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Abstract 

The influence of the degree of residual stenosis on the hemodynamics inside coronary arteries is 

investigated through three-dimensional (3D) numerical simulations. The present paper, which is the 

first of a series of two, focuses on the influence that the degree of residual stenosis (DOR) has on the 

fluid dynamics and the shear stresses acting on the stent and the artery wall. The pulsatile nature of 

the blood flow and its non-Newtonian features are taken into account. Four models of artery are 

investigated. The results show that the wall shear stress (WSS) increases monotonically, but not 

linearly, with the DOR. 
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Nomenclature  

Latin 

DOR    degree of restenosis. 

j    imaginary unit. 

oJ    zeroth-order Bessel function. 

1J    first-order Bessel function. 

N    number of harmonics. 

p   static pressure, Pa . 

()ℜ    real part of a complex number. 

maxR    maximum radius, m . 

minR    minimum radius, m . 

eR   Reynolds number. 

[ ]S    rate of the strain tensor, 1s− .   

nU    Fourier coefficients of the pulsatile mean velocity profile. 

v    fluid velocity, /m s . 

WSS   wall shear stress, 2/dyne cm . 
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nα   Womersley numbers of order n. 

γ    shear rate, 1s− . 

ρ    density, 3/kg m . 

r Rξ =  dimensionless radial coordinate 

1. Introduction 

Cardiovascular diseases are the leading cause of death in the western world, accounting for the 50% 

of deaths occurring each year. Among these, the atherosclerosis is the most widespread. Several studies carried 

on during the last few decades have shown a correlation between cardiovascular diseases and specific flow 

conditions, such as stagnation of blood flow, and low and oscillatory wall shear stress (WSS) [1-3], suggesting 

that the stasis of blood flow and the fluid separation promote hyperplasia of the tunica intima, atherosclerosis 

and thrombi formation. 

The stenosis of the coronary arteries is largely widespread and nowadays the most common clinical 

treatment is the stent implantation. The adoption of intravascular stents to restore the lumen of stenotic vessels 

has brought great improvements in term of quality of life in atherosclerotic patients. However, there are still 

some issues to be resolved. The main one is that the stent, recognized as a foreign body, lead to neointimal 

proliferation and subsequent synthesis of extracellular matrix components [4]. This uncontrolled proliferation 

can lead to restenosis of the vessel, and failure of the implant.  

Drug-eluting stents (DES) are statistically superior to bare-metal stents (BMS) for the treatment of 

native coronary artery narrowing, having lower rates of major adverse cardiac events [5-6]. Nevertheless, the 

DES are unable to repair intima damaged by the stent implantation procedure, which can be limited by slightly 

oversized SE-BMS, [7]. Nonetheless, the residual stenosis present after the implant, even if not significant in 

terms of reduction of the flow rate, may represent a critical location for the hemodynamics. Moreover, there is 

good evidence that arterial injuries, caused by both balloons and stents, can lead to an inflammatory response, 

activating a proliferative repair process, which can provoke luminal narrowing and in-stent restenosis [8-10]. 

Alongside with the more traditional known risk factors, there is a strong evidence that the 

hemodynamics is also involved in the pathogenesis. Over the last few decades the use of computational fluid 

dynamics (CFD) in the biomedical field [11-12] and particularly in the blood flow simulation has received an 

increasing attention, because this technique is able to produce detailed 3D information of the hemodynamics. 

Both two-dimensional (2D) and three dimensional (3D) CFD simulations have been performed in arteries 

restored by stents. Two-dimensional CFD studies can be carried out to understand how these geometric 

features can be tuned to change the hemodynamics, employing simple stent geometries to investigate the 

influence of the mesh size on the blood flow, [13], the shape of the struts section, [14], and the design near the 

curvatures, [15].  

LaDisa et al. [16-17], performed several 3D-CFD simulations on different geometries and stent 

design, analyzing how the 3D geometric parameters could affect the wall shear stress distribution. He et al. 

