the procedure is limited to 3mg for a standard column

containing 0.7g of resin. Silica-immobilised formylsalicylic acid was found to efficiently extract Fe
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(Mahmoud and Soliman, 1997). Loading capacities of approximately 54 mg Fe per gram of resin were

reported. However, the extractant was not specific to Fe and further purification of the *’Fe was required.

Initial attempts to load ethyl acetate onto an inert XAD-7 support were unsuccessful. Sufficient ethyl acetate
was retained on the support to permit the initial extraction of 1 mg of Fe from 5ml of 6M HCL
Approximately 1 g of XAD-7 was slurried with Sml of ethyl acetate. Approximately 50ml of 6M HCI was
mixed with the slurry. The ethyl acetate-loaded XAD-7 was allowed to settle and the excess HCI was
decanted off. The resulting mixture was used to prepare a 3 x 0.5 cm column. On passing 1mg of Fe in 5ml
6M HCI through the column a distinct yellow band was visible at the top of the column. However, this band
of Fe passed rapidly through the column and breakthrough of Fe was noted after only 2ml of 6M HCI
washings. The rapid elution of Fe from the column was explained by the relatively high solubility of ethyl
acetate in 6M HCI and the hydrolytic degradation of the ethyl acetate. Both factors would result in a rapid
decrease in the amount of ethyl acetate on the column and subsequent removal of the FeCl,” complex from

the column.

Di isobutyl ketone (DIBK) loaded onto an inert XAD-7 support was also investigated. The solvent exhibited
higher extraction coefficients for Fe compared to the more commonly used di isopropyl ether (DIPE).
Although DIBK is more soluble in HCI than DIPE, the improved extraction coefficient makes the use of
DIBK preferable to DIPE. 2g of Amberlite XAD-7 resin was slurried with 3.5ml of DIBK. The DIBK was
added dropwise to the XAD-7 with constant stirring to produce a damp white solid. This solid was then
slurried with 6M HCI again with dropwise addition of the HCI and constant stirring of the mixture. Too
rapid an addition of HCl with insufficient stirring produced a hydrophobic solid that could not be used to
prepare an extraction column. This method produced 4.5g of extraction material that was sufficient to

prepare two columns of 5 x 0.7 cm (1.9ml column volume).

A standard was prepared containing 1mg Fe, 0.01mg rare earths, Ba, Co, Ni, U, Zr, Y, Th and Sn in 2ml of
6M HCI. The sample was loaded onto the column with dimensions of 5 x 0.7 cms (1.9ml column volume)
and the column repeatedly washed with 2ml aliquots of 6M HCI. A total of 60ml of 6M HCI was passed
through the column (equivalent to approximately 30 column volumes). The Fe was eluted with 3 x 2ml of
deionised water. Each eluent fraction was diluted to 10ml with 2% nitric acid. The concentration of Fe was
then determined using atomic absorption spectrometry. 100 (I of each eluent fraction was diluted to 10ml

with 2% nitric acid and the concentration of all other analytes was determined by ICP-MS.
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Figure 4.3: Elution of potential contaminants with 6M HCI from a DIBK / XAD-7 column 5 x 0.7cm
(1.9ml volume)
All elements tested followed the elution pattern of Ba with the exception of Sn. Sn elution was slightly delayed although

100% of Sn was eluted in 10ml of 6M HCL
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Figure 4.4 : Retention and elution of 1mg Fe on a DIBK / XAD-7 column 5 x 0.7cm (1.9ml volume)

4.3.5 Maximum loading of Fe on the DIBK/XAD-7 column

One of the main limitations of any technique for the isolation of Fe is the maximum loading of Fe that the
technique can tolerate. In general solvent extraction-based separations have higher Fe capacities than a
column-based technique. A typical 5 x 0.7cm column has a column volume of 1.9ml of which approximately
1.5ml is DIBK. From the values in Table 4.1 the maximum Fe loading of the column is therefore 74 mg Fe.
However, a solvent extraction-based technique using 20ml of undiluted DIBK would be capable of

extracting 980 mg Fe. Therefore, although the DIBK column offers advantages in terms of improved
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purification of Fe from other elements excessively large columns would be required for the separation of Fe
from high Fe samples, such as soils and sediments, for which solvent extraction-based techniques are

preferable.
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4.4 Nickel-63

4.4.1 Isolation of Ni as the dimethylglyoxime complex

As noted in Chapter 2, isolation of Ni has normally been achieved by forming a Ni-dimethylglyoxime
(DMG) complex and extracting the complex into chloroform. The complex is formed under alkaline
conditions in the presence of ammonia. Citrate is often added to prevent precipitation of transition metals,
such as Fe, that would normally hydrolyse at the alkaline pH employed. More recently, the isolation of Ni
has been achieved by loading the dimethylglyoxime onto an inert support producing a material suitable for
column chromatographic separations of Ni from other elements (Testa er al, 1991). The preparation and

application of the dimethylglyoxime loaded onto an inert support was investigated further to evaluate its

suitability for the current study.

4.4.2 Preparation of dimethylglyoxime-loaded onto XAD-7 and silica using three techniques

Dimethylglyoxime was loaded onto Amberlite XAD-7 and chromatographic grade silica using three
techniques. The XAD-7 was ground and sized to 63-125 (m prior to further treatment. Evaporation of a
solution of dimethylglyoxime onto XAD-7 has been generally used to prepare the chromatographi material.
However, adsorption and precipitation of the DMG onto both XAD-7 and silica were investigated in an

attempt to produce a more uniformly coated material.

Adsorption
0.25g of dimethylglyoxime was dissolved in 25ml of industrial methylated spirits. 2g of either silica or
XAD-7 were slurried with this solution and the mixture was allowed to stand for 2 hours. The solid was

isolated by filtration and dried in an oven overnight at 30°C.

Precipitation
0.25g of dimethylglyoxime was dissolved in a minimum of acetone (approximately 25ml). 2g of either silica
or XAD-7 were slurried with the acetone and 125ml of water was added with continuous stirring to

precipitate the dimethylglyoxime onto the solid. The mixture was filtered and dried in a vacuum dessicator

overnight.
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Evaporation

0.25¢g of dimethylglyoxime was dissolved in 30ml of acetone. 2g of silica was slurried into the acetone and

the mixture was allowed to stand with constant stirring whilst the acetone evaporated away. The solid was

then dried further in a vacuum dessicator.

4.4.3 Nickel loading and breakthrough on dimethylglyoxime-loaded resin

Columns were prepared from approximately 0.2g of DMG-based material produced using the techniques
described above. The column dimensions were 2 cm long by 0.8cm internal diameter. Each column was
conditioned using 0.14M ammonia solution. A 100 ml solution of ammonia was also prepared with a stable
nickel concentration of 1 ppm. This was passed through the column in 10 ml fractions until a uniform red
colouration throughout the extraction material was observed. The column was washed with 5 ml of
deionised water and all the eluent was retained. The Ni complexed on the column was eluted with M HCI
and diluted to 50ml with deionised water. It was noted that some of the dimethylglyoxime reagent had
eluted from the column and had reacted with the excess Ni in the eluent forming a red precipitate. This was
filtered off through a 0.45 pum membrane filter and dissolved in 8M HCI. The final volume of this solution

was adjusted to 50 ml with deionised water. Both fractions from each column were analysed by ICP-AES to

determine the Ni concentration.

Table 4.2 : Ni loading capacities for a range of dimethylglyoxime based extraction columns

Support Method for Mass used (g) Mass Ni on Mass associated Capacity mg
DMG leoading column (mg) with DMG Ni/g resin
leached (mg)
Silica Precipitation 0.2046 6.63 0.78 324
Silica Adsorption 0.2152 6.06 0.51 28.2
XAD-7 Adsorption 0.1806 0.38 3.66 2.1
XAD-7 Evaporation 0.1827 4.97 1.27 27.2
Silica Evaporation 0.1932 8.85 1.71 45.8
XAD-7 Precipitation / 0.2086 1.03 1.27 4.9
adsorption
XAD-7 Evaporation 0.2028 2.28 1.24 11.2

The highest loading capacity was observed for silica loaded with dimethylglyoxime by evaporation.
However, the flow rates through this column were slow in comparison with the XAD-7 based column and

the later support was therefore used in preference.
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4.4.4 Elution profiles for Ni on a dimethylglyoxime-XAD-7 column

A 2 x 0.8 cm column was prepared using dimethylglyoxime loaded onto XAD-7 by evaporation. A solution
containing 1% by volume of ammonia, 0.1 g of Ni and 0.8 kBq of ®Ni was loaded onto the DMG-XAD-7
column to produce a narrow loading band at the top of the column. A 1% ammonia solution was passed
through the column in 5 ml fractions and the eluents were collected separately. Each eluent fraction was
analysed separately by liquid scintillation counting and the results used to determine the break-through

volume of the column. The experiments were repeated using a dimethylglyoxime-based column

commercially available from Eichrom industries.

2 x5 ml fractions of 1M nitric acid

™\

100 — a
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20 L 5 ml fractions of 1% ammonia solution

0 5 10 15 20 25 30 35
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Figure 4.5 : Retention and elution of Ni on a dimethylglyoxime-based resin column

The elution profiles for both columns were identical (Figure 4.5 shows the elution profile for the commercial
resin). No breakthrough of Ni was observed even after passing 150ml of ammonia solution through the

column. This permits the column to be thoroughly washed to remove any potential contaminants prior to

eluting the Ni with a dilute acid.
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4.4.5 Optimisation of conditions for the retention of nickel on DMG loaded XAD-7

The optimum ammonia concentrations for the reaction of nickel with DMG loaded XAD-7 was determined.
It is known that in solution nickel will react with dimethylglyoxime in ammoniacal solutions. No
information was available, however, on the optimum concentration of ammonia for the reaction to proceed.
Solutions of 0.1%, 0.5%, 1.0%, 2.0% and 5.0% ammonia solutions (% v/v of 0.88 Sp gr ammonia and water)
were prepared containing a known activity of ®Ni (nominally 500Bq). 10 ml of each solution was
equilibrated for two hours with XAD-7 loaded with dimethylglyoxime via adsorption. After two hours the
XAD-7 was removed by filtration and the filtrate **Ni activity was measured by liquid scintillation counting.
The difference between the initial “*Ni activity and the ®Ni activity at equilibrium was used to determine the
amount of ®Ni retained on the solid and hence a distribution coefficient could be calculated. All

experiments were repeated using unmodified XAD-7 to check for any precipitation effects (Table 4.3).

Table 4.3 : Effect of ammonia concentration on the uptake of Ni(II) by dimethylglyoxime/XAD-7 columns
Ammonia solution concentration*®

Ammonia solution Mass of Activity of ®Ni at Activity of ®Ni at Distribution
concentration DMG/XAD-7 solid start of experiment equilibrium coefficient
Bg/10ml filtrate Bqg/10ml filtrate
0.2% 0.1039 424 431 9590
0.5% 0.0959 442 4.87 9460
1.0% 0.0962 440 5.08 9020
5.0% 0.1032 440 15.1 2740
10.0% 0.1063 449 28.4 1390

*(% v/v of 0.88 sp gr ammonia and water)

Increasing the ammonia concentration reduces the retention of Ni. High distribution coefficients (> 9000)
were observed for ammonia solution concentrations below 1%. At 5% ammonia solution, the distribution

coefficient declines rapidly.

4.4.6 Extraction of interfering elements on dimethylglyoxime loaded resins

The uptake of a range of contaminating nuclides on XAD-7 loaded with dimethylglyoxime was investigated.
The radioisotopes were dissolved in citrate solution to prevent precipitation of transition metals on adding
ammonia solution. Ammonia solution was added to the buffer solution to produce a solution equivalent to
1% ammonia. The solution was split and one fraction was equilibrated with dimethylglyoxime loaded onto
XAD-7 as described previously. The second fraction was equilibrated with untreated XAD-7 to provide a
blank measurement. The solutions were equilibrated for 2 hours with constant mixing. The XAD-7 was

removed by filtration through a Whatman GF/C filter and the amount of radionuclide present in the filtrate

135



Chapter 4 — Solvent extraction and extraction chromatographic techniques

was determined by gamma spectrometry. The amount of radionuclide present on the solid XAD-7 loaded
with DMG was determined by the difference between the amount of radionuclide present in the filtrate of
the DMG/XAD-7 material and the amount in the filtrate from the blank XAD-7 material. A distribution

coefficient was then determined (Table 4.4).

Table 4-4 : Distribution coefficients for different nuclides on DMG loaded XAD-7

Radionuclide Form Distribution coefficient
*Am Am(IIT) 2.2
3Ba Ba(Il) 2.3
%cd Cd(II) <1.0
(o Ce(IV) <1.0
Co Co(Il) 4.1
8o Co(Il) 3.9
B1Cs Cs(D) <1.0
gy : Eu(II) 112
3Gd Gd(IIn) 3.0
*Mn Mn(II) 33
“Na Na(l) 5.0
138n Sn(1V) 6.4
8gr Sr(IT) <1.0
By Y1) 4.2
%7n Zn(II) <1.0
5Ni Ni(II) 9020

None of the possible interfering nuclides show significantly high distribution coefficients and would
therefore be removed in washing solutions during the separation of nickel using a column prepared from a
DMG loaded XAD-7. In any case many of these nuclides would precipitate out in the absence of the citrate
buffer at these pH values and would therefore be removed via co-precipitation on iron hydroxide during the

initial stages of analytical separation.
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4.5 Strontium
4.5.1 Extraction of *°Sr using Sr-resin

Strontium-90 was purified using a commercially available Sr resin (supplied by Hichrom, UK). The resin
consists of 4,4'(5") bis(tert-butylcyclohexano)-18-crown-6 dissolved in octan-1-ol and supported on an inert
Amberlite XAD-7 or Amberchrom CG71 support (Horwitz et al, 1991). The uptake of Sr from HNO;
solution increases with increasing HNO; molarity (Figure 4.6). For example, Horwitz (1991) retained Sr
from Ca 3M HNO; whereas Ca was rapidly eluted. Breakthrough of Sr was observed after 13 free column
volumes of 3M HNO; had been passed through the column. Loading the Sr in 2M HNO;-0.5M AI(NO;);
improved uptake of Sr with no breakthrough observed in 30 free column volumes. Possible problems
include the uptake of Np, Pu and 2'°Pb on the Sr resin. These elements would seriously interfere with the

*Sr measurement and must be separated prior to the Sr being loaded onto the column.

Dsr

10-3L "l FPRWeTE

102 10 100 o
HNOg, M

Figure 4.6 - Sr distribution between solutions of 4,4'(5") bis(tert-butylcyclohexano)-18-crown-6 in octanol-1-ol
and nitric acid (T=25(C) (;) 0.IM (0 0.2M (( 0.4M (Reproduced from Horwitz ef al, 1991)

Cobb (1994) showed that the uptake of Sr on Sr-resin® was seriously affected by the presence of potassium.
To remove this interference, Sr may be precipitated as the oxalate at pH 3-4 along with the Ca in the sample
solution (Figure 4.7). The Sr and Ca oxalates are then decomposed using a 3:1 mixture of nitric and

perchloric acids. The resulting residue is then dissolved in 2M HNOs-0.5M AI(NO;); prior to loading on the

Sr resin column.
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Fig 4.7 : pH dependehce of metal oxalate precipitation (from Yamato, 1982)

4.5.2 Adopted method for the purification of *’Sr

The waste fractions from the Ni purification chemistry were combined for separation of Sr. The pH of the
solution was adjusted to pH 4.5 (the blue of bromocresol green indicator) with ammonia solution. 4%
ammonium oxalate was added to precipitate strontium/calcium oxalate, which was isolated by
centrifugation. The precipitate was dissolved in Sml of concentrated HNO; and transferred to a 20ml beaker.
The solution was evaporated to dryness and the residue was dissolved in 3ml concentrated HNO; and 1ml

70% HCIO,. This solution was evaporated to dryness to decompose oxalate and the residue was dissolved in

2ml 8M HNO;-0.5M AI(NO;)s.

The HNO;-AI(NOs); solution was transferred to a 4 x 0.7cm Sr-resin® column previously conditioned with
8M HNO;-0.5M AI(NOs;);. The beaker was washed with 2ml 8M HNO3-0.5M AI(NOs); and the washings
were transferred to the column. The column was washed with 5ml 8M HNO;-0.5M AI(NO;); followed by

Sml 8M HNO;. The Sr was then eluted with 10ml water into a tared 20ml polythene scintillation vial.
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4.6 Technetium-99

The development of an analytical technique for the separation of Tc from sediments has fallen into three

parts

1. The study of the extraction of Tc into tri-n-octylamine (TnOA) and its application to Tc analysis in low-
level waste

2. The incorporation of the Tc-TnOA extraction procedure into a chromatographic technique and the
evaluation of this technique for routine separation

3. The development of a technique for the determination of Tc in environmental samples (Chapter 5).

The first two of these areas has been covered in detail through the preparation of two papers. The two papers
are presented in turn in the following sections. The third paper on the analysis of 99Tc in environmental
samples is reproduced in Chapter 5. It should be noted that this research has been performed with significant
collaboration with other colleagues and where such collaboration has occurred the colleagues have been

listed in the author list of the paper.
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4.7 Paper in Radioactivity and Radiochemistry, 7, 23 - 31 (1996):

An Optimised Method for Technetium-99 Determination in Low Level Waste by Extraction

Into Tri-n-octylamine
C J Dale', P E Warwick® & I W Croudace®.

INNC Ltd, Winfrith Technology Centre, Dorchester, Dorset, DT2 8DH
*School of Ocean & Earth Science, Southampton Oceanography Centre, European Way, Southampton,
SO16 3NH

4.7.1 Abstract

The paper describes the optimisation of the extraction of *Tc with tri-n-octylamine (TnOA) and its
incorporation into a routine analytical method for the quantitative determination of **Tc in Low Level Waste
(LLW). Extraction was found to be independent of TnOA concentration, sulphuric acid and hydrochloric
acid concentrations and aqueous to organic ratios. The presence of nitric acid and nitrate anions significantly
reduces the extraction efficiency. The incorporation of the extraction into an analytical scheme results in a
technique capable of quantitatively separating Tc from a range of matrices and decontaminating the element

from other commonly interfering radionuclides including '“Ru.

4.7.2 Introduction

Technetium, atomic number 43, was discovered in 1937 by Perrier and Segre. The element is not found in
nature (except in minute quantities in uranium ore via the spontaneous fission of *°U) , but the radioisotope,
P T, is produced by nuclear fission of 2*U (6 % fission yield). T is, for all practical purposes, a pure beta

emitter (Epax 295 keV) with a half-life of 213000 years (Browne and Firestone, 1986).

As a consequence of nuclear fuel reprocessing, **Tc is released into the environment in significant quantities.
The radioisotope is also present in the environment from weapons testing in the 1950s and 1960s. *Tc is
released into the marine environment where it is dispersed into the water column. However, Tc can be

concentrated through uptake by marine biota and hence can enter the food chain (e.g. Schulte and Scoppa,
1987).
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The determination of *’Tc in LLW is necessary in calculating repository inventories, especially considering
its long half-life and probable abundance in the waste. However, the quantitative analysis of ’Tc in the
diverse matrices present in LLW is problematic. The difficulties are compounded by the inevitable presence
of other beta/gamma emitting radioisotopes which would interfere with the final measurement of the *Tc

beta activity by liquid scintillation counting if no separation was performed.

Tc as the pertechnetate anion (TcOy’) can be isolated by extraction into a variety of organic solvents from
acid media. Extraction of Tc from dilute sulphuric acid solutions into a 5% tri-n-octylamine (TnOA) in
xylene mixture and back-extraction into sodium hydroxide solution has been used to purify Tc (Golchert and
Sedlet, 1969 and Chen et al, 1990). Tc has also been extracted from nitric acid solutions using 30% TnOA in
xylene, although the extraction efficiency is reduced at nitric acid concentrations above 4M (Hirano et al,
1989). Again the Tc was back-extracted into sodium hydroxide solution. Holm ef al (1984) and Garcia-Leon
(1990) used tributy! phosphate to extract Tc from dilute sulphuric acid solutions and Martin & Hylko (1987)

extracted the tetraphenyl arsonium complex of Tc into chloroform.

Due to the high extraction efficiency of *Tc into TnOA in xylene, the simplicity of the extraction technique
and the good decontamination characteristics, this technique was chosen as the basis for the development of
a rapid analytical method for quantifying *Tc in LLW. In considering the use of yield monitors in the
analysis it was found that no other radioisotope of Tc could be used as a yield monitor as all available
radioisotopes of Tc, with the exception of #mTe, would interfere with the final measurement of *Tc by
liquid scintillation counting. " Tc was not used as a yield monitor due to the short half-life (6.02 hours) of
the radioisotope which made its use uneconomic. To improve the Tc counting efficiency and shorten
analysis time it was decided to mix the Tc in the TnOA/xylene phase directly with scintillant for counting
and not to back-extract the Tc. The use of Re as a yield monitor was therefore also not possible. As no yield
monitor was used it was necessary to develop the method so that > 95% recoveries were consistently

achievable for the range of sample matrices being analysed.

4.7.3 Methodology

4.7.3.1 Reagents

Tri-n-octylamine and mixed xylenes were supplied by Aldrich Chemicals, Gillingham, Dorset, UK. Instagel,
Ultima Gold and Ultima Gold AB scintillants were supplied by Packard Ltd, Pangbourne, Berks., UK. All

other reagents were supplied by Fisher Scientific Ltd, Loughborough, Leics., UK. **Tc was supplied as

ammonium pertechnetate (473.6 + 7.1 kBg/g) in solution by Amersham International, Amersham, Berks.,

141



Chapter 4 — Solvent extraction and extraction chromatographic techniques

UK. The standard solution was diluted by mass to produce working solutions in the range of 4 - 10 kBq/g

99Tc

4.7.4 Extraction of Tc into tri-n-octylamine

The extraction of 99Tc was optimised by studying the effect of acid type, acid concentration, dissolved salt

concentration, TnOA concentration and aqueous/organic ratios on the recovery of 99Tc.
4.7.4.1 Effect of acid type and concentration

The extraction of Tc(VII) from hydrochloric acid, sulphuric acid and a mixture of nitric and sulphuric acids
was studied. 10ml of the acid under investigation was spiked with a known activity of *Tc. 5ml of 5%
TnOA in xylene was added to the acid and the mixtures shaken for approximately 2 hours to ensure the
extraction had attained equilibrium (although in practice it has been found that complete extraction of *Tc
is obtained after only 2 minutes). The mixtures were allowed to separate and 1ml of the organic layer was
transferred to a polythene scintillation vial. 15ml of Instagel scintillant was added to the vial and the
contents thoroughly mixed. The samples were counted on a Packard 2250CA liquid scintillation analyser to
determine the amount of *Tc extracted into the organic layer. The counting efficiency was determined by
adding a spike of *Tc to the sample in the scintillation vial and recounting. The difference in the two count
rates due to the addition of the second spike was used to determine the counting efficiency. This assumed
that the addition of the second spike had a negligible effect on the quench level of the sample and hence the

associated counting efficiency. The results are shown in Figures P1-4.
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Figure P1 : The effect of nitric acid molarity on the extraction of Te(VII) into TnOA from nitric acid
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Figure P2 : The effect of varying the % sulphuric acid on the extraction of Te(VID) into TnOA from 3M nitric /
sulphuric acids
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Figure P3 : The effect of % sulphuric acid on the extraction of Tc(VII) into TnOA from sulphuric acid
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Figure P4 : The effect of hydrochloric acid molarity on the extraction of Tc(VII) into TnOA from
hydrochloric acid

4.7.4.2 The effect of TnOA volume and concentration on Tc(VII) extraction

To investigate the effect of TnOA volume on extraction, 7 samples were prepared by spiking 10ml of 1%
sulphuric acid with a known activity of *Tc. 501 of 30% hydrogen peroxide was added to each sample to
stabilise the Tc(VII) oxidation state. A range of volumes of 5% TnOA in xylene, ranging from 1 ml to 10ml,
were added to the vials and the contents were equilibrated for approximately two hours with thorough
mixing. The phases in the vial were allowed to separate and 1ml (0.5ml in the 1ml total sample) of the
xylene phase was transferred to a 20ml scintillation vial. 10ml of Instagel scintillant was added to each
sample and the samples were counted on the Packard 2250CA liquid scintillation analyser to determine the

amount of extracted Tc. Counting efficiency was determined by spiking the sample with “Tc and

recounting.

In the second experiment, six samples were prepared by spiking 10ml of 1% sulphuric acid with "¢ as
pertechnetate. 50ul of 30% hydrogen peroxide and Sml of TnOA in xylene were added. The concentration of
TnOA was varied between 0.5% and 10%. The mixtures were allowed to equilibrate for approximately 2
hours and then allowed to stand. 1ml of the TnOA/xylene phase was transferred to a scintillation vial, 10ml
of Instagel scintillant was added and the sample counted on the Packard 2250CA liquid scintillation
analyser. Counting efficiency was determined by spiking the sample with a known amount of #Tc and

recounting. The results of the two investigations are shown in Figures PS5 and P6.

144



Chapter 4 ~ Solvent extraction and extraction chromatographic techniques

100 ¢—o—o—o—o—o—
80 |

60 |
40 |
20

% Tc extracted

i I 1

0 02 04 06 08 1

Ratio of 5% TOA in xylene to 1%
sulphuric acid

Figure P5 : The effect of aqueous / organic ratios on the extraction of Tc(VII) into TnOA
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Figure P6 : The effect of TnOA concentration on the extraction of Te(VII) in TnOA

4.7.4.3 The effect of dissolved salt concentration on Tc(VII) extraction

10ml of 1M, 2M and 4M solutions of ammonium chloride and ammonium nitrate were prepared and spiked
with a known activity of **Tc. Each sample was acidified with 0.5ml of concentrated sulphuric acid and 501
of 30% hydrogen peroxide was added. 5ml of 5% v/v TnOA in xylene was added and the mixtures allowed

to equilibrate with constant mixing for 2 hours. The phases were allowed to separate and Iml of the
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TnOA/xylene phase and 10ml of Instagel scintillant was transferred to a 20ml scintillation vial for counting

to determine the amount of *°Tc extracted.
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Figure P7 : The effect of dissolved salts on the extraction of Tc(VII) into TnOA

4.7.4.4 Determination of ”’Tc liquid scintillation counting efficiency

In all measurements, the liquid scintillation counting efficiency of *Tc in the sample/scintillant mixture is
determined by spiking the sample after initial counting with a known activity of *Tc and recounting the
sample. The increase in count rate is used to determine the counting efficiency. However, the ®T¢ in the
sample is associated with the organic xylene phase prior to addition of the scintillant whereas the spike is
added as an aqueous solution. This may lead to a variation in counting efficiency between the PTc

associated with the sample and that associated with the spike.

