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Typical built-up structures consist of beams, plates and beamstiffened
plates. Due to strong coupling with other parts of the structure the
vibrational characteristics of these components are too complicated to
be analysed exactly. However, the vibration may be approximated by the
response of structures with a similar cross section and of infinite
length. The wave propagation and power flow due to force and torque
(moment) excitation has been studied at the driving point and in the far

field for infinite beams, plates and beam stiffened plates.

An infinite, beam-stiffened plate excited by forces or torques applied
to the beam behaves like an uncoupled beam at the driving point. In the
far field, power transmitted by flexural waves in the beam is radiated
into the plate whilst‘power transmitted by torsional waves in the beam is
not radiated. The plate carries a cylindrical wave with a strong

directivity.

.

The power flowing through the isolators and into the supporting founda-
tion of a machine has been examined by approximating the driving point
frequency response function of the foundation. One and two stage isolation
of machines with internal force or velocity sources has been considered.
Two stage isolation is superior to single stage isolation inlreducing
power flow, in those circumstances where the excitation spectra do not

cover the two resonances of the system.

A structure with a number of resonances is difficult to analyse theoreti-
cally but may be investigated from measured data. By exciting a structure
at one point and measuring the frequency response at a number of positions
it is possible to construct a mathematical model of the structure. The
model is valuable because it enables unmeasured frequency response

functions to be predicted. Also, by modelling two separate components of
a structure from measured data it is possible to obtain an estimate of

the subsequent motion and power flow through the two components when

coupled.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Typical built-up structures such as buildings or ships are an
assembly of many different components all of which interact strongly
when set into vibration. Certain components such as beams or plates
are relatively easy to analyse individually when there is no coupling
with other elements. However, when built into a structure the vibration
of a component is strongly dependent on the other elements to which it
is attached and the calculation of the motion becomes very coﬁplicated
or even impossible. In order to obtain some widely applicable formulae,
methods of vibration analysis based on approximate or measurement methods

are developed in this thesis.

In a built-up structure a common source of vibration is a machinery
installation which, due to some internal excitation, injects vibrational
energy into its supporting foundations. This energy is carried by wave
motion within the foundation until some boundary or discontinuity is
encountered. Here some of the energy in the wave will be reflected
back into the foundation the remainder being transmitted through the
boundaries to other parts of the structure. If a significant amount of
energy is reflected to and fro within the foundation then resonances will
occur at those frequencies for which the wave motion interferes construc—
tively. The power which is transmitted through the boundaries of the
foundation is available for radiation or as unwanted vibration in the
remaining portion of the structure and this is a significant problem.

A direct approach for controlling the unwanted power is to minimise the
net vibratory power flow into the foundaticn at the source. The use of
power flow in calculations is very valuable because it combines both
forces and velocities in a single concept., An attempt to decrease the
radiation or vibration in a structure by reducing only the force or
velocity may not necessarily be successful. However, an improvement may
be ensured by decreasing the net vibrational power applied to a

structure.



The foundation of a machine is a crucial component since it is
responsible for the conversion of the machinery excitation into propa-
gating wave motion. Therefore the first part of this thesis is a study
of wave motion and power flow in a range of common foundations such as
beams, plates and beam-stiffened plates. The existence of damping and
of a large number of resonances enables foundations to be approximated
by components of infinite extent. This is equivalent to assuming that
at the boundaries of the foundation there are no reflections and all
power is propagated away. This approach greatly assists the analysis
and, in particular, enables the power flow into the structure due to
different types of excitation to be derived. Having established the
behaviour of the foundation the reduction in power flow resulting from
the isolation of machinery may be estimated. When there are significant
reflections from boundaries and individual resonances are apparent, the
theoretical approach described above becomes less accurate. Consequently
the second part of this thesis is concerned with those frequency ranges
where there is resonant behaviour of the structure. Starting with
measured data computer based procedures are formulated which enable
mathematical models of the structure to be formed. The models may be
used to predict unmeasured responses thus greatly reducing the experi-
mental testing time required. Other applications of the mathematical
model are also considered. In particular, the possibility of modelling
two components and then predicting their behaviour when joined is

examined critically.

1.2 The Principal Methods of Vibration Analysis

An exact solution for the vibration of a structure may be obtained
by forming the differential equations for the motion and solving them
for the appropriate boundary conditions. It is useful %o obtein the
harmonic response since, if the structure is linear, then the response
due to transient or periodic excitation may then be determined exactly
by means of a Fourier transform. The calculations involved in a vibra-
tion analysis may be simplified by reducing the complete solution to an

infinite series in which each term corresponds to one resonance of the



structure; this procedure is usually described as modal analysis.

The complexity of a practical structure unfortunately prevents this
type of detailed analysis because it is not possible to formulate and
solve all the differential equations. Even relatively simple components
are difficult to analyse if they are built into a structure in such a
manner that the boundary conditions cannot be determined. However when
a structure has several components the response of the entire structure
may be calculated from the response of the individual components. If
many components are involved, procedures of this type (often known as
mobility or receptance methods) become unwieldy. Consequently only
relatively simple structures may be analysed exactly to obtain the res-

ponse of a prescribed excitation.

Various approximate methods, each appropriate to different circum~
stances, enable a wide range of vibration problems to be solved. If the
effect of the boundaries is considered to be unimportant then the
structure may be approximated by considering it to be of infinite length.
This type of analysis is usually formulated in terms of wave motion.

If a structure has well defined mass and stiffness elements then an
approximate mathematical model can be formulatedand solved in which there
are pure mass elements and pure stiffness elements. Both these types of

approximate analysis are used in Part One of this thesis.

An approximate method which is capable of great accuracy in the
finite element method. In this procedure the structure is divided into
a number of elements each element having a certain deformation pattern.
By considering the strain and kinetic energies of the structure the
resonance frequencies and modes of vibration may be calculated. The
deformation is built-up out of the deformation of the individual elements;
consequently the emphasis in the analysis is centred on determinir: the
deformation of elements rather than the deformation of the entire structure.
A finite element analysis may only be appiied to particular problems and
will only produce numerical results. Because of the complexity of a
practical built-up structure detailed representation of individual compo-

nents is not generally possible but an overall response may be determined.

Because of the detailed description that would be required the



finite element method is not suitable for high frequencies when there
are many resonances. In this regime statistical energy analysis is

more appropriate. This is an approximate method used for analysing the
interaction between two components. When there are many resonances
present in the components of a system then averaged properties may be
used to predict an averaged response of the coupled system. The average
modal energies of each system must be known together with the nature of
the coupling. This type of analysis is generally only appropriate when
both the components being considered have a high modal density and the

coupling can be calculated or estimated.

By combining measured data with theoretical data it is possible to
obtain information about a complicated structure. This type of analysis

is considered in Part Two of this thesis.

1.3 Objectives of This Work

The aim of this study is to formulate and evaluate methods for the
vibration analysis of complicated practical built—-up structures. To
this end a theoretical study of commonly occurring components of struc-
tures is commenced with the aim of determining simple widely applicable
general formulae which indicate trends of behaviour and give approximate
solutions. In particular this approach is to be applied to the problem
of machinery isolation where it is considered that the use of power

flow should provide a unifying concept.

A further intention is to establish procedures by which the
fundamental nature of an existing structure may be determined from

measured data.

1.4 Conventions and Definitions

There are two conventions for describing a harmonic wave propagating

in the positive x-direction. These conventions are either

ei(kx - wt) (1.1)
or

ei(wt - k%) (1.2)



The first convention (1.1) gives a positive wave number for motion
in the positive x-direction but negative frequency dependence. This
convention will be used when considering the spatial response of a
structure. The second convention (1.2) gives a positive frequency
dependence with negative wave numbers and is more suitable for describ-
ing the frequency response of a structure. Care will be taken to state
which convention is being employed in any problem and in particular all
tables will use the second convention. To convert from one convention
to the other it is merely necessary to replace every i (= v-1 in an

equation by -i.
Power is the rate at which work is done and is given by the
relationship

Pi = Fivi (1.3)

where Fi and Vi are the instantaneous values of force and velocity
at a point. (Instantaneous values will be indicated by the subscript 1i.)
When power flows through an area it is necessary to consider it as an
intensity and therefore with the force F, determined as a stress.

With a vibrating structure the net flow of power is more important than
the instantaneous value and when force and velocity are harmonic this

is given by

27 /w

P = Fivi dt (1.4)

C
27

)
where w® is the frequency of vibration. If the force and velocity are

written as:-

5 .
F, = pe'* v, = ve'**

i i
where F and V are complex and may thus include a relative phase

angle, then:-



$[V][F] cos ¢

[av}
]

or P = JRe{FV*} = JRe{F*V} (1.5)

$[Re{F}Re{V} + In{F}In{V}]

where ¢ is the phase angle and * denotes the complex conjugate. The
ratio of the complex harmonic velocity to the complex harmonic force is
the mobility and this quantity is a property of the structure alone.

One may substitute therefore for either the force or the velocity to give:-

P = HF']zRe{B} = HVIZ&% (1.6)
8]
where B = % .
These formulae hold for both conventions of e-lmt and e+1wt’

It is convenient to represent damping in a structure by means of a
complex Young's modulus [1]. The relationship between stress and strain

may be written as:-

iwt

E(1 + in) for e frequency dependence
Stress
Strain _:

E(1 - in) for e ‘Ut frequency dependence

where E 1is the Young's modulus and n is the loss factor for the material.

This representation of damping leads to a complex resonance frequency
and a complex wave number. If a structure has an undamped resonance at

w, then the introduction of damping leads to a resomance frequency of:-

wo(l + ig- for ¥t frequency dependence (1.7)
wo(l - 5%9 for e ‘Ut frequency dependence (1.8)

where, because n is small, only first order terms have been included.

For longitudinal and torsional waves the wave number is proportional

to (%)5; therefore the complex wave number is given by:~



k(1 - e2l] for et frequency dependence (1.9)

k(1 + =% for e *¥t frequéncy dependence (1.10)

Similarly for flexural waves, the wavenumber is proportional to (—9*

therefore it may be written as:-

k(1 - for et frequency dependence (1.11)
JA

k(1 + 10 for e ¥t frequency dependence. (1.12)
4 y
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CHAPTER 2

WAVE PROPAGATION AND POWER FLOW IN BEAMS AND PLATES

2.1 Introduction

Problems in vibration isolation may be considerably simplified by
considering the vibrational power flow in a structure. A typical problem
is idealized by figure 2.1. ©Power is injected into a structure such as
a building or ship by a machine with an internal vibration source, which
is mounted on an isolator. Due to the isolator foundation being flexible,
power is transmitted through the structure to the sink where it appears

as unwanted vibration or radiation.

The aim of vibration isolation procedures is to reduce the velocity
amplitudes at the sink by making appropriate modifications to the isolator
and isolator foundation. A direct approach would therefore be to
calculate the response at the sink due to an excitation at the source and
to design the isolator, foundation and structure to minimise the unwanted
vibration. Because of the variety of possible structures and because of
their often complicated nature, direct calculations of this type are
extremely difficult. In addition, an exact description of the unwanted
vibration cannot always be formulated, especially in the case of radiation
for which the velocity distribution over the surface of the structure

must be established.

Standard methods of vibration isolation (for example [1,2,3,4])
therefore simplify the problem by only analysing the reduction of force

or velocity at the foundationm.

An approach to vibration isolation may be formulated by consideriag
the power flowing into the structure at the mounting point of the isolator.
If the isolator and foundation are designed t- minimise this power flow

then all uwnwanted vibration will be minimised.

The power that enters a structure is a function of the characteristics
of the source, isolator and foundation. The isolator and source are
easily modelled but the foundations are often difficult to describe. In

the following chapters the characteristics of the foundations have been



simplified according to the method developed by Skudrzyk [i]. This
method allows a finite damped structure to be approximated by an equiva-
lent structure of infinite extent with no reflecting devices. Thus it

is assumed that waves propagating away from the source are attenuated

by damping or radiation and are not reflected back to the source to form
standing waves. Alternatively, this is equivalent to assuming that there
are many modes of vibration contributing to the motion at any one

frequency without one mode being dominant.

A number of typical foundations such as beams, plates and beam-
stiffened plates have therefore been analysed as if they were of infinite
extent, Wave propagation in these types of structure has been studied
previously by many authors; however, except for Heckl Bﬂ, Cremer,

Heckl and Ungar [7], Noiseux [S] and Pavic [9] there has been little
detailed consideration of power flow. In the following chapters the
power flowing into each infinite foundation due to a point source and
the subsequent flow of power throughout the structure are given. As
foundations may be excited by forces or torques, both these types of
source have been considered. The results are summarised for the simpler

foundations in Table I.

A unified approach has been adopted for analysing the various
infinite structures. In each case a wave equation has been derived in
a right handed coordinate system with a source applied as a spatial
delta function (written 60). Harmonic time dependence of the form e 1Ot
is assumed giving a linear differential equation in one or two dimensions.
By applying a spatial Fourier transform the differential equation is
transformed into an algebraic equation in wavenumber space. The
solution is obtained by taking the inverse Fourier transform, the
integral being evaluated by contour integration. These procedures are
described in references [}0,1¥]. The definition of the Fourier transform
used is:-

o]

¥(a) = f E(y)e ‘¥ ay (2.1)

-0

and the inversion integral is:-

[+

E(y) = 2—11;( ¥(0) el o (2.2)

=00

10,



n . .
A  over a function represents the transform of that function and the
coordinate in wavenumber space will be denoted by a. In the two-

dimensional case the Fourier transform will be written as:-

n, ¢ o -ia_x -io_y
Gy, o) =-f fax, e Te ¥ axay (2.3)

and the inversion integral as:-

' 1 . o idxx iayy
E(x, y) = Z;z-f f g(ax, ay)e T e dotxday (2.4)

2.2 Torsional and Longitudinal Wave Motion in Beams

Since torsional and longitudinal waves both obey the same second
order differential equation, results obtained by examining torsional
waves are also applicable to longitudinal waves. Torsional waves will
be considered here because of the two this type of wave motion is

generally more important.

Figure 2.2 shows an infinite beam with shear modulus G, torsion
constant Q and mass moment of inertia per unit length J. The beam lies
along the y axis with a torque of amplitude Te_itho applied at y = O.
The angular displacement at any point is given by 6(y). The equation

of motion is derived in Appendix I and is:-

2%, 0 i ‘
J ——2 = GQ 5 + Te 60 (205)
at dy

This equation assumes that the torsional wavelengths are greater than the
cross section dimensions of the beam.
1wt

Assuming harmonic time dependence of the form e this equation

may be written as:-—

376 2 T
ay2 t GQ o
2 ZJ
where kt = 966 and 6 now refers to the complex amplitude of the

11.



angular displacement. The equivalent equation for longitudinal waves

is:-

3g 2, __F_
7 tk,E = N 60 ~ 2.7
3y
2 wzp
where k‘Q = 5 and &(y) is the displacement, A the cross sectional

area, E the Young's modulus and F the applied force. Only torsional
waves will be considered below but to convert the results for longitudinal

waves the equivalent terms in equations (2.7) and (2.6) may be interchanged.

The Fourier transform (equation (2.1)) in the y-direction gives:~—

r__ 1
GQ 2 _ 2
kt o

¥(a) = (2.8)

The solution is given by the inverse Fourier transform of equation (2.8)

~and is:~

-7 oioy
6(y) = 77eq f 2 > da. (2.9)

This integral has two poles at o = + k_ which are shown together with

t
the integration contour in figure 2.3. The contour is deformed to pass
beneath the pole at a = ke, since with the inclusion of damping this
pole would lie above the real axis. The pole at a = —kt is not included

in the contour since this pole with damping would lie beneath the real

axis. ikty
The residue of the integral is EZk and the solution is therefore:-
t
ik vy
iT e ©
6(y) —EQ- ~—ﬁct—_ (2.10)
or in terms of mobility with g tut frequency dependence:=-
~iwd wethy elkty
e R . (2.11)
T8k 2/207
The mobility at the driving point (y = 0) 1is therefore a real constant

independent of frequency.

12,



2.3 Power Flow in Torsional Wave Motion

Using equation (1.6) for the pover supplied to a structure gives:~

2
S £ - (2.12)
s 4/6QJ" :

where Ps denotes the power supplied by a source.

The power flow at any station along the beam is given by equation

(1.5). The angular velocity is

. T 1(kty - wt)
6, = e
t 2/6QJ
and the internal twisting moment is given by:-
v - - 861 i E.el(kfy_Mt)
i GQ 3y 2

denoting the power at any station by Pa gives:-—

2
o o 12 .19
8vGQJ" |

Pa is half the power supplied by the source, the remaining power going
in the negative y-direction. If damping is included then both k, and
G become complex and so thgrefore do 6; and M.. Writing G as

_G(l - in), kt as kt(l + Eg) and only including terms in n to
first order gives:-

2 -k _ny
P, = Y (2.14)
8v/GQJ

The power is therefore seen to decay exponentially with distance from the

source.

13.



2.4 Flexural Wave Motion in Beams

Unlike other wave types, flexural waves cause two internal forces
to act in a beam. As will be shown these two forces (one associated
with bending, the other with shear) are both important since they carry
equal amounts of power in the far field. In the near field, in addition
to propagating waves, non propagating waves couple the two forces accord-
ing to the particular boundary conditions imposed. In addition, flexural
waves are dispersive being represented by a fourth order differential
equation in which the wave speed is proportional to the square root of
frequency. The differential equation for a beam including sources due

to force and torque excitation is given in Appendix II.

In deriving the equation of motion no account has been taken of the
effects of rotary inertia and shear deformation. It is assumed that the
wavelengths of the propagating flexural waves are always greater than
the cross-sectional dimensions of the beam in the frequency range of

interest.

2.5 Force Excitation of a Uniform Beam

Figure 2.4 shows an infinite wniform beam of density p, cross-
sectional area A, second moment of area I and Young's modulus E,
laying along the y-axis. A harmonic force of amplitude Fe—itho is
applied at the origin y = 0. The differential equation representing

the motion is derived in Appendix II and for harmonic time dependence of

the form e_1Mt is:i-
3%t 4 T
— - kg =ﬁ<so (2.15)
dy
2
where k% = W 0A

57~ and E(y) 1is the displacement in the z-direction.

Taking the spatial Fourier transform in the y-direction gives:-

¥o) =

F
BT I A (2.16)
o -k

where o is the coordinate in wavenumber space. The solution is given

by the inverse Fourier transform of equation (2.16), namely:-

14,



F e
EW) =57 f K- do (2.17)

This equation has four poles (o = *k and o = +ik) which are shown on
figure 2.5 together with the contour of integration. The contour has
once again been indented to include only those poles which correspond to
sources. The residue due to the pole at a = +k is eikyll;k3 and the

residue at o = +ik is e_ky/-4ik3. The solution for x 3 0 is therefore:-

E(y) = —LF-—3 [eiky + ie ¥ (2.18)
4ETk

The instantaneous values of the transverse velocity and angular velocity

for frequency dependence of the form e tut are:—

éi(}') = __F% [:elky + ie—ky] e tut (2.19)
4ETk ‘

and

o By Rl ) e
4ETk

where Gi is the instantaneous angular velocity. The point mobility at
the origin beiween the driving force and the transverse velocity is

therefore:~

W

. (1 +1) oAl
B = (1 + 1) —_—_— () (2.21)
AETK hoAVa EI

This mobility decreases with increasing frequency and behaves at any

frequency like a dashpot and mass in parallel,

The transfer mobility between the driving force and angular velocity
may be found from equation (2.20). This mobility is clearly zero at the

origin as would be expected from symmetry.

Equations (2.19) and (2.20) include a term of the form e_ky which
represents the near field. This term has the same magnitude as the
propagating wave at y = 0 but rapidly decays with distance from the

e-2n(y/l)

origin. By writing this near field term as where A 1is the

15.



wavelength it may be seen that at a distance of one wavelength from the
source it has decreased to less than 0.2% of its value at the origin.
Therefore for large values of k y the real exponential terms may be

ignored in equations (2.19) and (2.20) leaving only the complex exponentials.

2.6 Power Flow in a Uniform Beam with Force Excitation

The power supplied by the source is given by the time average of the

transverse velocity and the driving force. Using equation (1.6) gives:-

2 , 2
p = IEIT eat o [EC (2.22)

s oAV EL 8ETk

The power supplied by a driving force normal to a beam therefore

decreases with increasing frequency.

At any point along the beam there is an internal shear force and an
internal bending moment. Both of these forces transmit power. The

instantaneous value of the shear force is given by:-

u. = EI —2 = %-[elky + e—ky]e (2.23)

and the instantaneous value of the bending moment by

2 : e s
w = 51 Z5 2 D[t 4 T e (2.24)

1 3y2
The power flow associated with shear may be found from equation (1.5) by

substituting the values for the shear force and transverse velocity from

equations (2.23) and (2.19) to give:-

la]
1]

iRe{uiwE*}

2
- Jﬂ-% [1 +e™(sin ky + cos ky)] (2.25)
32EIk

Similarly, the power associated with bending may be found by
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substituting the values of bending moment (equation (2.24)) and angular

velocity (equation (2.20)) into equation (1.5) to give:-

P = JRe {Miwe*}

2 -kfy
= [l -e (cos ky + sin ky)] (2.26)

The total power flowing at any station is the sum of these two powers

and is:~

2
P =P +P - IF[fw_ (2.27)

16ETk

The total power flowing in the positive y-direction is therefore independ~

ent of distance and equal to half the power supplied by the source.

Both the power associated with the shear force (Pu) and the power
associated with bending (Pm) have real exponential terms which are
important in the near field. In the far field the exponential term may
be ignored (at distances greater than one wavelength e_kfy is less than
0.002 and Pu and Pm are seen to be equal. In the near field the
power is influenced by the nature of the source. At the origin all the
power of the transverse driving force is transferred to the shear compo-
nent Pu. As the distance from the source increases Pu decreases
and the power is transferred to the moment component Pm. This trans~
ference of power proceeds with increasing distance from the source wntil
both Pu and Pm are equal. The near field is therefore seen to
couple the two components of the power flow enabling work to be done

by one component on the other.

