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Typical built-up structures consist of beams, plates and beam-stiffened 

plates. Due to strong coupling with other parts of the structure the 

vibrational characteristics of these components are too complicated to 

be analysed exactly. However, the vibration may be approximated by the 

response of structures with a similar cross section and of infinite 

length. The wave propagation and power flow due to force and torque 

(moment) excitation has been studied at the driving point and in the far 

field for infinite beams, plates and beam stiffened plates. 

An infinite, beam-stiffened plate excited by forces or torques applied 

to the beam behaves like an uncoupled beam at the driving point. In the 

far field, power transmitted by flexural waves in the beam is radiated 

into the plate whilst power transmitted by torsional waves in the beam is 

not radiated. The plate carries a cylindrical wave with a strong 

directivity. 

The power flowing through the isolators and into the supporting founda-

tion of a machine has been examined by approximating the driving point 

frequency response function of the foundation. One and two stage isolation 

of machines with internal force or velocity sources has been considered. 

Two stage isolation is superior to single stage isolation in reducing 

power flow, in those circumstances where the excitation spectra do not 

cover the two resonances of the system. 

A structure with a number of resonances is difficult to analyse theoreti-

cally but may be investigated from measured data. By exciting a structure 

at one point and measuring the frequency response at a number of positions 

it is possible to construct a mathematical model of the structure. The 

model is valuable because it enables unmeasured frequency response 

functions to be predicted. Also, by modelling two separate components of 

a structure from measured data it is possible to obtain an estimate of 

the subsequent motion and power flow throu^ the two components when 

coupled. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Typical built-up structures such as buildings or ships are an 

assembly of many different components all of which interact strongly 

when set into vibration. Certain components such as beams or plates 

are relatively easy to analyse individually when there is no coupling 

with other elements. However, when built into a structure the vibration 

of a component is strongly dependent on the other elements to which it 

is attached and the calculation of the motion becomes very complicated 

or even impossible. In order to obtain some widely applicable formulae, 

methods of vibration analysis based on approximate or measurement methods 

are developed in this thesis. 

In a built-up structure a common source of vibration is a machinery 

installation which, due to some internal excitation, injects vibrational 

energy into its supporting foundations. This energy is carried by wave 

motion within the foundation until some boundary or discontinuity is 

encountered. Here some of the energy in the wave will be reflected 

back into the foundation the remainder being transmitted through the 

boundaries to other parts of the structure. If a significant amount of 

energy is reflected to and fro within the foundation then resonances will 

occur at those frequencies for which the wave motion interferes construc-

tively. The power which is transmitted through the boundaries of the 

foundation is available for radiation or as unwanted vibration in the 

remaining portion of the structure and this is a significant problem. 

A direct approach for controlling the unwanted power is to minimise the 

net vibratory power flow into the foundation at the source. The use of 

power flow in calculations is very valuable because it combines both 

forces and velocities in a single concept. An attempt to decrease the 

radiation or vibration in a structure by reducing only the force or 

velocity may not necessarily be successful. However, an improvement may 

be ensured by decreasing the net vibrational power applied to a 

s true ture. 
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The foundation of a machine is a crucial component since it is 

responsible for the conversion of the machinery excitation into propa-

gating wave motion. Therefore the first part of this thesis is a study 

of wave motion and power flow in a range of common foundations such as 

beams, plates and beam-stiffened plates. The existence of damping and 

of a large number of resonances enables foundations to be approximated 

by components of infinite extent. This is equivalent to assuming that 

at the boundaries of the foundation there are no reflections and all 

power is propagated away. This approach greatly assists the analysis 

and, in particular, enables the power flow into the structure due to 

different types of excitation to be derived. Having established the 

behaviour of the foundation the reduction in power flow resulting from 

the isolation of machinery may be estimated. When there are significant 

reflections from boundaries and individual resonances are apparent, the 

theoretical approach described above becomes less accurate. Consequently 

the second part of this thesis is concerned with those frequency ranges 

where there is resonant behaviour of the structure. Starting with 

measured data computer based procedures are formulated which enable 

mathematical models of the structure to be formed. The models may be 

used to predict unmeasured responses thus greatly reducing the experi-

mental testing time required. Other applications of the mathematical 

model are also considered. In particular, the possibility of modelling 

two components and then predicting their behaviour when joined is 

examined critically. 

1.2 The Principal Methods of Vibration Analysis 

An exact solution for the vibration of a structure may be obtained 

by forming the differential equations for the motion and solving them 

for the appropriate boundary conditions. It is useful to obtein the 

harmonic response since, if the structure is linear, then the response 

due to transient or periodic excitation may then be determined exactly 

by means of a Fourier transform. The calculations involved in a vibra-

tion analysis may be simplified by reducing the complete solution to an 

infinite series in which each term corresponds to one resonance of the 

2. 



structure; this procedure is usually described as modal analysis. 

The complexity of a practical structure unfortunately prevents this 

type of detailed analysis because it is not possible to formulate and 

solve all the differential equations. Even relatively simple components 

are difficult to analyse if they are built into a structure in such a 

manner that the boundary conditions cannot be determined. However when 

a structure has several components the response of the entire structure 

may be calculated from the response of the individual components. If 

many components are involved, procedures of this type (often known as 

mobility or receptance methods) become unwieldy. Consequently only 

relatively simple structures may be analysed exactly to obtain the res-

ponse of a prescribed excitation. 

Various approximate methods, each appropriate to different circum-

stances, enable a wide range of vibration problems to be solved. If the 

effect of the boundaries is considered to be unimportant then the 

structure may be approximated by considering it to be of infinite length. 

This type of analysis is usually formulated in terms of wave motion. 

If a structure has well defined mass and stiffness elements then an 

approximate mathematical model can be formulated and solved in which there 

are pure mass elements and pure stiffness elements. Both these types of 

approximate analysis are used in Part One of this thesis. 

An approximate method which is capable of great accuracy in the 

finite element method. In this procedure the structure is divided into 

a number of elements each element having a certain deformation pattern. 

By considering the strain and kinetic energies of the structure the 

resonance frequencies and modes of vibration may be calculated. The 

deformation is built-up out of the deformation of the individual elements; 

consequently the emphasis in the analysis is centred on determinir^ the 

deformation of elements rather than the deformation of the entire structure, 

A finite element analysis may onxy be applied to particular problems and 

will only produce numerical results. Because of the complexity of a 

practical built-up structure detailed representation of individual compo-

nents is not generally possible but an overall response may be determined. 

Because of the detailed description that would be required the 



finite element method is not suitable for high frequencies when there 

are many resonances. In this regime statistical energy analysis is 

more appropriate. This is an approximate method used for analysing the 

interaction between two components. When there are many resonances 

present in the components of a system then averaged properties may be 

used to predict an averaged response of the coupled system. The average 

modal energies of each system must be known together with the nature of 

the coupling. This type of analysis is generally only appropriate when 

both the components being considered have a high modal density and the 

coupling can be calculated or estimated. 

By combining measured data with theoretical data it is possible to 

obtain information about a complicated structure. This type of analysis 

is considered in Part Two of this thesis. 

1.3 Objectives of This Work 

The aim of this study is to formulate and evaluate methods for the 

vibration analysis of complicated practical built-up structures. To 

this end a theoretical study of commonly occurring components of struc-

tures is commenced with the aim of determining simple widely applicable 

general formulae which indicate trends of behaviour and give approximate 

solutions. In particular this approach is to be applied to the problem 

of machinery isolation where it is considered that the use of power 

flow should provide a unifying concept. 

A further intention is to establish procedures by which the 

fundamental nature of an existing structure may be determined from 

measured data. 

1.4 Conventions and Definitions 

There are two conventions for describing a harmonic wave propagating 

in the positive x-direction. These conventions are either 

^i(kK - »t) (1.1) 

or 

- kK) (1.2) 
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The first convention (1.1) gives a positive wave number for motion 

in the positive x-direction but negative frequency dependence. This 

convention will be used when considering the spatial response of a 

structure. The second convention (1.2) gives a positive frequency 

dependence with negative wave numbers and is more suitable for describ-

ing the frequency response of a structure. Care will be taken to state 

which convention is being employed in any problem and in particular all 

tables will use the second convention. To convert from one convention 

to the other it is merely necessary to replace every i (= in an 

equation by -i. 

Power is the rate at which work is done and is given by the 

relationship 

P. = F.V. (1-3) 

X 11 
where and are the instantaneous values of force and velocity 

at a point. (Instantaneous values will be indicated by the subscript i.) 

When power flows through an area it is necessary to consider it as an 

intensity and therefore with the force determined as a stress. 

With a vibrating structure the net flow of power is more important than 

the instantaneous value and when force and velocity are harmonic this 

is given by 

2n/w 

. f = 2¥ f V l (1-*) 

O 

where to is the frequency of vibration. If the force and velocity are 

written as:-

F. . V. . 

where F and V are complex and may thus include a relative phase 

angle, then:-



p = ||v| |F| COS <}) 

or P = ^Re{FV*} = ^Re{F*V} ( 1 . 5 ) 

= i[Re{F}Re{V} + Im{F}lm{V}] 

where <J) is the phase angle and * denotes the complex conjugate. The 

ratio of the complex harmonic velocity to the complex harmonic force is 

the mobility and this quantity is a property of the structure alone. 

One may substitute therefore for either the force or the velocity to give; 

P - - !|v|^ M M (1.6, 

where g = ^ . 

These formulae hold for both conventions of e"^^^ and 

It is convenient to represent damping in a structure by means of a 

complex Young's modulus [l] , The relationship between stress and strain 

may be written as;-

Stress 
E(1 + in) for e^^^ frequency dependence 

Strain 

E (1 - in) for e frequency dependence 

where E is the Young's modulus and n is the loss factor for the material. 

This representation of damping leads to a complex resonance frequency 

and a complex wave number. If a structure has an undamped resonance at 

% then the introduction of damping leads to a resonance frequency of:-

* ~2^ frequency dependence (1.7) 

2^ e frequency dependence (1.8) 

where, because n is small, only first order terms have been included. 

torsional waves the wave number is proportional 

to (^) ; therefore the complex wave number is given by;-



~ 2^ ® frequency dependence (1.9) 

k(l + —j) for e frequency dependence (1.10) 

Similarly for flexural waves, the wavenumber is proportional to (—)^; 

therefore it may be written as:- ^ 

~ ® frequency dependence (1.11) 

for e frequency dependence. (1.12) 
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CHAPTER 2 

WAVE PROPAGATION AND POWER FLOW IN BEAMS AND PLATES 

2.1 Introduction 

Problems in vibration isolation may be considerably simplified by 

considering the vibrational power flow in a structure. A typical problem 

is idealized by figure 2.1. Power is injected into a structure such as 

a building or ship by a machine with an internal vibration source, which 

is mounted on an isolator. Due to the isolator foundation being flexible, 

power is transmitted through the structure to the sink where it appears 

as unwanted vibration or radiation. 

The aim of vibration isolation procedures is to reduce the velocity 

amplitudes at the sink by making appropriate modifications to the isolator 

and isolator foundation. A direct approach would therefore be to 

calculate the response at the sink due to an excitation at the source and 

to design the isolator, foundation and structure to minimise the unwanted 

vibration. Because of the variety of possible structures and because of 

their often complicated nature, direct calculations of this type are 

extremely difficult. In addition, an exact description of the unwanted 

vibration cannot always be formulated, especially in the case of radiation 

for which the velocity distribution over the surface of the structure 

must be established. 

Standard methods of vibration isolation (for example [l,2,3,4] ) 

therefore simplify the problem by only analysing the reduction of force 

or velocity at the foundation. 

An approach to vibration isolation may be formulated by considering 

the power flowing into the structure at the mounting point of the isolator. 

If the isolator and foundation are designed to minimise this power flow 

then all unwanted vibration will be minimised. 

The power that enters a structure is a function of the characteristics 

of the source, isolator and foundation. The isolator and source are 

easily modelled but the foundations are often difficult to describe. In 

the following chapters the characteristics of the foundations have been 
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simplified according to the method developed by Skudrzyk £5j . This 

method allows a finite damped structure to be approximated by an equiva-

lent structure of infinite extent with no reflecting devices. Thus it 

is assumed that waves propagating away from the source are attenuated 

by damping or radiation and are not reflected back to the source to form 

standing waves. Alternatively, this is equivalent to assuming that there 

are many modes of vibration contributing to the motion at any one 

frequency without one mode being dominant. 

A number of typical foundations such as beams, plates and beam-

stiffened plates have therefore been analysed as if they were of infinite 

extent. Wave propagation in these types of structure has been studied 

previously by many authors; however, except for Heckl [6] , Cremer, 

Heckl and Ungar , Noiseux and Pavic [9] there has been little 

detailed consideration of power flow. In the following chapters the 

power flowing into each infinite foundation due to a point source and 

the subsequent flow of power throughout the structure are given. As 

foundations may be excited by forces or torques, both these types of 

source have been considered. The results are summarised for the simpler 

foundations in Table I. 

A unified approach has been adopted for analysing the various 

infinite structures. In each case a wave equation has been derived in 

a right handed coordinate system with a source applied as a spatial 

delta function (written 6^). Harmonic time dependence of the form e ^ ^ 

is assumed giving a linear differential equation in one or two dimensions. 

By applying a spatial Fourier transform the differential equation is 

transformed into an algebraic equation in wavenuniber space. The 

solution is obtained by taking the inverse Fourier transform, the 

integral being evaluated by contour integration. These procedures are 

described in references [lO,l]Q . The definition of the Fourier transform 

used is:-

5(a) = I g(y)e "̂•''dy (2.1) 

and the inversion integral is:-

C(y) = C ( o i ) e ^ ° ' ^ d a (2.2) 

10, 



A over a function represents the transform of that function and the 

coordinate in wavenumber space will be denoted by a. In the two-

dimensional case the Fourier transform will be written as:-

OO 00 . 

/ f -lO-X -lOyY 
°y) = [c(x, y)e e dxdy (2.3) 

and the inversion integral as:-

~ id X ia y 
CO 00 

2 f f % la X la y 

» y) =-JJT J J V ® * ̂  ^ (2.4) S(x 
4Tr 

2.2 Torsional and Longitudinal Wave Motion in Beams 

Since torsional and longitudinal waves both obey the same second 

order differential equation, results obtained by examining torsional 

waves are also applicable to longitudinal waves. Torsional waves will 

be considered here because of the two this type of wave motion is 

generally more important. 

Figure 2.2 shows an infinite beam with shear modulus G, torsion 

constant Q and mass moment of inertia per unit length J. The beam lies 

along the y axis with a torque of amplitude Te applied at y = 0. 

The angular displacement at any point is given by 8(y). The equation 

of motion is derived in Appendix I and is:-

3^8. 9^8. 
J i = GQ 1 + Te'iwCg (2.5) 

9t 9y ° 

This equation assumes that the torsional wavelengths are greater tb£in the 

cross section dimensions of the beam. 

Assuming harmonic time dependence of the form e this equation 

may be written as:-

• ^ 2 " • - ip 'o (2.6) 

2 cô J 
where ^ and 9 now refers to the complex amplitude of the 

1 1 , 



angular displacement. The equivalent equation for longitudinal waves 

is:-

- %E 
(2.7) 

2 2 

where and S(y) is the displacement, A the cross sectional 

area, E the Young's modulus and F the applied force. Only torsional 

waves will be considered below but to convert the results for longitudinal 

waves the equivalent terms in equations (2.7) and (2.6) may be interchanged. 

The Fourier transform (equation (2.1)) in the y-direction gives:-

k / - .2 
(2.8) 

The solution is given by the inverse Fourier transform of equation (2.8) 

and is:^ 

8(y) 
-T 

2irGQ ~ 2 2 
kf - * 

da. (2.9) 

This integral has two poles at ot = 2 which are shown together with 

the integration contour in figure 2.3. The contour is deformed to pass 

beneath the pole at c*. = +k^ since with the inclusion of damping this 

pole would lie above the real axis. The pole at a = -k is not included 

in the contour since this pole with damping would lie beneath the real 

axis. 
ik^y 

The residue of the integral is — and the solution is therefore: — 

• # % 

ik^y 

or in terms of mobility with e 

-iw8 

't 

-icjt 

we 
ik^y 

(2.10) 

2GQk^ 

frequency dependence:-

ik^y 

2 / ^ 7 
(2.11) 

The mobility at the driving point (y = 0) is therefore a real constant 

independent of frequency. 
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2.3 Power Flow in Torsional Wave Motion 

Using equation (1.6) for the power supplied to a structure gives;-

fx I ̂  

where denotes the power supplied by a source. 

The power flow at any station along the beam is given by equation 

(1.5). The angular velocity is 

„ i(k V - oit) 

internal twisting moment is given by!~ 

^®i T i(k^r-wt) 

3y' *i - -GQ a;- - 2 * 

denoting the power at any station by P^ gives 

IT 

a 

, 2 

Pg IS half the power supplied by the source, the remaining power going 

in the negative y-direction. If damping is included then both and 

G become complex and so therefore do L and M^. Writing G as 

G(1 - in), as k^(l + i^) and only including terms in n to 

first order gives 

T 
2 -k^ny 

The power is therefore seen to decay exponentially with distance from the 

source. 
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2.4 Flexural Wave Motion in Beams 

Iftilike other wave types, flexural waves cause two internal forces 

to act in a beam. As will be shown these two forces (one associated 

with bending, the other with shear) are both important since they carry 

equal amounts of power in the far field. In the near field, in addition 

to propagating waves, non propagating waves couple the two forces accord-

ing to the particular boundary conditions imposed. In addition, flexural 

waves are dispersive being represented by a fourth order differential 

equation in which the wave speed is proportional to the square root of 

frequency. The differential equation for a beam including sources due 

to force and torque excitation is given in Appendix II. 

In deriving the equation of motion no account has been taken of the 

effects of rotary inertia and shear deformation. It is assumed that the 

wavelengths of the propagating flexural waves are always greater than 

the cross—sectional dimensions of the beam in the frequency range of 

interest. 

2.5 Force Excitation of a Iftiiform Beam 

Figure 2.4 shows an infinite uniform beam of density p, cross-

sectional area A, second moment of area I and Young's modulus E, 

laying along the y-axis. A harmonic force of amplitude Fe~^'^^6 i 

applied at the origin y = 0. The differential equation representing 

the motion is derived in Appendix II and for harmonic time dependence of 

the form e is:-

.4p ^ 
7 4 - ^ ^ = 1 1 ^ 0 (2.15) 
dy 

2 
4 _ 0) pA 

where k = gj and 5(y) is the displacement in the z-direction. 

Taking the spatial Fourier transform in the y—direction gives:-

- It 4 \ 4 (2.16) 
a - k 

where a is the coordinate in wavenumber space. The solution is given 

by the inverse Fourier transform of equation (2.16), namely:-

14. 



F f 
Iriil J "4 75"^" (2.17) 

•' a - k 

This equation has four poles (a = jfk and a = H k ) which are shown on 

figure 2.5 together with the contour of integration. The contour has 

once again been indented to include only those poles which correspond to 

sources. The residue due to the pole at a = +k is e^^^/4k^ and the 

residue at a = +ik is e ^^/-4ik^. The solution for x ^ 0 is therefore: 

6(y) - -? Le ^ + ie 'J (2.18) 
AEIk 

The instantaneous values of the transverse velocity and angular velocity 

for frequency dependence of the form e"^^^ are:-

k A y } . _-j%L + le-ky] (2.19) 

4EIk 

and 

e.(y) . -IIH [elk? _ e-ky] e-i": (2.20) 

4EIk 

where 9^ is the instantaneous angular velocity. The point mobility at 

the origin between the driving force and the transverse velocity is 

therefore:-

B = 3 (1 + i) = (2.21) 
4EIk^ 4pAvC 

This mobility decreases with increasing frequency and behaves at any 

frequency like a dashpot and mass in parallel. 

The transfer mobility between the driving force and angular velocity 

may be found from equation (2.20). This mobility is clearly zero at the 

origin as would be expected from symmetry. 

Equations (2.19) and (2.20) include a term of the form e which 

represents the near field. This term has the same magnitude as the 

propagating wave at y = 0 but rapidly decays with distance from the 

origin. By writing this near field term as g-ZnCy/X) x is the 
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wavelength it may be seen that at a distance of one wavelength from the 

source it has decreased to less than 0.2% of its value at the origin. 

Therefore for large values of k y the real exponential terms may be 

ignored in equations (2.19) and (2.20) leaving only the complex exponentials, 

2.6 Power Flow in a Uniform Beam with Force Excitation 

The power supplied by the source is given by the time average of the 

transverse velocity and the driving force. Using equation (1.6) gives 

Pg = (gf)^ = (2.22) 
8pAv^ 8EIk 

The power supplied by a driving force normal to a beam therefore 

decreases with increasing frequency. 

At any point along the beam there is an internal shear force and an 

internal bending moment. Both of these forces transmit power. The 

instantaneous value of the shear force is given by:-

u. . EI ^ = f Di'ky 4. (2.23) 

9y 

and the instantaneous value of the bending moment by 

M. = -EI . ^[ie^^y + e'^yje (2.24) 

The power flow associated with shear may be found from equation (1.5) by 

substituting the values for the shear force and transverse velocity from 

equations (2.23) and (2.19) to give:-

= |Re{uiwg*} 

^ Ql + e ^^(sin ky + cos ky)J (2.25) 
32EIk^ 

Similarly, the power associated with bending may be found by 
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substituting the values of bending moment (equation (2.24)) and angular 

velocity (equation (2.20)) into equation (1.5) to give:-

= &Re{Miw8*} 

fI^o) r n 
3 U- - e (cos ky + sin ky)J (2.26) 

32EIk 

The total power flowing at any station is the sum of these two powers 

and is:-

l i f e • 

The total power flowing in the positive y-direction is therefore independ-

ent of distance and equal to half the power supplied by the source. 

Both the power associated with the shear force (P ) and the power 

associated with bending (P^) have real exponential terms which are 

important in the near field. In the far field the exponential term may 

be ignored (at distances greater than one wavelength e'^f^ is less than 

0.00 2 and P^ and P^ are seen to be equal. In the near field the 

power is influenced by the nature of the source. At the origin all the 

power of the transverse driving force is transferred to the shear compo-

nent P^. As the distance from the source increases P^ decreases 

and the power is transferred to the moment component P . This trans-

ference of power proceeds with increasing distance from the source until 

both P^ and P^ are equal. The near field is therefore seen to 

couple the two components of the power flow enabling work to be done 

by one component on the other. 

