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Abstract: 

Railway curve squeal is an intense tonal and annoying type of noise commonly attributed to 

self-excited vibrations during curving. The mechanisms for its generation remain unclear and it 

is still a subject of discussion among researchers. Most of them have considered the falling 

behaviour of the friction coefficient with the slip velocity essential for reenergising the system. 

Recently, some authors have found that squeal can also appear even for constant friction 

coefficient through the wheel modal coupling between the normal and tangential directions 

caused by the wheel/rail contact. This paper particularly evaluates whether the latter 

mechanism is sufficient to find squeal in curving conditions. 

The introduction of flexibility in the railway subsystems is required to widen the domain to the 

high-frequency range in which squeal occurs. One single flexible and rotatory wheelset is 

considered and suitable forces are prescribed at the primary suspension seats in the current 

investigation. The rails are modelled through the Moving Element Method (MEM), permitting 

to extend the range of validity of beam models usually utilised in the literature. This work 

extends the formulation to rails supported by a viscoelastic Winkler bedding. Both wheelset 

and track models are coupled by means of a non-linear and unsteady wheel/rail contact model 

based on Kalker’s Variational Theory. Simulation results for different track curvatures and 

friction coefficients are presented and discussed, showing tonal peaks in the tangential contact 

forces of the inner wheel. These results can be associated with squeal according to the 

characterisation of this phenomenon, indicating that squeal can be found in curving conditions 

using advanced dynamic interaction models even with constant friction coefficient. 

Keywords: 

Curve squeal; wheel/rail contact; rotating wheelset; Moving Element Method; railway 

high-frequency dynamics. 
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1. INTRODUCTION. 

Noise appears as one of the most important environmental drawbacks of the railway 
transportation [1]. Railway tracks are frequently located in the vicinity of urban zones, thus 
being a source of considerable annoyance for residents [2]. Three categories of wheel/rail noise 
can be distinguished: rolling noise, impact noise and squeal noise [3]. The present work is 
focused on the latter, known as curve squeal when the train negotiates sharp curves. This 
phenomenon is characterised by an intense tonal noise generated in the most sensitive human 
ear frequency band between 2 and 8 kHz [4], and sometimes even up to 10 kHz according to 
field measurements in metro and tramway systems [5]. 
The likelihood of squeal occurrence widely differs on apparently similar conditions and the 
physical mechanisms responsible for this phenomenon remain unclear. The falling friction 
mechanism proposed by Rudd [6] has been the most accepted instability mechanism to explain 
squeal as self-excited vibrations. Rudd also identified three possible excitation mechanisms due 
to stick/slip cycles in the contact region: (1) lateral creepage at the contact between the wheel 
tread and the top of the railhead, (2) wheel flange rubbing on the rail gauge face, and (3) 
longitudinal creepage at the contact on the wheel tread due to differential slip. The first one, 
closely linked to the curving behaviour of the vehicle, has received the major attention in the 
literature.  
Some recent works [7,8] presented a mechanism called modal coupling through which it is 
possible to reproduce the curve squeal even with a constant friction coefficient. Although the 
latter friction coefficient decays with slip velocity, the negative slope of the creep curves 
(creepage vs. total transmitted forces) in the transversal directions (crucial for squeal [4,8]) can 
be considered negligible. This assumption is supported by experimental tests [9] favourably 
contrasted in a recent work on contact mechanics [10], which concluded that the difference 
between the maximum and the saturated tangential creep forces shown in standard curves due 
to falling friction is clearly overrated. This lesser influence leads to adopt a constant-µ 
hypothesis for dynamic simulations. 
The present work develops an advanced vehicle/track interaction model that adopts a 
non-steady state wheel/rail contact model with a constant friction coefficient. The flexibility of 
the solids is implemented in order to extend the interaction model to the high-frequency domain 
in which squeal occurs. The vehicle model is simplified through one single flexible wheelset 
and the corresponding primary suspension instead of one complete vehicle [11]. In order to 
implement the effect of the vehicle dynamics, a multibody model for the complete vehicle 
negotiating a constant radius curve is used to calculate the forces in the primary suspensions, 
which are implemented as external forces in the wheelset model. The wheelset model accounts 
the flexibility and the inertial effects associated with its rotation. Since the angle of attack and 
the creepages are more demanding for the leading wheelset when negotiating a curve, this is 
more prone to squeal than the rear ones and thus the leading wheelset is the one selected for the 
simulation. Section 2 of this paper summarises the wheelset model adopted in the present work. 

This paper develops a model of the railway track that permits to study the track dynamics 
extending the frequency range up to 9 kHz, covering the frequency range where squeal takes 
place. The track model consists of two solid rails supported on a Winkler foundation. The 
Moving Element Method [12] has been adopted in this work by implementing cyclic boundary 
conditions and a viscoelastic Winkler foundation. The technique and its benefits are presented 
in Section 3. 