The effect of internal damping may be analysed by allowing the Young's
modulus and wavenumber to have an imaginary part. Substituting E(1 - in)
for the Young's modulus and k(1 + iz) for the wavenumber, where it may
be seen from equation (1.12) that 4z= N, enables the transverse velocity

and angular velocity to be written as:-

i o= Fu(l + 1;)[ oYk vk ie-yke-lykc]

. (2.28)
L ETKS
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6 = Fu(l + 2ir) [e_ykcelyk _ ie-yke-lykc]

) (2.29)
1 4ETk

Both velocities therefore decrease exponentially with distance from the
source. Substitution of the complex values of the Young's modulus and
wavenumber into equations (2.23) and (2.24) give the shear force and
bending moment for damped vibrations. By using equation (1.5) the power
flow associated with each component may again be found. After some

algebra it may be shown that the power flow associated with shear is:-

2
P - lEJ_w_3 [e-Zka - e 4 VRO 1 gk (140))
32E1k

+ cos(yk(1 +;))](1 - C)] (2.30)

and the power associated with bending is:-

2
P = lEl_E_ [e Zykzg + 3ze 2yk _ e_yk(1+C)[poS(ky(l +7) +
S

+ sin(ky(1 + £))](1 + 3c)] (2.31)

while the total power flow is:-—

P = P +P
a u m

2
_ |7 o [e YL e Y e YD) [ ky(1 + D)
16EIk

+ sin(ky(1 + ;))1] | (2.32)

The power supplied by the source (2Pa evaluated at y = 0) is less than
that in the undamped case because of the additional phase difference
between the driving force and transverse velocity at the origin. For
light damping the second and third terms in equation (2.32) may be

ignored in the far field and the power flow is seen to decay exponentially

with distance from the source.
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2.7 Torque Excitation of a Uniform Beam

A simple means of applying a torque to a beam is to use a lever
and apply an harmonic force parallel to the beam at the end of the lever-
arm. This arrangement is commonly seen where a machine is supported by
a cantilever attached to a vertical wall, or more generally where a floor

slab is attached to its wvertical supports,

The power supplied to a beam by a torque source is proportional to
the square root of frequency. A torque source, unlike a force source,
will therefore be important at high frequencies. Within the beam the
two components of power flow are, once again, equal in the far field,
but in the near field the power is initially associated with the bending

moment alone,

Consider a wniform infinite beam laying along the y axis of cross-

sectional area A, second moment of area I, Young's modulus E and
--imt6

density p. Let a torque of the form Te per unit length be

applied at the origin in which 60 is a spatial delta function. The
differential equation for harmonic frequency dependence of the form

-lwt .
e iss-

4 2 ‘

IR A 1 9
= St 7 a3 (2.36)
3y

Taking the Fourier transform in the y direction gives:-

4 iy _ _ia
't - kYE = =T (2.35)
. 2
where k4 = wE;A .

The solution is given by the inverse Fourier transform of equation (2.35)

which may be written as:-

_ =T io iay

4

This equation has poles in the same position as in the case of a beam
with force excitation and the same contour (fig. 2.5) may be used for

integration. The displacement is therefore given by:-
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E(y) = ——p [elkY - 7k (2.37)
LETk

The solution consists of a propagating wave and a non propagating near
field.

At the origin, the near field is out of phase with the propagating
wave and, as would be expected from symmetry, there is no transverse

motion.

The instantaneous values of the transverse velocity and angular

velocity for frequency dependence of the form e_lwt are:-

éi(y) - —1wT2[?1ky _ e—ky e—1wt (2.38)
- 4ETk -
and -
: _ wT iky _ . -ky| -iwt
ei(y) = IEk [e ie Je (2.39)

The point mobility at the origin between the driving torque and the
angular velocity may be found by substituting y =0 1in equation (2.39)

to give:-

Je@ -d) _ (1~ i)/a'(Eﬁsé
LETk - 4EI OA

(2.40)

This mobility increases with frequency, behaving at any frequency like

that of a damper and spring in parallel.

2.8 Power Flow in a Uniform Beam with Torque Excitation

The power supplied by a torque source may be found by substituting

the point mobility into equation (1.6) to give:-

2 )
P, = % <§7I;‘)“ i (2.41)

The power flow into the beam therefore increases with frequency, making

a torque source particularly significant at high frequencies.
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The two components of power flow within the beam may be calculated
in the same manner as that used for a force source. The power associated
with the shear force is calculated by substituting the values of trans-

verse velocity and shear force into equation (1.5) to give:-

2
I Y PR 5 o
Pu T TEW [1 eV [cos ky - sin kﬂ] (2.42)

Similarly, the power associated with the bending moment is:-

2
™ “ky o

n T 3L [1 + e 7[cos ky - sin ky:|:| (2.43)
and the total power flowing is given by the sum of these two components

and is:-

(2.44)

The power supplied by the torque source is therefore initially
(y = 0) associated with P » the bending moment contribution, while
there is no power flow in the shear component. The bending moment contri-
bution decays in the near field transferring power to the shear component
Pu" In the far field both Pm and Pu carry equal amounts of power
in a similar manner to that found in a beam with a force source. The
effect of damping on the power flow may once again be found by introducing
a complex Young's modulus and a complex wavenumber. By writing the wave-
number as k(1 + i) where, to first order, 4r = n, the displacement of

the beam may be written as:-

Ey) = T(1 + 2i7) [e—kycelky _ e—kye—lky;1 (2.45)
4EIk

The motion of the beam therefore decays exponentially with distance from
the torque source. Calculating the two components of the power flow

for the damped case gives, after some algebra:-
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2 |
o] -2k <2ky Ry (14D)
Py T IE [e ze e [cos(ky(1 + 7))

- sin(ky(1 + £))](1 - ;)] (2.46)
for the component associated with shear, and

2

- sin(ky (1 + £))](1 + 3Ci} (2.47)

for the component associated with bending.

The total power flow is thus:-—

P = P + P
a u m
2
|7 -2k -2k “ky(1 +
= 16E1kw [e Ve s 1™ 4+ 2ge y( 2 [cos(ky(1 + ©))
- sin(ky(1 + g)j]. (2.48)

The power supplied by the torque (2Pa evaluated at y = 0) 1is thus
greater when there is damping compared to the undamped case. If
the damping is small then only the first term in equation (2.48) is

important and this is an exponential decay with distance from the source.
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CHAPTER 3

FLEXURAL WAVE PROPAGATION AND POWER FLOW IN PLATES

3.1 Introduction

There are three components of power flow within a plate carrying
flexural waves. As in a beam, any element of the plate is acted upon
by a shear force and a bending moment both of which transmit power.
However, in a plate there is an additional bending moment, due to twist-
ing, which may also transmit power. The shear force and bending moments
must be considered as stresses, because of the two dimensional nature of

a plate and therefore the power expressed as an intensity.

A transverse force source or a torque source acting on an infinite
plate create a cylindrical propagating wave, which carries energy, and a
nonpropagating near field. These two types of sources, the power they
supply and the power propagated will be considered in the following
sections. Exact solutions for an infinite plate excited by a transverse
force are available in terms of Hankel functions [f]. However, these
solutions will not be used but instead approximate solutions will be
employed. These approximate solutions are more easily manipulated and
will be directly comparable to the more complex structures studied later.
A particular problem is encountered with torque sources where it is
found that the classical plate equation is not applicable; an approximate

solution is however given.

For the case of force excitation of a plate the wave propagation
and power flow are given in reference [7]. The calculations will be
repeated here using different methods and in a manner that enables
general equations for wave propagation and power flow to be developed.

These general equations will then be used extensively in the following

chapter.
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3.2 Flexural Vibrations of an Infinite Uniform Plate Driven by a
Transverse Driving Force

The wave equation for a plate acted on by forces and torques is given
in Appendix III. For a transverse point force applied at the origin and
. . -iwt , .
for harmonic time dependence of the form e the plate equation may

be written:-

velx, y) - w?

eh - F

where V4 is the Laplace operator squared, h the plate thickness,

p the volume density and B the bending stiffness which is given by
h3E

B = [ .
12(1 - v3)

(3.2)

where v 1is Poisson's ratio. The force is of magnitude F and 60

is the two dimensional Dirac delta function.

It has been assumed that the plate is thin and therefore that shear

and rotation within the plate can be neglected.

The Laplace operator in equation (3.1) may be written in either
Cartesian or polar coordinates. Using Cartesian coordinates and taking
a two dimensional Fourier transform (defined in equation (2.3)) of the

plate equation gives:-

2. n
4 2 2 L% _ woenh ¥ _ F
Exx + 20 o + o 12 E =3 (3.3)

for an infinite plate where o and ay are the two coordinates in

wavenumber space. This may be rewritten as

L, ]
- - (3.4)
2Bk2 [ o 2 + o 2 _ k2 o 2 + o 2 + k2

where k 1is the free plate wavenumber defined as:-

5 (3.5)
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The inversion integral (equation (2.4)) is a double integral; integration

with respect to o will be considered first. This integral has poles
12 2
-0 an

at d i 2 + ayz and therefore a contour integration

may be performed directly to give:-

© jo y ix¢(2—a 2 ioy -x 2+a 2
Fi e 7 y e 7 e y
E(X’Y) = 5 -

e
da
A Y ayp 2ivk? + ayz y

(3.6)

Integration with respect to ay is difficult due to the multivalued
nature of Véz + ayz. A contour integration could be performed but the
contour would have to be indented to exclude the branch points at k and
ik and therefore does not lead to a simple method for solving the
integral. Two special solutions of the integral will be considered -

the response at the driving point and the response in the far field.

3.3 The Response at the Driving Point of a Plate with Force Excitation

For this case x =y =0 in equation (3.6) and the inversion

integral simplifies to:-

[>+]

Fi

1 1
\ - do (3.7
SBkzn !; Vﬁz - ay ivﬂz + 0 y

y

£(0, 0) =

In order to perform this integration it is necessary to give meaning
to the square root function Vﬁ -a 2. This may be done by enforcing
the condition that an outgoing wave decays towards infinity giving the

square root function the values:-

2 a2 IVéz - ayzl for a 2 . k2
2 a 2 ilVﬁz - ay | for o 2 > k2
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The value of the integral for ayz = k2 may be found by defining a

Cauchy principal value at this point.

The response at the driving point is eventually given by:-

g0, 0) = Ei (3.8)
8Bk

The mobility at the driving point is therefore:-

= 4. - 1 (3.9)

SBQ?- 8¢§ph

This mobility is purely real and is independent of frequency. The point
response of an infinite plate excited by a transverse force therefore
behaves like that of a viscous damper at a11 frequencies. From symmetry

it is immediately seen that there is no rotatlon at the driving point,

3.4 The Response in the Far Field of a Plate with Force Excitation

Away from the source for large values of x and y the exponential
terms in equation (3.6) dominate. An approximate solution based on the
me thod of steepest descent [10 11] is therefore highly applicable,
Considering the two terms of equatlon (3.6) separately and by making the
substitutions:-

r cos ¢
r sin ¢ ‘ ' (3.10)
k sin q

a
y

to convert to polar coordinates r and ¢ the first term in equation

(3.6) may be written as:-

L .
-— - Jo

2
I = f ke costa = 0y (3.11)

m .
- 4 jo
2

The path of integration to this substitution is shown in the complex q
plane in fig. 3.1.
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A saddle point of the exponent occurs at q = ¢; deforming the path
of integration to pass through this point according to the method of

steepest descent enables a first order solution to be obtained. The new

path is:~-
cos(Re{q} = ¢)cosh(Im{q}) =1 (3.12)

‘which is sketched on fig. 3.1. The approximate solution to equation (3.10)

is therefore:~-

. T
i(rk - ZO 2

P (3.13)

The second term in equation (3.6) is solved in a similar manner.

Making the substitution

X =r cos ¢

y = r sin ¢ (3.14)
o_ =%k sinh
y q

enables the second term to be written as:-—

[

I, = f erke—cos(lq * ¢)dq k (3.15)

The saddle point for this integral is at q = 0 + i¢; the path of inte-
gration deformed to pass through this point is shown in figure 3.2. The

approximate solution of this integral is thus:-

_ ~rk /27
12 = e — (3.16)

The complete solution in the far field in polar coordinates may now be

written as:-

. o ik - D _
E(r, ¢) = SF;Z ?Izc—'rr [e 4 + ie I‘k] (3.17)
) B

The second term decays with distance from the origin and will not be

important in the far field. The first term is that of a propagating
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cylindrical wave. The amplitude of the cylindrical wave decreases with
distance being inversely proportional to the square root of the distance

from the driving force.

3.5 Power Flow Intensity Due to Cylindrical Waves in a Plate

As will be shown, point sources on plates or beam stiffened plates
create cylindrical wavefields. Since these types of structures are con-
sidered later general equations for the power flow associated with a
cylindrical wave will now be derived. Consider a polar coordinate system
coordinates r, ¢ with a source at r = 0. A cylindrical wave in the

far field of an infinite plate may be represented to first order by:-

i(rk -
E(r, & = LF—— £(4) (3.18)
rk

where f(¢) 1is a function representing the angular distribution amplitude
of the wave around the source. If £f(¢) 1is a constant then the cylindri-
cal wave will have the same amplitude for all points of equal radius from
the source. If the source has directional properties the variation of
amplitude for different angles is given by f(¢). A section of the

plate normal to the radial or circumferential direction has a shear force,

a bending moment and a twisting moment acting on it.

The twisting moment is a bending moment which does not occur in
beams but occurs in plates because of the Poisson effect. The two bending
moments act at right angles to each other, the complete set of forces on
a plate element being shown in figure A.3. Since only plates of uniform
thickness are considered here the shear force and the two bending moments
may be expressed as force or moment per unit length. The power flow

intensity is therefore also derived as a power per unit length,

There are thus six components of power flow intensity at a point in
a plate (three in the radial direction and three in the circumferential
direction) each given by the time average of force (or moment) with

velocity (or angular velocity) according to equation (1.5).
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The equations for the shear force and bending moments in the radial
and circumferential direction are given in Appendix III. In developing
equations for the power flow intensity only first order terms in kr
have been retained. The subscripts u, mand T will be used to indi-
cate power flow intensity components associated with shear bending and
twisting and an additional subscript r or ¢ will be used to indicate

the radial or circumferential directions.

The components of the power flow intensity in the radial direction

are:-
= 1 £
Por zRe{UrzE } (3.19)
P = Jrefn (- Eyx) (3.20)
mr ré or '
- 128,
P §Re{Mrr(r ar) } (3.21)
The asterisk denotes the complex conjugate. The shear force U and

the bending moments Mr and Mrr (each per unit length) may be found
in terms of the displacement of the plate by employing relations (A.16)-

(A.21). The components of the radial power flow intensity are thus
found to be:- ‘ '

2 2
_ BlE(N]T wk
Pur = > & (3.22)
2 3
_ BlE(®]T uk
Pmr - 2 rk (3.23)
2 3
_ B(1 - D) | 3f(¢) wk
P = (3.24)
rr 2 (rk)3 (rk)3

where only terms of first order in rk have been retained. As in a
beam the shear component Pur and the bending component Pmr are equal.
The power flow intensity associated with each component decreases with
increasing distance from the source. The twisting component PT
decreases particularly quickly because of the term in (rk)3 in the

denominator. For this reason the twisting component of power flow will
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. . . | 2

be of no importance in the far field unless the value of l —%%QL

is particularly large (as, for example, at a discontinuity).
The power flow intensity in the circumferential direction is calculated

in a similar manner. The components of power flow per unit length are
thus:-

Pup " %Ré{U¢z£*} (3.25)
B 1 ag

Pm¢ = 1Re{M (r 3¢) } | (3.26)
. irefw (o 3E ~

PT¢ = gRe{M¢¢( Br)*} (3.27)

Assuming the cylindrical wave form of equation (3.18) the internal
shear forces and bending moments may once again be calculated by u31ng

relations (A.16)-(A.21). The components of power flow intensity are
therefore:—-

3 3 3
B R S T k 3°f
Pu¢ —5 Re{(

) (R gy} (3.28)
/el 99 (k) 3R 39° /iR

3 82 ¢ ~ D)k Kf
P =D ek (p- 2 8f (A -DukTE | den DAL D%} (3.29)
m¢ r(rk)* ¢2 (rk)3 ( k)
p =2 -2) Ré{(_zka - dwe ) 2L fxy ©(3.30)
Té 2 (rk)3 (rk)2 3¢

These three equations are strongly dependent upon f£(¢) - the amplitude
distribution of the wave around the source. For waves whose amplitude

is independent of ¢ these three components of power flow intensity
are zero.

3.6 Power Flow in a Plate with Force Excitation

The power flowing into the plate at the driving point may be

calculated by substituting the mobility into equation (1.6) to give:-
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2
p = JAFI° (3.31)

The total power supplied by the force source is independent of

frequency and inversely proportional to the square of the plate thickness.

Using the results developed in the last section, an equation for the
power flowing in a plate driven by a transverse driving force is readily
obtained. -In this case the cylindrical wave propagates equally in all
directions away from the source and f£(¢) (equation (3.18)) is independent
of angle. From equations (3.17) and (3.18) £(¢) 1is given by:-

iFV/7

£(9) = ——o (3.32)
Bk 2/

Because the wave has no angular dependence, power is only carried by the
shear and bending components in the radial direction. The radial twist-
ing components and the three components in the circumferential direction
are all zero. The power flow per unit length transmitted by the shear

componenf in the radial direction may be calculated from equation (3.22)

and is

. 2 2
P = _I_EJ_UJ__ = _lﬂ__..].'. (3.33)

ur 64mBrk 2  64mvpnB’ ¥

This formula is based on the ASSumption that far field conditions are

being considered and for this case the moment component of power flow
intensity, Pmr’ will equal the shear component. The total power flow
intensity in the radial direction is given by the sum of the two compo-

nents and may be written as:-
2
P = P + P = -——l—F—L__._ % (3-34)

The power flow intensity in a plate with a transverse driving force

is thus inversely proportional to the distance from the source.
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3.7 Flexural Vibrations of an Infinite Uniform Plate due to Torque
Excitation

The classical plate equation is inadequate when dealing with the
response of a plate in the near field of a torque source. A solution
of the particular problem has been obtained by Dyer [12] based on the
more general equation developed by Mindlin. Except for this one problem
the classical plate equation may be used to calculate the power flow
supplied by the source and to calculate the response and the power flow
in the far field of the plate. For completeness, the solution in the
near field from reference [12] will be given but all other calculations

will proceed from the classical plate equation derived in Appendix III.

For a torque source applied at the origin about the x axis and for

harmonic time dependence of the form e Tut the plate equation may be
written as:-

4 4 19

VE(x, ¥) - KE(x, y) = 5% [_Txxdixdiy] (3.35)

k is the free plate wavenumber and B the bending stiffness. Employing
Cartesian coordinates and taking the two dimensional Fourier transform

gives:

e Txx 1ay 1ay
E((l s O ) == [ - :]
x> Ty ZBk2 o 2 + q 2 _ kZ o 2 + 0 2 + kZ
X y X

y
(3.36)

where a and ay are the two coordinates in wavenumber space. The

solution is given by the inverse Fourier transform of this equation.

For the solution at the driving point the angular displacement rather
than the transverse displacement is required. Writing 6 for the angular

displacement and making the small angle approximation gives:-

5

6 = 28 and therefore % = ia §
dy y

The angular displacement at the driving point may now be written as:-
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Nl . 2 . 2

v 1ay 1ay
6 = ff { - :]da do
SwZBkz' o, 2 + a z_ k2 o 2 + 2 + k2 7y

a
(3.37D

- X y x y

As in the case of a plate excited by a transverse driving force, integrat-
ion with respect to a_ will be considered first. This integration

ﬁz ' . A2 2 .
process has two poles at - ayz and at i + ay and again may

be performed by means of a contour integration.

The result of this first integration for the response at the driving

point may be written as:-

(3.38)
The final integral is straightforward except for the singularities which
may be approached, as in the case of a transverse driving force, by

defining Cauchy principal values. The mobility at the driving point is
thus:-

B oy -2 t.:m(b)]' (3.39)
The limit arrives as a consequence of the Cauchy principal value and
implies that an infinite imaginary component of velocity will result from
a torque source. This unsatisfactory result arises from the assumption
in classical plate theory that there is no transverse shear deformation.
The solution to this problem derived by Dyer [12] using a more general

plate equation gives

_ w i4 _ __isL h 2
B= gEra L+ Wmka- e G
' (3.40)

for the point mobility. In this equation the moment is considered to
act over a disc of radius a which is small ((ka)2 << 1). The parameter
L 1is an expression in terms of Bessel functions which approaches unity

when the disc radius a is greater than the plate thickness h.
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Reference [12] gives values of h for a wide range of a/h. For cases

of practical interest the real parts of equation (3.39) and (3.40) are

essentially equal.

Thus the point mobility of a plate due to torque excitation appears

at any frequency to be like that of a dashpot and spring in parallel.

3.8 The Responses in the Far Field of a Plate with Torque Excitation

The solution to this problem is the inverse Fourier transform of

equation (3.36) which may be written as:-—

io io x ia io X
yy X yy X

—Ti aye e aye e
E(x,y)=————-—f{[ - ]dada
‘ 8Bk2'rr2 s o 2 + q z_ k2 2 + 0 2 + k2 7y

X y X y

(3.41)
Performing a contour integration with respect to o results in the

following expression:-

T e e o
E(xs y) = 5 f[: > Y
8Bk Yk - qa
y
io y —»’{2 + a 2 X
e e M
- Y:] da (3.42)
. A2 2 7
i + 0
y
where the residues are due to poles at k2 - ayz and 1V k2 + ayz.

The remaining integral may not be solved exactly but an approximate
solution valid in the far field may be found by the method of steepest
descent. The solution may be obtained in a manner similar to that obtained
for a plate excited by a transverse driving force. By considering the

integration of the two terms in equation (3.42) separately and by making

the following substitutions:-
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X = r cos ¢
y = r sin ¢
o = k sin

y q

the integral of the first term may be written as:-

T,
-2——1
I, = f elkr cos(q - ¢) k sin q dq (3.43)
L

+ 1

)
Except for the term k sin q this expression is the same as the
equivalent expression for force excitation of a plate. The same inte-

gration path (figure 3.1) may therefore be used and the approximate

solution to the first integral is:-

it
i(rk - =)
I, =k %T(l e 4 gin ¢ (3.44)

The integral of the second term of equation (3.42) may be written
as:-
I, = [ erk e-cos(1q+¢)k sinh q dq (3.45)

0

after making the substitutions:-

X =71 cos ¢
y =1 sin ¢
a_ =k sinh q.
y q

The integration path for the equivalent integral for force excitation
of a plate (figure 3.2) may once again be used and the approximate

solution of equation (3.45) is:-

I, = ik/%} e ™ sin 9. (3.46)

35.



This term decays exponentially with distance from the origin and will

thus be of no importance in the far field.

The displacement in the far field of a plate due to a torque excita-

tion may now be written as:-

i(rk - |
£ = §%E./ _if-e 4 sin ¢ (3.47)
TKT

The disturbance thus travels out from the source as a cylindrical wave

with a strong angular directivity.

3.9 Power Flow in an Infinite Plate with Torque Excitation

The power flowing into a plate from a torque source may be found by
substituting the real part of the driving point mobility into equation
(1.6). For practical structures the classical point mobility (equation
(3.39)) and the exact point mobility (equation (3.40)) give the same

result:-

2
_ mIT[

P, = 58 (3.48)
The power flow supplied by the source is proportional to w and will

therefore be very important at high frequencies.

The power flow intensity in the far field of a plate with a torque
source is strongly dependent on the direction in which the torque is
applied. If the x and y axes of a rectangular coordinate system lie
in the plane of a plate and a torque is applied about the x axis then

the principal direction of power flow will be along the y axis.

