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A Fast Matrix Majorization-Projection Method for
Penalized Stress Minimization with Box Constraints

Shenglong Zhou, Naihua Xiu and Hou-Duo Qi

Abstract—Kruskal’s stress minimization, though nonconvex
and nonsmooth, has been a major computational model for
dissimilarity data in multidimensional scaling. Semidefinite Pro-
gramming (SDP) relaxation (by dropping the rank constraint)
would lead to a high number of SDP cone constraints. This
has rendered the SDP approach computationally challenging
even for problems of small size. In this paper, we reformulate
the stress optimization as an Euclidean Distance Matrix (EDM)
optimization with box constraints. A key element in our ap-
proach is the conditional positive semidefinite cone with rank
cut. Although nonconvex, this geometric object allows a fast
computation of the projection onto it and it naturally leads to a
majorization-minimization algorithm with the minimization step
having a closed-form solution. Moreover, we prove that our EDM
optimization follows a continuously differentiable path, which
greatly facilitated the analysis of the convergence to a stationary
point. The superior performance of the proposed algorithm is
demonstrated against some of the state-of-the-art solvers in the
field of sensor network localization and molecular conformation.

Index Terms—Raw stress, multidimensional scaling, Eu-
clidean distance matrix, semidefinite programming, majorization-
minimization, sensor network localization.

I. INTRODUCTION

KRUSKAL’S stress minimization [1], though nonconvex
and nonsmooth, has been a major computational model

for dissimilarity data in multidimensional scaling (MDS) [2],
[3]. Its popularity among the practitioners has been signifi-
cantly enhanced by its companion algorithm SMACOF [4], [5].
In the particular application of range-based sensor network
localization (SNL), the stress minimization is equivalent to
the maximum likelihood criterion if the disturbances of the
observed ranges are of white noises. In its original form, for a
given subset of dissimilarities (e.g., noisy distances) denoted
by {δij} among n items, the stress minimization tries to find
a best set of embedding points xi ∈ <r, i = 1, . . . , n such
that they solve (see [3, P. 171])

min σr(X) :=
∑
i,j

Wij (‖xi − xj‖ − δij)2 , (1)

where the weights Wij > 0 if δij is known and 0 otherwise,
the norm ‖ · ‖ is the Euclidean norm in <r, and X :=
[x1, . . . ,xn] is the matrix of coordinates. The most interesting
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case is when r is small (e.g., r = 2, 3 for visualization). The
function σr(X) is known as the raw stress.

In many applications such as molecular conformation [6],
lower and upper bounds data on the distances are also known:

`ij ≤ ‖xi − xj‖ ≤ uij , ∀ (i, j), (2)

where 0 ≤ `ij ≤ uij and `ii = uii = 0. In applications such
as nonlinear dimensionality reduction [7] and sensor network
localization (SNL) [8], [9], upper bounds uij can be computed
by the shortest path distances and `ij can be simply set to be
zeros.

Prior to the stress criterion, the classical MDS (cMDS)
[10]–[12] (see also [8], [13]) may be the only viable method
for dissimilarity data. The key difference is that cMDS uses
“squared” distances ‖xi − xj‖2, which naturally lead to
advanced Euclidean Distance Matrix (EDM) models [14,
Sect. III(A)]. In contrast, the stress function makes use of
“plain” distances ‖xi − xj‖, which often lead to models
based on coordinates [15]. Existing research that attempts
to represent plain distances by EDM often leads to a large
number of positive semidefinite cone constraints, making the
resulting matrix optimization problem extremely challenging
to solve (see, e.g., [14, Eq. (8)]). The purpose of this paper
is to propose a new EDM reformulation of the stress criterion
under box constraints. We will develop a fast majorization-
projection method, which falls in the general framework of
[16]. Its superior performance against several state-of-the-art
algorithms will be demonstrated through a number of artificial
SNL data and real data from molecular conformation.

In the following, we give a short literature review that
motivated our research, followed by our proposed approach
and main contributions.

A. Literature Review

We will discuss two groups of algorithms, namely the
coordinates descent algorithms (enhanced by the majorization
technique) and methods of matrix optimization including the
EDM and the Semi-Definite Programming (SDP) approach.

(a) Algorithms of coordinates descent. Early popularity
of the stress minimization criterion was largely due to the
fact that classical optimization methods can be applied directly
and was subsequently enhanced by the well-known algorithm
of SMACOF [4]. The key idea of SMACOF was to construct
a majorization function m(X,Xk) at the current iterate Xk

such that σr(X) ≤ m(X,Xk). Instead of minimizing σr(X),
it minimizes m(X,Xk) to get the next iterate Xk+1. Since the
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majorization function is convex and quadratic, a system of lin-
ear equations is solved each step to get Xk+1. The algorithm
is well documented in [3, Chp. 8]. However, as demonstrated
in [9], SMACOF performs poorly for SNL problems.

In another important development, the stress function can
be majorized componentwise in the sense that

σr(X) ≤ m1(x1, X
k)+m2(x2, X

k)+· · ·+mn(xn, X
k), (3)

with each piece mi(xi, X
k) being easy to be minimized.

Therefore, (3) leads to a distributed optimization (see [15,
Sect. I (C)] for a relevant review). A nice example can be
found in [14, Sect. III (C)], where it is showed that both the
squared and the plain distances can be majorized as

‖xi − xj‖2 ≤ q(xi,xj , Xk) (4)

and
− ‖xi − xk‖ ≤ l(xi,xj , Xk), (5)

with the functions q(·) and l(·) being respectively quadratic
and linear in xi and xj , constructed in such a way that each
piece mi(·) in (3) can be obtained through those functions. We
will show that this simple majorization scheme works well for
some problems while having difficulties with other problems
described in the numerical part.

Convex relaxation also represents a major approach to (1).
For example, based on the observation

(‖xi − xj‖ − δij)2 = min
‖y‖=δij

‖xi − xj − y‖2,

Soares et al. [15] studied the convex relaxation by replacing
the constraint ‖y‖ = δij by its convex counterpart ‖y‖ ≤ δij .
This convex relaxation scheme is further enhanced by
Piovesan and Erseghe [17] and it is solved by an Alternating
Direction Method of Multipliers (ADMM). The convex
relation with the majorization technique was considered in
[18]. Another type of stress majorization was proposed in [9],
resulting in the well-known ARAP (As Rigid As Possible)
algorithm for SNL. All of those methods are of distributed
nature and we will compare them with our method in the
numerical part.

(b) EDM and SDP optimization. They are matrix opti-
mization and are very popular in the past decade because they
often provide a flexible framework to obtain convex relaxation
that can be solved by off-shelf SDP solvers. Early applications
of EDM and SDP to molecular conformation and SNL can be
respectively found in [6] and [19]. There exist a large body
of publications that are beyond our scope to review here. We
only focus on those that are pertinent to the problem (1).

Let Sn denote the space of all n × n symmetric matrices,
endowed with the standard inner product. Let Sn+ be the cone
of positive semidefinite matrices in Sn. A matrix D ∈ Sn is
called an EDM if there exist a set of points xi ∈ <r, i =
1, 2 . . . , n such that the (i, j)th element of D is given by

Dij := ‖xi − xj‖2, i, j = 1, . . . , n.

Here “:=” means “define”. The smallest dimension r is called
the embedding dimension of D and r = rank(JDJ), where

J := I − 1
n11T is known as the centring matrix with I being

the identity matrix in Sn and 1 being the vector of all ones
in <n. We use Dn to denote the set of all Euclidean distance
matrices of size n× n.

If D ∈ Dn is given, one can easily generate a set of the
embedding points {xi} by applying the classical MDS [3,
Chp. 12]. Therefore, the stress problem (1) can be reformu-
lated in terms of EDM as

minD
∑
i,j Wij

(√
Dij − δij

)2
s.t. D ∈ Dn, rank(JDJ) ≤ r.