The effect of internal damping may be analysed by allowing the Young's 

modulus and wavenumber to have an imaginary part. Substituting E(1 - in) 

for the Young's modulus and k(l + i?) for the wavenumber, where it may 

be seen from equation (1.12) that 4;= q, enables the transverse velocity 

and angular velocity to be written as;-

I • ] (2.28) 
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e. = Fw(l + 2i;) 

^ 4EIk 
(2.29) 

Both velocities therefore decrease exponentially with distance from the 

source. Substitution of the complex values of the Young's modulus and 

wavenuniber into equations (2.23) and (2.24) give the shear force and 

bending moment for damped vibrations. By using equation (1.5) the power 

flow associated with each component may again be found. After some 

algebra it may be shown that the power flow associated with shear is:-

P = 
u 

32EIk^ L 

_ se-2yk + e-yk(l+C)[sin(yk(i+c)) 

+ cos(yk(l +C))](1 - C)J (2.30) 

and the power associated with bending is:-

P = 
m 

32EIk-

+ 3ce-2yk - e-yk(l+0[cos(ky(i +;) + 

+ sin(ky(l + ?))](! + 3c) (2.31) 

while the total power flow is;-

= P + P 
u m 

16EIk^ 

^-2kyc ^ ^^-2ky . [cos(ky(l + ;)) 

+ sin(ky(l + G))] (2.32) 

The power supplied by the source (2Pa evaluated at y = 0) is less than 

that in the undamped case because of the additional phase difference 

between the driving force and transverse velocity at the origin. For 

light damping the second and third terms in equation (2.32) may be 

ignored in the far field and the power flow is seen to decay exponentially 

with distance from the source. 
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2.7 Torque Excitation of a Uniform Beam 

A simple means of applying a torque to a beam is to use a lever 

and apply an harmonic force parallel to the beam at the end of the lever-

arm. This arrangement is commonly seen where a machine is supported by 

a cantilever attached to a vertical wall, or more generally where a floor 

slab is attached to its vertical supports. 

The power supplied to a beam by a torque source is proportional to 

the square root of frequency. A torque source, unlike a force source, 

will therefore be important at high frequencies. Within the beam the 

two components of power flow are, once again, equal in the far field, 

but in the near field the power is initially associated with the bending 

moment alone. 

Consider a uniform infinite beam laying along the y axis of cross-

sectional area A, second moment of area I, Young's modulus E and 

density p. Let a torque of the form Te per unit length be 

applied at the origin in which 6^ is a spatial delta function. The 

differential equation for harmonic frequency dependence of the form 
_-iwt 
e IS 

- - EY (z-s*) 
dy 

Taking the Fourier transform in the y direction gives 

= " I f T (2.35) 

where k^ = . 

The solution is given by the inverse Fourier transform of equation (2.35) 

which may be written as;-

•' a - k 

This equation has poles in the same position as in the case of a beam 

with force excitation and the same contour (fig. 2.5) may be used for 

integration. The displacement is therefore given by:-
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5(y) - [ e " " ' - (2.37) 

4EIK 

The solution consists of a propagating wave and a non propagating near 

field. 

At the origin, the near field is out of phase with the propagating 

wave and, as would be expected from symmetry, there is no transverse 

motion. 

The instantaneous values of the transverse velocity and angular 

velocity for frequency dependence of the form e are:-

L (y) = - e-"''" 
iPTV L 

and 

^ AEIk' 

- ie-ky 

e (2.38) 

(2.39) 

The point mobility at the origin between the driving torque and the 

angular velocity may be found by substituting y = 0 in equation (2.39) 

to give:-

This mobility increases with frequency, behaving at any frequency like 

that of a damper and spring in parallel. 

2.8 Power Flow in a Uniform Beam with Torque Excitation 

The power supplied by a torque source may be found by substituting 

the point mobility into equation (1.6) to give:-

^ ^ O ' • 

The power flow into the beam therefore increases with frequency, making 

a torque source particularly significant at high frequencies. 
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The two components of power flow within the beam may be calculated 

in the same manner as that used for a force source. The power associated 

with the shear force is calculated by substituting the values of trans-

verse velocity and shear force into equation (1.5) to givet-

u 
iTl'o) 
32Elk 

|l - e ^^[cos ky - sin ky] (2.42) 

Similarly, the power associated with the bending moment is:-

ItI^w 

m 32EIk 
1 + e ^^[cos ky - sin kyjJ (2.43) 

and the total power flowing is given by the sum of these two components 

and is:-

= Pu + Pm 
Tl^w 

16EIk ' 
(2.44) 

The power supplied by the torque source is therefore initially 

(y = 0) associated with P^, the bending moment contribution, while 

there is no power flow in the shear component. The bending moment contri-

bution decays in the near field transferring power to the shear component 

P . In the far field both P and P carry equal amounts of power 
u m u 

in a similar manner to that found in a beam with a force source. The 

effect of damping on the power flow may once again be found by introducing 

a complex Young's modulus and a complex wavenumber. By writing the wave-

number as k(l + i?) where, to first order, 4? = n, the displacement of 

the beam may be written ast-

G(y) . f O [e-kyc^u^y . e-kyg-lkyS] (2.45) 

4EIk 

The motion of the beam therefore decays exponentially with distance from 

the torque source. Calculating the two components of the power flow 

for the damped case gives, after some algebra 
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2 r 
T w 

u 32EIk 
r21<yS - ;e-2ky _ * ()) 

- sin(ky(l + ^))] (1 - c) (2.46) 

for the component associated with shear, and 

? = i l L a 
m 32EIk 

^ + ®[cos(ky(l +()) 

- slti(ky (1 + c))](l + 35)1 (2.47) 

for the component associated with bending. 

The total power flow is thus;-

= P + P 
u m 

J l i ^ o 
16EIk 

r Z k y ; + ^^-2ky + + ;)[,^g(ky(l + ;)) 

- sin(ky(l + G)j (2.48) 

The power supplied by the torque (2P^ evaluated at y = 0) is thus 

greater when there is damping compared to the undamped case. If 

the damping is small then only the first term in equation (2.48) is 

important and this is an exponential decay with distance from the source. 
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CHAPTER 3 

FLEXURAL WAVE PROPAGATION AND POWER FLOW IN PLATES 

3.1 Introduction 

There are three components of power flow within a plate carrying 

flexural waves. As in a beam, any element of the plate is acted upon 

by a shear force and a bending moment both of which transmit power. 

However, in a plate there is an additional bending moment, due to twist-

ing, which may also transmit power. The shear force and bending moments 

must be considered as stresses, because of the two dimensional nature of 

a plate and therefore the power expressed as an intensity. 

A transverse force source or a torque source acting on an infinite 

plate create a cylindrical propagating wave, which carries energy, and a 

nonpropagating near field. These two types of sources, the power they 

supply and the power propagated will be considered in the following 

sections. Exact solutions for an infinite plate excited by a transverse 

force are available in terms of Hankel functions [7]. However, these 

solutions will not be used but instead approximate solutions will be 

employed. These approximate solutions are more easily manipulated and 

will be directly comparable to the more complex structures studied later. 

A particular problem is encountered with torque sources where it is 

found that the classical plate equation is not applicable; an approximate 

solution is however given. 

For the case of force excitation of a plate the wave propagation 

and power flow are given in reference [?] , The calculations will be 

repeated here using different methods and in a manner that enables 

general equations for wave propagation and power flow to be developed. 

These general equations will then be used extensively in the following 

chapter. 
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3.2 Flexural Vibrations of an Infinite Uniform Plate Driven by a 

Transverse Driving Force 

The wave equation for a plate acted on by forces and torques is given 

in Appendix III. For a transverse point force applied at the origin and 

for harmonic time dependence of the form e ^ ^ the plate equation may 

be writ ten:-

y) - 5(x, y) = f '̂o (3.1) 

where V is the Laplace operator squared, h the plate thickness, 

p the volume density and B the bending stiffness which is given by 

B = h^E 

12(1 - v^) 

(3.2) 

where v is Poisson's ratio. The force is of magnitude F and 6^ 

is the two dimensional Dirac delta function. 

It has been assumed that the plate is thin and therefore that shear 

and rotation within the plate can be neglected. 

The Laplace operator in equation (3.1) may be written in either 

Cartesian or polar coordinates . Using Cartesian coordinates and taking 

a two dimensional Fourier transform (defined in equation (2.3)) of the 

plate equation gives:-

[a ^ + 2a 
X 

2* 2 + . 4]% -
X y y 

2 , -v 
0) ph y 

B ^ 

F 

B 
(3.3) 

for an infinite plate where a and a are the two coordinates in 
X y 

wavenumber space. This may be rewritten as 

% 
5 = 

2Bk a 2 + « 2 
X y 

a 2 + a ^ + k^ 
X y 

(3.4) 

where k is the free plate wavenumber defined as:-

, 4 
2 

w ph 

B 
(3.5) 
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The inversion integral (equation (2.4)) is a double integral^ integration 

respect to a will be considered first. This integral has poles 
/ 2 2 ^ ^ . /2 ^ 

at vk ~ " and ivic + a and therefore a contour integration y _ y 

may be performed directly to give:-

00 iot y ix/^^-a ^ ' ia y -x*^^+a 

Fi f e y e y e y e 

' 2!^ - a ' ' ' ' % 

^ y (3.6) 

Integration with respect to is difficult due to the multivalued 

nature of A + A contour integration could be performed but the 

contour would have to be indented to exclude the branch points at k and 

ik and therefore does not lead to a simple method for solving the 

integral. Two special solutions of the integral will be considered -

the response at the driving point and the response in the far field. 

^•3 The Response at the Driving Point of a Plate with Force Excitation 

For this case x = y = 0 in equation (3.6) and the inversion 

integral simplifies to:-

G(0, 0) = - l i — ^ 

8Bk TT 

1 1 
da (3.7) 

- a i>4^ + a y 
y y 

In order to perform this integration it is necessary to give meaning 

to the square root function 4 ^ - a This may be done by enforcing 

the condition that an outgoing wave decays towards infinity giving the 

square root function the values 

= I I for 

- a ^ = ily&2 _ a 2| 2 ? 
for a > k . 

25. 



The value of the integral for may be found by defining a 

Cauchy principal value at this point. 

The response at the driving point is eventually given by;-

5(0, 0) . ^ (3.8) 
8Bk 

The mobility at the driving point is therefore 

6 = = — i _ (3 9) 
8Bk^ 8 / W I ' ' 

This mobility is purely real and is independent of frequency. The point 

response of an infinite plate excited by a transverse force therefore 

behaves like that of a viscous damper at all frequencies. From symmetry 

It IS immediately seen that there is no rotation at the driving point. 

The Response in the Far Field of a Plate with Force Excitation 

Away from the source for large values of x and y the exponential 

terms in equation (3.6) dominate. An approximate solution based on the 

method of steepest descent [lO, ll] is therefore highly applicable. 

Considering the two terms of equation (3.6) separately and by making the 

substitutions 

X = r cos ip 

y = r sin 4) 

Oy = k sin q 

(3.10) 

to convert to polar coordinates r and (t> the first term in equation 

(3.6) may be written as:-

- 100 

^ 1 = [ ei"' (3.11) 

IT ̂  . 
- J + 1«> 

The path of integration to this substitution is shown in the complex q 

plane in fig. 3.1. 
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A saddle point of the exponent occurs at q = <1>; deforming the path 

of integration to pass through this point according to the method of 

steepest descent enables a first order solution to be obtained. The new 

path is:-

cos(Re{q} - ({>)cosh(Im{q}) = 1 (3.12) 

which is sketched on fig. 3.1. The approximate solution to equation (3.10) 

is therefore;-

/ F 

The second term in equation (3.6) is solved in a similar manner. 

Making the substitution 

X = r cos (f) 

y = r sin $ (3.14) 

a = k sinh q 
y ^ 

enables the second term to be written as:-

I, ^rk^-cosd, + (3.15) 

The saddle point for this integral is at q = 0 + i*; the path of inte-

gration deformed to pass through this point is shown in figure 3.2. The 

approximate solution of this integral is thus:-

l2 = / # (3.16) 

The complete solution in the far field in polar coordinates may now be 

written as;-

j) 
e + le (3.17) 

The second term decays with distance from the origin and will not be 

important in the far field. The first term is that of a propagating 
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cylindrical wave. The amplitude of the cylindrical wave decreases with 

distance being inversely proportional to the square root of the distance 

from the driving force. 

3.5 Power Flow Intensity Due to Cylindrical Waves in a Plate 

As will be shown, point sources on plates or beam stiffened plates 

create cylindrical wavefields. Since these types of structures are con-

sidered later general equations for the power flow associated with a 

cylindrical wave will now be derived. Consider a polar coordinate system 

coordinates r, (|) with a source at r = 0. A cylindrical wave in the 

far field of an infinite plate may be represented to first order by;-

i(rk -

G(r, (!>) = : f(40 (3.18) 

where f($) is a function representing the angular distribution amplitude 

of the wave around the source. If f(^) is a constant then the cylindri-

cal wave will have the same amplitude for all points of equal radius from 

the source. If the source has directional properties the variation of 

amplitude for different angles is given by f($). A section of the 

plate normal to the radial or circumferential direction has a shear force, 

a bending moment and a twisting moment acting on it. 

The twisting moment is a bending moment which does not occur in 

beams but occurs in plates because of the Poisson effect. The two bending 

moments act at right angles to each other, the complete set of forces on 

a plate element being shown in figure A.3. Since only plates of uniform 

thickness are considered here the shear force and the two bending moments 

may be expressed as force or moment per unit length. The power flow 

intensity is therefore also derived as a power per unit length. 

There are thus six components of power flow intensity at a point in 

a plate (three in the radial direction and three in the circumferential 

direction) each given by the time average of force (or moment) with 

velocity (or angular velocity) according to equation (1.5). 
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The equations for the shear force and bending moments in the radial 

and circumferential direction are given in Appendix III. In developing 

equations for the power flow intensity only first order terms in kr 

have been retained. The subscripts u, m and T will be used to indi-

cate power flow intensity components associated with shear bending and 

twisting and an additional subscript r or # will be used to indicate 

the radial or circumferential directions. 

The components of the power flow intensity in the radial direction 

are:-

ur 

mr 

*Re{Up2G*} (3.19) 

(3.20) 

Tr If)*} (3.21) 

The asterisk denotes the complex conjugate. The shear force and 

the bending moments and (each per unit length) may be found 

in terms of the displacement of the plate by employing relations (A.16)-

(A.21). The components of the radial power flow intensity are thus 

found to be:-

ur 

B|f(*)|2 wk^ 

2 rk 
(3.22) 

mr 

B|f(*)|2 oik̂  

2 rk 
(3.23) 

rr 

B(1 - x?) 3f(*) 

(rk)3 

wk' 

(rk) 
(3.24) 

where only terms of first order in rk have been retained. 

beam the shear component and the bending component P ^ 

As in a 

are equal, 

The power flow intensity associated with each component decreases with 

increasing distance from the source. The twisting component P 

. 3 

decreases particularly quickly because of the term in (rk) in the 

denominator. For this reason the twisting component of power flow will 
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3f(*) ^ 
9 (j) 

be of no importance in the far field unless the value of 

is particularly large (as, for example, at a discontinuity] 

The power flow intensity in the circumferential direction is calculated 

in a similar manner. The components of power flow per unit length are 

thus 

(3.25) 

|f>*> (3-27) 

Assuming the cylindrical wave form of equation (3.18) the internal 

shear forces and bending moments may once again be calculated by using 

relations (A.16)-(A.21). The components of power flow intensity are 

therefore:-

% • I ^ ^ " 6 ^ ( 3 . 2 , ) 

I I 

These three equations are strongly dependent upon f(<j)) - the amplitude 

distribution of the wave around the source. For waves whose amplitude 

is independent of (j) these three components of power flow intensity 

are zero. 

3.6 Power Flow in a Plate with Force Excitation 

The power flowing into the plate at the driving point may be 

calculated by substituting the mobility into equation (1.6) to give:-
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I F| ̂  

The total power supplied by the force source is independent of 

frequency and inversely proportional to the square of the plate thickness. 

Using the results developed in the last section, an equation for the 

power flowing in a plate driven by a transverse driving force is readily 

obtained. In this case the cylindrical wave propagates equally in all 

directions away from the source and f(*) (equation (3.18)) is independent 

of angle. From equations (3.17) and (3.18) f((j)) is given by:-

= ^2^^ (3.32) 
Bk 

Because the wave has no angular dependence, power is only carried by the 

shear and bending components in the radial direction. The radial twist-

ing components and the three components in the circumferential direction 

are all zero. The power flow per unit length transmitted by the shear 

component in the radial direction may be calculated from equation (3.22) 

and is 

V = = - ^ - 7 (3.33) 
64nBrk 64Tr/phB 

This formula is based on the assumption that far field conditions are 

being considered and for this case the moment component of power flow 

intensity, will equal the shear component. The total power flow 

intensity in the radial direction is given by the sum of the two compo-

nents and may be written as:-

The power flow intensity in a plate with a transverse driving force 

is thus inversely proportional to the distance from the source. 
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3.7 Flexural Vibrations of an Infinite Uniform Plate due to Torque 
Excitation ~ 

The classical plate equation is inadequate when dealing with the 

response of a plate in the near field of a torque source. A solution 

of the particular problem has been obtained by Dyer [iz] based on the 

more general equation developed by Mindlin. Except for this one problem 

the classical plate equation may be used to calculate the power flow 

supplied by the source and to calculate the response and the power flow 

in the far field of the plate. For completeness, the solution in the 

near field from reference [iz] will be given but all other calculations 

will proceed from the classical plate equation derived in Appendix III. 

For a torque source applied at the origin about the x axis and for 

harmonic time dependence of the form e the plate equation may be 

written as:-

V*E(x, y) - y) - - ̂  [1^36x6,] (3.35) 

k is the free plate wavenumber and B the bending stiffness. Employing 

Cartesian coordinates and taking the two dimensional Fourier transform 

gives: 

% T 

=' y 2Bk2 a ^ + a ^ - k^ a ^ + a ^ + k^ 
X y X y 

(3.36) 

where and a are the two coordinates in wavenuiriber space. The 

solution is given by the inverse Fourier transform of this equation. 

For the solution at the driving point the angular displacement rather 

than the transverse displacement is required. Writing 9 for the angular 

displacement and making the small angle approximation gives:— 

^ o n I T I A A Q % 
0 = -5— and therefore 9 = ia £ 

3y y~ 

The angular displacement at the driving point may now be written as:-
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e = 
2 2 

Stt Bk I 
2 . 2 

r la lOL 
y _ y 

2 . 2 ,2 2 ^ 2 .,2 
da da 

X y 
a + a - k a + a + k 
= y = y (3.3% 

As in the case of a plate excited by a transverse driving force, integrat-

ion with respect to a will be considered first. This integration 

* /2 ^ n ^ 

process has two poles at vk - a^ and at ivlc + and again may 

be performed by means of a contour integration. 

The result of this first integration for the response at the driving 

point may be written as;-

6(0, 0) = ^ [ 

8irBk J 

2 
r la a 

z y 

y y 

da 
y 

(3.38) 

The final integral is straightforward except for the singularities which 

may be approached, as in the case of a transverse driving force, by 

defining Cauchy principal values. The mobility at the driving point is 

thus:-

W & - 4 LC (b)] (3.39) 
b-X" 

The limit arrives as a consequence of the Cauchy principal value and 

implies that an infinite imaginary component of velocity will result from 

a torque source. This unsatisfactory result arises from the assumption 

in classical plate theory that there is no transverse shear deformation. 

The solution to this problem derived by Dyer [12] using a more general 

plate equation gives 

(3.40) 

for the point mobility. In this equation the moment is considered to 

act over a disc of radius a which is small ((ka) « 1). The parameter 

L is an expression in terms of Bessel functions which approaches unity 

when the disc radius a is greater than the plate thickness h. 
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Reference [l2] gives values of h for a wide range of a/h. For cases 

of practical interest the real parts of equation (3.39) and (3.40) are 

essentially equal. 

Thus the point mobility of a plate due to torque excitation appears 

at any frequency to be like that of a dashpot and spring in parallel. 

3.8 The Responses in the Far Field of a Plate with Torque Excitation 

The solution to this problem is the inverse Fourier transform of 

equation (3.36) which may be written as:-

5(x, y) = 
-Ti 

2 2 
8Bk 

/ 

la y la x 
0, e y e 
y 

la y la X 

o e y e = 
y 

2 2 2 9 2 2 
"-a + a - k a + a + k 

-oo X y X y 

da da 
X y 

(3.41) 

Performing a contour integration with respect to â ^ results in the 

following expression 
X 

E(x, y) = 
8Bk' 

la y 

e y e 

iv4^ - a 

/ k ^ - a 2' 
y 

lo y 
e ^ e 

- 4 ^ + a ^ X 

+ a 

da (3.42) 

where the residues are due to poles at / k ^ - a and i / k ^ + a 
y y 

The remaining integral may not be solved exactly but an approximate 

solution valid in the far field may be found by the method of steepest 

descent. The solution may be obtained in a manner similar to that obtained 

for a plate excited by a transverse driving force. By considering the 

integration of the two terms in equation (3.42) separately and by making 

the following substitutions:-
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X = r cos ()) 

y = r sin ^ 

= k sin q 

the integral of the first term may be written as:-

ir 

2 ^ 

: ' J . 
^ikr cos(q - •) ^ q dq (3.43, 

2 + ^ 

Except for the term k sin q this expression is the same as the 

equivalent expression for force excitation of a plate. The same inte-

gration path (figure 3.1) may therefore be used and the approximate 

solution to the first integral is:-

, 2*' - %-) 
^ ^k ^ sin * (3.44) 

The integral of the second term of equation (3.42) may be written 

as:-

^rk 2-cos(iq+*)^ q dq (3.45) 

after making the substitutions;-

x = r cos (j) 

y = r sin <j) 

Oy = k sinh q. 

The integration path for the equivalent integral for force excitation 

of a plate (figure 3.2) may once again be used and the approximate 

solution of equation (3.45) is:-

/ 2 TT — 
^2 e sin <}>. (3.46) 
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This term decays exponentially with distance from the origin and will 

thus be of no importance in the far field. 

The displacement in the far field of a plate due to a torque excita-

tion may now be written as:-

5 = proir / e sin (|) (3.47) 
rkir 

The disturbance thus travels out from the source as a cylindrical wave 

with a strong angular directivity. 

3.9 Power Flow in an Infinite Plate with Torque Excitation 

The power flowing into a plate from a torque source may be found by 

substituting the real part of the driving point mobility into equation 

(1.6). For practical structures the classical point mobility (equation 

(3.39)) and the exact point mobility (equation (3.40)) give the same 

result:-

P, - (3.48) 

The power flow supplied by the source is proportional to w and will 

therefore be very important at high frequencies. 

The power flow intensity in the far field of a plate with a torque 

source is strongly dependent on the direction in which the torque is 

applied. If the x and y axes of a rectangular coordinate system lie 

in the plane of a plate and a torque is applied about the x axis then 

the principal direction of power flow will be along the y axis. 

The general equations developed in section 3.5 may be used to calcu-

late the six components of power flow intensity. In this case the direc-

tivity function of the cylindrical wave f($) is given by:-

f(^) - sin ^ (3.49) 

In the radial direction the power flow intensities associated with shear 

and bending are equal and are given by:-
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P = P = |t|^ oik sin^* 

ur mr 64nBrk (3.50) 

The twisting component of power flow in the radial direction is:-

P = (1 - •O)tok cos^* 

The shear and bending components are inversely proportional to r the 

distance from the source with the twisting component decreasing more 

rapidly being inversely proportional to r^. The radial twisting compo-

nent is therefore relatively unimportant as a power transmission 

mechanism. The dependence of the power flow on sin̂ (j) results in a 

strongly directional far field. The maximum power flow intensity occurs 

when 4) equals 90° which is at right angles to the applied torque. 

