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Abstract:

Railway curve squeal is an intense tonal and annoying type of noise commonly attributed to
self-excited vibrations during curving. The mechanisms for its generation remain unclear and it
is still a subject of discussion among researchers. Most of them have considered the falling
behaviour of the friction coefficient with the slip velocity essential for reenergising the system.
Recently, some authors have found that squeal can also appear even for constant friction
coefficient through the wheel modal coupling between the normal and tangential directions
caused by the wheel/rail contact. This paper particularly evaluates whether the latter

mechanism is sufficient to find squeal in curving conditions.

The introduction of flexibility in the railway subsystems is required to widen the domain to the
high-frequency range in which squeal occurs. One single flexible and rotatory wheelset is
considered and suitable forces are prescribed at the primary suspension seats in the current
investigation. The rails are modelled through the Moving Element Method (MEM), permitting
to extend the range of validity of beam models usually utilised in the literature. This work
extends the formulation to rails supported by a viscoelastic Winkler bedding. Both wheelset
and track models are coupled by means of a non-linear and unsteady wheel/rail contact model
based on Kalker’s Variational Theory. Simulation results for different track curvatures and
friction coefficients are presented and discussed, showing tonal peaks in the tangential contact
forces of the inner wheel. These results can be associated with squeal according to the
characterisation of this phenomenon, indicating that squeal can be found in curving conditions

using advanced dynamic interaction models even with constant friction coefficient.

Keywords:
Curve squeal; wheel/rail contact; rotating wheelset; Moving Element Method; railway

high-frequency dynamics.
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1. INTRODUCTION.

Noise appears as one of the most important environmental drawbacks of the railway
transportation [1]. Railway tracks are frequently located in the vicinity of urban zones, thus
being a source of considerable annoyance for residents [2]. Three categories of wheel/rail noise
can be distinguished: rolling noise, impact noise and squeal noise [3]. The present work is
focused on the latter, known as curve squeal when the train negotiates sharp curves. This
phenomenon is characterised by an intense tonal noise generated in the most sensitive human
ear frequency band between 2 and 8 kHz [4], and sometimes even up to 10 kHz according to
field measurements in metro and tramway systems [5].

The likelihood of squeal occurrence widely differs on apparently similar conditions and the
physical mechanisms responsible for this phenomenon remain unclear. The falling friction
mechanism proposed by Rudd [6] has been the most accepted instability mechanism to explain
squeal as self-excited vibrations. Rudd also identified three possible excitation mechanisms due
to stick/slip cycles in the contact region: (1) lateral creepage at the contact between the wheel
tread and the top of the railhead, (2) wheel flange rubbing on the rail gauge face, and (3)
longitudinal creepage at the contact on the wheel tread due to differential slip. The first one,
closely linked to the curving behaviour of the vehicle, has received the major attention in the
literature.

Some recent works [7,8] presented a mechanism called modal coupling through which it is
possible to reproduce the curve squeal even with a constant friction coefficient. Although the
latter friction coefficient decays with slip velocity, the negative slope of the creep curves
(creepage vs. total transmitted forces) in the transversal directions (crucial for squeal [4,8]) can
be considered negligible. This assumption is supported by experimental tests [9] favourably
contrasted in a recent work on contact mechanics [10], which concluded that the difference
between the maximum and the saturated tangential creep forces shown in standard curves due
to falling friction is clearly overrated. This lesser influence leads to adopt a constant-u
hypothesis for dynamic simulations.

The present work develops an advanced vehicle/track interaction model that adopts a
non-steady state wheel/rail contact model with a constant friction coefficient. The flexibility of
the solids is implemented in order to extend the interaction model to the high-frequency domain
in which squeal occurs. The vehicle model is simplified through one single flexible wheelset
and the corresponding primary suspension instead of one complete vehicle [11]. In order to
implement the effect of the vehicle dynamics, a multibody model for the complete vehicle
negotiating a constant radius curve is used to calculate the forces in the primary suspensions,
which are implemented as external forces in the wheelset model. The wheelset model accounts
the flexibility and the inertial effects associated with its rotation. Since the angle of attack and
the creepages are more demanding for the leading wheelset when negotiating a curve, this is
more prone to squeal than the rear ones and thus the leading wheelset is the one selected for the
simulation. Section 2 of this paper summarises the wheelset model adopted in the present work.