(6)

In the application of SNL, some of the data points of xi are
already known to be anchors. That is, xi = ai, i = 1, . . . ,m
are known. In this case, the distances Dij among the anchors
are known. The problem (6) with the fixed distance constraints
Dij = ‖ai − aj‖2, i, j = 1, . . . ,m is same as [14, Problem
(6)]. By dropping the rank constraint, Problem (6) has a natural
SDP reformulation as shown in [14, Problem (8)]:

minD,T∈Sn

∑
i,j Wij (Dij − 2Tijδij)

s.t. D ∈ Dn, Dij = ‖ai − aj‖2, i < j = 2, . . . ,m
T 2
ij ≤ Dij for i < j = 2, . . . , n.

This problem is SDP because the inequalities T 2
ij ≤ Dij

can be represented as SDP cone constraints via the Schur
complement:[

1 Tij
Tij Dij

]
∈ S2+, i < j = 2, . . . , n

and D ∈ Dn can also be represented as SDP constraints on
Sn+ due to the known characterization [10]:

D ∈ Dn ⇐⇒ diag(D) = 0 and − (JDJ) ∈ Sn+.

Hence, there are about n(n − 1)/2 cone constraints on S2+
and one big cone constraint on Sn+ in addition to at least
(n + m(m − 1)/2) linear constraints. Even for a small n,
this presents a challenging task for off-shelf SDP solvers such
as SDPT3 [20]. We note that this challenge has not taken the
rank constraint into account.

We finish our review by mentioning two variants of the
stress function. When the squared distance is used, we have
the so-called S-stress problem [3, Chp. 11]:

minσS(X) =
∑
i,j

Wij(‖xi − xj‖2 − δ2ij)2.

Its SDP relaxation is simpler than that for (1) (see [21,
Sect. III] for a detailed description). Its EDM relaxation has
been studied in [22]–[25] and [26]–[28]. When the absolute
value is used to measure the error, we end up with the so-called
robust MDS problem:

minσR(X) =
∑
i,j

Wij

∣∣‖xi − xj‖2 − δ2ij
∣∣ , (7)

whose SDP relaxation is initially studied by Biswas and Ye
[19]. This framework of [19] has been followed up by many.
In particular, the edge-based SDP relaxation seems to stand
out as a viable numerical model [29], [30] and the software
SFSDP [31] is a high-level implementation of such SDP
specifically developed for SNL. However, a common drawback
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among those EDM/SDP models is that they are “centralized”,
meaning that a large linear systems is usually solved each step
and hence it is computationally expensive.

B. Our Approach and Main Contributions

The question to solve is the stress minimization (1) with the
box constraints (2). In terms of EDM, it is the problem (6)
with the box constraints. We state it below:

minD
∑
i,j Wij

(√
Dij − δij

)2
s.t. D ∈ Dn, rank(JDJ) ≤ r

D ∈ B := {A ∈ Sn | L ≤ A ≤ U} ,
(8)

where Lij := `2ij and Uij := u2ij , i, j = 1, . . . , n.
It is known [32] that

D ∈ Dn ⇐⇒ diag(D) = 0 and −D ∈ Kn+, (9)

where Kn+ is the conditional positive semidefinite cone:

Kn+ :=
{
A ∈ Sn|vTAv ≥ 0 for all v ∈ <n with vT 1 = 0

}
.

The geometric object Kn+(r), known as the conditional positive
semidefinite cone with rank-r cut [33], is defined by

Kn+(r) := Kn+ ∩ {A ∈ Sn | rank(JAJ) ≤ r}.

We define the distance between a point A ∈ Sn and Kn+(r):

dist(A, Kn+(r)) := min{‖A− Y ‖ | Y ∈ Kn+(r)},

where the matrix norm ‖A‖ is the Frobenius norm. Define the
function g : Sn 7→ < by

g(A) :=
1

2
dist2(−A, Kn+(r)), ∀ A ∈ Sn. (10)

We emphasize that (−A) is used in the definition of g(A)
because it is (−D) that belongs to Kn+ in (9). It is obvious
that −D ∈ Kn+(r) if and only if g(D) = 0. Therefore, the
problem (8) is equivalent to

minD f(D) :=
∑
i,jWij

(√
Dij − δij

)2
s.t. g(D) = 0, D ∈ B,

(11)

where the diagonal constraint diag(D) = 0 in (9) has been
integrated into the box constraint in B due to Lii = Uii = 0.
We refer to (11) as the Square-Root EDM (SQREDM) model
for the stress minimization (1) with the box constraint (2).

Let us take a close look at the model (11). The objective
f(D) is convex, though it may not be differentiable at some
points. The box constraint B is as simple as we can wish for.
The difficult part is the nonlinear equation defined by g(D),
which measures the violation of the feasibility of a matrix −D
belonging to Kn+(r). It has long been known that cMDS works
very well as long as the matrix D is close to be Euclidean.
This means that small violation of being Euclidean would not
cause a major concern for the final embedding. Therefore, we
propose to penalize the function g(D) to get the following
optimization problem:

min Fρ(D) := f(D) + ρg(D), s.t. D ∈ B, (12)

where ρ > 0 is a penalty parameter. We further propose a
majorization method for (12). At the current iterate Dk, we

will construct a convex majorization function gm(D,Dk) for
g(D) and update Dk by

Dk+1 = arg min f(D) + ρgm(D,Dk) s.t. D ∈ B. (13)

The rest of the paper is to provide the water-tight evidences
both in theory and numerically to justify the proposed ap-
proach. The main contributions are summarized as follows.

(i) We will show in Theorem 3.2 that the optimal solution
of the penalized problem (12) is an approximately op-
timal (i.e., ε-optimal) solution of the original problem
(11). Moreover, any accumulation point of the generated
sequence {Dk} is an approximate KKT point of (11)
(Theorem3.7(ii)). We note that the classical results on
penalty methods [34] are not applicable here because both
the function f(D) and g(D) are not differentiable.

(ii) The majorization function can be economically con-
structed via PCA (Principle Component Analysis) on a
centralized data matrix. Furthermore, the subproblem (13)
can be computed in a distributed fashion (i.e., computed
elementwise) each with a close-form formula (Prop. 3.5
and Eq. (29)). The use of the depressed cubic equation
in deriving the formula is interesting on its own, given
its recent success in compressed sensing [35].

(iii) Although the objective function f(D) is not differen-
tiable, we will show that it follows a continuously differ-
entiable path during the iteration process (Prop. 3.6). This
technical result is important because it avoids using the
subdifferential of f(·) to perform the convergence analy-
sis in Theorem 3.7, which shows that any accumulation
point is a stationary point of (12).

(iv) Finally, the efficiency of the proposed algorithm is
demonstrated against a few state-of-the-art methods
(SMACOF (Matlab implementation from [36]), ARAP [9],
ADMMSNL [17] and SFSDP [31]) on a number of artificial
and real data sets, which include SNL and molecular
conformation problems. The embedding quality of our
method is comparable to or exceeds the best results by
these benchmark methods and our method only uses a
fraction of the computing time by the others. The speed
advantage becomes extremely superior for large network
localizations.

C. Organization of the paper

In Sect. II, we will describe how the penalty function
g(A) is constructed through a PCA-style formula. We will
study its properties, which will lead to a natural choice of
majorization. Sect. III contains the main theoretical contribu-
tions. We will develop our square-root EDM model and a fast
algorithm. We will show that the subproblem by majorization
is well defined and has a closed-form solution. We will also
establish the convergence results for the proposed algorithm
under reasonable conditions. The superior performance of the
algorithm is demonstrated in Sect. IV against a few of state-
of-the-art methods on test problems from SNL and molecular
conformation. We conclude the paper in Sect. V.
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II. PENALTY FUNCTION AND ITS MAJORIZATION

The main purpose of this section is to show how the penalty
function g(·) in (10) can be efficiently computed and how its
majorization function gm(D,Dk) can be constructed at a given
point Dk.