The general equations developed in section 3.5 may be used to calcu-
late the six components of power flow intensity. In this case the direc-

tivity function of the cylindrical wave £(¢) is given by:-

£(¢) = -B%E /—?sin 6 (3.49)

In the radial direction the power flow intensities associated with shear

and bending are equal and are given by:-
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- JTI2 wk sin2¢

Par = Pmr 64mBrk (3.50)
The twisting component of power flow in the radial direction is:-
2 2 S
P, = I71° a - a)gk cos”¢ (3.51)
r 64nBr3k _

The shear and bending components are inversely proportional to r the
distance from the source with the twisting component decreasing more
rapidly being inversely proportional to r3. The radial twisting compo-
nent is therefore relatively unimportant as a power transmission
mechanism. The dependence of the power flow on sin2¢ results in a
strongly directional far field. The maximum power flow intensity occurs

when ¢ equals 90° which is at right angles to the applied torque.

The circumferential power flow intensities may be calculated from

equations (3.28), (3.29) and (3.30). The shear component Pu¢ is zero;
the other two components, bending Pm¢ and twisting Pr¢’ are
2 [
P - l?l (1 - D)wk sin ¢ cos ¢ (3.52)
mé 64mB rk°
lle .
p = = (1 -Muk sin ¢ cos ¢ (3.53)
Té : 327B r3k3 :

Both of these components are small compared to the radial power flow being

inversely proportional to r3.

3.10 A Comparison between Finite and Infinite Structures

Due to reflections from discontinuities any finite structure will
exhibit resonances which would not be apparent in the response of an
infinite structure. The magnitude of the vibration amplitudes at reson-
ances are controlled by the damping of the structure and generally the
largest response will occur at the first resonance., Thus when a finite
Structure is being represented by an equivalent infinite structure the
largest error that will occur will be at a resonance frequency. The

mobility at the driving point of any finite structure (for e %Y fre-
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quency dependence) may be written as:-

(n)12
] (3.54)

N wnz(l - 1in) - w2

A
F

where 0 is the real resonance frequency, n the hysteretic loss factor
and w(n) is the amplitude of the mode shape at the driving point (see
section 6.2). At a low frequency resonance, for light damping, the
contribution of off-resonant terms is negligible compared to the magnitude
of the term at resonance. Thus the driving point mobility of a finite

structure at resonance may be written as:-—

(n)q2
v —-———[w ] (3.55)
F o w N |
n
if there is a wide frequency spacing between resonances. It may be seen
that the mobility value is largest for the lowest value of resonance

(n)

frequency assuming ¢ does not vary significantly for different

resonarnces.

The largest peaks in the mobility spectra of finite beams and plates
have been calculated. These peak mobility values represent a worst case
if a finite structure is modelled as being infinite. Table I contains a
list of the peak mobilities and also a list of the ratios of the peak
point mobility of the finite structure to the point mobility of the
infinite structure. The ratio is written in modulus form rather than

as a complex quantity.

For torsional and longitudinal waves the response was calculated

at the mid-point of a beam with clamped ends. For flexural waves a beam
with simply supported ends and excitation at the midpoint was considered.
In the case of torque excitation the second resonance frequency was used
because a torque excitation at the midpoint of a beam will not produce
any motion at the first resonance frequency. When considering a finite
plate it was assumed that the plate was rectangular and simply supported
at the boundaries with excitation applied in the middle. Once again it
was necessary to use the second resonance frequency when considering

torque excitation. The ratio of the mobility of the finite structure at
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resonance to the mobility of the infinite case takes a particularly

simple form, in most cases being inversely proportional to the loss

factor.
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CHAPTER 4

WAVE PROPAGATION AND POWER FLOW IN BEAM-STIFFENED PLATES

4.1 Introduction

Beam-stiffened plates are frequently used components in all common
structures and are therefore a most important type of foundation. In
this chapter an analysis is made of an infinite plate to which a single
infinite beam is attached. Three types of excitation each applied to the

beam are individually examined.

Consider an infinite plate laying in the x-y plane of a rectangular
coordinate system with an infinite beam laying along the y-axis (see
figure 4.1). The first excitation considered is a force normal to the
plate, the second a torque applied about the x axis and the third a

torque applied about the y axis.

The general conclusion from these calculations is that the power
flowing into the system is controlled by the beam while the subsequent

flow of power throughout the structure is governed by the plate.

The response of a beam stiffened plate due to force excitation has
been analysed in the near field by Lamb [13] and in the far field by
Kovinskaya and Nikiforov [14] and Fahy and Lindqvist [15]. The response
due to torque excitation and the power flow in the beaﬁ and plate are not
considered in these papers. It is assumed in these references and in
the following analysis that there is pure flexural wave motion in the

plate and that the beam may carry flexural or torsional waves.

The response of the structure is obtained by a novel method in the
analysis which follows below. The method used in references [13, 14, 15]
modelled the plate by cutting it along the y axis and making two semi-
infinite plates on the boundaries of which forces and torques are applied.
The motion of the beam laying along the y axis was then deduced from the
exciting force and the reaction of the two semi-infinite plates. The
analysis used here makes use of the more general plate and beam equations

derived in Appendices I, II and III. The beam and plate are considered
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separately and the response of each due to a general line excitation
determined. The combined motion of the beam and plate are then found
by satisfying compatibility relationships. In this manner the responses
are calculated in much the same way as when joining components using

mobility methods.

It is assumed that the beam and plate respond in simple bending or
torsion and that there is no additional internal wave motion (for example,
relative motion of web and flange in an I-beam stiffener). This assumption
and the effect of a non coincident neutral axis in the beam and plate have
been considered by Nilsson [16] and shown to be valid for low frequencies.
The onset of internal wave motion marks the upper frequency limit of

applicability of the following analysis.

4.2 Formulation of the Equations for the Response of an Infinite Plate
Stiffened by an Infinite Beam

The response of an infinite, beam-stiffened plate to three types of
excitation is considered in this section. The excitation in each case
is harmonic with a wave propagating in the positive x direction written
ei(kx - wt)

as . The beam and plate with the forces acting on them are

shown in figure 4.2. The plate laying in the x, y plane has a line
excitation of forces and torques along the y axis due to the presence of

the beam. The equation of motion of the plate may thus be written as:-

4 4 1 3 -9
Ve () - kT (xy) = N [F, 08, + 53T, 08 - 5T, (6] |
(4.1)

¢

The subscript p is used to denote the properties of the plate, the sub-
script b being used for the beam. Fp(y) is the normal force per umit
length applied to the plate, Typ(y) is the torque per unit length
parallel to the y axis and Txp(y) the torque per unit length parallel

to the x axis. All these forces and torques are applied along the y-axis,
the delta function 6x giving them the correct dimension of force or
torque per unit area. kp is the free plate wavenumber and Bp the

plate bending stiffness.
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In general, the beam may carry both flexural and torsional waves.
It is assumed that these two types of wave motion are uncoupled, which
is valid if the beam has a symmetrical cross-section. The equation of

motion for beam flexure is given by:-

4

3°& (¥) -
S gy - L 3
oyt kg0 = g;'[?b(y) 55 (T )] (4.2)

Fb(y) is the force per unit length applied to the beam, Txb(y) the

torque per uwnit length (see figure 4.2), kb the beam wavenumber and

By (= EI) the beam bending stiffness.

The torsional motion of the beam is given by:-

2
37 6(y) 2 1l -
__;;7— +k “6(y) = @ [- Tyb(yij (4.3)

where. 08(y) 1is the angle of rotation of the beam about the y axis, Tyb
the applied torque per unit length, GQ the torsional stiffness for the

~ beam and kt the torsional wave number.

The equations for equilibrium of forces and torques are:-—

Fo6y = Fb(y) + Fp(y) (4.4)
TXO(SY = T, (y) + Txp(y) (4.5)
Tyocsy = Tyb(y) + Typ(y) (4.6)

where Fo’ TXO and Tyo are the force and the torques applied at the
origin which excite the structure. The spatial delta function &  enables
each point excitation to be expressed as a force per unit length or a

torque per unit length. Continuity of.diSplacement and slope is enforced
by the relations:-

5O = & (x N (4.7
3E_(x,y)
o(y) = - ‘iﬁ%“““ <=0 (4.8)
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The above set of equations may be solved by evaluating the Fourier
transform in the y direction and substituting for the various unknowns.
To obtain the Fourier transform of the plate motion in the y direction

it is first necessary to take the two dimensional plate Fourier transform
and then inverse transform for the x coordinate. The two dimensional

plate Fourier transform may be written as:-

", v v
by 1 Fp + iOLXTyp - iOLyTXP
g(a’u) = o (4.9)
PPX Y B 0?40k D@ iral-1?
X y P X y P

N Y] N . .
Because F_, T and T are independent of a the inverse transfor-
] P ypP Xp X
mation for this coordinate may be performed without difficulty. After

contour integration, the plate Fourier transform in the y direction is:-

L2 2
1 - X
. (% + i 2-a2"}' —ia"\f‘ e P y
¥ = 1 P P y __yp AR S
E (x, o) 9
P 7 48k L 2,2
p y
2 2
- + a X
1(% - 2 + Q 2% - 1o % e P y
. P p yp _ Uy x ](4_10)
k 2 + o 2
P

The remaining equations (4.2, 4.3) are only dependent on y and may be
transformed to produce a set of linear simultaneous equations. After

much algebra, the unknowns in equation (4.10) may be eliminated to give:-

51
iV£ 2 - O 2 X 1 2 - O 2 X

¥ = - 3 P y p y
Ep(x, ay) (Fo 1ayTxo)e D1 + Tyoe D,
S B 551
—w/{cpz + ayz X -»’{cpz + ay2 x
+ (F0 - 1ayTxo)e D3 + Tyoe D4
(4.11)

where Dl’ Dy, D3 and D4 are all functions of ay and may be written as:-
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D, =
1 4 2 2 { 2 VA
Bb( + ay + 1 -a )
2 2
+ o
N P y
4 4 .n P 4 4 1 i .
o -k, T -1i2 (k -a ){ - 7-=?==-=?g
Y b Bb P y JE - o k™ +a
P y P Yy
(4.12)
. -1
D, = ~ B
7 DL ALTTTTT 22 oA 2 7 z_ 2"
GQ(¢(p + uy + 1vﬁ? a ) (a kt + 2 GQ{wﬁp + 0 1/£ ay )}
(4.13)
D3= 1
B. ( 2 0l +i z_ a 2)
b p y P y
1v k 2 - o 2
x = P (4.14)
ay& - kb ~i2 §E{kp4 _ y4) { 1 - i -}
b e 2-.2 Je?2.,,2
y P y
D4 = —Dz (4.15)

The solution of this problem, the displacement of the beam and plate, is
given by the inverse Fourier transform of equation (4.11). The overall
response of the structure is a linear superposition of the response to each
excitation. In the following sections the response of the structure to
each separate excitation will therefore be considered. It is not possible
to obtain an exact solution for any of the inverse Fourier transforms; thus
approximate solutions for the point response and the respnnse in the far

field will be considered.

4.3 Force Excitation of an Infinite, Beamstiffened Plate

Setting TXo = Tyo = 0 in equation (4.11) and considering the inverse
Fourier transform with x =y = 0 gives the equation for the point response

of the system. This may be written as:-—
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o

F
_ 0 1
EP(O, 0) = f

278 B
A TR AP AL LY
y b B, y
y
(4.16)

This equation is the same as that deduced by Lamb [13] who also obtained

an approximate solution by means of contour integration. The contour used

is shown in figure 4.3; it includes the two poles of the integral and is
deformed along two branch cuts to exclude the branch points (at o = k
and o = ikp), where the square root functions are not analytic. The
integral is given by the sum of the residues minus the extra contribution

where the integral has been deformed along the branch cuts. On examining

the terms of the integral, Lamb found that Bpﬂgbka was small compared to

unity and proceeded to evaluate the integral to first order in this
coupling parameter. The position of the poles was found by Newton's
b and ikb. The

branch cut integrals may be evaluated after having been simplified to

method, the first estimate of their position being k

first order terms. The complete result given by Lamb for the driving

point mobility is:-

4B 2
B —S s (+i-—P {1+ 3-s -1

COS S
4Bk, Bk 262/ - &2

2 .
+ —3 5 sinh s (4.17)
257Vl + s
where s = kb/kp' This result is very similar to the point mobility of

a beam the difference being in an additional imaginary term. At high

frequencies the coupling term BpA@bkg is very small and thus the
mobility will deviate from that of a free infinite beam only at low

frequencies.,

The response in the far field is best determined by considering

equation (4.11) with TXo = Tyo = 0; the equation then reduces to: -
FO . iVﬁpz - ay2 X iayy —Vépz + ayz X iayy
Ep(x,y) =5 f D,e e + Dge e da

-—00

(4.18)
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An approximate solution to this integral has been obtained by Kovinskaya
and Nikiforov [14] using the method of steepest descent. The solution
obtained is only concerned with the wave field excited in the plate, the
motion of the beam being ignored. For the purposes of this study it is
important to discover whether the beam or plate is the important element
in power flow. The far field of the beam—plate system has therefore been

analysed in a manner similar to that in reference [14] but in more detail.

Equation (4.18) is similar to equation (3.6) - the response of a
plate to force excitation - and the method of steepest descent is
applicable. However, care must be taken with the terms D1 and D3
because these contain poles and are therefore not always slowly varying
compared with the exponential term. The standard coordinate transformation

may be made:-

a = k_ sin
y P d
X = T cos ¢
y = r sin ¢

The first term of the integral of equation (4.18) thus reduces to:-

ik_r cos(q - ¢)
kp f De P cos q dq (4.19)

The path of steepest descent is the same as that found for a point
excited plate and is shown on figure 4.4 together with the poles of D1
and the undeformed contour. It may be seen from the figure that according
to the value of ¢ the poles may lie either to the right or left of the
steepest descent path. If the path of integration has to be swept over a
pole to reach the steepest descent path then a contribution from the pole

must be included in the solution for the integral [11].

The y axis along which the beam is laying corresponds to ¢ = 90°
and for this angle it can be seen that contributions from the poles must
be included. This extra term in the solution of the integral thus
corresponds to a narrow zone of the structure containing the beam along

which an extra wave propagates. As in the case of an infinite plate with
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force excitation, the solution of the integral along the path of steepest

descent is a cylindrical wave of the form:-

; -
e1(rkp 4)
w(r, ¢) = £(¢) (4.20)
rk '
p
where in this case
Fs
£(¢) =
Bb/E?(Vl + sin2¢ + 1 cos ¢)
. . 2
ik cos ¢ Y1 + sin“¢
X = -
b . 4 4 _ .. p. 3 . 2 2., 1 i
k_" sin'¢ - - 2i k © (1 +sin"¢) cos“¢p{ —— - }
P “ B P 05 ¢ N, sinZg
(4.21)

This is the solution found by Kovingskaya and Nikiforov. The additional term

due to the contribution of the pole will be given later.

The second term of equation (4.18) may also be evaluated by the method

of steepest descent.

The transformation to polar coordinates may be achieved by means of

the equations:-—

X = r cos ¢
y =r sin ¢
= k sinh

% T % d

The complex q plane showing the path of steepest descent and the position
of the poles of D, is shown in figure 4.5. Once again it may be seen that
in order to move the path of integration to the steepest descent path it
may be necessary to pass over a pole. The contribution of the pole must
then be added to the solution. The result of the integration along the
path of steepest descent in this case results in an exponentially decaying

wave which will be of no importance in the far field.

The contribution of the poles will now be considered. The position
of the two poles of D1 and D3 has been calculated by Lamb [li] in
conjunction with the point excitation of a beam-stiffened plate. In the

oy plane their position is:-
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lB A - st /f*—"—ﬂ /f~———ﬂ '
p1=kb1+—2-B~—k——-3———{1+S ~ 1Vl - s (4.22)

b b°

B vl -
ikb 1+ ' S {Vl - s - ivl + s (4.23)

2B kb

These pole positions have been calculated to first order in the small

i

Py

coupling parameter Bp/(Bbkb). Both poles have an imaginary part, the
imaginary part of P, being particularly small. The existence of the
imaginary part of the pole means that the contribution to the far field
response will decay with distance and these terms may not be important

at very large distances from the source. However, the criterion for the
far field of the plate is that kpr >> 1 while the criterion for the

. beam is kby *>> 1. Since kp is generally much larger than kb’ exponen-
tially decaying terms for the beam will still be important in the plate

far field.

There are four contributions to the response in the far field arising
1 and D3.

imaginary part which will produce a rapidly decaying field and will there-

from the two poles in each of D The pole P, has a large
fore not be considered. The pole P, produces a slowly decaying propagat-
ing wave in a narrow sector which includes the beam. Only the response of
the beam will be considered here, this being the most interesting part of
the additional contribution. The motion of the beam is best calculated
from equation (4.18) and by working in ay space rather than q space,

With x =0 the problem reduces to solving for the residue of the

integral
Fo
Ep(o’ Y) = ‘2—,"
o ia y
X e Y o
[: b 1232 4, 1 i
—o B |a " - (k -a )= - -
bLY b b y V&pz - a;zt v@ £ 4 o 2%}

at the pole Py Recalling that the coupling parameter B /(B ) is

small, a first order approximation may be found which results in:-
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Fi iB 2 2
: s” =3 . s + 3
ABbkb ZBbkbs (L -5s%) (1 +s7)

i, B (1 - iy

X e 1+

3 [kl + sz)% -i(1 - sz)%})y
2B ks (4.25)

The general nature of the wave field in a beam stiffened plate may
now be discussed. In the plate there is a cylindrical wave given by
equation (4.20). In addition, in a narrow sector on either side of the
beam there is an additional contribution which must be added to the
cylindrical wave. A sketch of the wave field is given in figure 4.6.

An analysis of the shape of the cylindrical wave field shows that at
¢ = 90? (along the beam) there is no motion. The direction in which the
cylindrical wave field is a maximum is given by [14] and occurs for that
value of ¢ for which:~ |

k

sin ¢ = EE i (4.26)

P

This condition corresponds to wave trace matching between the beam and
the plate. The cylindrical wave does not contribute to the motion of
the beam, the response here being given by equation (4.25). This
equation indicates that along the beam a wave propagates with a wave
speed slightly less than the free beam wave speed and an amplitude

which decays with distance according to the relation:-

B (1 - shia + sHt

attenuation = -8.69 3 dB/metre 4.27

2Bbs
By setting Bp = 0 (no plate stiffness) in equation (4.25) the relation
correctly degenerates to the response of a free infinite beam as given
by equation (2.18). The attenuation of the wave in the beam is due to
radiation into the plate and from equation (4.27) it is seen that this
is independent of frequency. A case study made by Fahy and Lindqvist [}i]

of an infinite beam stiffened plate includes a calculation of the attenuation
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along the beam. The calculation was performed by employing a computer
to solve the equations of motion for a particular structure at various
frequencies. The results given in reference [15] for a structure of
shiplike dimensions demonstrated that the attenuation was essentially
independent of frequency with a value of approximately 2 dB/metre.
Equation (4.27) gives an attenuation of 1.4 dB/metre for the shiplike

structure. The dimensions of the beam and plate are shown in figure 4.7.

4.4 Power Flow in Beam-stiffened Plate with Force Excitation

The power supplied by the source may readily be found by substituting
the point mobility, equation (4.17), into equation (1.6). The power

supplied by a point force is thus:-

2 2 |
p o= AE° est o E[Ce (4.28)

s 8pAVa EL 8EIkb3

The characteristics of the plate do not enter into this equation, the
power being the same as for an uncoupled beam. The power supplied
decreases with increasing frequency being inversely proportional to the

square root of frequency.

In the far field, the power carried by the beam may be calculated
from the internal shear force and bending moment in the beam. The power

associated with each of the components is the same, the total power, the

B/l-s‘»/1+s y

4 2

B (3 + 35 + 287) B sJ

P, = J—EL‘”—— [- :le b (4.29)
168, k_ s3A + s2

sum of both components, being:-

B
where only first order terms in E—E—— have been retained. The power

in the beam thus decays with dista%ce, power being radiated into the plate.
The amplitude of the power is dependent on frequency; for high frequencies
the coupling parameter Bp/(Bbkb) is very small and the amplitude
approaches that of an uncoupled beam. Thus it may be seen that the
majority of the power is initially associated with the beam and that the

power is radiated into the plate as propagation along the beam occurs.
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At very large distances from the source the power in the beam will be
negligible compared with the power in the plate. In order to establish
which of the beam or plate is more important as a transmission path it

is possible to find a position along the beam at which half the power
supplied by the source is transmitted by the beam. For positions further
from the source than the half power distance the beam will be less signifi-
cant than the plate as a power transmission path. By equating the power
transmitted in the positive y direction along the beam (equation (4.29))

to one quarter of the power supplied by the source (equation (4.28)) the

half power positions are found to be at:-

B 53

- b
yy = F 71 5T
2 Bp(l -s)%(1 +s)°?

e

iog

e B (3 + 2s% + 3s%) (4.30)
L - P

1
2Bbkbs3(1 + 591

This distance is frequency dependent because of the term in kb; ¥,

2
increases with increasing frequency becoming asymptotically independent
as the coupling term B /(Bbkb) becomes small. For the structure analysed

by Fahy and Lindqvist 15J (figure 4.7) the half power distance is at
0.4m at 250 Hz and 1lm at 500 Hz.

The distribution of power flow intensity in the plate is difficult
to compute exactly because of the complexity of the angular dependence
of the cylindrical wave. In the radial direction in the far field the
shear and bending components will carry equal amounts of power. Assuming
the twisting component to be smail, which will be valid for large distances,
the radial power flow intensity may be found by substituting equation

(4.21) into equations (3.22) and (3.23) to give:-—

2 4 " .
_ 7| BES v cos” (1 + sin2¢)
P = . S (4.31)
a4 B A Y r o , 4B 7
b kb {§in $ -8 - ——2 g¥l + sin ¢ cos ¢
B k
b b
B

where only first order terms in ﬁEE—- have been retained. This function

is strongly dependent on ¢ the diréction of maximum power flow being

given approximately by

sin ¢ = - (4.32)

P
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4.5 Torque Excitation of an Infinite Beam Stiffened Plate -
Symmetrical Motion

This section contains an analysis of the response of an infinite
plate laying in the x-y plane with a beam stiffener attached along the
y axis to which a torque excitation about the x axis is applied (figure
4.1). The resulting motion is symmetrical because the motion is identical
for both positive and negative x values and the beam carries no torsional
waves. The analysis is similar to the previously examined problem of
force excitation of a beam-stiffened plate but since this problem has not
been considered at all in the literature all relevant details will be
given. The response at the driving point is given first, the response
in the far field being given later. The response of the structure to a
torque of harmonic dependence e—iwt applied about the x axis is given

by equation (4.11) with Fo = (0 and Tyo = Q-

© . 2 2 . 2, 2

Txo i kp - v X 1ayy - kp + y X iayy
Ep(x, y) = —5—-J ~-io e e D1 - 1aye e D3d y
- (4.33)
To calculate the point response the angular displacement at the
driving point is required. Taking the derivative in the y direction and
setting x =y = 0 reduces equation (4.33) to:-
9E T . a 2
Sy xey=0 = 773 f i do
T nb—wal'—k4————pr(k4—a4){ L S S
y b Bb P v Vk ‘. avz] V@ ‘4 a <
P y P y
(4.34)

An approximate solution may be obtained for this integral by using contour
integration and by expanding in terms of the small coupling parameter Bp/(Bbkb).
(Only an outline of the procedure is given below; however, in order to

provide examples of the methods used the details of the integration are

given in Appendix IV.) For simplicity the integral may be written as:-

1%y
I = J () day (4.35)
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g(ocy) o ky (kp

4 1 i
o=
0‘}, -a k" +a
p y P y
(4.36)

The contour of integration on the o plane is shown in figure 4.3.