The wheelset and the track models are coupled by means of a wheel/rail contact theory that 
adopts an incremental algorithm described in Section 4. The wheel/rail contact position is 
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obtained from a low frequency commercial package that provides the whole vehicle position on 
the curve, and a non-linear and non-steady state wheel/rail contact model based on Kalker’s 
Variational Theory [13] is implemented by the authors for obtaining the contact forces. Section 
5 presents simulation results of the squeal phenomenon for different curve radius and friction 
coefficients. The paper closes with conclusive remarks in Section 6. 

2. VEHICLE MODEL. 

A flexible rotatory wheelset model negotiating a curved track was previously developed in Ref. 
[11]. In order to model the wheelset travelling on a curved track, two reference frames are 
considered: a frame X0Y0Z0 fixed at an arbitrary point and a trajectory coordinate frame 
XTYTZT that follows the motion of the wheelset on the track (see Fig. 1). The system XTYTZT 

is centred in the undeformed configuration of the wheelset, with the XT-axis parallel to the 
forward speed, the YT-axis parallel to wheelset axis and the ZT-axis pointing upwards. 
Eulerian coordinates are defined from the trajectory reference frame, through which the 
properties of the spatial points of the non-deformed configuration domain are obtained. These 
coordinates do not follow the material points of the solid, nonetheless they are associated with 
spatial points. Due to the axisymmetric geometry of the wheelset, this methodology permits to 
represent the displacements in the spatial points from the non-deformed configuration using the 
vibration modes as basis in the trajectory reference frame, which is: 

 ,qΦr =  (1) 

being r  the vector that contains the displacements from the undeformed to the deformed 
configuration, Φ  is the modal matrix computed through a FE model for the frame XTYTZT, 
and q  contains the modal coordinates. The resulting modal equation of motion for the selected 
wheelset is [11]: 

 ( ) ( )2 2+ +  +  =   ,c sΩ Ω Ω Ω Ω+ + + + + +q A B q D E K q α β γ Q Q   (2) 

 
Figure 1: Reference frames and position vectors. The undeformed configuration of the wheelset is shown in 

dashed trace; a generic position of the flexible wheelset is sketched in solid colours. 

where Ω is the angular velocity of the wheelset (the wheelset speed divided by the wheel 
radius); the matrices A , B , D , E , and vectors α , β  and γ  account for the inertial effects 
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associated with the wheelset rotation around the curve and of itself; K  is the modal stiffness 
matrix (diagonal matrix with the square of the natural frequencies); finally, cQ  and sQ  are the 
vectors of the generalised forces acting on the flexible wheelset resulting respectively from the 
wheel/rail contact forces and the forces applied through the primary suspension. The previous 
matrices are independent of time if the radius of the curve remains constant. A complete 
description of the wheelset formulation can be found in Ref. [11]. 
 

3. TRACK MODEL. 

The track model consists of two solid rails supported by a viscoelastic Winkler foundation. It is 
used a reference frame that is attached to the contact patch, hence moving with the vehicle. The 
associated coordinate vectors point spatial positions while the mass of the rail flows through the 
fixed spatial mesh with the vehicle speed V, which is considered constant along the simulation. 
A cyclic approach is also followed, introducing cyclic boundary conditions at the ends of the 
model (the displacements at both ends of the track coincide) that can be interpreted as an 
infinite track negotiated by an infinite set of identical vehicles uniformly distributed in such a 
way that each vehicle is set at a constant distance L apart from the adjacent ones. Due to the 
periodicity of the structure and the loading conditions, the study is reduced to a single section 
having finite length L, whose value is set large enough to avoid interaction between the 
vehicles. This interaction appears as reflection waves in the receptance function of the rail 
between 500 Hz and 2 kHz, which are mitigated when increasing the length; from 40 m, those 
can be considered negligible [14]. The method allows positioning the wheel/rail contact area at 
a fixed railhead element avoiding the vehicle exceeding the ‘downstream’ boundary ends since; 
it also permits to implement a mesh with greater refinement around this region, where forces 
and displacements are higher, contributing to reduce the computational cost. 

3.1. Rail model. 

Fig. 2 presents a 3D track resulting from the extrusion of a UIC60 profile. An inertial 
coordinate system XYZ is defined, with the X-axis parallel to the rail extrusion direction, the 
XY-plane parallel to the rail base and the Z-axis pointing upwards. The rail material is 
supposed to flow with velocity V opposite to the X direction (as can be seen in Fig. 2). An 
Eulerian position vector u , associated with the coordinate system, defines the fixed position of 
a spatial point of the mesh (undeformed configuration). Vector ( ), t=w w u  is the displacement 
of a material point that occupies the position u  at the instant t with respect to the undeformed 
configuration. The position vector R  of the material point is hence 

 ( )., tuwuR +=  (3) 
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Figure 2: Finite element mesh of the rail (X-axis is out of scale). Deformed and undeformed configuration 
and coordinates. 