[18], studied a realistic strut geometry by considering three geometric parameters and showing that the stent 
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design is very important for the blood flow. Duraiswamy et al., [19], provided a physiologic rating on the 

effects of the stent geometry on the platelet deposition. 

Most of the works treated blood as a Newtonian fluid except few studies that investigated the effect 

of the non-Newtonian behavior on the blood flow in a stenosed artery. Seo et al., [15], investigated the 

influence of the stent design close to curvatures, assuming a Carreau model. Benard et al., [20], investigated 

numerically the blood flow in arteries with rigid walls considering a Carreau-Yasuda relation. Amblard et al., 

[21], analyzed the phenomena of type I endo-leaks in a non-invasive-stented abdominal aorta with the Phan-

Thien and Tanner models, derived from the rheology of polymer solutions. Non-Newtonian behavior of the 

fluid was investigated also in turbulent flow in [22-23], alongside with the characteristics of mass diffusion, 

[24-25]. Beier et al., [26], investigated the hemodynamic effect of shape characteristics, in particular 

bifurcation angle (BA), for non-stented and stented coronary arteries, also considering the non-Newtonian 

behavior on the blood flow. Martin et al., [27], studied the effect of the non-Newtonian character of the blood 

flow on the pulsatile flow conditions in both non-deformed geometrical models (NDF) and realistically-

deformed (RDF) models of three stented coronary arteries. Rikhtegar et al., [28], studied the non-Newtonian 

blood flow in arteries with overlapping stents. 

Gori et al. [29-31] carried out 3D-CFD simulations on commercial coronary stents, investigating the 

design features that can lead to pathological hemodynamics, and putting forward suggestions to avoid the 

failure of the implant. The fluid was considered Newtonian in [29, 31], while non-Newtonian features were 

investigated in [30]. Boghi and Gori [32] investigated the blood flow in two carotid arteries, SE-BMS, under 

physiologic conditions, and in an incompletely restored vessel lumen.  

The aim of this work is to investigate the role of residual stenosis on the hemodynamics of stented 

coronary arteries. A simplified model of the artery, completely restored after stent implantation, is considered 

and, furthermore, three simplified models of not-completely restored coronary artery, with different degrees 

of residual stenosis (DOR), are investigated to study the potentially hazardous blood flow patterns that may 

arise from failure of the implant. 

2. Geometry and Computational Grid 

The stent geometry employed is relative to a patented Drug-Elutintg Stent [33] reconstructed with 

the commercial software SOLIDWORKS 2010. The vessel wall is modeled as a simple cylinder and the wall 

is considered rigid, which is a reasonable assumption, because the presence of the stent reduces the 

deformability of the wall. The cylinder representing the vessel has a diameter of 2.6 mm, according to [17], 

and a thickness of the stent of 0.1mm, according to the thickness of coronary stents, [8]. The length of the stent 

is 15 mm.  

In order to perform a parametric study of the influence of residual stenosis, the other geometries 

employed for the simulation of the residual stenosis have a choking in the middle section, with a radius 

respectively of 1.09 mm, 0.82 mm and 0.45 mm, to which correspond a DOR equal to 30%, 60%, and 90% 

respectively. The DOR is defined by Eq. (1). 
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min

max
DOR(%) 100 1 R

R

         

= −          (1) 

Figure 1 shows a comparison between the stent geometries with 0%, 30%, 60%, 90% of DOR. 

The present work is aimed at characterizing the hemodynamics changes due to different DOR. Being 

the geometry periodic in the angular direction, it is possible to consider only a part of it by using the periodic 

boundary condition in Fluent. Two spatial pattern repetitions in the angular direction have been used to 

describe the phenomenon. A non-uniform grid, finer on the walls of the stent and the vessel, and coarser on 

the vessel center is employed to reduce the computational time. A grading is used to allow a smooth transition 

between the elements at the wall and those at the center. The periodicity of the vessel is set around the axis of 

the two periodic faces.  