This paper develops a model of the railway track that permits to study the track dynamics
extending the frequency range up to 9 kHz, covering the frequency range where squeal takes
place. The track model consists of two solid rails supported on a Winkler foundation. The
Moving Element Method [12] has been adopted in this work by implementing cyclic boundary
conditions and a viscoelastic Winkler foundation. The technique and its benefits are presented
in Section 3.

The wheelset and the track models are coupled by means of a wheel/rail contact theory that
adopts an incremental algorithm described in Section 4. The wheel/rail contact position is
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obtained from a low frequency commercial package that provides the whole vehicle position on
the curve, and a non-linear and non-steady state wheel/rail contact model based on Kalker’s
Variational Theory [13] is implemented by the authors for obtaining the contact forces. Section
5 presents simulation results of the squeal phenomenon for different curve radius and friction
coefficients. The paper closes with conclusive remarks in Section 6.

2. VEHICLE MODEL.

A flexible rotatory wheelset model negotiating a curved track was previously developed in Ref.
[11]. In order to model the wheelset travelling on a curved track, two reference frames are
considered: a frame XoYo0Zo fixed at an arbitrary point and a trajectory coordinate frame
XtY1Z7 that follows the motion of the wheelset on the track (see Fig. 1). The system XtYtZt
is centred in the undeformed configuration of the wheelset, with the Xt-axis parallel to the
forward speed, the Y t-axis parallel to wheelset axis and the Zr-axis pointing upwards.
Eulerian coordinates are defined from the trajectory reference frame, through which the
properties of the spatial points of the non-deformed configuration domain are obtained. These
coordinates do not follow the material points of the solid, nonetheless they are associated with
spatial points. Due to the axisymmetric geometry of the wheelset, this methodology permits to
represent the displacements in the spatial points from the non-deformed configuration using the
vibration modes as basis in the trajectory reference frame, which is:

r=adq, @

being r the vector that contains the displacements from the undeformed to the deformed
configuration, @ is the modal matrix computed through a FE model for the frame Xt1Y+1Zr,
and q contains the modal coordinates. The resulting modal equation of motion for the selected

wheelset is [11]:
G§+(QA+B)q+(Q°D+Q E+K) q=a+ Q2 B+ Q° y+Q, +Q,, )

il Undeformed configuration

\Kq AX 7y
R il =

]

I

-

-

3=
[

Figure 1: Reference frames and position vectors. The undeformed configuration of the wheelset is shown in
dashed trace; a generic position of the flexible wheelset is sketched in solid colours.

where € is the angular velocity of the wheelset (the wheelset speed divided by the wheel
radius); the matrices A, B, D, E, and vectors a, p and y account for the inertial effects
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associated with the wheelset rotation around the curve and of itself; K is the modal stiffness
matrix (diagonal matrix with the square of the natural frequencies); finally, Q. and Q. are the

vectors of the generalised forces acting on the flexible wheelset resulting respectively from the
wheel/rail contact forces and the forces applied through the primary suspension. The previous
matrices are independent of time if the radius of the curve remains constant. A complete
description of the wheelset formulation can be found in Ref. [11].

3. TRACK MODEL.

The track model consists of two solid rails supported by a viscoelastic Winkler foundation. It is
used a reference frame that is attached to the contact patch, hence moving with the vehicle. The
associated coordinate vectors point spatial positions while the mass of the rail flows through the
fixed spatial mesh with the vehicle speed V, which is considered constant along the simulation.
A cyclic approach is also followed, introducing cyclic boundary conditions at the ends of the
model (the displacements at both ends of the track coincide) that can be interpreted as an
infinite track negotiated by an infinite set of identical vehicles uniformly distributed in such a
way that each vehicle is set at a constant distance L apart from the adjacent ones. Due to the
periodicity of the structure and the loading conditions, the study is reduced to a single section
having finite length L, whose value is set large enough to avoid interaction between the
vehicles. This interaction appears as reflection waves in the receptance function of the rail
between 500 Hz and 2 kHz, which are mitigated when increasing the length; from 40 m, those
can be considered negligible [14]. The method allows positioning the wheel/rail contact area at
a fixed railhead element avoiding the vehicle exceeding the ‘downstream’ boundary ends since;
it also permits to implement a mesh with greater refinement around this region, where forces
and displacements are higher, contributing to reduce the computational cost.