Cyclic boundary conditions set same displacements and derivatives at the model edges of the 
finite rail. The velocity and acceleration of the material point are computed through the material 
derivative as follows 

 ( )TD ,0,0
D

V V V
t t x x

∂ ∂ ∂
= = − = − + −

∂ ∂ ∂
R R R wv w , (4) 

 
2

2
2

D 2 ,
D

V V V
t t x x x

∂ ∂ ∂ ∂
= = − = − +

∂ ∂ ∂ ∂
v v v w wa w


  (5) 

where 1DD xVtt ∂∂−∂∂=  refers to the material (or total) derivative. The virtual work 
associated with the inertial forces is evaluated through Eq. (5): 

 
2

T T T 2 T
2δ  δ  d  δ  d 2  δ  d  δ  d ,

Vol Vol Vol Vol

W V V
x x

ρ υ ρ υ ρ υ ρ υ∂ ∂
= = − +

∂ ∂∫ ∫ ∫ ∫
w ww a w w w w


  (6) 

where ( ), ,x y zρ ρ≡  is the density of the material (considered constant as the wheelset). 
Quadratic shape function elements are used for the mesh, the continuity at element interfaces 
being C0. Consequently, the integration can only be evaluated properly if the maximum order of 
differentiation is 1. Note that, as detailed in Section 3.2, page 59 of Ref. [15] as convergence 
requirement, if the integrand has derivatives up to order n, then the interpolation has to 
guarantee that its n-1 derivatives are continuous (Cn-1 continuity). From this requirement, the 
virtual work needs to be computed through an integration by parts to obtain lower order 
derivatives for the third term of Eq. (6): 

 
( )T2

T T
2

δ
 δ  d d d  δ  d d   d d d .

Vol S Vol

x y z y z x y z
x x x x

ρ ρ ρ
∂∂ ∂ ∂

= −
∂ ∂ ∂ ∂∫ ∫ ∫

ww w ww w  (7) 

Since the rail length is selected long enough to have negligible displacements at the model 
edges, the integrand of the surface integral (only computed over the lateral surfaces 
corresponding to the rail edges) is close to zero. Therefore, the influence of the surface integral 
can be neglected from a numerical point of view and the convergence of Eq. (7) is guaranteed, 
resulting as: 
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( ) .d δ d δ 2d δ δ

T
2TT υρυρυρ

xx
V

x
VW

VolVolVol ∂
∂

∂
∂

−
∂
∂

−= ∫∫∫
wwwwww


  (8) 

FE interpolation is adopted at this point. The displacements in the volume of the e -th element 
eVol  are computed by means of the shape functions as follows: 

 ( ) ( ) ( ) eee Voltt    if         , ∈= uwuNuw , (9) 

ew  being the nodal displacements and eN  the basis (or form) functions matrix. If Eq. (9) is 
implemented for the e-th element in Eq. (8), the following expression is obtained: 

 . d   d  2 d  δδ
T

2TTT












∂
∂

∂
∂

−
∂
∂

−= ∫∫∫ e
ee

VolVol

e
e

eeee

Vol

ee

xx
V

x
VW

eee

wNNwNNwNNw υρυρυρ   (10) 

The last expression can be compacted in the following formula: 

 ( ). ˆ~ δδ 2T eeeeeeee VVW wMwMwMw −−=   (11) 

Following the FEM assembling technique for calculating the global matrices from the element 
matrices, the equation of motion of the rail is obtained: 

 ,ˆ~ 2
KWc

FEFEFE VV FFFwMwMwM ++=−−   (12) 

being FEw  one vector that contains the nodal displacements of the whole FE mesh; M , M~  and 
M̂  are the global matrices that are obtained from the element matrices eM , eM~  and eM̂ ; and 

cF , WF  and KF  are the generalised force vectors associated with the wheel/rail contact, 
Winkler foundation and elastic forces, respectively. It must be highlighted that FE

K wKF −= , 
and M  and K  are the standard FEM mass and stiffness matrices. 