To check the validity of this approach to counting efficiency determination 5ml of 2M sulphuric acid was
spiked with a known activity of >’ Tc. The solution was extracted twice with Sml of 5% TnOA in xylene. The
two extracts were combined and 1ml of the organic phase was mixed with 15ml of Ultima Gold. 1ml of the
aqueous phase was mixed with 15ml of Ultima Gold AB (which shows superior mixing characteristics with
acidic solutions). This was counted to show that more than 99% of %Tc had extracted into the organic phase.
The organic phase was then counted and the counting efficiency assuming 100% extraction was determined.
The organic phase was then spiked with a known activity of **Tc in aqueous solution and recounted. A
second counting efficiency based on the increase in count rate after spiking was determined. The counting
efficiency for *Tc associated with the organic extraction was calculated as 101 + 4 %. Spiking of the sample
gave a counting efficiency of 98 + 3 %. This confirmed that spiking was a suitable method for determining

counting efficiency of the sample.
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4.7.5 Method for the determination of *°Tc

The optimised extraction procedure described above was incorporated into an analytical scheme for the

quantification of Tc in LLW.

Between 5 - 20g of sample (depending on matrix) is leached with nitric, hydrochloric, or a mixture of both
acids. The sample is filtered and the filtrate diluted to a known volume with deionised water. An aliquot of
the dilution is mixed with 0.5ml conc. nitric acid, 3 drops of 30% hydrogen peroxide and 0.5ml of 10mg/ml
Fe (as iron chloride) in a 50ml centrifuge tube. The sample is heated on a water bath at around 50°C for 5
minutes. The sample is diluted to 30ml with deionised water and 5ml of 0.88 S.G. ammonia solution is
added. The sample is centrifuged, the supernatant (containing the Tc) is decanted into a clean stoppered tube
and 1.5ml of 1.84 S.G. sulphuric acid is added. 5ml of 5% v/v TnOA in xylene is added, the stopper
replaced and the sample spin mixed for 2 minutes. The two phases are allowed to separate and the upper
organic phase is transferred to a labelled sample container. A further 5ml of TnOA in xylene is added to the
aqueous phase and the extraction repeated. The organic phase from the second extraction is combined with
the first extract. A known volume (typically 1ml, although up to 10ml will mix with the scintillant) of the
organic extract is mixed with 10ml of Ultima Gold or equivalent scintillant and the sample counted using
liquid scintillation analysis. After counting the sample is spiked with a known activity of *Tc (in no more

than 0.1ml of standard solution) and recounted to determine the counting efficiency.
4.7.6 Decontamination factors for interfering radionuclides

Decontamination factors were determined by spiking a blank sample with a known activity of the
radioisotope under investigation. The sample was then analysed using the method described above and the
amount of radionuclide in the final Tc fraction was determined. The following radionuclides (at specified
activities) did not give a count rate above instrument background and therefore would not interfere with #Te
measurements at a limit of detection of 0.1Bg/ml of leachate. The radionuclides investigated were “Ca
(1300Bq), **Fe (7800Bq), “Co (8400Bq), *Sr(13100Bq), *Sb (5000Bq), '*’I (4340Bq), **Ba (10600Bq),
B7Cs (8400Bq), *Ce(3200Bq), *2U (350Bq), *’Pu (2970Bq), **Am (209Bq).

4.7.7 Typical recoveries for a variety of sample matrices

A range of sample types, spiked previously with Tc, were analysed using the above technique. Typical

recoveries of Tc are given in Table P1.
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Table P1 : Typical recoveries of *T¢ for a range of matrices

Matrix Mass/volume analysed Recovery *Tc
Sediment 11g 55%, 59%

Nitric Acid spiked 5ml 99%
Tissues/Paper 17¢g 102%
Tissues 12¢g 100%
Paper/Tissues 4g 102%
Mop strands/string 10g 99%
Plastic/rubber 10g 102%
Plastic gloves/overshoes S5g 104%
Acidified effluent 5ml 94%
Glass 32g 87%

Rock/cement 1g 90 - 104% (n=9)

Method uncertainties were estimated to be approximately 5%, which accounts for the observed recoveries

greater than 100%.

4.7.8 Discussion

It has been shown that the extraction of **Tc from solutions of sulphuric and hydrochloric acid of various
concentrations is quantitative. However, the presence of nitric acid significantly reduces the extraction
efficiency. This is probably due to the ion-pair formation of the protonated tri-n-octylamine with the nitrate
ion and subsequent competition for ion pair formation with pertechnetate and not to a change in the degree
of protonation of the amine group. This is confirmed by the reduced extraction of pertechnetate in the
presence of ammonium nitrate at constant acid concentration. The competition between nitrate and

pertechnetate is represented in the equation below.

R,NH'NO; + TcO; = R,NH*TcO; +NO;

Dissolved ammonium chloride has no significant effect on *Tc extraction. The ratio of acid to organic phase

and TnOA concentration also has no significant effect on the extraction efficiency of *Tec.
Counting efficiencies for the samples analysed ranged from 96-98% (counting window 2-295 keV) dropping

to around 90% when the lower limit of the counting window was increased to exclude chemiluminescence

(counting window 8-295 keV). No significant variation in efficiency was noted between different scintillant
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types and between 10ml and 15ml of scintillant mixed with 1ml of organic sample. The choice of scintillant

type for each experiment was determined mainly by availability of the scintillants at the two laboratories.

Using the method described above quantitative and rapid separations of **Tc from a range of leachates
having low dissolved solids was achieved. Leachates containing high dissolved solid contents (such as
sediment) gave reduced recoveries of *’Tc. The sediments (moistened with conc. ammonia solution) were
gradually heated to 400°C in a muffle furnace after spiking, and it is possible that the low recoveries were
due to volatilisation of the *Tc. It has been found that the inclusion of a carbonate precipitation prior to
solvent extraction may also improve the recoveries of **Tc by removing the significant quantities of calcium
associated with sediments that may interfere with the solvent extraction stages. A modified version of the
method, including the carbonate precipitation was used to analyse a water sample in the 1995 National
Physical Laboratory Intercomparison exercise. A measured value of 43 + 4 Bq/kg was found, compared with
the NPL reported value of 40.1 + 0.5 Bg/kg (Jerome et al, 1995). This was considered a satisfactory

agreement considering the low levels of Tc present.
Interference from a range of radionuclides has been found to be negligible. The behaviour of '“Ru in this
separation has not been tested directly, although samples containing 'Ru have been analysed and no

evidence for interference has been observed.

The method described above has been accredited by the National Measurement Accreditation Service

(NAMAS) at the Taywood laboratories and is routinely used in the analysis of LLW.
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4.7.11 Addendum to paper :

An Optimised Method for Technetium-99 Determination in Low Level Waste by Extraction Into Tri-

n-octylamine

Following the publication of this paper in Radioactivity and Radiochemistry, we were notified that the
original NPL value for Tc in the intercomparison standard was incorrectly quoted by NPL. The true value
for the standard was given as 44 Bq/kg showing far better agreement with the value of 43 Bq/kg measured in
this study. A amendment was subsequently published in Radioactivity and Radiochemistry.
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4.8 Paper - In preparation :
Solid-Phase Extraction of Technetium-Amine Complexes onto Cys-Silica and its application to

the isolation of *Tc

P E Warwick', I W Croudace', A G Howard”* & J A Caborn'

!School of Ocean & Earth Science, Southampton Oceanography Centre, European Way, Southampton,
SO16 3NH
’Dept. of Chemistry, University of Southampton, Southampton, SO14 1BJ

4.8.1 Abstract

The extraction of Tc tripentylamine complexes onto Cg-silica solid-phase extraction columns is described
and evaluated for the determination of *Tc in the presence of other isotopes. The Tc-amine complex is
quantitatively extracted from sulphuric acid on a Cg-silica extraction column and can be recovered from the
column by elution with dilute alkali. A clean separation of Tc from all likely contaminants was achieved
using the solid-phase extraction columns. The use of Cys-silica solid-phase extraction columns is a viable

" and attractive alternative to the use of organic solvents in the isolation of *Tc.

4.8.2 Introduction

Technetium-99 is a major fission product (approximately 6% fission yield) which is routinely discharged to
the environment in the authorised discharges from nuclear facilities. The determination of *Tc in liquid

effluents and solid waste is therefore an important part of statutory monitoring programmes.

A number of methods have been published for the determination of technetium (Tc) isotopes in which the
element is separated from an aqueous solution by solvent extraction of a pertechnetate-(tertiary amine) ion-
pair complex (Chen et al, 1990; Golchert and Sedlet, 1969; Hirano et al, 1989). Dale et al (1996) have
shown that the extraction of Tc into tri-n-octylamine is quantitative from sulphuric and hydrochloric acids
over a range of concentrations, but not from nitric acid solutions. The extraction of Tc from sulphuric and
hydrochloric acids was found to be independent of the amine concentration in the organic solvent and the
relative proportions of aqueous and organic phases. The solvent extraction of Tc into tri-n-octylamine allows

rapid separation of the element and effective decontamination from interfering radioisotopes. However,
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solvent extraction has a number of disadvantages as the technique is relatively labour intensive and produces

significant quantities of organic waste that requires controlled disposal.

A novel approach to avoiding solvent extraction is to form an organic complex with Tc that can be
subsequently extracted onto a commercially available Cys silica cartridge. The aim of this study was to
develop a technique for the pre-concentration of the Tc-amine complex by solid-phase extraction thereby
avoiding the use of organic solvents and making the separation more suitable for the routine analysis of *Tc

in large sample batches.

Although tri-n-octylamine (TnOA) has been extensively used in the isolation of Tc, it is immiscible with
water. Lower tertiary amines are sufficiently soluble in the aqueous solution containing the Tc and form ion-
pair complexes that are readily extractable into an organic phase. Maeck ef al (1961) investigated the
extraction of a range of elements, including Tc, as ion-pair complexes with more water-soluble tertiary
amines (propyl-, butyl- and hexyl-amines). This describes the development of a solid-phase extraction

procedure based upon the use of these smaller tertiary amine ion-pair agents

4.8.3 Experimental and Results
4.8.3.1 Reagents

Unless otherwise stated, all reagents were of analytical grade or equivalent. Tributylamine and
tripentylamine (general laboratory grade) were supplied by Aldrich Chemicals Ltd, Gillingham, Dorset. The
Isolute™ Cg columns (500mg Cig-silica with a loading of 18.6% C,5) were supplied by Jones
Chromatography, Hengoed, Mid-Glamorgan. *Tc (as ammonium pertechnetate) was supplied by Amersham
International Plc (Buckinghamshire, UK). Instagel( scintillant was supplied by Packard UK, (Pangbourne,
Berks, UK). Gold Star scintillant was supplied by Meridian (Epsom, Surrey, UK). All other reagents were
supplied by Fisher Scientific (Loughborough, Leics, UK).

4.8.3.2 Mixing of tributylamine and tripentylamine with 2M sulphuric acid

A preliminary study was carried out to investigate the mixing of the amines with 2M sulphuric acid.
Sulphuric acid was chosen as previous studies (Dale et al, 1996) had shown that Tc-amine extraction
efficiencies from this medium were high. 10ml of 2M sulphuric acid was transferred to a glass vial and a
known volume of the tertiary amine was added. The mixture was shaken and checked for any evidence of
separation. This was repeated with increasing volumes of amine until the sulphuric acid became saturated

and the excess amine separated out.
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Up to 400pl of tripentylamine and 7000l of tributylamine were found to dissolve in 10ml of sulphuric acid.

4.8.3.3 Extraction of the butyl- and pentyl-amine complexes of Tc

The extractability of the Tc-amine complexes formed with tributylamine and tripentylamine was determined
by measuring the percentage of the Tc-amine complex that extracted into xylene. The effect of amine

concentration on the extractability of the complex was studied.

10ml 2M sulphuric acid was spiked with a known activity of #Tc (nominally 500Bq; 0.015uCi). The
samples were then mixed with a given volume of either tributylamine or tripentylamine. 50ul of 30%
hydrogen peroxide was added to each sample to ensure that the Tc was present as the pertechnetate anion.
5ml of xylene (mixed isomer) was added to each sample and the contents were mixed for 2 hours on a
slowly rotating wheel to attain equilibrium. The phases were allowed to separate and 1ml of the xylene was
transferred to a clean 20ml scintillation vial. 10ml of InstagelTM scintillant was added to each vial, the
contents were thoroughly mixed and the samples were counted on a Packard 2250CA liquid scintillation
counter. The counting efficiency was determined by spiking one of the samples with a known amount of

#T¢ and the sample was recounted. Sample quench over the range of samples was constant.
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Figure P1 : Effect of amine type and volume (ml) in 10ml of sulphuric acid on the extraction of Tc-amine into
xylene

Although the tributylamine mixes more readily with 2M sulphuric acid, the tripentylamine complex of Tc is
extracted more efficiently into xylene (Figure P1). Tripentylamine was therefore used for all subsequent

experiments.
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4.8.3.4 Solvent extraction of”’ Tc amine complexes

9.6ml of nitric, hydrochloric or nitric acids at various concentrations were spiked with a known amount of
PnT¢ tracer. The mixture was spiked with 400p] of amine and the solution was thoroughly mixed. 10ml of
xylene was added and the mixture was shaken for 1 hour. The two phases were allowed to separate and the
amount of *"Tc remaining in the aqueous phase was determined using a high purity germanium gamma

spectrometry system.

Although sulphuric acid was chosen for this study, it is apparent (Figure P2) that extraction of the Tc-

tripentylamine complex should be practical from dilute HCI (up to 4M) and to a lesser extent from dilute

HNO:s.
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Figure P2 : Extraction of Tc-tripentlyamine ion-pair complex from various acid types/molarities

4.8.3.5 Uptake of the Tc-Tripentylamine complex on Cs-silica

The rate of uptake of the Tc-tripentylamine complex onto Cig-silica was determined by spiking a solution of
4% tripentylamine in 2M sulphuric acid with a known amount of "¢ and shaking 10ml of this solution
with 0.1g of Cyg-silica. After a set time, the mixture was filtered through a 0.2 pm PTFE filter and the
amount of *’"Tc present in the aqueous phase was determined by gamma spectrometry. The rate of uptake
was found to be fast with 70% of *™Tc being extracted after only 10 seconds and 100% of the *"Tc being
removed from the aqueous phase after 60 seconds (Figure P3). The extraction kinetics were therefore not a

limiting factor in the use of this procedure.
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Figure P3 : Rate of uptake of the Te-tripentylamine ion-pair complex on Ci; silica

Isolation of the *Tc-tripentylamine complex on a Cg silica column was investigated. 10ml of 2M sulphuric
acid was spiked with 400(1 of tripentylamine and a known activity (approximately 500Bq; 0.015uCi) of
*Tc. This solution was loaded onto an Isolute™ C,s column which had previously been conditioned with
10ml 2M sulphuric acid mixed with 400ul of tripentylamine. The eluent obtained during the loading process
was retained. The column was washed with nine Sml fractions of 2M sulphuric acid (a total of 45ml 2M
sulphuric acid passing through the column). Each fraction of eluent was retained separately and 1ml of each
fraction was mixed with 15ml Instagel™ scintillant and counted on a Packard 2250CA liquid scintillation
counter. The counting efficiency was determined by spiking one of the samples with a known activity of
®T¢ and recounting the sample. These measurements were used to determine the amount of 9Tc lost during

the washing stages (Figure P4a).

In a second experiment the above procedure was repeated. However, this time the column was washed with
seven 10ml fractions of sulphuric acid containing 400ul of tripentylamine. Again each eluent fraction was
retained separately and the *Tc activity determined by mixing 1ml of each fraction with 15ml of Gold Star

scintillant. No breakthrough of Tc was observed in any of the fractions.

In a third experiment, 10ml of 2M sulphuric acid was mixed with 400ul of tripentylamine and 500Bq
(nominally 0.015uCi) of *Tc. The mixture was loaded onto an Isolute™ Cig column. The column was
washed with four portions of 10ml of 2M sulphuric acid containing 400pl of tripentylamine. 1ml of each
fraction was mixed with 15ml of Instagel scintillant and counted using liquid scintillation analysis. Four
10ml fractions of 1M ammonia solution were also passed through the column to remove the Tc extracted on
the column. Both fractions were evaporated to incipient dryness at around 50°C. The residue was dissolved
in Iml of 2M sulphuric acid and mixed with 15ml of Gold Star scintillant. The #Tc activity in the two

fractions was determined by liquid scintillation analysis. Counting efficiency was determined as described

previously.
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Figure P4 : Te breakthrough from a C;s column loaded with 99To:-tripentylamine after washing with (a) 2M
sulphuric acid and (b) 2M sulphuric acid containing tripentylamine followed by 1M ammonia
Column dimensions 1 x 0.5 cm Isolute Cg-silica. Columns contained 500mg Cs-silica with a loading of 18.6% Cs

The Tc extracted on the Ci3 column is slowly removed by successive additions of 2M sulphuric acid to the
column (Figure P4a). This is probably due to the slow leaching of tripentylamine from the column. The
addition of tripentylamine to the sulphuric acid prevents this gradual elution and in excess of 80ml of
washings can be passed through the column without breakthrough of the Tc (Figure P4b). The Tc can be
eluted from the column using a dilute alkali such as 1M ammonia solution that de-protonates the tertiary

amine destroying the ion-pair complex. The concentration of ammonia had a negligible effect on the rate of
Tc elution.

4.8.3.6 Decontamination of *’Tc from interfering radioisotopes using the Cg column

A mixture of gamma emitting radioisotopes consisting of **' Am, '®Cd, *’Ce, *’Co, “Co, V'Cs, 2Hg, **Mn,

330, ¥°Sr and *Y was dissolved in 10ml of 2M H,SO, containing 400l tripentylamine. The mixed gamma
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solution, commercially available as a calibration solution, is suitable for representing most metal groups
found in nuclear waste streams. The solution was transferred to a Cis column that had previously been
conditioned with 10ml of H,SO; containing 400l tripentylamine. The eluent from this loading was retained
and measured by gamma spectrometry on a Canberra Nuclear HPGe well detector. The column was washed
with 5ml portions of the sulphuric acid/tripentylamine mixture and each fraction counted on the gamma
spectrometry system. This was repeated until no gamma emitting isotopes were detected in the eluent. The

percentage of each isotope in the eluent compared to the load solution was calculated and results are shown
in Table P1.

Table P1 : Elution of selected radiosiotopes from a Cy3 column with 2M H,S0,-4% tripentylamine

241
Volume Am 109Cd 139(:e 57C0 60C0 137CS 203Hg 541\/1n IISSn SSSr 88Y

El(toad) 10ml 96.60 81.01 96.58 9648 9651 9623 197 9649 8782 9603 96.55
E2 5ml 340 18.09 342 352 349 377 204 350 1057 397 345
E3 Sml n.d. 0.31 n.d. n.d. n.d. nd. 80.66 0.01 045 n.d. n.d.
E4 Sml n.d. 0.25 n.d. n.d. n.d. nd. 1195 nd 0.31 n.d. n.d.
E5 Sml n.d. 0.34 n.d. n.d. n.d. n.d. 1.97 n.d. 0.54 n.d. n.d.
Eé6 Sml n.d. n.d. n.d. n.d. n.d. n.d. 0.70 n.d. n.d. n.d. n.d.

E7 Smi n.d. n.d. n.d. nd. n.d. n.d. 0.70 n.d. 0.31 n.d. n.d.
n.d. not detected

Complete removal of the majority of contaminants is achieved after only 10ml of washings. 1Cd and "*Sn
tailed through the column more than the other isotopes but were effectively removed after a total of 20ml
solution had passed through the column. Only **Hg was retained to some extent on the column, with the

first 15ml of washings only containing 4% of the total activity. However, after 40ml of washings only 0.7%

of the original **Hg was eluted.
4.8.3.7 Separation of Ru from Tc using a C;s column

The determination of *Tc by LSC is complicated by the presence of the beta emitting isotope '%Ru. The
presence of stable *Ru also interferes isobarically with the measurement of *Tc by ICP-MS. It was
therefore necessary to study the behaviour of Ru on the Cig column. 1mg of Ru (VIII) standard was added to
10ml of 2M sulphuric acid containing 400l of tripentylamine. The solution was transferred to a C;g column
which had previously been conditioned with 2M sulphuric acid containing 400l of tripentylamine. The
column was washed with five 10ml aliquots of 2M H,SO,/amine followed by one 10ml aliquot of 1M
NH,OH. Each of the fractions was diluted with 2% nitric acid and Ru was determined by ICP-MS. The

brown colour of the Ru standard was visibly removed from the column during the loading phase and first
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two washes. The remaining fractions were colourless in appearance. This was confirmed by the ICP-MS

measurements,
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Figure P5: Removal of Ru from a Cy5 column (column dimensions as in Figure P4)

4.8.4 Comparison of the Cg-silica based separation with other chromatographic techniques

Preconcentration of Tc may be achieved using anion exchange chromatography. Tc is retained under a wide
range of conditions and can only be eluted from the column using concentrated nitric acid or a solution of
thiourea. Although anion exchange chromatography has been widely used for the preconcentration of Tc, Ru
will follow Tc and will interfere with both radiometric (via '“Ru) and mass spectrometric (via stable “Ru)

measurement of > Tc.

TEVA resin, supplied by Eichrom Industries, has been shown to quantitatively extract Tc from aqueous
solution (Horwitz ef al, 1995) and has been used in a method for 9Tc analysis in effluents (Banavali et al,
1995) and environmental samples (Butterworth e al, 1995). Tc is retained from dilute nitric and
hydrochloric acid with many other interfering radionuclides including Ru being rapidly eluted. Large sample
volumes may be passed through the column without breakthrough of Tc making the column ideal for the
analysis of river waters and drinking waters. Compared with the C18-silica based separation described
above, TEVA resin also has the advantage that it does not require the addition of an organic compound to
the load and wash solutions and hence does not produce such a complex waste. Both TEVA and C18 silica
may be mixed directly with liquid scintillation cocktails producing sources suitable for counting by liquid
scintillation counting with similar counting efficiencies for *Tc. However, strong nitric acid is required to
elute the Tc and subsequent evaporation of this eluent may lead to losses of volatile pertechnic acid.

Evaporation of the ammonia eluent from the Cg-silica column is less likely to result in the loss of Tc
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especially if the temperature of this evaporation is carefully controlled. The cost of the TEVA resin is also a

disadvantage in the commercial analysis of large numbers of samples.

4.8.5 Conclusions

The formation of a tripentylamine complex of Tc in aqueous solution and subsequent extraction of the
complex onto a Cis column has many advantages over the conventional solvent extraction of Tc into a
mixture of tri-n-octylamine in xylene. The C;5 column quantitatively extracts Tc from a 2M sulphuric acid
solution containing tripentylamine. The column can then be washed thoroughly with the sulphuric
acid/tripentylamine mixture to remove contaminating radioisotopes including Ru. Elution of the Tc can then
be effected using a dilute alkali. If ammonia is used to elute the Tc this eluent can be evaporated to dryness
and the residue containing the Tc can be dissolved in 2M nitric acid prior to ICP-MS determination of the

Tc. Alternatively the Tc can be measured by liquid scintillation analysis.

The described extraction chromatographic technique does not produce organic solvent waste and the column
and washings can be disposed of safely. Additionally, the separation is less labour-intensive than solvent
extraction and a number of columns can be operated simultaneously. The technique takes longer than the
solvent extraction technique for single sample analysis and where a rapid turnaround of results is required
the solvent extraction technique still has advantages. It is proposed that the Cig column technique detailed
above could replace the frequently used solvent extraction stage for the determination of Tc in many sample

matrices.
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4.9 Use of TEVA resin for the purification of Te¢

TEVA resin has become widely used for the extraction-chromatographic separation of *’Tc. TEVA resin
consists of the amine-based extractant Aliquat-336 adsorbed onto an inert polyacrylamide support. Under
highly acidic conditions, TEVA will extract tetravalent actinides as well as Tc. However, under weakly
acidic conditions the distribution coefficient for the actinides drops rapidly whilst the distribution coefficient
for Tc rises. Re is adsorbed along with Tc making it a suitable yield monitor for Tc under these separation
conditions (Butterworth et al, 1995). As well as efficiently extracting Tc from a range of solution types,

TEVA resin shows no uptake of Ru. Good separation factors for Tc and Ru are therefore obtained.

Tc is also retained under alkaline conditions and hence can be used to separate Tc from the alkaline
supernatant resulting from the precipitation of Fe as Fe(OH);. Distribution coefficients were determined for
ammonia concentrations ranging from 0.01% to 5% (percentage of 0.88 Sp.Gr. ammonia mixed with water).
pH values ranged from 8.8 to 11.8. 10ml of the ammonia solution was spiked with 2,000 Bq of #mTc and
shaken with 0.1g of TEVA resin for one hour. The samples were filtered through a Whatman 540 filter and
the activity in the aqueous fraction measured by gamma spectrometry. The activity associated with the resin
was then calculated and used to determine the distribution coefficient. In all cases the distribution coefficient

was calculated as greater than 40,000.

Ni and Sr will also be present in this alkaline supernatant but will not be retained on the TEVA column. Ni

and Sr may then be subsequently separated from the column raffinate using techniques described in Sections
44 and 4.5.