The circumferential power flow intensities may be calculated from 

equations (3.28), (3.29) and (3.30). The shear component P ^ is zero; 

the other two components, bending P^^ and twisting P^^, are 

p _ |T|^(1 - T))(ok sin (j) cos <t> 

p _ ~lT|^(1 - 0)wk sin 6 cos A 

" 32.B A ' — : 

Both of these components are small compared to the radial power flow being 

inversely proportional to r^. 

A Comparison between Finite and Infinite Structures 

Due to reflections from discontinuities any finite structure will 

exhibit resonances which would not be apparent in the response of an 

infinite structure. The magnitude of the vibration amplitudes at reson-

ances are controlled by the damping of the structure and generally the 

largest response will occur at the first resonance. Thus when a finite 

structure is being represented by an equivalent infinite structure the 

largest error that will occur will be at a resonance frequency. The 

mobility at the driving point of any finite structure (for fre-
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quency dependence) may be written as:-

1 . -i. I J (3.54) 
N w (1 - in) - w' 

n 

where is the real resonance frequency, n the hysteretic loss factor 

and is the amplitude of the mode shape at the driving point (see 

section 6.2). At a low frequency resonance, for light damping, the 

contribution of off-resonant terms is negligible compared to the magnitude 

of the term at resonance. Thus the driving point mobility of a finite 

structure at resonance may be written as:-

F 
(3.55) 

if there is a wide frequency spacing between resonances. It may be seen 

that the mobility value is largest for the lowest value of resonance 

frequency assuming does not vary significantly for different 

resonances. 

The largest peaks in the mobility spectra of finite beams and plates 

have been calculated. These peak mobility values represent a worst case 

if a finite structure is modelled as being infinite. Table I contains a 

list of the peak mobilities and also a list of the ratios of the peak 

point mobility of the finite structure to the point mobility of the 

infinite structure. The ratio is written in modulus form rather than 

as a complex quantity. 

For torsional and longitudinal waves the response was calculated 

at the mid-point of a beam with clamped ends. For flexural waves a beam 

with simply supported ends and excitation at the midpoint was considered. 

In the case of torque excitation the second resonance frequency was used 

because a torque excitation at the midpoint of a beam will not produce 

any motion at the first resonance frequency. When considering a finite 

plate it was assumed that the plate was rectangular and simply supported 

at the boundaries with excitation applied in the middle. Once again it 

was necessary to use the second resonance frequency when considering 

torque excitation. The ratio of the mobility of the finite structure at 
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resonance to the mobility of the infinite case takes a particularly 

simple form, in most cases being inversely proportional to the loss 

factor. 
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CHAPTER 4 

WAVE PROPAGATION AND POWER FLOW IN BEAM-STIFFENED PLATES 

4.1 Introduction 

Beam-stiffened plates are frequently used components in all common 

structures and are therefore a most important type of foundation. In 

this chapter an analysis is made of an infinite plate to which a single 

infinite beam is attached. Three types of excitation each applied to the 

beam are individually examined. 

Consider an infinite plate laying in the x-y plane of a rectangular 

coordinate system with an infinite beam laying along the y-axis (see 

figure 4.1). The first excitation considered is a force normal to the 

plate, the second a torque applied about the x axis and the third a 

torque applied about the y axis. 

The general conclusion from these calculations is that the power 

flowing into the system is controlled by the beam while the subsequent 

flow of power throughout the structure is governed by the plate. 

The response of a beam stiffened plate due to force excitation has 

been analysed in the near field by Lanib [l^ and in the far field by 

Kovinskaya and Nikiforov [l4] and Fahy and Lindqvist [is] . The response 

due to torque excitation and the power flow in the beam and plate are not 

considered in these papers . It is assumed in these references and in 

the following analysis that there is pure flexural wave motion in the 

plate and that the beam may carry flexural or torsional waves. 

The response of the structure is obtained by a novel method in the 

analysis which follows below. The method used in references [l3, 14, isj 

modelled the plate by cutting it along the y axis and making two semi-

infinite plates on the boundaries of which forces and torques are applied. 

The motion of the beam laying along the y axis was then deduced from the 

exciting force and the reaction of the two semi-infinite plates. The 

analysis used here makes use of the more general plate and beam equations 

derived in Appendices I, II and III. The beam and plate are considered 
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separately and the response of each due to a general line excitation 

determined. The combined motion of the beam and plate are then found 

by satisfying compatibility relationships. In this manner the responses 

are calculated in much the same way as when joining components using 

mobility methods. 

It is assumed that the beam and plate respond in simple bending or 

torsion and that there is no additional internal wave motion (for example, 

relative motion of web and flange in an I-beam stiffener). This assumption 

and the effect of a non coincident neutral axis in the beam and plate have 

been considered by Nilsson [l6] and shown to be valid for low frequencies. 

The onset of internal wave motion marks the upper frequency limit of 

applicability of the following analysis. 

4.2 Formulation of the Equations for the Response of an Infinite Plate 
Stiffened by an Infinite Beam 

The response of an infinite, beam-stiffened plate to three types of 

excitation is considered in this section. The excitation in each case 

is harmonic with a wave propagating in the positive x direction written 

as e ^ The beam and plate with the forces acting on them are 

shown in figure 4.2. The plate laying in the x, y plane has a line 

excitation of forces and torques along the y axis due to the presence of 

the beam. The equation of motion of the plate may thus be written as:-

v'CpCx.y) - kp4(p(x.y) - f i. |;(Iyp(y)«^ - | / I ^ ( y ) « , ) ] 

(4.1) 

The subscript p is used to denote the properties of the plate, the sub-

script b being used for the beam. Fp(y) is the normal force per unit 

length applied to the plate, ^^^(y) is the torque per unit length 

parallel to the y axis and T (y) the torque per unit length parallel 
xp 

to the X axis. All these forces and torques are applied along the y-axis, 

the delta function 6 giving them the correct dimension of force or 

torque per unit area, k is the free plate wavenumber and B the 
P P 

plate bending stiffness . 
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In general, the beam may carry both flexural and torsional waves. 

It is assumed that these two types of wave motion are uncoupled, which 

is valid if the beam has a symmetrical cross-section. The equation of 

motion for beam flexure is given by:-

(4-2) 
dy ^ 

F^(y) is the force per unit length applied to the beam, (y) the 

torque per unit length (see figure 4.2), the beam wavenumber and 

(= EI) the beam bending stiffness. 

The torsional motion of the beam is given by:-

+ lc^'e(y) = ^ [- (4.3) 

where 8(y) is the angle of rotation of the beam about the y axis, T^^ 

the applied torque per unit length, GQ the torsional stiffness for the 

beam and the torsional wave number. 

The equations for equilibrium of forces and torques are:-

^o^y " ^b(y) Fp(y) (4.4) 

Txo'y - + Txp(y) 

V y • * Typ()') (4-6) 

where F , T and T are the force and the torques applied at the 
o xo yo 

origin which excite the structure. The spatial delta function 5 enables 

each point excitation to be expressed as a force per unit length or a 

torque per unit length. Continuity of displacement and slope is enforced 

by the relations:-

GyCy) - 5p(x, y)|2_Q (4.7) 

as (x,y) 
e(y) . - - j E (4.8) 
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The above set of equations may be solved by evaluating the Fourier 

transform in the y direction and substituting for the various unknowns. 

To obtain the Fourier transform of the plate motion in the y direction 

it is first necessary to take the two dimensional plate Fourier transform 

and then inverse transform for the x coordinate. The two dimensional 

plate Fourier transform may be written as:-

~ ~ 
^ , F + ia T - ia T 

X y p X y p 

a. 0/ O/ 

Because F^, T^^ and T ^ are independent of the inverse transfor-

mation for this coordinate may be performed without difficulty. After 

contour integration, the plate Fourier transform in the y direction is:-

y 4B k 2 L /—"2 ? 
p p / kp - Oy 

/~~2 ? 

i(F - v4 ^ + a ^'t - ia T )e ^ ^ 
p p y yp y xp + 

2 + a 2 
p y 

(4.10) 

The remaining equations (4.2, 4.3) are only dependent on y and may be 

transformed to produce a set of linear simultaneous equations. After 

much algebra, the unknowns in equation (4.10) may be eliminated to give:-

^ ii4 ^ - a ^ X i«4 2 - a ^ x 

Gp(x, Oy) - (F, - ? ? D, 

-/C 2 + Q 2'^ ^ + a ^'x 

+ (Fo - i«yTxo)* * ^ »3 + Tyo* * ^4 

(4.11) 

where D^, Dg, and are all functions of a and may be written as: 

43. 



B (/& 2 + a 2' ^ ^ - a 
b p y p y 

A 2 + a 2' 

E Z 

- "b' - ^ - / r r ; ^ 
p y p y 

(4.12) 

°2 = 

GQ('6p^ + Oy^'+ i*^p^ - *y^)(Gy^ - kc^ + 2 GQ<*^p^ + *y^ " ^^^p^ " "y^ 

(4.13) 

°3 

B ( X ^ + a ^ + i A ^ - a ^') 
b p y p y 

a 

i/k 2 _ a 2' 

S Z (4.14) 

- V ' ' 7 ^ - ^ = z ' 
v k - a v k +ct 

p y p y 

0% = -Dg (4.15) 

The solution of this problem, the displacement of the beam and plate, is 

given by the inverse Fourier transform of equation (4.11). The overall 

response of the structure is a linear superposition of the response to each 

excitation. In the following sections the response of the structure to 

each separate excitation will therefore be considered. It is not possible 

to obtain an exact solution for any of the inverse Fourier transforms; thus 

approximate solutions for the point response and the response in the far 

field will be considered. 

4.3 Force Excitation of an Infinite, Beam-stiffened Plate 

Setting T^^ = T^^ = 0 in equation (4.11) and considering the inverse 

Fourier transform with x = y = 0 gives the equation for the point response 

of the system. This may be written as:-
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F 
o 

p y p y 
(4.16) 

This equation is the same as that deduced by Lanib [l3] who also obtained 

an approximate solution by means of contour integration. The contour used 

is shown in figure 4.3; it includes the two poles of the integral and is 

deformed along two branch cuts to exclude the branch points (at a = k 

and a = ik^), where the square root functions are not analytic. The 

integral is given by the sum of the residues minus the extra contribution 

where the integral has been deformed along the branch cuts. On examining 

the terms of the integral. Lamb found that B ^ ^ ^ k Q was small compared to 

unity and proceeded to evaluate the integral to first order in this 

coupling parameter. The position of the poles was found by Newton's 

method, the first estimate of their position being k^ and ik^. The 

branch cut integrals may be evaluated after having been simplified to 

first order terms. The complete result given by Lamb for the driving 

point mobility is:-

R = (1 + i _ {1 + 3 - s^ -1 cos s 

2 
+ — — 2 ~ sinh ^s}) (4.17) 

2s /l + s 

where s = k^/k^. This result is very similar to the point mobility of 

a beam the difference being in an additional imaginary term. At high 

frequencies the coupling term J is very small and thus the 

mobility will deviate from that of a free infinite beam only at low 

frequencies. 

The response in the far field is best determined by considering 

equation (4.11) with T^^ = T^^ = 0; the equation then reduces to:-

ii^„^ - X ia y -v4 ^ + a ^'x i 
y e y da 

la^y 
da 
y 

(4.18) 

45. 



An approximate solution to this integral has been obtained by Kovinskaya 

and Nikiforov [l4] using the method of steepest descent. The solution 

obtained is only concerned with the wave field excited in the plate, the 

motion of the beam being ignored. For the purposes of this study it is 

important to discover whether the beam or plate is the important element 

in power flow. The far field of the beam-plate system has therefore been 

analysed in a manner similar to that in reference [l4] but in more detail. 

Equation (4.18) is similar to equation (3.6) — the response of a 

plate to force excitation - and the method of steepest descent is 

applicable. However, care must be taken with the terms and 

because these contain poles and are therefore not always slowly varying 

compared with the exponential term. The standard coordinate transformation 

may be made:-

«y = \ sin q 

X = r cos (}) 

y = r sin (}> 

The first term of the integral of equation (4.18) thus reduces to;-

ik r cos(q - ip) 

IT 

2 -

kp j D^e P cos q dq (4,19) 

— — j_oo 

The path of steepest descent is the same as that found for a point 

excited plate and is shown on figure 4.4 together with the poles of 

and the undeformed contour. It may be seen from the figure that according 

to the value of <j) the poles may lie either to the right or left of the 

steepest descent path. If the path of integration has to be swept over a 

pole to reach the steepest descent path then a contribution from the pole 

must be included in the solution for the integral [ll] . 

The y axis along which the beam is laying corresponds to ^ = 90° 

and for this angle it can be seen that contributions from the poles must 

be included. This extra term in the solution of the integral thus 

corresponds to a narrow zone of the structure containing the beam along 

which an extra wave propagates. As in the case of an infinite plate with 
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force excitation, the solution of the integral along the path of steepest 

descent is a cylindrical wave of the form:-

- 1 ' 
w(r, *) = — f(*) (4.20) 

rk 
P 

where in this case 

F 
f(#) = 

Bi /27(yr~+~sin^ + i cos <()) 

ik^ cos <j) J \ + sin̂ (j)' 

S " si"** - ^ ^ \ , ,> 

" /I + sin ^ 

(4.21) 
Ihis is the solution found by Kovingskaya and Nikiforov. The additional term 

due to the contribution of the pole will be given later. 

The second term of equation (4.18) may also be evaluated by the method 

of steepest descent. 

The transformation to polar coordinates may be achieved by means of 

the equations 

X = r cos (j) 

y = r sin (p 

a = k sinh q y p 

The complex q plane showing the path of steepest descent and the position 

of the poles of is shown in figure 4.5. Once again it may be seen that 

in order to move the path of integration to the steepest descent path it 

may be necessary to pass over a pole. The contribution of the pole must 

then be added to the solution. The result of the integration along the 

path of steepest descent in this case results in an exponentially decaying 

wave which will be of no importance in the far field. 

The contribution of the poles will now be considered. The position 

of the two poles of and has been calculated by Lamb [l^ in 

conjunction with the point excitation of a beam-stiffened plate. In the 

Oy plane their position is:-
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Pi " S 

IB , 4 ^ 

^ 28^k, s ̂  
:/i + s^' - 7 } 

b b' 

P2 = ikb 

iB 

1 + _ f {J\ - s^' - x / \ + s^} 

(4.22) 

(4.23) 

These pole positions have been calculated to first order in the small 

coupling parameter B /(B^k^). Both poles have an imaginary part, the 

imaginary part of p^ being particularly small. The existence of the 

imaginary part of the pole means that the contribution to the far field 

response will decay with distance and these terms may not be important 

at very large distances from the source. However, the criterion for the 

far field of the plats is that k^r » 1 while the criterion for the 

beam is k^y » 1. Since k^ is generally much larger than k^, exponen-

tially decaying terms for the beam will still be important in the plate 

far field. 

There are four contributions to the response in the far field arising 

from the two poles in each of and D^. The pole p^ has a large 

imaginary part which will produce a rapidly decaying field and will there-

fore not be considered. The pole p^ produces a slowly decaying propagat-

ing wave in a narrow sector which includes the beam. Only the response of 

the beam will be considered here, this being the most interesting part of 

the additional contribution. The motion of the beam is best calculated 

from equation (4.18) and by working in a space rather than q space. 

I'iith X = 0 the problem reduces to solving for the residue of the 

integral 

F 

Cp(0, y) 
o 

2? 

B, 
"y'' -

e 

T2B 

lo^y 

-da 

B, 
^ (t 4 - a 4)t 

y vt % _ a XTTTir 
p y 

(4.24) 

at the pole p^. Recalling that the coupling parameter B /(B^k^) is 

small, a first order approximation may be found which results in:-
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5„(0, y) = 

F i 
o 

iB 
{1 + 

2B k,s' 
b D 

" - 3 

- (1 - ef)* • ' i f T ? " 

Lk^ iB_(l - s*)* 
(1 + [< a + 8%)* - i d - sf)* )y 

(4.25) 

The general nature of the wave field in a beam stiffened plate may 

now be discussed. In the plate there is a cylindrical wave given by 

equation (4.20). In addition, in a narrow sector on either side of the 

beam there is an additional contribution which must be added to the 

cylindrical wave. A sketch of the wave field is given in figure 4.6. 

An analysis of the shape of the cylindrical wave field shows that at 

<() = 90° (along the beam) there is no motion. The direction in which the 

cylindrical wave field is a maximum is given by [l^ and occurs for that 

value of (|) for which 

sin (j) = (4.26) 

This condition corresponds to wave trace matching between the beam and 

the plate. The cylindrical wave does not contribute to the motion of 

the beam, the response here being given by equation (4.25). This 

equation indicates that along the beam a wave propagates with a wave 

speed slightly less than the free beam wave speed and an amplitude 

which decays with distance according to the relation:-

attenuation = -8.69 

B (1 - s 4 ) : ( l + gZ)* 

2B s^ 
D 

dB/metre (4.27) 

By setting B^ = 0 (no plate stiffness) in equation (4.25) the relation 

correctly degenerates to the response of a free infinite beam as given 

by equation (2.18). The attenuation of the wave in the beam is due to 

radiation into the plate and from equation (4.27) it is seen that this 

is independent of frequency. A case study made by Fahy and Lindqvist [l^ 

of an infinite beam stiffened plate includes a calculation of the attenuation 
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along the beam. The calculation was performed by employing a computer 

to solve the equations of motion for a particular structure at various 

frequencies. The results given in reference [is] for a structure of 

shiplike dimensions demonstrated that the attenuation was essentially 

independent of frequency with a value of approximately 2 dB/metre. 

Equation (4.27) gives an attenuation of 1.4 dB/metre for the shiplike 

structure. The dimensions of the beam and plate are shown in figure 4.7. 

4.4 Power Flow in Beam-stiffened Plate with Force Excitation 

The power supplied by the source may readily be found by substituting 

the point mobility, equation (4.17), into equation (1.6). The power 

supplied by a point force is thus:-

Pg = (4.28) 
8pA/w 8EIk^ 

The characteristics of the plate do not enter into this equation, the 

power being the same as for an uncoupled beam. The power supplied 

decreases with increasing frequency being inversely proportional to the 

square root of frequency. 

In the far field, the power carried by the beam may be calculated 

from the internal shear force and bending moment in the beam. The power 

associated with each of the components is the same, the total power, the 

sum of both components, being 

B A - s^Vl + s^'y 

p iFl^w 
ab , , 3 

4 ^ 2\ -
1^(3 + 3s + 2s ) "1 

16B^k^ 2B^k^s^/l + s2' 

B^s T 
(4.29) 

B 

where only first order terms in — have been retained. The power 

b b 

in the beam thus decays with distance, power being radiated into the plate. 

The amplitude of the power is dependent on frequency; for high frequencies 

the coupling parameter B^/(B^k^) is very small and the amplitude 

approaches that of an uncoupled beam. Thus it may be seen that the 

majority of the power is initially associated with the beam and that the 

power is radiated into the plate as propagation along the beam occurs. 
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At very large distances from the source the power in the beam will be 

negligible compared with the power in the plate. In order to establish 

which of the beam or plate is more important as a transmission path it 

is possible to find a position along the beam at which half the power 

supplied by the source is transmitted by the beam. For positions further 

from the source than the half power distance the beam will be less signifi-

cant than the plate as a power transmission path. By equating the power 

transmitted in the positive y direction along the beam (equation (4.29)) 

to one quarter of the power supplied by the source (equation (4.28)) the 

half power positions are found to be at:-

= + 

B (1 - s^) 2(1 + s^) ̂  
P 

log: 

1 -

B (3 + 2s'" + 3s4) 
P 

r r 2B^k^s (1 + s ) 

(4.30) 

This distance is frequency dependent because of the term in k^; y, 

increases with increasing frequency becoming asymptotically independent 

as the coupling term B /(B^k^) becomes small. For the structure analysed 

by Fahy and Lindqvist [isj (figure 4.7) the half power distance is at 

0.4m at 250 Hz and Im at 500 Hz. 

The distribution of power flow intensity in the plate is difficult 

to compute exactly because of the complexity of the angular dependence 

of the cylindrical wave. In the radial direction in the far field the 

shear and bending components will carry equal amounts of power. Assuming 

the twisting component to be small, which will be valid for large distances, 

the radial power flow intensity may be found by substituting equation 

(4.21) into equations (3.22) and (3.23) to give;-

ar 

|F|2 B s^w 
P 

Bb^^b* 

cos^ (1 + sin^40 

sin 
4 f - -
' ~ ¥"1" s/l + sin*"6 cos"* 

b 

(4.31) 

where only first order terms in 

V b 

have been retained. This function 

is strongly dependent on (p the direction of maximum power flow being 

given approximately by 

k 
sin (4.32) 
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4.5 Torque Excitation of an Infinite Beam Stiffened Plate -
Symmetrical Motion 

This section contains an analysis of the response of an infinite 

plate laying in the x-y plane with a beam stiffener attached along the 

y axis to which a torque excitation about the x axis is applied (figure 

4.1). The resulting motion is symmetrical because the motion is identical 

for both positive and negative x values and the beam carries no torsional 

waves. The analysis is similar to the previously examined problem of 

force excitation of a beam-stiffened plate but since this problem has not 

been considered at all in the literature all relevant details will be 

given. The response at the driving point is given first, the response 

in the far field being given later. The response of the structure to a 

torque of harmonic dependence e ^ ^ applied about the x axis is given 

by equation (4.11) with F = 0 and T = 0:-
o yo 

y) - -f-
. / 2 ^ 
i/k - x ia y -/k + x ia y 

-ia e P ^ e ^ D - i a e ^ P ^ e ^ D-d 
y 1 y 3 y 

__ 00 

(4.33) 

To calculate the point response the angular displacement at the 

driving point is required. Taking the derivative in the y direction and 

setting X = y = 0 reduces equation (4.33) to:-

r 
3y'x=y=0 2mB, j , , 2iB da 

p y p y 
(4.34) 

An approximate solution may be obtained for this integral by using contour 

integration and by expanding in terms of the small coupling parameter B /(B, k, ) 
' p b b 

(Only an outline of the procedure is given below; however, in order to 

provide examples of the methods used the details of the integration are 

given in Appendix IV.) For simplicity the integral may be written as:-

I = 
g(a) ^̂ 'y (4.35) 
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where 

/ , 2iB , 

8<»y> • « - \ ^ B (kp" - G..*) 
y ' L / P T T ^ J - a 

p y 

(4.36) 

The contour of integration on the plane is shown in figure 4.3. 

The contour is deformed to exclude the branch points of g(®y) at k 

and ik^ but includes the two poles p^, p^ of the integral in the 

upper half plane. The solution of the integral may be written as:-

I = 2iri[Res(p ) + Res(p„)J - (4.37) 

^ ^2 

where and are the two paths around the branch lines. The 

position of the poles is the same as in the previous problem of force 

excitation and may be found by using Newton's method and using k^ and 

ik^ as first approximations. 

The two pole positions p^ and P2 are given by equations (4.22) 

and (4.23) . 