3.2. Rail support model. 

A continuous support is modelled under the rail through a viscoelastic Winkler foundation with 
a uniform distribution of vertical stiffness and damping equivalent to discrete rail supports 
(railpads + ballast). The dynamics associated with the model is similar compared to the beam 
resting on discrete supports in the high-frequency band [14] in which squeal phenomenon takes 
place. In this section, the generalised force associated with the Winkler foundation WF  is 
obtained through the formulation of the virtual work for the elastic and viscous forces. The 
virtual work of the Winkler forces acting on the e-th element located on the bottom surface of 
the rail is: 

 ,d
D
Dδdδδ TT ∫∫ −−=

ee S
W

S
W

e
W S

t
SW wcwwkw  (13) 
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being eS  the botton surface of the e-th element, and Wk  and Wc  are 3×3 diagonal matrices 
that include respectively the stiffness and damping per unit surface in the X, Y and Z directions. 
By expanding the material derivative, it is obtained: 

 .dδdδdδδ TTT∫ ∫∫ ∂
∂

+−−=
e eeS S

W
S

WW
e

W S
x

VSSW wcwwcwwkw   (14) 

If the basis presented in Eq. (9) is implemented in the last equation, the following expression is 
found: 

.dδdδdδδ TTTTTT e

S S

e

W
eee

S

e
W

eeee
W

eee
W

e ee

S
x

VSSW wNcNwwNcNwwNkNw ∫ ∫∫ ∂
∂

+−−=   (15) 

Following the same procedure than the one in Section 3.1, the expression of the generalised 
force is 

 ,~ FE
W

FE
W

FE
WW V wCwCwKF +−−=   (16) 

where the global matrices WK , WC  and WC~  are assembled from the element matrices e
WK , 

e
WC  and e

WC~ , and deduced from Eq. (15): 

 ,dT

∫=
eS

e
W

ee
W SNkNK  (17) 

 ,dT

∫=
eS

e
W

ee
W SNcNC  (18) 

 .d~ T

∫ ∂
∂

=
eS

e

W
ee

W S
x

NcNC  (19) 

3.3. Eulerian modal approach. 

By combining Eqs. (12) and (16), the equation motion of the rail on a Winkler foundation is: 

 ( ) ( ) .ˆ~~ 2
c

FE
WW

FE
W

FE VVV FwMCKKwMCwM =−−++−+   (20) 

In order to reduce the dimension of the problem, the mass-normalised mode shapes of the 
undamped rail are adopted as basis of the rail displacements. Consequently, the FE nodal 
displacements are obtained from the modal matrix θ  as follows: 

 ,pθw =FE  (21) 

being p  the modal coordinates. The modal matrix verifies: 
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 ( ) ,
0

0
)(diag 22T
















==+





rrW ωωθKKθ  (22) 

being rω  the undamped natural frequencies, and 

 ,T IθMθ =  (23) 

where I is the unit matrix. The equation of motion for the rail through this modal approach is 

 ( ) ( )[ ] .ˆ~)(diag~ T2T2T
cWrW VVV FθpθMCθpθMCθp =+−+−+ ω  (24) 

4. MODEL OF WHEEL/RAIL CONTACT FORCES. 

Eqs. (2) and (24) are coupled through the wheel/rail contact forces in modal coordinates, 
identified as cQ  and T

cθ F  for the wheelset and track equations of motion, respectively. The 
position and velocity of the contact points on the surfaces of both inner and outer wheels and 
rails are determined in each time step to calculate the relative wheel/rail motion required for the 
computation of the normal and tangential contact force. This force expressed in Eulerian modal 
coordinates is applied on the wheel and the rail surfaces at the contact point. 

4.1 Normal contact model. 

The normal contact problem is solved using an incremental approach. For the wheelset and rail 
profiles, friction and curving conditions considered, the quasi-static solution of the railway 
interaction model is computed through a pre-processor of a commercial vehicle/track 
interaction software based on multibody techniques. The software considers elastic contact, 
permitting to determine a single contact point on each wheel/rail pair assuming both wheel and 
rail undeformable and computing the relative lateral displacement of the wheel on the rail; the 
quasi-static contact force applied to the contact point is also provided. The lateral displacement 
will be considered as mean value around which the contact point will oscillate during the 
numerical integration assuming small variations. The contact displacements associated with the 
wheel and the rail, cw  and cr , respectively, are calculated through the modal superposition 
principle. 

The wheel/rail incremental distance vector is computed assuming that both surfaces are 
undeformable: 

 .cc wrΔ −=  (25) 

The quasi-static normal contact force permits to estimate the corresponding approach δ  
through Hertzian theory [16]: 

 ,
32

3








=

HK
Fδ  (26) 
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where HK  is a contact stiffness estimated from the material properties and curvatures in the 
contact point [17], and 3F  is the quasi-static normal contact force. The incremental approach is 
obtained by projecting the distance Δ  along the direction normal to the contact plane: 

 ,3
TxΔ=δ∆  (27) 

where 3x  is the unit normal vector. The total normal force in the contact area 3F  at each time 
step for the numerical integration can finally be estimated using again Eq. (26) after adding the 
incremental approach to the quasi-static one: 

 ( ) ( )
( )





≤∆+
>∆+∆+=∆+=

.0 if                        0
,0 if   23

333
δδ
δδδδHKFFF  (28) 

The contact area and the normal traction distribution are obtained by means of the Hertzian 
contact model [16] from the normal force 3F . 