Elution of Tc is somewhat more problematic. Nitric acid is the most common eluent with acid strengths
greater than 8M being required (Butterworth et al, 1995). However, for low-level analysis using ICP-MS
and for liquid scintillation counting, the nitric acid must be evaporated. This potentially could lead to losses
of Tc by volatilisation and care is required during such an evaporation stage. Alternatively, TEVA resin may

be mixed directly with liquid scintillation cocktail prior to counting.

162



Chapter 4 — Solvent extraction and extraction chromatographic techniques

4.10 Conclusions to Chapter 4

Solvent extraction techniques have been identified that are suitable for the separation of *Fe, ®*Ni and *Te.
Iron-55 may be effectively extracted as its chloro-complex from HCI at concentrations >6M. The Fe is
extracted as the ion pair H'FeCly. A range of oxygen-containing solvents including ethers, esters and
ketones has been used in the extraction of Fe. Of the three solvents investigated, ethyl acetate shows the
highest partition coefficient and loading capacity although the solvent also shows the highest extraction of
Sn. If extraction of Sn must be avoided, di isopropyl ether is more suitable although the partition coefficient

for Fe is significantly lower.

Nickel-63 was readily extracted by dimethylglyoxime, which forms an extractable chelate under
ammoniacal conditions. Potential interferences included Pd and possibly Co, which also form
dimethylglyoxime complexes. Technetium-99 may be effectively extracted into trioctylamine from a range
of acidic solutions. The mechanism of extraction is an ion pair formation with the Tc being extracted by the

protonated amine as the pertechnetate anion.

In all cases, the solvent extraction techniques identified could be adapted into an extraction chromatographic
technique. Extraction chromatographic separations in general provided a far better alternative to solvent
extraction with easier processing of larger sample batches and improved separation of the analyte from
interferences. The use of extraction chromatography compared to solvent extraction also reduced the
volumes of organic solvents used and eliminated the requirement for specific disposal routes. An extraction

chromatographic technique using a commercially available extractant was also studied for 98r.

Routine application of extraction chromatography for “Fe separation was limited to samples of low Fe
content. For ferrous and environmental samples, and in particular sediment, where Fe contents are relatively
high, the loading capacity of the extraction chromatographic material was restrictive with prohibitively large
columns being required to permit extraction of all the Fe present. In such instances, solvent extraction, with

its higher loading capacities, was the preferred method of separation.

Extraction chromatographic separation of **Tc was readily achieved by using both the Cs silica approach of
extracting the Tc-amine complex from aqueous solution and also by using the commercially available TEVA
resin. However, solvent extraction of *Tc into trioctylamine was the preferred option in the current study as

the extraction procedure produces an organic solution of *Tc that readily mixes with scintillant prior to

liquid scintillation counting.

163



Chapter 4 — Solvent extraction and extraction chromatographic techniques

4.11 References

Butterworth J.C., Livens F.R. and Makinson P.R. (1995). Development of a method for the determination of low levels
of technetium-99. Sci. Total Env., 173/174, 293-300

Horwitz E.P., Dietz M.L. and Fisher D.E. (1991). Separation and preconcentration of strontium from biological,
environmental and nuclear waste samples by extraction chromatography using a crown ether. Anal. Chem, 63, 522-
525.

Testa C, Desideri D, Meli M.A., Roselli C.(1991). Extraction chromatography in radioecology. Radioact. Radiochem,
2(4), 46-54.

164



Chapter 5

Sequential separation of beta emitters



Chapter 5 — Sequential separation of beta emitters

5 Sequential separation of beta emitters
5.1 Introduction

Having optimised the purification and measurement techniques for individual pure beta-
emitting radioisotopes it was necessary to combine these techniques to produce a scheme for
the sequential separation of *Fe, ®Ni, *Sr and *Tc from all other contaminating radioisotopes
and from each other. Such a separation scheme should also isolate the radioisotopes from the
bulk sample matrix. Such a sequential separation scheme permits the analysis of all four
isotopes in materials where there is a limited sample size available for analysis or in samples
where the levels of the isotopes are low hence allowing more of the sample to be allocated for
a given analysis. In both instances there is insufficient material to perform four separate
analyses. Sequential separation schemes also permit the analysis of the four isotopes in a more
cost efficient manner improving analytical turn-round times and reducing the amount of hands-

on time required from the analyst.

The sequential separation schemes developed fall into two categories
1. Schemes for the separation of *°Fe, Ni, *°Sr and *Tc from relatively simple matrices such
as low-level waste leachate and liquid effluents.

2. Analysis of *°Fe, Ni, *°Sr and *Tc in environmental samples mainly sediments.

The first of these categories is discussed in a paper (submitted to a conference on the
application of extraction chromatography held in Geel, Belgium in November 1998). Although
suitable for a wide range of low-level waste characterisation applications, the sample treatment
prior to chemical separation was not suitable for environmental samples such as sediments.
The development of the sequential separation scheme for environmental samples is therefore
discussed separately in Section 5.3. Finally it was found that the analysis of "Tc in
environmental samples required quite specific sample pretreatment and was best performed on
a separate sub-sample. The analysis of ®Tc in environmental samples is therefore described

separately in the form of a paper published in Analytica Chimica Acta in 1999 (Section 5.4).
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5.2 Extraction chromatography techniques in the sequential
separation of pure beta-emitting radioisotopes in low-level waste

Based on a paper presented at the International workshop on the application of extraction
chromatography in radionuclide measurement, Geel, Belgium, November 1998.

5.2.1 Abstract

The determination of radioisotopes decaying by pure beta emission and electron capture such
as “Fe, ®Ni, *Sr and *Tc is an important requirement of many comprehensive waste
monitoring programmes. Unlike alpha and gamma spectrometry, no effective spectrometric
technique is available for the identification of beta-emitting radioisotopes as the decay energy
is distributed between the beta particle and anti-neutrino. Identification of any pure beta
emitters present must necessarily be a qualitative assessment of beta energy following an

element-specific chemical separation.

This paper describes the sequential separation and assay of pure beta-emitting radioisotopes
employing extraction chromatographic-based techniques. The application of extraction
chromatography to replace conventional solvent extraction-based techniques has permitted
rapid sequential separation of the nuclides of interest with improved decontamination factors

and a significant reduction in reagent volumes, particularly organic solvents.

5.2.2 Introduction

Iron-55, ®Ni, *°Sr and *Tc are produced in significant quantities during routine reactor
operations and are therefore potentially present in low-level solid and liquid effluent wastes.
The qualitative detection and quantitative determination of these radioisotopes is hindered by
the lack of any appreciable gamma emissions. Positive identification and determination of
these nuclides therefore relies on a combination of element-specific chemistries and beta
energy windowing. Many chemical separation techniques have been developed based on
solvent extraction and ion exchange chromatography. However, the techniques employing
extraction chromatography combine the selectivity of specific solvent extraction systems with
the practical benefits afforded by a column-based separation technique. In addition, the use of
extraction chromatography results in improved separation efficiencies of the analyte from other

radioisotopes and a significant reduction in the volume of waste organic solvents generated.
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The application of extraction chromatography to the determination of pure beta emitters is not
novel. Nickel-63 has been routinely separated on a dimethylglyoxime based column (Testa et
al, 1991), *°Sr on a commercially available crown-ether extraction column (Sr resin —Horwitz
et al, 1991) and *Tc on a quaternary amine-based extraction column (TEVA resin — Bohnstedt
et al, 1998). Although Fe has been separated on TRU resin (Bohnstedt et al, 1998) and
trioctylamine-based resins (Testa et al, 1991), working capacities are low (around 4-5mg) and
many routine determinations of “’Fe still rely heavily on the use of solvent extraction. This
paper describes an extraction chromatographic separation of Fe based on di-isobutyl ketone
(DIBK) and discusses a sequential separation of *Fe, Ni, °Sr and *Tc using extraction

chromatographic based techniques.

5.2.3 Methodology

Reagents

All reagents used were analytical grade. Anion exchange resin (quaternary amine type, 100-
200 mesh; 8% cross linked), TEVA resin, Ni specific resin and Sr specific resin were supplied
by Hichrom Industries, UK. Gold Star scintillant and polythene vials were supplied by
Meridian, Epsom, UK. Ultima Gold AB scintillant was supplied by Packard UK Litd,
Pangbourne, UK. All other reagents were supplied by Aldrich Chemicals, Gillingham, Dorset,
UK

Column preparation
All columns used in this study were 5 x 0.7cms L.D. The chromatographic materials employed
in this study are summarised in Table 5.1. All chromatographic materials were slurried in the

loading medium and transferred to the column.
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Table 5.1 : Extraction chromatographic materials

Analyte Extractant Support Preparation Capacity®
Fe Di isobutyl ketone Amberlite 2g of DIBK slurried with 2g XAD7 70mg
(DIBK) XAD-7 max.
Ni Dimethylglyoxime Amberlite 1.5g DMG dissolved in acetone. 4g of XAD- 2 mg
(DMGQG) XAD-7 7 added and mixture warmed with constant ~ working
stirring to evaporate the acetone (Eichrom
1998)
Sr Tert-butyl Amberlite Commercially available 5-6mg
dicyclohexano-18- XAD-7 (Sr-resin®) working
crown-6 e (Eichrom
1998)
24 mg
max.
Tc Aliphatic Amberlite Commercially available 12 mg®
quaternary amine XAD-7 (TEVA resin)

“maximum capacity of a standard 2ml of resin material for stable analogue of the analyte
bdetermined for Pu only(Eichrom, 1998)

Sample preparation

The sample (usually a tissue swab, although a range of samples including concrete and
metalwork may be analysed) is placed in a wide mouth flask and the sample oxidised by wet
oxidation with HNO; and H,0,. If Tc is being determined wet oxidation is not appropriate. In
this case the sample is acid leached without prior treatment or, for organic-rich samples,
moistened with ammonia and then ignited in a muffle furnace gradually ramping the
temperature from 200°C to 550°C. The residue is dissolved in a suitable mineral acid and

reserved for chemical analysis

Sequential separation utilising extraction chromatography

A summary of the sequential separation is shown in Figure 5.1. Img Ni, 2mg Sr and, for low
Fe samples, Img Fe are added to each sample as carriers and chemical yield monitors. mTe is
also added as a yield monitor for #Tc. Chemical recoveries of Fe, Ni and Sr were determined
by measuring an aliquot of the sample before and after separation using atomic absorption

spectrometry (AAS).
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5.2.4 Sample counting

Measurements of beta activity were performed using a Wallac 1220 ‘Quantulus’ low-level
liquid scintillation counter. »Fe was dissolved in a minimum of 2M H3PO,, to produce a
colourless solution, and transferred to a 22ml polythene liquid scintillation vial. Ultima Gold
AB scintillant was added as this scintillant showed the highest capacity for H;PO, of a range of
scintillants tested. Up to 200mg of stable Fe could be loaded into the scintillant in this way
(Warwick et al, 1998). The purified 53Nj fraction was dissolved in dilute HCI and transferred to
a scintillation vial with water. The dilute acid sample was then mixed with Gold Star
scintillant. The eluent from the Sr resin column containing *’Sr was collected directly into a
scintillation vial. The vial was then counted repeatedly by Cerenkov counting over a two-week
period to monitor the in-growth of the %Y daughter. The TEVA resin, quantitatively
containing the *Tc and *Tc yield monitor, was transferred into a plastic 22ml vial with 1ml
of Milli-Q water. 18ml of Gold Star scintillant was then added and the sample counted on a
HPGe gamma spectrometfy system to determine the recovery of #mTc. The sample was then
left for one week to allow the ™ Tc to decay before determining the *Tc activity on the liquid
scintillation counter (Wigley et al, 1999). The counting conditions for each nuclide are

summarised in Table 5.2. All samples were dark-adapted prior to liquid scintillation counting.

Table 5.2 : Counting conditions for the Wallac 1220 ‘Quantulus’ liquid scintillation counter

*Fe *Ni Sr *Tc
(°Y daughter)
Sample 2M H5PO, + Dil HC1 + Dil HNO; TEVA resin +
deseription t31ima Gold AB Gold Star No scintillant Gold Star
Window 1-200 10-400 1-1024 125-647
Background 1.7 cpm 4.8 cpm 0.9 cpm 2.4 cpm
Efficiency 15-45% 70% 65% 90%
Counting bias Low Low Low High
PSA/PAC Disabled
Count time 60 mins 60 mins 60 mins 60 mins
Limit of detection 0.03* 0.03 0.02 0.02
(Bg/sample)

PSA — pulse shape analysis; PAC — pulse amplitude comparison
Limits of detection (Lp) calculated as defined by (Currie, 1968).
*3Fe Lp will depend on the Fe content of the sample — (see Warwick et al, 1998)
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5.2.5 Discussion

i) Iron-55
The DIBK/XAD-7 column provided a highly selective method for *Fe separation. ’ *Fe was

effectively separated from all contaminating radioisotopes including Sn (known to partially
follow Fe during conventional solvent extraction). As relatively small volumes of DIBK were
present in the column the loading capacity was correspondingly lower than for solvent
extraction. For a 5 x 0.7cm column the maximum loading is approximately 70mg. This is
sufficient for most effluents and low-level wastes but would be unacceptably low in the

separation of Fe from certain ferrous wastes.

ii) Technetium-99
The TEVA column quantitatively retains Tc from alkaline solutions permitting direct loading

of the ammoniacal supernatant without any evaporation stages. Elution of Tc from the TEVA
column is difficult, requiring 8-16M HNO; which must subsequently be removed by
evaporation (Butterworth er al, 1995). This has been simplified by mixing the TEVA resin
directly with the liquid scintillant. Recoveries of 80-100% are readily obtainable. The
extractant appears to dissolve in the liquid scintillant producing a stable, homogenous mixture
for counting. The resin support becomes effectively translucent in the scintillant cocktail and

has little effect on the observed counting efficiency.

iii) Nickel-63

The load and first wash solutions from the TEVA column are passed directly onto the Ni
column. The two columns may be run in a stacked configuration further reducing the overall
analytical time. The addition of ammonium citrate maintains any traces of other transition
metals in solution. The Ni column is washed thoroughly with 1% ammonia solution prior to
elution of the Ni with 6M HCI. The Ni-dimethylglyoxime complex is soluble in excess
ammonia hence ammonia concentrations must not exceed 1%. Co forms a soluble
dimethylglyoxime complex and, if present in high quantities, %Co is found in the purified ®Ni
fraction. The inclusion of the anion exchange stage significantly improves the decontamination
of ¥Co from the ®Ni. Co is effectively retained on the anion exchange resin from 9M HCI as
the CoCl;” complex whilst Ni passes through the column as a cationic species. The presence of
dimethylglyoxime in the solution will prevent Co from being effectively adsorbed and the

complexant must first be destroyed with aqua regia.

iv) Strontium-90
The purification of Sr using the Sr resin offers considerable benefits in terms of safety and
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time over the conventional fractional precipitation of nitrates from fuming nitric acid.
Potassium is known to compete with Sr uptake on the resin. Precipitation of Sr as the oxalate
removes K and prevents subsequent interference on the Sr column. The precipitation of the
oxalate also effects preconcentration of the Sr from the bulk solution. In this study the oxalate
was destroyed with a 3:1 mixture of nitric and perchloric acids although other investigators
have not included this step, instead simply dissolving the oxalate into the loading solution. The
addition of AI(NO;); to the loading medium increases the NO;™ concentration and improves Sr

uptake on the resin (Horwitz et al, 1991).

5.2.6 Conclusions

The introduction of a sequential separation scheme for the determination of Fe, ®Ni, *Sr and
®Tc has reduced the analysis time and has permitted the determination of all the radioisotopes
on a single small sample. Chemical recoveries were marginally lower than those found for
individual element separation although the recoveries were still satisfactory. In practice the
sequential separation teéhnique has reduced the amount of analyst time spent on a
measurement and permits the analysis of a greater number of samples. Incorporation of
extraction chromatography has also removed the need for hazardous acids and environmentally

unfriendly solvents.
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Figure 5.1 : Summary of the sequntial separation scheme as used for low-level waste
analysis
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5.3 Sequential separation of SFe, ®Ni, *’Sr and ?T¢ from sediments

5.3.1 Introduction

The separation scheme derived for low-level radioactive wastes (Section 5.2) is not suitable for
the analysis of sediments without some modification. Firstly, the concentration of stable Fe in
sediments is too high to permit purification of Fe by an extraction chromatographic method. A
solvent extraction-based procedure with a high stable Fe loading capacity was therefore
adopted. Secondly, the sample preparation stage required careful optimisation to avoid the loss
of volatile **Tc. The final separation of Tc on TEVA resin is still an option although higher
counting efficiencies and lower limits of detection are achieved by extracting the *Tc into tri
octylamine in xylene and then mixing the organic extract directly with scintillant. The
modified procedure is discussed below. The separation and analysis of #Tc is discussed

separately in Section 5.4.

5.3.2 Proposed separation scheme

5.3.2.1 Sample preparation

An aliquot of the sediment sample was weighed and ignited at 550°C. The ignited sample was
spiked with stable Ni and Sr and the sample was acid leached with 40ml of aqua regia at 50 °C
overnight. The sample was centrifuged and the supernatant was transferred to a 150ml beaker.
The residue was then leached with a fresh 40ml portion of aqua regia for 2 hours. The sample
was centrifuged and the supernatant combined with the first leachate. The solution was
evaporated to approximately 10ml and diluted to 50ml with water. 1ml of this solution was
removed and diluted to 10ml for stable Fe determination by ICP-AES. The remaining solution

was transferred to a beaker with water washings.

5.3.2.2  Initial separation by iron (III) hydroxide scavenging

The pH of the leachate was adjusted to between 5 —7 with 0.88 S.G. ammonia resulting in the
precipitation of Fe(OH);. The precipitate was isolated by centrifugation and the supernatant
was retained for ®Ni and *Sr analysis. The Fe(OH); precipitate was dissolved in the minimum
of 6M HCL. and the Fe reprecipitated by the addition of ammonia. The mixture was centrifuged
and the supernatant was combined with the previous supernatant for Ni and *Sr analysis. The

recipitate was retained for >°Fe analysis.
precip Y
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5.3.2.3  Purification of "Fe

The Fe(OH); precipitate was evaporated to dryness and the residue was dissolved in 20ml 6M
HCI. The solution was transferred to a 100ml separating funnel and 10ml of 2:1 ethyl acetate
and butyl acetate were added. The mixture was shaken for approximately 1 minute to extract
the Fe into the organic layer. The aqueous and organic layers were allowed to separate and the
aqueous layer was transferred to a clean separating funnel. The aqueous fraction was extracted
with a second 10ml of ethyl acetate and butyl acetate and the two organic phases were

combined.

The organic fraction containing the Fe was washed with 10ml of 6M HCI and the aqueous
fraction discarded. The Fe was then back-extracted into 2 x 10ml of 1M HNOs. The HNO;
fraction was evaporated to dryness and the residue was dissolved in 8M HCl. The 8M HCl
solution was loaded onto a 4 x 0.7cm Eichrom 1X8 anion exchange column previously
conditioned with 8M HCI. The column was washed with 2 x 5ml of 9M HCI followed by Sml
of 6M HCI. Fe was then eluted with 10ml of 7.2M HNO;. The HNO; fraction was diluted to a
50ml and 1ml was removed and diluted to 10ml for measurement of stable Fe by ICP-AES.
The remainder of the sample was evaporated to dryness prior to preparation of the liquid

scintillation source.

5.3.2.4 Purification of “Ni and 7Sy

The supernatant following the Fe(OH); precipitation contained both Ni and *°Sr along with
Co and ¥7Cs. The solution was evaporated to dryness and dissolved in 20ml of 0.05M citric
acid. The pH of the solution was adjusted to pH 8 using ammonia solution and loaded onto a 4
x 0.7cm dimethylglyoxime column previously conditioned with 1% ammonia solution (1ml of
0.88 Sp. Gr. ammonia diluted to 100ml). A distinct red band immediately formed at the top of
the column. The column was washed with 20ml 1% ammonia solution. The load and wash
solutions were retained for Sr analysis. Ni was eluted from the column with 6M HCI. 1mg of
Co carrier was added to the eluent and the eluent was evaporated to dryness. The residue was
dissolved in 2ml 9M HCI and loaded onto a 4 x 0.7 cm anion exchange column. The column
was washed with 10ml 9M HCI and the load and wash solutions were diluted to 20ml. 1ml of
the solution was removed and diluted to 10ml for stable Ni analysis by ICP-AES. The
remainder of the solution was evaporated to dryness prior to measurement of 5Ni by liquid

scintillation counting.
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The load and washings from the DMG column were diluted to approximately 50ml with Milli-
Q water. A few drops of bromocresol green indicator solution were added and the pH of the
solution was adjusted to between pH 4 and 5 (sky blue colour of bromocresol green) with 2M
HCI and 1% ammonia solution. 5ml of 4% ammonium oxalate solution was added to
precipitate Ca and Sr as oxalates. The solution was centrifuged and the precipitate washed with
Milli-Q water. The precipitate was dissolved in 3ml conc. HNO; and transferred to a 50ml
beaker with a further 2ml conc. HNOs. Iml of 40% HCIO, was added and the solution was
evaporated to dryness. The residue was dissolved in 5ml 8M HNOs-0.5M AI(NOs); and
transferred to a 3 x 0.7 cm Sr resin column. The column was washed with 10ml 8M HNO;-
0.5M AI(NO;); and 10ml 8M HNOs. Sr was eluted directly into a 22ml polythene vial with
10m! Milli-Q water. The sample was counted three times by Cerenkov counting. 0.1ml of the
solution was then removed and diluted to 10ml with 2% HNO;. Stable Sr was then measured

using ICP-AES.

5.3.2.5 Preparation of sources for liquid scintillation analysis

The optimisation of sample preparation techniques prior to liquid scintillation analysis have

been discussed in Chapter 3. The following techniques were adopted for routine application.

The purified Fe residue (Section 5.3.2.3) was dissolved in a minimum of 6M HCI and carefully
evaporated to incipient dryness on a warm hotplate (approximately 50°C surface temperature).
The residue was then dissolved in 1ml 2M H;PO, and transferred to a 22ml polythene
scintillation vial \%/i’th 2ml of Milli-Q water. 15ml Ultima Gold AB scintillant were added and

the sample shaken and stored in the dark for 24 hours before counting.

The Ni residue (Section 5.3.2.4) was dissolved in 1ml 1.2M HCI and transferred to a 22ml
polythene scintillation vial with 2ml water. 15ml Gold Star scintillant were added and the

samples stored in the dark for 24 hours prior to liquid scintillation counting.

All samples were counted on a Wallac 1220 ‘Quantulus’ low-level liquid scintillation counter
(Chapter 2). Background samples were prepared by mixing the appropriate amount of acid
with the scintillant such that the resulting source was of a similar composition to that of the

unknown sources. In addition the stability and performance of the counter were checked
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frequently by counting commercially prepared “H, '*C and blank samples (see Section 3.1).
Optimisation of counting conditions has been discussed previously (Chapter 3) and are

summarised below (Table 5.3).

Table 5.3 : Summary of counting conditions used in the determination of beta emitters in sediments

Fe *Ni *Sr
(*°Y daughter)
Composition of 2M H;PO4 + Dil HCI + Dil HNO;
final source Ultima Gold AB Gold Star No scintillant
Window 1-200 10-400 1-1024
Background 1.7 cpm 4.8 cpm 0.9 cpm
Efficiency 15-45% 70% 65%
Counting bias Low Low Low
Count time 240 mins 240 mins 120 mins

5.3.3 Discussion of the sequential separation of S Fe, BNi and *°Sr

5.3.3.1 Use ofyield monitors

Losses of the analyte during radiochemical separations are probable although the extent of
such losses is minimised through careful optimisation of the method. Even after optimisation it

is necessary to monitor the chemical recovery of the analyte following purification. This may

be achieved in a number of ways.

e Optimise the method as thoroughly as possible and assume that the chemical recovery is

consistently 100%

e Analyse samples of known analyte concentration to determine typical losses during the
chemical separation. An average chemical recovery may then be calculated and this value

applied to subsequent analyses.

e Add a known amount of a stable element that will act as an analogue to the analyte e.g.
stable strontium for *°Sr or stable nickel for *Ni. The recovery of the stable element may

then be determined following purification and the chemical recovery applied to correct for

analyte loss.
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e Add a known amount of another isotope of the analyte e.g. #mTe for *Te. The recovery of
the added radioisotope may be measured following purification and the chemical recovery

applied to the analyte.

Options 1 and 2 are not desirable. Chemical recovery will vary depending on the sample
matrix and great care is required to ensure that the standard matrix is closely matched to that of
the unknown sample. This is not always practically possible. Even when the standard and
sample matrices are identical, the chemical recovery will vary depending on the exact
conditions employed during the analysis. Variations in the efficiency of transfer of the sample
from beaker to beaker or the specific dimensions of a separation column will all affect the final
chemical recovery. Although every effort is made to reproduce the separation conditions for all
samples, variations in chemical recovery from sample to sample still occur and it is preferable

to determine the specific recovery for each sample.

Options 3 and 4 permit the determination of chemical recovery for each individual sample. For
this recovery to be determined accurately it is important that the yield monitor is added as soon
as possible before any analytical operation is performed. It is also vital that the element is
added in the same chemical form and oxidation state as the analyte to ensure that the two
species will behave in a similar manner during the chemical separation. In some circumstances,
there is sufficient element present in the sample so as to permit its use for chemical yield
determination. This is true of Fe in sediments. The stable Fe content of the sample may be
determined both prior to and following chemical separation and the chemical recovery
calculated. This may then be used to correct the measured *Fe activity for losses during
purification. In most instances the concentration of the stable element is too low and additional
element must be added. One benefit of this approach is that the presence of the stable element
acts as a ’carrier’ for the radioisotope being determined and reduces losses through surface
adsorption effects. The chemical recovery of the carrier may be determined using a number of
techniques including atomic absorption spectrometry, ICP-AES, ICP-MS, colourimetry or
gravimetrically by precipitating both the carrier and analyte. This final approach is the most
convenient and often also provides a source that is suitable for counting. For radioisotopes with
no stable analogue it may be possible to use another element whose chemistry is identical to
the analyte under the specified separation conditions. Such an approach has been employed in

the analysis of technetium using rhenium as a yield monitor (Harvey, 1991).
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The addition of another radioisotope of the analyte is often used as a yield monitor as it permits
the determination of chemical recovery using radiometric techniques. This approach is also
useful for radioisotopes with no stable analogue such as promethium and technetium.
However, the added radioisotope may interfere with the final measurement of the analyte and
such interference must be corrected for. If the radioisotope that is being used as a yield monitor
has a short half-life compared to the analyte the source should be left to allow the yield
monitor to decay following its measurement before attempting to measure the analyte. This is

the case with the analysis of *Tc where *Tc (t,, = 6.04 hours) is used as the yield monitor.