For a given matrix A ∈ Sn, we consider its orthogonal
projection onto Kn+(r). Since Kn+(r) is not convex (unless
r ≥ n− 1), the projection is not unique. Let us denote all the
projections by ΠB

Kn
+(r)(A), which is defined by

ΠB
Kn

+(r)(A) := arg min
D∈Sn

‖A−D‖ s.t. D ∈ Kn+(r). (14)

We use ΠKn
+(r)(A) to denote any one element in ΠB

Kn
+(r)(A).

We will show below that one particular element can be
explicitly computed by the eigen-value decomposition (EVD)
of the matrix (JAJ). We make it precise below because
it is important to understand our model and for the fast
implementation of our algorithm.

Suppose A ∈ Sn has the following EVD:

A = λ1p1p
T
1 + λ2p2p

T
2 + · · ·+ λnpnp

T
n ,

where λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of A in non-
increasing order, and pi, i = 1, . . . , n are the corresponding
orthonormal eigenvectors. We define a PCA-style matrix trun-
cated at r:

PCA+
r (A) :=

r∑
i=1

max{0, λi}pipTi . (15)

The following results have been proved in [33].
Lemma 2.1: For a given matrix A ∈ Sn and an integer

r ≤ n. Let ΠKn
+(r)(A) be any one element in ΠB

Kn
+(r)(A).

The following results hold.
(i) [33, Eq. (26), Prop. 3.3] We have

〈ΠKn
+(r)(A), A−ΠKn

+(r)(A)〉 = 0.

(ii) [33, Prop. 3.4] The function

h(A) :=
1

2
‖ΠKn

+(r)(A)‖2

is well defined and is convex. Moreover,

ΠKn
+(r)(A) ∈ ∂h(A),

where ∂h(A) is the subdifferential of h(·) at A.
(iii) [33, Eq. (22), Prop. 3.3] One particular ΠKn

+(r)(A) can
be computed through

ΠKn
+(r)(A) = PCA+

r (JAJ) + (A− JAJ) (16)

Remarks:
(R1) In fact, the computational formula for ΠKn

+(r)(A) in
Lemma 2.1(iii) is a special choice of what is proved
in [33, Prop. 3.3], where ΠKn

+(r)(A) is characterized by
ΠSn

+(r)(JAJ) with Sn+(r) being the positive semidefi-
nite cone with rank-r cut. The PCA+

r (JAJ) is just a
special choice of ΠSn

+(r)(JAJ) following (15) and [33,
Lemma 2.2] or [37, Lemma 2.9]. We choose PCA+

r

mainly because of its computational simplicity.
Form now on, we use ΠKn

+(r)(A) defined by (16).

(R2) It follows from the definition g(A) in (10) and (14) that

g(A) =
1

2
‖A+ ΠKn

+(r)(−A)‖2. (17)

Lemma 2.1 allows us to represent g(A) in terms of h(A).
This relationship is so important that we include it in the
following result.

Lemma 2.2: We have for any A ∈ Sn

g(A) =
1

2
‖A‖2 − h(−A) and ‖ΠKn

+(r)(A)‖ ≤ 2‖A‖.

Hence, g(A) is a difference of two convex functions.
Proof: It follows from Lemma 2.1(i) that

〈−A, ΠKn
+(r)(−A)〉 = ‖ΠKn

+(r)(−A)‖2.

Substituting this into the first equation below to get

g(A) =
1

2
‖A‖2 +

1

2
‖ΠKn

+(r)(−A)‖2 + 〈A, ΠKn
+(r)(−A)〉

=
1

2
‖A‖2 +

1

2
‖ΠKn

+(r)(−A)‖2 − ‖ΠKn
+(r)(−A)‖2

=
1

2
‖A‖2 − 1

2
‖ΠKn

+(r)(−A)‖2

=
1

2
‖A‖2 − h(−A).

Since 0 ∈ Kn+(r) and ΠKn
+(r)(A) ∈ ΠB

Kn
+(r)(A), we have

‖A−ΠKn
+(r)(A)‖ = dist(A, Kn+(r)) ≤ ‖A− 0‖ = ‖A‖,

which, by the triangle inequality, yields

‖ΠKn
+(r)(A)‖ ≤ ‖ΠKn

+(r)(A)−A‖+ ‖A‖ ≤ 2‖A‖.

This is the second claim in the lemma.

It follows from the convexity of h(·) and ΠKn
+(r)(·) being

a subgradient of h(·) (Lemma 2.1(ii)) that

h(−D) ≥ h(−Z) + 〈ΠKn
+(r)(−Z), −D+Z〉, ∀ D,Z ∈ Sn.

This, with Lemma 2.2, implies for any D,Z ∈ Sn

g(D) =
1

2
‖D‖2 − h(−D)

≤ 1

2
‖D‖2 − h(−Z) + 〈ΠKn

+(r)(−Z), D − Z〉

=: gm(D,Z). (18)

Obviously, g(D) = gm(D,D) for any D. Hence, gm(·, ·) is a
majorization of g(·) [3, Chp. 8].

III. SQUARE-ROOT EDM MODEL (SQREDM): THEORY
AND ALGORITHM

This is the major section that establishes the theory and
algorithmic analysis for our proposed approach. It has three
parts. In the first part, we study the relationship between
the square-root EDM model (11) and its penalized problem
(12). A key concept in this part is the ε-optimality. In the
second part, we show that the majorized subproblem (13) has a
closed form solution, which can be computed componentwise.
Convergence analysis in included in the final part.
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A. Quality of the penalized problem

We note that the classical results on penalty methods [34]
for the differentiable case (i.e., all functions involved are
differentiable) are not applicable here. Our investigation on
the penalty problem (12) is concerned on the quality of its
optimal solution when the penalty parameter is large enough.
We first introduce the concept of ε-optimality.

Definition 3.1: (ε-optimal solution) Suppose D∗ is an opti-
mal solution of (11). For a given error tolerance ε > 0, a point
D̂ is called an ε-optimal solution of (11) if it satisfies

D̂ ∈ B, g(D̂) ≤ ε and f(D̂) ≤ f(D∗).

Obviously, if ε = 0, D̂ would be an optimal solution of (11).
We will show that the optimal solution of (12) is ε-optimal
provided that ρ is large enough. Let D∗ρ be an optimal solution
of the penalized problem (12) and Dr be any feasible solution
of the original problem (11). If the lower bound matrix L ≡ 0,
then we can simply choose Dr = 0. Define

ρε :=
f(Dr)

ε
.

We have following theorem.
Theorem 3.2: Let ε > 0 be given. For any ρ ≥ ρε, D∗ρ must

be ε-optimal. That is,

D∗ρ ∈ B, g(D∗ρ) ≤ ε and f(D∗ρ) ≤ f(D∗).

Proof: Since D∗ρ is an optimal solution of (12), we
have D∗ρ ∈ B. The rest follows from the following chain of
inequalities.

f(Dr) = f(Dr) + ρg(Dr) (because g(Dr) = 0)

= Fρ(Dr) ≥ Fρ(D∗ρ)

(because D∗ρ is an optimal solution of (12))
= f(D∗ρ) + ρg(D∗ρ)

≥ ρg(D∗ρ). (because f(D∗ρ) ≥ 0)

Therefore, we have

g(D∗ρ) ≤ f(Dr)

ρ
≤ f(Dr)

ρε
= ε.