4.2 Tangential contact model. 

The tangential contact problem is solved by implementing Kalker’s algorithm CONTACT [13]. 
Again, an incremental approach is adopted assuming small variations of the creepages around 
the quasi-static longitudinal 1ξ , lateral 2ξ  and spin spξ  values provided by the multibody 
software: 

 ,1
11

T
1 ξξ += xΔ

V
 (29) 

 ,1
22

T
2 ξξ += xΔ

V
 (30) 

 ,spsp ξξ =  (31) 

where 1x  and 2x  are unit vectors in the rolling and lateral direction, respectively. Following 
the non-steady CONTACT algorithm, the computation of the tangential traction distribution 
also depends on the displacements produced in the present mesh by the computed traction in the 
previous instant of the numerical integration. The longitudinal and lateral contact forces, 1F  
and 2F  respectively, are estimated and, together with the normal one 3F , projected along the 
trajectory frame XTYTZT for the wheelset and the inertial coordinate system XYZ for the 
track, accounting for the inclination of the wheel/rail contact plane. Finally, the resulting 
projections are applied in both wheels and the rails (with opposite sign) in the corresponding 
contact points as external actions, providing the generalised force vectors in modal coordinates 
associated with the contact forces, cQ  and T

cθ F , included in Eqs. (2) and (24), respectively. 
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5. SIMULATION RESULTS. 

The formulations described in Sections 2, 3 and 4 are implemented in a complete 
high-frequency wheelset/track interaction model. This section is divided in three subsections: 
Section 5.1 gathers the parameters used in each simulation in curve computed, Section 5.2 
presents the time response of the lateral contact forces and Section 5.3 analyses the 
corresponding frequency spectrum in order to characterise the curving response of the railway 
system modelled. 

5.1 Simulation parameters. 

The leading wheelset selected in this work is meshed with 12340 solid quadratic elements 
(20-nodes) and includes a total of 260145 degrees of freedom in physical coordinates. It is 
equipped with a solid axle wheelset in which the wheels corresponding to S1002 profile and the 
brake discs are meshed as a unique structure. The track is represented by two rails with UIC60 
profile inclined 1/40 and 42 m length are modelled with 8452 solid quadratic elements and 
include a total of 170175 degrees of freedom each in physical coordinates. Both are supported 
by a uniform viscoelastic Winkler bedding of 43.7 MN/m for the vertical stiffness and 
12.6 kNs/m for the vertical damping equivalent to discrete rail supports. According to [18], the 
stiffness and damping in the longitudinal and lateral directions are modelled as 10% and 80% of 
the previous values, respectively. The mesh is longitudinally refined around the centre of the 
rail, with a central element length of 1 cm. From the modal approach adopted, 400 vibration 
modes have been selected for the wheelset and 2000 modes for both rails in order to cover a 
frequency range up to 9 kHz. The time step used in the integration scheme is 5×10-6 s and the 
total time simulated is 1 s. The spatial resolution in the contact area is 0.25 and 1 mm in 
longitudinal and lateral directions, respectively. 

It is intended to evaluate the interaction model in curving conditions with a constant friction 
coefficient in order to see whether the constant coefficient mechanism is sufficient itself to 
generate instabilities in the contact dynamics that can be potentially associated with curve 
squeal. Table 1 presents the relevant input data corresponding to eight simulations carried out 
for two curve radii and four friction coefficients. The vehicle speed V is set for both curve radii 
to make the non-compensated acceleration zero. 

Table 1: Study cases simulated by the complete wheelset/track interaction model proposed. 
Simulation Curve radius,  

rR  [m] 
Vehicle speed,  
V  [km/h] 

Friction coefficient,  
µ  [-] 

V 120 39.13 0.20 
VI   0.32 
III   0.40 
IV   0.60 
VII 500 79.86 0.20 
II   0.32 
I   0.40 
VIII   0.60 

 
Table 2 gathers the quasi-static solution for the lateral position of the contact point (see Fig. 3) 
and the creepages for both wheels of the leading wheelset corresponding to each simulation 
case computed through multibody software. The Y-axis points forward the centre of the curve 
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as illustrated in Fig. 1. Table 3 contains the quasi-static conditions of the leading wheelset for 
Simulation I (chosen for illustrative purposes), with the lateral and vertical displacements of its 
centre of gravity, the angle of attack and the forces from the carbody. Table 4 lists the lateral 
variations of the position of the contact point for both wheels and rails (again with respect to the 
nominal point), the normal contact angle, creepages and creep forces for Simulation I. All these 
values are used as mean values in the incremental contact algorithm adopted. Fig. 4 shows the 
location of the wheel/rail contact for the inner and the outer pairs corresponding to Simulation I; 
the associated normal traction distributions are also presented. 