Three simulations with three grids of 58 10⋅ , 61.2 10⋅  and 62.3 10⋅  elements, shown in Fig. 2, are 

carried out to evaluate the most convenient size of the grid. The final grid used is that with 61.2 10⋅  elements.  

3. Governing equations 

The blood is assumed as an incompressible Non-Newtonian fluid, with ρ = 1060 kg·m-3, flowing in the 

coronary artery with a Reynolds number ranging from Re = 122 to 440, because of the pulsatile flow. The 

equations of mass and momentum conservations are respectively: 

( )div 0v =                    (2) 

( )div 2v v v p S gtρ ρ µ γ ρ     
∂ + ⋅∇ =−∇ + +∂

   
        (3) 

The rate of the strain tensor is defined as: 

( )1div
2 3

Tv v
S v I

              

∇ + ∇
= −

 


        (4) 

and the shear rate is: 

:2 S Sγ       =            (5) 

In a Non-Newtonian fluid, the viscosity is a function of the shear rate and Eq.(3) is written in the 

Generalized Newtonian Fluid (GNF) form, derived from the constitutive equations of a Reiner-Rivlin fluid 

[34]. The blood viscosity is modeled with the Casson relation [35]. Further details are given in the second 

paper of this work, where the effect of the Casson viscosity is analyzed. 

Equations (2-3) are solved under the boundary conditions of no slip on the artery and stent walls, 

rotational periodic for the two lateral surfaces of the cylinder, constant pressure on the outlet and prescribed 

mass flow rate at the inlet. Two different profiles are assumed for the mass flow rate: constant and pulsatile. 

The details of the pulsatile profile are discussed in the next section. 

The simulations are performed by using the commercial software FLUENT, which solves the fluid-

dynamics equations through the finite volume method (FVM). The SIMPLE algorithm is employed to solve 
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the pressure-velocity coupling and the simulations are carried out until the residuals reach the value of 610− . 

A second order implicit time-stepping method is used for the unsteady simulations, which run for two cardiac 

cycles, i.e. 1.6s, with a fixed time step of 0.8 ms. Only the second cycle results are recorded, while the first 

cycle is used to initialize the solution. 

4. Transient simulations 

In order to model the pulsatile blood flow in the unsteady state simulation, the Womersley-Evans 

theory [36] is used to obtain the velocity profile: 

( ) ( ) ( )
1

,, 2 n

N
j t

n n
n

s U eu t u ωτ ξξ ξ
=

 
Φ 

 
= + ℜ ∑         (6) 

where 

( ) ( ) ( )
( ) ( )
0 0

0 1
,

2 /
n n

n
n n n

J J
J J

τ τ ξ
τ ξ

τ τ τ
−

Φ =
−

         (7) 

and 

3 3
2 2

n n nj R jρτ ω α
µ∞

= =           (8) 

By using the Fast Fourier Transform (FFT) algorithm, the mean value and the first 15 harmonics are extracted 

and used to reconstruct the velocity profile.  

The physiological waveform suggested in [37] is assumed, as reported in Fig. 3. Finally, ( )su ξ is the 

steady state Casson velocity profile, which is essentially parabolic at the mean flow rate. The wave period is 

set equal to 0.8 s, corresponding to a heart rate of 75 bpm. As far as the velocity is concerned, its mean value 

is 0.16 m/s, which is the value used for steady state simulations. In particular, six significant time-instants were 

analyzed at t=0.2 s, t=0.3 s, t=0.4 s, t=0.5 s, t=0.6 s, t=0.8 s. 

The wall shear stress (WSS) is the tangential drag force produced by the blood, which is moving 

across the endothelial surface, defined as 

( ) ( )ˆ ˆ ˆ ˆ2
wall

TWSS S n n S n nµ γ          
= ⋅ − ⋅ ⋅


        (9) 

The absolute value of the WSS is defined as WSS WSS=


. The unit of measurement used is dyne·cm-2. The 

physiological range for the mean WSS value is of 5-70 dyne·cm-2 [12, 38-39]. 