Furthermore, we have

f(D∗) = f(D∗) + ρg(D∗)

(because D∗ ∈ Kn+(r), hence g(D∗) = 0)

= Fρ(D
∗) ≥ Fρ(D∗ρ)

(because D∗ρ is an optimal solution of (12))
= f(D∗ρ) + ρg(D∗ρ)

≥ f(D∗ρ). (because ρg(D∗ρ) ≥ 0)

This completes our proof.
Theorem 3.2 states that a global solution of the penalized

problem is also an ε-optimal for the original problem provided
that ρ is large enough. The local version of this result is about
ε-approximate KKT point. Let the Lagrangian function for
(11) be

L(D, β) := f(D) + βg(D), ∀ D ∈ Sn, β ∈ <.

We say a given D̂ is a KKT point of (11) if there exist β̂ > 0
and Γ̂ ∈ ∂DL(D̂, β̂) such that g(D̂) = 0 and

〈Γ̂, D − D̂〉 ≥ 0, ∀ D ∈ B. (19)

For a given ε > 0, we say D̂ is an ε-approximate KKT point
of (11) if β̂ > 0, g(D̂) ≤ ε and (19) holds. We will show in
Theorem 3.7(ii) that any accumulation point of the generated
sequence by our algorithm will be an ε-approximate KKT
point.

B. Solving the Subproblem

We now address how the subproblem (13) is to be solved.
For ease of reference, we write the objective function f(D)
as in the following form:

f(D) = ‖
√
W ◦ (

√
D −∆)‖2,

where
√
W and

√
D are the componentwise square-root of D

and W respectively, and ◦ is the Hadamard product between
two matrices (e.g., A ◦ B := (AijBij)). The solution of the
subproblem (13) is about computing an improved solution,
denoted by Z+, from the current point Z by solving the
problem:

Z+ := arg min {f(D) + ρgm(D,Z)} , s.t. D ∈ B. (20)

This subproblem has a perfect separability property that makes
it very easy to solve as we see below.

Z+ = arg min
D∈B

f(D) + ρgm(D,Z)

= arg min
D∈B

‖
√
W ◦ (

√
D −∆)‖2

+
ρ

2
‖D‖2 + ρ〈ΠKn

+(r)(−Z), D − Z〉

= arg min
D∈B

〈W,D〉 − 2〈W ◦∆,
√
D〉

+
ρ

2
‖D‖2 + ρ〈ΠKn

+(r)(−Z), D〉

= arg min
D∈B

ρ

2
‖D − Zρ‖2 − 2〈W ◦∆,

√
D〉

= arg min
D∈B

1

2
‖D − Zρ‖2 −

2

ρ
〈W ◦∆,

√
D〉, (21)

where the matrix Zρ := −W/ρ − ΠKn
+(r)(−Z). Therefore,

the solution Z+ can be computed elementwise due to the
separable property in (21):

Z+
ij = arg min

1

2
[Dij − (Zρ)ij ]

2 − 2

ρ
Wijδij

√
Dij

s.t. Lij ≤ Dij ≤ Uij . (22)

We denote the subproblem solution process by

Z+ = SQREDM(W,∆, Z). (23)

We will show how SQREDM can be computed.
Let us consider a simplified one-dimensional optimization

problem, whose solution will eventually give rise to SQREDM.
For given ω ∈ < and α ≥ 0, we aim to compute

x+(ω, α) := arg min
x≥0

p(x) :=
1

2
(x− ω)2 − 2α

√
x

=: dcroot[ω, α]. (24)
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We will prove below that x+ (we often drop its dependence
on (ω, α) when no confusion is caused) is well defined and
it can be computed through finding the positive root of a
depressed cubic equation. This is why we denote x+(ω, α)
by dcroot[ω, α] for easy reference later on.

If α = 0, it is obvious that x+ = max{0, ω}. The following
result considers the case α > 0.

Proposition 3.3: Suppose α > 0. Define

u :=
α

2
, v :=

ω

3
, and τ := u2 − v3.

Then the solution x+ is unique and x+ > 0. Moreover, x+

depends on the sign of τ and is stated as follows
(i) If τ ≥ 0, then

x+ =
[
(u+

√
τ)1/3 + (u−

√
τ)1/3

]2
(ii) If τ < 0, then ω > 0 and

x+ = 4v cos2(φ/3) with cos(φ) = u/v3/2 > 0.

Proof: For x > 0, the objective function p(x) in (24) is
differentiable and the first and second derivatives are

p′(x) = x− ω − α/
√
x and p′′(x) = 1 +

α

2
x−3/2.

It follows that p′(x) < 0 when x > 0 is close to 0 and p′′(x) ≥
1 for all x > 0. Hence, p(x) is decreasing near 0 and it
is strongly convex on the half line (0,+∞). Therefore, the
problem (24) has a unique solution and x+ > 0. Moreover,
we must have

p′(x+) = x+ − ω − α√
x+

= 0. (25)

Introducing y :=
√
x+, we get

y3 − ωy − α = 0, (26)

which is known as the depressed cubic equation and has three
roots (in the complex planes). However, we need to find the
positive real root. For Case (i) τ ≥ 0, the positive root of (26)
is given by the Cardan formula [38, Chp. 7] (the other two
roots are complex)

y = (u+
√
τ)1/3 + (u−

√
τ)1/3.

and hence x+ = y2 gives the solution in Case (i).
For Case (ii), τ < 0 implies v3 > u2, which yields v > 0

(hence ω > 0). Once again, by Cardan’s formula, the cubic
equation (26) has three real roots, namely y1 = 2

√
v cosφ/3,

y2 = 2
√
v cos

(
π + φ

3

)
and y3 = 2

√
v cos

(
2π + φ

3

)
,

where cos(φ) = u/v3/2 (a detailed proof for the above three
roots can be found in [39] and a more assessable reference is
[35]). Since cos(φ) > 0, it is easy to see that the only positive
root is y1. And x+ = y21 gives the result in Case (ii).

The above result shows that x+(ω, α) > 0 whenever α > 0.
The next result states that it can be bounded away from 0 by
a constant whenever ω and α satisfy certain bounds.

Proposition 3.4: Suppose there are two given constants C >
0 and c > 0. Then there exists γ > 0 such that

x+(ω, α) ≥ γ ∀ (ω, α) staisfying |ω| ≤ C, α ≥ c.

Proof: Suppose the result is not true. Then there exists
a sequence {ωk, αk}, k = 1, . . . , with |ωk| ≤ C and αk ≥ c
such that

lim
k→∞

x+(ωk, αk) = 0.

By the proof in Prop. 3.3 (see (25)), x+(ωk, αk) > 0 must be
the solution of the following equation:

x+(ωk, αk)− ωk − αk/
√
x+(ωk, αk) = 0.

Multiplying
√
x+(ωk, αk) on the both sides of the equation

above and taking limits, we get

0 = lim
k→∞

[
(x+(ωk, αk))3/2 − ωk

√
x+(ωk, αk)

]
= lim

k→∞
αk ≥ c > 0.

The contradiction establishes the result claimed.
Prop. 3.3 can be readily extended to the case where the

constraint is an interval instead of x ≥ 0.
Proposition 3.5: Let B denote the interval [a, b] in < with

0 ≤ a ≤ b. Let

x+B := arg min
x∈B

p(x) =
1

2
(x− ω)2 − 2α

√
x. (27)

Then we have

x+B = ΠB(x+) = ΠB(dcroot[ω, α]),

where ΠB(x+) denote the nearest point in B from x+ and it
is given by

ΠB(x+) = Π[a,b](x
+) = min{b, max{a, x+}}. (28)

Proof: Prop. 3.3 showed that x+ > 0 is the unique
optimal solution of the problem (24) and p′(x+) = 0. Since
p(x) is strongly convex over x > 0, this means that p′(x) < 0
for x < x+ and p′(x) > 0 for x > x+. We consider three
cases. Case 1: x+ ∈ [a, b]; Case 2: x+ > b and Case 3:
x+ < a.