The contour is deformed to exclude the branch points of g(ay) at k

P
and ikp but includes the two poles P> P, of the integral in the
upper half plane. The solution of the integral may be written as:-—

I = Zﬂi[kes(pl) + Res(pzij - f - J (4.37)
1 Ty

where Fl and F2 are the two paths around the branch lines. The
position of the poles is the same as in the previous problem of force
excitation and may be found by using Newton's method and using k,~ and

ikb as first approximations.

The two pole positions Py and p, are given by equations (4.22)
and (4.23).

The value of the residues are found from:-

2

a
y

a a= p_;p
v, (g 1°°72
y

Res(py3 P,) (4.38)

After much algebra the residues, to first order in the coupling parameter,

are found to be:-

iB 4 _ 2 b2 A
Res(pl) = Zl—- 1 - P 3 {Qs i 1+ 1 _ i 2s + 82 f lgg (4.39)
_ kb ZBbkbs L(I - s7)¢ (1 + s8%)* -
_: 1B P 4 2 4 _ 2 . 1"%'
Res(p,) = — |1 - —E— 125+ Tt 2s T *'} (4.40)
b ZBbkbs L (1L +s89)?2 (1 -s5?% -]
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It is necessary to evaluate the integral along the branch cuts
Fl and F2 from infinity to infinity. Along the branch cuts ay
is always greater than kp and this enables the integral to be written

to first order as:-

4
( ay2 0Lyz Zpr (?.25" - 1)
20 da = y +
T.sr Y T.;T H - E‘2-) 4 kb4 R <}
1°°2 1°°2 0 Y Bbay 1 - 7 )(—25 -1
y a a
y
K b
2ay(32¢ - 1)Bp
y
+ N 7 N 7 day (4.41)
4 b 2, p 3
BbOLy (1 - _—E) ( 5 + 1)
o o
y y

The first and third terms of the integral around the branch cut Pl
do not contribute since they have the same value on both sides of the cut.
Making the substitution ay = kpq the first branch cut integral may be

written as:-

4B @ - 12
= P d d - dgq (4.42)
2 (¢* - s4)z(q2 - 1)
r bp 1

When considering the second branch cut at F2 only the third term of
equation (4.41) contributes and after making the substitution ay = ikpq
the integral reduces to:-—

= 2 | L 4.2, 3 r dd (4.43)

The two branch cut integrals have equal value and opposite sign and
therefore add to zero. The complete solution for the integral I is
therefore given by the sum of the residues. The driving point mobility

for e ““t dependence is thus given by:-
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4 2
/o B " B (25" +s5° + 1)

b . )
_— D 1 -1 - T ] (4.44)
4Bb A [ Bbkbs3(1 + sz)

This result is similar to the driving point mobility of a beam with torque

B =

excitation. The real part of the mobility includes additional term which

will only be important at low frequencies.

The response in the far field of a beamstiffened plate with torque
excitation will now be considered. A torque applied about the x axis to
the beam causes a far field response that is similar in character to the
far field response due to force excitation. Comparison of the equations
for force and torque excitation, equations (4.18) and (4.33), shows that
the torque excitation problem differs only by the inclusion of an
additional iay term. The nature of the far field is once again a
cylindrical wave in the plate and a decaying wave confined to a narrow
sector on either side of the beam. The details of the calculations are
very similar to those used when examining the far field of a force
excited beam-stiffened plate and it is thus unnecessary to repeat the
calculations here. The cylindrical wave is determined by transforming
to polar coordinates and using the method of steepest descent. The poles
of D1 and D3 are in the same position as with force excitation and
once again determine the wave motion along the beam. The non decaying
solution of the cylindrical wave has the form

. kil
i(rk - ZO

e

Ep(r, 9 = £(¢) (4.45)

rk

e

where in this case:-

£(¢) =

1
BbVZn {V¥1 + sin“¢ + i cos ¢}
. 2 . J . 2
—lTxokp sin ¢ cos ¢ V1 + sin” ¢

L. b .. 05 3 . 2., 1 i :
k sin ¢ - k - 21 ==k (1 + sin"¢)cos“¢{ - mema__zﬂf
P P €0 ¢ A ¢ sin ¢

(4.46)

b Bb
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Along the beam the motion is controlled by the pole with the small

imaginary part, the wave motion being given by the residue of:-

X0

ZﬂBb

o, =
Ep( ¥)
io y

iae 7

X f y ddy (4.47)

B
4 4 . 4 4 1 i
- - 2i £ k - . — e
O‘Y kb le(p 0ty)["k —az'/k-2+a2{’
P

-—C0

This equation is obtained from equation (4.33) by setting x = 0, The

resulting motion of the beam takes the form:

T iB 2 4 2 4
gp(o’ y) = X0 5 1+ p 3[ s - s2 : 2 + S + s 2+%2 ]
4Bbkb 2Bbkbs (1 - s%) (1 + 89
ik i(1 - s% %
1 1
x e b [} + P [(1 + 52)2 - 1(1 - 32)2]]y, (4.48)
3
2B. k. s

b'b

The general nature of the response 6f the structure is thus very
similar to the response due to force excitation. The cylindrical wave in
the plate does not contribute to the motion of the beam and in this case
there is no motion along the x axis. The maximum response on the plate
occurs when there is wave tracing between the beam and plate, the approxi-
mate angle being given by equation (4.26). The wave along the beam has

the same decay rate (equation (4.27)) as in the case of force excitation.

4.6 Power Flow in Beam—stiffened Plate with Symmetrical Torque Excitation

The power supplied by the driving torque is given by:-

P:..__.}EQ___I]‘_

. B | (4.49)
oD

I 2 4 2

T |“w B (287 + 87 + 1)

| ~ p( | }
I 3 2 3 i
LBbS {1 +s%) kb

When the coupling factor Bp/Bbkb

power supplied is similar to that of a torque excited beam. At low fre-

is small (i.e., at high frequencies) the

quencies the power entering the system is reduced as the coupling term

becomes more important.
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The power carried by the beam in the far field may once again be
found by calculating the internal shear force and bending moment. The
power flows associated with each of these components are equal; the

total power flowing in the positive y direction being: 4 9.1
EEKl - 871 + s87)*

T % B (252 + 584 + 17 ~ B 53 7
P :.__%2_[1_ p lJe b
ab 168k 2Bk s>(1 + s2)°

b b
(4.50)

once again only first terms in the coupling parameter have been retained.

The half power positions occurring at that distance from the source
where there is an equal amount of power in the beam and plate may be

written as:-

3
Bbs !

log
e 2
B (1 + 3s
8 )

y, =+

1 1 1 (4.51)
2 Bp(l - 54)2(1 + 52)2

1_

2,3
2Bbkbs(1 + s57)

This expression is similar to that obtained for force excitation and
applying it to the structure examined by Fahy and Lindquist [15] the half
power distance is found to be at 2.14 m at 250 Hz and to be relatively

independent of frequency for high frequencies.

The power flow intensity in the plate in the radial direction may
be calculated after assuming that the power transmitted by twisting is
negligible. The power flow intensities for the bending and shear compo-

nents are equal, the total power being given by:-
q p g 8

l 2

_ lTxo pr sinZB c0826(1 + sinze) . ‘s
Par - 2 2 ‘ 2B ] 5 (4.52)
ZHTBb rkp [§in46 - s4 - ~—E~{l + sinze)ﬁcoszéjz
Bk

the direction of maximum power flow intensity is again given approxi-

mately by equation (4.32).

4.7 Torque Excitation of an Infinite Beam Stiffened Plate — Asymmetrical
Motion

The structure considered in this section consists of an infinite plate

laying in the x-y plane with a beam stiffener laying along the y-axis.
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Excitation is due to a point harmonic torque applied to the beam, the
torque being in the x-z plane with its axis coincident with the y axis
(figure 4.1). This type of excitation can create torsional waves in
the beam and will cause the plate to have asymmetrical motion where dis-
placements for negative values of x will be 180° out of phase with
positive x values. Along the y axis there will be no displacement of

the plate or beam but rotation will occur.

In order to understand how energy is transmitted in this type of
system it is useful to consider the beam and plate individually and the
subsequent effect each has on the other when they are joined. Torsional
waves in an uncoupled infinite free beam travel at a speed independent
of frequency. Flexural waves in an infinite free plate travel at a
speed which is proportional to the square root of frequency. At low
frequencies, the torsional wave speed in the free beam is greater than
that of flexural waves in the free plate and thus when they are coupled
the beam will radiate into the plate. At high frequencies the wave
speed in the free beam is less than that in the free plate and when
coupled no energy will be radiated. In the previous two problems of
force excitation and symmetrical torque, excitation of a beam—-stiffened
plate, both the beam and plate carried flexural waves. Flexural waves
in a free beam are faster than flexural waves in a plate at all frequen-

cies and thus, when coupled, the beam always radiates into the plate.

At low and high frequencies, asymmetrical motion of the beam-stiffened
plate tends to be similar to the particular cases treated earlier. At
low frequencies or when the beam torsional stiffness and inertia are
relatively small, the structure behaves like a plate. At high frequen-—
cies or when the plate bending stiffness is relatively small, the system
behaves like a beam under torsional wave motion. For the structure of
ship—like dimensions studied by Fahy and Lindquist [li], the critical
frequency at which the beam and plate wave speeds were identical occurred
at 125 Hz. Thus it can be seen that the frequency range of interest

spans all types of behaviour.

The low frequency behaviour, as in the case of torque excitation of
a plate, is difficult to analyse and no detailed calculations have been
made for the near field response. An approximate solution has been
obtained for the response above the coincidence frequency and this is
given below. Because of the complicated nature of the response, the
structure considered by Fahy and Lindquist is used to illustrate the

problem.
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Setting Fo = 0 and Txo = 0 in equation (4.11) gives the displace~-

ment of the beam and plate which may be written as:-

T o ® iVﬁpz - cxyz X -Vﬁpz + ayz x] iocyy
EP(X, y) = ‘%; [ D2e + D4e e day

-0

(4.53)

To calculate the response at the driving point the angular displacement
rather than the transverse displacement is required. Writing 6 for

the angular displacement, using the relation

- W
6= 9x

and setting X =y = O enables the point response to be written as:-

_ Tyo w 1 _
e(os 0) = do
2

I AR ——R {V Vé } ¢

y t
(4.54)

By setting GQ and kt (beam torsional stiffness and wave number) equal
to zero the equation degenerates to give the response of a plate. Similarly
by setting Bp (plate bending stiffness) equal to zero the equation gives

the torsional response of a beam.

To solve equation (4.54) by contour integration it is necessary to
locate the poles of the integrand and to define a contour which excludes
the branch points at kp and ikp. The pole positions are given by
the zeros of the denominator of the integrand. At high frequencies the
denominator is dominated by ktz and the poles will tend towards this
value. In order to examine the behaviour of the denominator a numerical
analysis was performed using the structure examined by Fahy and
Lindquist [iS]. The denominator may be multiplied out to remove the
square roots and produce a polynomial. This procedure introduces
additional zeros because all the alternative definitions of the square
roots become admissible. The polynomial produced is quartic in az and
the four roots may be calculated for a range of frequencies using
standard computer programs. In order to determine which roots are intro-

duced by the multiplying out procedure the roots may be substituted
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back into the original expression for the denominator with the correct
square root definitions to check that this expression becomes zero.
This test establishes which roots are acceptable and which must be
rejected. The results of this analysis are shown in figure 4.8 for the

frequency range 0-1500 Hz.

The value of kt and kp are also included. It was found that
for frequencies less than the coincidence frequency (where kt = kp) the
denominator has no zeros. For frequencies slighly greater than the
coincidence frequency there is one zero corresponding to a real value of
a at each frequency. Thus there is no torsional wave motion beneath
the coincidence frequency and one unattenuated wave at all frequencies
slightly greater than the coincidence frequency. This result is con-
sistent with the low frequency behaviour being similar to a plate response

and the high frequency behaviour being similar to a beam response.

The second stage in solving the integral of equation (4.54) is to
define branch lines along which the contour may be indented so that
branch points may be excluded. The branch lines must be chosen so that
the subsequent integration around the branch line is solvable. No
branch line has been found which enables the integration to be performed
for frequencies less than the coincidence frequency. For frequencies
greater than the coincidence frequency an appropriate branch line has
been found which enables an approximate solution of the branch line

integrals to be obtained.

A solution to first order for the point response of a beam stiffened
plate with symmetrical torque excitation for frequencies greater than
the coincidence frequency may thus be formulated. The integral of
equation (5.54) may be evaluated along the contour of figure 4.9, the

value of the integral being given by:-

.
= 1= 2ri [Res(p)]| - } (4.56)

where Res(p) is the residue of the real pole and I is the path of
integration around the branch lines. In this case the branch lines
have been drawn so that one branch line integral excludes both branch

points. An approximate value of the pole position may be obtained by
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expanding the expression for the denominator of the integrand in terms
of kp/a. The pole is always greater than kp and by expanding the

square root functions the denominator may be written:-

, k2 ot k2 k4
- T 1 - 1 - 1 -
o =k 4 2Aay 1+ ;Ei' 1 ;RZ cee 1 -4 ;RE § ;EZ' voe]
Yy
y y y
. 2 2
a ~ + 4Ao ~ k 4.57
: % . " ( )
B .
where A = §g~ and terms of kp/a of fourth order and above compared

with unity have been ignored. This gives an approximate pole position.of:-

p = -2A + V4a% 4 1 2 (4.58)

t

which may be seen to approach kt at high frequencies. The residue of
the pole is found from the expression:-
Res(p) = A (4.59)
og(a)
da
y a=p
where g(a) is the expression on the denominator of the integrand.

Evaluating the residue to the same order of approximation in kp/ay gives:-

1

(4.60)
2V4AT + kt

Res(p) =

The branch line integral may be divided into six different integrals,
each corresponding to a different definition of the square root functions,

as follows:-

+10 . .
+0+ik  +0+10 kp 0-i0  -0+ik =01
P [ [ ; Pt
J = + + ]+ : + +
) ; ; ) . -
r +0+1i0 +0+ik 0+10 k -i0 -0~10 -0+ik
p b P

= 11 + 12 + 13 + I@ + 15 + In

By combining integrals with the same range, this may be reduced to three

integrals:
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1 ]
—4A[V§2 - kpz + /42 + kpz_] dy

Il + 16 = (4.61)
k o2+ ktz)z + 8A2[:y2 + AY - kpé}
k
P ~in A P 2
12 + 15 = J = —dy
2 2.2 2 2 2 2 2. 2
0 (v~ + kt ) 4A(YT + kt ) 0 Y~ + 8A kp
(4.62)
k
P -4A1 2 _ az
I, + 1, = P da
38 2 2.2 2 2./, 2 2! 2. 2 7
0 -k + 4A -k k + + 8A"k
(ay e (ay e P v P
(4.63)

where the substitution uy = 1y has been made on those portions of the
branch line that lie along the imaginary axis. To permit integration

of these expressions the integrands may be expanded in terms of kp/kt
and A/kt’ Both of these coupling terms decrease with increasing fre-
quency and are less than unity for typical structures in the frequency
range being considered here. The accuracy of the branch line integrals
will depend on the degree of approximation involved in the expansion of
the integrals and the number of terms of the expansion included. In

the following derivation, terms in kpa/kt4 and Aa/kt4 and higher will

be ignored in comparison to unity.

2.2
In the integral I, + I the term 8A y has a maximum
1 6 2 2.2
2 (7 o+ k)
value at vy = kt of zéf; by expanding in terms of this coupling para-
meter the integral may t be written as:
o Y2 - 2 Y2 + K 2 8A2(2Y2 . kZ) QZ _ k2
Ip v 1g = —4a f i e N S
K O+ k) "+ k) O+ kD)
—
8A2(2y% -k 2y A2 4k 2
- 5 P ay (4.64)

P
2
07+ kD
This integral may be solved exactly by means of a partial fraction expan—

sion. The first two terms may be rewritten as eight terms and the third

and fourth terms as sixteen terms. Integrals I2 + 15 and 13 + 14 may

62.



be expanded in terms of kp/kt and A/kt to the order of approximation

given above to result in

k
P 2
I+I=-—ﬂ k2+y2—-—2Y— 2+y2+ié 4—\{4 dy
2 5 K 4 P K p K 2 P
t o t t (4.65)
and kp
. 2
I,+1I, =~ AAL [ k z az + 20 vV k 2 az + SA Vﬁ 4 a4 do
3 4 kll»-’ P k2 P k2 P
t o t t (4.66)

The first two terms in each integral may be solved exactly and the last

term may be rewritten as:-

k

p 1
[ kp4 - y4 dy = kp3 J V1l - x4 dx (4.67)
) o

The value of this last integral is small compared with other terms and

may be ignored.

After expanding all the terms in the complete solution and ignoring
those which are fourth order or higher and hence are small in magnitude

compared with unity, the branch line integral may be written as:-

LA 1mAk 2 LAk 2
[ == P - P 1og (1 + /D)
k 4 K4 ©
T t t t
/o k -
Ak 2 [—1v2 -1 + EQ E . 3
- —2- 1og ‘ £ R N (4.68)
k L . I
t L_l/? + 1 + EE- J t
t

The rotation at the driving point may be found from equation (4.56) by
subtracting the branch line integral from the pole solution. The driving

point mobility B 1is given by:-
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g = —iwé (4.69)

which may be written as:-

2 02
2 Ak 2A1k
w 1 A 21A D hs)
B = —= + - log (1 + v2)
GQ [ 2k 3 2 4 4 e
t kt 'rrkt Zkt Wkt
“p
ik 2 1/2 - i+ E, s
- P log + —_— (4.70)
27k 4 ¢ kp 3nk 4
iv2 +1i +-L£ t
kt

where the pole solution has also been expanded in terms of A/kp. It may
be seen that for high frequencies this mobility approaches that of a beam

with torsional excitation.

4.8 The Response in the Far-field of a Beamstiffened Plate with Asymmetrical

Torque Excitation

The existence of a real pole indicates a non-attenuating torsional
wave propagating along the beam. The beam in the far field does not
therefore radiate into the plate. However, in the near field at the
driving point, the wave in the beam is discontinuous and energy is radiated
into the plate from this point. At low frequencies, when there is no pole,

all the energy goes directly into the plate from the driving point.

The displacement in the far field may be found from equation (4.11)
with Fo =0 and Txo = 0. The solution, the inverse Fourier Transform,

may be written:-

Tyo [ 1
E (%, y) = |
P 2neQ ) 2 7 2 2
-0 + 0 +1/k T - a
P y p y
—¢4p2+ay2x i kp2 - ayL X 1ayy
e e e ,
. ——57
0L2—k2+2ALV£ +oc2—iV£2—0L]
y t y p y

This integral may be solved by the method of steepest descent as in the
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case of the response of a plate to force or torque excitation. By
writing the equation as the difference of two integrals (each integral
containing one of the exponentials in x) and making the same substitu-
tions as given in the previous problems, the response in the far field
is given by:-
. i
1(rkp - "4-)

£, (65 ) = e £(9) (4.72)

rk
p

where, in this case:-

~T cos ¢
£(4) = 7o

GQV2n (/1 + sinZ8 + i cos $)

x 1 (4.73)

2 . 2 2 / . 2.1 .
k sin -k + 2A(k 1 + sin - i1k cos
b ¢ ¢ o ¢ o $)

An exponentially decaying near field wave is also radiated but may be

ignored in the far field.

A cylindrical wave therefore radiates from the driving point with
approximately cosine dependence. (See figure 4.2). As may be seen by
letting ¢ = m/2 there is no displacement, due to the cylindrical wave,

along the beam.

As in the case of force excitation of a beam-stiffened plate for
values of ¢ approaching =/2 and for frequencies greater than the
coincidence frequency, the path of steepest descent crosses a pole and
an additional contribution must be added to the solution. On either
side of the beam there is a small sector of the plate which has an addi-
tional response due to the rotation of the beam. The response in this
sector decays with distance having the form of a near field and therefore
not radiating into the plate. The rotation of the beam in the far field
may be found by calculating the residue of equation (4.71) due to the
pole and taking the derivative in the x~direction. Using the value of
the pole estimated in the previous section the rotation of the beam is

given by:-
i (-24 + V4A% +
iT

8(0, y) = —4= & (4.74)

GQ
2/4a% + ktz

VA
kt )y
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Thus at frequencies below coincidence there is no wave in the beam
and only a cylindrical wave in the plate with approximate cosine depend-
ence. At frequencies above coincidence there is a torsional wave in the
beam which does not radiate into the plate, the plate response being

given by a cylindrical wave deriving its energy from the driving point.

4.9 Power Flow in Beam-stiffened Plate with Asymmetrical Torque Excitation

At frequencies less than the coincidence frequency no power is carried
by the beam, all the power being radiated into the plate. No formulae
have been found for the driving point mobility at frequencies less than
coincidence and therefore the nature of the power supplied by the source

is unknown.

At frequencies greater than the coincidence frequency the beam carries
a torsional wave along which power is propagated without attenuation.
Some power is also transmitted by the plate, the power being radiated

from the driving point.

Using the approximate value for the point mobility for frequencies
above coincidence, derived in section 4.7, enables the power supplied by

the source, in this case the torque, to be written as:-—

2 y Ak 2
P - S i P A _P._le (4.75)
2/GQJ K, 2k,

This power is the same as for that of a beam alone except for

additional coupling terms due to the plate.

In the far field the power carried by the cylindrical wave may be
calculated using equations (3.19)-(3.24). The power flow intensity in

the radial direction associated with shear and bending may be written as:-—

o
ok -
o WK

-

IZ 2 4":....2
8nr {GQ)

P =P = |T
ur mr vo

c0826

5 1
2 / . -, 2 2 2
[(k 2 sinze - khé)z + AAkp 1+ 31n26(kp2 51n26 - kt) + 8A kp]
i

(4.76)
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This formula is valid for all frequencies above and below coincidence.
As in the case of torque excitation of a plate the power flow intensity

has approximately cosine dependence.