5. Results 

5.1 Grid Independence Study for steady state simulations 

The Grid Independence study is performed using the results of the WSS, averaged over the vessel 

perimeter, which are shown in Fig. 4 for the geometries investigated, i.e. without residual stenosis and with 

30%, 60% and 90% DOR. The solutions are validated with the use of the three grids reported in Fig. 2. More 

than 300 slices are generated by intersecting the vessel wall with parallel axial planes, and the resulting data 
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are interpolated by splines. Since the three grids offer similar results, the intermediate grid is used for the 

unsteady state simulations, as a compromise between accuracy and computational speed. 

Figure 4a shows the results of the WSS in absence of DOR. A characteristic repeating peaks and 

valleys pattern is present, corresponding respectively to slices intersecting mostly the intra-strut area, i.e.  

where WSS is higher, and to those intersecting regions of low WSS, located on the struts. The WSS depends 

on the rate of shear, Eq.(9), which diminishes in proximity of the struts, due to the deceleration of the fluid 

impinging an obstacle, i.e. the struts, and the consequent formation of a recirculation region downstream the 

struts, whose amplitude depends on the Reynolds number. The presence of these recirculation regions increases 

the residence time of macrophages and macromolecules on the endothelium. 

Figures 4b,c,d show the results of the average WSS in presence of the three different DOR. In general, 

the diameter reduction increases the local pressure drop and, consequently, accelerates the fluid. Since the 

WSS is, in first approximation, inversely proportional to the section diameter and directly proportional to the 

fluid velocity, it increases in the narrowing section. Downstream this region, the diameter increases and so the 

WSS diminishes. If the slope of the wall, downstream the narrowing, is sufficiently high, streamline 

detachment is present, and a consequent recirculation region which contributes to the lowering of WSS. In all 

the geometries with stenosis the maximum value of the WSS is registered upstream the maximum shrinkage 

of the section, i.e. in the middle of the domain, because both the axial and the transversal velocities change 

more rapidly upstream the maximum height of the stenosis. 

Figure 4b shows the case with 30% of DOR. There is a local increase of WSS in proximity of the 

stenosis and a decrease below the physiological values downstream of it. Nevertheless, the values of the WSS 

are of the same order of magnitude of those shown in Fig. 4a, and the pattern of the repeating peaks and valleys, 

due to the struts, is still visible, despite the stenosis is the geometrical feature which leads to the highest WSS 

variation. Figure 4c reports the WSS in presence of a 60% DOR. In proximity of the stenosis the WSS increases 

about 3.5 times compared to the 30% DOR and 8.5 times compared to the case without stenosis. Downstream 

the stenosis there is a large recirculation region and the WSS drops considerably. A worst scenario is shown 

in Fig. 4d, where DOR is 90%. The WSS in proximity of the stenosis is 10 times higher, compared to 60% 

DOR, and the recirculation region is longer, meaning that the region of low WSS has a larger extent. For the 

geometries with 60% and 90% DOR, the stenosis causes a drop below the critical value of 5 dyne·cm-2 

downstream of it and an amplification of the WSS in the central region where it exceeds 70 dyne·cm-2, a critical 

value for which thrombogenic effects may occur [39]. 

5.2 Unsteady State Results. 

The streamlines, obtained from the instantaneous velocity fields at four meaningful time steps and 

corresponding to four points of the mean velocity profile, are shown in Figs. 5-7 for the geometries with 30%, 

60% and 90% DOR.  

Figure 5 presents the streamlines for 30% DOR. The streamlines appear mostly parallel to the 

direction of the mean flow, even in proximity to the struts and during the systole, i.e. Fig. 5d, meaning that the 

recirculation, if exists, is very small. An exception to this behavior is at the diastole, Fig. 5a, when the fluid 
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proceeds backwards everywhere except downstream the stenosis at the center of the vessel, where a train of 

vortices can be seen. However, no vortex is seen on the vessel wall. 