For Case 1, it is obvious that x+ is also the optimal solution
of (27). Therefore, x+B = x+ and x+ = ΠB(x+) because
x+ ∈ B. For Case 2, it follows that p′(x) < 0 for all x ∈ [a, b].
This means that p(x) is strictly decreasing over the interval
[a, b]. Hence, b is the optimal solution of (27) and x+B = b.
It is obvious that b = ΠB(x+) since x+ > b. For Case 3,
it follows that p′(x) > 0 for all x ∈ [a, b]. This means that
p(x) is strictly increasing over the interval [a, b]. Hence, a is
the optimal solution of (27) and x+B = a. It is obvious that
a = ΠB(x+) since x+ < a. For all three cases, we proved
x+B = ΠB(x+) as claimed in the result.

It follows from Prop. 3.3 and Prop. 3.5 that the optimal
solution Z+

ij in (22) can be computed as follows:

Z+
ij = Π[Lij ,Uij ]

(
dcroot[(Zρ)ij ,Wijδij/ρ]

))
. (29)

Consequently, Z+ = SQREDM(W,∆, Z) in (23) is well
defined and its elements can be computed by (29).
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C. The Majorization Algorithm and Its Convergence

With the preparations above, we are ready to state our
majorization algorithm. Let Dk ∈ B be the current iterate.
We update it by solving the majorization subproblem (13) to
get Dk+1. It follows from the solution of (20) with Z replaced
by Dk that

Dk+1 = SQREDM(W,∆, Dk
ρ) (30)

with
Dk
ρ := −W/ρ−ΠKn

+(r)(−Dk). (31)

It is easy to see that the update scheme falls within the general
framework of majorization-minimization [16]. Moreover, our
minimization problem has the closed-form formula (30) with
(29) being a projection. Hence, it is a majorization-projection
algorithm. Because it is based on the square-root EDM model
(11), we refer to this matrix majorization-projection method
as SQREDM, which is summarized in Alg.1.

Algorithm 1 SQREDM Method

1: Input data: Dissimilarity matrix ∆, weight matrix W ,
penalty parameter ρ > 0, lower-bound matrix L, upper-
bound matrix U and the initial D0. Set k := 0.

2: Update: Compute Dk+1 by (30) and (31).
3: Convergence check: Set k := k + 1 and go to Step 2

until convergence.

Being a majorization update, (30) enjoys the commonly
known majorization inequalities as follows: For k = 1, 2, . . . ,

Fρ(D
k) = f(Dk) + ρg(Dk) = f(Dk) + ρgm(Dk, Dk)

(13)

≥ f(Dk+1) + ρgm(Dk+1, Dk)
(18)

≥ f(Dk+1) + ρg(Dk+1) (32)
= Fρ(D

k+1).

The functional sequence {Fρ(Dk)} is non-increasing and
converges because it is bounded from below by 0. This is
also the type of convergence that is enjoyed by all majoriza-
tion methods. However, we would like to establish stronger
convergence on the iterates sequence {Dk} itself.

A major obstacle in analysing the convergence for the
square-root EDM model (11) is the non-differentiability of
the objective function. Our first result below shows that the
objective f(·) is actually differentiable along the generated
sequence. We need the following two reasonable assumptions:
Assumption 1: The constrained box B is bounded.
Assumption 2: For ∆ and U , we require Uij > 0 if δij > 0.

Assumption 1 can be easily satisfied (e.g., setting the upper
bound to be twice the largest δ2ij). Assumption 2 means that if
δij > 0, then we certainly do not want the upper bound Uij =
0; otherwise Lij = 0 and the corresponding Dij is forced to
be 0, a very poor approximation to positive δij . With these
two assumptions, we are able to establish the differentiability
of f(·) along the generated sequence.

Proposition 3.6: Suppose Assumptions 1 and 2 hold. Let
{Dk} be the sequence generated by Alg. 1. Then the following
hold.

(i) f(D) is continuously differentiable at Dk, k = 1, 2, . . . , .
(ii) The sequence {Dk} is bounded and f(D) is continuously

differentiable at any of its limits.
Proof: (i) We write f(D) in terms of Dij :

f(D) =
∑
i,j

WijDij − 2
∑
i,j

Wijδij
√
Dij +

∑
i,j

Wijδ
2
ij .

We will prove for any given pair (i, j), ∂f(D)/∂Dij exists
and is continuous at any point Dk. We consider two cases.
Case 1: Wijδij = 0. This implies f(D) is a linear function
of Dij and ∂f(D)/∂Dij = 2Wij is constant and hence is
continuous. Case 2: Wijδij > 0. It follows from (29) and (30)
that

Dk
ij = Π[Lij ,Uij ]

(
dcroot[(Dk−1

ρ )ij , (Wijδij)/ρ]
)
.

Let αij := (Wijδij)/ρ > 0 and ωk−1ij := (Dk−1
ρ )ij . It

follows from Prop. 3.3 (because αij > 0) that (xkij)
+ :=

dcroot[ωk−1ij , αij ] > 0 and from (28) that

Dk
ij = Π[Lij ,Uij ]((x

k
ij)

+) ≥ min{Uij , x+ij} > 0, (33)

where the last inequality used the fact that Uij > 0 because
of δij > 0 by Assumption 2. It is obvious that

∂f(D)

∂Dij

∣∣∣Dk
ij

= Wij(1− δij/
√
Dk
ij),

which is continuous at Dk
ij > 0. This proved (i).

(ii) Since B is bounded (Assumption 1) and Dk ∈ B,
the sequence {Dk} is bounded. Let D̂ be one of its limits.
Without loss of any generality, let us assume Dk → D̂.
The proof below is the continuation in (i). For a given pair
(i, j), if Wijδij = 0, we have seen in (i) that ∂f/∂Dij is a
constant (independent of Dk). We only need to consider the
case Wijδij > 0, which implies δij > 0 and Uij > 0 by
Assumption 2.

It follows from (31) that there exists a constant C > 0 such
that∣∣ωkij∣∣ = |(Dk

ρ)ij | ≤ ‖Dk
ρ‖ ≤ ‖W‖/ρ+ ‖ΠKn

+(r)(−Dk)‖
≤ ‖W‖/ρ+ 2‖Dk‖ ≤ C,

where we used the boundedness of {Dk} and Lemma 2.2.
Prop. 3.4 implies that there exists γ > 0 such that (xkij)

+ ≥ γ
for k = 1, . . . , .. It follows from (33) that

Dk
ij ≥ min{Uij , (xkij)

+} ≥ min{Uij , γ}.

Taking limit on the left-hand side, we get D̂ij ≥
min{Uij , γ} > 0. Hence, ∂f(D)/∂Dij exists and is continu-
ous at D̂ij . This proved (ii).

We are ready to state our main convergence result
Theorem 3.7: Let the function Fρ(D) be defined in (12) and

let {Dk} be the sequence generated by the SQREDM method.
(i) We have

Fρ(D
k+1)−Fρ(Dk) ≤ −ρ

2
‖Dk+1−Dk‖2, k = 1, 2, . . . .

Consequently, ‖Dk+1 −Dk‖ → 0.
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(ii) Let D̂ be an accumulation point of {Dk}. Then for any
D ∈ B, we have

〈∇f(D̂) + ρD̂ + ρΠKn
+(r)(−D̂), D − D̂〉 ≥ 0. (34)

That is, D̂ is a stationary point of the problem (12).
Moreover, for a given ε > 0, if D0 ∈ −Kn+(r) ∩ B and

ρ ≥ ρε :=
f(D0)

ε
,

then D̂ is an ε-approximate KKT point of (11).
(iii) If D̂ is an isolated accumulation point of the sequence

{Dk}, then the whole sequence {Dk} converges to D̂.
Proof: (i) We are going to use the following facts that are

stated on Dk+1 and Dk. The first one is due to the convexity
of f(D)

f(Dk) ≥ f(Dk+1) + 〈∇f(Dk+1), Dk −Dk+1〉. (35)

The second fact is the identity:

‖Dk+1‖2−‖Dk‖2 = 2〈Dk+1−Dk, Dk+1〉−‖Dk+1−Dk‖2.
(36)

The third fact is due to the convexity of h(D) (see Lemma
2.1(ii)):

h(−Dk+1)− h(−Dk) ≥ 〈ΠKn
+(r)(−Dk), −Dk+1 +Dk〉.