The value of the residues are found from:-

a 2 

-2' - — 
Res(p^; P-,) = 

3a 
(g) 

(4.#) 

a- Pi;P2 

After much algebra the residues, to first order in the coupling parameter, 

are found to be:-

Res(p^) 

ResCp^) = - 1 

iB 

k i 

r? 4 : 
|2s - s + 1 

iB 

s") 

2 
1 -

2s + s + 1 

2B^k^s^ L (1 + s2)Z 

2s'̂  + + fl j 
O I i [ 

(1 + S^)2 J I 

2s^ - s^ + 

(1 - s^)* 

(4.39) 

(4.40) 
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It is necessary to evaluate the integral along the branch cuts 

and from infinity to infinity. Along the branch cuts 

is always greater than and this enables the integral to be written 

to first order as;- , 

k'' 

% • 
; 

y Oy o 

y ^ 

Vy''(l 1)^ ^ 
a a, 

da (4.41) 

The first and third terms of the integral around the branch cut 

do not contribute since they have the same value on both sides of the cut. 

Making the substitution = k^q the first branch cut integral may be 

written as;-

4B / 

1 

( q f - l ) q ^ 

(q^ - s'^)^(q^ - 1) ̂  
r dq (4.42) 

When considering the second branch cut at only the third term of 

equation (4.41) contributes and after making the substitution a 

the integral reduces to:-

ik q 
P 

-4B 

b p 

(q* - l)q2 

(q4 - s4)2(q2 
T (iq 

D ' 

(4.43) 

The two branch cut integrals have equal value and opposite sign and 

therefore add to zero. The complete solution for the integral I is 

therefore given by the sum of the residues. The driving point mobility 

for e dependence is thus given by:-
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/n B 1 B (2s* + + 1) 

D D 

This result is similar to the driving point mobility of a beam with torque 

excitation. The real part of the mobility includes additional term which 

will only be important at low frequencies. 

The response in the far field of a beam-stiffened plate with torque 

excitation will now be considered. A torque applied about the x axis to 

the beam causes a far field response that is similar in character to the 

far field response due to force excitation. Comparison of the equations 

for force and torque excitation, equations (4.18) and (4.33), shows that 

the torque excitation problem differs only by the inclusion of an 

additional ia^ term. The nature of the far field is once again a 

cylindrical wave in the plate and a decaying wave confined to a narrow 

sector on either side of the beam. The details of the calculations are 

very similar to those used when examining the far field of a force 

excited beam-stiffened plate and it is thus unnecessary to repeat the 

calculations here. The cylindrical wave is determined by transforming 

to polar coordinates and using the method of steepest descent. The poles 

of and Dg are in the same position as with force excitation and 

once again determine the wave motion along the beam. The non decaying 

solution of the cylindrical wave has the form 

i(rk - ^) 

5 (r, 1̂ ) = f(#) (4.45) 

/" rk ' 
P 

where in this case:-

f(4) = 

/ZTT' {/l + sin^^ + i cos 

2 • f 2 
-iT k sin ^ cos A /l + sin 6 

xo p ^ 

k sin'̂ 4) - k ^ - 2i — ^ k ^(1 + sin^#)cos^#{ ^ 
•• "b ? • cos « ^ ^ 

(4.46) 
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Along the beam the motion is controlled by the pole with the small 

imaginary part, the wave motion being given by the residue of:-

Sp(0, y) 
xo 

2ttB, 

-co 4 , 4 

"y - " S 

-1 a e 
Z_ 

la y 
y 

2i (k ^ - a 
Bb p y / k % - a Xc 2 + . 

p y p y 

dUy (4.47) 

This equation is obtained from equation (4.33) by setting x = 0. The 

resulting motion of the beam takes the form: 

Gp(0, y) 
xo 

iB 
1 + 

2B, k s 
b b 

ik. 

X e 

^ (1 - s^)^ 

i d - s^)^B 

s^ - 2 . s^ + s^ + 2 

' T T ~ ^ 2 i 
(1 + 8^) 2 _1 

1 + ^ [(1 + S^)^ - i d - S^)*] 
2B,k.s-

b b 

2wh 
(4.48) 

The general nature of the response of the structure is thus very 

similar to the response due to force excitation. The cylindrical wave in 

the plate does not contribute to the motion of the beam and in this case 

there is no motion along the x axis. The maximum response on the plate 

occurs when there is wave tracing between the beam and plate, the approxi-

mate angle being given by equation (4.26). The wave along the beam has 

the same decay rate (equation (4.27)) as in the case of force excitation. 

4.6 Power Flow in Beam-stiffened Plate with Symmetrical Torque Excitation 

The power supplied by the driving torque is given by:-

^s = 

T 
xo' 

L 

B (2s 
4 

1 -

+ 1) ^ 

2B^s3(l + s2)2k 
(4.49) 

When the coupling factor B^/B^k^ is small (i.e., at high frequencies) the 

power supplied is similar to that of a torque excited beam. At low fre-

quencies the power entering the system is reduced as the coupling term 

becomes more important. 
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The power carried by the beam in the far field may once again be 

found by calculating the internal shear force and bending moment. The 

power flows associated with each of these components are equal; the 

total power flowing in the positive y direction being: , , 

Bp(l - s4)S(l + s2)Z 

xo 
w r 

' ab 16B,k, 
b b 

1 -

B (2s + 5s + 1)-

2B^k^s3(l + gZ)! J 

B.sj 
D 

(4.50) 

once again only first terms in the coupling parameter have been retained. 

The half power positions occurring at that distance from the source 

where there is an equal amount of power in the beam and plate may be 

written as:-

y, = + 2 

B (1 - s4):(l + B; (1 + 3s^) 
1 2 

2B^k^s(l + J 

(4.51) 

This expression is similar to that obtained for force excitation and 

applying it to the structure examined by Fahy and Lindquist [̂ 15̂  the half 

power distance is found to be at 2.14 m at 250 Hz and to be relatively 

independent of frequency for high frequencies. 

The power flow intensity in the plate in the radial direction may 

be calculated after assuming that the power transmitted by twisting is 

negligible. The power flow intensities for the bending and shear compo~ 

nents are equal, the total power being given by:-

xo' p 
ar 

4wB,2rk 2 . 4 4 
b p [Sin 8 - s 

sin^e 008^8(1 + sin28) 

-^(1 + sin^0)''^cos^6j ̂  

(4.52) 

^b^b 

the direction of maximum power flow intensity is again given approxi— 

mately by equation (4.32). 

^ ^ Torque Excitation of an Infinite Beam Stiffened Plate - Asymmetrical 
Motion — — — — ^ — 

The structure considered in this section consists of an infinite plate 

laying in the x—y plane with a beam stiffener laying along the y—axis. 
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Excitation is due to a point harmonic torque applied to the beam, the 

torque being in the x-z plane with its axis coincident with the y axis 

(figure 4.1). This type of excitation can create torsional waves in 

the beam and will cause the plate to have asymmetrical motion where dis-

placements for negative values of x will be 180° out of phase with 

positive X values. Along the y axis there will be no displacement of 

the plate or beam but rotation will occur. 

In order to understand how energy is transmitted in this type of 

system it is useful to consider the beam and plate individually and the 

subsequent effect each has on the other when they are joined. Torsional 

waves in an uncoupled infinite free beam travel at a speed independent 

of frequency. Flexural waves in an infinite free plate travel at a 

speed which is proportional to the square root of frequency. At low 

frequencies, the torsional wave speed in the free beam is greater than 

that of flexural waves in the free plate and thus when they are coupled 

the beam will radiate into the plate. At high frequencies the wave 

speed in the free beam is less than that in the free plate and when 

coupled no energy will be radiated. In the previous two problems of 

force excitation and symmetrical torque, excitation of a beam-stiffened 

plate, both the beam and plate carried flexural waves. Flexural waves 

in a free beam are faster than flexural waves in a plate at all frequen-

cies and thus, when coupled, the beam always radiates into the plate. 

At low and high frequencies, asymmetrical motion of the beam-stiffened 

plate tends to be similar to the particular cases treated earlier. At 

low frequencies or when the beam torsional stiffness and inertia are 

relatively small, the structure behaves like a plate. At high frequen-

cies or when the plate bending stiffness is relatively small, the system 

behaves like a beam under torsional wave motion. For the structure of 

ship-like dimensions studied by Fahy and Lindquist [l5], the critical 

frequency at which the beam and plate wave speeds were identical occurred 

at 125 Hz. Thus it can be seen that the frequency range of interest 

spans all types of behaviour. 

The low frequency behaviour, as in the case of torque excitation of 

a plate, is difficult to analyse and no detailed calculations have been 

made for the near field response. An approximate solution has been 

obtained for the response above the coincidence frequency and this is 

given below. Because of the complicated nature of the response, the 

structure considered by Fahy and Lindquist is used to illustrate the 

problem. 
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Setting = 0 and = 0 in equation (4.11) gives the displace-

ment of the beam and plate which may be written as:-

5p(x, y) 2Tr 
D„e 

2 
a X 
y + D,e p y 

•A ^ + a P -
X l a y 

e ^ da 

(4.53) 

To calculate the response at the driving point the angular displacement 

rather than the transverse displacement is required. Writing 8 for 

the angular displacement, using the relation 

3w 

3x 

and setting x = y = 0 enables the point response to be written as:-

1(0, 0) = 
yo 

2nGQ 9 9 2B 

= "y - kf + - G % { /k ^ + iXi 
P 

da 

(4.54) 

By setting GQ and k (beam torsional stiffness and wave number) equal 

to zero the equation degenerates to give the response of a plate. Similarly 

by setting (plate bending stiffness) equal to zero the equation gives 

the torsional response of a beam. 

To solve equation (4.54) by contour integration it is necessary to 

locate the poles of the integrand and to define a contour which excludes 

the branch points at k and ik . The pole positions are given by 

the zeros of the denominator of the integrand. At high frequencies the 

denominator is dominated by k and the poles will tend towards this 

value. In order to examine the behaviour of the denominator a numerical 

analysis was performed using the structure examined by Fahy and 

Lindquist [l5[| . The denominator may be multiplied out to remove the 

square roots and produce a polynomial. This procedure introduces 

additional zeros because all the alternative definitions of the square 

roots become admissible. The polynomial produced is quartic in a and 

the four roots may be calculated for a range of frequencies using 

standard computer programs. In order to determine which roots are intro-

duced by the multiplying out procedure the roots may be substituted 
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back into the original expression for the denominator with the correct 

square root definitions to check that this expression becomes zero. 

This test establishes which roots are acceptable and which must be 

rejected. The results of this analysis are shown in figure 4.8 for the 

frequency range 0-1500 Hz. 

The value of k^ and k are also included. It was found that 

for frequencies less than the coincidence frequency (where k = k ) the 
t p 

denominator has no zeros. For frequencies slighly greater than the 

coincidence frequency there is one zero corresponding to a real value of 

a at each frequency. Thus there is no torsional wave motion beneath 

the coincidence frequency and one unattenuated wave at all frequencies 

slightly greater than the coincidence frequency. This result is con-

sistent with the low frequency behaviour being similar to a plate response 

and the high frequency behaviour being similar to a beam response. 

The second stage in solving the integral of equation (4.54) is to 

define branch lines along which the contour may be indented so that 

branch points may be excluded. The branch lines must be chosen so that 

the subsequent integration around the branch line is solvable. No 

branch line has been found which enables the integration to be performed 

for frequencies less than the coincidence frequency. For frequencies 

greater than the coincidence frequency an appropriate branch line has 

been found which enables an approximate solution of the branch line 

integrals to be obtained. 

A solution to first order for the point response of a beam stiffened 

plate with symmetrical torque excitation for frequencies greater than 

the coincidence frequency may thus be formulated. The integral of 

equation (5.54) may be evaluated along the contour of figure 4.9, the 

value of the integral being given by:-

= I = 2mi [Ras(pX 
yo 

(4.56) 

where Res(p) is the residue of the real pole and r is the path of 

integration around the branch lines. In this case the branch lines 

have been drawn so that one branch line integral excludes both branch 

points. An approximate value of the pole position may be obtained by 
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expanding the expression for the denominator of the integrand in terms 

of kp/a. The pole is always greater than and by expanding the 

square root functions the denominator may be written:-

k ^ k ^ 

"y ~ ^t ^ 2Aa [l + | - ^ - | - 2 ^ - + 1 - I " " ] 

a_ a av a 

—J- Uy + k^ (4.57) 

B 

where A = ^ and terms of k^/a of fourth order and above compared 

with unity have been ignored. This gives an approximate pole position of:-

p = -2A + A a ^ + k 2' (4.58) 

which may be seen to approach k^ at high frequencies. The residue of 

the pole is found from the expression:-

Res(p) 
8g(a) 

dot 
y 

(4.59) 

a=p 

where g(a) is the expression on the denominator of the integrand. 

Evaluating the residue to the same order of approximation in k^/a^ gives 

Res(p) = . ̂  =:^ (4.60) 
2V4A + k 

The branch line integral may be divided into six different integrals, 

each corresponding to a different definition of the square root functions, 

as follows:-

+0+ik +0+i0 p —0—iO —0+ik —0+i™ 
' p r f f i p r + j + j + j + j + j ^ 

r +0+i°° +0+ik O+iO k —lO -0—iO —0+ik 
P P P 

- + =2 + I3 + ^4 * ^5 + If, 

By combining integrals with the same range, this may be reduced to three 

integrals: 
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Il + l6 = 
-4a[X^ - k ^ + + kp^'] dY 

kp (Y' + + 8A^[Y^ + - k ^ 

(4.61) 

I2 + I5 = 
-4A /k ^ ^ 

P 

0 (Y^ + k^^)2 - 4A(Y" + - Y^ + 8A^k ^ + k 2)/k 2 _ y2'+ 8 A \ ^ 
L P p 

(4.62) 

dy 

I] + I4 = 

-4Ai /k 2 _ 0,2' 

^ — — da 

0 (a ^ - k 2)^ + 4A(a 2 - k ^ ) / k ^ + 8 a \ ^ ^ 
y t y t p y p 

(4.63) 

where the substitution a = lY has been made on those portions of the 

branch line that lie along the imaginary axis. To permit integration 

of these expressions the integrands may be expanded in terms of k /k^ 

and A/k^. Both of these coupling terms decrease with increasing fre-

quency and are less than unity for typical structures in the frequency 

range being considered here. The accuracy of the branch line integrals 

will depend on the degree of approximation involved in the expansion of 

the integrals and the number of terms of the expansion included. In 

the following derivation, terms in k ^/k^* and A^/k^* and higher will 

be ignored in comparison to unity. 

In the integral I^ + I the term SA^YZ 

value at Y - k^ of by expanding in terms of this coupling para-

meter the integral may^t be written as: 

(Y^ + k^2)2 
has a maximum 

Ij + - -4A 
J J 

(y^ + 

Ŷ + k 
+ E__ 

(yZ + k^^)2 

SA^fZY^ + k2)/Y^ - k^ 
2 E. 

(yZ + k^Z)* 

SA^CZY^ - k 2) /yZ + ^ 2 
P , , E_ 

(y- + k^2)4 
dY (4.64) 

This integral may be solved exactly by means of a partial fraction expan-

sion. The first two terms may be rewritten as eight terms and the third 

and fourth terms as sixteen terms. Integrals I^ + I^ and I^ + I^ may 
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be expanded in terms of k /k^ and A/k^ to the order of approximation 

given above to result in 

^2 + ^5 ' - 7^4 
k. 

,P 

x : ^ 7 7 - ^ dy 
Z p 

t o (4.65) 

and 

^3 " ^ 
^ / k 2 . i2i A 1 2 2 ^ 4A /~4 ? , 

/ J ' rv - u -r — - K k - a + —r- /k - a da 

t o '̂ t \ (4.66) 

The first two terms in each integral may be solved exactly and the last 

term may be rewritten as:-

/ k ^ 
P 

Y dY = k 
P J 

dx (4.67) 

The value of this last integral is small compared with other terms and 

may be ignored. 

After expanding all the terms in the complete solution and ignoring 

those which are fourth order or higher and hence are small in magnitude 

compared with unity, the branch line integral may be written as:-

4A 

Ak 

inAk 2 4Ak 2 

log (1 + /2) 

k. 

log 

k 

iv^ - i + 
k 
_E. 
k. 

i y' ? + i + 7-2-

8 A-
(4.68) 

The rotation at the driving point may be found from equation (4.56) by 

subtracting the branch line integral from the pole solution. The driving 

point mobility g is given by:-
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B = 
-iw8 

(4.69) 

which may be written as:-

. 2 
w 
GQ 2k. 

2iA 

TTk ' 

Ak 

2k 

2Aik 

Trk, 
loggCl + /2) 

iAk 

2nk. 
log. 

L/2 i 

V 5 + i + 

4iA" 

3nk. 
(4.70) 

where the pole solution has also been expanded in terms of A/k . It may 

be seen that for high frequencies this mobility approaches that of a beam 

with torsional excitation. 

^•8 The Response in the Far-field of a Beam-stiffened Plate with Asymrwtrical 
Torque Excitation 

The existence of a real pole indicates a non-attenuating torsional 

wave propagating along the beam. The beam in the far field does not 

therefore radiate into the plate. However, in the near field at the 

driving point, the wave in the beam is discontinuous and energy is radiated 

into the plate from this point. At low frequencies, when there is no pole, 

all the energy goes directly into the plate from the driving point. 

The displacement in the far field may be found from equation (4.11) 

with = 0 and T = 0. The solution, the inverse Fourier Transform, 

may be written:-

+ a ^ + i/^' 2 k - a 
p y 

[e P y * - e^ P * ]e^"y^ 

^ 2 [y( 2 + a 2' _ a - k^ + 2A 
y t 

+ a 
p y 

da 

p y 

This integral may be solved by the method of steepest descent as in the 
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case of the response of a plate to force or torque excitation. By 

writing the equation as the difference of two integrals (each integral 

containing one of the exponentials in x) and making the same substitu-

tions as given in the previous problems, the response in the far field 

is given by:-

i (rk - •̂ ) 

5 (r, cj)) = - f((j)) (4.72) 

P 

where, in this case:-

-T cos (j) 
fC*) = 2 L 

GQ/^(/i + sinks' + i cos cj)) 

fC ̂  sin̂ cf) - k ^ + 2A(k /l + sin̂ (j)' - ik cos (j)) 
p t p p 

(4.73) 

An exponentially decaying near field wave is also radiated but may be 

ignored in the far field. 

A cylindrical wave therefore radiates from the driving point with 

approximately cosine dependence. (See figure 4.2). As may be seen by 

letting <|) = IT/2 there is no displacement, due to the cylindrical wave, 

along the beam. 

As in the case of force excitation of a beam-stiffened plate for 

values of <j) approaching n/Z and for frequencies greater than the 

coincidence frequency, the path of steepest descent crosses a pole and 

an additional contribution must be added to the solution. On either 

side of the beam there is a small sector of the plate which has an addi-

tional response due to the rotation of the beam. The response in this 

sector decays with distance having the form of a near field and therefore 

not radiating into the plate. The rotation of the beam in the far field 

may be found by calculating the residue of equation (4.71) due to the 

pole and taking the derivative in the x-direction. Using the value of 

the pole estimated in the previous section the rotation of the beam is 

given by:-

i (-2A + /4A^ + kj_^^jy 

8(0, y) = (4.74) 
^ r-2 r 

2y4A^ + k^ 
t 
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Thus at frequencies below coincidence there is no wave in the beam 

and only a cylindrical wave in the plate with approximate cosine depend-

ence. At frequencies above coincidence there is a torsional wave in the 

beam which does not radiate into the plate, the plate response being 

given by a cylindrical wave deriving its energy from the driving point. 

4.9 Power Flow in Beam-stiffened Plate with Asymmetrical Torque Excitation 

At frequencies less than the coincidence frequency no power is carried 

by the beam, all the power being radiated into the plate. No formulae 

have been found for the driving point mobility at frequencies less than 

coincidence and therefore the nature of the power supplied by the source 

is unknown. 

At frequencies greater than the coincidence frequency the beam carries 

a torsional wave along which power is propagated without attenuation. 

Some power is also transmitted by the plate, the power being radiated 

from the driving point. 

Using the approximate value for the point mobility for frequencies 

above coincidence, derived in section 4.7, enables the power supplied by 

the source, in this case the torque, to be written as:-

|T|2 r .2 Ak 
p = — L J — (4.75) 

This power is the same as for that of a beam alone except for 

additional coupling terms due to the plate. 

In the far field the power carried by the cylindrical wave may be 

calculated using equations (3.19)-(3.24). The power flow intensity in 

the radial direction associated with shear and bending may be written as: 

2 
_ B wk 

P = P = |T I ^ g 
ur mr ' yo' 

8nr(GQ)' 

2 . 
cos 8 

[(k ^ sin^e - k ^ + 4Ak J\ t sin^0(k ^ sin^6 - k^) + 8A k 1 
1- p t p p t P 

(4.76) 
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This formula is valid for all frequencies above and below coincidence. 

As in the case of torque excitation of a plate the power flow intensity 

has approximately cosine dependence. 

At frequencies above the coincidence frequency the power flowing in 

torsional waves in the beam may be calculated from the angular velocity 

and the internal twisting moments. Using the approximate value for the 

pole and calculating this power to the same order of accuracy as used 

previously gives the following value for the power flowing in the beam:-

P = 
a 

8v^GQT 

1 -
2A 2A 8A-

(4.77) 

It is necessary to determine whether the plate or the beam transmits 

more power. By subtracting the power carried in the positive and negative 

y directions along the beam from the power supplied by the source it is 

possible to calculate the total power radiated into the plate. Writing 

Pp for the power radiated into the plate gives: 

Pp = Ps -
2 / G ^ 

L. 
k. 

Ak 
+ - A 

2k. 

4A- (4.78) 

Thus for high frequencies when ^ is small it may be seen that 

the power in the beam is greater than ^the power in the plate. 
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CHAPTER 5 

POWER FLOW THROUGH ISOLATORS 

5.1 Introduction 

The vibratory power flowing from a machine through an isolator and 

into a flexible foundation is available for radiation from or vibration 

in the structure on which the machine is mounted. Previous chapters 

have examined the nature of typical flexible foundations and given simple 

formulae which approximate their behaviour. In this section, simple 

models for the machine and isolator are proposed that enable the amount 

of vibrational power flowing into the structure to be evaluated. 

Two extremes are used to model the excitation within a machine -

a force source and a velocity source. Each of these sources is assumed 

to be constant and independent of the motion of the foundation and iso-

lator. These extremes are used because the excitation which a machine 

creates and the extent to which this is modified by the motion of the 

machine is difficult to predict and has not received much investigation 

in the literature. 

Both one and two stage isolation systems are considered, the elements 

of the machine and isolator being modelled as masses or springs. The 

flexible foundation is treated as having a mobility with a straight line, 

frequency dependence when plotted on log-log scales. In practice, a 

machine is supported by a number of isolators; however the above simpli-

fications enable the general characteristics of the power flow into the 

structure to be evaluated in terms of the principal components of a 

machinery installation. 

Mass-sprin^ models of machines on flexible foundations have been 

considered previously [_2, 3, 4j but no attempt has been made to examine 

how the design of foundations and isolators controls the power flow from 

the machine. The aim of isolation is to minimise the power flowing into 

the structure by optimising the isolator design with respect to source 

and receiver characteristics so that the power available for subsequent 

radiation and vibration is a minimum. Traditional vibration isolation 

concentrates on minimising the velocity and force at the foundation by 
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optimising only the isolator; this will not necessarily reduce radiation 

or vibration in any part of the structure on which the machine is mounted. 