Table 2: Pseudo-static lateral variations of the position of the contact point (with respect to the nominal 
contact point) and creepages for each simulation case. The Y-axis points forward the centre of the curve as 

illustrated in Fig. 1. 
Simulation Lat. variation contact 

point inner wheel, 
w
inny∆  [mm] 

Lat. variation contact 
point outer wheel, 

w
outy∆  [mm] 

Lat. creepage 
inner wheel, 

inn,2ξ  [-] 

Lat. creepage 
outer wheel, 

out,2ξ  [-] 

I 14.3 33.3 0.0046 0.0055 
II 14.3 32.5 0.0048 0.0055 
III 14.5 36.2 0.0171 0.0268 
IV 14.5 38.3 0.0172 0.0437 
V 14.4 32.8 0.0169 0.0194 
VI 14.5 35.1 0.0171 0.0234 
VII 14.0 30.7 0.0052 0.0056 
VIII 14.4 34.6 0.0046 0.0056 

Table 3: Simulation I: Quasi-static conditions for the leading wheelset. 
Lateral displacement, y  [mm]  -6.2 
Vertical displacement, z  [mm]  0.4 
Angle of attack, ψ  [º] -0.264 

Longitudinal force, X  [N]  162 
Lateral force, Y  [N] -1770 
Vertical force, Z  [N] -109620 

Table 4: Simulation I: Quasi-static conditions for the inner/outer wheels of the leading wheelset. 
Rail lateral displacement, ry∆  [mm] 4.8/29.8 
Rolling radius, 11r  [mm] 459.7/465.6 

Normal angle, θ  [º] 0.56/33.40 
Longitudinal creepage, 1ξ  [-] 0.0037/0.0059 

Lateral creepage, 2ξ  [-] 0.0046/0.0055 
Spin creepage, spξ  [-] 0.021/1.185 
Yaw angle, α  [º] 0.264 
Longitudinal creep force, 1F  [N] 13672/-13510 
Lateral creep force, 2F  [N] 15443/-17213 
Vertical creep force, 3F  [N] -52072/-57548 
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Figure 3: Lateral displacements of the wheel/rail contact point □ with respect to the nominal one ○ (for straight 

conditions). 

5.2 Lateral contact response. 
The insertion of the vehicle in a curve directly depends on the curve radius, which defines the 
angle of attack of the leading wheelset. Since the lateral forces can be estimated from the angle 
of attack [4], the lateral contact dynamic are closely linked to the conditions that characterise 
the curve and, hence, to the curve squeal phenomena. The investigation of the lateral contact 
response appears a good approach to detect the squeal occurrence for the simulation cases run. 

Fig. 5 presents the time response corresponding to Simulation I. The amplitude of the lateral 
oscillations of the inner wheel is shown in Fig. 5(a) while the outer one is depicted in Fig. 5(b). 
The inner wheel shows an oscillating response that converges around a mean value of -12.8 kN 
and high amplitudes around 8.5 kN, ten times higher than the outer wheel. Much higher 
amplitudes for the lateral contact forces in the inner wheel have also been found in the rest of 
the simulations. These results are in agreement with most of the observations that indicate that 
highest squeal noise amplitudes are usually generated by the leading inner wheel of a bogie [4]. 
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(a) 

 
(b) 

Figure 4: Three-dimensional view of the wheels (mesh) on the rails (solid colour). The locations of the wheel/rail 
contact (axes in m) are shown by means of their normal traction distributions. The lateral displacement of the 

wheelset is y=-6.2 mm and the yaw angle is ψ=-0.264° (quasi-static position of the wheelset during the curve 
negotiation), corresponding to Simulation I. (a) Inner to the curve wheel/rail pair; (b) outer to the curve 

wheel/rail pair. 
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                                  (a)                                                                     (b) 

Figure 5: Time series of the tangential contact force 2F  corresponding to Simulation I for the inner (a) and outer 
(b) wheels. 

Fig. 6 (zoomed views) compares the tangential contact force and the tangential traction limit 
defined by the friction coefficient times the normal contact force for Simulation I. The inner 
wheel (Fig. 6(a)) presents cycles defined by a stick phase when the tangential total force 
(continuous line) is below the traction bound (dashed line) and a slip phase when both curves 
overlap. Step 1 marked in Fig. 6(a) corresponds to the stick phase (partial stick) in which the 
contact area is divided into a stick zone located in the leading edge and a slip zone that 
surrounds the previous one. Step 2 corresponds to the slip phase in which the contact area is in 
full slip. For the outer wheel, Fig. 6(b) shows that the tangential force is continuously below the 
traction bound without reaching full slip at any time. Hence, these stick/slip cycles are only 
observed in the inner wheel and they can be interpreted as self-induced vibrations in curving 
conditions that come from the railway dynamics itself. 