(37)
The last one is the optimality condition of the problem (13):
for all D ∈ B, we have

〈∇f(Dk+1) + ρDk+1 + ρΠKn
+(r)(−Dk), D −Dk+1〉 ≥ 0,

(38)
which is well-defined because we already established the
differentiability of f at Dk+1 (Prop. 3.6(i)) and the problem
(13) is convex. Those four facts yield the following chain of
inequalities:

Fρ(D
k+1)− Fρ(Dk)

= f(Dk+1)− f(Dk) + ρg(Dk+1)− ρg(Dk)
(35)

≤ 〈∇f(Dk+1), Dk+1 −Dk〉+ ρg(Dk+1)− ρg(Dk)

= 〈∇f(Dk+1), Dk+1 −Dk〉
+ (ρ/2)(‖Dk+1‖2 − ‖Dk‖2)− ρ[h(−Dk+1)− h(−Dk)]
(36)
= 〈∇f(Dk+1) + ρDk+1, Dk+1 −Dk〉

−(ρ/2)‖Dk+1 −Dk‖2 − ρ[h(−Dk+1)− h(−Dk)]
(37)

≤ 〈∇f(Dk+1) + ρDk+1 + ρΠKn
+(r)(−Dk), Dk+1 −Dk〉

−(ρ/2)‖Dk+1 −Dk‖2
(38)

≤ −(ρ/2)‖Dk+1 −Dk‖2.

This proves that the sequence {Fρ(Dk)} is non-increasing and
it is also bounded below by 0. Taking the limits on both sides
yields ‖Dk+1 −Dk‖ → 0.

(ii) Suppose D̂ is the limit of a subsequence {Dk`}, ` =
1, . . . ,. Since we have established in (i) that (Dk`+1−Dk`)→
0, the sequence {Dk`+1} also converges to D̂. Now taking
the limits on both sides of (38) on {k`}, we reach the desired
inequality (34).

We now prove D̂ is an ε-approximate KKT point. It follows
from Lemma 2.1(ii) and Lemma 2.2 that

∇f(D̂) + ρD̂ + ρΠKn
+(r)(−D̂) ∈ ∂L(D̂, ρ),

which is the condition (19) with β̂ = ρ. We only need to show
g(D̂) ≤ ε. Since D0 ∈ −Kn+(r) ∩ B, we have

f(D0) = f(D0) + ρg(D0) (because g(D0) = 0)
(13)

≥ f(D1) + ρgm(D1, D0) (because D0 ∈ B)
(18)

≥ f(D1) + ρgm(D1) ≥ · · ·
(32)

≥ f(Dk) + ρg(Dk).

Taking the limit on the right-hand side yields

f(D0) ≥ f(D̂) + ρg(D̂) ≥ ρg(D̂),

where we used f(D̂) ≥ 0. Therefore, it has

g(D̂) ≤ f(D0)

ρ
≤ f(D0)

ρε
= ε.

We proved that D̂ is an ε-approximate KKT point of (11).
(iii) We note that we have proved in (i) that (Dk+1−Dk)→

0. The convergence of the whole sequence to D̂ follows from
[40, Prop. 7].

We finish this section with two more remarks.

(R1) A direct consequence of Prop. 3.6 is that the objective
f(D) is continuously differentiable on the path P :=
cl (∪∞k=1Pk), where cl(Ω) denotes the closure of a set Ω,

Pk :=
{
D | D = βDk + (1− β)Dk−1, 0 ≤ β ≤ 1

}
.

Moreover, P is bounded.
(R2) The continuous differentiability along the path P of the

generated points saves us from making extensive use
of subdifferential in nonsmooth optimization in order to
prove the optimality result in Thm. 3.7.

IV. NUMERICAL EXPERIMENTS AND COMPARISON

In this part, we will conduct extensive numerical experi-
ments of our algorithm SQREDM using MATLAB (R2014a)
on a desktop of 8GB memory and Inter(R) Core(TM) i5-4570
3.2Ghz CPU, against 4 leading solvers on the problems of
SNL in two dimensions (r = 2) and Molecular Conformation
(MC) in three dimensions (r = 3). Our conclusion is that
SQREDM is very competitive and significantly exceeds the
performance of all 4 solvers in many scenarios. For instance,
the solution quality of SQREDM is comparable to the best
results by the 4 solvers and the time used is only a small
fraction of what was used by them. This section includes the
following parts: Test problems, Implementation of SQREDM,
Selection of benchmark methods and Numerical comparison.
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A. Test Problems

We first describe our test problems so that our implemen-
tation and the selection of the benchmark methods may be
related to them.

(a) SNL test problems. As pointed out in the Introduction,
stress minimization coincides with the maximum likelihood
principle in SNL if the observed ranges among sensors are
perturbed by the white noise. Hence, SNL has been widely
used to test the viability of the proposed methods for stress
minimization (e.g., [15]). In such a problem, we typically have
m anchors (e.g., sensors with known locations) and the rest
sensors need to be located. We use two examples for our test.
One has a regular network topology and the other is non-
regular.

Example 4.1: (Square Network) This example is widely
tested since its detailed study in [41]. In the square region
[−0.5, 0.5]2, 4 anchors x1 = a1, · · · ,x4 = a4 (m = 4) are
placed at (±0.2,±0.2). The generation of the rest (n − m)
sensors (xm+1, · · · ,xn) follows the uniform distribution over
the square region. The noisy ∆ is usually generated as follows.

δij := ‖xi − xj‖ × |1 + εij × nf|, ∀ (i, j) ∈ N
N := Nx ∪Na
Nx := {(i, j) | ‖xi − xj‖ ≤ R, i > j > m}
Na := {(i, j) | ‖xi − aj‖ ≤ R, i > m, 1 ≤ j ≤ m} ,

where R is known as the radio range, εij’s are independent
standard normal random variables, and nf is the noise factor
(e.g., nf = 0.1 was used in the tests and it corresponds to 10%
noise level). In literature (e.g., [41]), this type of perturbation
in δij is known to be multiplicative and follows the unit-ball
rule in defining Nx and Na (see [42, Sect. 3.1] for more
detail). The corresponding weight matrix W and the lower
and upper bound matrices L and U are given as in the table
below. Here, M is a large positive quantity. For example,
M := nmaxij ∆ij is the upper bound of the longest shortest
path if the network is viewed as a graph.

(i, j) Wij ∆ij Lij Uij

i = j 0 0 0 0
i, j ≤ m 0 0 ‖ai − aj‖2 ‖ai − aj‖2

(i, j) ∈ N 1 δij 0 R2

otherwise 0 0 R2 M2

Example 4.2: (EDM word network) This problem has a non-
regular topology and is first used in [42] to challenge existing
localization methods. In this example, n points are randomly
generated in a region whose shape is similar to the letters “E”,
“D” and “M”. The ground truth network is depicted in Fig. 1.
We choose the first m points to be the anchors. The rest of
the data generation is same as in Example 4.1.