3.1. Rail model.

Fig. 2 presents a 3D track resulting from the extrusion of a UIC60 profile. An inertial
coordinate system XYZ is defined, with the X-axis parallel to the rail extrusion direction, the
XY-plane parallel to the rail base and the Z-axis pointing upwards. The rail material is
supposed to flow with velocity V opposite to the X direction (as can be seen in Fig. 2). An
Eulerian position vector u, associated with the coordinate system, defines the fixed position of

a spatial point of the mesh (undeformed configuration). Vector w = W(u,t) is the displacement

of a material point that occupies the position u at the instant t with respect to the undeformed
configuration. The position vector R of the material point is hence

R =u+w(u,t) (3)
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Figure 2: Finite element mesh of the rail (X-axis is out of scale). Deformed and undeformed configuration
and coordinates.

Cyclic boundary conditions set same displacements and derivatives at the model edges of the
finite rail. The velocity and acceleration of the material point are computed through the material
derivative as follows

v=PROR R (vo0)+w-v )
Dt ot = ox ox
. 2

a= VNV Ny W2 OW ©)
Dt ot OX OX OX

where D/Dt =0/t -V 0/dx, refers to the material (or total) derivative. The virtual work
associated with the inertial forces is evaluated through Eq. (5):

. 2
W = [ powTado= [ pow'i dU—ZVJ.pSWTéﬂ du+v2jp5wT8W do, (6)
X

2
Vol Vol Vol Vol aX

where pEp(X, y,z) is the density of the material (considered constant as the wheelset).

Quadratic shape function elements are used for the mesh, the continuity at element interfaces
being C°. Consequently, the integration can only be evaluated properly if the maximum order of
differentiation is 1. Note that, as detailed in Section 3.2, page 59 of Ref. [15] as convergence
requirement, if the integrand has derivatives up to order n, then the interpolation has to
guarantee that its n-1 derivatives are continuous (C"* continuity). From this requirement, the
virtual work needs to be computed through an integration by parts to obtain lower order
derivatives for the third term of Eq. (6):

2

o*w ow o(dw") ow
dxdydz = | p dw' — dydz — — 77 dxdydz. 7
— dxdy !p — lep ——— dxdy (7)

IpSWT

Vol X

Since the rail length is selected long enough to have negligible displacements at the model
edges, the integrand of the surface integral (only computed over the lateral surfaces
corresponding to the rail edges) is close to zero. Therefore, the influence of the surface integral
can be neglected from a numerical point of view and the convergence of Eq. (7) is guaranteed,
resulting as:
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. oW oldw’ ) ow
SW :V_[IpSWTWdU—ZVV_[IpSWT&du—vzvj-lp (T)&du. (8)

FE interpolation is adopted at this point. The displacements in the volume of the e -th element
Vol® are computed by means of the shape functions as follows:

w(u,t)=N(u)we(t) ifueVol®, (9)

w® being the nodal displacements and N° the basis (or form) functions matrix. If Eqg. (9) is
implemented for the e-th element in Eqg. (8), the following expression is obtained:

e eT e
SWE = swe' ijeTNedUWe—ZV I pNeT N dow® -V? jp oN”_ N dow® | (10)
Vol® Vol® X Vol® OX Ox
The last expression can be compacted in the following formula:
SW® =5w (M® W -V M*W* V2 KI°w* ) (11)

Following the FEM assembling technique for calculating the global matrices from the element
matrices, the equation of motion of the rail is obtained:

MW -V MW" -VZMw™ =F, +F, +F,, (12)

being w™ one vector that contains the nodal displacements of the whole FE mesh; M, M and

M are the global matrices that are obtained from the element matrices M?, Me and M°®; and
F., R, and F, are the generalised force vectors associated with the wheel/rail contact,

Winkler foundation and elastic forces, respectively. It must be highlighted that F, = -Kw"™,
and M and K are the standard FEM mass and stiffness matrices.

3.2. Rail support model.

A continuous support is modelled under the rail through a viscoelastic Winkler foundation with
a uniform distribution of vertical stiffness and damping equivalent to discrete rail supports
(railpads + ballast). The dynamics associated with the model is similar compared to the beam
resting on discrete supports in the high-frequency band [14] in which squeal phenomenon takes

place. In this section, the generalised force associated with the Winkler foundation F,, is

obtained through the formulation of the virtual work for the elastic and viscous forces. The
virtual work of the Winkler forces acting on the e-th element located on the bottom surface of
the rail is:

e __ T T DW
SW,: ——S.[SW kWWdS—g[SW Cu 5, 95, (13)
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being S° the botton surface of the e-th element, and k,, and ¢, are 3x3 diagonal matrices

that include respectively the stiffness and damping per unit surface in the X, Y and Z directions.
By expanding the material derivative, it is obtained:

W,y =—[dwT k, wds - [sw" ¢, wdS +V [swTc, gﬂds. (14)
s¢ s® s¢ X

If the basis presented in Eq. (9) is implemented in the last equation, the following expression is
found:

ON°®

dSwe. (15
OX (15)

W, =—dw* [Nk, NedSw* —sw* [N ¢, N°dSw* +V sw® [N g,
S¢ S¢ S¢

Following the same procedure than the one in Section 3.1, the expression of the generalised
force is

F, =-K,w®-C,w*+VC, w, (16)
where the global matrices K,,, C,, and (~:W are assembled from the element matrices K, ,
C,, and E:Sv , and deduced from Eq. (15):

Kj = [Nk, N°ds, (17)
Se
Cg, = jNeT c,, N°ds, (18)
Se
~ T ON®
Ce =[N¢c ds . 19
v ! "o (19)

3.3. Eulerian modal approach.

By combining Egs. (12) and (16), the equation motion of the rail on a Winkler foundation is:

MW +(C,, -V MW + (K +K,, -V C,, -V N W™ = F

c*

(20)
In order to reduce the dimension of the problem, the mass-normalised mode shapes of the
undamped rail are adopted as basis of the rail displacements. Consequently, the FE nodal
displacements are obtained from the modal matrix 6 as follows:

w =0 p, (21)

being p the modal coordinates. The modal matrix verifies:
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. 0
0" (K +K, )8 = diag(w?) = w? , (22)
0
being @, the undamped natural frequencies, and
0'MO =1, (23)

where 1 is the unit matrix. The equation of motion for the rail through this modal approach is

B+07(C, -V M)op + |diag(e?)-0" (v C,, +V>M)o|p=0TF,. (24)

4. MODEL OF WHEEL/RAIL CONTACT FORCES.

Egs. (2) and (24) are coupled through the wheel/rail contact forces in modal coordinates,
identified as Q, and @' F, for the wheelset and track equations of motion, respectively. The

position and velocity of the contact points on the surfaces of both inner and outer wheels and
rails are determined in each time step to calculate the relative wheel/rail motion required for the
computation of the normal and tangential contact force. This force expressed in Eulerian modal
coordinates is applied on the wheel and the rail surfaces at the contact point.

4.1 Normal contact model.

The normal contact problem is solved using an incremental approach. For the wheelset and rail
profiles, friction and curving conditions considered, the quasi-static solution of the railway
interaction model is computed through a pre-processor of a commercial vehicle/track
interaction software based on multibody techniques. The software considers elastic contact,
permitting to determine a single contact point on each wheel/rail pair assuming both wheel and
rail undeformable and computing the relative lateral displacement of the wheel on the rail; the
quasi-static contact force applied to the contact point is also provided. The lateral displacement
will be considered as mean value around which the contact point will oscillate during the
numerical integration assuming small variations. The contact displacements associated with the

wheel and the rail, w, and r_, respectively, are calculated through the modal superposition
principle.

The wheel/rail incremental distance vector is computed assuming that both surfaces are
undeformable:

A=r —w,_. (25)

c c

The quasi-static normal contact force permits to estimate the corresponding approach &
through Hertzian theory [16]:
E 2/3
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where K., is a contact stiffness estimated from the material properties and curvatures in the
contact point [17], and F, is the quasi-static normal contact force. The incremental approach is
obtained by projecting the distance A along the direction normal to the contact plane:

A5 = ATX,, (27)

where X, is the unit normal vector. The total normal force in the contact area F, at each time

step for the numerical integration can finally be estimated using again Eq. (26) after adding the
incremental approach to the quasi-static one:

Ky (6 +As5)? if (5 +A5)>0,

28
0 if (5+A5)<0. )

FS:E+AF3:{

The contact area and the normal traction distribution are obtained by means of the Hertzian
contact model [16] from the normal force F,.