5.3 Frequency spectrum. 
The frequency spectrum corresponding to the tangential contact force of the inner wheel is 
evaluated and shown in Fig. 7. It reveals strongly tonal peaks for particular frequencies in the 
high-frequency domain that correspond to the expected response of curve squeal phenomenon 
according to the literature [4−8]. For the simulations carried out, these peaks arise from the 
complex physical process that governs the contact dynamics throughout the computation. 
These results confirm that the wheelset/track model implemented in this work is able to 
reproduce this high-frequency tonal response even with a constant friction coefficient and, 
hence, this mechanism is revealed as sufficient for the generation of squeal in curving 
conditions. 
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(a) 

 

(b) 

 
 
Figure 6: Zoom on time series of the contact forces; tangential force F  (──), traction bound 3Fµ  (- - -); 

some selected steps are marked with Arabic numerals. Simulation I: inner (a) and outer (b) wheels. 
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Figure 7: Frequency spectrum of the tangential contact force corresponding to Simulation I. 

The frequencies at which these peaks occur are associated with the oscillating frequencies of 
the stick/slip and the traction bound (corresponding to the normal contact force) cycles 
previously visualised, especially if most of the cycle is in full slip. The stick/slip frequencies are 
or close to be multiples of the traction bound frequency. As shown in Fig. 6(a), stick/slip cycles 
can be observed in which the frequency associated with the normal contact force (estimated in 
the graph as the inverse of the period – distance between consecutive crests) is about 1.6 kHz 
and the three oscillations observed in each stick phase lead to a frequency about 4.8 kHz for the 
tangential force. As a consequence, these frequencies present marked peaks in the frequency 
spectrum shown in Fig. 7. 

Table 5: Main squeal frequencies in kHz (in bold for the main peak and in brackets for the corresponding 
amplitude in kN) of the lateral contact forces of the inner wheel for the eight simulations carried out. 

 20.0=µ  32.0=µ  40.0=µ  60.0=µ  

m 120=rR  6.8, 7.4(1.2), 8.0 1.4, 4.5(1.1) 4.5(2.1), 8.0 1.4,1.6, 2.2, 7.4(0.5) 
m 500=rR  3.8(1.0), 7.7 1.6(1.4), 3.8, 6.1, 7.7 1.6(1.7), 3.2, 4.8, 6.4 1.6(2.2), 3.2, 4.8, 6.4 

 
 

Table 5 summarises the frequency peaks corresponding to the lateral contact force for the inner 
wheel in all the simulations carried out. It is shown that all the cases present a tonal behaviour in 
the high-frequency domain but with no clear tendencies. For the curve radius of 120 m, the 
main peaks are found at high frequencies: 7.4 kHz for =µ 0.20 and 0.60, and 4.5 kHz for 
=µ 0.32 and 0.40. For the curve radius of 500 m, peaks are found however at lower frequencies 

around 1.6 kHz and the maximum amplitudes are associated with higher friction coefficients. 
These results suggest that high friction values favour a more pronounced tonal response in 
curving conditions, which is in agreement with the well-known fact that low friction conditions 
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(wet weather, lubrication) reduce the likelihood of squeal [8]. Anyway, the current parameter 
study should be extended to establish consistent relationships between squeal characteristics 
and curve radius and friction coefficient. 

The squeal mechanism for constant friction has been associated in the literature with the wheel 
modal coupling from the measurements that found squeal frequencies close to some natural 
frequencies of the wheel [4]. This coupling is based on at least two degrees of freedom, between 
which an exchange of energy takes place by damping one of the modes while the other is 
energised. The previous simulations reveal that preliminary there is not only a single mode that 
is energised just as simple models predict, but several modes that are energised. Some works 
that model the wheel as an individual substructure have found that the excited natural 
frequencies of curve squeal correspond to axial wheel modes with zero nodal circles [19,20]. 
Table 6 details the closest wheelset modes associated with the main squeal frequencies gathered 
in Table 5. Their classification has been made by visualising the deformed configuration 
associated with each mode considering the torsional, axial and radial contributions from the 
axle and the brake discs. Only frequencies in bold correspond exactly to a wheelset mode. Axial 
wheel mode (2,0,a) with two nodal diameters and zero nodal circles corresponds to the main 
frequency of 1.6 kHz for Simulation I. Axial wheel modes with zero nodal circles (m=0) are 
associated with squeal frequencies up to 4.5 kHz, which agrees with the literature [4,8]. For 
illustration purposes, Fig. 8 shows the mode shapes associated with the squeal frequencies 1.6 
and 4.8 kHz, both representing axial wheel modes for the monobloc wheelset with m=0 and 
m=1, respectively. Radial wheel modes appear for higher frequencies and axial axle modes also 
intervene in some unstable frequencies. 

Table 6: Closest wheelset modes associated with the main squeal frequencies for the inner wheel. 
Frequencies in bold corresponds exactly to wheelset modes. 