(b) MC test problems. Molecular conformation has long
been an important application of EDM optimization [6]. We
collected real data of 12 molecules derived from 12 struc-
tures of proteins from the Protein Data Bank (PDB) [43].
They are 1GM2, 304D, 1PBM, 2MSJ, 1AU6, 1LFB,
104D, 1PHT, 1POA, 1AX8, 1RGS, 2CLJ. They pro-
vide a good set of test problems in terms of the size n, which
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Fig. 1: Ground truth EDM network with n = 500 nodes.

ranges from a few hundreds to a few thousands (the smallest
n = 166 for 1GM and the largest n = 4189 for 2CLJ). The
distance information was obtained in a realistic way as done
in [44] and is described in the following example.

Example 4.3: (Real PDB data) Each molecule comprises
n atoms {x1, . . .xn} in <3 and its distance information is
collected as follows. If the Euclidean distance between two of
the atoms is less than R, the distance is chosen; otherwise no
distance information about this pair is known. For example,
R = 6Å (1Å = 10−8cm) is nearly the maximal distance that
the nuclear magnetic resonance (NMR) experiment can mea-
sure between two atoms. For realistic molecular conformation
problems, not all the distances below R are known from NMR
experiments, so one may obtain c% (e.g., c = 50%) of all the
distances below R. Denote Nx the set formed by indices of
those measured distances. Moreover, the distances in Nx can
not be exactly measured. Instead, only lower bounds `ij and
upper bounds uij are provided, that is for (i, j) ∈ Nx,

`ij = max {1, (1− |εij |)‖xi − xj‖} ,
uij = (1 + |εij |)‖xi − xj‖.

where εij ∼ N(0,nf2×π/2) are independent normal random
variables. In our test, we set the noise factor nf = 0.1 and the
parameters W,∆, L, U ∈ Sn are given as in the table below,
where M > 0 is the upper bound (e.g., M := nmaxij ∆ij).

(i, j) Wij ∆ij Lij Uij

i = j 0 0 0 0
(i, j) ∈ Nx 1 (aij + bij)/2 a2ij b2ij

otherwise 0 0 0 M2

B. Implementation

The SQREDM Alg. 1 is easy to implement. For its input, we
already defined ∆, L and U matrices for the test problems.
For the initial point, we follow the popular choice used in
[7], [8]

√
D0 := ∆̂, where ∆̂ is the matrix obtained by the

shortest path distances among ∆. If ∆ has no missing values,
then ∆̂ = ∆. We now address the remaining issues that are
the stopping criterion and choice of the penalty parameter ρ.

(c) Stopping criterion. It follows from Thm. 3.7 that the
objective sequence {Fρ(Dk)} is non-increasing. We define the
relative progress in Fρ by

Fprogk :=
Fρ(D

k−1)− Fρ(Dk)

1 + Fρ(Dk−1)
.
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Having less progress alone in Fρ is not enough to terminate
the algorithm. We will also need to ensure that the current
iterate Dk is close to Kn+(r). It follows from (16) that

Kprogk :=
2g(Dk)

‖JDkJ‖2
=
‖Dk + ΠKn

+(r)(−Dk)‖2

‖JDkJ‖2

=
‖PCA+

r (−JDkJ) + (JDkJ)‖2

‖JDkJ‖2

= 1−
∑r
i=1

[
λ2i − (λi −max{λi, 0})2

]
λ21 + . . .+ λ2n

≤ 1,

where λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of (−JDkJ).
The smaller Kprojk is, the closer Dk is to Kn+(r). The benefit
of using Kprog over g(D) is that the former is independent
of any scaling of D. We terminate SQREDM when

Fprogk ≤ 10−2 and Kprogk ≤ 10−3.

(d) Measuring the solution quality. For this purpose, we
adopt a widely used measure RMSD (Root of the Mean Squared
Deviation) defined by

RMSD :=

[
1

n−m

n∑
i=m+1

‖x̂i − xi‖2
]1/2

,

where xi’s are the true positions of the sensors in our test
problems and x̂i’s are their corresponding estimates. The
x̂i’s were obtained by applying cMDS to the final output
of the distance matrix, followed by aligning them to the
existing anchors through the well-known Procrustes procedure
(see [9], [3, Chp. 20] or [50, Prop. 4.1] for more details).
Furthermore, upon obtaining x̂i’s, a heuristic gradient method
can be applied to improve their accuracy and it is called the
refinement step in [41]. We report rRMSD to highlight its
contribution. As we will see, all tested methods benefit from
this step, but with varying degrees.

(e) Choice of the penalty parameter. In principle, the
penalty parameter ρ should start from a small value and is
then eventually increased in a way that should depend on the
latest progress made (see [34, P. 495]). The optimal choice of
ρ is dependent upon the size and geometry of the network and
the distance information available.
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Fig. 2: RMSD error of the estimated positions obtained from
SQREDM with penalty parameter ρ: (a) Example 4.1 (n = 200,
R = 0.2). (b) Example 4.2 (n = 200, m = 20, R = 10).

To see the dependence of our method on the penalty
parameter ρ, we tested it on Example 4.1 (regular layout)
and Example 4.2 (irregular layout) with varying ρ such that
ρ/
√
n ∈ {0.5, 1, 1.5, 2, . . . , 10}. Now under a given ρ, we ran

each test instance 20 times and recorded the average RMSD. A
plot of RMSD vs ρ/

√
n for the two examples can be found in

Figure 2. A pleasing feature is that the plot closely follows a
straight line in both cases. This means that SQREDM is quite
robust to the change of ρ when it is in the order of

√
n. In

our implementation, we fixed ρ and used ρ =
√
n.

C. Selection of benchmark methods

(f) On some simple majorization methods. We first
demonstrate how a simple majorization method (SMM) that
falls in the framework of (3) with (4) and (5) works. It is
suggested by a referee and is implied by the framework studied
in [14]. The quadratic function in (4) and the linear function
in (5) are respectively given by

q(xi,xj , X
k) = 2‖xi − xki ‖2 + 2〈dkij ,xi − xki 〉+

2‖xj − xkj ‖2 − 2〈dkij ,xj − xkj 〉+ ‖dkij‖2

where dkij := xki − xkj and for xki 6= xkj ,

l(xi,xj , X
k)

= −‖dkij‖−1(〈dkij ,xi − xki 〉 − 〈dkij ,xj − xkj 〉)− ‖dkij‖

We note that the quadratic function q(xi,xj , X
k) does not

have any coupled terms between xi and xj . Hence the
individual majorization function mi(xi, X

k) in (3) can be
constructed through those quadratic and linear functions.

We also note that Soares, Xavier and Gomes developed two
other important “simple” majorization methods, respectively
referred to as SMLL (Stable Maximum-Likelihood Localiza-
tion) [18] and diskRelax [15]. As pointed out in [18,
Sect. V], SMLL “receives an initialization from a convex
approximation method. The initialization will hopefully hand
to nonconvex refinement algorithms a point near the basin of
attraction of the true minimum.” However, our choice of the
initialization (if not provided by a package) is the embedding
by cMDS, which is cheap to compute and commonly used. It
appears that cMDS initialization is not good enough for SMLL
for many tested cases in this paper. We therefore will not
compare it with SQREDM in our experiments. One common
and nice feature of those methods is that they are free from
tuning any algorithmic parameters.