Table 5.4 : Yield monitors used in this study

Analyte Yield monitor Method for measurement of yield
monitor
*Fe Stable iron (inherent to the AAS / ICP-AES
: sample)
®Ni Stable nickel AAS /ICP-AES
OSr Stable strontium Grav (as SrCO;)/ICP-AES
*Tec #mre Gamma spectrometry

Grav. = gravimetric

5.3.3.2 Sediment ignition

Chemical separation of radioisotopes from sediments is complicated by the presence of organic
humic and fulvic acids that can complex isotopes and hinder an otherwise routine separation.
Samples are therefore normally ignited prior to any chemical separation being attempted.
Radioisotopes that form volatile species such as "Tc, Ru and "1 may be lost during the
ignition and precautions must be taken to limit this loss. Other radioisotopes may form
refractory oxides on ignition and will subsequently be difficult to dissolve. However, no
significant losses of Fe, Ni and Sr were observed at ashing temperatures of 550°C (Bock,
1979). Significant losses of even non-volatile elements have been reported and attributed to
spray formation. All samples were therefore dried at 110°C to remove water and limit the

potential for spattering during sample ignition.
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5.3.3.3 Sample attack / dissolution

Sample dissolution was a crucial part of the analytical scheme. Although techniques that are
appropriate to one analyte may be developed fairly readily, a single dissolution technique for
all the analytes of interest is more demanding. Specific problems exist for technetium as the
element can form volatile species that may be lost during this dissolution stage. For this reason
Tc is discussed separately. Sample dissolution for all other analytes was achieved using an

aqua regia attack. *°’Fe, ®Ni and *Sr are readily dissolved using this approach.

5.3.3.4 Efficiency of aqua regia attack

The radioisotopes *°Fe, ®Ni and *’Sr are readily leached as they are most likely associated with
iron oxy-hydroxides (*°*Fe and ®Ni) and fine particulate clays (*°Sr) that are readily attacked by
acid solution. However, the stable elements of these isotopes present in the sediment may not
be totally dissolved as.the element will most likely be associated with various, more
intractable, mineral phases. The degree of stable element leaching following the aqua regia
attack is important as it will determine the chemical composition of the solution presented for
chemistry and may introduce quantities of an element that has also been added for

determination of chemical yield.

The leaching efficiency was determined by measuring the chemical composition of three dried
sediments (collected from the Ravenglass saltmarsh) by X-ray fluorescence spectrometry. Two
grams of each sediment were then digested with 40ml of aqua regia overnight at 50°C with
constant stirring. The mixture was centrifuged and the residue was attacked with a fresh 40ml
portion of aqua fegia for 2 hours. The sample was filtered and washed with Milli-Q water
before drying at 110°C overnight. The residue was weighed, ground and the chemical

composition was determined using X-ray fluorescence analysis.

Table 5.5 : Milligrams of element leached from 2g of sediment

Si Ti Al Fe Mn Mg Ca Na K P S Rb Sr Pb Zn Ni
Sed1 109 13 28 47 1.7 21 28 15 7.6 - 26 0009 0021 0.005 0013 0.009
Sed2 93 1.1 31 56 1.6 25 24 20 8.6 0.6 22 0009 0022 0004 0.035 0014
Sed 3 93 1.1 31 53 24 22 17 17 8.1 0.6 27 0009 0015 0005 0023 0.010
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Table 5.6 : Percentage of element leached from a marine sediment with aqua regia

Si Ti Al Fe Mn Mg Ca Na K P S Rb Sr Pb Zn Ni
Sed 1 15 15 24 76 87 77 90 45 18 88 21 41 55 58 68
Sed 2 13 12 23 77 86 78 89 54 18 28 89 18 42 52 77 76
Sed 3

13 13 25 79 91 77 85 50 18 32 91 20 34 60 74

75

Samples leached twice with 40ml aqua regia at 50°C

The amount of minerogenic/authigenic Ni and Sr leached from 2g of sediment are low
(maximum of 14pug and 22pug respectively) and would not add significantly to the carrier
introduced for yield determination. The mass of Fe leached is high at approximately 50mg.
This represents approximately 77% of the total Fe present in the sample. The remaining Fe was
intractable. Mn was leached to a greater extent (up to 90%) presumably reflecting a larger
proportion of Mn associated with the readily soluble oxy-hydroxides and smaller proportion of
minerogenic Mn. Only 14% of Si was leached but this represented approximately 100mg of Si.
During routine analysis, a white solid often formed on the surface of the solution. SEM-EDS

analysis of this solid confirmed that it was Si-based and that no other elements of interest were

carried with the solid.

5.3.3.5 Chemical separation

The precipitation stage effectively separates the radioisotopes into two groups; those which co-
precipitate with the Fe(OH); and those that remain in the supernatant. Those elements that co-
precipitate with the Fe(OH); include Sn(II+IV)), Zr(IV), Y(III), lanthanides such as Pm(III)
and Sm(III) and actinides including Th(IV), UIV+VI), Np(V) and Pu(lII+IV). If NaOH is
used to adjust the pH Ni and Co will also follow the Fe(OH);. However, both form soluble
amine complexes and hence remain in the supernatant when ammonia is used for the pH
adjustment. The use of NaOH will prevent the precipitation of Sn and Al as under highly
alkaline conditions these elements form soluble stannates and aluminates respectively.
Technetium as Tc(IV) will follow the Fe(OH); but if oxidised to Tc(VII), the Tc will also
remain in the supernatant. Strontium and Cs will not follow the Fe(OH); precipitate. However
due to the gelatinous consistency of Fe(OH); the precipitate may contain occluded Cs, Ni, Sr
and Tc. This contamination was limited by dissolving the Fe(OH); precipitate in dilute acid

and re-precipitating the Fe(OH); using ammonia solution.
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Solvent extraction of the Fe from 6M HCI into ethyl/butyl acetate or disiopropyl ether
effectively separates the Fe from these other contaminants. Sn is also partially extracted into

ethyl acetate but is not extracted into diisopropyl ether.

Following this purification, an alpha peak was evident in the liquid scintillation spectrum along
with a low energy peak in the *°Fe region. The spectrum was indicative of Pu with associated
2Py (Bmax = 20 keV) appearing in the *°Fe energy region. An anion exchange purification
stage was therefore included to remove any traces of Pu following the Fe chemistry. This did
not remove the alpha emitter from the Fe fraction. The alpha emitter was found to autodeposit
on an Ag disc from HCI solutions confirming that the alpha activity observed was derived from
natural Po. Po is known to extract into diisopropyl ether from HCI solutions. In addition Po is
retained on an anion exchange resin from HCI as the PoCl¢” species (kp = >10%; Korkisch,
1989) and, unlike Pu, would be eluted along with Fe in 7.2M HNOs. Although present in the
Fe fraction, 2'°Po does not interfere with the >’Fe energy region and no further purification was

necessary.

Retention of Ni on the dimethylglyoxime column was observable through the formation of a
distinct crimson-red band at the top of the column. Spiking with 10mg Ni resulted in a very
broad red band that gradually bled through the column and into the waste. This loss of Ni was
easily overcome by reducing the quantity of Ni spike to 2mg. Addition of citric acid to the load
solution improved retention of Ni on the column whilst ensuring that other transition metals
were retained in solution. Co forms a soluble dimethylglyoxime complex. The yellow complex
was observed to wash slowly through the column if Co was spiked into the load solution. The
formation of the Co-dimethylglyoxime complex reduced the dimethylglyoxime available for
Ni complexation lowering the loading capacity of the column. To avoid such a loss in loading
capacity, Co was not added as a carrier prior to the dimethylglyoxime column. However, traces
of ®Co were still detectable in the Ni fraction following elution from the dimethylglyoxime
column. The Ni fraction was therefore dissolved in 9M HCI and passed through an anion
exchange column. Co is moderately retained as CoCly (kp = 40; Korkish, 1989) whilst the Ni
does not form an anionic chloro complex and hence passes through the column (Korkish,
1989). Retention of Co on the anion exchange column was reduced by the presence of
dimethylglyoxime in the 9M HCI load solution. The Ni eluent from the dimethylglyoxime
column was therefore evaporated to dryness and the residue was treated with aqua regia to

destroy any dimethylglyoxime.
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Sr was isolated from the load and wash solutions of the dimethylglyoxime column. The use of
a commercially-available crown ether-based extraction chromatographic material, Sr-Resin,
for purification of ¥Sr and **Sr has been widely reported. Potassium reportedly interferes with
the retention of Sr on the column and must be separated prior to the column purification.
Precipitation of Sr (along with Ca) as the oxalate achieves this separation. The pH of the
solution is adjusted to 4 —5 with ammonia solution (the blue of bromocresol green indicator)
and 4% ammonium oxalate is added. For samples low in Ca, approximately 10mg of Ca must
be added to give sufficient precipitate to handle. In some instances, more ammonium oxalate
must be added before precipitation commences. This suggests that the initial oxalate added
may complex other elements in solution and further oxalate is required to achieve the critical
concentration required to initiate precipitation. The Ca/Sr oxalate is dissolved in 8M HNOs.
This solution may be loaded directly onto the Sr-resin column although it is possible that the
retention of Sr may be reduced by the presence of oxalate. The oxalate was therefore
decomposed using a 3:1 mixture of HNO;:HCIO,. The use of an excess HNO; along with
HCIO, ensures that the oxidation proceeded in a safe controlled manner. The resulting residue
was dissolved in a mixture of M HNO;-0.5M AI(NOs); and loaded onto the Sr-resin column.
The addition of AI(NO;); to the load solution has been reported to improve the uptake of Sr on
the column. Following sample loading, the column is washed with 8M HNO; to remove any
residual AI(NOs); before the Sr is eluted with water directly into a polythene vial ready for

Cerenkov counting.

5.3.3.6 _Recoveries of Fe, Ni and Sr

The chemical recovery of Fe was dependent on the amount of stable Fe present and hence on
the amount of sample analysed. For 2g sediment samples containing approximately 50mg of
Fe the mean chemical recovery was 85% (69-94%; n=14). For a 5g sediment sample

containing 125mg Fe the mean recovery was only slightly lower at 79% (53-84%; n=15).
The mean chemical recovery of Ni was 77% (62-92%; n=31) for a spiking level of 2mg Ni.
Reduction of the Ni spike to 1mg led to an apparent reduction on chemical recovery with a

mean recovery of 66% (49-81%; n=38).

Initially, sediment samples were spiked with 10mg of Sr to permit the gravimetric
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determination of chemical recovery. Chemical recoveries at this spiking level were however,
low with a mean recovery of 45% (34-66%; n=28). Similar recoveries were also observed for
acid blank samples spiked with 10mg Sr. A reduction in the amount of Sr spike to 2mg
resulted in no significant increase in Sr recovery with a mean recovery of 48% (32-70%; n=7).
However, this meant that the chemical recovery had to be determined using either atomic
absorption spectrometry or ICP-AES. One very low recovery was observed for a carbonate-
rich sediment (JAEA-367) that gave a chemical recovery of 14%. Although the columns can
tolerate and effectively separate a certain level of Ca, very high Ca loadings will also reduce

the retention of Sr on the column.

5.3.3.7 Decontamination of other radioisotopes

Gamma spectrometric measurement of all purified fractions did not detect the presence of any
other radioisotopes above about 0.1Bq in the sample. Inspection of the liquid scintillation beta
spectra also showed that the purified fraction was not contaminated, with the exception of the

Fe fraction that contained traces of *'’Po (Section 5.3.3.5).

5.3.3.8 Re-use of Sr resin column

The use of Sr-resin columns permits the rapid and efficient separation of Sr and Ca and
removes the need for conventional selective nitrate precipitation with fuming HNOs;. However,
the widespread use of St-resin in routine separation has been hindered by the high cost of the
resin material. There has therefore been some interest in reusing columns to reduce the cost per
analysis. Re-use of chromatographic material is normally not recommended as there is a
potential risk of sample cross-contamination as well as a reduction in the loading capacity and
distribution coefficient following repeated re-use of the material. For re-use to be viable, it
must be possible to efficiently elute the analyte and any potential interference from columns so
that traces of the analyte/interferent are not transferred to the next sample. In addition the

performance of the chromatographic material must not be significantly compromised.

In order to evaluate the potential for Sr-resin to be recycled, a series of 3 x 0.7cm columns
were prepared and conditioned with 8M HNO;-0.5M AI(NOs);. The columns were loaded with
the purified Sr fraction of a Ravenglass sediment and the columns were washed and eluted as
described in Section 5.3.2.4. The columns were then washed with 20ml of water and

reconditioned with 10m! 8M HNO;-0.5M AI(NOs)s. A fresh Sr fraction was then loaded and
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the procedure repeated. This cycle of load-wash-elute-recycle was repeated four times. Within
each cycle one column was chosen for evaluation. This column was loaded with an inactive
solution of 10mg Sr in 8M HNO;-0.5M AI(NOs);. The column was washed and eluted as
described previously with the column being finally eluted with 10ml water into a polythene
scintillation vial.. The sample was counted three times in a ten-day period to determine the
level of *°Sr activity contamination originating from previous samples processed on the
column. 0.1ml of the solution was also diluted to 10ml with 2% nitric acid and the stable Sr

recovery was determined by ICP-AES.

In all cases no *°Sr activity was detected in the blank samples. This indicates that for the levels
of *°Sr activity found in the sediment samples, cross-contamination between samples resulting
from the recycling of the Sr-resin was insignificant. The chemical recoveries of Sr dropped
slightly with continuing re-use of the Sr-resin. This may be associated with the relatively high
Sr loadings of 10mg resulting in the columns being saturated with Sr. Hence even a slight

reduction in column loading capacity during repeated recycling results in an observable

decrease in Sr recovery.

Table 5.7 : Effect of Sr-resin recycling on the percentage chemical recovery of Sr

Coll Col 2 Col 3 Col 4 Col5 Col 6 Col7 Col 8
Cycle 1 65 62 41 45 43 46 53 40
Cycle 2 60 66 44 46 42 42 47 41
Cycle 3 38 54 39 42 45 42 50 38
Cycle 4 34 41 40 43 43 44 45 36

Italicised values in boxes refer to blank samples. All other values are for purified Sr fractions from a
Ravenglass sediment.

10mg Sr loading thoughout assuming a 100% recovery for sediment samples following initial
chemistries
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5.4 Paper published in Analytica Chimica Acta, 380, 73-82, 1999.

An Optimised method for the routine determination of Technetium-99 in

Environmental Samples by Liquid Scintillation Counting

Wigley Fl., Warwick P. El., Croudace I.Wl., Caborn J 1‘2., Sanchez A. L%

TSchool of Ocean and Earth Science, Southampton Oceanography Centre, Empress Dock,
Southampton SO14 3ZH. Tel. 01703 592780. Fax. 01703 596450.

*Institute of Terrestrial Ecology, Merlewood Research Station, Grange-Over-Sands, Cumbria.

5.4.1 Abstract

A method has been developed for the routine determination of *Tc in a range of environmental
matrices using *™Tc (t, = 6.06 hours) as an internal yield monitor. Samples are ignited
stepwise to 550°C and the *Tc is extracted from the ignited residue with 8M nitric acid. Many
contaminants are co-precipitated with Fe(OH); and the Tc in the supernatant is pre-
concentrated and further purified using anion exchange chromatography. Final separation of
Tc from Ru is achieved by extraction of Tc into 5% tri-n-octylamine in xylene from 2M
sulphuric acid. The xylene fraction is then mixed directly with a commercial liquid scintillant
cocktail. The chemical yield is determined through the measurement of #MTc by gamma
spectrometry and the *Tc activity is measured using liquid scintillation counting after a further
two weeks to allow decay of the ®™Tc activity. Typical recoveries for this method are in the
order of 70 -95%. The method has a detection limit of 1.7 Bq kg™ based on a two-hour count
time and a 10g sample size. The chemical separation for twenty-four samples of sediment or
marine biota can be completed by one analyst in a working week. A further week is required

to allow the samples to decay before determination.

5.4.2 Introduction

Technetium-99 (t,, = 2.2 x10° years) is a fission product of 25U with approximately a 6% yield.
Tc only exists naturally in minute quantities at 0.25 — 0.31 parts per trillion in pitchblende
arising from spontaneous fission Kenna et al, 1964). Most *Tc in the environment is derived

from the discharge of fission waste products from nuclear fuel reprocessing plants and from
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weapons’ fallout. The total input of **Tc to the environment from weapons’ fallout is
estimated at 140 TBq (Aarkrog ef al, 1986), while discharges to the marine environment from
Sellafield reprocessing plant have been estimated at 1220 TBq from 1954 to 1996 (BNFL,
1983-1997; Gray et al, 1995) There have been significant increases in inputs of *Tc into the
Irish Sea since the commissioning of the Enhanced Actinide Removal Plant (EARP) in 1994
(Leonard et al, 1997) and subsequent treating of stockpiled Medium Active Concentrate
(MAC) waste. Discharges from EARP in 1995 were 180 TBq with a reduction to 150 TBq in
1996 (BNFL, 1983-1997).

The aim of this study was to develop an effective and robust method for #Tc determination
particularly suited to measurement of the isotope in sediments and marine biota. The low
concentrations in many environmental samples, the volatility of Tc, Tc speciation and spectral

interferences from yield monitors all cause potential difficulties.

5.4.3 Methodology

5.4.3.1 Instrumentation

Determination of *Tc was made using a using a Wallac 1220 Quantulus™ Ultra Low Level
Liquid Scintillation Counter. Liquid Scintillation Counting (LSC) was chosen in preference to
Inductively Coupled Plasma — Mass Spectrometry (ICP-MS). The benefits of LSC for routine
determination of **Tc include cost effectiveness and limits of detection which are to
comparable with ICP-MS. Gas flow proportional counting and anthracene screen counting

were not considered to be sensitive enough.

Technetium-99m was measured using a Canberra well-type high purity germanium (HPGe)
gamma ray spectrometer. The spectral deconvolution program Fitzpeaks (JF Computing,

Stanton in the Vale, UK.) was used to analyse gamma spectra.

5.4.3.2 Reagents

Analytical reagents and deionised water were used throughout this study. Tri-n-octylamine
and mixed xylenes were supplied by Aldrich Chemicals. Instagel” and Ultima Gold AB™
liquid scintillation cocktails were supplied by Packard UK Ltd, Pangborne, U.K. GoldStar and
Ecosafe liquid scintillation cocktails were supplied by Meridian, Epsom, UK. All other
reagents were supplied by Fisher Scientific Ltd, Loughbrough, UK. Technetium-99 was
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supplied as sodium pertechnetate by the National Physical Laboratory (NPL), and #mTe as Na
pertechnetate was generously supplied by Southampton General Hospital.

5.4.3.3 Method Summary

A schematic summary of the method used for the determination of *Tc in environmental
samples is shown in Figure 5.2. The method can be divided into sample preparation, acid

leaching, decontamination and determination stages.

5.4.3.4 Yield Determination

The *™T¢ yield monitor was counted using a well-type (HPGe) y ray spectrometer using the
140 keV emission line. As *™Tc decays to *’Tc, the decay of the yield monitor will contribute
to the activity of *Tc in the sample. The contributed activity is small with a 100 kBq MmTe
spike decaying to 0.3 mBq of *Tc daughter. The concentration of #Tc produced by the decay

of ™T¢ in each sample is calculated after correction for the background count.
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Figure P1.Schematic method for the determination of *Tc in environmental samples.
Freeze Dry Sample

( Freeze biota samples using liquid N, and grind to a fine powder

Add approx. 35kBq *™Tc as a yield monitor to the sample

|
Wet sample with 30 ml 0.88 SpGr ammonia as an anti
oxidising agent. Evaporate to dryness on a hotplate at 70°C

Ash sample at 250°C for 1 hour. Increase temp 50C
per hour until 550°C. Ash for a further hour.

Leach in 50 ml 8M HNO; on a hotplate at 125°C for 2 Hours

L
Filter and add 10 mg of FeCl; to the filtrate

|

Neutralise with 25 ml 0.88 SpGr NH; solution until
a reddish-brown precipitate is formed.

Centrifuge and discard the precipitate

Load supernate onto an Eichrom X8 100-200 mesh anion
exchange column, and wash with 10m1 1M HCL.

|
Elute Tc with 20 ml concentrated nitric acid
into a 20 ml glass liquid scintillation vial

l

Place vial in a heating block at 125°C until incipient dryness is
reached. This takes approximately 6 hours.

Dissolve residue in 10ml 2M H,SO, and solvent extract
Tcinto 2 2.5 ml portions of 5% TnOA in xylene.

Add 15 ml of GoldStar liquid
scintillation cocktail to each sample

L

Determine *™Tc recovery using an HPGe
y spectrometer to determine yield

Leave samples for a further week to allow the
#mT¢ to decay for >25 half lives.

!
‘ Determine ~ Tc concentration in samples, background blank

and *™Tc standard by liquid scintillation counting
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5.4.4 Discussion

The different stages in the analytical procedure were investigated in order to determine the
optimum conditions for the separation, purification and measurement of PTc (i.e. where losses
of Tc are minimised and contaminants are effectively separated from ®Tc¢). The loss of Tc at
each of the following stages was determined using a #mT¢ spike: (1) sample preparation and
ashing; (2) leaching; (3) separation chemistry. Optimisation of #Tc recovery was tested by
using homogenised seaweed, lobster and sediment samples in the ashing and leaching stages.
Testing of the reproducibility of the method was made using an in-house reference material.
Determination was made on each sub-sample to assess the effectiveness of extraction of "Tc
from the sample matrix. This is because the yield monitor cannot be relied on to act as a

faithful comparison until all matrix-bound Tc is in solution.

5.4.4.1 Choice of Yield Monitor

A number of different isotopes of Tc, and stable Re, have been used as yield monitors for Te
analysis (Table P1). As Re could not be relied upon to faithfully follow the Tc separation
chemistry, a Tc isotope other than *Tc was required. Technetium-99m was chosen due to its
availability and its readily measurable gamma emission. The short half life of PmTe (6.06

hours) also means that the isotope may be allowed to decay prior to the measurement of the

9
PTe.

191



Chapter 5 — Sequential separation of beta emitters

Table P1. Potential tracer elements for determination of recovery of *Te.

Tracer  Half Life Determination Disadvantages Reference
method
PmTe 60 days Y spectrometry Spectral interference /  Goldchert & Sedlet,
separate determination 1969
method required /
availability Kaye et al, 1982
Te 2.6x10%ears ICP-MS availability / high cost Beals & Hayes,
1996
e O 91 days Y spectrometry Spectral interference / Kaye et al, 1982
separate determination
method required /
availability
PmTe 6.06 hours Y spectrometry Spectral interference / Chen et al, 1994

separate determination

method required / Holm et al, 1984

short half life Martin & Hylko,
1987
Re Stable ICP-MS, ICP-AES Spectral interference/  Harvey ef al, 1991
Gravimetric analysis  separate dete.nnlnatlon Matsuoka e? al,
method required / 1990
differing chemistry

5.4.4.2 Sample preparation

Biota and sediment samples are first freeze-dried and then ground to a fine powder. It was
found that the distribution of *Tc in samples, particularly seaweeds, was heterogeneous.
Many seaweeds proved difficult to grind when simply dried. A fine powdered sample was
readily obtained however; by first freezing the samples in liquid nitrogen, prior to grinding.
Samples with a more delicate tissue structure, such as lobster (Hommarus gammarus) and are

easily ground without prior freezing.

5.4.4.3 Ashing Conditions

Some previous methods have suggested that loss of Tc may occur on ashing due to the
volatilisation of technetium anhydride (Tc,O;); the product of dehydrating pertechnic acid
(HTcO,) on heating (Harvey et al, 1991). Pertechnic acid is formed by the oxidation of Tc in
the presence of organic acids. The addition of ammonia to the sample prior to ashing

neutralises the free acidic sites on complex organic molecules to inhibit the formation of
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HTcOy4 (Harvey et al, 1991; Foti et al, 1972). Hydrochloric acid has also been used to prevent

the volatilisation of Tc by reducing Tc to its less volatile +4 oxidation state (Harvey et al,
1991).

Some controversy exists over the optimum ashing temperature for Tc determination. Losses of
more than 50% have been observed at temperatures greater than 500°C (Harvey et al, 1991)
while ashing temperatures of up to 600°C (Garcia Leon, 1990) and 750°C (Holm er al, 1984,
Tagami & Uchida, 1993) have been used with no apparent losses of PTe.

a) Effect of temperature and wetting agents on Tc loss during ashing

Ammonia and HCI were tested for their efficiency at reducing the loss of Tc, in samples of
marine biota and sediments. In addition 2% SnCl, was investigated as the compound is widely
used as a reducing agent. Approximately 10g of sample was taken and spiked with #mTe,
Samples were then wetted with either concentrated hydrochloric acid, 2% tin (II) chloride in
hydrochloric acid, or 0.88 Specific Gravity (Sp.Gr.) ammonia. A control sample spiked with
%mTe and which had no other pre-treatment was also ignited. The samples were dried on a
hotplate at 125 C and the initial #MTe activity determined using an HPGe y spectrometer. The
samples were then heated in a furnace ramped at 50°C per hour to temperatures between 45 0°C
and 900°C. Samples were heated to temperatures between 450°C and 550°C in a furnace with
an internal capacity of 80 litres. Samples ignited to 750°C and 900°C were heated in a tube
furnace. The *"T¢ activity was again determined and any loss of ”™Tc due to volatilisation

was calculated (Figure 5.3a).
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Figure P2 a. Loss of ™Tc during ashing. Results are on triplicate measurements of sediment and marine

biota samples spiked with *™Tc. All samples were ignited in a ramped furnace from 250°C with an increase of

50°C per hour. Error bars at 2.
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Figure P2 b. Counting efficiency and loss of *Tc¢ through separation chemistry as a function of
ashing temperature. Homogeneous lobster samples were ashed to 450°C, 500°C, 550°C and 600°C. The
remainder of the determination was made using identical conditions, the samples measured by liquid scintillation

counting and the final concentrations shown as a percentage of the maximum recovery at 550°C. Measurement was

also made of the counting efficiency. Error bars at 2c.
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For sediments, seaweed and lobster samples there was no appreciable loss of Tc at
temperatures up to 550°C when ammonia was added prior to ignition. Samples pre-treated
with SnCl, or HCI showed losses of over 5%, while the greatest losses were observed from

samples which had no pre-treatment (Figure P2 a).