At frequencies above the coincidence frequency the power flowing in
torsional waves in the beam may be calculated from the angular velocity
and the internal twisting moments. Using the approximate value for the
pole and calculating this power to the same order of accuracy as used

previously gives the following value for the power flowing in the beam:-

2 2 .,3
Pa=lﬂ_ E‘Lz'é'“zé’z"'%?] (4.77)
8/GQJ’ t ok kg

It is necessary to determine whether the plate or the beam transmits
more power. By subtracting the power carried in the positive and negative
y directions along the beam from the power supplied by the source it is
possible to calculate the total power radiated into the plate. Writing

Pp for the power radiated into the plate gives:

2
2 Ak 3
PP=PS_2P3=£L_[%_+_.P_3._3A_3] (4.78)
2603 L x> ok

Thus for high frequencies when %— is small it may be seen that

the power in the beam is greater than the power in the plate.
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CHAPTER 5

POWEF. FLOW THROUGH ISOLATCRS

5.1 1Introduction

The vibratory power flowing from a machine through an isolator and
into a flexible foundation is available for radiation from or vibration
in the structure on which the machine is mounted. Previous chapters
have examined the nature of typical flexible foundations and given simple
formulae which approximate their behaviour. In this section, simple
models for the machine and isolator are proposed that enable the amount

of vibrational power flowing into the structure to be evaluated.

Two extremes are used to model the excitation within a machine -
a force source and a velocity source. Each of these sources is assumed
to be constant and independent of the motion of the foundation and iso~
lator. These extremes are used because the excitation which a machine
creates and the extent to which this is modified by the motion of the
machine is difficult to predict and has not received much investigation

in the literature.

Both one and two stage isolation systems are considered, the elements
of the machine and isolator being modelled as masses or springs. The
flexible foundation is treated as having a mobility with a straight line,
frequency dependence when plotted on log-log scales. In practice, a
machine is supported by a number of isolators; however the above simpli-
fications enable the general characteristics of the power flow into the
structure to be evaluated in terms of the principal components of a

machinery installation.

Mass—spring models of machines on flexible foundations have been
considered previously [2, 3, 4} but no attempt has been made to examine
how the design of foundations and isolators controls the power flow from
the machine. The aim of isolation is to minimise the power flowing into
the structure by optimising the isolator design with respect to source
and receiver characteristics so that the power available for subsequent
radiation and vibration is a minimum. Traditional vibration isolation

concentrates on minimising the velocity and force at the foundation by
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optimising only the isolator; this will not necessarily reduce radiation

or vibration in any part of the structure on which the machine is mounted.

The formulae for power flow are presented in a manner which facili-
tates the design of isolation systems. In order to minimise power flow
it is first necessary to design an appropriate foundation. The effective-
ness of various types of foundation is considered in this investigation
so that a suitable strategy may be adopted. For example, the analysis
indicates that special foundations must be built for some machines or
alternatively that some parts of a structure are unsuitable while other
parts more suitable for the mounting of machinery. Once a foundation
has been chosen, the power flow may be further reduced by adjusting the
properties of the isolator. Thus this analysis treats the foundation
and the isolator as two separate elements, both of which must be care-

fully chosen so that there is minimum power flow into the structure.

The results of this investigation are summarised in tables IT and
IITI.

5.2 Power Flow into the Structure

The aim of this analysis is to provide formulae for the power flowing
into a foundation as a function of frequency. If the source contains
only a single frequency then the time averaged power flow from the founda-
tion at the driving frequency may be calculated in terms of the vibration
amplitude of the source and the mobilities of the machine, isolator and
foundation. If the excitation at the source contains a broad band of
frequencies and is described via a spectral density function then the
power flow spectral density may be derived, expressing the average power

flowing per unit bandwidth into the foundatiom.

Clearly the power flow is strongly dependent on the magnitude and
phase of the foundation mobility. In the cases studied in the previous
chapters the mobility spectra were approximately dependent on the fre-
quency to a real power. In general, straight line approximations may
often be made to the modulus of a measured mobility spectrum when plotted
on a log-log scale. Thus the modulus of the foundation mobility may
be represented, to a good approximation, by a law of the form:-

S

8] = Aw (5.1)
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where B8 1is the foundation mobility and A is a positive constant.

The exponent s 1s a real constant which may be estimated experimentally
from the slope of a log—log plot of a mobility spectrum or by calculation.
A complicated mobility spectrum may be represented adequately by a number
of lines, each of the form of equation (5.1). When considering power

flow it is necessary to know both the modulus and the phase or alterna-
tively the real and imaginary parts of the mobility rather than the

modulus alone. By means of Hilbert transforms [ld] it has been shown

by Bode [17] that phase characteristics may be deduced from modulus spectra.
A mobility spectrum of the form of eqﬁation (5.1) will have a phase given

by:-
d(w) = s %-. (5.2)

If equation (5.1) only represents the mobility modulus over a finite
frequency interval and outside of this interval the modulus is different
then the phase will only vary significantly from the above value at the
ends of the interval. The point mobility of a foundation which
has a straight line characteristic when plotted on log-log scales may

thus be written as:-—

B = Ae w = Aws(cos E% + 1 sin E%) (5.3)
As has been shown in section 1.2, the power flowing into a structure due
to a harmonic force is dependent upon the real part of the mobility and

in this case the formula for the power flow is:-—

P =} Re{B}IF‘Z = %AwS[F‘Z cos E% (5.4)
where F 1is the amplitude of the force applied to the foundation.
Since the foundation is passive, no power may flow out of the structure

at the driving point and thus P may never be negative. This implies

that the phase angle is restricted to lie between + %— and - g- and
thus s must lie in the range:~
-1 <s <1, (5.5)
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When s =+ 1 the mobility corresponds to a stiffness or mass line
which represents the extreme cases between which all point mobilities of
this form must lie. Thus if a straight line approximation is made to
the mobility modulus plotted on a log-log scale the phase angle is auto-

. . . ™
matically determined and must be in the range - g-to + 7

It should be noted that in its detailed behaviour the slope of a
log-log mobility spectrum may be outside the range of relation (5.5),
as for example near a resonance. It has been assumed above, however,
that an average line has been drawn through resonances so that the overall

nature of the mobility is represented.

5.3 Single Stage Isolation of a Rigid Machine with a Force Source

Figure 5.1 gives a simple representation of a single stage isolator.
A rigid machine of mass M is supported by a simple massless spring
isolator of stiffness K which isolates the machine from a flexible
foundation of.point mobility B. A force of amplitude F and frequency
dependence etut represents the internal force within the machine. The
force is assumed to be stationary and its spectrum to be independent of

the motion of the machine. The power flowing into the structure may be

written:—
P = ire{8}|1,|?|7|? (5.6)

where TF is the force transmissibility defined as the complex ratio

of the harmonic force at the foundation to a harmonic driving force and
P is the time averaged power flow into the structure. Force transmis-
sibility is widely used in vibration isolation theory [?, 18] to
represent the performance of an isolator. However, since the transmis-—
sibility is also a function of the foundation mobiiity B it is not a

suitable concept for the analysis of power flow. Rewriting equation
(5.6) as:~

P(w) = Q) |Fw) | (5.7)

enables a power flow transmission spectrum for a force source Qf to

be defined. Qf is purely real and only dependent on the properties of
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the machine, isolator and foundation. If the excitation takes the form
of a single harmonic then P 1in equation (5.7) is the total power flow,
alternatively if the excitation is defined via a spectral density

function then P 1is the power flow spectral density.

Writing the power flow in full gives:-

2
P = Re{s; |F| (5.8)
2|1 - =, + iumg| %
w
)
where woz =K is the resonance frequency of the system with the flexible

M
foundation clamped. It may be seen that if B in the denominator of this

expression 1s relatively small then the power flow transmission spectrum
will have a significant peak at w = w3 alternatively if B8 1is large
then there will be no significant peak. Since £ can never have an
average frequency dependence of power greater than or equal to unity,
the term in w2 will always dominate at high frequencies and the power

flow transmission spectra will decrease at approximately w_4.

Substituting the value of £ corresponding to a simple power law

(equation (5.3)) into the equation for the power flow enables the power

flow transmission spectra to be written as:-

W \S
Yﬁ:ﬁ
o
Q = (5'9)
£ w2 w (8+1,2
2Mw0|1 -t iy + i) |
) o)
o)
where v = Mw s+l A cos 5T
o 2
§ = Mw s+l A sin 2L .
o 2

It is not possible to find a method for normalising this equation in any
general manner; the procedure adopted here has been to normalise in
terms of the properties of the isolator and machine so that the effects
of various foundation mobilities can be seen. vy and ¢ are the norma-
lised real and imaginary parts of B8 (B = A cos E% + 1 A sin E%); a
large value of Yy and & corresponding to a very mobile foundation

while a small value indicates a rigid foundation.
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Table II gives the essential behaviour of equation (5.9). The
power flow transmission spectra may be approximated on a log—log scale

by straight lines at high 3~ > 1) and low (E— < 1) frequencies. If
& Wo W

62.+ y2 is small there will be a peak at~%— =°1 where the two lines

intersect. Alternatively if §2 + yz is lgrge a third straight line
may be drawn, the three lines having break points at frequencies above
and below %— = 1. The criteria for small or large (62 + Yz), the
height of the peak, the behaviour of the three lines and the position of

the break points are given in table II. The criterion for small or
W

w
(o]

large (62 + yz) is obtained by establishing whether the peak at =1
is greater or less than the value of the power flow spectrum at the
intersection of the two lines for high and low frequency dependence.
Figure 5.2 gives a sketch of a power flow transmission spectrum for

s = -3 (corresponding to a beam—like foundation) for small and large

2

N

+ Y2)- Exact spectra are shown in figure 5.3 for the
2 2
+ 7).

values of (8§

same values of s and (8

In general, equations (5.8) and (5.9) show that the overall levels
of the power flow transmission spectra are controlled by the foundation
mobility while the spectrum shape is governed by the stiffness and mass
of the isolator and machine. Since the foundation mobility always
appears in the numerator of the power flow equations it is necessary
to choose a small value of A (equation (5.3)) in order to minimise
the power flow. When determining the shape of the power flow spectrum
there are two alternative extremes. Either y2 + 62 is chosen to be
small so that there is a peak in the spectrum or alternatively vy2 + 62
is large and there is no peak but the levels are increased at high fre-

quencies. This choice will be governed by the nature of the force

spectrum in which there may, for example, be specific harmonics which

must be avoided.

The motion of the machine is important since too large a velocity

may be unacceptable. The source velocity is given by:-

wz w s+l
_ ['—*5 - iy + 18 () }
1F

w (o]
V= =
T °

. (5.10)
[1 - S iy s id)(-((:’)—-)s+1:]

w (6]
(o]
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The low and high frequency dependences are given in table III where
it may be seen that the velocity may be approximated on a log log scale

2, 62 for frequencies greater

by a straight line for all values of ¥
than the resonance frequency. Examples of velocity spectra given by

equation (5.10) for two values of (62 + yz) are given in figure 5.4.

5.4 Two Stage Isolation of a Rigid Machine with a Force Source by

Means of a Blocking Mass

This type of isolation involves an additional mass which is placed
between two springs tc form a force attenuating element. Figure 5.5 shows

an idealised configuration with a machine of mass Ml’ two springs K
iwt

and K2 and the additional mass M With a force source of Fe the

9
time averaged power flow into the foundation may be written:-

» - Refg}|F|? 1

: wz w2 M1M2 wlz w22 woz 2

A -=A - =) +iwg o= (5 + 5 - —5 - 1]
Wy W, 1 w w w
(5.11)

2 5%

where O
2
The two resonance frequencies of the system with the foundation clamped

are Wy and W, and Wy > R > Wy e The power flow transmission spectrum

exhibits two peaks corresponding to the resonance frequencies of the

system, which if g8 1is not large will occur at approximately wy and w

The modulus of the denominator of this equation is dominated at high and

9"
low frequencies by the term:-

wz w2
1 - —5) (1 - ——79
“1 )
which only contains parameters concerned with the isolator and masses.
Thus, again, the overall level of power flow is controlled by the foundation
while the particular shape is governed by the isolation system characteris-
tics. The straight line mobility characteristic of equation (5.3) enables

the power flow transmission spectrum to be written as:-—
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w |2
K ' Yﬁ;ﬂ
Q. = 1 o
; 2M1Mz‘”o‘3 w? w2 o | s+3 w,? ‘”22 “’oz 2
(1 - —-59(1 - —~§9 + i(y + 15)(;;‘ 5 5=t T3 T T -1]|
w o) o w w w
1 2
(5.12)
where
_ AMIMZ s+3 ST
Y = % W cos —
1
e L S S
§ = X @, sin >
1

Table IT gives approximate formulae for the low and high frequency depend-
ences and the level of the peaks. Figure 5.6 shows power flow spectra for

s = 0 (a plate-like foundation) for three values of foundation mobility.

At high frequencies, the two stage isolator gives significantly
better power flow isolation (decreasing at 1/w8-s) compared with the
single stage isolator (decreasing at 1/w4_s). However, the two stage
isolator does have two peaks in the power flow spectrum which must be
carefully positioned in order to avoid significant harmonics in the

excitation.

The velocity of the machine and of M, may readily be determined

2
and are given by:~
w? w2 3 MM ‘*’i ‘”g ‘”g
FlioKy[(1 = == (1 = 25) + dw™B — (& + 5 ~—5 = D] + K (6K, + iw)}
Wy Wy 1 w w w
v =
' 2 % w? 3 MM ‘*’% ‘”% “’g
KKy =~ Ml)[(l " A - d e G T 5 1]
_ wq Wy 1 ® w w
(5.13)
F(BK, + iw)
V., = 2
’ K(1_93_)(1_2?_)+.3Mle(“12+“’22_w02_1)]
Al 2 7) T lw bk § 7 3 2 (5.14)

wy w, 1 w w w

For a foundation with a simple mobility of the form of equation (5.3)
there are two resonance frequencies of the structure, the magnitude of

the resonances being controlled by the foundation mobility. Table III

75.



gives the high and low frequency dependence of the velocity of the masses
and the height of the peaks for small values of (62 + yz). Figure 5.7

gives the modulus of the velocity of the machine and figure 5.8 gives the
modulus of the velocity of the isolator blocking mass (MZ) for a plate-

like foundation.

5.5 Single Stage Isolaton of d Madchine with a Velocity Source

An excitation which causes a machine to have the same velocity irres-
pective of the supporting isolator and substructure may be modelled as a
velocity source. In these circumstances the resulting power flow is pro-

portional to the square of the velocity of the machine and by writing:-

P = QV|V|2 (5.15)

the power flow transmission spectrum Qv for a velocity source may be
defined. As in the case of a force source, the power P will be a spectral
density function if the velocity is described as a spectral demsity and a
specific value if the Yelocity is a single harmonic. For a velocity
source of the form Velwt applied to a machine on an isolator of stiffness

K, the power flow into the flexible foundation is:-

'KzRe{B}

K RelB) _ 1y)?
2|iw + 3K|2

v (5.16)
Substituting the value of B given by equation (5.3) into equation (5.16)

enables the power transmission spectrum to be written as:-—

Kws
Q, = Y . 5 (5.17)
2|in + 0 (v + 8) |
where y = AK cos E%
§ = AK sin E%

For a velocity source, the mass of the machine is irrelevant and since this
simple system does not contain any resonant elements there will be no peaks
in the spectra. The low and high frequency dependence and the break point

between these two types of behaviour is given in table II. At frequencies
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greater than the break point the power flow transmission spectrum always
decreases with increasing frequency. However at low frequencies the
spectrum may either increase or decrease depending on whether s 1is
negative or positive. Figure 5.9 gives power flow transmission spectra

for a number of values of vy and for s = -{. In this case with a negative

value of s it is seen that the break point is a maximum in the power

flow transmission spectra.

5.6 Two Stage Isolation of a Machine with a Velocity Source

Figure 5.10 represents a two stage isolator on a flexible foundation

with a velocity source. The power flowing into the foundation due to the
it

harmonic velocity source Ve is:-
W 4 w 2
‘557 6—15 - 1)
2w w_ v .
p - Re{p}|v] 1 o 1
- 2 2 . 2
2w W 2 iBK 2 W
° 7 -2 -—2a-4 -2,
w 2 w 2 2
o wy wy wy
K (5.18)
2 _ 2
where w = —
o M
2
w2 _ El + W 2
1 M2 o)

wlz is the resonance frequency of the system with the foundation clamped

and a kinematic excitation applied to the upper isolator. The parameter woz

is always less than wlz. M2 is the blocking mass which separates the

two isolator springs K1 and K2' Employing the form of foundation

mobility given by equation (5.3) enables the power flow transmission spectrum

to be written as:—

2 Yo 2-s
Wy 4 W y (=)
Qv = (za? G—jz - 1)

w

W Yo, 1-s w2 Yo
o 20Ky |1 = =) ~ iy + 1) ()" A - 5 - =)

Wy Wy w1
(5.19)
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where = 2 cos =
Y 1-s 2
W
o
§ = AK2 sin 25
1-s 2
w
()
This spectrum will have a peak at approximately w = w, the resonance

1
frequency of the system. Table II gives the low and high frequency depend-

ence and the value of power flow at w = Wy At intermediate frequencies
approaching w1 the behaviour depends on whether (Yz + 62) is large or
small and is complicated due to the number of terms on the denominator of
Qv' Figure 5.11 shows power flow transmission spectra for three values

of (72 + 62) which encompasses the range of behaviour found. Once again
it is seen that the overall level of the power flow transmission spectrum
is determined by the magnitude of the foundation mobility while the general
shape is controlled by the isolator mass and stiffnesses. The velocity

of the blocking mass (MZ) in the isolator is given by:-

2 2 . .y oy 1-s
VGt e Oy ¢ 1]

v, = 5 . (5.20)
w

2 w2 Yo.1-s o wz
0, 2f1 - S5 - iy + 100D (1‘——‘w—§)]

)
| @ 1

This velocity has one peak at approximately w = wy . Table III gives the

iow and high frequency dependence and figure 5.12 shows the velocity for

a foundation mobility with s = =}, By considering small and large values
of w the magnitude of the velocity at frequencies away from the resonance

is seen to be independent of the foundation mobility.

5.7 Power Flow Due to 'a Bard Limited Excitation Spectrum

If the force or velocity spectral density of the excitation is constant

between two frequencies wy and wy and zero outside this interval, then

the total power flow, TP, into the structure is given by:-—

T =F J Q; du ‘ (5.21)
w

78.



or T = V2 J QV dw (5.22)

for force or velocity sources, respectively. sz and V2 are the magnitudes
of the spectral density functions between N and W If the power flow
transmission spectrum does not contain a peak in the interval EPA; wé] then
this integral may readily be evaluated using the high or low frequency

approximations of table II.

When the excitation interval does contain a peak of the power flow
transmission spectrum then the integral may still be performed by making
suitable approximations. For the case of force excitation with a single

stage isolator the total power is given by:-

) wg YG&QS
. . W
T = F . o dw
P ZMwo 2 2
w _Ww N2 _ _w w ys+l 2 2y w2428
A Q-S89 - 20 - 29 v (P + 8HED
W W o o
o 0
(5.23)

If the foundation mobility is not too large so that there is a peak at w

which lies within the interval [@A; wé] then the approximation:-—

w 2

oo T W = (mo )] (wo + w) 'S Zwo(wo - w) (5.24)

may be made which enables the total power to be written as:-

B
F2 J on ( )
T = dw (5.25
P ZMwo 0 4(w02 - w2)2 - 4wo(wo - w) + woz(yz + 62)
A
This integral may be evaluated to give:-
w w
) 22 -2+ 2 224
T = L [Fan—l( i ) - tan-_1 ( %o ) ] (5.26)
p 4M Y Y ’

The two inverse tangents approach i_%— as the frequency bandwidth between

W, and Wp's centered about the peak, is increased. The approximate value

of the integral is thus:-
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2
p

In particular, the total power flow is independent of the nature of the
foundation and the stiffness of the isolator. Figure 5.13 gives the exact
running integral of equation (5.23) for two values of foundation mobility
with s = {. It may be seen from this figure that equation (5.27) continues

2 + 62) > 1. This is because s 1is

to apply even for values of (y
positive, giving the power flow transmi-sion spectrum a maximum at the
first break point which may also be approximated by equation (5.24). The
step-like running integral demonstrates that the contribution of the peak
of th= power flow transmission spectrum to the total power flow occurs over
a narrow frequency interval. Thus an excitation spectrum which does not
vary extensively within the range of the peak will not change the form of

the integral significantly and an average value of F2 may be used in

equation (5.27).

Since the peak contributes by far the largest amount of power to the
total power flow it is important that the frequency at which the peak
occurs (approximately wo) should be chosen to lie outside the significant
ranges of the excitation spectrum. If, however, the excitation spectrum
does include the peak, then the isolator is irrelevant and the power flow

may only be minimised by increasing the mass of the machine.

Calculations similar to the one above may be performed for a two stage
isolator with a force source and for velocity sources. The total power
flow for a machine with a two stage isolator excited by a band limited

force source may be written:=-

_Fm c
T = Y (5.27)

w W \S
T = 1 J o) dw
P 2M1M2w03 w wz w2 w |s+3 wlz * w22 - woz o
A [A-"0 -2 - i+ i) ¢ 5 ~1)]
Wy Wy o) w
(5.28)

The most significant contributions to the total power flow are due to
the peaks at the resonance frequencies of the system. When the resonance
frequency at Wy lies in the band wy, to wp
the one used above may be employed to evaluate the integral. The solution

an approximation similar to

once again leads to a step-like function of inverse tangents which tend to
m . . “ . . . .

i-z as the excitation interval is expanded on either side of the peak in

the power flow transmission spectrum. The power flow associated with the
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peak at w, 1is thus approximately:=-

1
F2K1 w
Tpl = 4M1M2(w22 3 woz) (5.29)
and similarly the power associated with the pgak at  w, is:-
. FzKlﬂwlz ,
sz ) 4M1M2(w02 - wlz)wzz 5-30)

Both these expressions are independent of the foundation mobility and only

include parameters concerned with the machine mass, isolator stiffness and

2

isolator mass. By carefully choosing o 2 and w, the amount of

2
1%
power associated with each resonance may be carefully controlled; clearly

2 2 2

by selecting W, to be close to either or w, will cause very

“1
large amounts of power to flow.

The power flow transmission spectrum for a machine on a single stage
isolator with a velocity source does not have any peaks. If s 1is positive
then the spectrum always decreases and the largest contributions to the
total power flow are due to low frequencies in the excitation spectral
density. If s is negative then there is a maximum in the power flow
transmission spectrum at the break point between the high and low frequency
dependences. If the excitation spectrum is flat and of magnitude V2 and

band linited between frequencies , and , then the total power is

A B
given by:-
o B
T = V'K s
p 2 1o du (5.31)
wy lio + 0®(y + i8) |
This equation may be solved exactly to give:-
2. 1-s ;)
V7K -1, +
= g L ¥ 2
Tp 1= 5) [tan ( - )1% (5.32)
If s 1is negative and the break point occurs between Wy and Wg» then
the inverse tangents tend to I and 2L » resulting in a total power flow

2 2
of :—
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T = 7 » (5.33)
The total power flow is thus independent of foundation mobility and

is proportional to the isolator stiffness.