The formulae for power flow are presented in a manner which facili-

tates the design of isolation systems. In order to minimise power flow 

it is first necessary to design an appropriate foundation. The effective-

ness of various types of foundation is considered in this investigation 

so that a suitable strategy may be adopted. For example, the analysis 

indicates that special foundations must be built for some machines or 

alternatively that some parts of a structure are unsuitable while other 

parts more suitable for the mounting of machinery. Once a foundation 

has been chosen, the power flow may be further reduced by adjusting the 

properties of the isolator. Thus this analysis treats the foundation 

and the isolator as two separate elements, both of which must be care-

fully chosen so that there is minimum power flow into the structure. 

The results of this investigation are summarised in tables II and 

III. 

5.2 Power Flow into the Structure 

The aim of this analysis is to provide formulae for the power flowing 

into a foundation as a function of frequency. If the source contains 

only a single frequency then the time averaged power flow from the founda-

tion at the driving frequency may be calculated in terms of the vibration 

amplitude of the source and the mobilities of the machine, isolator and 

foundation. If the excitation at the source contains a broad band of 

frequencies and is described via a spectral density function then the 

power flow spectral density may be derived, expressing the average power 

flowing per unit bandwidth into the foundation. 

Clearly the power flow is strongly dependent on the magnitude and 

phase of the foundation mobility. In the cases studied in the previous 

chapters the mobility spectra were approximately dependent on the fre-

quency to a real power. In general, straight line approximations may 

often be made to the modulus of a measured mobility spectrum when plotted 

on a log-log scale. Thus the modulus of the foundation mobility may 

be represented, to a good approximation, by a law of the form:-

131 = Acô  (5.1) 
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where 6 is the foundation mobility and A is a positive constant. 

The exponent s is a real constant which may be estimated experimentally 

from the slope of a log-log plot of a mobility spectrum or by calculation. 

A complicated mobility spectrum may be represented adequately by a number 

of lines, each of the form of equation (5.1). When considering power 

flow it is necessary to know both the modulus and the phase or alterna-

tively the real and imaginary parts of the mobility rather than the 

modulus alone. By means of Hilbert transforms [lo] it has been shown 

by Bode [l7] that phase characteristics may be deduced from modulus spectra. 

A mobility spectrum of the form of equation (5.1) will have a phase given 

by: -

(f)(u)) = s -J . (5.2) 

If equation (5.1) only represents the mobility modulus over a finite 

frequency interval and outside of this interval the modulus is different 

then the phase will only vary significantly from the above value at the 

ends of the interval. The point mobility of a foundation which 

has a straight line characteristic when plotted on log-log scales may 

thus be written as:-

is| 
6 = Ae tô  = Aw^(cos + i sin ^ ) (5.3) 

As has been shown in section 1.2, the power flowing into a structure due 

to a harmonic force is dependent upon the real part of the mobility and 

in this case the formula for the power flow is:-

P = 5 Re{g}|F|^ = gAw^|F|^ cos (5.4) 

where F is the amplitude of the force applied to the foundation. 

Since the foundation is passive, no power may flow out of the structure 

at the driving point and thus P may never be negative. This implies 

that the phase angle is restricted to lie between + y and - -y and 

thus s must lie in the range 

-1 < s < 1. (5.5) 
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When s = 1 the mobility corresponds to a stiffness or mass line 

which represents the extreme cases between which all point mobilities of 

this form must lie. Thus if a straight line approximation is made to 

the mobility modulus plotted on a log-log scale the phase angle is auto-

matically determined and must be in the range - y to + « 

It should be noted that in its detailed behaviour the slope of a 

log-log mobility spectrum may be outside the range of relation (5.5), 

as for example near a resonance. It has been assumed above, however, 

that an average line has been drawn through resonances so that the overall 

nature of the mobility is represented. 

5.3 Single Stage Isolation of a Rigid Machine with a Force Source 

Figure 5.1 gives a simple representation of a single stage isolator. 

A rigid machine of mass M is supported by a simple massless spring 

isolator of stiffness K which isolates the machine from a flexible 

foundation of point mobility g. A force of amplitude F and frequency 

dependence e^^^ represents the internal force within the machine. The 

force is assumed to be stationary and its spectrum to be independent of 

the motion of the machine. The power flowing into the structure may be 

written:-

P = aRe{B}|Tp|2|F|2 (5.6) 

where T^ is the force transmissibility defined as the complex ratio 

of the harmonic force at the foundation to a harmonic driving force and 

P is the time averaged power flow into the structure. Force transmis-

sibility is widely used in vibration isolation theory [2, ISj to 

represent the performance of an isolator. However, since the transmis-

sibility is also a function of the foundation mobility 3 it is not a 

suitable concept for the analysis of power flow. Rewriting equation 

(5.6) as:-

P(w) = Qg(w)|F(w)|2 (5.7) 

enables a power flow transmission spectrum for a force source to 

be defined. is purely real and only dependent on the properties of 
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the machine, isolator and foundation. If the excitation takes the form 

of a single harmonic then P in equation (5.7) is the total power flow, 

alternatively if the excitation is defined via a spectral density 

function then P is the power flow spectral density. 

Writing the power flow in full gives 

P = |F|^ (5.8) 

2|l - ~ 2 + 
w 
o 

2 K 
where w = — is the resonance frequency of the system with the flexible 

° M 

foundation clamped. It may be seen that if B in the denominator of this 

expression is relatively small then the power flow transmission spectrum 

will have a significant peak at w = alternatively if g is large 

then there will be no significant peak. Since 3 can never have an 
average frequency dependence of power greater than or equal to unity, 

m d 

-4 

2 
the term in w will always dominate at high frequencies and the power 

flow transmission spectra will decrease at approximately w 

Substituting the value of g corresponding to a simple power law 

(equation (5.3)) into the equation for the power flow enables the power 

flow transmission spectra to be written as:-

Qf = 2~~^ (5.9) 

2Mai 11 - ^ „ + i(y + i6) (-—) ^ | 
o / w 

Hi o 
o 

X . M s+1 s-rr 
where y = Mw A cos —r-

o I 

„ „ s + 1 . . SIT 
6 = M(jj A Sin — z . 

o I 

It is not possible to find a method for normalising this equation in any 

general manner; the procedure adopted here has been to normalise in 

terms of the properties of the isolator and machine so that the effects 

of various foundation mobilities can be seen, y and 6 are the norma-

lised real and imaginary parts of g (g = A cos ^ + i A sin -^); a 

large value of y and 6 corresponding to a very mobile foundation 

while a small value indicates a rigid foundation. 
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Table II gives the essential behaviour of equation (5.9). The 

power flow transmission spectra may be approximated on a log-log scale 

by straight lines at high > 1) and low (-^ < 1) frequencies. If 

6^ + is small there will be a peak at =°1 where the two lines 

intersect. Alternatively if 6^ + is large a third straight line 

may be drawn, the three lines having break points at frequencies above 

and below = 1. The criteria for small or large (6^ + y^), the 

height of the peak, the behaviour of the three lines and the position of 

the break points are given in table II. The criterion for small or 

large (6^ + y^) is obtained by establishing whether the peak at = 1 

is greater or less than the value of the power flow spectrum at the ° 

intersection of the two lines for high and low frequency dependence. 

Figure 5.2 gives a sketch of a power flow transmission spectrum for 

s = -| (corresponding to a beam-like foundation) for small and large 
2 2 

values of (6 + y )• Exact spectra are shown in figure 5.3 for the 
2 2 

same values of s and (6 + y ). 

In general, equations (5.8) and (5.9) show that the overall levels 

of the power flow transmission spectra are controlled by the foundation 

mobility while the spectrum shape is governed by the stiffness and mass 

of the isolator and machine. Since the foundation mobility always 

appears in the numerator of the power flow equations it is necessary 

to choose a small value of A (equation (5.3)) in order to minimise 

the power flow. When determining the shape of the power flow spectrum 

2 2 
there are two alternative extremes. Either y + 6 is chosen to be 

small so that there is a peak in the spectrum or alternatively y^ + 6^ 

is large and there is no peak but the levels are increased at high fre-

quencies. This choice will be governed by the nature of the force 

spectrum in which there may, for example, be specific harmonics which 

must be avoided. 

The motion of the machine is important since too large a velocity 

may be unacceptable. The source velocity is given by:-

- i ( y + i8)(^LjS+l 

V -
II — (5.10) 

1 - ^^2 + i(Y + i6)(^^-)S+ll 
•<- (jj 

w o 
o 
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The low and high frequency dependences are given in table III where 

it may be seen that the velocity may be approximated on a log log scale 

2 2 
by a straight line for all values of y + 6 for frequencies greater 

than the resonance frequency. Examples of velocity spectra given by 
9 9 

equation (5.10) for two values of (6 + y ) are given in figure 5.4. 

5.4 Two Stage Isolation of a Rigid Machine with a Force Source by 

Means of a Blocking Mass 

This type of isolation involves an additional mass which is placed 

between two springs to form a force attenuating element. Figure 5.5 shows 

an idealised configuration with a machine of mass M^, two springs 

and and the additional mass M^. With a force source of Fe^^^ the 

time averaged power flow into the foundation may be written:-

. Re(6}|F|2 1 

Wg 1 to OJ 0) 

(5.11) 

2 
where w = — 

o M 

032-

2 

The two resonance frequencies of the system with the foundation clamped 

are and and > Wg. The power flow transmission spectrum 

exhibits two peaks corresponding to the resonance frequencies of the 

system, which if g is not large will occur at approximately and 

The modulus of the denominator of this equation is dominated at high and 

low frequencies by the term:-

(1 - ^-=0(1 -

"1 "2 

which only contains parameters concerned with the isolator and masses. 

Thus, again, the overall level of power flow is controlled by the foundation 

while the particular shape is governed by the isolation system characteris-

tics. The straight line mobility characteristic of equation (5.3) enables 

the power flow transmission spectrum to be written as:-
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f 3 9 2 2 
2M,M„(o 2 2 0)/ co„ 0) „ 

° I (1 - iiL_) (1 - i!L_) + i(Y + 15) (^)S 3 [-_1_ + ^ _ _2_ _ ij ]2 

#2 o w w w 

(5.12) 

where 

^ 1 ^ 2 S + 3 STT 
Y = cos-^r 

^ 1 ^ 2 s+3 . STT 
0 = — = 0) sin —r-

O Z 

Table II gives approximate formulae for the low and high frequency depend-

ences and the level of the peaks. Figure 5.6 shows power flow spectra for 

s = 0 (a plate-like foundation) for three values of foundation mobility. 

At high frequencies, the two stage isolator gives significantly 

better power flow isolation (decreasing at l/w^ ^) compared with the 

single stage isolator (decreasing at 1/w^ ^). However, the two stage 

isolator does have two peaks in the power flow spectrum which must be 

carefully positioned in order to avoid significant harmonics in the 

excitation. 

The velocity of the machine and of may readily be determined 

and are given by:-

2 2 *LM ^2 ^2 

F{iwK2[(l - y-2)(l G D ] + KifGKz + 

V, = 
oj^ ^ 2 J- 0) 0) 

1 2 9 ? 
. 2 2 _ MLM. w, w, w 

KgCK^ - w M^)[(l - H_j(i _ + iw3g _1_2 (_1 + _ _ _ _ 2 _ 1)] 

0)̂  032 1 w w w 

F(BK2 + iw) 

(5.13) 

^2 2 2 2 
2 2 _ MLM wn w, 

K2[(l - ^--2)(1 - + iw g (--Y + --2 - --2 - 1)] (5.14) 
0)2 1 0) 0) 0) 

For a foundation with a simple mobility of the form of equation (5.3) 

there are two resonance frequencies of the structure, the magnitude of 

the resonances being controlled by the foundation mobility. Table III 
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gives the high and low frequency dependence of the velocity of the masses 

and the height of the peaks for small values of (6 + y ). Figure 5.7 

gives the modulus of the velocity of the machine and figure 5.8 gives the 

modulus of the velocity of the isolator blocking mass (M^) for a plate 

like foundation. 

5.5 Single Stage Isolatoii of a Machine with a Velocity Source 

An excitation which causes a machine to have the same velocity irres-

pective of the supporting isolator and substructure may be modelled as a 

velocity source. In these circumstances the resulting power flow is pro-

portional to the square of the velocity of the machine and by writing:-

P = Qy|v|2 (5.15) 

the power flow transmission spectrum for a velocity source may be 

defined. As in the case of a force source, the power P will be a spectral 

density function if the velocity is described as a spectral density and a 

specific value if the velocity is a single harmonic. For a velocity 

source of the form Ve applied to a machine on an isolator of stiffness 

K, the power flow into the flexible foundation is:-

p . A e t e ) |,|2 (5.16) 

2|ico + B K f 

Substituting the value of g given by equation (5.3) into equation (5.16) 

enables the power transmission spectrum to be written as:-

Qv = -2 (5.17) 
2 I io) + 0) (Y + 5) I 

where y = AK cos ^ 

6 = AK sin 

For a velocity source, the mass of the machine is irrelevant and since this 

simple system does not contain any resonant elements there will be no peaks 

in the spectra. The low and high frequency dependence and the break point 

between these two types of behaviour is given in table II. At frequencies 
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greater than the break point the power flow transmission spectrum always 

decreases with increasing frequency. However at low frequencies the 

spectrum may either increase or decrease depending on whether s is 

negative or positive. Figure 5.9 gives power flow transmission spectra 

for a number of values of y and for s = -|. In this case with a negative 

value of s it is seen that the break point is a maximum in the power 

flow transmission spectra. 

5.6 Two Stage Isolation of a Machine with a Velocity Source 

Figure 5.10 represents a two stage isolator on a flexible foundation 

with a velocity source. The power flowing into the foundation due to the 

harmonic velocity source Ve^"*" is:-

4 2 

"o 

2 
4 " 2 

( n - 1) 

P = R E { 3 } | V I 3 ^ 

> 1 ( 1 - 4 ) - ^ ( 1 - 2 1 - ^ ) 1 ^ 
o 0)̂  

K (5.18) 
where w ^ = — 

o 

2 
oĵ  is the resonance frequency of the system with the foundation clamped 

and a kinematic excitation applied to the upper isolator. The parameter co ̂  
2 o 

is always less than is the blocking mass which separates the 

two isolator springs and . Employing the form of foundation 

mobility given by equation (5.3) enables the power flow transmission spectrum 

to be written as:-

«v • M " 2 „ . 2 0, 2 

w 
^2 0)̂  

(5.19) 
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where y = — j — cos —« 

w ^ 

' • - T = ? ^ 
»o 

This spectrum will have a peak at approximately w = o)̂  the resonance 

frequency of the system. Table II gives the low and high frequency depend-

ence and the value of power flow at w = w.. At intermediate frequencies 

2 2 . 
approaching , the behaviour depends on whether (y + 5 ) is large or 

small and is complicated due to the number of terms on the denominator of 

0 . Figure 5.11 shows power flow transmission spectra for three values 

2 2 

of (y + 5 ) which encompasses the range of behaviour found. Once again 

it is seen that the overall level of the power flow transmission spectrum 

is determined by the magnitude of the foundation mobility while the general 

shape is controlled by the isolator mass and stiffnesses. The velocity 

of the blocking mass (Ng) in the isolator is given by;-

V(w.^ - a).^)[l - i(Y + i 6 ) ( — 
V = 2 ^ , (5.20) 

2 CO T ui/ _2 
[l - ^ - i(Y + i5) ( ^ ) ®(1 2 ~ — 2 ^ ] 

This velocity has one peak at approximately w = Table III gives the 

low and high frequency dependence and figure 5.12 shows the velocity for 

a foundation mobility with s = -5. By considering small and large values 

of to the magnitude of the velocity at frequencies away from the resonance 

is seen to be independent of the foundation mobility. 

5.7 Power Flow Due to a Band Limited Excitation Spectrum 

If the force or velocity spectral density of the excitation is constant 

between two frequencies o)̂  and Wg and zero outside this interval, then 

the total power flow, T^, into the structure is given by:-

2 
T = F 
P 

Qj dco (5.21) 
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% 
or T = 

P 
dw (5.22) 

"A 

2 2 
for force or velocity sources, respectively. F and V are the magnitudes 

of the spectral density functions between co and w . If the power flow 
A B 

transmission spectrum does not contain a peak in the interval toj then 

this integral may readily be evaluated using the high or low frequency 

approximations of table II. 

When the excitation interval does contain a peak of the power flow 

transmission spectrum then the integral may still be performed by making 

suitable approximations. For the case of force excitation with a single 

stage isolator the total power is given by:-

T = ^ 
2 

P 2MWQ 
o J 

dw 

(1 - - 2(1 - ̂ ) 6 ( — + (Ŷ  + 6^)(— 
Z Z to (i) 

w w o o 
o o 

(5.23) 

If the foundation mobility is not too large so that there is a peak at 

which lies within the interval then the approximation 

? 2 
CO - 0) = (o) - w ) (w + w ) ' = 2w (w - to) ( 5 . 2 4 ) 
o o o o o 

may be made which enables the total power to be written as:-

9 2 
2 r yw 

° dw (5.25) T 
p 2Mw 

o ' 4(w ^ - w^)^ - 4w (w - w) + w 2(Y^ + 6^) 
o o o o 

This integral may be evaluated to give:-

2 — - 2 + 6 2 — - 2 + 6 

m ) ] <3.26, 

The two inverse tangents approach ^ ^ as the frequency bandwidth between 

w^ and Wg, centered about the peak, is increased. The approximate value 

of the integral is thus:-
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T P " % " • " > 

In particular, the total power flow is independent of the nature of the 

foundation and the stiffness of the isolator. Figure 5.13 gives the exact 

running integral of equation (5.23) for two values of foundation mobility 

with s = |. It may be seen from this figure that equation (5.27) continues 

2 2 
to apply even for values of (y + 6 ) > 1. This is because s is 

positive, giving the power flow transmi-sion spectrum a maximum at the 

first break point which may also be approximated by equation (5.24). The 

step-like running integral demonstrates that the contribution of the peak 

of the power flow transmission spectrum to the total power flow occurs over 

a narrow frequency interval. Thus an excitation spectrum which does not 

vary extensively within the range of the peak will not change the form of 
2 

the integral significantly and an average value of F may be used in 

equation (5.27). 

Since the peak contributes by far the largest amount of power to the 

total power flow it is important that the frequency at which the peak 

occurs (approximately w ) should be chosen to lie outside the significant 

ranges of the excitation spectrum. If, however, the excitation spectrum 

does include the peak, then the isolator is irrelevant and the power flow 

may only be minimised by increasing the mass of the machine. 

Calculations similar to the one above may be performed for a two stage 

isolator with a force source and for velocity sources. The total power 

flow for a machine with a two stage isolator excited by a band limited 

force source may be written 

F % 
T 

2, »B . m ' 

o dw 

P 2MLN_w ^ 9 9 2 ^ 2 _ 2 
- t - L i - r t U J 2 . tL. g 0J-. ' W CO 

2 o _ WL .) _ i(Y + i5)(y_)S 3(_1 ? o_ 
2'\ 2' " 2 

w, o 03 

(5.28) 

The most significant contributions to the total power flow are due to 

the peaks at the resonance frequencies of the system. When the resonance 

frequency at lies in the band to an approximation similar to 

the one used above may be employed to evaluate the integral. The solution 

once again leads to a step-like function of inverse tangents which tend to 

_+ Y as the excitation interval is expanded on either side of the peak in 

the power flow transmission spectrum. The power flow associated with the 
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peak at is thus approximately:-

F V TT 

T = (5.29) 
P - W ) 

1 1 1 o 

and similarly the power associated with the peak at is:-

2 2 

4M^M2(Wg2 -

(5.30) 

Both these expressions are independent of the foundation mobility and only 

include parameters concerned with the machine mass, isolator stiffness and 

isolator mass. By carefully choosing and the amount of 

power associated with each resonance may be carefully controlled; clearly 

2 , 2 2 * 
by selecting to be close to either or will cause very 

large amounts of power to flow. 

The power flow transmission spectrum for a machine on a single stage 

isolator with a velocity source does not have any peaks. If s is positive 

then the spectrum always decreases and the largest contributions to the 

total power flow are due to low frequencies in the excitation spectral 

density. If s is negative then there is a maximum in the power flow 

transmission spectrum at the break point between the high and low frequency 

2 
dependences. If the excitation spectrum is flat and of magnitude V and 

band United between frequencies and Wg then the total power is 

given by:-

T 
P 

2 
V K 

"b 

I iw + 0) (y + i6) 

This equation may be solved exactly to give:-

^ gdw (5.31) 

(3.32) 
P 

If s is negative and the break point occurs between and ojg, then 

the inverse tangents tend to ^ and , resulting in a total power flow 

of 
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T = ^ - 5 1 (5.33) 
p 4 

The total power flow is thus independent of foundation mobility and 

is proportional to the isolator stiffness. 

For a machine with a velocity source and a two stage isolator the total 

power flow is given by:-

„ 2 
„2 w , 0), 

o o 1 w 
o 

2 
li) 

a)„ /W \S o 
"B Y (2-) 

03 ' 2 
o w 

dw (5.34) 

2 w 1 2 u) ̂  „ 

|1 - _ i(y + 15) (^2.)! *(1 - ---%2)r 

"l "l 

where as before it has been assumed that the excitation spectrum is flat and 

2 

of magnitude V between and and zero outside this interval. If 

the peak in the power flow transmission spectrum occurs within the interval 

to then the approximation (5.24) may be used in order to solve the 

integral. The solution is once again an inverse tangent and the approximate 

value of the total power flow is:-

2 10 ̂  

= r (1 - i «.35) 

As before, the total power flow is independent of the foundation mobility. 

5.8 Selection of Foundations and Isolators 

Torque excitation as well as force excitation of foundations has been 

an important consideration in this analysis. This is because the method in 

which a machine is mounted often results in torques being the mechanism by 

which the foundation is excited. For example, torques occur when there is 

rocking of a machine on a horizontal foundation or alternatively when a 

machine is mounted as in figure 5.14, where the support acts as a lever, 
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creating flexural wave motion in the vertical member. When a lever of 

length I is the cause of flexural wave motion, the relationship between 

the force and velocity at the tip of the lever and the torque and angular 

velocity at the root of the lever (see figure 5.14) may be written;-

l" = I" = 5,^6^ (5.36) 

where and are the point mobilities for a driving force at the 

end of the lever and for a torque applied to the member at the root of the 

lever, respectively. Equation (5.36) assumes that the angle through which 

the lever rotates remains small. 

Figure 5.16 gives a comparison between typical beam and plate-like 

foundations excited by torques or forces. The power flow into a foundation 

is given by:-

P = *Re{62}|F|^ (5.37) 

,2 _ 
or P = ^ R e { 6 ^ } | F p (5.38) 

where in this case F is the force applied either to the foundation or to 

the end of a lever of length Z. Figure 5.16 gives power flow transmission 

spectra for an infinite beam and plate of the dimensions shown in figure 

5.15 and with a lever of length 1.0m. Clearly in this case a plate-like 

foundation is inferior to a beam, the best foundation being one in which 

the force is applied to a beam in a perpendicular direction. From equation 

(5.38) it may be seen that the length of the lever is important, a long 

lever being particularly poor. 