4.2 Tangential contact model.

The tangential contact problem is solved by implementing Kalker’s algorithm CONTACT [13].
Again, an incremental approach is adopted assuming small variations of the creepages around

the quasi-static longitudinal &, lateral &, and spin & values provided by the multibody
software:

b= ATx 4, (29)
£ =LATX +E (30)
2 _V 2 27

£ =%, (31)

where x, and X, are unit vectors in the rolling and lateral direction, respectively. Following

the non-steady CONTACT algorithm, the computation of the tangential traction distribution
also depends on the displacements produced in the present mesh by the computed traction in the
previous instant of the numerical integration. The longitudinal and lateral contact forces, F,

and F, respectively, are estimated and, together with the normal one F,, projected along the

trajectory frame XtYtZt for the wheelset and the inertial coordinate system XYZ for the
track, accounting for the inclination of the wheel/rail contact plane. Finally, the resulting
projections are applied in both wheels and the rails (with opposite sign) in the corresponding
contact points as external actions, providing the generalised force vectors in modal coordinates

associated with the contact forces, Q. and " F,, included in Egs. (2) and (24), respectively.

10


https://doi.org/10.1016/j.jsv.2018.06.004

Journal of Sound and Vibration, Volume 431, 29 September 2018, Pages 177-191.
https://doi.org/10.1016/].jsv.2018.06.004

5. SIMULATION RESULTS.

The formulations described in Sections 2, 3 and 4 are implemented in a complete
high-frequency wheelset/track interaction model. This section is divided in three subsections:
Section 5.1 gathers the parameters used in each simulation in curve computed, Section 5.2
presents the time response of the lateral contact forces and Section 5.3 analyses the
corresponding frequency spectrum in order to characterise the curving response of the railway
system modelled.

5.1 Simulation parameters.

The leading wheelset selected in this work is meshed with 12340 solid quadratic elements
(20-nodes) and includes a total of 260145 degrees of freedom in physical coordinates. It is
equipped with a solid axle wheelset in which the wheels corresponding to S1002 profile and the
brake discs are meshed as a unique structure. The track is represented by two rails with UIC60
profile inclined 1/40 and 42 m length are modelled with 8452 solid quadratic elements and
include a total of 170175 degrees of freedom each in physical coordinates. Both are supported
by a uniform viscoelastic Winkler bedding of 43.7 MN/m for the vertical stiffness and
12.6 kNs/m for the vertical damping equivalent to discrete rail supports. According to [18], the
stiffness and damping in the longitudinal and lateral directions are modelled as 10% and 80% of
the previous values, respectively. The mesh is longitudinally refined around the centre of the
rail, with a central element length of 1 cm. From the modal approach adopted, 400 vibration
modes have been selected for the wheelset and 2000 modes for both rails in order to cover a
frequency range up to 9 kHz. The time step used in the integration scheme is 5x10° s and the
total time simulated is 1 s. The spatial resolution in the contact area is 0.25 and 1 mm in
longitudinal and lateral directions, respectively.

It is intended to evaluate the interaction model in curving conditions with a constant friction
coefficient in order to see whether the constant coefficient mechanism is sufficient itself to
generate instabilities in the contact dynamics that can be potentially associated with curve
squeal. Table 1 presents the relevant input data corresponding to eight simulations carried out
for two curve radii and four friction coefficients. The vehicle speed V is set for both curve radii
to make the non-compensated acceleration zero.

Table 1: Study cases simulated by the complete wheelset/track interaction model proposed.
Simulation  Curve radius, Vehicle speed, Friction coefficient,

R" [m] V' [km/h] u [
v 120 39.13 0.20
VI 0.32
i 0.40
\Y% 0.60
VII 500 79.86 0.20
I 0.32
| 0.40
Vil 0.60

Table 2 gathers the quasi-static solution for the lateral position of the contact point (see Fig. 3)
and the creepages for both wheels of the leading wheelset corresponding to each simulation
case computed through multibody software. The Y-axis points forward the centre of the curve

11
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as illustrated in Fig. 1. Table 3 contains the quasi-static conditions of the leading wheelset for
Simulation I (chosen for illustrative purposes), with the lateral and vertical displacements of its
centre of gravity, the angle of attack and the forces from the carbody. Table 4 lists the lateral
variations of the position of the contact point for both wheels and rails (again with respect to the
nominal point), the normal contact angle, creepages and creep forces for Simulation 1. All these
values are used as mean values in the incremental contact algorithm adopted. Fig. 4 shows the
location of the wheel/rail contact for the inner and the outer pairs corresponding to Simulation I;
the associated normal traction distributions are also presented.

Table 2: Pseudo-static lateral variations of the position of the contact point (with respect to the nominal
contact point) and creepages for each simulation case. The Y-axis points forward the centre of the curve as
illustrated in Fig. 1.