Figure 6 presents the streamlines for 60% DOR. The streamlines patterns are similar to the previous 

case, except downstream the stenosis, during the diastole, Fig. 6a, since the region interested by the train of 

vortices is wider. Figures 6b, c show streamlines mostly parallel to the direction of the mean flow and no near-

wall vortex is visible. The near-wall vortices are present during the systole, Fig. 6d, downstream the stenosis, 

because the fluid at the narrowing is faster, and therefore more prone to generate near-wall vortices when the 

section expands. However, this effect disappears in 1.5 diameters, and the streamlines return parallel to the 

mean flow. 

Figure 7 presents the streamlines for 90% DOR. The results in this case are different from the 

previous one. A large recirculation region is visible in the diastole, Fig. 7a, but with irregular contours. Figures 

7b, c, d show that at the other three time steps, t=0.4 s, t=0.5 s, t=0.6 s, a wide recirculation region is present 

near the vessel wall and beyond the stenosis, and the flow on the vessel wall is directed upstream. This region 

of recirculation terminates several diameters downstream the end of the stent, and is not visible in the figures. 

Figure 8 shows the WSS field for the geometry without residual stenosis at the instants of time 

indicated in Fig. 3. The WSS changes considerably during the cardiac cycle on the vascular wall, except in the 

zones adjacent to the stent, where the WSS is fairly constant and small, which make them permanently exposed 

to adverse conditions. As shown in Fig. 4a, the presence of the stent reduces the WSS, which drops below 5 

dyne·cm-2, a value at which the neo-intima hyperplasia is triggered, and the process of restenosis formation 

can take place. On the vascular wall, more distant from the struts, the WSS assumes physiological values 

throughout the cardiac cycle. 

For the geometry with 30% DOR the results change considerably, as shown by Fig. 9. The region 

downstream the stenosis is subject to relatively small WSS, below 5 dyne·cm-2 for a longer period, while 

upstream it increases in comparison to the case without residual stenosis. Downstream the chocking, the WSS 

starts increasing when the flow rate returns to physiological conditions, far enough from the stenosis. This is 

the result of the increasing flow rate in correspondence to the section narrowing. In particular, this effect occurs 

when the flow rate is higher, while, for lower velocities, Fig. 9b, its pattern is similar to that in absence of 

residual stenosis.  

Figure 10 reports the unsteady WSS in case of 60% DOR. The pattern of WSS is similar to that with 

30% DOR, but the effect is more pronounced. The local WSS assumes very high values on the section of 

minimum area, especially during the systole, Fig. 10e, exceeding 70 dyne·cm-2, which is the condition 

triggering thrombogenic effects [39]. Downstream this point, the WSS assumes very small values, below 5 

dyne·cm-2, for a longer period of time and larger extent compared to the previous case. Indeed, the stenosis is 

such that it promotes the formation of a recirculation region in the vascular endothelium, delimited by the 

periodic pattern of the struts. The areas where the fluid is more stagnant are critical and prone to a massive 

post-stent restenosis. 
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Finally, Fig. 11 shows the results for the geometry with 90% DOR. The WSS assumes hazardous 

values for most of the cardiac cycle, i.e. below 5 dyne·cm-2, downstream the stenosis, and far above 70 

dyne·cm-2 in correspondence with the chocking, which may lead to the occurrence of thrombogenic effects 

[39]. Beyond the stenosis, a wide recirculation region is formed, due to the high velocity of the blood in the 

necking, because of the large area reduction. The boundary layer detaches from the wall and reattaches several 

diameters downstream the contraction point. This effect may be due to the assumption of a straight long 

cylinder, while, in reality, the vessel has a certain curvature, and this phenomenon may be unlikely to occur. 