For a machine with a velocity source and a two stage isolator the total

power flow is given by:-—

2 W w 2
A o4, 1
T = (=" C—=-1
) 2w K Wy w 2
2
w w s o
B ‘ Y (E) ’(:)T
xf dw (5.34)
2
Wy ll _ 93 — iy + '6)(2991—8(1 _ 23 _ Wy >i2
o T AW T OIS 2 2
“y “1 %1

where as before it has been assumed that the excitation spectrum is flat and
of magnitude V2 between W, and wp and zero outside this interval. If
the peak in the power flow transmission spectrum occurs within the interval
0, to Wy then the approximation (5.24) may be used in order to solve the
integral. The solution is once again an inverse tangent and the approximate

value of the total power flow is:-

9 2
_ v -0, T
Tp T (1 2) 4 (5.35)
2 Wy

e

As before, the total power flow is independent of the foundation mobility.

5.8 Selection of Foundations and Isolators

Torque excitation as well as force excitation of foundations has been
an important consideration in this analysis. This is because the method in
which a machine is mounted often results in torques being the mechanism by
which the foundation is excited. For example, torques occur when there is
rocking of a machine on a horizontal foundation or alternatively when a

machine is mounted as in figure 5.14, where the support acts as a lever,

82.



creating flexural wave motion in the vertical member. When a lever of
length £ 1is the cause of flexural wave motion, the relationship between
the force and velocity at the tip of the lever and the torque and angular

velocity at the root of the lever (see figure 5.14) may be written:-

) <t
It
ko~

Hh
]
>

| -
It
b

(5.36)

where Bf and BT are the point mobilities for a driving force at the
end of the lever and for a torque applied to the member at the root of the
lever, respectively. Equation (5.36) assumes that the angle through which

the lever rotates remains small.

Figure 5.16 gives a comparison between typical beam and plate-like
foundations excited by torques or forces. The power flow into a foundation

is .given by:-

)
|

= Jre{,}|F|? | (5.37)

22 2 )
or : P = —E-Re{BT}IFI | (5.38)

where in this case F 1is the force applied either to the foundation or to
the end of a lever of length 2. Figure 5.16 gives power flow transmission
spectra for an infinite beam and plate of the dimensions shown in figure
%.15 and with a lever of length 1.0m. Clearly in this case a plate-like
foundation is inferior to a beam, the best foundation being one in which

the force is applied to a beam in a perpendicular direction. From equation
(5.38) it may be seen that the length of the lever is important, a long

lever being particularly poor.

The introduction of isolators between the machine and foundation always
results in a reduction in power flow as long as the excitation spectrum
does not include those frequencies which are the resonance frequencies of
the system. The use of a two stage isolator will always produce a signifi-
cantly greater reduction in power flow than a single stage isolator;
however, the introduction of a second peak in the power flow transmission
spectra may result in this form of isolation only being appropriate for
high frequency excitations. If the excitation spectrum does extend over

the resonance frequencies then the relatively large amount of power flow
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resulting is independent of the foundation characteristics and the use of

an isolator may not be beneficial.

The importance of the nature of the source of excitation within a
machine has been repeatedly demonstrated in this chapter. Clearly it is
important to establish whether excitation by a particular machine has
the nature of a force or velocity source and is independent of the isolation
system or whether a source mobility should be included when designing iso-
lators. 1In addition, the spectral distribution of the excitation must also
be known before an effective isolation system can be designed which will

reduce power flow.

Other factors which affect the power flow into a structure require
study. Specifically no attempt has been made here to evaluate the result
of resonances (wave effects) within isolators or the levers by which
machines are supported. Also due to the size of most machines, a multi-
point isolation and suppért system is necessary which will introduce addi-

tional complications when studying power flow.
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CHAPTER 6

STRUCTURAL MODELLING BY THE CURVE FITTING OF MEASURED FREQUENCY
' RESPONSE  DATA

6.1 Introduction

The complexity of a typical built-up structure often prevents its
detailed vibrational characteristics being predicted theoretically. Previous
chapters have analysed the sources of vibrational energy in terms of the
approximate behaviour of typical foundations. As an alternative approach
it is possible to analyse an existing structure employing only measured data
and making no assumptions about the form of possible governing differential

equations.

The first part of this chapter is concerned with creating a mathematical
model of a structure by employing only measured frequency response data. The
advantage of this approach is that large amounts of measured data can be
reduced to simple numerical parameters which give an immediate insight into
the vibration mechanisms of a structure. Once constructed, the model may be
used in further analyses to investigate the effects of connecting subsystems
or of making modifications to the structure. For example, where there is a
problem of excessive vibration the model may be used to test and evaluate

various vibration control measures.

A subsequent section will consider methods of mathematical modelling

when some of the properties of the structure are known.

The mathematical model is comstructed by employing a digital computer
to curve fit general algebraic equations for the frequency response of a
structure to measured frequency response data. It is convenient to obtain
the data by a method of transient testing [19,'2Q] since this measurement
method enables detailed information from complicated structures to be obtained
in a short time. However, any method is suitable as long as it results in a

digitised frequency response curve within a computer.

A curve fitting procedure may be applied to one frequency response curve
or simultaneously to a set of responses. In the latter case, the fitted

model may subsequently be used to predict other responses which have not
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been measured. In general, sufficient data for the model may be obtained
by employing only one excitation point and measuring the transfer functions
to all the stations of interest. From the model fitted to this measured
data it is possible to construct a frequency response curve giving the

relationship between any possible forcing and response statiomns.

Since only one excitation station need be used, the problems of data
measurement are simplified. The excitation station can be chosen to be
the most convenient and the responses of the structure to types of excita-
tion which are physically difficult to apply, for example, torques, are

readily obtainable.

In this chapter, algebraic equations for the frequency response of a
structure are initially derived. Next, the ways in which measurements
may be taken are discussed and different methods for curve fitting reviewed.
A technique for curve fitting is then presented and the success of the
method illustrated with practical data. Methods of modelling when some
information concerning the structure is known are considered in the final

section.

6.2 Formulation of the Equations for the Frequency Response of g Structure

It is necessary to develop the general frequency response equations for
the steady state, harmonic response of a structure in a suitable form for
employing in the curve fitting of measured data. To do this, use is made
of the "damped normal modes' derived by Mead [?I]. The procedure is

putlined here and the theory is given in full in Appendix IV.

The following assumptions are made, first that the structure is linear
and secondly, that the damping is hysteretic (proportional to the displace-
ment). Damping is included because energy absorption within structures is
of interest and hysteretic damping is employed since this is accepted as
being the best model for built-up structures [ﬂ]. Finally, it is assumed
that the dynamic behaviour of the structure may be represented by the

familiar matrix equation:-—

~2[M]{e} + [K + 'p]{E) 3 (6.1)
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where M, K and D are the inertia, stiffness and damping matrices,
respectively and & and f are the displacements and forces at each
station. This equation is based upon a discrete mass—spring model and
when using it for continuous systems it is assumed that any desired accura-
cy may be achieved by including as many elements as necessary in the column
matrix £. For a discrete system the number of resonance frequencies is
equal to the number of stations. However, to represent the motion of a
continuous, vibrating surface to a high degree of spatial accuracy it is
necessary to use a large number of stations and if equation (6.1) 1is
employed this will imply an equally large number of resonance frequencies.
Alternatively, to represent n resonances to a desired accuracy in the

frequency domain at least n response stations have to be considered.

When taking measurements, equation (6.1) is unsatisfactory because of
the strict equality between the number of stations and modes. Consider,
for example, the case in which one force excites the structure and the res-
ponse is measured at one station. In these circumstances f is known
completely since all the elements are zero except the one corresponding to
the applied force and of the column matrix £ the only element known is
at the response station. Clearly (if the response contains more than one

resonance) there are more unknowns than equations.

The constraint of always employing an equal number of resonance
frequencies and measuring stations may be relaxed by finding the eigenvalues
and eigenvectors of equation (6.1) and performing a coordinate transforma-

tion. (Appendix IV) Equation (6.1) may then be written in the form:

{¢} = [} [2;2] [RM]1£) (6.2)
w - w
n

Here R 1is a square matrix independent of frequency with columns equal to
the complex mode shapes (eigenvectors) of the structure. The frequency
dependent terms of the equation are restricted to the diagonal matrix

where w ~are complex resonance frequencies (eigenvalues).

Returning to the conditions of experimental measurement, to find the
response due to a force at station j, only the jth column of the matrix RY
need be considered. If we are only interested in one response station,
for example, station k, then only row k of the matrix R need be considered.

The response may then be written as:
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Ey = e m— fJ. (6.3)
n wn - w
or : (n) (n)
Ok 2 2 :
n (L)n ]
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where akj is the receptance between station k and j and wk is the
eigenvector element for station k, mode n. Each term in the receptance
. . . ' 2
series contains essentially two complex constants - (Rk x R .) and w_ .
n nj n
. These constants may be found by means of nonlinear least squares curve

fitting to measured receptance data.

Equation (6.2) expresses the same relationship between forces and
displacements as equation (6.1) but only as many rows of the matrix R as

is convenient need be included when employing this equation.

It is usual when making frequency response measurements to have one
forcing station and several response measurement stations. Let there be

s response stations, one forcing station (j) and n resonance frequencies.

Equation (6.2) may then be written as:-

£y = [ Q] N T 7 7 £ (6.5)
s x 1 S x n 1
P
(1)2"“0)2
n
_ N
nxn nx 1

. .t . .
where P 1is the ] h column of RT, and Q is a rectangular matrix
composed of s rows of R. Mobility frequency response data is often

convenient to use and the equation may then be written as:-—

{a} =[a]D (6.6)

This equation is employed in the curve fitting process given in section
6.5. When only one response station and one forcing station are employed,

a series form for (6.6) may be used.
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This equation is employed when curve fitting to one response curve only.

6.3 The Measuremernt of a Complete Frequency Response Matrix

‘The complete frequency response matrix relates the steady state
harmonic response at any station to the set of steady harmonic forces
applied to the structure. The relation may be written as:-—

iwt
e t

iw
e} = [HGw] (£3° ‘ (6.8)

where the elements of & and f are the response and force, respectively
at a particular station. The frequency response matrix H 1is square with
complex, frequency dependent elements. H 1is called a receptance, mobility
or inertance matrix depending on whether the response is displacement
velocity or acceleration, respectively. The column matrix f can include
torques as well as forces and similarly the column of responses & can
include rotations. The frequency response matrix H generally has fewer
rows that the number of degrees of freedom of the structure since it

includes only those stations which are of interest.

A direct method of obtaining the matrix H 1is to apply a single force
to the structure and to measure the response at each station through a
given frequency range. In this way, a column of H may be measured. The

force may then be applied to another station and a second column measured.

There are practical difficulties in measuring the matrix in this
manner and further problems are found when handling the data. Problems
associated with the direct measurement method will now be discussed and
the way in which these problems are overcome by modelling the structure
will then be given. Practical difficulties arise when the response due to
torque excitation has to be measured or the force has to be applied at an
inconvenient station. If a method of transient testing is employed then

positioning the exciter is the most time consuming part of the procedure.

The frequency response matrix H grows rapidly as the number of

stations to be considered increases. If a fine resolution is required
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then the complete matrix has to be measured and stored for.each frequency
value. When further calculations are made employing measured data then
the size and resolution of the matrix imposes severe constraints. In
addition, since the dynamic range of a frequency response matrix is often

large, noise in the measured data can create an ill-conditioned calculation.

By curve fitting the measured data to extract those parameters which
characterise the structure, it is possible to alleviate many of the above
problems. The most immediate result is that only one forcing station need
be used to measure the entire frequency response matrix. Clearly by
fitting equation (6.6) employing data from only one forcing station, the
matrix Q may be found. Each row of Q is associated with a particular
station and the column P is the transpose of that row of Q correspond-
ing to the forcing station. Therefore to obtain the response due to any
particular forcing station an appropriate column P 1is selected from the

matrix Q and equation (6.6) evaluated.

In series form this ability to use only one forcing station may be
demonstrated by considering a structure with two stations. Let the

stations be termed 1 and 2 and consider the three frequency responses of

interest:-—
(n) (n
. .o )wl )
Hll(lm) = lwz 5 5 (6.9)
n ow,< -w
n
n n
. . lpl( )“’2( )
le(lw) = 1w2 > 5 (6.10)
n ow. -
n
n), (n
. . v ( )wZ )
sz(lw) = 1w2 7 5 (6.11)
n ow’o -w
n
H11 and le may be measured by forcing at station 1 for example, and
thus wl(n), wz(n) can be found for each mode. H22 can then be written

down immediately since it contains no additional parameters.

After curve fitting measured data the analysis of a structure is
simplified. The storage problems associated with measured frequency res-

ponse matrices are no longer of concern, the relatively large number of
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measured data points being replaced by a comparatively small matrix of
modal parameters ( and a column of resonance frequencies. The para-
meters obtained from the curve fitting process are themselves of
immediate interest. The resonance frequencies and loss factors are best

estimates for the structure and the columns of Q are the mode shapes.

If frequency response spectra are required then they may be plotted
employing equation (6.6). The plots may be drawn with any resolution and
are noise free so that their use in further calculations is much facili-

tated.

Instead of using frequency response spectra it is possible to work
with equation (6.6) directly. When a large number of statioms has to
be considered, as for example when two structures are being connected and
the modified response is required, then an algebraic equation for each
Structure may be obtained via measurement and curve fitting. The response
may then be calculated in the same way as if the equations had been obtained

by solving the differential equations for the structure.

6.4 Methods of Mathematical Modelling

In order to obtain a mathematical model of a frequency response curve
it is necessary to find the value of wk(n)wj(n) and mnz in each term
of the series of equation (6.6). References 22-28 give various methods
for obtaining these unknowns. Each method has some advantage and is
generally suited to some specific problem. In particular, three of the
five methods given in the references have been developed for aircraft
resonance testing where detailed mode shapes and damping ratios are

important with relatively few resonance frequencies requiring examination.

Klosterman [?2, 23] gives four procedures for determining the para-
meters of the series of equation (6.6) based largely on graphical methods
applied to frequency response curves plotted on the Argand diagram. These
methods are suitable when the frequency spacing between resonances is
large and have the advantage of being a very direct procedure since each
term in the series is determined individually. Klosterman also proposed
a method for close resonance frequencies but this method requires the use

of many measurement stations.
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Dat and Meurzec [24] and also 't Mannetje [?5] base their curve
fitting methods on the least squares principle. In this case the series
of equation (6.7) is multiplied out to produce a rational fraction of
two polynomials. By applying a suitable weighting function, the curve
fitting may be formulated as a linear least squares procedure and the
coefficients of the polynomial found. An iterative procedure enables
the method to converge to best values for the coefficients which may
then be rewritten in terms of the original parameters of the series.
This method is suitable when there are only a small number of resonances
to be considered but becomes unwieldy with a large number of resonances
because of the high degree of the polynomials. It is also unsuitable if

a number of different frequency responses for the same structure must be

modelled simultaneously.

In order to avoid the use of high degree polynomials, Flannelly,
Berman and Giansante [26, 27] employed the unknown parameters in equation
(6.7) directly. In this case the curve fitting procedure was developed
for the case when there are many measurement stations and relatively few
resonance frequencies. After performing sufficient iterations the method
enables the mode shapes to be obtained immediately but because of the
difficulty of dealing with many stations the resonance frequencies are
obtained after some further calculations which establish a best value in

the least-squares sense.

The method developed by Gaukroyer, Skingle and Heron [28] is widely
applicable since it may be used for curve fitting a large number of close
resonances. The model is formulated in a form similar to equation (6.7)
but for viscous damping. The procedure given is suitable for the case
where there is only one response and excitation station. The method
follows a linearised iterative least squares procedure and determines the

unknowns in the series directly.

In general, the most difficult case to model is one where there are
frequency response curves from many stations and close resonance frequen-
cies in the frequency range of interest. None of the above methods
cover this degree of complexity, although using the method due to
Gaukroyer, Skingle and Heron on each frequency response curve separately

and then averaging the results for each resonance frequency could suffice.
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However, if this procedure were adopted a best model is not obtained and
it is possible that the model would not be consistent within itself.

The method proposed in the following section enables simultaneous curve

fitting of many frequency response curves for the case where the excita-

tion is applied at one station only.

A disadvantage of the computer based methods reviewed above is that
all the unknowns are solved for simultaneously and if the procedure
collapses it is not possible to determine which mode is at fault. A
method which determines the parameters for each mode independently is
therefore desirable so that a constant evaluation of the progress in

curve fitting may be made.

6.5 Curve Fitting to Measured Frequency Response Data

To demonstrate the principles the simple case of curve fitting to one
frequency response curve only will be considered here, the general case

being reserved for appendix V.

The aim is to obtain the best estimates for the parameters of equation
(6.7) from measured data. The procedure developed for this application of
curve fitting is based on the "least squares'" principle which may be formu-
lated as follows. Let the measured values be H(iw) and the algebraic
function which is to be fitted be F(iw). If the parameters of the
function F, which have to be chosen to give a best fit, are a;, a

9 c o

then for each frequency w, we may write:

k
Ry o \
Ek F(lwk, a;, a,, eed) H(lwk) (6.12)

where Ek is the error. The error may be expressed as a scalar by

multiplying by its complex conjugate.

e = EkEk = [?(iwk, a;s 2y cee) - H(iwgﬂ [?(iwk, al,...) - H(iwki]
(6.13)

A total error may now be formed by summing all the errors over the frequency

interval to give
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Zwkzek2 = 2 wkz{:F(iwk; a;3a, ves) - H(iwki}[%(iwk;al;az ced) - H(iwk{}
k k (6.14)

Wy is a weighting function applied to each point.

It is now necessary to find suitable values for the parameters ays 8gseee
2 2

which make Z woe @ minimum. This may be done by taking the derivative
k

of equation (6.14) with respect to each parameter aj and equating to zero.
In this manner as many equations as unknowns may be found and if the '
function F 1is a linear function of aj then these equations will be
linear and may be solved to find the best estimates for ajs 83 g3 eee.

The unknown parameters in the algebraic function F(iw ...) are

k; al; 32;
then known and the function is a best approximation to the data H(iw).

In the particular case considered here the algebraic function is

iwwl(n)wz(n) o .
5 5 and it is necessary to express this function in a suitable
n W = w
n
; (m), () .
linear form. Clearly the product ¢1 wz is not separable and the

(n)xpz (n) = Xn may be made.

substitution wl

The function may now be written as:
n
) 5 - (6.15)

where each term in the series has two complex unknowns Xn and wn2 (which
correspond to four real unknowns) which have to be obtained by the curve

fitting procedure.

If a large number of modes is to be considered term by term fitting
of series (6.15) is preferable. It is readily seen that the information
contained in a frequency interval around w is most pertinent to the nth
term and that information distant from w is of little value. 1If it is
desired to fit only one term at a time the error equations (6.12) may be

written as:

1w, X. 1w, X
_ k] k'n _ .
E, [';_5—t72:77_ + g —_ 7 H(lmk)J (6.16)
h| k n#] n k
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Essentially, the term Z ————E——é represents the contribution of off-
n ow? -
n#j © iwX.
resonance terms in an interval containing the term ‘“E;L‘EF" If the
w oo~ w
n

contribution of the off-resonance terms are subtracted from the measured
frequency response data then the corrected data will be that of a single

degree of freedom system.

Therefore the substitution

.ikan
) T - H(iw) = A(iw) (6.17)
. 2 2 k k
¢ w - ow

n
is employed to give

vlwan

(.Uj U)k
where A(iw) are the new 'measured values'. Application of equation (6.16)

implies that the terms in the series are already known. In practice, an

iterative technique may be used and only estimates of the contributions are

required.

Equation (6.18) is still nonlinear. The application of a Taylor
series expansion would be usual in most nonlinear least squares fitting

procedures but in this case the expansion would have poor convergence

since ij is close to wz. Instead, equation (6.18) is rewritten as:
_ 1 , 2 20, ..
B, = —5—) [1kaJ. A CTRR™ YA(iw)] (6.19)
W, "~ w
] k
If ——Ql———~§- is assumed to be known approximately from a previous estimate
w.ee —w
j k
then equation (6.19) is a linear error function weighted by 5 1 5
We ~—
The modulus squared error is given by: ] k
2 _ = - 20 . = -2 _ 2INT . 2 _ 2 .
e EkEk [wk} [ 1kaj + (wj W )A(lmk)][;mkxj + (wj Wy )A(lka]
(6.20)
where w is the weighting function _——%t_———f_' and the sum of errors
Wi Ty
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is given by:

2 _ 2 2 2 _ .z 2 _ 2 . . -2 _ 2\ %,s
gek = ZIWkI E»k IXj! lwkxj(wj w )A‘lw) + lwk(wj w )A(lw)Xj

+ l(wjz - wz)A(iw)l‘?‘] (6.21)

The sum of errors being taken over an interval centred on the resonance

frequency W .
I

By equating real and imaginary parts the two complex unknowns X

2 R, I 2. R
and w. may be written as the four real unknowns X. ; Xj 3 (w.7) and

J ] ]
(w.zf. By taking the derivative of equation (6.22) with respect to each
of these unknowns and equating to zero, the following four equations are

obtained:

_ .. R 22 oy (2., 2 _ 2 2. -2 2.
0 = 2Xj ZIWkl w Z|W| 1m(wj w )Ak + 2 lwk! 1w(mj w )Ak
I 22 2 2 2 2 -2 2.«

0 = 2Xj ZIWkI w' = Y|w @(wj - w )A.k - lwkl (wj - )Ak
= 2 2 = 2, 2N _ 20, 2
0 = —in X[wkl’wA + in lek[ wA + ZZIWkI (wj - o )lAkl
= % 2 2 = 2,1 2 2
0= Xj zlwk! WA + Xj ) lwk‘ wA + 2(mj ) lekl lAk!

The four equations may be written as two equations in two complex unknowns

X3 w.z.
J 3
_ 22 .2 2 . 2 3
0 = XjZ!WkI wo - le Z|wk[ mAk + 12!w! W Ak (6.22)
. 2 - 2 2 2 2 2 2
0 = iX.Jlw [Twh + wi L lw |74 ] =Llw |0, 7|4l (6.23)

These equations may be solved to give Xj and mjz. In this manner the

best estimate for the parameters of a single term in the series are found.

The following procedure may now be adopted to find each term of the
series. First the frequency response curve is divided into intervals
(which may overlap) each containing one resonance frequency and therefore
corresponding to one term in the series. Initial approximations to all

the terms are obtained and for each interval, best estimates for Xj and
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wjz are calculated employing equations (6.22) and (6.23).

This completes the first iteration. A second iteration may now be
performed for which more accurate estimates of the off-resonant contribu-
tions and the weighting functions are available. Further iterations can

be made until the convergence is sufficient.