A comparison was made between *’Tc recoveries when the sample ignition was ramped and
when the ignition temperature was static. Ashing times of four hours were used. At 450°C,
the lowest temperature tested, recoveries were substantially reduced, 47% (HCI pre-treatment)

and 39% (ammonia pre-treatment). This is due to incomplete destruction of organic acids in

the sample.

Some variation in the optimum ashing conditions was observed when using furnaces with
smaller internal capacities and a constant supply of air to the samples was necessary to allow

complete ashing.
b) Effect of ashing temperature on counting efficiency during LSC

The counting efficiency and apparent PTc concentration were determined for a range of ashing

temperatures (Figure P2 b).

It was found that ashing at less than 500°C resulted in incomplete oxidation and subsequent
high quenching in the final sample during liquid scintillation analysis. This was especially true
in pigmented samples such as lobsters (Hommarus gammarus) and red seaweed (Chrondus
cripus). The counting efficiency increases with increase in ashing temperature as more of the

compounds that cause quenching are oxidised at higher ashing temperatures (Figure P2 b)

Unoxidised black carbonaceous residues were found to act as a sorbent for Tc and reduced the
chemical recovery of Tc during the leaching process. The highest chemical recovery after
correction for counting efficiency is at 550°C. The low chemical recovery at 450°C is the

result of incomplete ashing resulting in a poor leaching of the sample.

195



Chapter 5 — Sequential separation of beta emitters

5.4.4.4 Leaching

a) Acid type

The effectiveness of several different leaching agents was tested on seaweed, lobster and
sediment samples and the comparative recoveries determined (Figure P3 a). Nitric acid (8 M)
showed the highest recovery of **Tc from ‘in-house’ seaweed, sediment and lobster reference
samples. HCI was less efficient at leaching Tc than HNOs. This can be explained by the
partial reduction of Tc(VII) to Tc(IV) in HCI at concentrations greater than 4 M (Pruett, 1981;
Watanabe & Hashimoto, 1995). Recovery of *Tc when leaching with diluted aqua regia or
8M HCI + 3% H,0, is also lower than that recovered with 8M HNO;. The reasons for this are

unclear but may also be due to loss of Tc through reduction.

Figure P3 a. Total Tc leached from the sample matrix, using different leaching agents, as a
percentage of the total recovered with nitric acid.

All samples were heated at 125°C for 2 hours. Error bars at 2c.
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Figure P3 b. Effect of leaching time on recovery of *Tc from sample matrices.
Homogenous samples were leached for 30 minutes, 60 minutes, 120 minutes and 240 minutes on a hotplate at

125°C in 8 M nitric acid. The remainder of the determination was carried out under identical conditions. Error bars

at 2c.
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b) Leaching Time

The effect of leaching time using 8M nitric acid on a hotplate at a temperature of 125°C was
tested (Figure P3 b). The maximum recovery was observed in samples leached for 120
minutes. Samples leached for shorter periods were not thoroughly attacked by the acid

resulting in lower recoveries.
5.4.4.5 Decontamination

a) Iron Hydroxide Precipitation

Following leaching, the sample is prepared for anion exchange chromatography. The initial
step is to remove possible contaminants (such as transition metals, actinides and lanthanides).
However alkali and alkaline earth metals (*°Sr, *’Cs), Re(VII), Ru (VIII) and Te(VII) are not
precipitated. If ammonia is used to neutralise the solution cobalt and nickel are also retained

in solution as amine complexes.

Losses of *’Tc¢ to the iron hydroxide precipitate after neutralisation with ammonia are lower
when 8M nitric acid is used as a leaching agent (Figure 5.5). This further supports the notion
that some of the Tc is reduced to insoluble Tc (IV) in HCI solutions. The small quantity of Tc
lost to the iron hydroxide precipitate from nitrate solutions is most likely to be occluded Tc

(VID).
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Figure P4 Loss of *™Tc yield monitor to residue phases with different leaching agents. Error bars

at 2c.
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b) Anion Exchange Chromatography

Analytical grade anion exchange resin 1X8 (100-200) mesh (Eichrom) was used both for
decontamination and concentration of the sample. Technetium is retained on the anion
exchange column from alkaline solution. Alkali and alkaline earth metals and divalent
transition metals pass through the column into the raffinate separating most of the main
contaminants including “Co, ®Ni, **Sr and "’Cs from Tc. The anion exchange column also

separates Tc from Ca, which would interfere with the solvent extraction separation.

The solutions containing ammonium nitrate, formed by the neutralisation of nitric acid with
ammonia, were found to give substantially lower losses of Tc to the raffinate than from
ammonia solutions containing ammonium chloride (Figure P4). This is expected, as the Kp for
Tc in alkaline nitrate media on anion exchange resin is higher than in the corresponding
chloride media (Korkisch, 1989). When solutions are loaded in chloride media with H,O,
present from the leaching process, retention of *Tc on the resin after elution of Tc are higher

than if H,0, is not used (Figure P4)

¢) Solvent extraction
The Tc is eluted from the anion exchange resin column with concentrated nitric acid,
evaporated and dissolved in 2M sulphuric acid for solvent extraction. Some workers noted that

potential losses of Tc could occur during this evaporation step. The loss of Tc is increased by
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the presence of chloride (Dixon et al, 1997), and the smallest loss is achieved by evaporation at

temperatures less than 80°C.

This study found that the geometry of the container had a significant effect on Tc losses.
Losses were higher from beakers than from glass scintillation vials. The vials were narrower
and had a restriction at the top, which enhanced refluxing of the solution thereby reducing the
amount of Tc lost during evaporation. Loss of Tc occurred if the sample in the vial was heated
to complete dryness. Due to the short half life of the #mTe yield monitor evaporation times
need to be minimised and a compromise between recovery and rate of evaporation must be
struck. The optimum conditions were found to be evaporation of 20 ml of solution from a 20
ml liquid scintillation vial in a heating block at 125°C taking approximately 6 hours. This

resulted in the loss of 5-10% of Tc¢ from solution.

Ruthenium-106 is not quantitatively separated from *Tc by anion exchange chromatography
(Maeck et al, 1961) and further purification of the sample is required. This is achieved by
solvent extraction of **Tc from 2M sulphuric acid into 5% tri-n-octylamine (TnOA) in xylene
(Dale et al, 1996). Ruthenium-106 is retained in the aqueous phase. The organic phase may
then be mixed directly with commercial scintillation cocktails As no aqueous phase is then
present to contribute to quench, counting efficiencies are higher than if an aqueous solution is

mixed directly with the scintillant.

Table P2 a. Extraction of contaminants into tertiary amines in xylene from 2M sulphuric acid
[After Maeck et al, 1961]

Element Extraction into tertiary amines
Tc, Re, Au, Ta. Quantitative extraction
Mo, W, Ag, Cd. Partial extraction
Ru, Mn, Fe, Cr, Ni, Co, U, Np, No extraction
Pu, Am, Be, Na.
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Table P2 b. Activities of abundant radioisotopes before and after decontamination.

Sample Potential Bq in original Bq after Decontamination
Type interferent Sample decontamination factor
Seaweed BCs 16 <0.016 > 1000
*Am 11 <0.015 > 730
1%Ru/"Rh 5.6 <2 >3
Sediment e 12540 <0.017 > 740000
Am 24673 <0.014 > 1760000
1%Ru1%Rh 8.4 <2 >5

d) Decontamination factors

The effectiveness of the method for decontamination of radioisotopes in marine biota and
sediment samples was determined for some abundant radioisotopes by measuring their
activities before and after decontamination chemistry (Table 5.9b). B7¢s, *'Am and '"Ru
were chosen as all are usually present in environmental samples and may produce an

interference when determination is made by liquid scintillation counting.
The absence of *’Cs, ' Am and '®Ru in the y spectra of the final liquid scintillation source
coupled with the absence of any high energy P emitting isotopes in the liquid scintillation

spectra, indicates effective removal of any potential interferants.

The distribution coefficients for Ru between 5% tri-iso octylamine (TiOA) in xylene and 0.5 M
H,SO, are as low as 1.7x10 (Chen et al, 1990).
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e) Chemical recovery

Table P3. Typical recoveries of ™Tc after separation chemistry

Sample Mean Recovery Recovery Range % n
Method blank 93% 88 - 97 9
Ravenglass sediments 81% 74 -92 60
Ascophylum nodosum 74% 70-79 36
Chrondus crispus 79% 72 - 85 24
Lobster 75% 72-78 16
All types 85% 70 - 95 170

Typical chemical recoveries for the method vary between 70% to 95% with a mean of 85%

(Table P3). Variation depends mainly on the differing sample matrix, with better recoveries

generally observed for samples with lower organic carbon content.

5.4.4.6 Liquid Scintillation Counting

Liquid scintillation counting was used to measure the activity of *Tc in the samples, with di-

isopropyl-naphthalene based scintillation cocktails giving the best limits of detection.

However it was found that *™Tc produced a significant interference if it had not decayed

(Figure PS5).

Figure P5. Interference of #mTe on a *Te spectrum.
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A *™Tc standard counted immediately after the determination of the yield monitor has an
activity of 5800 dpm and gives a count of 1100cpm, whilst the activity from a typical *Tc
sample is 700 cpm. An interference at such a high level would mean that a reliable
determination of low level environmental samples would not be possible, if the P Te yield
monitor is not allowed to decay first. A period of seven days (> 25 half-lives) from the
determination of the yield monitor was found to be sufficient. This means that the minimum

length of time required for the determination of #Tc is two weeks.

5.4.4.7 Method statistics and reference materials

Method blanks were run though the separation procedure to determine the detection limit (Lp)
(Currie, 1968). For a count time of 120 minutes, a counting efficiency of 90%, a sample
weight of 10g and a chemical recovery of 85%, the method has a detection limit of 1.7 Bq kgl
Reductions could also be made in Lp with an increase in the sample size or a longer count

time.

Accuracy and precision of the method

As no international environmental reference materials exist for Tc, it was necessary to test the
method using a material prepared as a preliminary reference samples at the Scottish
Universities Research and Reactor Centre (SURRC). All activities of these samples
determined using this method fall within preliminary working ranges established at
“Technetium 1998” (8-9 April 1998, at a conference held at Southampton Oceanography
Centre - McCartney, 1998) (Table P4).

Table P4. Measured activities of preliminary reference materials.

Sample Sample activity Bq kg 1o Working Range Bq kg
Measured Reported *
A 53 2 1.8-53
B 36.7 2 37-88
C 4233 70 3000 —-4700
D 16441 1050 13000 — 23000
E 142383 6200 102000 - 172000

*Preliminary working values presented at Technetium 1998 McCartney (1998)
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5.4.5 Conclusions

1. A method has been developed to determine “Tc in a variety of environmental matrices
including seaweed, lobster and sediments, using 9MT¢ as the yield monitor. Tc-99m was
found to be the most suitable yield monitor.

2. 0.88 SG ammonia was found to effectively reduce the loss of #T¢ through volatilisation
during ashing.

3. The optimum ashing condition was to gradually increase the temperature from 250°C to
550°C at 50°C increments per hour as it minimises losses of Tc.

4. Optimum leaching was found to be with 8M nitric acid heated for two hours on a hotplate
at125°C.

5. Initial concentration and decontamination of *’Tc¢ was using an iron hydroxide precipitation,
anion exchange using Eichrom X8 (100-200) mesh anion exchange resin, and removal of
ruthenium by solvent extraction of Tc into 5% TnOA in xylene.

6. The yield monitor is determined using a HPGe y-ray spectrometer. Recoveries are typically
in the range of 75% -95%.

7. Determination of *Tc is made after a further week following the *"Tc decay. The method

has a limit of detection of 1.7 Bq kg™ assuming a 10g sample size and a 2 hour count time.

5.4.6 Acknowledgements

The authors would like to thank Dr R Carpenter, AEA Technology, Harwell, UK for partial
support of this project. The project was jointly funded by the Geosciences Advisory Unit,
Southampton Oceanography Centre, AEA Technology, Harwell and the Institute of Terrestrial
Ecology, Merlewood. Reference samples and data were provided by Dr M. McCartney
SURRC, East Kilbride. Dr N. Fleming, Nuclear Medicine, Southampton General Hospital

generously provided 9mTe,

203



Chapter 5 — Sequential separation of beta emitters

5.4.7 Reference

Aarkrog A., Dahlgaard H., Hellstadius L., Holm E., Mattsson S. & Rioseco J. In “Technetium in nature”
Eds. Desmet and Myttenaere. (1986) 69 - 78 Elsevier. Science, London, UK.

Beals D.M. & Hayes D.W. Technetium-99, lodine-129 and tritium in the wastes of the Savannah River
Site. Sci. Total. Environ 173 (1996) 101 ~ 115.

BNFL. Annual report on the radioactive discharges and monitoring of the environment. Directorate of
Health, Safety & Environmental Protection. (1983 — 1995) BNFL. Warrington.

Chen Q., Dahlgaard H., & Nielsen S.P. Determination of #Tc in sea-water at ultra low levels. .Anal.
Chim. Acta, 285 (1994) 177 - 180.

Chen Q., Dahlgaard H., Hansen H.J.M. & Aarkrog A. Determination of *Tc in environmental samples
by anion exchange and liquid-liquid extraction at controlled valency. Anal. Chim. Acta, 228 (1990)
163 - 167.

Currie L.A. Limits for qualitative detection and quantitative determination: Application to
radiochemistry. Anal Chem, 40 (1968) 586 - 593.

Dale C.J., Warwick P.E., & Croudace I.W. An optimised method for Technetium-99 determination in
Jow level waste by extraction into tri-n-octylamine. Radioactivity and Radiochemistry, 7 (1996) 23 -
31.

Dixon P., Curtis D.B., Musgrove J.,Roensh F., Roach F. & Rokop D. Analysis of naturally produced
Technetium and Plutonium in Geologic materials. Anal. Chem, 69 (1997) 1692 - 1699.

Foti S., Delucchi E., & Akamian V. Determination of picogram amounts of technetium in environmental
samples by Neutron Activation Analysis. Anal. Chim. Acta, 60 (1972) 269 - 276.

Garcia Ledn M. Determination and levels of ”Tc in environmental and biological samples. J.
Radioanal. Nucl. Chem,. 138 (1990) 171 - 179.

Goldchurt N.W., & Sedlet J. Radiochemical determination of technetium-99 in environmental water
samples. Anal. Chem, 41 (1969) 669 - 671.

Gray J., Jones S. R. & Smith A. D. Discharges to the environment from the Sellafield Site, 1951 — 1992.
J. Environ. Radioactivity, 2 (1995) 23 —40.

Harvey B.R., Ibbett R.D., Williams K.J., & Lovett M.B. The determination of technetium-99 in
environmental materials. MAFF Directorate of Fisheries research: Aquatic Environmental Protection:
Analytical Methods, 8 (1991) 1-22.

Holm E., Rioseco J., & Garcia Ledn M. Determination of **Tc in environmental samples. Nuclear
Instruments and Methods in Physics research, 233 (1984) 204 - 207.

Kaye L.H., Merrill I.A., Kinnson R.R., Rapis M.S., & Bailou N.E. Radiochemical determination of
technetium-99. Anal. Chem, 54 (1982) 1154 - 1163.

204



Chapter 5 — Sequential separation of beta emitters

Kenna B.T. & Kuroda P.K. Technetium in nature. I. Inorg. Nucl. Chem, 26 (1964) 493 - 499.
Korkish J. Handbook of ion exchange resins: Their application to inorganic analytical chemistry.
(1989) CRC Press. Boca Raton, Fla, USA.

Leonard K.S., McCubbin D., Brown J., Bonfield R.A. & Brooks T. A summary report of the
distributions of *Tc¢ in UK coastal waters. Radioprotection — Colloques, 32 (1997) 109 —114.

Maeck W.J., Booman G.L., Kussy M.E. & Rein L.E. Extraction of the elements as Quaternary Propyl,
Butyl and Hexyl amine complexes. Anal. Chem, 33 (1961) 1775 - 1750.

Martin J.E. & Hylko J.M. Measurement of **Tc in low level radioactive waste from reactors, using
#MT¢ as a tracer. J. Appl. Radiat. Isot, 38 (1987) 447 - 450.

Matsuoka N., Umatat T., Okamura M., Monoshima N., & Takashima Y. Determination of #T¢ from the
aspect of environmental radioactivity. J. Radioanalytical and Nuclear Chemistry, 140 (1990) 73 - 78.

McCartney M. Personal communication. (1997) Paper presented at Tc1998 at the Southampton
Oceanography Centre.

Pruett D.J., The solvent extraction behaviour of Technetium. Part II the hydrochoric acid — Tri-n-buty;
phosphate system. Radiochim Acta, 29. (1981) 107 ~111.

Tagami K. & Uchida S. Separation procedure for the determination of Technetium-99 in soil by ICP-
MS. Radiochim. Acta, 63 (1993) 69 -72.

Watanabe S. & Hashimoto K. Solvent extraction of technetium in urine with TBP. J. Radioanal. Nucl.
Chem, 201 (1995) 361 - 370.

205



Chapter 5 — Sequential separation of beta emitters

5.5 Conclusions

Sequential separation of *’Fe, ®Ni, *Sr and *Tc from low-level wastes is readily achievable
using extraction chromatographic techniques. Commercially available Sr-resin and TEVA®
resin were the most appropriate materials for the purification of %Sr and *Tc respectively
whilst diisobutylketone and dimethylglyoxime-based materials were prepared and
characterised for the purification of “Fe and 5Ni respectively. Good separation and
decontamination factors for all isotopes were observed. Chromatographic separation resulted in
a significant reduction in organic solvents wastes arising and permitted rapid analysis of larger
batch sizes compared with solvent extraction-based techniques. The combination of separate
extraction chromatographic techniques into a single sequential separation scheme resulted in a
reduction in analysis time whilst permitting the determination of a series of isotopes on

samples of limited size.

Modification of the sequential separation scheme for sediment analysis was required. Chemical
recovery of ®Ni and *°Sr was determined through the addition of stable Ni and Sr with the
measurement of these stable elements in the purified fraction by ICP-AES. Iron-55 recovery
was determined by measuring the stable Fe content of the sample before and after purification.
Recovery of Tc was determined through the addition of #mT¢ yield monitor. Relatively low
loading capacities of the diisobutylketone chromatographic material meant that it was
unsuitable for the purification of high-Fe samples such as sediments and a solvent-extraction
based separation scheme was therefore adopted. However, for Ni and *°Sr, the extraction
chromatographic separation was still suitable for routine application and a sequential

separation scheme for *’Fe, Ni and *°Sr was developed.

The determination of *Tc was not included in the sequential separation scheme as special
precautions during the drying, ashing and leaching stages were required that were specific to
*Tc and probably not as suitable for the other radioisotopes. "Tc analysis was therefore
performed on a separate aliquot of sample. Conditions for the ashing and leaching of sediments
prior to *Tc separation were optimised. Preconcentration of "Tc from the sediment leachate
(following an Fe(OH); scavenge) was achieved using anion exchange chromatography and
final purification of PT¢ was achieved by extraction into tri octylamine in xylene. TEVA®
resin could be used for this final purification stage. However, elution of Tc from TEVA®

resin requires strong HNO; that would have to be evaporated off prior to liquid scintillation
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counting. This would add a further stage to the separation with the potential for loss of the
?Tc. TEVA® resin can be added directly to scintillant but for low-level environmental #Tc
analysis, where limits of detection are often approached the TOA-xylene-scintillant mixture

provided the most suitable source for liquid scintillation counting.

For all isotopes chemical recoveries were consistently high although over-spiking of the
sample with Sr led to some samples with lower than expected recoveries. The final purified
fraction for all isotopes contained no other contaminating radioisotopes with the exception of
55Fe, which contained traces of *'°Po. This contamination did not affect the »Fe determination

by liquid scintillation counting.

Re-use of the Sr-resin® was investigated and found to be viable for the sample type and

activity levels tested.

207



Chapter 5 — Sequential separation of beta emitters

5.6 References

Bock R. (1979). A handbook of decomposition methods in analytical chemistry. Blackie Group,
Glasgow, UK.

Harvey B., Ibbett R.D., Williams K.J. and Lovett M.B. (1991) The determination of technetium-99 in
environmental materials. Ministry of Agriculture, Fisheries and Foods. Aquatic Environmental

Protection: Analytical methods number 8. Lowestoft, UK

Korkisch J. (1989). Handbook of ion exchange resin: their application to inorganic analytical chemistry.
CRC Press, Boca Raton, USA

208



Chapter 6 — A study of beta emitters in a saltmarsh environment

Chapter 6

A study of beta emitters in a saltmarsh

environment

209



Chapter 6 — A study of beta emitters in a saltmarsh environment

6. A study of beta emitters in a saltmarsh

6.1. Introduction
6.1.1. Sources of anthropogenic radioactivity in the Irish Sea area

Fission products, activation products and actinides in the Irish Sea are derived from three
main sources. Global nuclear weapons’ fallout and radioactivity from the Chernobyl accident
in 1986 both contributed to the inventory of radioisotopes in global waters including the Irish
Sea. However, the main source of anthropogenic radioactivity in the area is the BNFL nuclear

fuel-reprocessing site at Sellafield.

The BNFL Sellafield site (formerly known as Windscale) is located on the West Cumbrian
coast and is one of four sites operated by BNFL in the UK. Work commenced at the site on
the reprocessing of irradiated nuclear fuel to meet the UK programme for nuclear weapons
development that required kilogram quantities of plutonium for the Cold War. Originally the
site consisted of two air cooled reactors for Pu production, known as the Windscale piles,
nuclear fuel reprocessing plants designed for the recovery of Pu and ancillary operations in
support of the reactors and reprocessing operations. The Windscale piles were shut down in
October 1957 following a fire in one of the piles, which resulted in the uncontrolled release of
10" Bq of fission products (mainly H and 'L, but also other fission products and 21%4) to
the local environment (Crick and Linsley, 1984). In 1956 the first of four Magnox-type
reactors was brought on-line. All of these reactors are still in operation. In addition, a
prototype Advanced Gas-cooled reactor became fully operational in 1963 and continued

operation until 1981.

Although originally designed to isolate valuable Pu for the nuclear weapons’ programme, the
reprocessing plant at Sellafield was also used to isolate Pu for the UK fast breeder
programme, as well as to recover and recycle the 25 that remained following fuel irradiation
(now the main function of the site). A review of the reprocessing operations at Sellafield has

been published (Gray et al, 1995) and is summarised here.

Fuel from the Windscale pile reactors was stored under water in open fuel ponds. Between
1960 and 1985, Magnox fuel was stored under water in closed fuel ponds (B30). Since 1985
the irradiated fuel has been stored in an enclosed pond which is located in the Fuel Handling
Building, B311. Following storage, fuel was originally transferred to a Pu separation plant
(B204) and subsequently on to the Pu purification plant (B209S). Both plants commenced

operation in 1952 with the Pu purification plant ceasing operation in 1954. Pu purification
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was transferred to a new plant, B203, which operated between 1954 and 1987. In 1964 a new
integrated separation and purification plant, B205, was commissioned and B204 reverted to
the recovery of Pu from residues. Swarf from the pile reactors’ fuel was stored in a dry
condition in the ‘silos’, B41. Between 1963 and 1990 Magnox swarf was stored under water

in building B38. Since 1990, this swarf has been treated in the new encapsulation and storage

facility.

Following the commissioning of the prototype AGR, the primary separation plant, B204, was
modified to handle oxide fuel. The modified plant commenced reprocessing operations in
1969 but ceased operation in 1973 following a non-routine release of 1%Ru. Since 1973, oxide
fuel was stored on site until the Thermal Oxide Reprocessing plant, THORP, began handling
fuel in 1988.

6.1.2. Atmospheric and Liquid Discharges from Sellafield

Reprocessing operations at Sellafield can be summarised as follows. Fuel from the Magnox
and more recently PWR reactors is stored for a period to permit the decay of short-lived
fission products. The fuel is then sheared and the fuel dissolved in 6-11M HNO;. The hulls do
not dissolve and are isolated for waste treatment and subsequent disposal. The uranium,
plutonium and fission products are then segregated using a process known as the PUREX
process. In this process the HNO; concentration is reduced to 3-4M and U(VI) and Pu(IV)
are extracted into tributylphosphate (TBP) diluted with kerosene. Pu is then reduced to Pu(lIl)
and back-extracted into HNO;. Reduction of Pu can be achieved through the addition of
U(IV). UQV) and U(VI) both remain in the organic phase and are subsequently back-
extracted with dilute HNO;. U and Pu are then further purified using additional TBP

extraction cycles.