Simulation Lat. variation contact Lat. variation contact Lat. creepage Lat. creepage

point inner wheel, point outer wheel, inner wheel, outer wheel,
Aylvr\lln [mm] Ayr{n [mm] gz,inn [-] 52,0ut [-]

I 14.3 33.3 0.0046 0.0055

1 14.3 32.5 0.0048 0.0055

Il 145 36.2 0.0171 0.0268

v 145 38.3 0.0172 0.0437

\Y 14.4 32.8 0.0169 0.0194

VI 14.5 35.1 0.0171 0.0234

VIl 14.0 30.7 0.0052 0.0056

VIl 14.4 34.6 0.0046 0.0056

Table 3: Simulation I: Quasi-static conditions for the leading wheelset.

Lateral displacement, y [mm] -6.2
Vertical displacement, z [mm] 0.4
Angle of attack, y [] -0.264
Longitudinal force, X [N] 162
Lateral force, Y [N] -1770
Vertical force, Z [N] -109620

Table 4: Simulation I: Quasi-static conditions for the inner/outer wheels of the leading wheelset.

Rail lateral displacement, Ay" [mm] 4.8/29.8
Rolling radius, r,, [mm] 459.7/465.6
Normal angle, @ [°] 0.56/33.40
Longitudinal creepage, 4?1 [-] 0.0037/0.0059
Lateral creepage, 4?2 [-] 0.0046/0.0055
Spin creepage, Esp [-] 0.021/1.185
Yaw angle, o [°] 0.264
Longitudinal creep force, If1 [N] 13672/-13510
Lateral creep force, If2 [N] 15443/-17213
Vertical creep force, If3 [N] -52072/-57548

12
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Ay"

Ay’

B

Figure 3: Lateral displacements of the wheel/rail contact point o with respect to the nominal one o (for straight
conditions).

5.2 Lateral contact response.

The insertion of the vehicle in a curve directly depends on the curve radius, which defines the
angle of attack of the leading wheelset. Since the lateral forces can be estimated from the angle
of attack [4], the lateral contact dynamic are closely linked to the conditions that characterise
the curve and, hence, to the curve squeal phenomena. The investigation of the lateral contact
response appears a good approach to detect the squeal occurrence for the simulation cases run.

Fig. 5 presents the time response corresponding to Simulation 1. The amplitude of the lateral
oscillations of the inner wheel is shown in Fig. 5(a) while the outer one is depicted in Fig. 5(b).
The inner wheel shows an oscillating response that converges around a mean value of -12.8 kN
and high amplitudes around 8.5 kN, ten times higher than the outer wheel. Much higher
amplitudes for the lateral contact forces in the inner wheel have also been found in the rest of
the simulations. These results are in agreement with most of the observations that indicate that
highest squeal noise amplitudes are usually generated by the leading inner wheel of a bogie [4].

13
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Figure 4: Three-dimensional view of the wheels (mesh) on the rails (solid colour). The locations of the wheel/rail
contact (axes in m) are shown by means of their normal traction distributions. The lateral displacement of the
wheelset is y=-6.2 mm and the yaw angle is y=-0.264° (quasi-static position of the wheelset during the curve
negotiation), corresponding to Simulation 1. (a) Inner to the curve wheel/rail pair; (b) outer to the curve
wheel/rail pair.
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Figure 5: Time series of the tangential contact force F, corresponding to Simulation I for the inner (a) and outer
(b) wheels.

Fig. 6 (zoomed views) compares the tangential contact force and the tangential traction limit
defined by the friction coefficient times the normal contact force for Simulation I. The inner
wheel (Fig. 6(a)) presents cycles defined by a stick phase when the tangential total force
(continuous line) is below the traction bound (dashed line) and a slip phase when both curves
overlap. Step 1 marked in Fig. 6(a) corresponds to the stick phase (partial stick) in which the
contact area is divided into a stick zone located in the leading edge and a slip zone that
surrounds the previous one. Step 2 corresponds to the slip phase in which the contact area is in
full slip. For the outer wheel, Fig. 6(b) shows that the tangential force is continuously below the
traction bound without reaching full slip at any time. Hence, these stick/slip cycles are only
observed in the inner wheel and they can be interpreted as self-induced vibrations in curving
conditions that come from the railway dynamics itself.