The introduction of isolators between the machine and foundation always 

results in a reduction in power flow as long as the excitation spectrum 

does not include those frequencies which are the resonance frequencies of 

the system. The use of a two stage isolator will always produce a signifi-

cantly greater reduction in power flow than a single stage isolator; 

however, the introduction of a second peak in the power flow transmission 

spectra may result in this form of isolation only being appropriate for 

high frequency excitations. If the excitation spectrum does extend over 

the resonance frequencies then the relatively large amount of power flow 
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resulting is independent of the foundation characteristics and the use of 

an isolator may not be beneficial. 

The importance of the nature of the source of excitation within a 

machine has been repeatedly demonstrated in this chapter. Clearly it is 

important to establish whether excitation by a particular machine has 

the nature of a force or velocity source and is independent of the isolation 

system or whether a source mobility should be included when designing iso-

lators. In addition, the spectral distribution of the excitation must also 

be known before an effective isolation system can be designed which will 

reduce power flow. 

Other factors which affect the power flow into a structure require 

study. Specifically no attempt has been made here to evaluate the result 

of resonances (wave effects) within isolators or the levers by which 

machines are supported. Also due to the size of most machines, a multi-

point isolation and support system is necessary which will introduce addi-

tional complications when studying power flow. 
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CHAPTER 6 

STRUCTURAL MODELLING BY THE CURVE FITTING OF MEASURED FREQUENCY 

RESPONSE DATA 

6.1 Introduction 

The complexity of a typical built-up structure often prevents its 

detailed vibrational characteristics being predicted theoretically. Previous 

chapters have analysed the sources of vibrational energy in terms of the 

approximate behaviour of typical foundations. As an alternative approach 

it is possible to analyse an existing structure employing only measured data 

and making no assumptions about the form of possible governing differential 

equations. 

The first part of this chapter is concerned with creating a mathematical 

model of a structure by employing only measured frequency response data. The 

advantage of this approach is that large amounts of measured data can be 

reduced to simple numerical parameters which give an immediate insight into 

the vibration mechanisms of a structure. Once constructed, the model may be 

used in further analyses to investigate the effects of connecting subsystems 

or of making modifications to the structure. For example, where there is a 

problem of excessive vibration the model may be used to test and evaluate 

various vibration control measures. 

A subsequent section will consider methods of mathematical modelling 

when some of the properties of the structure are known. 

The mathematical model is constructed by employing a digital computer 

to curve fit general algebraic equations for the frequency response of a 

structure to measured frequency response data. It is convenient to obtain 

the data by a method of transient testing [19, 2oJ since this measurement 

method enables detailed information from complicated structures to be obtained 

in a short time. However, any method is suitable as long as it results in a 

digitised frequency response curve within a computer. 

A curve fitting procedure may be applied to one frequency response curve 

or simultaneously to a set of responses. In the latter case, the fitted 

model may subsequently be used to predict other responses which have not 
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been measured. In general, sufficient data for the model may be obtained 

by employing only one excitation point and measuring the transfer functions 

to all the stations of interest. From the model fitted to this measured 

data it is possible to construct a frequency response curve giving the 

relationship between any possible forcing and response stations. 

Since only one excitation station need be used, the problems of data 

measurement are simplified. The excitation station can be chosen to >e 

the most convenient and the responses of the structure to types of excita-

tion which are physically difficult to apply, for example, torques, are 

readily obtainable. 

In this chapter, algebraic equations for the frequency response of a 

structure are initially derived. Next, the ways in which measurements 

may be taken are discussed and different methods for curve fitting reviewed. 

A technique for curve fitting is then presented and the success of the 

method illustrated with practical data. Methods of modelling when some 

information concerning the structure is known are considered in the final 

section. 

6.2 Formulation of the Equations for the Frequency Response of a Structure 

It is necessary to develop the general frequency response equations for 

the steady state, harmonic response of a structure in a suitable form for 

employing in the curve fitting of measured data. To do this, use is made 

of the "damped normal modes" derived by Mead [Zl]. The procedure is 

outlined here and the theory is given in full in Appendix IV. 

The following assumptions are made, first that the structure is linear 

and secondly, that the damping is hysteretic (proportional to the displace-

ment) . Damping is included because energy absorption within structures is 

of interest and hysteretic damping is employed since this is accepted as 

being the best model for built-up structures [l]. Finally, it is assumed 

that the dynamic behaviour of the structure may be represented by the 

familiar matrix equation:-

o2[m]{C} + [k + ^D]{g} = {f} (6.1) 
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where M, K and D are the inertia, stiffness and damping matrices, 

respectively and g and f are the displacements and forces at each 

station. This equation is based upon a discrete mass-spring model and 

when using it for continuous systems it is assumed that any desired accura-

cy may be achieved by including as many elements as necessary in the column 

matrix g. For a discrete system the number of resonance frequencies is 

equal to the number of stations. However, to represent the motion of a 

continuous, vibrating surface to a high degree of spatial accuracy it is 

necessary to use a large number of stations and if equation (6.1) is 

employed this will imply an equally large number of resonance frequencies. 

Alternatively, to represent n resonances to a desired accuracy in the 

frequency domain at least n response stations have to be considered. 

When taking measurements, equation (6.1) is unsatisfactory because of 

the strict equality between the number of stations and modes. Consider, 

for example, the case in which one force excites the structure and the res-

ponse is measured at one station. In these circumstances f is known 

completely since all the elements are zero except the one corresponding to 

the applied force and of the column matrix g the only element known is 

at the response station. Clearly (if the response contains more than one 

resonance) there are more unknowns than equations. 

The constraint of always employing an equal number of resonance 

frequencies and measuring stations may be relaxed by finding the eigenvalues 

and eigenvectors of equation (6.1) and performing a coordinate transforma-

tion. (Appendix IV) Equation (6.1) may then be written in the form: 

{?} = [r] „ [R ]{f} (6.2) 

"-w - w * 
n 

Here R is a square matrix independent of frequency with columns equal to 

the complex mode shapes (eigenvectors) of the structure. The frequency 

dependent terms of the equation are restricted to the diagonal matrix 

where are complex resonance frequencies (eigenvalues). 

Returning to the conditions of experimental measurement, to find the 

. th . T 
response due to a force at station j, only the j column of the matrix R 

need be considered. If we are only interested in one response station, 

for example, station k, then only row k of the matrix R need be considered. 

The response may then be written as: 
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5k = I 

(n) , (n) 

n 0) 
n 0) 

-

(6.3) 

or 

"kj 
= I 

n 03 
n 

(6.4) 

where is the receptance between station k and j and is the 

eigenvector element for station k, mode n. Each term in the receptance 
2 

series contains essentially two complex constants - x R^j) and . 

These constants may be found by means of nonlinear least squares curve 

fitting to measured receptance data. 

Equation (6.2) expresses the same relationship between forces and 

displacements as equation (6.1) but only as many rows of the matrix R as 

is convenient need be included when employing this equation. 

It is usual when making frequency response measurements to have one 

forcing station and several response measurement stations. Let there be 

s response stations, one forcing station (j) and n resonance frequencies. 

Equation (6.2) may then be written as:-

{5} 

s X 1 

[Q] 
s X n 

2 2 

\1 

n X n 

f. 
J 

(6.5) 

n X 1 

. th 
where P is the j c o l u m n of R , and Q is a rectangular matrix 

composed of s rows of R. Mobility frequency response data is often 

convenient to use and the equation may then be written as:-

{&} = [ Q ]r^ 

lo) 

n 
(0 

\1 

(6 .6 ) 

This equation is employed in the curve fitting process given in section 

6.5. When only one response station and one forcing station are employed, 

a series form for (6.6) may be used. 
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• I 
n w - w 

n 

This equation is employed when curve fitting to one response curve only. 

6.3 The Measurement of a Complete Frequency Response Matrix 

The complete frequency response matrix relates the steady state 

harmonic response at any station to the set of steady harmonic forces 

applied to the structure. The relation may be written as:-

iwt iwt 

= [H(iw)] {f}* (6.8) 

where the elements of ^ and f are the response and force, respectively 

at a particular station. The frequency response matrix H is square with 

complex, frequency dependent elements. H is called a receptance, mobility 

or inertance matrix depending on whether the response is displacement 

velocity or acceleration, respectively. The column matrix f can include 

torques as well as forces and similarly the column of responses ? can 

include rotations. The frequency response matrix H generally has fewer 

rows that the number of degrees of freedom of the structure since it 

includes only those stations which are of interest. 

A direct method of obtaining the matrix H is to apply a single force 

to the structure and to measure the response at each station through a 

given frequency range. In this way, a column of H may be measured. The 

force may then be applied to another station and a second column measured. 

There are practical difficulties in measuring the matrix in this 

manner and further problems are found when handling the data. Problems 

associated with the direct measurement method will now be discussed and 

the way in which these problems are overcome by modelling the structure 

will then be given. Practical difficulties arise when the response due to 

torque excitation has to be measured or the force has to be applied at an 

inconvenient station. If a method of transient testing is employed then 

positioning the exciter is the most time consuming part of the procedure. 

The frequency response matrix H grows rapidly as the number of 

stations to be considered increases. If a fine resolution is required 

90. 



then the complete matrix has to be measured and stored for each frequency 

value. When further calculations are made employing measured data then 

the size and resolution of the matrix imposes severe constraints. In 

addition, since the dynamic range of a frequency response matrix is often 

large, noise in the measured data can create an ill-conditioned calculation. 

By curve fitting the measured data to extract those parameters which 

characterise the structure, it is possible to alleviate many of the above 

problems. The most immediate result is that only one forcing station need 

be used to measure the entire frequency response matrix. Clearly by 

fitting equation (6.6) employing data from only one forcing station, the 

matrix Q may be found. Each row of Q is associated with a particular 

station and the column P is the transpose of that row of Q correspond-

ing to the forcing station. Therefore to obtain the response due to any 

particular forcing station an appropriate column P is selected from the 

matrix Q and equation (6.6) evaluated. 

In series form this ability to use only one forcing station may be 

demonstrated by considering a structure with two stations. Let the 

stations be termed 1 and 2 and consider the three frequency responses of 

interest 

H^^(iw) = iwX —2 2 (6.9) 
n o ) - w 

n 

H (iw) = iw% = 5 — (6.10) 
12" 2 2 

n 03 - 0) 
n 

(n) , (n) 

H,_(iw) = iw% % \ (6.11) 
22" 2 2 

n 0) - 03 
n 

and may be measured by forcing at station 1 for example, and 

thus can be found for each mode. can then be written 

down immediately since it contains no additional parameters. 

After curve fitting measured data the analysis of a structure is 

simplified. The storage problems associated with measured frequency res-

ponse matrices are no longer of concern, the relatively large number of 
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measured data points being replaced by a comparatively small matrix of 

modal parameters Q and a column of resonance frequencies. The para-

meters obtained from the curve fitting process are themselves of 

immediate interest. The resonance frequencies and loss factors are best 

estimates for the structure and the columns of Q are the mode shapes. 

If frequency response spectra are required then they may be plotted 

employing equation (6.6). The plots may be drawn with any resolution and 

are noise free so that their use in further calculations is much facili-

tated. 

Instead of using frequency response spectra it is possible to work 

with equation (6.6) directly. When a large number of stations has to 

be considered, as for example when two structures are being connected and 

the modified response is required, then an algebraic equation for each 

structure may be obtained via measurement and curve fitting. The response 

may then be calculated in the same way as if the equations had been obtained 

by solving the differential equations for the structure. 

6.4 Methods of Mathematical Modelling 

In order to obtain a mathematical model of a frequency response curve 

it is necessary to find the value of ^ and o) ̂  in each term 

of the series of equation (6.6). References 22-28 give various methods 

for obtaining these unknowns. Each method has some advantage and is 

generally suited to some specific problem. In particular, three of the 

five methods given in the references have been developed for aircraft 

resonance testing where detailed mode shapes and damping ratios are 

important with relatively few resonance frequencies requiring examination. 

Klosterman [22, 23] gives four procedures for determining the para-

meters of the series of equation (6.6) based largely on graphical methods 

applied to frequency response curves plotted on the Argand diagram. These 

methods are suitable when the frequency spacing between resonances is 

large and have the advantage of being a very direct procedure since each 

term in the series is determined individually. Klosterman also proposed 

a method for close resonance frequencies but this method requires the use 

of many measurement stations. 
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Dat and Meurzec [24] and also 't Mannetje [2^ base their curve 

fitting methods on the least squares principle. In this case the series 

of equation (6.7) is multiplied out to produce a rational fraction of 

two polynomials. By applying a suitable weighting function, the curve 

fitting may be formulated as a linear least squares procedure and the 

coefficients of the polynomial found. An iterative procedure enables 

the method to converge to best values for the coefficients which may 

then be rewritten in terms of the original parameters of the series. 

This method is suitable when there are only a small number of resonances 

to be considered but becomes unwieldy with a large number of resonances 

because of the high degree of the polynomials. It is also unsuitable if 

a number of different frequency responses for the same structure must be 

modelled simultaneously. 

In order to avoid the use of high degree polynomials, Flannelly, 

Herman and Giansante [26, 27] employed the unknown parameters in equation 

(6.7) directly. In this case the curve fitting procedure was developed 

for the case when there are many measurement stations and relatively few 

resonance frequencies. After performing sufficient iterations the method 

enables the mode shapes to be obtained immediately but because of the 

difficulty of dealing with many stations the resonance frequencies are 

obtained after some further calculations which establish a best value in 

the least-squares sense. 

The method developed by Gaukroyer, Skingle and Heron [28] is widely 

applicable since it may be used for curve fitting a large number of close 

resonances. The model is formulated in a form similar to equation (6.7) 

but for viscous damping. The procedure given is suitable for the case 

where there is only one response and excitation station. The method 

follows a linearised iterative least squares procedure and determines the 

unknowns in the series directly. 

In general, the most difficult case to model is one where there are 

frequency response curves from many stations and close resonance frequen-

cies in the frequency range of interest. None of the above methods 

cover this degree of complexity, although using the method due to 

Gaukroyer, Skingle and Heron on each frequency response curve separately 

and then averaging the results for each resonance frequency could suffice. 
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However, if this procedure were adopted a best model is not obtained and 

it is possible that the model would not be consistent within itself. 

The method proposed in the following section enables simultaneous curve 

fitting of many frequency response curves for the case where the excita-

tion is applied at one station only. 

A disadvantage of the computer based methods reviewed above is that 

all the unknowns are solved for simultaneously and if the procedure 

collapses it is not possible to determine which mode is at fault, A 

method which determines the parameters for each mode independently is 

therefore desirable so that a constant evaluation of the progress in 

curve fitting may be made. 

6.5 Curve Fitting to Measured Frequency Response Data 

To demonstrate the principles the simple case of curve fitting to one 

frequency response curve only will be considered here, the general case 

being reserved for appendix V. 

The aim is to obtain the best estimates for the parameters of equation 

(6.7) from measured data. The procedure developed for this application of 

curve fitting is based on the "least squares" principle which may be formu-

lated as follows. Let the measured values be H(iw) and the algebraic 

function which is to be fitted be F(iw). If the parameters of the 

function F, which have to be chosen to give a best fit, are a^, a^, ... 

then for each frequency we may write: 

^2' " H(iw^) (6.12) 

where is the error. The error may be expressed as a scalar by 

multiplying by its complex conjugate. 

= V k = F (X , a^ , a^, . ..) — H ( i ) F(iw^, a^,...) - H(iw^) 

(6.13) 

A total error may now be formed by summing all the errors over the frequency 

interval to give 
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K ,) - H(iw^) F d o ^ ; ;a-, ;a 
1' 2 

. ) H(iw^) 

(6.14) 

is a weighting function applied to each point. 

It is now necessary to find suitable values for the parameters a 
1' *2' 

which make J w^^e^^ a minimum. This may be done by taking the derivative 

of equation (6.14) with respect to each parameter a^ and equating to zero. 

In this manner as many equations as unknowns may be found and if the 

function F is a linear function of a^ then these equations will be 

linear and may be solved to find the best estimates for a^; a^; a^; .... 

The unknown parameters in the algebraic function F(iw^; a^; a^; ...) are 

then known and the function is a best approximation to the data H(iw). 

In the particular case considered here the algebraic function is 

iw^L 

I — 
n /.I 

(n) (n) 

and it is necessary to express this function in a suitable 

n 

linear form. Clearly the product 

substitution may be made. 

The function may now be written as: 

is not separable and the 

io) X 
n 

n 03. 
n 

(6.15) 

where each term in the series has two complex unknowns X and w (which 
n n 

correspond to four real unknowns) which have to be obtained by the curve 

fitting procedure. 

th 

If a large number of modes is to be considered term by term fitting 

of series (6.15) is preferable. It is readily seen that the information 

contained in a frequency interval around is most pertinent to the n 

term and that information distant from w is of little value. If it is 
n 

desired to fit only one term at a time the error equations (6.12) may be 

written as: 

r ito, X. 
k J 

w. w. 
k 

' " A 

n 

W j 
n 

(6.16) 
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iwX 

Essentially, the term — r — — — g represents the contribution of off-
n w - w 

n^j ^ iwX. 
resonance terms in an interval containing the term — — 7 ; - . If the 

to - 0) 
H 

contribution of the off-resonance terms are subtracted from the measured 

frequency response data then the corrected data will be that of a single 

degree of freedom system. 

Therefore the substitution 

io) X 

^ n H(iw ) = A(iw ) (6.17) 
nfj k k 

is employed to give 

r , iw X, -I 

(6.18) 
riw X, 

2 . A ( i ^ ) 

where A(iw) are the new 'measured values'. Application of equation (6.16) 

implies that the terms in the series are already known. In practice, an 

iterative technique may be used and only estimates of the contributions are 

required. 

Equation (6.18) is still nonlinear. The application of a Taylor 

series expansion would be usual in most nonlinear least squares fitting 

procedures but in this case the expansion would have poor convergence 
2 . 2 

since w. is close to w . Instead, equation (6.18) is rewritten as: 
J 

2 2 - w^^)A(iw)] (6.19) 
w. -

1 
If 6 ^ is assumed to be known approximately from a previous estimate 

Oi ^ - (x> 
2 k 

then equation (6.19) is a linear error function weighted by 
2 2 ' 

0). - 0), 
The modulus squared error is given by: J 

+ (Wj2 - w^2)A(iu^)][iw^Xj + (%.% - w^2)A(iw^X] 

(6.20) 

where w is the weighting function ^ — and the sum of errors 

"j - \ 
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is given by: 

1 % = - iw^Xj(w.2 _ w2)A(iw) + iw^(w/ - wf)A(iw)Xj 

+ |(Wj2 - w2)A(iw)i^] (6.21) 

The sum of errors being taken over an interval centred on the resonance 

frequency to.. 

By equating real and imaginary parts the two complex unknowns X-

2 R I 2 R 
and w. may be written as the four real unknowns X. ; X. ; (w. ) and 

2 ]p . . . J J J 
(w. ). By taking the derivative of equation (6.22) with respect to each 

of these unknowns and equating to zero, the following four equations are 

obtained: 

0 = 2Xj* 2 |^^|2 .^^^^2 _ ^2^^^ 

0 = 2X.I 11*%. [2^2 _ %|w2^,(w.2 _ ^2)j^ _ ^ |w%j2(^y2 _ 

R 

0 = -ix. Ilw^l^wA + iX. wA + 2%|w%j2 (w.^ - w%2)|A^|2 

0 = I|w^|^wA + Xj % |w%j2 wA + 2(Wj2)I I|w^|^|A^|^ 

The four equations may be written as two equations in two complex unknowns 

V 2 
X.; w. . 
J ] 

0 = XjllWkl^w^ - iwj^IIWkl^wA^ + i%|w|2wk3Ak (6.22) 

0 = iXjllWkl^wAk + Wj2%|w%j2|A%j2 -ZlWkl^Wk^lAl^ (6.23) 

2 

These equations may be solved to give Xj and Wj . In this manner the 

best estimate for the parameters of a single term in the series are found. 

The following procedure may now be adopted to find each term of the 

series. First the frequency response curve is divided into intervals 

(which may overlap) each containing one resonance frequency and therefore 

corresponding to one term in the series. Initial approximations to all 

the terms are obtained and for each interval, best estimates for X. and 
J 
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lii. are calculated employing equations (6.22) and (6.23) 2 
3 

This completes the first iteration. A second iteration may now be 

performed for which more accurate estimates of the off-resonant contribu-

tions and the weighting functions are available. Further iterations can 

be made until the convergence is sufficient. 

The use of a digital computer is thus necessary to perform the calcu-

lation with sufficient speed. This curve fitting procedure will thus 

evaluate as many terms of series (6.15) as there are resonance frequencies 

in the measured data. 

One improvement to the method is worth including. The series (6.15) 

has been evaluated for a finite number of terms but naturally for a con-

tinuous structure an infinite number of terms should be included. This 

may be expressed by writing:-

00 iuX k iwX. 

1 + .1, 2 ^ 2 * (6-24) 
n=l - w j=l (Oj - 0) 

k iojX. 

where R and R are remainders and J — = — - — « is the sum of 
m s . 2 / 

]=1 Wj - 0) 

terms for resonance frequencies within the measurement interval. is 

the remainder expressing the contribution of terms associated with reso-

nance frequencies lower than those in the measurement interval and R is 
as sociated with resonance frequencies greater than those in the measurement 

interval. R and R are terms which have to be evaluated away from 
m s 

their resonance frequencies and therefore a Taylor series may be used. 

The frequency dependence of R^ and R^ may be written as: 

*m 

-ix 
E (6.25) 

R = iwX (6.26) 
s s 

where only the first term of the Taylor series has been included. It can 

be seen that R is a mass contribution and R a stiffness contribution, 
m s 

X and X may be also evaluated by the least squares method. The pro-
m s 
cedure used is to subtract the effects of resonances within the measurement 
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interval from the measured data so that only the contributions from out-

side the measurement interval remain. Since equations (6.25) and (6.26) 

are linear, their calculation follows the standard least squares method. 

The effects of the remainders may be included in the main curve fitting 

procedures in equation (6.18). The contributions of the remainders may be 

subtracted from the measured data to leave only the response due to those 

resonances within the measurement interval. 

A flow chart giving the essence of the computer program is given in 

Appendix VI. 

6.6 Examples of Curve Fitting 

A simple structure was employed to obtain measured data to test the 

curve fitting procedure. The structure consisted of a simply supported 

beam 35 mm x 65 mm x 2 m. Data were obtained in all cases by means of 

transient excitation employing a rapid frequency sweep. The frequency 

response curves were calculated by dividing the Fourier transform of the 

response by the Fourier transform of the excitation as described in [l9] . 

As acceleration transducers were used to obtain the responses, a further 

division by iw was made to obtain mobility frequency response data. 

Eleven response stations were employed in total, stations 1 and 2 being 

used in addition as forcing stations. The distribution of stations is 

shown in figure 6.1. 