During the shearing and dissolution stages of the operation significant quantities of the
volatile radioisotopes such as *H and "*'I are liberated from the fuel rods. The vent gases from
this process, containing the volatile radioisotopes, are passed through a series of filters before
being released into the environment through stacks. Once discharged into the atmosphere, the
volatile radioisotopes are rapidly dispersed by prevailing winds with some subsequent
deposition occurring through the radioisotopes being carried on precipitation. In addition to
the radioactivity released during reprocessing operations, airborne releases have also routinely
occurred from the Windscale piles, the Magnox and AGR reactors, the vitrification plants and
the open fuel storage ponds. Authorised releases have also occurred from so-called ‘approved

places’ namely R & D laboratories located on the site. Releases from the Windscale pile
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stacks has included activity released by burst cartridges, approximately 20 kg of irradiated
particulate uranium oxide originating from corroding cartridges lodged in outlet air ducts and
volatile fission products released during the 1957 fire. Due to the range of sources for
airborne release of radioactivity, the associated range of discharge stack heights and the
variable weather conditions prevalent at a given discharge event it is difficult to generalise on

the dispersion of the airborne discharge.

Liquid wastes from the reprocessing operation are discharged to the Irish Sea via a pipeline
that extends 2.5 km beyond high water. Significant radioactive effluent discharges
commenced in 1952 although relatively small levels of radioactivity were discharged in 1951.
The majority of the radioactive liquid effluent discharged from the Sellafield site originates
from the reprocessing operations on the site and the purge waters from the fuel storage ponds.

Since 1988 discharges have also arisen from the THORP fuel receipt and storage area.

Additional smaller discharges arise from surface drainage water, laundry effluent and sewage.
Discharges from the réprocessing operations originate from medium active liquors mainly
produced during the purification of Pu and U. Liquors from the Pu purification plants, B209S
and B203 were originally transferred to a holding tank to permit the decay of short-lived -
radioisotopes and then discharged to sea. The integrated separation and purification plant,
B205, employed a concentration procedure to reduce the volume of the medium active liquor
and hence permit its storage for longer periods. However, the increased throughput of fuel for
reprocessing resulted in activities in the liquor increasing to a level where it was no longer
viable to continue discharges. Levels of actinides discharged were reduced using a
flocculation/precipitation treatment from the mid-1970s until 1980 when effluents from B205
were stored until the Enhanced Actinide Removal Plant was commissioned in 1994. All liquid

effluents from B205 are now treated in EARP prior to discharge to sea.

Purge waters from fuel storage ponds were originally discharged to sea without any treatment.
Temporary (unspecified) measures were introduced in the late 1970s to reduce the levels of
radioactivity in the purge waters and in 1985 the Site Ion- eXchange Effluent Plant (SIXEP)
commenced operation. SIXEP employs an array of sand filters and clinoptilolite ion
exchangers to remove many of the fission products from the purge waters prior to sea
discharge. Levels of *Sr, **Cs and B7Cs in the liquid discharge have therefore dropped
significantly since 1985.
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The introduction of the salt evaporator in 1985 permitted salt-bearing liquors to be
concentrated and stored prior to treatment in EARP. This effectively reduced the discharge of

1%Ru and *°Zr/Nb as well as contributing to the reduction in actinides discharged to sea.

The neutralisation and subsequent formation of an iron hydroxide floc as part of the effluent
treatment procedure results in the Pu and Am in the marine liquid discharge being associated
with fine particulate (Pentreath ef al, 1986). Other particle-reactive species such as Sn and Zr

may also be associated with particulate matter in the sea tanks

6.1.3. Dispersal of aqueous discharges in the Irish Sea

The Irish Sea is bounded by the coasts of Dumfries and Galloway to the north, Cumbria and
Lancashire to the east, Wales to the south and Ireland to the west. The surface area of the Irish

Sea is estimated at 1 x 10° km® with a mean depth of 60 m.

Radioisotopes discharged into the Irish Sea will either remain mainly in the aqueous phase
(conservative radioisotopes) or become associated with the particulate phase and ultimately
the seabed sediment (non-conservative radioisotopes). Approximately 10% of discharged
137Cs associates with the particulate phase (Jefferies ef al, 1973) whilst nearly all the #Am is
particulate-associated (Day and Cross, 1981). The behaviour of an isotope will depend on its
oxidation state hence Pu as Pu(IV) rapidly becomes particle-associated (kp = 10% but Pu(V) is
not so readily scavenged (Nelson, 1978) with a kp of 10* (Pentreath et al, 1986; Livens et al,
1994).

Conservative radioisotope dispersal is determined by the local currents in the Irish Sea.
Discharges are injected at high water into north-flowing long-shore tidal and residual currents
(McKay and Pattenden, 1993). The discharge is then diluted and carried with the main water
flows. The Irish Sea has two main water inputs flowing from the North Channel and St
Georges Channel. The net water flow is northwards towards the south coast of Scotland and
the Solway Firth. Ultimately conservative radioisotopes are transported through the North
Channel where they join the Scottish coastal current travelling north along the Western
Scottish coastline and then easterly along the north Scottish coastline and into the North Sea.
There is a net flow of water from the Irish Sea through the North Channel and a mean
residence time of 18 months in the Irish Sea has been determined (Bowden, 1955). This
compares with the residence time of B7Cs in the Irish Sea estimated as a year or less (Baxter

et al, 1979). Some recirculation of radioactivity occurs southward both along the Cumbrian
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coastline and down the Eastern coast of Northern Ireland. However little radioactivity appears

to be transported through St Georges Channel and into the English Channel.

Following transport into the North Sea, conservative radioisotopes such as ?Tc and P'Cs are
carried across the North Sea to the Scandinavian coastline where Sellafield discharge signal
combines with the discharge signal from the La Hague reprocessing plant in France. The
discharge is then carried northward along the Scandinavian coastline into the Arctic Ocean
where the contaminated water divides (Figure 6.2). One fraction is carried eastward into the
Barents Sea. However, the majority of the discharge is carried westward towards Greenland
and subsequently down the eastern coastline of Canada and the USA at which point the signal

has been rendered undetectable through dilution.

Particle-associated radioisotopes are far less mobile. A significant proportion of the non-
conservative radioisotopes discharged into the Irish Sea are scavenged and deposited in the
mud belt lying off the Cumbrian coastline. Subsequent redistribution of these radioisotopes is
dependent on the resﬁspension and subsequent transport of these sediments. Following a
significant reduction in the activity discharged by Sellafield it has been estimated that the
dominant mechanism for supply of radioisotopes to the Solway Coast is via the transport of

contaminated sediments (MacKenzie et al, 1987; McDonald et al, 1990).

Determination of radioisotope depth profiles in sediment core samples has been used to
determine a discharge chronology for the particular radioisotope (e.g. Kershaw et al, 1990).
The use of Irish seabed sediments in this manner is not appropriate due to low sedimentation
rates of between 0.02 and 0.08 cm/yr and significant levels of bioturbation (Kershaw et al,
1983; Kershaw, 1986; Kershaw et al, 1988). Likewise intertidal sediments often experience

significant post-depositional mixing again destroying any chronological record.

Saltmarsh sediments are more suitable as they exhibit high sedimentation rates of the order of
a few cm/yr and are less prone to post-depositional mixing. Saltmarsh sediments were
therefore chosen for this study. A number of suitable saltmarshes are located along the
Cumbrian and South West Scotland coastlines. Of these, the Ravenglass saltmarsh at the
mouth of the Esk estuary has been widely studied as it is only 10km south of Sellafield and
has received relatively high activities of the Sellafield discharge. This saltmarsh was therefore

chosen for further investigation.
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Chapter 6 — A study of beta emitters in a saltmarsh environment

6.2. Methodology

6.2.1. The Ravenglass Saltmarsh sampling site

The Ravenglass saltmarsh is a small marsh located on the northern side of the Esk Estuary
approximately 10 km south of the Sellafield site (UK National Grid SD089947). The marsh
receives a component of the Sellafield discharge, is not easily accessible and hence not
disturbed by the general public. The saltmarsh consists of large areas of vegetated marsh
interspersed with unvegetated creeks. Five different vegetation zones were identified by
Horrill (1984). The morphology of the saltmarsh is a result of sedimentation and erosion. The
latter is through slumping of the vegetated marsh banks into the creeks. Comparison of the
map of the marsh produced by Horrill with the situation present whilst sampling suggested
that many of the creeks have widened considerably during a period of some 12 -15 years. The
total area of the Ravenglass saltmarsh is approximately 55,000 m? or 0.055 km®. Although the

marsh is not grazed, it is bordered by farmed fields.

6.2.2. Sample collection

The saltmarsh sediment core was collected from the Ravenglass saltmarsh on 12® July 1996.
The core was collected towards the front of the marsh in a vegetated area 8m south of the
sampling position identified by Horrill (1984) as X6 (Figure 6.5). A 10cm diameter PVC
tube, which had been chamfered at one end, was driven into the marsh to a depth of
approximately 60cm. The degree of compaction of the core was determined by measuring the
difference between the height of the core in the tube relative to the surface of the marsh. 7cm
of compaction was measured for a core of 56.7cm length (11% compaction). The removal of
the core was aided by excavating around the core tube to permit the tube to be pushed from
side-to-side, breaking the bottom of the core from the surrounding sediment. Once the core
had been retrieved, both ends were wrapped in polythene and the core was transported to the
Southampton Oceanography Centre for storage. The core was stored at 4°C for approximately
3 months prior to sample preparation. The core was recorded and identified in all subsequent

analyses as RC-96-007.
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Chapter 6 — A study of beta emitters in a saltmarsh environment

6.2.3. Physical description of Core RC-96-007

The core PVC tube was cut using an angle grinder and the sediment core was halved using a
cheesewire. The physical appearance of the core was then recorded. The core was relatively
uniform with no distinct banding or zonation. Some orange/brown mottling was observed
which was most prominent in the first 29cm but was still observable below this depth. Root
matter was visible again to a depth of about 29cm. Below this depth the decomposing organic

matter was visible.

6.2.4. X-radiography

A slab of sediment lcm thick was cut from one half of the core using an electro-osmotic
knife. The slab was cut in half prior to X-radiography. The slab was placed in a Hewlett
Packard Faxitron X-ray system and exposed for 2mins at 56 kV (the exposure time having

previously been determined using test films exposed for different times at 56 kV).

6.2.5. Chemical and radiochemical analysis of core RC-96-007
6.2.5.1. Preparation

One half of the core was sectioned at 1cm intervals to give a total of 55 samples. Each sample
was transferred to a polythene pot and frozen overnight. The samples were then freeze-dried
to remove water. Visible organic root matter was removed and the samples were ground in a
pestle and mortar. The samples were then sieved through a 1mm sieve to remove stones and

organic matter and the sieved material retained for further analysis.

6.2.5.2. Major and trace element analysis

An aliquot of the dried sample was ignited at 900°C for a minimum of 2 hours to decompose
any organic matter present. 0.800g of the ignited material was intimately mixed with 4.00g of
a eutectic (4:1) mixture of lithium metaborate and lithium tetraborate in a grain stabilised Pt-
Au crucible. The mixture was heated to 1200°C melting the flux and dissolving the sediment
sample producing a homogeneous melt. The melt was then cast into a Pt-Au mould and

cooled to produce a bead suitable for XRF analysis of major elements.

10g of ground sample was pressed into a pellet. Trace elements were measured in this pellet
again using XRF. Both the major and trace element analyses were determined using a Philips

1400 sequential X-ray fluorescence spectrometer.
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Chapter 6 — A study of beta emitters in a saltmarsh environment

6.2.5.3.Carbon analysis

Total carbon analysis was performed on a Carlo Erba CHNO-S elemental analyser. A known
mass of sample was weighed into a tin capsule that was subsequently crimped. The sample
was then ignited by flash pyrolysis and the gases separated by gas chromatography. Final
detection of the gases was achieved using a flame ionisation detector. Standards of known

elemental composition were measured to permit quantification.

6.2.5.4. Gamma spectrometric analysis

Approximately 20g of sample were transferred to a 22ml polythene scintillation vial and the
exact mass of sample recorded. The sample was then counted on a well-type high purity
germanium (HPGe) detector. The resulting energy spectrum was deconvoluted and the
activity of each identified radioisotope calculated using Fitzpeaks software. The gamma
spectrometer was previously calibrated for both energy and efficiency against an Amersham
QCY-48 mixed radioisotope standard adsorbed onto a sediment matrix using the method

described by Croudace (1991).

6.2.5.5. Radiochemical analysis

Radiochemical analysis of *°Fe, ®Ni and *Sr were performed on the freeze-dried material
using the sequential separation scheme described in Chapter 5. *Tc¢ was also determined

(Wigley — pers. comm.) using the method described by Wigley ez al (1999).
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Chapter 6 — A study of beta emitters in a saltmarsh environment

6.3. Analytical results for core RC-96-007
6.3.1. Physical and X-radiographic description of the core

Initial observation of the sediment core showed no visible signs of banding or zonation along
the core. The general appearance was uniform down the core with the exception of
identifiable root material at the top of the core and decomposing organic matter at depth.
However X-radiography (Figure 6.6) identified discrete light and dark banding of the core at
approximately 0.5cm intervals. This banding is a result of slight compositional variation of
incoming sediments at intervals probably corresponding to summer and winter months.
Inspection of a thin section of sediment under a microscope has identified that the dark bands
correspond to coarser-grained material containing quartz, plagioclase and feldspar whilst the

light bands contain more clay minerals.

6.3.2. Major and trace element composition

Geochemical analysis (Figures 6.7 & 6.8) showed that the bulk composition of the sediment
was relatively uniform to a depth of about 50cm. As major and trace element analysis was
performed with a resolution of 1cm, compositional changes related to the banding observed in
the X-radiograph were not resolved. Al and Ti contents were uniform throughout the core at
approximately 10-11 and 0.6 — 0.7 wt % respectively. Si varied between 70 and 75 wt %
down to a depth of 50cm. Below 50cm the Si concentration increased to 78% as the sediment
became more sandy suggesting that the underlying sand was being approached. Ca was
highest at the top of the core (4.33 wt %) declining rapidly to reach a value of 1.4 wt % at a
depth of 7cm. A similar exponential decrease in concentration was observed for Sr but not for
Ba. The Ca/Sr ratio (Figure 6.9) varied from 186 at the top of the core to around 90 below
7em. The Ca and Sr profiles are indicative of the dissolution of a source of calcium/strontium
carbonate at the top of the core with subsequent migration of the dissolved Ca and Sr
downwards. Sources of carbonate would include microfauna (e.g. forams) and shell material,
which was observed in some quantity on the surface of the marsh. The maximum Ca/Sr ratio
of 205 is comparable with Ca/Sr ratios of 108-248 measured in a number of mollusc shells
(Bowen, 1956). Cl concentrations declined down the core reflecting the decline in seawater

content with depth.
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Figure 6.6 : X-radiograph image of core RC-96-007
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Figure 6.9 : Variation of Ca/Sr ratios with depth

Peaks in Y, La and Cr occur at 20cm indicating an influx of detrital heavy minerals. It is
unlikely that this was as a result of a significant storm event as levels of Si (associated with
quartz and feldspar), Al (as aluminosilicates) and Ca (associated with shell debris) did not

increase accordingly.

Some evidence for diagenesis in the core was observed although this was far from conclusive.
A clear drop in Mn concentration was observed at 14cm with the MnO, concentration falling
from 0.13 to 0.05 wt %. This would suggest dissolution of Mn from the particle phase
presumably through the reduction of particulate-bound manganese oxyhydroxides to the
soluble Mn(IT). MnO, concentrations then increased to 0.21 wt % at a depth of 28cm. The
Mn peak at 28cm coincides with an apparent peak in Fe;Os concentration of 527 wt %.
However, the Fe profile is quite erratic making interpretation difficult. Also the Fe and Mn
peaks at 28cm do not correspond with any observable peak in S as might be expected if the Fe
and Mn had re-precipitated as the sulphide. Some of the irregularity observed may be as a
result of the regular flooding of the marsh and dynamic nature of the water table causing

short-term variations in oxidising / reducing conditions in the core.
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Chapter 6 — A study of beta emitters in a saltmarsh environment

6.3.3. Gamma spectrometry data

Gamma spectrometric analysis of sediment samples from core RC-96-007 detected
measurable activities of ®°Co, *’Cs and **!Am (Figure 6.12). Low levels of SICo, ¥*Eu and
5Eu were also detected along with isotopes of the natural U and Th decay chains. Only %o,
1%Cs and **'Am will be considered further as they were the only isotopes consistently found
above limit of detection and all isotopes have a relatively well-documented discharge history.
Activities of all three isotopes varied markedly with depth. Peak activities were measured at
depths of 15, 17 and 18cm for 9Co, ¥'Cs and **' Am respectively. The activity profile of YCs
and *'Am with depth compared qualitatively with the discharge history of these two
radioisotopes from the Sellafield site with peak discharges in 1975. A similar comparison for
0Co was not possible as discharges of this radioisotope were only published from 1982. If it
is assumed that the “’Co profile in the saltmarsh core is a record of Sellafield discharge the
proximity of the %Co peak to the *'Cs and ' Am peaks in the core would suggest that the
peak in ®’Co discharge occurred at a similar time to that of 1%Cs and **' Am and is higher than
the values published post-1982 (maximum published value of 2.3 x 10 Bq in 1985).
However, further comparison of the core profile with discharge data requires a knowledge of

the local sedimentation rate and lag-times of the radioisotopes.

The ratio of *’Cs and *!Am in the core range from 0.48 to 1.33 compared to the range in
Sellafield discharge of 4.2 to 808 (Figure 6.11). This reflects the difference in distribution
coefficients for '¥’Cs and **' Am with a significant fraction of I Am being particle-associated

compared with only 10% of the discharged B7Cs.

Cs/Am ratio in the core Cs/Am ratio in the discharge
0 0.5 1 15 0 500 1000
0 x 1996 . x
5 J 1992
10 | 1988
s 1984
é 0 | . 1980
= 2 1976
3 25 | 1972
30 1968
35 - 1964
40 1960

Figure 6.11 : Ratio of 37Cs/*' Am in core RC96-007 and in Sellafield discharges
(data decay-corrected to 1996)
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6.3.4. Beta-emitting radioisotopes

Radiochemical analysis of the sediment core for 55Fe, ©Ni, *°Sr and *Tc¢ indicated that all of
the isotopes could be detected above the limit of detection for the analysis (Figure 6.13). The
highest measured activities were found for 9Tc at 217 Ba/kg at the top of the core, related to
the increase in *Tc discharges in 1994 following the commissioning of EARP. The levels
dropped down the core to around 20-30 Bg/kg. This is broadly comparable with *Tc activities
of 7.7 and 10.1 Bg/kg measured in Whitehaven Harbour in the 1980s (Koide and Goldberg,
1985) and with 18.7 Bq/kg measured in a sediment collected from the Ravenglass estuary in
1988 (Assinder et al, 1993). Levels of ®Ni were erratic down the core ranging from 13 to 53
Bq/kg. Again this broadly agrees with measurements made previously on Whitehaven
sediments with ©Ni activities of 17 and 33 Bq/kg (Koide and Goldberg, 1985). Activities of
%Sy towards the top of the core were comparable with those reported by BNFL in 1996 for
Maryport and Workington silts at 240 Bq/kg and 320 Bq/kg respectively (BNFL, 1997).
However, activities of PS¢ at depth were considerably higher. No comparative data were

. 55 . . .
available for >°Fe measurements in Cumbrian sediments

Iron-55

It is difficult to correlate the profile of *Fe down the core with the reported discharge data as
the latter are somewhat erratic. However there is some resemblance between the two curves.
No discharge record for >*Fe prior to 1982 is available. Levels of Fe appear to fall at depth
indicating that historic discharges of Fe have since decayed and current discharges are not
migrating down the sediment core. Under aerobic marine conditions iron, as Fe', rapidly
reacts with hydroxyl ions to produce the insoluble Fe(OH); species (kg = 10°%). *Fe
associated with stable Fe is unlikely to redissolve unless reduced to Fe** in an anoxic
environment. If this had occurred, any post depositional migration of *Fe at depth is no

longer observable as this **Fe has since decayed.

Nickel-63

Nickel-63 shows no profile in the core corresponding to the discharge profile. No peak in ®Ni
in the core was observed that corresponded with the discharge peak in 1988. %Ni was found
throughout the core at very low levels suggesting that the radioisotope is mobile in the
saltmarsh environment. However, again the discharge data is incomplete and it is possible that

significant discharges of Ni have occurred throughout the operational history of the
Sellafield site.
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Figure 6.13 : Radioisotope data for RC-96-007 — beta emitters (decay corrected to 1996)
(method detection limits are shown as dashed lines on right hand plots)
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Strontium-90

The *°Sr profile shows a well-defined peak with the maximum PGy activity of 2100 Bg/kg dry
present at 17cm depth. The maximum °Sr discharge is unclear as discharges were
consistently high (with some slight variation) between 1970 and 1982. However, the peak in
PG activity in the core does coincide with the peak in 137Cs at a depth of 17cm. No *’Sr was
detected in any fraction, although any ¥Sr originally present would most probably have

decayed in the time between sampling and analysis.

Technetium-99

Technetium-99 exhibited a core profile that approximated to the discharge profile. However,
whereas the discharge record only had one significant peak (prior to the recent increase in
discharges) in 1978, the core profile shows two discrete peaks at 14 and 20cm. Also, if it
assumed that the 20cm peak corresponds to the 1978 discharge and the peak at the top of the
core corresponds to the 1995 discharge then the ratio of core concentrations to discharge are
different (0.80 and 1.14 Bgkg/TBq for 1978 and 1995 respectively). This would suggest that
either the mechanism for incorporation of PT¢ into the saltmarsh has varied in this time-span
or that the ®Tc in the 20cm peak has had sufficient time to experience post-depositional

migration following emplacement..

The relative activity of a radioisotope in the core will depend on the amount of the
radioisotope discharged and the distribution coefficient of the radioisotope. The ratio of the
core peak activity to discharge activity would therefore be expected to increase with
increasing distribution coefficient (Table 6.1). This relationship appears to be systematic over
a wide range of distribution coefficients (Figure 6.14), although the data available are limited
and is highly dependent on the distribution coefficient appropriate to the local environment

(which may not be accurately represented by the generalised Kp’s published by IAEA).

Table 6.1 : Peak discharge activities and peak core activities for four radioisotopes

Radioisotope Peak Year Peak activity in Depth (cm) Ratio, R kp
Dls;gegfge segl(rlr/xggt dcr;;re qug'l /TBq
*Sr 389 1978 2126 17 5.5 1000
#Tc 180 1978 143 20 0.80 100
B7Cs 3200 1975 16730 17 52 3000
#Am 116 1974 28690 18 247 2000000

All activities are decay-corrected to 1996
ks are mean values quoted in IAEA (1985)

234



2 y=0.563x- 1.1435
R2=0.9833

logR

0.5 |

0

05

N
=

log kp

Figure 6.14 : Potential relationship between log R and log kp
where R is the ratio between the activity in the core (Bg/kg dry) and the discharge activity (TBg)

6.3.5. Estimation of lag time and sedimentation rate
6.3.5.1.Lag {ime

In order to interpret the core profiles more rigorously it is necessary to determine the lag-time
between radioisotope release from Sellafield and arrival at the marsh and also to determine

the sedimentation rate prevalent at the sampling location.

The lag-time has been calculated by a number of researchers by measuring two radioisotopes
of the same element. The two isotopes must have significantly different half-lives and their
ratio must be well characterised in the discharge. **Cs and B7Cs are most commonly used.
134Cs has a half-life of 2.06 years whilst the half-life of ¥7Cs is 30 years. The ratio of PCs to
13704 in the marsh is measured and compared with known values for the discharge. The
difference in ratio results from the decay of **Cs in transit and this can be used to calculate
the transit time. Isotopes of different elements may also be used but any deviation may be |
related to chemical fractionation in the environment rather than radioactive decay of one of
the elements. The lack of **Cs in the measured gamma spectra was of some concern as this
may suggest that the transit time has been sufficiently long for the B4Cs to decay to levels
below limit of detection. The ratio of '*Cs/"*’Cs in the discharge range between 0.04 and 0.05
making it impossible to detect 34Cs in the saltmarsh samples with any accuracy in the

presence of the other gamma emitters.
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A number of lag-times have been calculated in the literature. Kershaw et al (1990) quoted a
lag-time of 2 years for Maryport Harbour to the north of Sellafield. A detailed discussion of
lag times based on measurements of 134Cs:1¥Cs and '*Ru has been presented by Stanners and
Aston (1981). Lag times were calculated for a number of marshes relative to the Ravenglass
marsh. Lag times of 1.5 years were found for Maryport and Workington Harbours and the
Duddon Estuary with lag times increasing to 3.9 years for the Solway Firth. By comparing the
data of Kershaw et al (1990) and Stanners & Aston (1981) a tentative lag time of 0.5 years is
calculated for the Sellafield-to-Ravenglass transit time. This is in broad agreement with the

value of ~ 1 year calculated by Hamilton and Clarke (1984) and this value is used in all

further calculations.

Lag-times may also be radioisotope-dependent with different lag-times for conservative and
non-conservative radioisotopes. The rapid increase in #T¢ towards the top of the core would
indicate that the recent discharges of *Tc have already reached the marsh suggesting transit
times of less than one year. Transit times for conservative radioisotopes from Sellafield to the
Clyde Sea area have been estimated as less than 8 months (Baxter er al, 1979) again

suggesting a more rapid transport of conservative compared to non-conservative radioisotopes
6.3.5.2. Calculation of sedimentation rate via excess 0pp dating

Lead-210 dating has been widely used for the determination of accumulation rates in
sediment cores where relatively high sedimentation rates of at least 0.5 cm/yr are prevalent.
The technique relies on a constant or well-characterised input of #°Pb from the atmosphere
with subsequent decay of the deposited 219} in the core (Appleby and Oldfield, 1992).
However, sources of 2'°Pb originating from the Albright and Wilson phosphate processing
plant at Whitehaven have meant that an additional, water-borne, source of 2'°Pb is present.
Measurements (Croudace, pers. comm.) show that the profile of 21pb in the saltmarsh core
had been significantly altered by the input of this additional, uncharacterised and variable
component and 210py, dating was not suitable for determining the accumulation rate in this
core using the conventional techniques. However, the dramatic fall in *'°Pb activity at 4 cm
can be correlated with the closure of the Albright and Wilson plant in 1992 suggesting an

accumulation rate of approximately 1 cm/yr

236



Pb-210 Bg/kg

0 50 100 150
0 L : |

depth (cm)
=

45 |

50

Figure 6.15: 2191, profile in core RC-96-007 (after Croudace, pers. comim.)