5.3 Frequency spectrum.

The frequency spectrum corresponding to the tangential contact force of the inner wheel is
evaluated and shown in Fig. 7. It reveals strongly tonal peaks for particular frequencies in the
high-frequency domain that correspond to the expected response of curve squeal phenomenon
according to the literature [4—8]. For the simulations carried out, these peaks arise from the
complex physical process that governs the contact dynamics throughout the computation.
These results confirm that the wheelset/track model implemented in this work is able to
reproduce this high-frequency tonal response even with a constant friction coefficient and,
hence, this mechanism is revealed as sufficient for the generation of squeal in curving
conditions.
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Figure 6: Zoom on time series of the contact forces; tangential force F (—), traction bound zF; (- --);
some selected steps are marked with Arabic numerals. Simulation I: inner (a) and outer (b) wheels.
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Figure 7: Frequency spectrum of the tangential contact force corresponding to Simulation I.

The frequencies at which these peaks occur are associated with the oscillating frequencies of
the stick/slip and the traction bound (corresponding to the normal contact force) cycles
previously visualised, especially if most of the cycle is in full slip. The stick/slip frequencies are
or close to be multiples of the traction bound frequency. As shown in Fig. 6(a), stick/slip cycles
can be observed in which the frequency associated with the normal contact force (estimated in
the graph as the inverse of the period — distance between consecutive crests) is about 1.6 kHz
and the three oscillations observed in each stick phase lead to a frequency about 4.8 kHz for the
tangential force. As a consequence, these frequencies present marked peaks in the frequency
spectrum shown in Fig. 7.

Table 5: Main squeal frequencies in kHz (in bold for the main peak and in brackets for the corresponding
amplitude in kN) of the lateral contact forces of the inner wheel for the eight simulations carried out.

1 =020 =032 u=0.40 1 =0.60
R"=120m |6.8,7.412),8.0 1.4,454 4501, 8.0 1.4,16,2.2, 7405
R"=500m |3.8¢w0), 7.7 1.6¢14),3.8,6.1,7.7 1.6@7,3.2,48,64 1602,3.2,48,64

Table 5 summarises the frequency peaks corresponding to the lateral contact force for the inner
wheel in all the simulations carried out. It is shown that all the cases present a tonal behaviour in
the high-frequency domain but with no clear tendencies. For the curve radius of 120 m, the
main peaks are found at high frequencies: 7.4 kHz for ;4 =0.20 and 0.60, and 4.5 kHz for

1 =0.32 and 0.40. For the curve radius of 500 m, peaks are found however at lower frequencies

around 1.6 kHz and the maximum amplitudes are associated with higher friction coefficients.
These results suggest that high friction values favour a more pronounced tonal response in
curving conditions, which is in agreement with the well-known fact that low friction conditions
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(wet weather, lubrication) reduce the likelihood of squeal [8]. Anyway, the current parameter
study should be extended to establish consistent relationships between squeal characteristics
and curve radius and friction coefficient.

The squeal mechanism for constant friction has been associated in the literature with the wheel
modal coupling from the measurements that found squeal frequencies close to some natural
frequencies of the wheel [4]. This coupling is based on at least two degrees of freedom, between
which an exchange of energy takes place by damping one of the modes while the other is
energised. The previous simulations reveal that preliminary there is not only a single mode that
is energised just as simple models predict, but several modes that are energised. Some works
that model the wheel as an individual substructure have found that the excited natural
frequencies of curve squeal correspond to axial wheel modes with zero nodal circles [19,20].
Table 6 details the closest wheelset modes associated with the main squeal frequencies gathered
in Table 5. Their classification has been made by visualising the deformed configuration
associated with each mode considering the torsional, axial and radial contributions from the
axle and the brake discs. Only frequencies in bold correspond exactly to a wheelset mode. Axial
wheel mode (2,0,a) with two nodal diameters and zero nodal circles corresponds to the main
frequency of 1.6 kHz for Simulation I. Axial wheel modes with zero nodal circles (m=0) are
associated with squeal frequencies up to 4.5 kHz, which agrees with the literature [4,8]. For
illustration purposes, Fig. 8 shows the mode shapes associated with the squeal frequencies 1.6
and 4.8 kHz, both representing axial wheel modes for the monobloc wheelset with m=0 and
m=1, respectively. Radial wheel modes appear for higher frequencies and axial axle modes also
intervene in some unstable frequencies.

Table 6: Closest wheelset modes associated with the main squeal frequencies for the inner wheel.
Frequencies in bold corresponds exactly to wheelset modes.