Station 1 was first employed as a forcing station and the response 

there and at every other station obtained. This gave a complete set of 

mobility curves which were then curve fitted simultaneously to give a model 

of the structure. On examination, the measured data were seen to contain 

more resonances in the frequency range examined than would be expected for 

a simply supported beam. This was presumably due to poor end fixings, 

motion of the supporting structure and motion of the beam in other than a 

single plane. The number of resonances actually used was 14 instead of 5 

as expected. This merely provided a better test of the curve fitting 

procedure. 

Figure 6.2 shows the modulus and phase of the measured point response 

which may be compared to figure 6.3 which is the fitted data. Fitted data 
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was obtained by plotting out the response of the model due to a particular 

excitation. Figure 6.4 shows the Argand diagram ("vector plot") of the 

point response and the fitted response (with a very fine resolution) is 

shown in figure 6.5. The same sequence of frequency response curves is 

shown in figures 6.6-6.9 for a transfer response. Figures 6.6 and 6.8 

being measured data and figures 6.7 and 6.9 being fitted curves. 

Two, three dimensional plots of the measured data are shown in figure 

6.10 giving both the linear and the log modulus. The corresponding fitted 

responses are shown in figure 6.12. Phase information would, of course, 

have also been presented but is omitted from these plots for clarity. In 

addition to modelling considerations, this type of presentation facilitates 

a visual appraisal of the data as well as greatly reducing the number of 

diagrams that have to be presented when reporting on a series of experi-

ments. Curve fitting produces two sets of parameters, the complex reso-

nance frequencies and the complex mode shapes. The loss factors are given 

in figure 6.13 plotted against the corresponding resonance frequencies. 

The complex mode shapes, plotted for stations at equal increments along 

the beam, are given in figures 6.14.1 and 6.14.2. 

The following procedure was employed to test the ability of the model 

to predict responses which had not been measured. The model obtained by 

forcing at station 1 was used to predict the response to an excitation 

applied at station 2. Excitation was then actually applied at station 2 

and a series of frequency responses obtained; thus the predicted data 

could be compared with measured data. Figure 6.15 gives a predicted 

transfer response (station 7 forcing at 2) and the measured response is 

given in figure 6.16. Similarly, figures 6.17 and 6.18 also give predic-

ted and measured transfer responses (station 1 forcing at 2) respectively. 

A set of predicted responses for stations at equal increments along the 

beam is given in figure 6.19 which may be compared with the set obtained 

by measurement in figure 6.20. 

No absolute criterion for the accuracy of the model obtained by curve 

fitting has been presented. However, the tests on the beam show the 

general success of the procedure and the areas for concern. 

The main inaccuracies in the fitted data are associated with anti-

resonances. This is to be expected since they are associated with numerical 

values in the frequency response data which are small compared with those 
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at resonances and thus they have little influence on the curve fitting. 

In addition, contributions from resonances outside the curve fitting inter-

val will be of greater relative importance at antiresonances where all 

contributions are small as opposed to resonances where one mode dominates. 

The modelling is arranged to give a minimum error to the fitted Argand 

diagram, this could be changed to improve accuracy for the antiresonances 

by adding a weighting function which biases the curve fitting towards small 

values. 

The set of complex mode shapes appear satisfactory. The imaginary part 

of each mode shape (except the ninth mode) is small compared to its real 

part. This is to be expected since, with the assumption of hysteretic 

damping in the modelling process, the modes of a uniform structure should 

have a zero imaginary part. This is largely satisfied by each mode except 

the ninth mode. The large imaginary part was due to an error in the 

measurement system. There is a 180° phase shift in the point mobility 

response at the resonance frequency of this mode (see figure 6.2). It is 

not physically possible for a passive system to exhibit a 180° phase shift 

between the velocity and the force of a point response. This measurement 

error has resulted in the model constructing a mode which is B0° out of 

phase with respect to the other modes. 

The prediction of unmeasured responses from one set of modelled data 

is satisfactory. The largest errors occurred with the fifth mode at 182 Hz. 

This error was due to station 2 being situated almost on the node of this 

mode. A station situated on the node of a vibrational mode receives no 

information concerning that mode and if predictions are made employing this 

station as an excitation station the errors may be large. To overcome 

this difficulty two excitation stations could be employed which complement 

each other. This would however require a more advanced computer program. 

The stiffness remainder of equation (6.24) (R^) was included when 

curve fitting the measured data. The contribution of this stiffness para-

meter to the point response of figure 6.2 is shown in figure 6.21. The 

contribution to the transfer response of figure 6.6 is shown in figure 6.2%. 

The stiffness remainder of the point response is significant parti-

cularly at antiresonances and at high frequencies. In contrast, the 

contribution to the transfer response is small (notice different scales 

101. 



between figures 6.22 and 6.6). This difference is presumably due to 

variations in phase between the resonances outside the measurement range. 

The modal responses in a point characteristic are all in phase and will 

therefore reinforce each other to make a significant stiffness remainder. 

A transfer response has modal contributions which may be in phase or out 

of phase. Thus the contributions of each resonance to the stiffness remain-

der may be positive or negative and will tend to sum to zero mean value. 

6.7 Methods of Modelling when Some of the Properties of the Structure 

are Known 

In the previous section no assumptions (other than of hysteretic damp-

ing) were made about the nature of the structure being modelled. However, 

if some information is known it should be included in the modelling process 

and may lead to valuable simplifications. 

If the damping within a structure is small then a simple method for 

modelling a structure requiring measurements of mobility at only a few 

frequencies is possible. This method, given by Ewins [29] is capable of 

great accuracy especially when applied to point frequency responses. 

In many circumstances the differential equation for an element of a 

structure is known but its interaction with the remainder of the structure 

unknown. For example, a beam built into a structure will satisfy the 

differential equation for a beam but in general it is not possible to 

predict the behaviour of the beam since the boundary conditions are unknown. 

However by using a maximum of four measurement stations the response of any 

part of the beam may be obtained. The theory behind this method when 

applied to a beam and an illustrative example is given below. 

By using standard Bernoulli-Euler beam theory the steady state harmonic 

response of a damped beam for e^^*" frequency dependence may be written [ij : 

a y ) = Aeiky + + De""'' (6.27) 

where 5 is the displacement of the beam and k the complex wavenumber. 

The four terms A, B, C, D are independent of y (position along the beam) 

but dependent on frequency and boundary conditions. For simplicity it may 

be assumed that the beam is excited at one boundary. The wavenumber k 

is complex and may be written as:-

102. 



k = k'(l - (6.28) 

(Derived in section 1.2) where k' is the undamped wavenumber for a beam 

given by:-

pA , 
k' = ( ^ ) ^ 

b 

for which p is the volume density, A the cross section area and B 
s b 

the bending stiffness of the beam. Thus k' can readily be calculated 

from the properties of the cross section and the material of the beam. 

The loss factor for the beam may be obtained by means of a standard method 

[29] and thus the complex wavenumber in equation (6.27) found. By exciting 

the beam at one station and measuring transfer frequency responses to four 

different stations, four simultaneous equations for the four unknowns A, B, 

C, D may be obtained for each frequency. By solving for the four unknowns 

equation (6.27) is completely determined and the frequency response for 

any station may be predicted. 

If the beam is in motion due to some given harmonic excitation (for 

example where the beam is set into vibration by a remote machine) then once 

again the motion at four stations may be measured and the four unknowns 

deduced. The four unknowns A, B, C, D when used in equation (6.27) will 

now predict the vibration anywhere along the beam for the conditions of 

excitation found during measurement. TVhen the excitation is broad band 

in nature then spectral density and cross-spectral density measurements of 

the motion at the four stations may be made. The predicted motion of a 

point on the beam in this case will also be in the form of a spectral 

density function. 

If that part of the beam where predictions are to be made is away 

from boundaries the third and fourth terms in equation (6.27) will be 

small and may be neglected. In these circumstances only two measurement 

stations are necessary. 

The procedure given above was tested on a cantilevered aluminium 

beam of dimensions 930 miu x 100 mm x 1.62 mm. The excitation and measure™ 

ment stations are shovm in figure 6.23. The response of the beam at a 

station away from discontinuities was chosen for prediction (station 3) 

and thus only two measurement stations (1 and 2) were needed. Figures 6.24 
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and 6.25 give the transfer frequency response (inertance) of the two 

measurement stations obtained by the method of reference [l9'| . Figure 

6,26 gives a predicted transfer response for station 3 based on the two 

measured responses which may be compared with figure 6.27 which is the 

actual response measured subsequently. 

The correspondence between the predicted and measured responses is 

good, particularly at high frequencies. At low frequencies the errors 

may be due to neglecting the near field terms of equation (6.27) which are 

more important at low frequencies. 

No analysis has been made of the effect of errors on the procedure 

given above. In addition, no method for calculating unmeasured point 

responses from measured data has been investigated. Clearly, both of 

these areas require further work. The possibility of extending the 

principles of this form of modelling to other types of structure should 

also be considered. 
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CHAPTER 7 

APPLICATIONS OF MATHEMATICAL MODELLING 

7.1 Introduction 

Once a mathematical model of a structure has been obtained a variety 

of further analyses becomes possible. One important application which has 

already been described in the previous chapter is the prediction of un-

measured frequency responses. This ability much reduces the amount of data 

that must be measured and enables the response to physically difficult 

forms of excitation, for example, torques, to be predicted. 

Two other possible applications will be discussed in the following 

section. The first is the determination of the characteristics of the 

structure from the mathematical model and secondly the prediction of the 

response of two systems that have been modelled independently and are then 

connected. 

7.2 The Distribution of Mass Stiffness and Damping Within a Structure 

The mathematical model obtained by curve fitting measured frequency 

response data according to the method of section 6.5 is in the form of 

complex resonance frequencies and mode shapes. The possibility exists of 

inverting this form of representation and returning to the mass, stiffness 

and damping matrices of a structure. These matrices would provide valu-

able information since the role of one part of a structure could be clearly 

identified. In particular, the damping matrix would indicate which areas 

of a structure are important for absorbing energy and which areas are acting 

as transmission paths. 

The principal difficulty in formulating a procedure for the inversion 

lies in the fact that the model is based on relatively few measurement 

stations and only represents a finite number of resonance frequencies. A 

practical structure has an infinite number of coordinates and resonance 

frequencies and thus its behaviour can only be estimated from the model 

formulated in section 6.5. Thus any model of a structure based on finite 
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mass stiffness and damping matrices will introduce two sources of error; 

one error being due to a finite spatial representation and a second error 

being due to the use of a finite number of resonance frequencies. It will 

be shown that the second source of error results in significant difficulties. 

Herman and Flannelly have formulated a procedure for obtaining 

mass and stiffness matrices for the case in which there are many measure-

ment stations and relatively few resonance frequencies. They show how 

modifications to the mass and stiffness matrices lead to new resonance 

frequencies and mode shapes. Consideration is given below to the alternative 

case where there are few measurement stations and many resonance frequencies. 

The fundamental assumption is that if a practical structure is modelled 

with a large number of degrees of freedom and the frequency response of 

every coordinate of the model closely agrees with the response of an equi-

valent point of the structure, then the mass stiffness and damping matrices 

of the model represent the distribution of mass stiffness and damping in 

the structure. Clearly the model can only represent the structure over a 

limited frequency interval and thus the mass stiffness and damping matrices 

will not be correct for frequencies outside the measured frequency range. 

The orthogonality relationships for such a model may be written:-

R^MR = I (^'1) 

R^KR = 
2 

w 
n 

(7.2) 

where M and K are the mass and complex stiffness matrices and the 

columns of the square matrix R are the complex mode shapes. The mode 

shapes have been normalised so that the right hand side of (7.1) is the 

unit matrix. The right hand side of (7.2) is a diagonal matrix of complex 

resonance frequencies. The two orthogonality conditions may be combined 

to give:-

K = MR R^M (7.3) 

For uniform structures the mass matrix will be diagonal and the equation 

may be rewritten:-
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R. 

T -1 
I 0 

(7.4) 

This equation has been partitioned into stations at which measurements 

are taken (subscript 1) and stations which responses are unmeasured 

(subscript 2). As a result, the measured portion of the stiffness matrix 

may be written:-

''ii - "1*1 J 
(7.5) 

and a single element of the stiffness matrix will be; 

rs r s n=l ^ ^ 

where m and m are the masses at stations r and s and 
(n) 

(n) 
are the magnitudes of the n'^ mode shape at stations r 

r 

and 

(7.6) 

and 

s. 

is the loss factor associated with the stiffness between the two 

stations. From this equation it is seen that the stiffness is strongly 

dependent on the higher resonance frequencies, which usually contain the 

greatest errors due to the influence of resonant modes of vibration outside 

the frequency range modelled. In order to examine this formulation a beam 

with a non uniform distribution of damping was modelled and the complex 

stiffness obtained in areas of different damping. The experiment failed to 

produce meaningful results presumably due to the sensitivity of equation 

(7.6) to small errors. A procedure for calculating the mass, stiffness 

and damping matrices based on equation (7.6) is therefore not tenable. 

7.4 The Response of a Structure Predicted From its Constituent Components 

When the frequency responses of two separate components of a structure 

have been measured or calculated then a prediction may be made of the res-

ponse of the two components when joined. This type of procedure is parti-

cularly valuable when a modification must be made to an existing structure 

and the new response obtained. 

107. 



Done and Hughes [si, 32] have analysed the effect of adding mass or 

stiffness to an existing structure and have established methods for obtain-

ing the bounds within which the response will lie. The analysis in this 

case only requires knowledge of the frequency response at the points on the 

structure where the modifications are to be made. 

The more general case where there are two components to be joined, 

has been considered by Klosterman [22], Ewins and Sainsbury [sfj and by 

Ewins and Gleeson [34] . The procedure here is to obtain frequency res-

ponses for both components at the points at which the connections are to be 

made and to calculate the new responses using impedance coupling techniques. 

In both these types of analysis physically awkward frequency response 

measurements may have to be made. For example, torques are very difficult 

to apply to a structure but are often the mechanism by which components are 

connected. This difficulty may be overcome by obtaining a mathematical 

model of the component (using a convenient method of excitation) and pre-

dicting the responses due to torques from the model. An additional advant-

age of using a model is that measured data are replaced by smoothed data 

and therefore errors due to noise will not be so prominent. 

By obtaining the frequency response of the separated components of a 

structure it becomes possible to estimate the power flow in the joined 

system. To calculate the power flow at a connecting point it is necessary 

to know both the forces and the velocities. The velocities may be obtained 

directly by measurements and the forces deduced from the inverse of the 

mobility. 

In the next section an error analysis is given for the response of a 

structure predicted from component responses and in the following section 

the power flow between connected components is considered. 

7.4 Errors in System Coupling Methods 

This method of calculating the response of a structure consists of 

combining the mobilities of the components frequency by frequency to calcu-

late a new frequency response curve. The simplest case is where the two 

components are joined at one coordinate and the mobility of the combined 

structure is required at the connection point. This case is given by 
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Bishop and Johnson [ss] and in their notation the mobility a of the 

combined system is:-

0. • ^ (7.7) 

where g and y are the point mobilities of the two components when 

separate. For undamped structures the real part of the mobilities is zero 

and the resonance frequencies of the combined structure are given by the 

zeros of the denominator which condition may be written 

6 + Y = 0 (7.8) 

For structures with damping, the above equation is satisfied by complex 

frequencies which correspond to the complex resonance frequencies and thtis 

includes a loss factor. When 6 and y are expressed as frequency res-

ponse functions then the new resonance frequencies of the combined system 

may be found by forming the sum 6 + y and searching for minima (anti-

resonances) of the modulus. It is readily seen that for the condition of 

equation (7.8) to be approached g and y must approximately be in anti-

phase. From equation (7.7) it may be seen that if either of g or y 

is relatively small then the combined mobility will be approximately equal 

to the smaller of the component mobilities. 

By expanding equation (7.7) to first order in a Taylor series an error 

equation may be written 

= __L_ M + g Ac (7.9) 
a $ + y g g + Y Y 

where is the relative error in the predicted mobility due to relative 

errors and in the component mobilities. From this equation it 

may be seen that the most significant error occurs at the resonance frequen-

cies of the combined system. Away from the resonance frequencies the error 

in the combined mobility is of the same order as for the constituent 

mobilities. 

It may therefore be concluded that the best method for finding reso-

nance frequencies is to use equation (7.8) instead of searching the pre-

dicted frequency response for maxima. Since the frequency response of the 
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combined structure can only be relatively accurate away from resonances 

the predicted response is best treated as a guide to the average response 

of the structure rather than as a detailed prediction. 

The same error analysis may be extended to components which are connec-

ted at a number of coordinates and yields the same conclusions. 

The structure shown in figure 7.1 was used to examine the previous 

considerations experimentally. The structure has two principal components 

which may be joined at stations 5 and 6 which are a force and torque 

connection, respectively. The response of the combined structure to a 

harmonic force at station one was required, this configuration being similar 

to that of a machine on a flexible foundation. System g consisted of an 

aluminium beam 200 mm x 35 mm x 1 mm with a rod 50 mm long and terminated 

by a washer at one end (to which the connection was made) with the other 

end clamped. System y (which represented the foundation) was an aluminium 

beam of dimensions 888 mm x 100 mm x 1.62 mm clamped at both ends. In 

order to measure the frequency response of the two components, a force 

excitation was applied to station 1 for system 3 and station 5 for system y. 

The rotation at the coupling point was measured by means of two accelero-

meters, the signals from which were differenced to obtain an angular accelera-

tion. Both components were modelled according to the method of section 6.5 

so that those necessary unmeasured frequency responses could be obtained. 

The mobilities at four stations of the joined system were then predicted 

and are shown in figures 7.2-7.5. The structure was then physically joined 

and the mobilities at the four stations measured; these are also shown in 

figures 7.2-7.5 for comparison. The frequency response spectra are plotted 

with a resolution of 0.244 Hz; the curves are shown again in figures 7.6-

7.9 where the spectra have been averaged to give a new resolution of 24.4 Hz. 

It may be seen that the averaged responses for the measured and predicted 

data are similar while the detailed responses have significant differences. 

7•5 Measurement of Power Flow Between Connected Components 

The connection points between two components of a structure act as 

paths for power flow. The power flow at such a junction is given by the 

time average of the force and velocity. The velocity may be measured 

directly and thus presents no difficulty but the force must be obtained by 

indirect means. If the mobility of the component of the structure has been 
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obtained then it may be inverted to obtain the force in terms of the 

velocity. In the simple case of a component with a point mobility of g 

and only one force applied to it, the power flow may be written 

P = I M i l | v | 2 (7.10) 

The disadvantage of this formulation for the power flow is that at the anti-

resonances of the component, |g| is very small and this will introduce 

significant errors at these frequencies. This result continues to be valid 

* 

if the analysis is extended to components with a number of connection 

points. Once again, therefore, measurements performed in this manner 

should not be regarded as detailed results but treated as an indication 

of the general level of power flow. 

The power flow between the two components of the structure described 

in the previous section was obtained by the above method. In this case 

the internal force (F) and torque (T) applied to component y at stations 

5 and 6 are given by:-

^55 ^56 
-1 

"̂ 5" 

- ̂ 65 ^66 - /6 

(7.11) 

where and 9^ are the velocity and angular velocity at the connection 

point. Thus two point and one transfer mobility is required. The power 

flow associated with the force and with the torque at the connecting point 

were obtained for unit force applied at station 1. The power flowing into 

the structure and the power flowing at the connection points is shown in 

figures 7.10-7.13. (It should be noted that negative power flows are 

possible at the connection points where a circulation of net power flow 

is possible.) The mobilities of the connection points were all measured 

directly, no modelling being used. As can be seen, there is a significant 

discrepancy between the amount of power flowing into the component y com-

pared to the power flowing into the whole structure. Clearly the effects 

of antiresonances can be severe and a method for reducing the errors 

associated with these frequencies is required. 
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CHAPTER 8 

CONCLUSIONS 

It has been possible to make a theoretical examination of several 

types of machinery foundation by making the assumption that they are of 

infinite extent. This assumption is applicable in those circumstances 

where there are no significant reflections from discontinuities or 

boundaries within the foundation. 

A beam, when used as a foundation, can be excited by forces or 

torques and may carry flexural or torsional waves. In these circumstances 

the beam acts as a wave-guide carrying all the power away from the source; 

if the beam is damped, the propagating waves will be attenuated exponen-

tially with distance. The moduli of driving point mobilities of these 

foundations may be represented by straight lines when plotted against 

frequency on log-log scales. 

The power flowing in an infinite uniform plate is carried by 

cylindrical waves. When the excitation is a force the cylindrical waves 

are symmetrical around the source but when a torque is applied the 

resulting wave field is strongly directional. The power supplied to 

a plate by a constant harmonic force is independent of frequency whilst 

the power supplied by a torque is proportional to frequency and therefore 

relatively large at high frequencies. These results are summarised in 

table I. 

In a foundation consisting of a beam-stiffened plate with the 

excitation applied to the beam the motion at the driving point is largely 

controlled by the beam. If the beam is excited by a force or torque so 

that it carries flexural waves then the power transmitted by these waves 

will initially be associated with the beam. As the waves move away from 

the source they radiate into the plate so that in the far field more 

power is transmitted by the plate than by the beam. A strongly directional 

cylindrical wave is also carried by the plate. If torsional waves are 

excited in the beam then no power associated with these waves will be 

radiated into the plate. For this type of excitation the beam and plate 
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are strongly coupled, with the beam being dominant at high frequencies 

and the plate being more significant at low frequencies. 

In order to reduce the power flowing into a structure an isolator 

may be introduced between a vibrating machine and its supporting foundation, 

By making the assumption that the modulus of the driving point mobility of 

the foundation has a straight line frequency response on a log-log plot 

It has been possible to analyse the effect of various isolation systems. 

The power flowing into a foundation from a machine with a harmonic force 

source will always be reduced by the introduction of an isolator if the 

resonance frequency of the mass of the machine on the stiffness of the 

isolator IS less than the excitation frequency. A two stage isolation 

system consisting of a mass element between two springs gives an increased 

reduction in power flow, compared with a single stage isolation system, as 

long as the additional resonance frequency is avoided. These results are 

also valid for a machine with a harmonic velocity source. When a force 

or velocity source has broad band frequency content which includes the 

resonance frequency of the isolation system, then the isolator will not 

be effective. 

It has been shown that a structure which exhibits resonances may be 

modelled purely from measured data. The model is valuable because it not 

only smooths the original frequency response measurements but enables the 

complete frequency response matrix to be obtained from a limited amount 

of data. 

The computer program, developed to construct a model, curve fitted 

measured data to produce the complex resonance frequencies and mode shapes. 

The model adequately represented the original data and successfully pre-

dicted frequency responses which had not been measured. The principal 

inaccuracies in the modelling procedure were found to be associated with 

small frequency response values, in particular with antiresonances. When 

predicting frequency response data from a model, the situation of a 

measurement station near a node gave rise to some errors. 

A second method of modelling applicable to beams was formulated and 

successfully applied. This method enables the motion at any point on a 

beam to be predicted from response measurements at a maximum of four 

stations. 
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A procedure for deriving the distribution of mass stiffness and 

damping within a structure from the mathematical model obtained through 

curve fitting was unsuccessful. This method failed because of the 

sensitivity of the mathematical model to resonances outside the frequency 

range in which measurements were taken. 