6.3.5.3. Calculation of accumulation rate via laminations

X-radiography of the core identified alternating light and dark bands at regular intervals
throughout the core. The most likely explanation for this banding is slight compositional
variations of the incoming sediment in summer and winter months. This biannual
stratification down the core permits the calculation of the sedimentation rate as two bands will
represent the deposition in one year. By counting the number of pairs of bands over a set

depth, the deposition rate per year is determined.

On closer inspection of the banding it was noted that the banding was thicker at the base of
the core compare to the top of the core. This is either explained by a more rapid sedimentation
rate during the early years of saltmarsh formation or by non-uniform compression of the core
during sampling with the upper, higher water content, fraction of the core becoming more
compressed. It was not possible from the current dataset to identify which if these processes
had resulted in the thicker bands at the base of the core and an average sedimentation rate for
the whole core was therefore calculated. Over the length of the core the average lamination-
pair corresponded to 0.8cm in depth. If this is corrected for, the compaction of the core during

sampling (at 11%) the average sedimentation rate for the whole core is 0.89 cm/yr.
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6.3.5.4. Calculation of sedimentation rate via B37¢s and > Am profiles

The '*'Cs and **'Am profiles may be used to determine the core sedimentation rate (Figure
6.16). To do this it is assumed that the maxima in the core profiles correspond to the maxima
in the discharge history and that no significant post-depositional migration has occurred. The
lag time must also be taken into account to correct for the time taken for the discharge signal
to reach the marsh. Using this approach, sedimentation rates of 0.85 and 0.86 cm/yr are
obtained from "’Cs and ' Am profiles respectively. This method is limited by the sampling
resolution of the core and the estimation of the lag times for 1%7Cs and **' Am. Despite this,
there is good agreement between the two values and between these values and those obtained

from the laminations of 0.89 cm/yr.
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Figure 6.16 : Calculation of accumulation rate from radioisotope discharge and core profiles
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6.3.5.5. Overall estimate of sediment accumulation rate

The mean accumulation rate from the three methods is 0.87 em/yr.

The calculated accumulation rate may now be used to date the various depths of the core
(Figure 6.17) and compare in more detail the discharge history and the core profiles for all the

measured radioisotopes.
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Figure 6.17 : Relationship between the year of discharge and the depth that BNFL discharge
would be recorded in core RC-96-007. Sedimentation rate = 0.87 cm/yr; lag time =1 year
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6.3.6. Detailed discussion of core profiles

6.3.6.1. Contribution of radioisotopes from sources other than Sellafield

To fully interpret the core profiles it is necessary to consider all potential sources of the
radioisotopes. An assessment of the likely impact of other radioisotope sources relative to the
Sellafield discharge was therefore performed. The main sources of radioactivity other than the

aqueous Sellafield discharge are

1. Nuclear weapons’ fallout deposited over the Irish Sea

2. 'Cs deposited following the Chernobyl incident

3. Airborne discharge from the Sellafield site

4. Run-off waters from the Cumbrian area, containing radioactivity from all three sources

identified above.
Of these, routes (1) and (2) are likely to be the most important and are considered further.

Total deposition of fallout from nuclear weapons’ testing and the Chernobyl! incident onto the
Irish Sea will depend on the surface area of the Irish and rainfall over the area. The total
surface area of the Irish Sea has been estimated as 1 x 10° km? (McKay and Pattenden, 1993).
Typical deposition rates for PS¢ and 'Cs are 1.6 and 2.4 GBq km™ giving a total input of
these two isotopes into the Irish Sea as 155 and 235 TBq respectively (*’Cs data from
Playford et al, 1992 — data for Milford Haven. 98 calculated from *'Cs assuming an average
ratio of 0.66 — UNSCEAR 1982 - data decay corrected to 1996). This is low compared to the
total input of 90g: and ’Cs from Sellafield at 3.8 and 26 PBq respectively (total decay
corrected to 1996). ®Ni and *Tc would also be deposited from weapons’ fallout. However, it
has been estimated that only 140TBq total of 9Tc was injected into the atmosphere through
atmospheric weapons’ testing (Aarkrog et al, 1986), which is only a fraction of the total PTe
discharge from Sellafield of 1.2 PBq (estimated). Data for N are scarcer. Holm et al, (1992)
estimated a ®Ni/'3’Cs ratio in fallout of 1.7 x 10 giving total deposition over the Irish Sea of
0.04 TBq as compared with cumulative Sellafield discharges of 12 TBq. Iron-55 was also
released in significant quantities during weapons’ testing but has long since decayed and is
not considered as a significant input here. Peaks from nuclear weapons’ testing and Chernobyl
would appear at 28 cm and 7-8cm respectively in the Ravenglass core. No peaks are apparent
in these fractions suggesting that any input from these two sources is low compared with the
Sellafield aqueous discharge. MacKenzie et al (1994) noted that "*’Cs potentially associated

with the Chernobyl incident was apparent in a saltmarsh core collected from Southwick
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Marsh, South-West Scotland. Levels of 137Cs in the Sellafield-derived peak in the Southwick
core were 1880 Bg/kg compared with the Chernobyl-derived peak of 651 Bq/kg dry. These
activities are a factor of 10 lower than those found in the Ravenglass core, which peak at
16700 Bq/kg dry. Any Chernobyl-derived radioactivity has therefore been completely masked
by the higher levels of Sellafield-derived 7Cs present in the Ravenglass marsh.

Airborne discharges from Sellafield are unlikely to have a significant direct input into the
Irish Sea. Airborne releases are likely to be dispersed via the prevailing winds inland away
from the Irish Sea. Deposition will occur locally and the levels of radioactivity discharged are

significantly lower than that found in the aqueous discharges.

Radioisotopes deposited on land may return to the marine environment via run-off waters
collecting into streams and rivers. No estimate of the input of radioisotopes via this route has
been attempted in the Sellafield area. Such a calculation requires knowledge of river

catchment areas and radioisotope transfer factors through the estuarine system.

6.3.6.2. Mixing of radioisotopes prior to deposition

Having determined the accumulation rate for the core, it is possible to plot the core activity
profile in terms of date rather than depth and to compare this to the discharge history (Figure
6.18). Iron-55 and 63N were not included as the levels of these two radioisotopes were low,

with high associated uncertainties, and the discharge histories were incomplete.

With the exception of %Te, all core profiles are comparable to the discharge history. The peak
for *’Cs in the core corresponds exactly with the peak in 37Cs discharge. The core peak for
Am is offset by about lcm but this is most likely an artefact of the core dissection. The
peak in %0Sr activity in the core broadly corresponds to the general maximum in *°Sr discharge
although the discharge pattern is somewhat erratic and unlike 137Cs and ' Am, does not show
a clear maximum. The *Tc peak is significantly offset to the discharge peak. It is noteworthy
that the most recent peak in ®Tc activity towards the top of the core appears lower than
expected by the discharge ratio. This may suggest that the transit time employed in the
calculation of the date of the core depth is not appropriate for ®Tc indicating a different

transport mechanism for %Tc compared with the other radioisotopes.
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Figure 6.18 : Comparison of core activity profiles with discharge profiles.
All data are decay corrected to 1996

Although the peak in discharge activity appears to be recorded in the core profile, the decline
in discharge activity is not reproduced in the core record. This is apparent for Sr, ®’Cs and
24 A but is most noticeable for **' Am. Although 2 Am discharges declined rapidly from 116
TBq in 1974 to 3.6 TBq in 1977 (ratio of 32:1) the core activity only falls from 28700 Bg/kg
to 15700 Bg/kg (ratio of 1.8: 1) in the same period suggesting an apparent excess of 14800
Bqg/kg 1Am. The apparent excess of 'Am in the core in more recent years is partially
explained by the in-growth of “Am from **'Pu following deposition. However, there is
insufficient 2*'Pu present in the marsh to account for the total excess. An excess of ' Am of
14800 Bg/kg growing in between 1977 and 1998 (21 years to the date of measurement) would
require a total 2Ipy activity of 779000 Bg/kg 2py to be deposited. This would have
subsequently decayed to leave 283000 Bg/kg 241py. Measurements by Oh (pers. comm.) show
that the highest *'Pu activity in this core is 114000 Bq/kg and that the 2Py activity at 14cm
(corresponding to deposition in 1977) is 92940 Bg/kg.

It is therefore likely that the sediment deposited in more recent years is not only labelled with

that year’s discharge but also with a component of previous years’ discharges. A significant
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quantity of Am and Pu discharged are retained in the mud patch in the vicinity of the
Sellafield pipeline whilst only approximately 10% of ¥Cs is retained. Measurements of
seabed cores (e.g. MacKenzie et al, 1998) have shown significant mixing of the sediment
with the potential for resuspension and transportation in the water column. It is likely that the
saltmarsh therefore records an annual signal of the resuspended seabed material that may
include a time-integrated history of the Sellafield discharge. The magnitude of such an
integration of the signal via adsorption onto seabed sediments, mixing and
resuspension/dispersion would be dependent on the affinity of a particular radioisotope for
sediment material. Hence, this time integrated signal will be more predominant for
radioisotopes with high distribution coefficients. This explains why the core profiles are more

anomalous for **' Am compared with %Gr and Cs.

The relationship between the core activity record and the discharge history is more clearly
seen in the plots of core activity-to-discharge ratios versus year (Figure 6.19). In these plots
the activity of a given isotope in the core is divided by the discharge activity for the year.
Core depth is correlated with the appropriate discharge year via the equation derived in
Section 6.3.5. This equation assumes a transit time of one year, which, as discussed
previously, was not deemed appropriate for PTe. No transit time was therefore included for
ratios relating to *Tc. For 24 Am, there is a steady increase in the ratio to 1978 (region a) as
*Am discharges increased. After 1978, the discharges fell dramatically and the ratio of
activity in the core compared to the discharge activity remained constant but higher than had
been previously observed prior and during the peak discharge. This increase and levelling of
the ratio is consistent with the theory that the saltmarsh is recording an integrated history of
current and past discharge events. For %Sr and *’Cs, the ratio starts high (zone a) and then
falls during the peak discharge of these radioisotopes (zone b). Once the discharge begins to
fall the ratio rises again (zone c). Zones b and ¢ are again consistent with a time-integrated
signal arriving at the saltmarsh. However, the higher ratios prior to peak discharge suggest
that either historic discharges were higher than had previously been reported or that limited
post-depositional migration of %gr and **’Cs has occurred. Madruga and Cremers (1997) have
shown that the binding of Gy in estuarine sediments is reversible unlike 137Cs, which is only
partially reversible, reflecting a difference in binding mechanism. There was, however, no

evidence for enhanced mobility of PGy relative to *’Cs in the sediment column.

The plot of ratio versus year for 9T¢ is even more complex although the magnitude of the
ratio is lower than that observed for the other radioisotopes reflecting the lower distribution
coefficient of *Tc. Initially the ratio is low although a slight increase in the ratio is observed

in 1961. Discharge histories are estimated for this time period and it is likely that the sudden
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kick in ratio simply reflects better estimation of the discharge. There is a distinct increase in
the ratio between 1980 and 1993 corresponding to a trough in %Tc discharge. This could be
attributed to the time-integrated signal containing some of the historic discharge or to post-
depositional migration of ®Tc from the *Tc deposited in or recent years at the top of the

marsh where ratios again fall with increasing activities discharged.
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Figure 6.19 : Core activity to discharge activity ratios versus year and discharge profile for four
isotopes. Core activity/discharge ratios as BqTBq'kg". .
A one year transit time in assumed for all radioisotopes except for? *Tc where no transit time is
applied.

6.3.6.3. Post depositional element migration and redox control

The profile of 9Tc in the core shows a poor correlation with the discharge history. A small
peak in the core profile corresponds with the reported discharge peak and the higher levels of
®Tc at the top of the core reflect the recent increases in #Tc discharge following the
commissioning of EARP. However, the core profile shows a second large peak at 20cm
corresponding to 1972. There is no record of a significantly elevated level of ®Tc being
discharged around this time. Gray et al (1995) noted that PT¢ discharge records were

estimated prior to 1978 and it is possible that an unrecorded elevated discharge of *Tc did
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occur in 1972. However, such a speculated increase in discharge cannot be linked with any

reported changes in site operations in this period (Figure 6.1).

Although the second peak in ®Tc does not coincide with a peak in “Tc discharge, the peak
does coincide with a zone of lower Mn concentration between 18cm and 28cm (Figure 6.20).
This trough in Mn is followed by a substantial rise at 28cm to concentrations greater than
those found at the top of the marsh. This increase in Mn is unlikely to be associated with the
influx of heavy minerals (see page 228) observed higher in the sediment column as indicated

by a sharp increase in Y, La and Cr at around 20cm.

Post-depositional migration of Mn from one zone of the core coupled with an elevation of Mn
above and below this zone is usually attributed to the reduction of particle-associated Mn(1V)
to soluble Mn(Il) at depth resulting from a lack of oxygen penetrating the marsh below certain
levels. This solubilised Mn(I) may then migrate in the porewaters of the sediment until it
encounters a more oxidising environment with subsequent re-oxidation of Mn(II) to Mn(IV)
and reprecipitatidn as the oxyhydroxide. Alternatively, the Mn(Il) may diffuse to greater
depths where it will encounter a sulphidic zone and precipitate as Mn,S; (Figure 6.21). Such
oxidation-reduction-precipitation mechanisms may also be expected to affect Tc although in
this case the oxidised form of Tc, Te(VII) is soluble whereas the reduced form, Tc(IV) is
likely to be particle-associated. The coincidence of the Tc peak with the Mn trough supports
the suggestion that the Mn trough is indicative of a reducing environment. The increase in
Mn concentration below the trough also coincides with a slight increase in Fe concentration as
would be expected if the Fe and Mn had encountered a sulphidic zone in the sediment at
depth. However, sulphur does not show a characteristic increase at this point and it is highly
unlikely that a sulphidic zone is present here. Other redox-sensitive elements, such as I and
As (Thomson et al, 1999), do not show evidence of post-depositional migration as would be
expected. Well defined oxic, post-oxic and sulphidic zones are not apparent at discrete depths

in the marsh.

The trough in Mn does coincide with a peak in C and Br (which is often associated with
organic carbon). Such a correlation may indicate that the higher levels of C in this part of the
marsh have led to a localised reducing environment. Mn(IV) and Fe(Ill) would have been
reduced in this zone and migrated upwards and downwards until a more oxic environment
was encountered where the two elements would have reprecipitated. Such a localised
reducing environment surrounded by one that is more oxic, would explain the reprecipitation
of Mn and Fe below the reducing zone in the absence of a sulphidic zone. Any mobile

Te(VID) diffusing into this localised reducing zone would be reduced to the particle-reactive
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Tce(IV) and be immobilised. This would account for the coincidence of the second Tc peak
with the trough in Mn. The cause of this high carbon concentration within a distinct zone is,

however, unclear although it may be due to decomposing root matter at depth.

From the data available, it is not possible to definitively link core geochemistry with P Tc
mobility in the saltmarsh environment. However, the data do suggest that the behaviour of
®T¢ in the marsh may be dependent to some degree on local redox conditions prevalent

within the marsh.
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Chapter 6 — A study of beta emitters in a saltmarsh environment

6.4. Conclusions

Iron-55, 63Ni, 9¢r and PTc were all detectable in the saltmarsh core RC-96-007 although
levels of ¥Fe and ®Ni were approaching the analytical limit of detection. Profiles of %Sy
reflected the history of discharges from the Sellafield site and were therefore comparable with
the profiles of *’Cs and 21 Am (as measured by gamma spectrometry). The low levels of *Fe
and ®Ni coupled with an incomplete discharge history made it impossible to thoroughly
compare core profiles with the discharges from Sellafield. However, levels of *Fe did fall
with depth in the core and no 55Fe was detected below 24cm suggesting that Fe is not

significantly migrating down the core following deposition.

The *Tc core profile reflected a peak in discharge in 1978 and the recent increase in *Tc
discharges following the commissioning of the EARP plant and subsequent processing of
previously stockpiled Magnox wastes. However, the PT¢ core profile did show a second peak
corresponding to 1972. This either reflects a previously unrecorded discharge event or more
likely suggests remobilisation of the ®T¢ from the 1979 peak downwards. Mn and Fe
measurements indicate the potential presence of a reducing zone that corresponds with a peak
in carbon content as well as the second peak in PT¢ activity. It is possible that mobile Tc(VII)
has migrated following deposition in the marsh. On reaching the anoxic zone, the Tc(VII) has
been reduced to Tc(IV) and been immobilised resulting in the formation of a second “Tc peak

at depth.

When compared with the discharge history, the profiles for %Sy, ¥Cs and **'Am do not
reflect the rapid decline of discharges following the improvements in waste treatment. It is
proposed that the slower decline in the core record is as a result of a mixing of the current
year’s discharge with previous years’ discharges in the seabed prior to the mixed seabed
material being subsequently resuspended and transported along the coastline in the water

column, supporting the claims of McKenzie et al, 1998.
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7. Overall conclusions

7.1 Radioanalytical study

Anthropogenic radionuclides that decay via the emission of beta particles or via electron
capture are of considerable importance both in assessing the total radioactive inventory of
wastes arising from nuclear operations and when determining the potential radiological
impact of stored nuclear waste. In addition, quantities of beta emitting radioisotopes are
routinely released via authorised discharges from nuclear power stations, nuclear reprocessing
facilities and during atmospheric nuclear weapons’ testing in previous years. In particular, the

commissioning of EARP has resulted in a significant increase in *Tc being discharged into
the Trish Sea.

The determination of beta emitters is hindered by the distribution of beta energies emitted for
a given decay energy and hence the lack of any spectrometric approach for identification and
quantification of a mixture of beta emitting radioisotopes. This has meant that the
determination of beta emitters requires the separation and purification of the element prior to
measurement of the beta activity. Once a single element has been purified, it is possible to use
relatively simple spectrometric techniques to deconvolute two or possibly three isotopes of
the same element. The success of such a deconvolution will depend on the difference in decay

energies of the isotopes.

Of the range of beta emitters present in nuclear wastes, 3SFe, ©Ni, %Gy and *Tc were chosen
for further study. These isotopes are routinely analysed in reactor effluents and discharges of
these radioisotopes are recorded for many nuclear facilities. Liquid scintillation counting was
chosen for all measurements. In general, counting efficiencies were higher for liquid
scintillation counting compared with any other radiometric technique. The use of a Wallac
Quantulus liquid scintillation counter provided very low backgrounds and correspondingly
high figures of merit through the use of a guard chamber and anti-coincidence circuitry
coupled with considerable shielding. A range of source preparation techniques were
investigated including counting of organic extracts, acidic solutions and precipitates.
Optimised techniques were then developed for all radioisotopes. Although precipitation of
Ni as Ni pyridine thiocyanate was investigated as a source preparation technique, the
precision of measurement was not as good as for an acidic solution mixed with commercial
scintillant. Iron-55 was also counted as an acidic solution, although H;PO, was used to
produce a colourless ferriphosphate complex that overcame the colour quench normally
associated with the yellow Fe(IIl) ion. %Sr was best determined by Cerenkov counting of the

%%y daughter using the liquid scintillation counter. The absence of liquid scintillant reduced
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the counting efficiency but this was compensated for by a significant reduction in background
count rates with correspondingly higher figure of merit. A mathematical deconvolution
technique was assessed for determination of a mixture of $Sr and °Sr as measured by
Cerenkov counting. Tc was determined either by mixing a tri-n-octylamine extract with
scintillant or by adding *Tc on TEVA resin directly into scintillant. The addition of TEVA
resin directly to scintillant resulted in slightly lower counting efficiencies compared with the
organic extract and hence was only incorporated into techniques specifically developed for

low level waste applications where ultimate limits of detection are not required. Optimisation

of all counting techniques was undertaken.

Non-radiometric techniques such as ICP-MS and TIMS often offer a more sensitive
alternative to radiometric techniques for the determination of long-lived radioisotopes. Of the
isotopes studied, only Tc had a half life sufficiently long to be considered for mass

spectrometric measurement. However, practical considerations meant that radiometric

measurement was preferable.

Suitable counting techniques were developed for the determination of the four radioisotopes.
Additionally selective chemical separation procedures were devised to isolate the
radioisotopes of interest and purify them from any potential interferences. Although ion
exchange chromatography has been widely used in radioanalytical chemistry, solvent
extraction-based techniques are often more specific. If the organic extractant is loaded onto an
inert support, the benefit of high specificity associated with solvent extraction is combined
with the high separation factors and ease of handling associated with a column based
technique, giving rise to the technique of extraction chromatography. The techniques of
solvent extraction and extraction chromatography were therefore investigated for the
purification of the beta emitters. Solvent extraction of Te(VII) into tri-octylamine and Fe(III)
as the FeCl, anion into a range of solvents was investigated. Both extraction systems were
then developed into extraction chromatographic procedures. In addition, commercially
available TEVA resin and Sr resin were investigated for the purification of *T¢ and *Sr
respectively. Extraction chromatographic separation of ¥Fe on a diisobutyl ketone based
extraction column was found to work well for samples containing low levels of Fe. For many
samples, the Fe concentration was too high to permit an extraction chromatographic
separation on a practically sized column and solvent extraction was the preferred procedure.
In all other cases extraction chromatography was suitable for effective purification of the
radioisotopes of interest. As well as improving the purification of the radioisotopes, extraction
chromatography also considerably reduced the volume of organic wastes produced during an

analysis. However, in the case of “T¢ in environmental samples, better limits of detection
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were achievable by extracting Tc(VII) into tri octylamine and mixing this directly with
scintillant. This acted as both a chemical separation and source preparation procedure and was

adopted in preference to extraction chromatography for environmental samples.

To shorten analytical times and permit the analysis of all radioisotopes on samples of limited
mass, sequential separation schemes were developed. Sequential separation of *SFe, ©Ni, °Sr
and ®Tc from low level waste materials was achieved using a series of extraction
chromatography columns. For environmental samples, the high concentrations of stable Fe
required the solvent extraction purification of Fe. ®Ni and *Sr were analysed using the
extraction chromatographic separation technique. Specific pretreatment steps for *Tc also
meant that **Tc was analysed on a separate sub-sample. Final purification of PTe was
achieved using solvent extraction into trioctylamine with the extract being added directly to
scintillant in order to obtain lowest limits of detection. Again, the sequential separation

schemes were optimised.
7.2 Environmental application

The separation schemes developed for environmental samples were used to assess the levels
of beta emitters in a saltmarsh environment. The Ravenglass saltmarsh at the mouth of the
Esk estuary was chosen for the investigation as the marsh has been thoroughly studied in the
past. The marsh is also routinely exposed to discharges from the reprocessing plant at
Sellafield, Cumbria. Levels of major and trace elements were determined using XRF analysis
and gamma emitting radioisotopes were measured using gamma spectrometry to provide
supporting information in the interpretation of the data for beta emitters. Fe, ®Ni, *Sr and
9T were all detectable in the marsh although levels of *’Fe and *Ni were only just above the
limit of detection. Interpretation of Fe and ®*Ni was also complicated by the limited
discharge data available. The profiles of %Sr, ¥7Cs and **' Am broadly reflected the discharge
history of the site. There was evidence for significant radionuclide mixing between current
and previous years’ discharges prior to deposition in the marsh. Post depositional migration
appeared to be limited although the profile of #T¢ in the core did suggest migration of *Tc
had occurred. There was some geochemical evidence for a reducing zone in the core and this

may play a part in the post depositional migration and subsequent immobilisation of Tc.

Although the levels of 55Fe and ®Ni were too low in the core to permit a more thorough
evaluation it is suggested that this approach could be used on larger sample sizes to improve
the sensitivity of the technique and evaluate the post depositional behaviour of these two

radioisotopes. In addition, such an approach could provide valuable information on the
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behaviour of Fe and Ni in the marine environment. The measurement of %G1 in the saltmarsh
environment is of potential importance in assessing the long-term impact of discharges as the
relatively high levels of 9g held within the saltmarsh coupled with the high energy beta
emission of the *°Y daughter may make this an important consideration in calculating future
radiation doses to local critical groups in the future. Likewise, PT¢ bound in the saltmarsh
may be re-released in the future and must therefore be considered as a potential sink and

source when assessing future doses to the general public.
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Appendix 1 : Conferences/meetings/courses attended/publications

A 1.1 Conferences/meetings since 1988

1988 (5 days)

1990 (5 days)

1990 (1 day)
1992 (1 day)
1992 (3 days)
1993 (3 days)
1993 (4 days)
1994 (1 day)
1994 (3 days)
1995 (4 days)
1995 (5 days)
1996

1996 (1 day)
1996 (1 day)
1997 (1 day)
1997 (1 day)
1997

1997 (1 day)
1998 (3 day)
1998 (1 day)

1998 (1 day)

1998 (2 day)

1999 (1 day)

Radioisotopes techniques short course, Loughborough University,

UK

4th International Symposium on Environmental Radioactivity,

Manchester, UK (Poster/paper : The separation of actinides from lanthanides by
anion exchange in methanol/hydrogen chloride medium, and its application to
routine separation)

The Young Radiochemists Meeting

(Presentation : as above)

IRDG meeting, NRPB, Chilton, UK

(Presentation : The effect of uncertainty on the estimate of dose using the DREAMS
database)

Radiotoxicology working group meeting, Aix-en-Provence, France
Radiotoxicology working group meeting, La Hague, France

Analytical Quality Control, Chester, UK

Quality systems in NAMAS laboratories, Manchester, UK

5th International Symposium on Environmental Radiochemistry,

Bournemouth, UK

Eichrom Workshop, MAFF, Weybridge, UK.