The use of a digital computer is thus necessary to perform the calcu-
lation with sufficient speed. This curve fitting procedure will thus

evaluate as many terms of series (6.15) as there are resonance frequencies

. in the measured data.

One improvement to the method is worth including. The series (6.15)
has been evaluated for a finite number of terms but naturally for a con-
tinuous structure an infinite number of terms should be included. This

may be expressed by writing:-—

o 1an k 1jo
I Tt Rw b e RO (6.26)
w, w h) mj w
k iwX,
where Rm and RS are remainders and Z ——-——Aljz is the sum of

. 2
j=1 w. = w
3
terms for resonance frequencies within the measurement interval. R 1s
m
the remainder expressing the contribution of terms associated with reso-
nance frequencies lower than those in the measurement interval and RS is
associated with resonance frequencies greater than those in the measurement
interval. Rm and RS are terms which have to be evaluated away from
their resonance frequencies and therefore a Taylor series may be used.

The frequency dependence of Rm and RS may be written as:

—iXm
R.m = (6.25)
RS = 1wXS (6.26)

where only the first term of the Taylor series has been included. It can
be seen that Rm is a mass contribution and RS a stiffness contribution.
Xm and Xs may be also evaluated by the least squares method. The pro-

cedure used is to subtract the effects of resonances within the measurement
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interval from the measured data so that only the contributions from out~
side the measurement interval remain. Since equations (6.25) and (6.26)

are linear, their calculation follows the standard least squares method.

The effects of the remainders may be included in the main curve fitting
procedures in equation (6.18). The contributions of the remainders may be
subtracted from the measured data to leave only the response due to those

resonances within the measurement interval.

A flow chart giving the essence of the computer program is given in

Appendix VI.

6.6 Examples of Curve Fitting

A simple structure was employed to obtain measured data to test the
curve fitting procedure. The structure consisted of a simply supported
beam 35 mm x 65 mm X 2 m. Data were obtained in all'cases by means of
transient excitation employing a rapid frequency sweep. The frequency
response curves were calculated by dividing the Fourier transform of the
response by the Fourier transform of the excitation as described in [19].
As acceleration transducers were used to obtain the responses, a further
division by iw was made to obtain mobility frequency response data.
Eleven response stations were employed in total, stations 1 and 2 being
used in addition as forcing stationms. The distribution of stations is

shown in figure 6.1.

Station 1 was first employed as a forcing station and the response
there and at every other station obtained. This gave a complete set of
mobility curves which were then curve fitted simultaneously to give a model
of the structure. On examination, the measured data were seen to contain
more resonances in the frequency range examined than would be expected for
a simply supported beam. This was presumably due to poor end fixings,
motion of the supporting structure and motion of the beam in other than a
single plane. The number of resonances actually used was 14 instead of 5
as expected. This merely provided a better test of the curve fitting

procedure.

Figure 6.2 shows the modulus and phase of the measured point response

which may be compared to figure 6.3 which is the fitted data. TFitted data
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was obtained by plotting out the response of the model due to a particular
excitation. Figure 6.4 shows the Argand diagram ("vector plot") of the
point response and the fitted response (with a very fine resolution) is
shown in figure 6.5. The same sequence of frequency response curves is
shown in figures 6.6-6.9 for a transfer response. Figures 6.6 and 6.8

being measured data and figures 6.7 and 6.9 being fitted curves.

Two, three dimensional plots of the measured data are shown in figure
6.10 giving both the linear and the log modulus. The corresponding fitted
responses are shown in figure 6.12. Phase information would, of course,
have also been presented but is omitted from these plots for clarity. In
addition to modelling considerations, this type of presentation facilitates
a visual appraisal of the data as well as greatly reducing the number of
diagrams that have to be presented when reporting on a series of experi-
ments. Curve fitting produces two sets of parameters, the complex reso-
nance frequencies and the complex mode shapes. The loss factors are given
in figure 6.13 plotted against the corresponding resonance frequencies.
The complex mode shapes, plotted for stations at equal increments along

the beam, are given in figures 6.14.1 and 6.14.2.

The following procedure was employed to test the ability of the model
to predict responses which had not been measured. The model obtained by
forcing at station 1 was used to predict the response to an excitation
applied at station 2. Excitation was then actually applied at station 2
and a series of frequency responses obtained; thus the predicted data
could be compared with measured data. Figure 6.15 gives a predicted
transfer response (station 7 forcing at 2) and the measured response is
given in figure 6.16. Similarly, figures 6.17 and 6.18 also give predic-
ted and measured transfer responses (station 1 forcing at 2) respectively.
A set of predicted responses for stations at equal increments along the
beam is given in figure 6.19 which may be compared with the set obtained

by measurement in figure 6.20.

No absolute criterion for the accuracy of the model obtained by curve
fitting has been presented. However, the tests on the beam show the

general success of the procedure and the areas for concern.

The main inaccuracies in the fitted data are associated with anti-
resonances. This is to be expected since they are associated with numerical

values in the frequency response data which are small compared with those
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at resonances and thus they have little influence on the curve fitting.

In addition, contributions from resonances outside the curve fitting inter-
val will be of greater relative importance at antiresonances where all
contributions are small as opposed to resonances where one mode dominates.
The modelling is arranged to give a minimum error to the fitted Argand
diagram, this could be changed to improve accuracy for the antiresonances
by adding a weighting function whichbiases the curve fitting towards small

values.

The set of complex mode shapes appear satisfactory. The imagihary part
of each mode shape (except the ninth mode) is small compared to its real
part. This is to be expected since, with the assumption of hysteretic
damping in the modelling process, the modes of a uniform structure should
have a zero imaginary part. This is largely satisfied by each mode except
the ninth mode. The large imaginary part was due to an error in the
measurement system. There is a 180° phase shift in the point mobility
response at the resonance frequency of this mode (see figure 6.2). It is
not physically possible for a passive system to exhibit a 180° phase shift
between the velocity and the force of a point response. This measurement
error has resulted in the model constructing a mode which is 80° out of

phase with respect to the other modes.

The prediction of unmeasured responses from one set of modelled data
is satisfactory. The largest errors occurred with the fifth mode at 182 Hz.
This error was due to station 2 being situated almost on the node of this
mode. A station situated on the node of a vibrational mode receives no
information concerning that mode and if predictions are made employing this
station as an excitation station the errors may be large. To overcome
this difficulty two excitation stations could be employed which complement

each other. This would however require a more advanced computer program.

The stiffness remainder of equation (6.24) (RS) was included when
curve fitting the measured data. The contribution of this stiffness para-—
meter to the point response of figure 6.2 is shown in figure 6.21. The

contribution to the transfer response of figure 6.6 is shown in figure 6.2%.
The stiffness remainder of the point response is significant parti-

cularly at antiresonances and at high frequencies. In contrast, the

contribution to the transfer response is small (notice different scales
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between figures 6.22 and 6.6). This difference is presumably due to
variations in phase between the resonances outside the measurement range.
The modal responses in a point characteristic are all in phase and will
therefore reinforce each other to make a significant stiffness remainder.

A transfer response has modal contributions which may be in phase or out

of phase. Thus the contributions of each resonance to the stiffness remain-

der may be positive or negative and will tend to sum to zero mean value.

6.7 Methods of Modelling whern Some of the Properties of the Structure

are Known

In the previous section no assumptions (other than of hysteretic damp—
ing) were made about the nature of the structure being modelled. However,
if some information is known it should be included in the modelling process

and may lead to valuable simplifications.

If the damping within a structure is small then a simple method for
modelling a structure requiring measurements of mobility at only a few
frequencies is possible. This method, given by Ewins [29] is capable of

great accuracy especially when applied to point frequency responses.

In many circumstances the differential equation for an element of a
structure is known but its interaction with the remainder of the structure
unknown. For example, a beam built into a structure will satisfy the
differential equation for a beam but in general it is not possible to
predict the behaviour of the beam since the boundary conditions are unknown.
However by using a maximum of four measurement stations the response of any
part of the beam may be obtained. The theory behind this method when

applied to a beam and an illustrative example is given below.

By using standard Bernoulli-Euler beam theory the steady state harmonic
response of a damped beam for elwt frequency dependence may be written [L]:
E(y) = Aelky + Be—lky + Ceky + De-—ky (6.27)
where £ 1is the displacement of the beam and k the complex wavenumber.

The four terms A, B, C, D are independent of y (position along the beam)
but dependent on frequency and boundary conditions. For simplicity it may
be assumed that the beam is excited at one boundary. The wavenumber k

is complex and may be written as:-
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k=k'(1 - 1—2 (6.28)
(Derived in section 1.2) where k' 1is the undamped wavenumber for a beam
given by:-

DAS 1
k' = (Dt
b

for which p 1is the volume density, AS the cross section area and Bb
the bending stiffness of the beam. Thus k' can readily be calculated
from the properties of the cross section and the material of the beam.

The loss factor for the beam may be obtained by means of a standard method
[?9] and thus the complex wavenumber in equation (6.27) found. By exciting
the beam at one station and measuring transfer frequency responses to four
different stations, four simultaneous equations for the four unknowns A, B,
C, D may be obtained for each frequency. By solving for the four unknowns
equation (6.27) is completely determined and the frequency response for

any station may be predicted.

If the beam is in motion due to some given harmonic excitation (for
example where the beam is set into vibration by a remote machine) then once
again the motion at four stations may be measured and the four unknowns
deduced. The four unknowns A, B, C, D when used in equation (6.27) will
now predict the vibration anywhere along the beam for the conditions of
excitation found during measurement. When the excitation is broad band
in nature then spectral density and cross-spectral density measurements of
the motion at the four stations may be made. The predicted motion of a
point on the beam in this case will also be in the form of a spectral

density function.

If that part of the beam where predictions are to be made is away
from boundaries the third and fourth terms in equation (6.27) will be
small and may be neglected. 1In these circumstances only two measurement

stations are necessary.

The procedure given above was tested on a cantilevered aluminium
beam of dimensions 930 mm x 100 mm x 1.62 mm. The excitation and measure-
ment stations are shown in figure 6.23. The response of the beam at a
station away from discontinuities was chosen for prediction (station 3)

and thus only two measurement stations (1 and 2) were needed. Figures 6.24
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and 6.25 give the transfer frequency response (inertance) of the two

measurement stations obtained by the method of reference [1{!.- Figure
6.26 gives a predicted transfer response for station 3 based on the two
measured responses which may be compared with figure 6.27 which is the

actual response measured subsequently.

The correspondence between the predicted and measured responses is
good, particularly at high frequencies. At low frequencies the errors
may be due to neglecting the near field terms of equation (6.27) which are

more important at low frequencies.

No analysis has been made of the effect of errors on the procedure
given above. 1In addition, no method for calculating unmeasured point
responses from measured data has been investigated. Clearly, both of
these areas require further work. The possibility of extending the
principles of this form of modelling to other types of structure should

also be considered.
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CHAPTER 7

APPLICATIONS OF MATHEMATICAL MODELLING

7.1 Introduction

Once a mathematical model of a structure has been obtained a variety
of further analyses becomes possible. One important application which has
already been described in the previous chapter is the prediction of un-
measured frequency responses. This ability much reduces the amount of data
that must be measured and enables the response to physically difficult

forms of excitation, for example, torques, to be predicted.

Two other possible applications will be discussed in the following
section. The first is the determination of the characteristics of the
structure from the mathematical model and secondly the prediction of the
response of two systems that have been modelled independently and are then

connected.

7.2 The Distribution of Mass Stiffness and Damping Within a Structure

The mathematical model obtained by curve fitting measured frequency
response data according to the method of section 6.5 is in the form of
complex resonance frequencies and mode shapes. The possibility exists of
inverting this form of representation and returning to the mass, stiffness
and damping matrices of a structure. These matrices would provide valu-
able information since the role of one part of a structure could be clearly
identified. In particular, the damping matrix would indicate which areas
of a structure are important for absorbing energy and which areas are acting

as transmission paths.

The principal difficulty in formulating a procedure for the inversion
lies in the fact that the model is based on relatively few measurement
stations and only represents a finite number of resonance frequencies. A
practical structure has an infinite number of coordinates and resonance
frequencies and thus its behaviour can only be estimated from the model

formulated in section 6.5. Thus any model of a structure based on finite
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mass stiffness and damping matrices will introduce two sources of error;
one error being due to a finite spatial representation and a second error
being due to the use of a finite number of resonance frequencies. It will

be shown that the second source of error results in significant difficulties.

Berman and Flannelly EKﬂ have formulated a procedure for obtaining
mass and stiffness matrices for the case in which there are many measure-—
ment stations and relatively few resonance frequencies. They show how
modifications to the mass and stiffness matrices lead to new resonance
frequencies and mode shapes. Consideration is given below to the alternative
case where there are few measurement stations and many résonance frequencies.
The fundamental assumption is that if a practical structure is modelled
with a large number of degrees of freedom and the frequency response of
every coordinate of the model closely agrees with the response of an equi-
valent point of the structure, then the mass stiffness and damping matrices
of the model represent the distribution of mass stiffness and damping in
the structure. Clearly the model can only represent the structure over a
limited frequency interval and thus the mass stiffness and damping matrices
will not be correct for frequencies outside the measured frequency range.

The orthogonality relationships for such a model may be written:-

Mg = I (7.1)
RTKR = Ewnz J (7.2)

where M and K are the mass and complex stiffness matrices and the
columns of the square matrix R are the complex mode shapes. The mode
shapes have been normalised so that the right hand side of (7.1) is the
unit matrix. The right hand side of (7.2) is a diagonal matrix of complex
resonance frequencies. The two orthogonality conditions may be combined

to give:-
_ 29 T
K = M fw ] RN (7.3)

For uniform structures the mass matrix will be diagonal and the equation

may be rewritten:-
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This equation has been partitioned into stations at which measurements
are taken (subscript 1) and stations which responses are unmeasured
(subscript 2). As a result, the measured portion of the stiffness matrix

may be written:-

_ F2 T,
Kip MR o “J R (7.5)
and a single element of the stiffness matrix will be:-
ko= ] w2 @y @ g (7.6)
rs r s n'r s rs Nrs )
n=1
where m and mS are the masses at stations r and s and wr(n) and

ws(n) are the magnitudes of the nth mode shape at stations r and s.

Mo is the loss factor associated with the stiffness between the two
stations. From this equation it is seen that the stiffness is strongly
dependent on the higher resonance frequencies, which usually contain the
greatest errors due to the influence of resonant modes of vibration outside
the frequency range modelled. In order to examine this formulation a beam
with a non uniform distribution of damping was modelled and the complex
stiffness obtained in areas of different damping. The experiment failed to
produce meaningful results presumably due to the sensitivity of equation

(7.6) to small errors. A procedure for calculating the mass, stiffness

and damping matrices based on equation (7.6) is therefore not tenable.

7.4 The Response of a Structure Predicted From its Constituent Components

When the frequency responses of two separate components of a structure
have been measured or calculated then a prediction may be made of the res-
ponse of the two components when joined. This type of procedure is parti-
cularly valuable when a modification must be made to an existing structure

and the new response obtained.
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Done and Hughes [}1, 32] have analysed the effect of adding mass or
stiffness to an existing structure and have established methods for obtain-
ing the bounds within which the response will lie. The analysis in this
case only requires knowledge of the frequency response at the points on the

structure where the modifications are to be made.

The more general case where there are two components to be joined,
has been considered by Klosterman [?2], Ewins and Sainsbury [33] and by
Fwins and Gleeson [34]. The procedure here is to obtain frequency res-
ponses for both components at the points at which the connections are to be

made and to calculate the new responses using impedance coupling techniques.

In both these types of analysis physically awkward frequency response
measurements may have to be made. For example, torques are very difficult
to apply to a structure but are often the mechanism by which components are
connected. This difficulty may be overcome by obtaining a mathematical
model of the component (using a convenient method of excitation) and pre-
dicting the responses due to torques from the model. An additional advant-
age of using a model is that measured data are replaced by smoothed data

and therefore errors due to noise will not be so prominent,

By obtaining the frequency response of the separated components of a
structure it becomes possible to estimate the power flow in the joined
system. To calculate the power flow at a connecting point it is necessary
to know both the forces and the velocities. The velocities may be obtained
directly by measurements and the forces deduced from the inverse of the

mobility.

In the next section an error analysis is given for the response of a
Structure predicted from component responses and in the following section

the power flow between connected components is considered.

7.4 Errors in System Coupling Methods

This method of calculating the response of a structure consists of
combining the mobilities of the components frequency by frequency to calcu-
late a new frequency response curve. The simplest case is where the two
components are joined at one coordinate and the mobility of the combined

structure is required at the connection point. This case is given by
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Bishop and Johnson [35] and in their notation the mobility o of the

combined system is:-

o = Y (7.7

where B8 and vy are the point mobilities of the two components when
separate. For undamped structures the real part of the mobilities is zero
and the resonance frequencies of the combined structure are given by the

zeros of the denominator which condition may be written

B + -Y = O (7.8)

For structures with damping, the above equation is satisfied by complex
frequencies which correspond to the complex resonance frequencies and thus
includes a loss factor. When B and Yy are expressed as frequency res-
ponse functions then the new resonance frequencies of the combined system
may be found by forming the sum B8 + y and searching for minima (anti-
resonances) of the modulus. It is readily seen that for the condition of
equation (7.8) to be approached R and vy must approximately be in anti-
phase. From equation (7.7) it may be seen that if either of B or vy
is relatively small then the combined mobility will be approximately equal

to the smaller of the component mobilities.

By expanding equation (7.7) to first order in a Taylor series an error

equation may be written:-—

Ao Y AB 8 Ay
o B+y B B+ry v (7.9)

where é% is the relative error in the predicted mobility due to relative

errors AB and é%- in the component mobilities. From this equation it

8
may be seen that the most significant error occurs at the resonance frequen-—
cies of the combined system. Away from the resonance frequencies the error
in the combined mobility is of the same order as for the constituent

mobilities.

It may therefore be concluded that the best method for finding reso-
nance frequencies is to use equation (7.8) instead of searching the pre-

dicted frequency response for maxima. Since the frequency response of the
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combined structure can only be relatively accurate away from resonances
the predicted response is best treated as a guide to the average response

of the structure rather than as a detailed prediction.

The same error analysis may be extended to components which are connec-

ted at a number of coordinates and yields the same conclusions.

The structure shown in figure 7.1 was used to examine the previous
considerations experimentally. The structure has two principal components
which may be joined at stations 5 and 6 which are a force and torque
connection, respectively. The response of the combined structure to a
harmonic force at station one was required, this configuration being similar
to that of a machine on a flexible foundation. System B consisted of an
aluminium beam 200 mm x 35 mm x 1 mm with a rod 50 mm long and terminated
by a washer at one end (to which the connection was made) with the other
end clamped. System y (which represented the foundation) was an aluminium
beam of dimensions $88 mm x 100 mm x 1.62 mm clamped at both ends. In
order to measure the frequency response of the two components, a force
excitation was applied to station 1 for system B and station 5 for system Y.
The rotation at the coupling point was measured by means of two accelero-
meters, the signals from which were differenced to obtain an angular accelera-
tion. Both components were modelled according to the method of section 6.5
so that those necessary unmeasured frequency responses could be obtained.

The mobilities at four stations of the joined system were then predicted

and are shown in figures 7.2-7.5. The structure was then physically joined
and the mobilities at the four stations measured; these are also shown in
figures 7.2-7.5 for comparison. The frequency response spectra are plotted
with a resolution of 0.244 Hz; the curves are shown again in figures 7.6-
7.9 where the spectra have been averaged to give a new resolution of 24.4 Hz.
It may be seen that the averaged responses for the measured and predicted

data are similar while the detailed responses have significant differences.

7.5 Measurement of Power Flow Between Connected Components

The connection points between two components of a structure act as
paths for power flow. The power flow at such a junction is given by the
time average of the force and velocity. The velocity may be measured
directly and thus presents no difficulty but the force must be obtained by

indirect means. If the mobility of the component of the structure has been
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obtained then it may be inverted to obtain the force in terms of the
velocity. In the simple case of a component with a point mobility of B8

and only one force applied to it, the power flow may be written:-

|8]2

The disadvantage of this formulation for the power flow is that at the anti-

(7.10)

resonances of the component, IBI is very small and this will introduce
significant errors at these frequencies. This result continues to be valid
if the analysis is extended to components with ﬁlnumber of connection
points. Once again, therefore, measurements performed in this manner
should not be regarded as detailed results but treated as an indication

of the general level of power flow.

The power flow between the two components of the structure described
in the previous section was obtained by the above method. In this case
the internal force (F) and torque (T) applied to component Yy at stations

5 and 6 are given by:-

\Y (7.11)

where V5 and é6 are the velocity and angular velocity at the connection
point. Thus two point and one transfer mobility is required. The power
flow associated with the force and with the torque at the connecting point
were obtained for unit force applied at station 1. The power flowing into
the structure and the power flowing at the connection points is shown in
figures 7.10-7.13. (It should be noted that negative power flows are
possible at the connection points where a circulation of net power flow

is possible.) The mobilities of the connection points were all measured
directly, no modelling being used. As can be seen, there is a significant
discrepancy between the amount of power flowing into the component vy com—
pared to the power flowing into the whole structure. Clearly the effects

of antiresonances can be severe and a method for reducing the errors

associated with these frequencies is required.
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CHAPTER 8

CONCLUSIONS

It has been possible to make a theoretical examination of several
types of machinery foundation by making the assumption that they are of
infinite extent. This assumption is applicable in those circumstances
where there are no significant reflections from discontinuities or

boundaries within the foundation.

A beam, when used as a foundation, can be excited by forces or
torques and may carry flexural or torsionél waves. In these circumstances
the beam acts as a wave-guide carrying all the power away from the source;
if the beam is damped, the propagating waves will be attenuated exponen=-
tially with distance. The moduli of driving point mobilities of these
foundations may be represented by straight lines when plotted against

frequency on log-log scales.

The power flowing in an infinite uniform plate is carried by
cylindrical waves. When the excitation is a force the cylindrical waves
are symmetrical around the source but when a torque is applied the
resulting wave field is strongly directional. The power supplied to
a plate by a constant harmonic force is independent of frequency whilst
the power supplied by a torque is proportional to frequency and therefore
relatively large at high frequencies. These results are summarised in
table I.