The prediction of the response of a structure from measurements and 

the derivation of models of the components can only be carried out with 

limited accuracy. An analysis demonstrated that significant errors 

occur in the predicted frequency response near the resonance frequencies 

of the combined structure due to small errors in the measured frequency 

response of the components. However, the average level of the frequency 

response of the combined structure can be predicted satisfactorily. 

Similarly, deducing the time averaged power flow into a component of a 

built-up structure from frequency response measurements of the separated 

components introduces large errors due to small errors in the frequency 

response of the component. 

The first part of this thesis has shown that relatively simple 

formulae may be derived for the response of structures such as beams, 

plates and beam-stiffened plates. Future work should seek to extend this 

type of analysis to more general cases such as plates with parallel beam-

stiffeners and with excitation applied as a force or torque to either 

plate or beam. Also the effect of internal wave motion within the 

stiffeners should be examined, since this will be important for stiffeners 

of large dimensions at h i ^ frequencies. 

The principal uncertainties when calculating the power flow through 

a machinery isolator and into the foundation is the nature of the source 

and the mobility of the machine. A method for determining these two 

unknowns must be devised so that a more realistic analysis may be made. 

An analysis of power flow should also be made which includes the effect 

of there being several isolators on practical machines. 

When modelling a structure from measured data it would be useful if 

a degree of accuracy for the model could be determined. This would enable 

an assessment to be made of the use of the model in further analysis. 

An additional improvement to the computer program would be the inclusion 

of a procedure which enabled the curve fitting of data obtained from a 
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set of frequency response measurements with several forcing stations. 

Clearly, considerable simplifications are possible when modelling 

a well known structure such as a beam. An attempt should be made to 

extend this type of modelling to plates and other commonly occurring 

structural elements. 

When combining systems and obtaining the overall response and power 

flow from measured data an improvement in accuracy can be obtained by 

averaging in the frequency domain. This improvement should be quantified 

so that it is possible to obtain some measure of accuracy of an averaged 

predicted response for the coupled system. 
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lABLE I. Properties of infinite system. 



Symbols used in Table I. 

C = Amplitude of harmonic displacement 

6 = Amplitude of harmonic angular displacement 

A = Cross sectional area of beam 

E = Young's modulus 

P = Volume density 

GQ = Torsional stiffness 

J = Polar moment of inertia per unit length 

I = Second moment of area of beam 

B = Bending stiffness of plate = Eh /12(1 - v) 

V = Poisson's ratio 

h = plate thickness 

a = Radius of disc over which torque is applied to plate 

L = Parameter from [l2] which tends to unity for large a/h 

& = Length of finite beam 

^1' ^2 length of sides of finite rectangular plate 

n = Loss factor 

r; <{) Polar coordinates for plate 

Frequency in radians to = 

Notes i 

•k Torque applied about axis parallel to n 

Time dependence of form e^"^ assumed 
2 
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TABLE II Power flow into foundations from machinery sources on isolators. 
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TABLE III. Velocities of components of isolation systems. 
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Fig. 2.1 A typical configuration in problems of vibrating isolation 
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Fig. 2.2 An infinite beam with torsional excitation. 



Figure 2.3 Contour of integration for equation 2.9. 

+00 

Figure 2.4 An infinite beam with force excitation. 



Figure 2.5 Contour of integration for equation 2.17 and 2.36, 
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Figure 3.1 Path of steepest descent for integral 3.10. 
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Figure 3.2 Path of steepest descent for integral 3.14. 
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Figure 4.1 An infinite beam-stiffened plate with three types of excitation. 
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Figure 4.2 Line force and torques acting between plate and beam and 

externally applied excitation. 
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Figure 4.3 Contour of integration for equation 4.16, 
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Figure 4.4 Path of steepest descent for integral 4.18. 
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Figure 4.5 Path of steepest descent for integral 4.18. 
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Figure 4.8 Position of pole (coupled beam plate torsional wave number) 
of equation 4.54. 
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Figure 4.9 Contour for integration of equation 5.54, 
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Figure 5.1 Single stage isolator with force source. 
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Figure 5.3 Power flow transmission spectra for s-ingle stage isolator 

with force source and beam-like foundation Cs = "i; Mw = 1) 
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Figure 5.4 Velocity of machine on single stage isolator with 

beam-like foundation and force source. 
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Figure 5.5 Two stage isolation system with force source. 



Y = 100 

= 0 . 0 1 

Frequency, Hz Log -
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Figure 5 . 9 Powbj, flov? transmission spectra for velocity source and 
single stage isolator with beam-like foundation 
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Figure 5.10 Two stage isolation system with velocity source. 
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Figure 5.12 Velocity of blocking mass of two stage isolator with velocity 

source and beam-like foundation (s = -1; 10; w 1) . 



1 . 0 

Frequency Log 

Figure 5.13 Running integral across power flow transmission spectra 
(s = Mw = 1.0; F = 1). 
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Figure 5.15 Dimensions of beam and plate used in Figure 5.16. 



10 

10 -3 

Beam: torque excitation 

torsional wave motion 

- \ 

.Plate: 

torque excitation 

Plate force excitation 

Beam: 

torque excitation flexural 
wave motion — 

Beam: force excitatioiT 

10-9 _ 

JL 
10 10 10-

Frequency, Hz 

10 1 0 -

Figure 5.16 Power flow transmission spectra for a beam and plate 
Cdimensions, figure 5.15) with a force source applied 
direqtly or as a torque by means of a lever of length, 
1.0m. 



Q) 
V) 
c 
& 
\ A s 

< 

u». 

^ I ft* 

m — b 

to. 

•o 
c 
m 

O 

u 

i2 

8 
0) 
V) 

0 
Q. 
</> 

01 
a: 

N _ 

^ A 

V) 

o 

to 
4-> 
(/> 

</) 

o 

<0 
w 
(/) 

CD 
CO 

O) 
c 
o 

"O 
0) 
u 
ro 
CL 
</> 

m 
3 
cr 

</» 

O 

(A a 
o 

cd 
4"' 
CO 

i u 
3 
CO 
q) 

a 
'M-i 
o 
0 
o 
•H 
4J 
• H 
CO 
O 
CM 

3 
AO 
•H 

m 
w 
00 



10 - 2 

lA 

E 

M 
3 

3 

"8 

lo 

10 
- 8 

100 Frequency Hz 600 

77 

CO 
< 

1 r T 1 — p 1 1 1 1 r 

' i v / 
v/aA/A' 

k 

- T T I , f. J 1 1 I ' ' 
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Figure 6.5 Argand diagram of point mobility - fitted data. 
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Figure 6.21 Contribution of stiffness remainder to point mobility. 
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Figure 6.23 Aluminium beam used to test the method given in 
section 6.7. 
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Figure 6.27 Measured transfer inertance at station 3. 
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Figure A.l Element of beam with torsional excitation. 
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Figure A. 2. Element of beam excited into flexural vibration by 

external forces and torques. 
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Figure A.4 Element of plate in polar coordinates. 



APPENDIX I; The Equation of Motion for Torsional Waves Including an 

Excitation Function 

Figure A.l shows an element of a beam laying along the y axis with an 

applied torque of T^ per unit length. Writing J for the mass moment 

of inertia per unit length and for the internal twisting moment, and 

applying Newton's law, gives:-

3 6. 3M. 

T . - ^ (A.1) 

where 6 is the angular displacement of the beam. From standard elasti-

city relationships |_7j :-

38. 
"i " (A'2) 

where Q is the torsion constant. 

Combining (A.l) and (A.2) gives:-

2 2 
3 8 . 3 8 . 

J = GQ — ^ + T^ (A.3) 

9t 8y 

which is the required relationship 



APPENDIX II: The Equation of Motion of Flexural Waves in Beams Including 

Excitation Functions. 

Figure A.2 shows an element of a beam laying along the y axis with an 

external excitation of F^ and per unit length corresponding to a 

force and torque, respectively. The coordinate system is arranged so that 

the power associated with the internal force or torque is positive for 

power flow in the positive y direction. Applying Newton's law for the 

acceleration of the element gives 

3u. 
1 F. = oA ^ (A.4) 

5y ^i s 3^2 

where u. is the internal shear force, p the volume density, A the 

cross sectional area and the displacement of the beam. Assuming the 

rotary inertia and shear deformation to be small gives an equilibrium of 

torques which may be written 

M. 
— + T. - F. = 0 (A.5) 

ay 1 1 

where is the internal bending moment. From standard equations in 

elasticity [jJ the relation 

M. = - EI ^ (A.6) 
1 3y 

may be written where I is the second moment of area of the cross section. 

Combining equations (A.4), (A.5) and (A.6) gives the required relationship 

8^5 • pA 3^5. F. . 9T. 
1 1 ^ (A.7) 

3y4 EI ,^2 3? 



APPENDIX III: The Equation of Motion for Flexural Waves in a Plate 

Including Excitation Functions 

Figure A.3 shows an element of a plate laying in the x-y plane. The 

plate is excited by an external pressure (force per unit area) acting in 

a direction normal to the plate and by two external torque distributions 

(torque per unit area) acting about axes parallel to the x and y axes, 

respectively. Two subscripts will be used for each force and torque; 

the first subscript is the direction of the normal to the surface on which 

the force or torque acts; the second is the direction of the action. A 

right handed coordinate system is used throughout. 

The internal force and two internal bending moments acting on each 

edge of the plate element are also shown in figure A.3. 

Applying Newton's law to the vertical motion results in:-

where h is the plate thickness, F^^ the external pressure and u the 

internal shear forces per unit length. 

Moment equilibrium about the x and y axes results in two equations 

giving the shear force:-

aM aM 
_ Z2. + T = u (A.9) 

9x 9y zx yz 

aM 3M 
— Z Z + — - T = u (A. 10) 
ay ax zy xz 

where M is the internal bending moment per unit length and T the 

externally applied torques. 

From standard results in elasticity [?] the relationship between bend-

ing moments and displacement may be written 

M = + (A.11) 

y* ay ax^ 

.2 .2 
r" ' E. (A.12) 



Myy = -"xx = B(1 - V) (A.13) 

where B is the bending stiffness for a plate given by; 

B 

12(1 -

Combining equations (A.8)-(A.13) gives the required plate equation:-

3^^. 3T ST 

9t 

, 3^ a* gA 
where V = r + 2 — = — „ + — j 

3x 3y 3y 

In order to calculate power flow intensities it is necessary to obtain the 

relationships between displacements and internal shear forces and bending 

moments. Figure A.4 shows the internal forces and torques acting on an 

element of a plate in polar coordinates. By assuming the polar and 

Cartesian elements to be equivalent according to the method of Timoshenko 

[36,p.259j the relationships may be written:-

A 
V (— 

r 

1 

2 
r 

1 (A.17) 

1_ a'Si 
+ 1_ 

2 
r 

(A.18) 
r 

+ 1_ 
2 

r 

(A.18) 

(A.19) 

1 

2' 
r 

(A.20) 

M = -B(i - v)r 
rr 

= 1 3 
u , = B — — — (v J 
Az r 3* 

as. 

(A • 21.) 
rr 



APPENDIX IV: DETAILS OF TIIE CONTOUR INTEGRATION OF EQUATION (4.34) 

The values of the residues are found from:-

2 

Res(p^; pg) = 
a 

da 
(g) 

= Pli P2 

(equation (4.38)). Writing L for — and a for a enables the denomi-

nator of the above expression to be evaluated as:-

-~(g) = 4a^ - -^(-4o?) {(k ^ - a^) ^ - i(k ^ + a ) ^} 
3a L p p 

4 _ ^4) { a 
L p 

igl 

(k 2 - .2)3/2 (k 2 . .2)3/2 
P P 

For simplicity the two poles p^ and p^ (equations (4.22) and (4.23)) may 

be written as:-

b 

ana 

ik ri ] 
is 

2Lk, s" 
D 

where A and R are expressions in s. The residue of the pole p^ will 

first be evaluated. The value of the denominator to first order in Lk^ is: 

Denom 

8isk 
1 + 

3iA 

^ 2Lks^ 
b 

{ [1 (s? + 

Lk, s 
D 

i[i + s" + 
iA 1 • 

Lk^sJ 

2 i k K 
p D 

L k 
[: 1 - S 

4 2iAs iA 

'•"b • 2Lkj,s3 

+ ifl + 



or Denom = {l + ^ ^ [(1 - s^) ^ - i(l + r^)~' ] 

2Lk, s b 
b 

i d - [(1 - s2)-3/2 + i d + s2)-3/2 ]} 
2Lk,s 

b 

or Denom = 4k, ̂  {1 + — - — ^ [3(1 - s^) ̂  ["(1 + s^) ̂  - 1(1 - "| 
b ZLk^s^ -

b 

+ 4s'^[(l - s^) ^ - i(l + s^)^] - s^(l - s"̂ ) I (1 - s^) 

+ i(l + s2)-3/2l]} 

or Denom = 4k, ̂  (l + — - — „ [ ^ ^ , - i — — ] } 

2Lk^S^ (1 - 8^)2 (1 + 9^)5 

The residue is thus given by:-

4. 
Res{p } = k ^ [i + ill—_1_)1 { ( 1 + s2)& - i(l - [ - ^ - ^ <1 

1 

1 ^ 4k^3 ZLkyS^ 

X [ ' - f l - i 
(1 - 8^)2 (1 + 8^)2 

n r T 1 r. i rZs^ - + 1 . 2S* + + 1 

" ^ ' (I - ~ ' 7 7 7 7 ^ 

which is the required result. The residue of the pole p may be found in 

a similar manner. In this case the denominator may be written:-

./I 3r% ^ i r 3 + s^ . 3 - s" 1 1 

and eventually the residue is given by:-



The integral (equation (4.35)) must be calculated along the two paths 

around the branch lines so that the branch points are excluded from the 

contour. The branch lines have been deliberately chosen to simplify the 

two integrations. Along both paths |a| > k and the integrand may be 

written as:-

2 a 

o - La(l - -k_) 

a 

a a 

or to first order 

k 4 

2 4 k 2 ^ k 2 ^ 

a {1 + 2 4- {(-^Y - 1) * - + 1)"^}} 
k a a' 

La(l -
4 a 

0^(1 - -^^0 
a 

This may be rewritten as three terms:-

k ^ k 4 

2 2iaC-2^ - 1) 2a(-2^ - 1) 

J! + E! + 

^ ^ k 2 , ^ 4 ^ 2 ^ 

»"(1 - -ky) L%^(1 - -^yO"(-E_ _ 1)2 Lo4(i _ -2_)2(_f_ + 1)3 
4 4 4 2 

a a M a a 

This expression must be integrated around both branch lines. For the branch 

line (figure 4.3) the first and third terms are the same on both sides 

of the branch line and thus do not contribute. In the second term the 

k^2 j k 2 , 

expression value +i(l - — a l o n g the lower portion 

a a 



of the branch line and -1 ( 1 2_)2 along the upper portion. These 

values are chosen to be consistent with a wavemotion propagating away from 

the source. The integral around the branch line is thus given by:-

, 4 

2ia(- 1) 

L.4(l -
k ^ , 

+i(l - -Eg): 

a 

dot 

2ia(-

k T 4,1 \ f 
p La (1 7-/ 

k ^ , 
-i(l - -2,0: 

a 

-da 

or by letting a = k x 

Lk 

(x* - l)x' 

(x s4)2(x2 1) 
dx 

Around the second branch cut r„ the first two terms of the integral 
. 2 2 1 

do not contribute and in the third term the expression ((k /a ) + 1)" takes 

the value +(1 + — o n the right of the branch line and -(1 + on 

the left of the branch line. The integral along the second branch line 

may thus be written:-

ik 

ik 

2a(-^ 1) 

^ .2 
/. 

k 
+(i + 

k 

2a (-
4 

- 1) 

r-(i. 

aa 

Lo^Cl 

da 

or, by letting a ik X. 
P • 



Lk 

(x* - D x ^ 

(x* - s4)2(x2 
dx 

- D ' 

Thus = 0 

and the branch line integrals do not contribute. 



APPENDIX V: THE FREQUENCY RESPONSE OF A DAMPED STRUCTURE 

The general equation of motion for steady harmonic vibration of a 

hysteretically damped structure with n degrees of freedom is:-

-w^M5 + |K + io]? = F (A.22) 

where M, K and D are square n x n mass stiffness and damping matrices and 

C and F are n x 1 displacement and force column vectors, respectively. 

This equation gives f in terms of g while the reverse — g in terms of 

F is required. 

To construct the inverse relationship, the left hand side of equation 

(A.22) may be diagonalised by adopting a complex Eigenvalue procedure. The 

Eigenvalue problem is defined by 

[ + K + iD ]s = 0 (A. 23) 

and the eigenvalues are found as the roots of the complex polynomial of 
2 

degree n in w given by: 

[ + K + iD ] = 0 (A.24) 

2 
(Only values of w are found in this equation as opposed to the viscously 

2 

damped case where there are both w and w terms.) In general, there 

will be n complex roots which may be written as: 

2 2 2 
) (i)2 5 • • • J w • 

A set of column vectors (eigenvectors) may now be found by substituting 

each eigenvalue into equation (A.23) and solving the homogeneous set of 

equations. The column vectors so formed may not be determined uniquely but 

only to the extent of an arbitrary constant. In general, both the column 

vector and the constant will be complex. For convenience, the eigenvector 

may be normalised and a satisfactory basis for this is given later. 



The set of eigenvectors may be written: 

... 

with each eigenvector satisfying the relation: 

-co = 
n 

[K + iD]iJj 
(n) 

(A.25) 

In particular it may be shown that 

[K + iD],Jĵ ®̂  = 0 

r f s 

(A.26) 

(A.27) 

The matrix R may now be defined so that the columns of R are the eigen-

vectors. Employing relations (A.26) and (A.27) it is possible to write: 

R M R = m 

r'^[k + iD] R = |k^ + id^^ 

(A.28) 

(A.29) 

where m and k + id are defined according to: 
r r r ^ 

= m (A.30) 

(r) ^ :KT,(r) 
k + k + id 

r r 

m will in general be complex. By multiplying equation (A.25) by \jj 
(n) 

(A.31) 

T 

it is seen that 

2 = + idg 

1 m 
n 

(A.32) 

w may be identified as the complex resonance frequency and as 

the complex mode shape. 

T 

Equation (A.22) may now be diagonalised by premultiplying by R and 
- 1 

inserting RR so that: 



r'̂  [-w^M + K + iD]RR = R^f (A.33) 

Multiplying through the bracket and employing equations (A.28), (A.29) and 

(A.32) gives: 

/ 2 2 \ 
(o)̂  - 0) )m^ (A.34) 

or 

5 = M 
rv. 

, 2 2 \ 
(w^ - u ) 

(A.35) 

To still further simplify the equation it is possible to arrange for the 

column vector to be normalised so that equation (A.28) appears as 

R MR = I (A.36) 

where I is the unit matrix. Equation (A.35) may now be written as 

C = R 
to 

^ n 
2 

R^F (A.37) 

which is the required relationship. 



APPENDIX VI; CURVE FITTING TO DATA FROM MANY STATIONS 

Let H(iw)* be a column vector of frequency response data obtained 

from many stations but with the same excitation station employed through-

out. Each element of H is therefore a complex frequency response 

function. The theoretical form of the frequency response is 

n ia)X(r) 

H . I 2 (A'38) 
r=l 0) - 0) 

r 

fx*) . til 
where X is a complex column vector corresponding to the r mode. 
C IT ) 

X may be expressed in terms of the complex modes so that:-

(A.39) 
- ^ j 

where j is the forcing station. The error equation for the frequency 

may now be written as: 

n 

= I --2 2- - H(iwk) (A.40) 
r=l w - 03™ 

r K 

where E is a column vector of complex errors. 

To enable each term in equation (A.40) to be curve fitted individually, 

the substitution: 

n 

A(iw^) = \ — I 2 ~ (A.41) 
r=l 0) - 0),̂  
rrt, K 

may be made to give: 

^ — 5 2 — (A.42) 

"In this section, column vectors will be indicated by a line drawn beneath 

the symbol. 



th 
which is the error equation for the m mode. The weighting function 

W(iw ) may be used to linearise the error equation so that 

K 

(A.43) 

where 

"('"k' (CO ' - » / ) 
m K. 

0) ̂  for the weighting function having been chosen as an initial estimate 
m 
or from the previous iteration. 

To obtain the total error as a scalar E may be premultiplied by 

its transposed conjugate to give the real scalar equation: 

W, 

;(m) 
-103, X + (w. - w. 

m 
)A^(iw^ a 

X jito^X^™^ + ~ A ( ( A . 44) 

Thus the sum of errors over the frequency interval containing one resonance 

is: 

w. 

iu 2 -(m)T 2 i^^m) % 

" -- k --

T k, 

+ 1 w. 
m 

\ 4 ; I 
k l\ 

x « " r i 
— I m ^ ^ 

2,2 r 

k W, 
' k 

2- T 

2 r k 

" l«J 

I , , 
|\i 

,(m) 
2- T 4- T 

2 V '̂ k \ & r At & (A.45) 

where | x | | 2 = X^X. 



The series terms may be evaluated conveniently by means of a digital computer. 

The expression may be simplified by making the following substitutions 

w 2 
k .r "kAk 

|Wk|2 |W^| 

w,2ATA w,4ATA 
k — ^ r k 

Equation (A.45) may now be written as 

? -T 2-T -T 2 -T , 9,9 9 
^ = BX X - w X C + X D - w C X + w E - w 

k m — — — — m ' m ' m 

+ ^ X - + G (A.46) 

The values for the unknowns are found by taking derivatives with respect to 

each unknown and equating to zero. Thus for w ^ the derivatives with 
m 

respect to the real and imaginary parts are:-

(1^,2) = -X^C - cFx + 2(w 2)8% - F - F = 0 
gR _ k — — — m 

m 

(^E = -iX^C + iC^X + 2(w 2)%: + iF - iF = 0 (A.48) 

(A.47) 

9w 2 k 
m 

These may be combined to give 

- C^X + w ^ E - F = 0 (A.49) 

e column Clearly, each derivative with respect to an unknown element in th 

vector X will be similar; therefore only one element (the t*"̂ ) will be 

considered. The derivatives with respect to the real and imaginary parts 

of the t element are:-



(I ^2 ) . t '^t*^t - ° (A'SO) 

I 

— f(I - ZBXj.̂ ""' + - IDj. - i 0,^^ C^ * ' 0 (A. 51) 

ax/") k 

which may be combined to give: 

- 0) ̂ C + D = 0 (A,52) 
t m t t 

Equations (A.44) and (A.52) may be solved to give and the 

required unknowns. The procedure may now be repeated for each remaining 

interval in turn to complete the iteration. 



APPENDIX VII: DIAGRAM OF COMPUTER PROGRAM 

Least squares fit to obtain 

new resonance frequency and 

eigenvector 

Select next resonance 

frequency f o r curve fitting 

Repeat whole process until 

convergence sufficient 
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resonance frequencies and 

eigenvectors 
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to linearise data 

Read data and subtract 
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Select first resonance 

for curve fitting 

Read first estimates of 

resonance frequencies and 

eigenvectors 

Replace previous resonance 

frequency and eigenvector 

with new values 