ICRM ‘95, Seville, Spain

(Presentation/Paper : A review of analytical techniques for the determination of
21 Am in soils and sediments)

Geochemistry group meeting, SOC, Southampton, UK

(Presentation : Behaviour of pure beta emitters in the marine environment)
Young Environmental Chemist meeting, Leicester, UK

(Poster : as above)

Eichrom User Group meeting, Brussels, Belgium

(Presentation : The use of tritium columns and Ni-SPEC in effluent analysis)
SERMG seminar, Southampton, UK

Radiochemical methods group, RSC. Harwell, UK.

Radionuclide measurements : developments in high sensitivity methods
(Presentation — Analysis of U isotopes by TIMS)

Societe Jersiaise (invited lecture on the impact of the nuclear industry on the
environment)

Emergency procedures for the rapid determination of radionuclides.

NPL, Teddington, UK

(Presentation — Sequential separation of pure beta emitting radioisotopes)
Organised the ‘Technetium 1998’ conference at Southampton Oceanography Centre
Nottingham-Trent University (invited lecture — Greenham Common Survey)
AEA Technology, Harwell (invited lecture — Analysis of pure beta emitting
radioisotopes)

International workshop on the application of extraction chromatography in
radionuclide measurement, Geel, Belgium

(Presentation/paper — Development of extraction chromatographic techniques for the
separation of pure beta emitting radioisotopes in low-level wastes).

MAFF RADREM-TESC meeting on sea-to-land transfer of radionuclides (London)
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A 1.2 Papers in refereed journals
A 1.2.1 Accepted / published

1.

10.

11.

12.

13.

14.

Bains M.E.D. and Warwick P.E. (1993). The separation of actinides from lanthanides by anion

exchange in methanol/hydrogen chloride medium and its application to routine separation. Sci.
Total Environ., 1307131, 437-445.

Warwick P.E., Croudace I.W. and Carpenter R. (1996). Review of analytical techniques for the
determination of americium-241 in soils and sediments. Appl. Radiat. Isot., 47(7), 627-642.

Dale C.J., Warwick P.E. and Croudace L.W. (1996). An optimised method for technetium-99

determination in low level waste by extraction into tri-n-octylamine. Radioact. Radiochem, 7(3),
23-31,

Croudace LW. , Warwick P.E. and Dee S.J. (1997). Greening the Common. Chem Brit, 26-29

Toole J., Adsley L., Hearn R., Wildner H., Montgomery N., Croudace 1., Warwick P. & Taylor R.
(1997). Status of analytical techniques for the measurement of uanium isotopic signatures.
Workshop on the status of measurement techniques for the identification of nuclear signatures, 25-
27 February 1997, Geel Belgium. Report EUR 17313.

Warwick P.E., Croudace L.W. and Bains M.E.D. (1998). An optimised method for the
measurement of *Fe using liquid scintillation analysis. Radioact. Radiochem., 9(2), 19-25.

Taylor R.N., Croudace I.W. and Warwick P.E. (1998). Optimised method for the measurement of
Uranium by TIMS - Chem Geol, 144, 73-80.

Dale C.J., Warwick P.E. and Croudace L.W. (1998). An optimised method for the determination of
Tc-99 by solvent extraction used at the Waste Quality Checking Laboratory. In Odoj R., Baier J.,
Brennecke P. and Kiihn K. (eds). Radioactive waste products 1997, Forschungszentrum Jiilich
GmbH, Germany.

Croudace I.W., Warwick P.E.,Taylor R.N. and Dee S.J. (1998). Rapid procedure for plutonium
and uranium determination in soils using a borate fusion followed by ion-exchange and extraction
chromatography - Analyt. Chim. Acta, 371, 217-225.

Bahaj A.S., Croudace LW., James P. Moeschler F.D. & Warwick P.E. (1998). Continuous

radionuclide recovery from wastewater using magnetotactic bacteria. J. Magnetism Magnetic Mat.,
184, 241-244.

Warwick P.E., Croudace L.W., Dale C.J. and Howard A.G. (1998). Extraction chromatographic
techniques in the sequential separation of pure beta emitting radionuclides in low-level waste.
Conference proceedings for the International workshop on the application of extraction
chromatography in radionuclide measurement, Geel, Belgium

Croudace 1L.W., Warwick P.E., Taylor R.N., Dee S.J., Milton J.A. and Oh 1.(1998). Borate fusion
followed by ion-exchange/extraction chromatography for the rapid determination of Pu and U in
environmental samples. Radioact Radiochem, 9(3), 41-48

Warwick P.E., Croudace L. W & Dale A.A. (1999) An optimised method for the determination of
uranium and plutonium in aqueous samples - App! Radiat Isot, 50, 579-583

Wigley F., Warwick P. E., Croudace 1. W., Caborn J., Sanchez A.L. (1999) An optimised method

for the routine determination of technetium-99 in environmental samples by liquid scintillation
counting — Analyt. Chim. Acta. 380, 73-82
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15. Warwick P.E., Croudace L.W. & Howard A.G. (1999) An improved technique for the routine
determination of tritiated water in aqueous samples. Analyt Chim Acta, 382, 225-231

A 1.2.2 Papers submitted

1. Cundy A.B., Croudace I.W and Warwick P.E. Environmental decline of radionuclides following
nuclear reactor closure: °Co and ®Zn from the Winfrith Reactor, southern England —
Environmental Science and Technology
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A 1.3 Official reports

1.

10.

Warwick P.E. (1989) The uptake and distribution of cobalt in Fucus serratus. AEA Internal
Report RSD Tech Memo 89/1

Bains M.E.D. & Warwick P.E. (1991) The separation of strontium from large amounts of calcium

during radiochemical analysis. A study of a modified approach. AEA Internal Report HSD Tech.
Memo. 91/07.

Warwick P E & Bains M.ED. (1991) Review of analytical techniques for the determination of
tritium in urine AEA Internal Report HSD Tech Memo 91/11.

Warwick P.E. (1992) Analysis of glass fibre smears for tritiated water. AEA Internal Report
EE/92/03.

Warwick, P.E. & Smith, M.M. (1993) Action levels for radionuclides in environmental samples.
AEA Internal Report HPD/93/01.

Warwick, P.E. (1993) Report on investigation of sewage sludge heaps next to SGHWR. AEA
Internal Report HPD/93/02.

Croudace 1.W., Sanderson D.C.W., Warwick P.E. and Allyson J.D. (1997). A regional study of the
radiation environment of Greenham Common, Newbury District and surrounding areas. Available
from West Berkshire Council, Berks UK

Croudace I.W., Warwick P.E., Taylor R.N. and Dee S. (1997) An investigation of radioactive
contamination at Greenham Common, Newbury District and surrounding areas. Final Report.
Available from West Berkshire Council, Berks UK.

Wigley F., Warwick P.E. and Croudace LW. (1998). Technetium-99 in fucoid seaweeds and other
marine biota. Study commissioned by the Greenpeace Research Laboratories, University of
Exeter, Exeter, UK.

Croudace 1., Warwick P., Taylor R., Bradshaw K. and Warneke T. (1999) An assessment of
radioactive contamination in the environment as a result of operations at the AWE sites in
Berkshire. Study commissioned by AWE Hunting-BRAE Ltd, Aldermaston, UK
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A 2 : Major and trace element results for core RC-96-007
(all results refer to dry material)

Depth 1 2 3

4 5 6 7 8 9 10 11 12 13 14 15
cm
Major elements wt %
S$i0, 62.75 64.83 67.65 64.25 67.08 67.23 66.32 67.89 67.14 68.99 65.68 67.26
Tio, 0.64 067 063 070 0.68 067 0.68 0.67 0.69 0.69 0.73 0.70
ALO, 10.14 1046 9.69 11.31 10.76 10.77 10.66 10.32 10.71 10.29 11.24 11.02
Fe,0, 4.19 422 384 447 416 440 432 425 430 4.17 4.62 451
MnO 0.6 0.13 0.11 010 009 0.15 0.12 015 0.12 0.12 0.14 0.13
MgO 216 211 195 220 204 205 2.07 193 202 193 2.08 2.08
CaO 382 303 1.89 159 138 126 128 122 124 126 1.24 .1.29
Na,0 202 192 193 203 205 204 203 195 1.89 1.86 1.97 1.94
K,0 222 236 223 248 247 244 245 235 242 223 2.44 2.38
PO, 020 0.19 0.18 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.18 0.18
LOI 1170 10.10 9.90 10.70 9.10 8.80 990 9.10 930 830 9.70 8.50
Cl 170 140 149 156 137 154 163 156 147 135 1.44 1.30
Y 023 0.17 0.19 0.19 0.19 0.18 020 0.19 0.18 0.16 0.18 0.16
Trace elements ppm
Rb 85 85 83 92 90 91 90 88 90 88 88 92 89 91 91
Sr 151 124 105 103 100 101 100 98 100 101 97 102 100 100 102
Ba 335 337 357 340 349 347 330 336 338 340 329 351 330 352 344
Br 157 154 200 226 179 220 204 196 170 156 159 172 159 152 168
I 93 89 109 114 091 105 95 93 81 70 70 62 66 68 85
As 16 15 13 17 15 17 18 18 18 15 16 19 19
Pb 64 55 55 67 58 59 59 55 57 57 54 59 57 58 62
Ni 30 29 29 32 31 32 32 30 33 32 31 34 32 33 33
Cr 106 110 112 119 123 122 115 112 115 115 112 124 119 123 121
Zn 129 123 117 142 125 134 133 125 129 121 119 134 123 128 136
V 94 90 87 101 96 104 96 92 103 89 95 99 96 99 100
Y 25 26 26 33 32 32 31 30 36 35 35 37 37 38 40
Zr 253 291 293 266 293 268 259 262 280 301 285 294 297 279 270
Nb 15 15 14 14 16 15 15 15 15 15 16 16 16 16 16
La 26 29 28 34 34 32 33 30 33 31 32 36 35 36 38
Ce 49 48 41 52 52 53 53 52 53 51 59 46 53 50 53
Th 6 8 7 7 7 6 6 7 7
U ! 1 1 1 2 1 1 2 1 0
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A2 - continued

Depth 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
cm
Major elements wt %

S$i0, 67.03 65.76 65.64 68.15 68.83 67.22 65.86 67.18
Tio, 0.71 0.70 0.71 0.70 0.69 0.73 0.74 0.73
AlL,0; 10.81 11.09 11.01 10.76 10.59 11.06 11.78 11.40
Fe,0; 4.54 4.63 4.64 4.23 4.57 4.88 5.27 4.78
MnO 0.11 0.07 0.06 0.05 0.06 0.09 0.21 0.16
MgO 2.05 2.12 2.02 1.99 1.95 2.10 2.28 2.05
Ca0O 126 1.24 1.23 1.26 1.23 1.24 1.32 1.22
Na,0 194 2.01 1.92 1.82 1.76 1.81 1.93 1.76
K,0 236 2.37 2.44 237 2.33 2.44 2.43 2.47
PO, 020 0.20 0.21 0.17 0.18 0.16 0.17 0.15
LOoI 9.00 9.80 10.10 8.50 7.80 8.30 8.00 8.10

o133 1.36 1.34 1.18 1.20 1.04 1.00 0.93
S 0.16 0.17 0.18 0.14 0.16 0.13 0.12 0.13
Trace elements ppm
Rb 92 93 91 92 94 94 89 87 89 95 94 97 96 9% 92
Sr 100 102 100 101 103 101 99 98 97 98 101 103 101 102 101
Ba 362 352 349 355 356 348 347 353 352 367 371 385 386 400 390
Br 167 182 195 201 195 190 158 166 148 142 136 140 127 125 116
I 70 74 62 72 700 62 60 68 58 66 64 89 74 81 62
As 17 17 17 15 20 18 15 16 19 19 20 21 21
Pb 63 68 67 69 78 72 62 63 67 18 80 78 82 81 75
Ni 34 34 32 33 35 34 32 31 32 34 34 37 36 37 34
Cr 133 140 129 138 156 136 121 119 117 123 122 122 125 121 119
Zn 139 152 144 150 164 156 136 138 138 149 152 165 164 165 146
V 101 104 101 100 108 105 8 97 96 102 105 109 108 108 98
Y 42 41 40 44 53 36 31 33 30 27 29 29 28 271 27
Zr 286 284 299 293 287 284 306 312 301 298 296 291 284 293 293
Nb 15 15 15 16 15 16 16 16 16 16 16 17 17 17 16
La 36 37 37 38 41 33 32 31 32 33 34 34 34 29 31
Ce 52 53 52 55 55 57 51 53 51 57 55 52 53 52 49
Th 8 7 7 7 6 6 8 7 7 7
U 2 1 1 1 3 2 1 3 1 0 1
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A2 - continued

Depth 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
cm
Mujor elements wt %
Sio, 66.66 67.99 68.85 68.51 68.68
Tio, 0.71 0.68 0.70 0.71 0.69
ALO, 11.50 11.44 10.73 10.93 11.06
Fe,0, 4.81 4.52 4.48 4.61 4.54
MnO 0.21 0.18 0.17 0.18 0.15
MgO 2.14 2.07 2.02 2.06 2.05
CaO 1.27 1.28 1.27 1.24 1.28
Na,0O 1.77 1.80 1.81 1.77 1.77
K,0 2.49 2.38 2.34 2.44 2.35
P,O; 0.15 0.16 0.15 0.15 0.15
Lor 8.30 7.50 7.50 7.40 7.30
Cl 0.96 0.97 0.90 0.90 0.86
S 0.14 0.12 0.11 0.11 0.12
Trace elements ppm
Rb 92 94 95 94 92 94 91 87 91 92 91 93 91 86 92
Sr 101 102 101 101 101 97 98 98 100 98 98 98 98 9 98
Ba 371 376 372 38 376 370 375 383 380 386 375 375 362 358 357
Br 116 121 121 115 105 106 95 82 88 95 84 79 79 75 80
I 74 78 74 72 74 79 83 62 78 70 68 78 66 60 68
As 20 21 19 19 21 18 18 20 20 20 19 20 17 20
Pb 71 73 70 73 65 66 67 68 71 74 69 68 64 60 65
Ni 35 36 36 34 33 32 34 32 33 33 32 34 33 30 32
Cr 111 114 124 113 108 107 110 111 101 107 106 108 102 103 113
Zn 147 153 150 148 137 135 130 122 126 129 126 126 123 112 125
V 101 107 105 110 101 95 99 93 98 103 99 103 99 88 100
Y 25 26 26 26 24 25 25 24 24 24 25 25 24 24 24
Zr 291 284 281 274 290 270 278 313 295 283 295 296 290 294 284
Nb 17 16 16 16 16 i5 16 16 15 16 15 16 16 15 16
La 31 30 31 31 29 32 30 28 31 30 26 32 31 23 24
Ce 50 52 57 51 56 48 52 44 52 56 44 60 54 49 52
Th 8 6 6 8 7 6 6 7 7 7
U 3 1 1 0 1 2 1 1
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A2 - continued

Depth 46 47 48 49 50 51 52 53 54
cm

Major elements wt %

Si0, 69.16 71.19 72.48
TiO, 0.70 0.66 0.63
ALO, 11.37 10.32 9.64
Fe,0, 4.76 427 3.90
MnO 0.17 0.14 0.13
MgO 2.14 1.89 1.77
CaO 1.30 122 1.16
Na,0 1.79 1.72 1.65
K,0 247 2.34 231
P,0, 0.15 0.15 0.13
LoI 6.00 6.10 6.20
cl 0.91 0.95 0.91

s 0.17 0.13 0.11

Trace elements ppm
Rb 95 9 91 91 88 89 85 81 82
Sr 98 96 98 99 97 94 94 92 94
Ba 367 349 361 359 349 343 356 345 350
Br 82 80 95 89 74 80 67 64 62
I 62 78 72 78 64 68 56 62 64
As 21 20 21 19
Pb 69 64 69 64 57 60 57 55 54
Ni 33 32 34 32 30 32 28 28 28
cr 113 110 106 103 105 110 107 97 101
Zn 131 121 128 126 114 119 107 104 102
Yy 107 99 105 100 96 96 92 89 83
Y 25 24 24 25 24 23 23 23 23
Zr 281 304 289 296 309 310 316 311 297
Nb 16 15 17 15 15 15 14 15 14
La 29 28 29 28 27 29 29 25 26
Ce 50 54 47 46 46 54 48 44 41
Th 8 8 7 7 7 7 7 7
U 3 2 1 1 2 2 0 0 2
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A 3 : Detection Limits in routine XRF analysis at Southampton using a Rh anode X-ray tube

Element X-Ray Possible interferences™ LLD. (ppm) ok
As AsK Pb 2(200s)
Ba BalL Ce, high As 10
Bi BiL \' 5
Br BrK 30
Ce Cel 10
Cl ClK 50
Cr CrK \Y 4
Cu CuK Cu from the tube 3
Ga GaK 1.5

I 1K 3 (200 s)
La LakK 5
Mo MoK 5
Ni NiK 1.5
Nb NbK Y 1.5
P P K 30
Pb PbL Bi 1.5
Rb RbK high U 15
S S K 50
Sb SbK 5
Sn SnK 4
Sr SrK 1.5
Th ThL High Pb 2
UL High Rb 1.4 (400s)
v VK 4
WL High Zn, Ga 8
Y Y K Rb 1.5
In ZnK 1.5
Zr ZrK Sr 1.5

The detection limits are calculated assuming a count-time of 100 seconds on the background unless

otherwise stated.

Note that most of these interferences are already dealt with automatically.

Better DLs may be obtained by using longer count times.
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A4 : Results for gamma emitters in core RC-96-007

Depth  Am-241 Co-57 Co-60 Cs-134 Cs-137 Eu-154 Eu-155 K-40

1 1590 56.2 882 17 4.1 1045
2 1168 17.8 711 12.8 4.8 829
3 1291 9 82 837 6.8 730
4 1695 10.5 10.8 1117 11.8 970
5 1663 12 8.5 1113 10.3 880
6 1672 i3 14.3 1219 820
7 2555 34 1989 294 13.5 911
8 2784 32.8 2788 36.8 15.7 829
9 3298 26 3307 48.9 253 847
10 3535 9.6 293 4735 422 26.7 861
11 4983 217 6200 82 433 800
12 9026 21.5 8909 103.7 54.5 928
13 12740 22.8 20.2 11498 137.2 89.4 1037
14 9052 214 25.8 10970 110 69.2 970
15 10900 13.1 59.2 12743 88 48.2 915
16 15710 437 15350 147.7 69.9 910
17 22580 22.8 35.8 16730 138 72.4 964
18 28690 39.5 13780 158.3 59.6 1010
19 14070 9763 1123 452 810
20 12200 6.5 8885 584 15.7 978
21

22 2951 43 3.8 4716 998
23

24 600 2332 1030
25

26 67.5 1006 945
27

28 28.1 689 997
29

30 10 3472 936
31

32 4.9 200 993
33

34 98.8 900
35

36 67.3 913
37

38 3.5 378 880
39

40

41

42
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A4 continued

Depth  Am-241 Co-57 Co-60 Cs-134 Cs-137 Eu-154 Eu-155 K-40

43

44 10.6 869
45

46

47

48 3.7 1004
49

50 863
51

52 945
53

54 902
55 11.5 11.8 806

All results are in Bg/kg dry
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AS : Results for beta emitters in core RC-96-007

All results are in Bg/kg dry decay corrected to July 1996

Depth Fe-55 2sd Ni-63 2s.d Sr-90 2s.d Tc-99 2s.d
Bq/kg uncertginty LOD Bg/kg uncertainty LOD By/kg uncertainty LOD Bq/kg uncertainty LOD
1 56 6 38 284 41 n.d. 217 8 8
2 109 9 24 17 4 9 252 25 n.d. 180 5 4
3 188 13 26 17 4 7 505 42 n.d. 64 3 4
4 113 9 21 13 4 9 200 29 n.d. 37 3 5
5 29 4 6 26 2 4
6 103 8 19 33 4 8 648 49 n.d. 34 2 4
7 37 4 7 243 31 n.d. 27 2 4
8 69 6 20 38 5 9 147 23 n.d. 27 2 4
9 21 3 7 432 43 n.d. 26 2 3
10 88 7 19 23 4 8 287 23 n.d. 32 2 4
11 21 4 7 616 47 n.d. 42 2 4
12 149 11 20 34 4 8 606 47 n.d. 63 3 4
13 31 5 9 1124 76 n.d. 69 4 5
14 91 8 21 40 5 10 538 138 n.d. 95 4 4
15 37 6 12 1260 82 n.d. 56 3 5
16 123 10 24 32 5 9 50 3 4
17 28 4 7 2126 91 n.d. 66 3 4
18 107 9 23 34 4 7 1696 90 n.d. 85 3 3
19 115 4 4
20 65 7 44 36 5 10 594 125 n.d. 143 5 4
21 36 2 4
22 80 7 23 30 4 8 120 79 n.d. 45 3 4
23 32 2 3
24 27 3 20 53 5 8 152 58 n.d. 22 2 3
25 36 2 3
26 35 5 11 117 71 nd. 25 2 4
27 41 3 3
28 17 3 7 131 32 n.d. 27 2 3
29 42 2 3
30 29 4 6 290 112 n.d. 27 2 3
31 22 2 3
32 44 4 8 84 56 n.d. 5 1 4
33 1 0 3
34 36 4 9 42 19 n.d. 2 0 4
35 0 0 3
36 31 4 8 0 0 4
37
38 33 5 9 27 19 n.d. 3 0 3
39
40 33 4 7 35 24 nd. 1 0 3
41
42 37 4 7 31 17 n.d. 0 0 3
43
44 31 4 8 31 17 n.d. 0 0 4
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A 7 : Table of principle decay energies for the Nirex priority radioisotopes

Isotope Half Life Alpha energy  Beta E; o keV Gamma Other
MeV energy keV
H 1228y 5.7 (100)
°Be 1.6x 100y 203 (100)
4C 5730y 49 (100)
S 87.44d 48.8(100)
¢l 3.01x105y 251 (99)
“Ca 13x105y E.C.
SICr 27.20d 320 (9.8) E.C.
Mn 312.7d 835 (100)
*Fe 2.7y E.C.
%Co 70.80 d 811 (99.4) B+
%Co 527y 95.8 (99.9) 1173 (100)
1332 (100)
*Ni 75x 104y EC.
SNi 100y 17.1 (100)
7n 2444 d 1116 (50.7) Bt
"Se 65x10%y 52.2 (100)
®Sr 50.6d 583 (100)
%Sr 28.6y 196 (100)
ny 58.51d 604 (99.7)
Zr 1.53x 100y 19.5 (100)
5Zr 64.02 d 109 (55.4) 724 (43.7)
120 (43.7) 757 (55.3)
SN b 14.6y it.
%Nb 2.03x 104y 146 (100) 871 (100)
703 (100)
*Nb 35.06 d 43.4 (100) 766 (99.8)
%Mo 35x103y E.C.
*Tc 2.13x10%y 84.6 (100)
1%Ru 39.35d 30 (6.4) 497 (88.9)
63.2 (90.0) 610 (5.6)
239(3.5)
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Isotope Half Life Alpha energy  Beta E, o keV Gamma Other
MeV energy keV
“Ru 368.2d 10.0 (100) & from
Rh-106
197pd 6.5x 100y 9.27 (100)
108mA o 127y 434 (89.9)
614 (90.4)
723 (90.5)
12imgn 55y 27.2(22.4)
125Sn 1x10%y 70 (100) y from daughter
121 1.57x 107y 40.9 (100) 39.6 (7.5)
By 8.04d 192 (89.4) numerous
PCs 2.06y 2.3(274) 605 (97.6)
123 (2.5) 796 (85.4)
210 (70.1)
135Cs 23x100y 56.3 (100)
BCs 302y 157 (94.6) y from daughter
HiCe 2843 d 50.2 (19.6) 134 (10.8) + high energy B
91.1(71.2) from daughter
“Pm 262y 62.0 (100)
5ISm 90y 19.7 (99.1)
Iy 8.8y 176 (36.5) 123 (40.5) +
276 (17.4) others
695 (11.4)
¥2Ta 115d 129 (21.0) 100 (14.0)
157 (40.0)
181 (3.2)
210pp 223y 4 (80) 46.5 (4.1)
16 (20)
29%po 1384 d 5.30 (100)
?Ra 1600y 4.78 (94.6) 186 (3.28)
29Th 7340 y 4.85(56.3)+ numerous low
others yield
BOTh 7.7x 104y 4.62 (23.4)
4.69 (76.2)
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Isotope Half Life Alpha energy  Beta Ejyo keV Gamma Other
MeV energy keV
B2Th 1.41x 1010y 3.95 (23)
4.01(77)
Bipg 3.28x 104y 5.01(25) +
numerous other
=y 1.59x 103y 4.78 (13)
4.83 (80.4)
B4y 245x 105y 472 (27.4)
478 (72.4)
By 7.02x 108y 436 (11)
4.40 (55.0)
By 3.42x 100y 4.46 (26.0)
4.49 (74.0)
iy 447x10%y 4.15 (21.0)
420 (76.7)
BTNp 2.14x 100y 4.77 (25)
479 (47.1)
Bipy 8775y 5.46 (28.3)
5.50 (71.6)
%%Py 24x10%y 5.10 (12)
5.14 (15)
5.16 (73.3)
240py 6537y 5.12(26.4)
5.17(73.4)
2lpy 144y 5.23 (100)
#2py 3.76x 10%y 4.86 (22.4)
4.90 (78.5)
1 Am 4322y 5.44 (12.8) 59.8 (35.7)
5.49 (83.2)
#ImAm 152y it.
Am 7380 y 5.28 (87.9)
2Cm 163.2d 6.07 (25.9)
6.11 (74.1)
*Cm 285y 574 (11.5)
5.79 (72.9)
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Isotope Half Life Alpha energy  Beta Egyo keV Gamma Other
MeV energy keV
*Cm 18.11y 5.76 (23.6)
5.81(76.4)
*Cm 8500y 530 (5.0)
5.36(93.2)
#Cm 4750y 5.34 (21.0)
5.39(79.0)

From Radioactive Decay Tables, D.C. Kocher (1981)

DOE/TIC - 11026 Technical Information Centre U.S. Department of Energy, Washington D.C.
E.C - electron capture BT - positron emission

it. - isomeric transition
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