6. Discussion 

The present work analyses the Hemodynamics in a coronary stent with smooth symmetric residual 

stenosis. To the best of the authors’ knowledge, this type of study has never been carried out before. Besides 

the fact that real residual stenosis may be asymmetrical, and with a steep profile, thus influencing the local 

WSS which can present larger values, the results of the present study can give a correct order of magnitude 

that cardiologists and the other specialized operators can expect from similar clinical scenarios. The present 

work reveals that the WSS distributions, in presence of residual stenosis, is highly asymmetrical, even if the 

residual stenosis is symmetrical, as pointed out in [32]. 

The presence of the stent reduces the local WSS, which can favour the infiltration of macrophages, 

especially in diastole, when WSS is often smaller than 5 dyne·cm-2, as shown in [31-32]. The present 

investigation reports that in presence of high DOR, e.g. 60%-90%, the WSS becomes higher than in 

physiological conditions upstream the stenosis, even in the stent. For a DOR higher than 30% the WSS exceeds 

70 dyne·cm-2, which is the condition that triggers thrombogenic effects, [39]. 

For high DOR the region interested by critical WSS values is larger, and longer the time period when 

this condition occurs. In agreement with [32], the WSS drops considerably, below 5 dyne·cm-2, downstream 

the stenosis, because the recirculation region increases with the DOR, and is stable because of the low Reynolds 

number. Certainly, in a real coronary this long region is not possible because of the vessel curvature. The case 

with 90% of DOR may be infrequent in the clinical practice, but can occur since stenosis can be asymptomatic 

up to 70% degree [40].  

The analysis of the WSS is important in the evaluation of the stresses which the plaque is subject to. 

The rupture of the plaque depends on the break load, which, in turn, depends on the percent of calcification 

and lipids present. A possible conclusion is that the case with 60% and 90% of DOR show an increase in the 

WSS which can potentially breaks the plaque. The calculation of the stresses on the structure depend on the 

geometry and the rheology.  

The present work has taken into account the Non-Newtonian behavior of the blood, whose influence 

on Hemodynamics, in non-completely restored coronary arteries, has never been studied. The Non-Newtonian 

rheology has an effect only when the flow rate is small, which is in the diastole. Therefore, this should not 

influence the rupture of the plaque. Nevertheless, this feature is relevant in determining the penetration of 

macro-molecules in the endothelium, which takes place for low and oscillatory WSS [38].  
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The discussion on this topic is very important because indicates the likelihood of the plaque growth. 

The wall permeability, as well as the influence of the non-Newtonian behaviour of the blood is discussed in 

the second paper of this work [41]. 

7. Conclusions  

The influence of the Degree of residual stenosis (DOR) on the wall shear stress (WSS) in a stented 

coronary artery is investigated. The artery is assumed as an idealized cylindrical vessel and the stenosis has a 

smooth, axisymmetric shape. Three DOR are analyzed: 30%, 60%, and 90%, and the results are compared 

with those of a healthy stented artery. The Non-Newtonian behavior of the blood, modelled as a Casson fluid, 

is considered. The 3D numerical simulations show that for a DOR higher than 30% the WSS grows above 70 

dyne·cm-2, which may lead to thrombogenic effects. Moreover, even in absence of residual stenosis the WSS 

drops below 5 dyne·cm-2, which is the value at which the neo-intima hyperplasia is triggered. For greater values 

of DOR the region interested by the critical condition is wider and longer the time of exposition. This condition 

is present at lower flow rates when the Non-Newtonian rheology is influent. In the second paper of this work, 

[41], the influence of the DOR on the wall permeability is investigated. 
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Caption to Figures 

Figure 1 - Stent geometries with: (a) 0 % DOR, (b) 30 % DOR, (c) 60 % DOR, (d) 90 % DOR. 

Figure 2 – Computational Grid with: (a) 58 10⋅ elements, (b) 61.2 10⋅  elements, (c) 62.3 10⋅  elements. 

Figure 3 - Mean Velocity profile for a human left coronary vessel. 