Frequency [Hz] Closest wheelset modes (n,m,a/r) Simulation

1361 Axial (0,0,a) wheel mode Vi
1607 Axial (2,0,a) wheel mode 1,1l
3213 Axial (4,0,a) wheel mode I, VII
3841 Radial axle mode I, VI
4518 Axial axle mode (4545 Hz) I, VI
4819 Axial (5,1,a) wheel mode I, VII
6053 Radial (4,0,r) wheel mode (6078 Hz) |l
6425 Axial axle mode I, VIII
7449 Combined mode (7425 Hz) v, v
7680 Axial axle mode I, VII
7958 Combined mode (7980 Hz) Il
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Figure 8: Mode shapes of the wheelset. (a) Axial (2,0,a) wheel mode corresponding to 1607 Hz; (b) axial
(5,1,a) wheel mode corresponding to 4819 Hz.

0.4

The influence of the rotating matrix terms associated with the angular velocity of the wheelset
in Eq. (2) is evaluated on the previous simulations in curving conditions. Fig. 9 shows the
comparison using a rotatory and non-rotatory formulation for the wheelset in the interaction
model, where relevant discrepancies arise in the high-frequency domain for the lateral contact
forces. For the curve radius of 500 m (Simulation 1), the non-rotating simulation (dashed line)
presents more content in the high-frequency range as seen in Fig. 9(a). The pronounced peaks
around 3.8 and 6.1 kHz are substantially mitigated for the rotating case (solid line). Another
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Figure 9: Frequency spectrum of the lateral contact force of the inner wheel using a rotatory wheelset
model (—), and a non-rotatory one (- - -) for Simulations Il (a), I11 (b), IV (c).
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interesting observation is that the unstable frequencies are slightly shifted to higher values for
the rotating case. In the simulation under study, it can be deduced that forward modes especially
influence the curving dynamics in the occurrence of squeal. For the curve radius of 120 m
(Simulations Il and V), the frequency content is appreciably higher than the previous one,
especially in the range of 1—4 kHz as seen in Figs. 9(b) and (c). The attenuation of the rotating
case with respect to the non-rotating one is not so clear in this range, but the frequency shift of
the rotating peaks to the right can be appreciated. Fig. 9(c) shows that the non-rotating case are
strongly attenuated in the range of 7-9 kHz.

6. CONCLUSIONS.

The present work proposes an advanced non-linear time-domain model to evaluate the railway
vehicle/track interaction in curving conditions. The vehicle is confined in the leading wheelset
that negotiates a cyclic rail continuously supported by a Winkler bedding. The wheelset model
includes the effects associated with the rotation and the curved trajectory and the rail is
formulated through an amended version of the Moving Element Method, which permits to fix
the contact region in a spatial point of the mesh. Both models are flexible and follow an
Eulerian-modal approach in order to keep the computational effort as low as possible. An
incremental methodology based on small displacements is implemented for the contact model.
The contact conditions are previously estimated from the quasi-static solution given by
commercial multibody software and used as initial conditions for the time integration.

Time simulations are run for the wheelset negotiating tight curves in order to evaluate the
lateral contact and to investigate curve squeal for constant friction parameters during the curve.
Results give only limited insight into the precise underlying mechanism, showing strong
unstable lateral contact forces with stick/slip oscillations for the inner wheel. The associated
frequency spectrum reveals a strong tonal behaviour in the high-frequency domain. The
proposed model is hence able to reproduce the unstable and tonal response that characterises
curve squeal even with constant friction.

These results are also in good agreement with some observations reported in the literature about
squeal. The unstable frequencies are associated with stick/slip cycles that arise from the
non-linearities that govern the contact dynamics [19,20]. The unstable peaks decrease their
amplitudes for low friction values, in line with the fact that low friction conditions reduce the
likelihood of squeal [4]. Curve radius (associated with lateral creepage and lateral contact
position) and frictional properties are key parameters with significant influence on the intensity
of curve squeal [4,6]. On other hand, results confirm that the rotation of the wheelset has a
crucial influence on curve squeal. The inclusion of the terms associated with the rotation shifts
squeal frequencies and it strongly affects the frequency content (amplitude of the tonal peaks)
in the high-frequency band, where the precision of the modal approach is less accurate. This
band comprises most of the resonances associated with the wheelset, and the gyroscopic effects
due to its rotation cause the splitting of these resonances [21]. Further work is needed, focused
on a parameter study of these terms in the wheelset equation of motion, to find out why this
effect is confined to the high frequency range.
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