Frequency [Hz] Closest wheelset modes (n,m,a/r) Simulation 

1361 Axial (0,0,a) wheel mode VI 

1607 Axial (2,0,a) wheel mode  I, II 

3213 Axial (4,0,a) wheel mode I, VIII 

3841 Radial axle mode II, VII 

4518 Axial axle mode (4545 Hz) III, VI 

4819 Axial (5,1,a) wheel mode I, VIII 

6053 Radial (4,0,r) wheel mode (6078 Hz) II 

6425 Axial axle mode I, VIII 

7449 Combined mode (7425 Hz) IIV, V 

7680 Axial axle mode II, VII 

7958 Combined mode (7980 Hz) III 
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(a) 

 

(b) 

 
Figure 8: Mode shapes of the wheelset. (a) Axial (2,0,a) wheel mode corresponding to 1607 Hz; (b) axial 

(5,1,a) wheel mode corresponding to 4819 Hz. 

The influence of the rotating matrix terms associated with the angular velocity of the wheelset 
in Eq. (2) is evaluated on the previous simulations in curving conditions. Fig. 9 shows the 
comparison using a rotatory and non-rotatory formulation for the wheelset in the interaction 
model, where relevant discrepancies arise in the high-frequency domain for the lateral contact 
forces. For the curve radius of 500 m (Simulation II), the non-rotating simulation (dashed line) 
presents more content in the high-frequency range as seen in Fig. 9(a). The pronounced peaks 
around 3.8 and 6.1 kHz are substantially mitigated for the rotating case (solid  line).   Another  
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(a) 

 

(b) 

 

(c) 

 
Figure 9: Frequency spectrum of the lateral contact force of the inner wheel using a rotatory wheelset 

model (──), and a non-rotatory one (- - -) for Simulations II (a), III (b), IV (c). 
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interesting observation is that the unstable frequencies are slightly shifted to higher values for 
the rotating case. In the simulation under study, it can be deduced that forward modes especially 
influence the curving dynamics in the occurrence of squeal. For the curve radius of 120 m 
(Simulations III and IV), the frequency content is appreciably higher than the previous one, 
especially in the range of 1−4 kHz as seen in Figs. 9(b) and (c). The attenuation of the rotating 
case with respect to the non-rotating one is not so clear in this range, but the frequency shift of 
the rotating peaks to the right can be appreciated. Fig. 9(c) shows that the non-rotating case are 
strongly attenuated in the range of 7−9 kHz. 

6. CONCLUSIONS. 

The present work proposes an advanced non-linear time-domain model to evaluate the railway 
vehicle/track interaction in curving conditions. The vehicle is confined in the leading wheelset 
that negotiates a cyclic rail continuously supported by a Winkler bedding. The wheelset model 
includes the effects associated with the rotation and the curved trajectory and the rail is 
formulated through an amended version of the Moving Element Method, which permits to fix 
the contact region in a spatial point of the mesh. Both models are flexible and follow an 
Eulerian-modal approach in order to keep the computational effort as low as possible. An 
incremental methodology based on small displacements is implemented for the contact model. 
The contact conditions are previously estimated from the quasi-static solution given by 
commercial multibody software and used as initial conditions for the time integration. 

Time simulations are run for the wheelset negotiating tight curves in order to evaluate the 
lateral contact and to investigate curve squeal for constant friction parameters during the curve. 
Results give only limited insight into the precise underlying mechanism, showing strong 
unstable lateral contact forces with stick/slip oscillations for the inner wheel. The associated 
frequency spectrum reveals a strong tonal behaviour in the high-frequency domain. The 
proposed model is hence able to reproduce the unstable and tonal response that characterises 
curve squeal even with constant friction. 

These results are also in good agreement with some observations reported in the literature about 
squeal. The unstable frequencies are associated with stick/slip cycles that arise from the 
non-linearities that govern the contact dynamics [19,20]. The unstable peaks decrease their 
amplitudes for low friction values, in line with the fact that low friction conditions reduce the 
likelihood of squeal [4]. Curve radius (associated with lateral creepage and lateral contact 
position) and frictional properties are key parameters with significant influence on the intensity 
of curve squeal [4,6]. On other hand, results confirm that the rotation of the wheelset has a 
crucial influence on curve squeal. The inclusion of the terms associated with the rotation shifts 
squeal frequencies and it strongly affects the frequency content (amplitude of the tonal peaks) 
in the high-frequency band, where the precision of the modal approach is less accurate. This 
band comprises most of the resonances associated with the wheelset, and the gyroscopic effects 
due to its rotation cause the splitting of these resonances [21]. Further work is needed, focused 
on a parameter study of these terms in the wheelset equation of motion, to find out why this 
effect is confined to the high frequency range. 
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