Figure 4 - Grid Independence with average WSS versus axial length. (a) 0% DOR, (b) 30% DOR, (c) 60% 

DOR and (d) 90% DOR. 

Figure 5- Streamlines for the geometry with 30% DOR during the cardiac cycle: a) t=0.3s (diastole), b) t=0.4s, 

c) t=0.5s, d) t=0.6s (systole) 

Figure 6 - Streamlines for the geometry with 60% DOR during the cardiac cycle: a) t=0.3s (diastole), b) 

t=0.4s), c) t=0.5s, d) t=0.6s (systole) 

Figure 7 - Streamlines for the geometry with 90% DOR during the cardiac cycle: a) t=0.3s (diastole), b) 

t=0.4s, c) t=0.5s, d) t=0.6s (systole) 

Figure 8 - Local WSS during the cardiac cycle for the geometry without residual stenosis. a) t=0.2s, b) t=0.3s 

( diastole), c) t=0.4s, d) t=0.5s, e) t=0.6s (systole), f) t=0.8s. 

Figure 9 - Local WSS during the cardiac cycle for the geometry with 30% DOR: a) t=0.2s, b) t=0.3s (diastole), 

c) t=0.4s, d) t=0.5s, e) t=0.6s (systole), f) t=0.8s. 

Figure 10 - Local WSS during the cardiac cycle for the geometry with 60% DOR: a) t=0.2s, b) t=0.3s 

(diastole), c) t=0.4s, d) t=0.5s, e) t=0.6s (systole), f) t=0.8s. 

Figure 11 - Local WSS during the cardiac cycle for the geometry with 90% DOR: a) t=0.2s, b) t=0.3s 

(diastole), c) t=0.4s, d) t=0.5s, e) t=0.6s (systole), f) t=0.8s. 
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Figure 1 - Stent geometries with: (a) 0 % DOR, (b) 30 % DOR, (c) 60 % DOR, (d) 90 % DOR. 

  



15 
 

 

 
Figure 2 – Computational Grid with: (a) 58 10⋅ elements, (b) 61.2 10⋅  elements, (c) 62.3 10⋅  elements. 
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Figure 3 - Mean Velocity profile for a human left coronary vessel. 
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Figure 4 - Grid Independence with average WSS versus axial length. (a) 0% DOR, (b) 30% DOR, (c) 60% 

DOR and (d) 90% DOR. 
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Figure 5- Streamlines for the geometry with 30% DOR during the cardiac cycle: a) t=0.3s (diastole), b) 

t=0.4s, c) t=0.5s, d) t=0.6s (systole) 
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Figure 6 - Streamlines for the geometry with 60% DOR during the cardiac cycle: a) t=0.3s (diastole), b) 

t=0.4s), c) t=0.5s, d) t=0.6s (systole) 
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Figure 7 - Streamlines for the geometry with 90% DOR during the cardiac cycle: a) t=0.3s (diastole), b) 

t=0.4s, c) t=0.5s, d) t=0.6s (systole) 
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Figure 8 - Local WSS during the cardiac cycle for the geometry without residual stenosis. a) t=0.2s, b) 

t=0.3s (diastole), c) t=0.4s, d) t=0.5s, e) t=0.6s (systole), f) t=0.8s. 
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Figure 9 - Local WSS field during the cardiac cycle for the geometry with 30% DOR. a) t=0.2s, b) t=0.3s 

(diastole), c) t=0.4s, d) t=0.5s, e) t=0.6s (systole), f) t=0.8s. 
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Figure 10 - Local WSS field during the cardiac cycle for the geometry with 60% DOR. a) t=0.2s, b) t=0.3s 

(diastole), c) t=0.4s, d) t=0.5s, e) t=0.6s (systole), f) t=0.8s. 
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Figure 11 - Local WSS field during the cardiac cycle for the geometry with 90% DOR. a) t=0.2s, b) t=0.3s 

(diastole), c) t=0.4s, d) t=0.5s, e) t=0.6s (systole), f) t=0.8s. 

 