In a foundation consisting of a beam-stiffened plate with the
excitation applied to the beam the motion at the driving point is largely
controlled by the beam. If the beam is excited by a force or torque so
that it carries flexural waves then the power transmitted by these waves
will initially be associated with the beam. As the waves move away from
the source they radiate into the plate so that in the far field more
power is transmitted by the plate than by the beam. A strongly directional
cylindrical wave is also carried by the plate. If torsional waves are
excited in the beam then no power associated with these waves will be

radiated into the plate. For this type of excitation the beam and plate
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are strongly coupled, with the beam being dominant at high frequencies

and the plate being more significant at low frequencies,

In order to reduce the power flowing into a structure an isolator

may be introduced between a vibrating machine and its supporting foundation.
By making the assumption that the modulus of the driving point mobility of
the foundation has a straight line frequency response on a log-log plot

it has been possible to analyse the effect of various isolation systems.
The power flowing into a foundation from a machine with a harmonic force
source will always be reduced by the introduction of an isolator if the
- resonance frequency of the mass of the machine on the stiffness of the
isolator is less than the excitation frequency. A two stage isolation
system consisting of a mass element between two springs gives an increased
reduction in power flow, compared with a single stage isolation system, as
long as the additional resonance frequency is avoided. These results are
also valid for a machine with a harmonic velocity source. When a force

or velocity source has broad band frequency content which includgs the
resonance frequency of the isolation system, then the isolator will not

be effective,

It has been shown that a structure which exhibits resonances may be
modelled purely from measured data. The model is valuable because it not
only smooths the original frequency response measurements but enables the
complete frequency response matrix to be obtained from a limited amownt
of data.

The computer program, developed to construct a model, curve fitted
measured data to produce the complex resonance frequencies and mode shapes.
The model adequately represented the original data and successfully pre-
dicted frequency responses which had not been measured. The principal
inaccuracies in the modelling procedure were found to be associated with
small frequency response values, in particular with antiresonances., When
predicting frequency response data from a model, the situation of a

measurement station near a node gave rise to some errors.

A second method of modelling applicable to beams was formulated and
successfully applied. This method enables the motion at any point on a
beam to be predicted from résponse measurements at a maximum of four

stations.
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A procedure for deriving the distribution of mass stiffness and
damping within a structure from the mathematical model obtained through
curve fitting was unsuccessful. This method failed because of the
sensitivity of the mathematical model to resonances outside the frequency

range in which measurements were taken.

The prediction of the response of a structure from measurements and
the derivation of models of the components can only be carried out with
limited accuracy. An analysis demonstrated that significant errors
occur in the predicted frequency response near the resonance frequencies
of the combined structure due to small errors in the measured frequency
response of the components. However, the average level of the frequency
response of the combined structure can be predicted satisfactorily.
Similarly, deducing the time averaged power flow into a component of a
built-up structure from frequency response measurements of the separated
components introduces large errors due to small errors in the frequency

response of the component.

The first part of this thesis has shown that relatively simple
formulae may be derived for the response of structures such as beams,
plates and beam-stiffened plates. Future work should seek to extend this
type of analysis to more general cases such as plates with parallel beam-
stiffeners and with excitation applied as a force or torque to either
plate or beam. Also the effect of internal wave motion within the
stiffeners should be examined, since this will be important for stiffeners

of large dimensions at high frequencies,

The principal uncertainties when calculating the power flow through
a machinery isolator and into the foundation is the nature of the source
and the mobility of the machine. A method for determining these two
unknowns must be devised so that a more realistic analysis may be made.
An analysis of power flow should also be made which includes the effect

of there being several isolators on practical machines.

When modelling a structure from measured data it would be useful if
a degree of accuracy for the model could be determined. This would enable
an assessment to be made of the use of the model in further analysis,
An additional improvement to the computer program would be the inclusion

of a procedure which enabled the curve fitting of data obtained from a
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set of frequency response measurements with several forcing stations.

Clearly, considerable simplifications are possible when modelling
a well known structure such as a beam. An attempt should be made to
extend this type of modelling to plates and other commonly occurring

structural elements.,

When combining systems and obtaining the overall response and power
flow from measured data an improvement in accuracy can be obtained by
averaging in the frequency domain. This improvement should be quantified
so that it is possible to obtain some measure of accuracy of an averaged

predicted response for the coupled system.
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ABLE I. Properties of infinite system.
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TABLE II Power flow into foundations from machinery sources on isolators.
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TABLE III. Velocities of components of isolation systeinsl.
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Fig. 2.1 A typical configuration in problems of vibrating isolation

Fig. 2.2 An infinite beam with torsional excitation.
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Figure 2.3 Contour of integration for equation 2.9.
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Figure 2.4 An infinite beam with force excitation.
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Figure 2.5

Contour of integration for equation 2.17 and 2.36.
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Figure 3.2 Path of steepest descent for integral 3.14.



Figure 4.1 An infinite beamstiffened plate with three types of excitation.
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Figure 4.2 Line force and torques acting between plate and beam and
externally applied excitation.
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Figure 4.9 Contour for integration of equation 5.54.
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Figure 5.1 Single stage isolator with force source.



-14

-14

T T T —
-
L
-
-
-
1 ! 1 1
=4 =2 ' 0 w 4 6
Frequency Log .
o
Figure 5.2 Power flow transmission spectra for single stage isolator
force source and beam—like foundation (s = -}; Mwo = 1):
approximate values based on table II.
T T T T
-
-
-y
—t
1 1 ! 1
-4 -2 0 w 4 6
Frequency Log o
o

Figure 5.3

Power flow transmission spectra for single stage isolator
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Figure 5.5 Two stage isolation system with force source.
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Figure 5.8 Velocity of blocking mass of two stage isolator with force
source and plate-like foundation (s = J; wo/K =1.0; w, =0,1,

1
w, = 1.0 w,.=3.0; w =1.0
i 2 fo]

1



=10

|
1 2 3 4

Frequency Log w

Figure 5.9 Power flow transmission spectra for velocity source and
single stage isolator with beam—like foundation
(s = =3; K= 1.0).
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Figure 5.10 Two stage isolation system with velocity source.
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Figure 5.13  Running integral across power flow transmission spectra

(s = —-4i; Mwo = 1.0; T =1).
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Figure 5.15 Dimensions of beam and plate used in Figure 5.16.
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Figure 6.4 . Argapd diagram of noint mobility - measured data
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Figure 6.5 Argand diagram of point mobility - fitted data.
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Figure A.1 Element of beam with tersional excitation.

Leh|

Figure A.2 Element of beam excited into flexural vibration by
external forces and torques.
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Figure A.3 Element of plate excited into flexural vibrations by
external forces and torques.

N
Xy

Figure A.4 Llement of plate in polar coordinates.



APPENDIX I: The Equation of Motion for Torsional Waves Including an

Excitation Function

Figure A.l1 shows an element of a beam laying along the y axis with an
applied torque of Ti per unit length. Writing J for the mass moment
of inertia per unit length and Mi for the internal twisting moment, and

applying Newton's law, gives:-

3 6. M,
1

7 - N T o3y

(A.1)

where 6 1s the angular displacement of the beam. From standard elasti-

city relationships [7]:—
aei
Mi = "GQ 'a—y"* (A.Z)
where Q 1is the torsion constant.

Combining (A.l) and (A.2) gives:-

J = GQ + T, (A.3)

which is the required relationship.



APPENDIX II: The Equation of Motion of Flexural Waves in Beams Including

Excitation Functions.

Figure A.2 shows an element of a beam laying along the y axis with an
external excitation of Fi and Ti per unit length corresponding to a
force and torque, respectively. The coordinate system 1is arranged so that
the power associated with the internal force or torque is positive for

power flow in the positive y direction. Applying Newton's law for the

acceleration of the element gives:-—

- 5;—-+ Foo= oA 5 (A.4)

where u, is the internal shear force, p the volume density, AS the
cross sectional area and Si the displacement of the beam. Assuming the
rotary inertia and shear deformation to be small gives an equilibrium of

torques which may be written:-—

M.
i
e + Ti Fi (A.5)

I
&)

where Mi is the internal bending moment. From standard equations in

elasticity {?J the relation

Mi = = EI 5 (A.6)

may be written where I 1is the second moment of area of the cross section.

Combining equations (A.4), (A.5) and (A.6) gives the required relationship:-

1 i 1
EL 2 EI EI oy (4.7)



APPENDIX III: The Equation of Motion for Flexural Waves in a Plate

Including Excitation Functions

Figure A.3 shows an element of a plate laying in the x-y plane. The
plate is excited by an external pressure (force per unit area) acting in
a direction normal to the plate and by two external torque distributions
(torque per unit area) acting about axes parallel to the x and y axes,
respectively. Two subscripts will be used for each force and torque;
the first subscript is the direction of the normal to the surface on which
the force or torque acts; the second is the direction of the action. A

right handed coordinate system is used throughout.

The internal force and two internal bending moments acting on each

edge of the plate element are also shown in figure A.3.

Applying Newton's law to the vertical motion results in:-—

5 Fzz 5% 3y (A.8)

where h 1s the plate thickness, FZz the external pressure and u the
internal shear forces per unit length.

Moment equilibrium about the x and y axes results in two equations

giving the shear force:-

BMXX BMYX
-— -_— + = .
= 5y sz uyz (A.9)
dey aMxy
ay + ax —_ sz - uxz (A. 10)

where M 1is the internal bending moment per unit length and T the

externally applied torques.

From standard results in elasticity E?] the relationship between bend-

ing moments and displacement may be written:-

2 2
M= —B[ 9 5 + 2 2151 (A.11)
y oY ox
9
M = Rrgh + 32 ) (A.12)
Txy 0 Tk_2 VTl &y '



2
3 Ei

Myy =M = B(1 - v) %3y (A.13)
where B 1is the bending stiffness for a plate given by:-
Eh3
B = ——
12(1 = v7)
Combining equations (A.8)-(A.13) gives the required plate equation:-—
4 826, aT aT
BV ', + ph L-p + . XX (A.15)
i 2 z2z X dy
ot
. 4 4 4
where vt o= d Yt 2 3 5 + 2 7
9x oxX 9y oy

In order to calculate power flow intensities it is necessary to obtain the
relationships between displacements and internal shear forces and bending
moments. Figure A.4 shows the internal forces and torques acting on an
element of a plate in polar coordinates. By assuming the polar and
Cartesian elements to be equivalent according to the method of Timoshenko

[36,p.259] the relationships may be written:-

d 2
= — . .
“rz B 8r< gl> (4.16)
82Ei ! 8zgi 1
Mg =Bl—mr VG 5tz ] (a-17)
ot 2
825 X
e 1 i, 1 Tt
Mep © Bl v}£ Y 3ree AL : (4-18)
13 o2
vy, =By TFD (h:19)
1 aE. < SZF, wzx.
r i 1 C1 17
M, = -Bl= -+ — 5+ u ] (4.20)
br T oY o2 397 ?TZ
M, o= - M (a.21)

o) rrY



APPENDIX IV: DETAILS OF THE CONTOUR INTEGRATION OF EQUATION (4.34)

The values of the residues are found from:-

2
%y
Res(p,; P,)
1 2
2 ()
aay uy = pl; p2
Bb
(equation (4.38)). Writing L for o and o for uy enables the denomi-

nator of the above expression to be evaluated as:-—

3,3 _ 2,3 2 2k _ .. 2. 2=
aa(g) 4o L( o) {(kp a’) lng +a7) %}
_ Zi(k 4 u4) ( o . ig }
% (kpz 2,372 (kpz s 45372

For simplicity the two poles p, and p, (equations (4.22) and (4.23)) may
1 2

be written as:-
Py = k rl +

and

Py ikb[l + ———l—?’——-g]

2Lkbs

where A and B are expressions in s. The residue of the pole 2 will
first be evaluated. The value of the denominator to first order in Lkb is:-

>
Denom = 4k 3[1 PR
b 3 4
ZLRHS i
. 3
8isk . -1 : :
- : - 9 1 2 ~1
bt T e R R T L L L
“h = ZLkbs - 1k s
2ik Kk, . .
B p b A4 2iAs ~ iA .2 iA §-3/2
5 -5 o I+ 3] (1 -s ]




3iA + 2is 2.-3 . 2.-4 1
2Lkbs b

or Denom = 4k {1+

;Ei ; s [(1 _ SZ -3/2 i1+ 82 -3/2 11

_;__3(1._5)(1+S)%—1(1—s)%7
3 !
ZLLb

or Denom = 4kb3 {1 +

et - DT - e s - 20 - sh|a - sH T2

i+ 7D

3 1 3 - 32 s2 + 3
or Denom = 4kb {1+ 3 571 T i “'““f{fr'J}
2Lkbs (1 - s9)°? (1 + 87)*

The residue is thus given by:-

4

POt

1 (1 - 1 1
Res{p,} = k 2 Mo+ i -s)7 {(1+ 52)2 -i( - 52)2}1 [——
1 b L . 753 4
Bl Rt
"
. T 3 - s” s? + 3 13T
LT 73 -
(1 -s7)*® (1*9>
: 4 2 4 2
. | i ~2s - g + 1 .25+ sT o+ 107
or Resipl} i o = i 5T -1 5T d
b 21k, s (1 - 87" (L +s7)°

which is the required result. The residue of the pole p, may be found in

2

<

a similar manner. TIn this case the denominator may be written:—

2 83

. L VA -

A 3 ",‘ - T { 3 + s -3 3 s 1 z

L - Ful e —-‘—-"—'—“r L

poLE T 37 51 .
szbs {1 + s7) (1 - s )

and eventually the residue is given by:-—



Res{p.} = -1 (1 - i 254 + 52 +1 ; 254 - 32
e8Py 3 2 2

b 2Lk, s (1 + s9)

Nof—t
~~
fa=y
I
12}
~
BoP~]

The integral (equation (4.35)) must be calculated along the two paths
around the branch lines so that the branch points are excluded from the
contour. The branch lines have been deliberately chosen to simplify the

two integrations. Along both paths Ia! > kp and the integrand may be

written as:—

2
o
kp4
. ka 21(m4 - 1) K 2 N K 2 _L
o (1l - =) 1~ A VI A T - DR
4 kb 2 2
a L La(l - -2 o o -
4
o
or to first order
1{1:'4
, 21(22—-" 1) K 2 . K 2 B
o {1 + i -7 i s T
4 2 2
kb o o
La(l - 7 )
o
4
k
o
This may be rewritten as three terms:-—
/ ,.
kp} kaP
5 2i0( -1 20 T 1)
ol n o + od
K 4 L L % 2 A2
4 1 / ' 2.7 : “h
o {1 - ——1—7——-) Lf\fl{i - -7 p(..} - 1)- Laé(l - —~r2~—~)2(——2~— + 1)
4 4 2 4 2
94 &4 o [6:4 [0

This expression must be integrated around both branch lines. For the branch
line Tl (figure 4.3) the first and third terms are the same on both sides

of the branch iine and thus do not contribute. In the second term the
D) 2
k ~ k
- P
expression (-

L
3

1
-~ 1)* has the value +i(1 -~ P Y% along the lower portion
5 g D
a

Q
[\



K 2

of the branch line and ~i(l - _l%p
o

values are chosen to be consistent with a wavemotion propagating away from

L

along the upper portion. These

the scurce. The integral around the branch line Fl is thus given by:-
4
k
p 2ia(-E; - 1)

_ o } ds
7 3
l i ko k

= 1
1 4 -2 . - _P yz
La (1 4) tkl(l 2) I
o a4
" 4
o 21u(—§z -1
+ da
K 4 K 2 7
k 4 b 3
p Lo (1 - -i(1 - —25)2 J
o = a
or by letting o = kpx
[ 4 J &t - Dx? o
- 1
J P - iR - 1)
T P 1
2
Around the second branch cut FZ the first two terms of the integral
1
do not contribute and in the third term the expression ((kpz/az) + 1)* takes
9

k2 K

i
the value +(1 + ~E§92 on the right of the branch line and -(1 + —EEJZ on

L

e . - . al,
the left of the branch line. The integral along the second branch 1line

may thus be written:-

4
ik ko
{p 2a.( (4 - 1)
= H o dd
j j L b o 2
r < 17
" Lt (1 - 2p7 e+ B
A 2 |
o b 0N
4
kp
{m 2q (—*r;z; -1
+ i - 7 - 5 do
ik b2 [ RS
To Lt - T - s B
A 2
Q. O

or, by letting o = ikpx,



J _ =4 J (X4 - Dx
- 1
Lk 2 (x4 34)2(x2 - 1)?2
T2 p 1
Thus J + J = 0
r, T

and the branch line integrals do not contribute.



APPENDIX V: THE FREQUENCY RESPONSE OF A DAMPED STRUCTURE

The general equation of motion for steady harmonic vibration of a

hysteretically damped structure with n degrees of freedom is:-

—wZMg + [k + iDJg = T (A.22)

where M, K and D are square n x n mass stiffness and damping matrices and
¢ and F aren x 1 displacement and force column vectors, respectively.
This equation gives f 1in terms of £ while the reverse = £ in terms of

F is required.

To construct the inverse relationship, the left hand side of equation
(A.22) may be diagonalised by adopting a complex Eigenvalue procedure. The

Eigenvalue problem is defined by
2 .
[~«M+K+iDJg = 0 (A.23)

and the eigenvalues are found as the roots of the complex polynomial of

degree n in w2 given by:
2 . ‘
[-w™M+K+iD] = o0 (A.26)

(Only values of w2 are found in this equation as opposed to the viscously
damped case where there are both w and wz terms.) In general, there

will be n complex roots which may be written as:

A set of column vectors (eigenvectors) may now be found by substituting
each eigenvalue into equation (A.23) and solving the homogeneous set of
equations. The column vectors so formed may not be determined uniquely but
only to the extent of an arbitrary constant. In general, both the column
vector and the constant will be complex. For convenience, the eigenvector

may be normalised and a satisfactory basis for this is given later.



The set of eigenvectors may be written:

1 2 3
LD, @0 e, @
with each eigenvector satisfying the relation:

—wnZMw(“) = [k + iD]u;(“) (A.25)
In particular it may be shown that

T
w(r) Mw(s) = 0 (A.26)
r# s
OGN (s)
p 0 [K + iD]y 0 (A.27)

The matrix R may now be defined so that the columns of R are the eigen-

vectors. Employing relations (A.26) and (A.27) it is possible to write:

RIM R = [r%:] (A.28)

T .- o]
R'[K + iD] R = [Er + 1dr\J (A.29)

Y~

where m and kr + idr are defined according to:

T

w(r) Mw(r) =m (A.30)
T
AR A (A.31)
O
m will in general be complex. By multiplying equation (A.25) by g
it is seen that
2 L+ id
w S 2T (A.32)
n m
sl
2 . L. ] (n)
W, may be identified as the complex resonance frequency and as

the complex mode shape.

Equation (A.22) may now be diagonalised by premultiplying by R~ and

inserting RR ~ so that:



RT [-w?M + K + iD]RR '€ = R'f (A.33)

Multiplying through the bracket and employing equations (A.28), (A.29) and
(A.32) gives:

E(“’rz - wz)mrl e = [Rs (A.34)

or

£ = [R:[F 5 ! 5 \J[R,T]f (A.35)
(wr - w) m

To still further simplify the equation it is possible to arrange for the

column vector Vf(n> to be normalised so that equation (A.28) appears as

RIMR = 1 (A.36)
where 1 1is the unit matrix. Equation (A.35) may now be written as
1 1T
£E= R [—«—————2 21 RF (A.37)
w - ow
n ;

which is the required relationship.



APPENDIX VI; CURVE FITTING TO DATA FROM MANY STATIONS

Let H(iw)* be a column vector of frequency response data obtained
from many stations but with the same excitation station employed through-
out. Fach element of H is therefore a complex frequency response

function. The theoretical form of the frequency response is

n  igX(r)
H= z — (A.38)
r=1 w -w
T
(r) . . th
where X is a complex column vector corresponding to the r  mode.
K(r) may be expressed in terms of the complex modes so that:-

2(_(r,) - i(r)wj(r) (A.39)
where j 1is the forcing station. The error equation for the kth frequency
may now be written as:

0 1wKz(-(r)
EK = z > 5 T E(lwk) (A.40)
r=1 w - w
r K

where EK is a column vector of complex errors.

To enable each term in equation (A.40) to be curve fitted individually,

the substitution:

n iw E‘r)
Aliwg) = ] 5 5~ M) (A.41)
r=1 w7 W
r#m
may be made to give:
i%&(m)
EK = -——2’—‘—‘——2_—- + é(le) {A.AZ)
— w_Tw
m K

*In this section, column vectors will be indicated by a line drawn beneath

the symbol.



. . . th . . .
which is the error equation for the m  mode. The weighting function

W(hnK) may be used to linearise the error equation so that

IS T ) 2 2.
E_IE = W) [ng MO )I_X_(le)]
where
1 _ 1
W(iw,) 2 _ 2
K (wm W )

(A.43)

wmz for the weighting function having been chosen as an initial estimate

or from the previous iteration.

To obtain the total error as a scalar E_, may be premultiplied by

K

its transposed conjugate to give the real scalar equation:

=T _ 2
e
T ————
| . o(m) 2
= = [Hle X ey
1wk|
-~ 2
X llwk.}.(_(m) + (wm

-, HA Guy V]

- w DA )] (A.44)

Thus the sum of errors over the frequency interval containing one resonance

is:
]t -
k
w 2 T w f; T w 3é¥
1% IZ E k - iy 2 i(m) o k=k . i}z(m) k -k
i 2 72 2
W, | " k| ko u, |
~ T =T 2- T
+lw2[wk—A'~k]X(m) L Ab 22“k-‘§kék
2 | - m 2 “m 2
k [wk] k ]wkl k [wkl
3= T 2= T 4= T
_ { 3 S M R v A Ay we A By
2= 2 2
k i;k —l n k Iwk{ k lwkl

where Lx]1° = X

(A.45)



The series terms may be evaluated conveniently by means of a digital computer.

The expression may be simplified by making the following substitutions:-

2
W w
] - i) . <3
w,|? ks
3 — T
w A
Z _E_ék;. = D; z —é = E;
lw, |2 v, |
mszTA kaE?é
e T wZ "
k "k

- D m - .
J e ?=BXX - o KC+ED-u? X #lo 21PE-w
k - - m= - = - m — - m m
+ D'x - meF + G (A.46)

The values for the unknowns are found by taking derivatives with respect to
each unknown and equating to zero. Thus for wmz the derivatives with

respect to the real and imaginary parts are:-

2 (Je, 2) = X'c - ¢lx + 2 (w Z)RE -F-F=0 (A.47)
R "Lk == = m
27k
o
m
® o (Je,?) = -iXiC + 10K + 2(w DTE + iF - iF = 0 (A.48)
I k == L2 m
27k
dw
m

These may be combined to give

-Cx+u’E-F = 0 (A.49)

Clearly, each derivative with respect to an unknown element in the column
. . . th .

vector X will be similar; therefore only one element (the t ) will be

considered. The derivatives with respect to the real and imaginary parts

th
of the t element are:-—



2 = _ - =
oF (gk ) = 2BX R 0 (A.50)
aX
—t
9 2 (" 2 2 - ~
(m)I(E K ) = ZBXt +iw Ct - 1Dt - 1w Ct + 1Dt = 0 (A.51)
aX
—t
which may be combined to give:
(m) _ 2 -
BXt wm Ct + Dt = 0 (A.52)

(m) the

Equations (A.44) and (A.52) may be solved to give wmz and X
required unknowns. The procedure may now be repeated for each remaining

interval in turn to complete the iterationm.



APPENDIX VII: DIAGRAM OF COMPUTER PROGRAM
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