The performance of SMM and diskRelax (with compar-
ison to SQREDM) was demonstrated on Examples 4.1 with
varying ranges R. For diskRelax, we set MAXITER = 104

and epsilon = 10−3. The setting for SMM was same as
those for SMACOF. The initial point for both methods was
the cMDS embedding. We ran each test instance 20 times
and recorded their average rRMSD. The reason for reporting
rRMSD is that the refinement step significantly improved the
solution quality for both methods. The results were plotted in
Fig. 3. It can be observed that both SMM and diskRelax
returned high quality embedding only when the radio range
was sufficiently large (e.g., R ≥ 0.8 for diskRelax and
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R ≥ 1.2 for SMM.) This essentially means that only a small
number of dissimilarities δij are not known. In contrast,
SQREDM worked well also for small ranges (e.g., R = 0.2).
We also note that the linear function l(xi,xj , X

k) is poorly
scaled when xki and xkj are close to each other and it is
even not well-defined when xki = xkj because it involves
the term 1/‖xki −xkj ‖. Moreover, this drawback would create
difficulties in establishing convergences of SMM on the iterates
{Xk}. On the time consumed, SMM was the fastest, while
diskRelax took proportionally significantly more time to
terminate. Furthermore, this test problem is moderate in size
(n = 100) when compared to our tested problems below
with n ranging from a few hundreds to a few thousands.
Our experiments showed that they only worked for a small
number of our tested problems. It was pointed out to us by
one of its authors [15] that diskRelax tends to work well
for networks whose unknown sensors lie on the convex hull
of some anchors. However, both Examples 4.1 and 4.2 do not
meet this assumption. Therefore, we will not include the two
methods in our further numerical experiments.
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Fig. 3: Performance of three majorization methods:
diskRelax, SMM and SQREDM on Example 4.1 with
n = 100 and varying radio ranges R. Left: rRMSD error of
the estimated positions. Right: Time consumed.

(g) Four benchmark methods and their computational
complexities. Out of many published methods, we select four
representative state-of-the-art methods for comparison due to
their high-quality code implementation and availability. Those
methods have been shown to be capable of returning satis-
factory localization/embedding in many applications. Those
methods are SMACOF [4] whose MATLAB implementation is
taken from [36]; ARAP [9], ADMMSNL [17], and SFSDP [31].
SMACOF is a traditional method for the stress minimization
and has a high reputation in experimental sciences [3]. ARAP
can yield satisfactory embedding especially when the noisy
factor nf is small. ADMMSNL is motivated by [15] and aims
to enhance the package diskRelax of [15] for the SNL
problems (r = 2). Its current implementation does not support
the embedding for r ≥ 3. All the three methods are for
the stress minimization problem (1). However, SFSDP is
developed for the problem (7). We include it because SFSDP
is a high-level MATLAB implementation of the SDP approach
and is capable of solving large scale problems with high-
quality embedding. It truly serves as a benchmark method for
any embedding algorithms.

In our tests, we used all of their default parameters except

one or two in order to achieve the best results. In particular,
for ARAP, tol = 10−2 and IterNum = 40 to speed up
the termination. For SFSDP we set pars.SDPsolver =
“sedumi” because it returns the best overall performance.
For SMACOF, we set rtol = 10−2, iter = 103 and its
initial point was the embedding by cMDS on ∆. ADMMSNL
used the same setting for SMACOF.

We briefly discuss the computational complexity of those
methods. For SMACOF, the update formula [3, Eq. (8.28]) is

(Xk+1)T = V −B(Xk)(Xk)T , (39)

where V is an n×n matrix solely dependent on the weight ma-
trix W and V − is the Moore-Penrose inverse (only calculated
once), B(Xk) can be obtained using about (3/2)n(n − 1)r
operations (see [3, Eq. (8,24)]). The data matrix Xk is of r×n
and (39) involves matrices of n × n multiplying an n × r
matrix. Hence, the total complexity of SMACOF is O(rn2)
per iteration. As emphasized in [9, P. 35:14], the overall
complexity of ARAP is O(nk3) with k being the average
number of neighbours of the nodes. If k is about

√
n, then the

overall complexity would be about O(n2.5). This may justify
why ARAP used much time to terminate in some of our test
problems reported below.

The computational complexity of ADMMSNL at each node
i is analysed in [17, Sect. V] and is primarily dominated by
solving a nonlinear optimization problem of size r(1 + Ni),
where Ni is the size of the neighbourhood of i. This non-
linear optimization can be simplified and solved by standard
optimization methods such as Newton’s method, which makes
use of gradient and Hessian information. SFSDP uses the SDP
solver “sedumi” whose complexity is O(s2κ2.5+κ3.5) where
s is the number of decision variables and κ the number of
rows of the linear matrix inequality constraints. This is in
addition to some computational techniques that exploit the
sparsity properties in the linear equations encountered. Since
our computation each iteration is dominated by ΠKn

+(r)(−D)
in the construction of the majorization function gm in (18), the
overall computational complexity of SQREDM is about O(rn2)
(we used MATLAB’s built-in function eigs.m to compute
PCA+

r (A) in (15)).

D. Numerical Comparison
In this part, we report extensive numerical results on

the three examples, which in total have 14 problems. In
each test case, we randomly generate 20 samples (set
rng(’shuffle’) in Matlab) and the reported results are
the average on them. For instance, if we were to test the case
n = 200, R = 0.2 in Example 4.1, we would have generated
20 such networks in the way described in the example. This
subsection includes three parts, signposted by (h), (i), (j),
which are respectively for the three examples with varying
size n.

(h) Comparison on Example 4.1 (200 ≤ n ≤ 2000). The
quality of the general performance of the five methods can
be better appreciated through visualizing their key indicators
(RMSD, rRMSD, and the CPU time consumed). For this pur-
pose, we tested Example 4.1 with a moderate size n = 200
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Fig. 4: Localization by the five methods for Example 4.1 with n = 200, R = 0.2.
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Fig. 5: Comparison of five methods for Example 4.1 with n = 200.

and R = 0.2, which rendered many missing values in ∆. The
actual embedding by each method was shown in Fig. 4, where
the four anchors were plotted in green square and x̂i in pink
points were jointed to its true location (blue circle). It can be
visibly seen that the clear winners are ARAP and SQREDM,
followed by SFSDP, SMACOF and ADMMSNL. Clearly, there
exist a number of miss-placed sensors by SMACOF, SFSDP
and ADMMSNL both before and after the refinement step.

As expected, the performance for all the methods improves
as R increases from 0.2 to 1.4. This is because we have more
distance information in ∆ as the radio range gets bigger. The
results on the three indicators were plotted in Fig. 5. It can
be seen that ARAP and SQREDM are again joint winners in
terms of both RMSD and rRMSD. However, the time used by
ARAP is the longest. This comes as no surprise because its
complexity depends on the cubic of the average node degree k.
As R increases, k increases as well. When R gets bigger than
0.6, both ADMMSNL and SFSDP produced similar rRMSD as
ARAP and SQREDM, while the time consumed by ADMMSNL is
significantly larger than that by SFSDP and SQREDM. We note

that SQREDM used about 5 seconds in all cases and the time
by SFSDP is just below 10 seconds. However, as we will see,
SQREDM scales well when n gets larger, while SFSDP scales
badly when n reaches a few thousands. This is demonstrated
below.

We tested 8 problems with n = 400, 500, 1000, 2000 and
R = 0.2,

√
2 respectively. We ran each problem 20 times and

recorded average results in Table I, where SD is the standard
deviation of RMSD. When R =

√
2, ∆ has no missing values

(since the sensors are restricted to a unit square region). For
this case, all methods worked satisfactorily with rRMSD in
the order of 10−3. We note that SQREDM and ARAP benefited
little from the refinement step because their RMSD are already
in the order of 10−3. Furthermore, SQREDM used only a
fraction of cpu time consumed by other methods. When
R = 0.2, ∆ has many missing values and hence it is sparse.
The picture is significantly different. RMSD by SQREDM and
ARAP are in the order of 10−2, while both RMSD and rRMSD
by ADMMSNL and SFSDP are in the order of 10−1, which is
in the order of the unit region. Therefore, SQREDM generated
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the most accurate results and used the least time (e.g., for
n = 2000, R =

√
2, 33s (SQREDM) vs 4019s (SFSDP)).

(i) Comparison on Example 4.2 (400 ≤ n ≤ 2000). The
purpose of testing this example is to see how those methods
behave for networks with irregular layout. In this test, we fix
the radio range R = 10, which generated ∆ with many missing
elements (i.e., ∆ is sparse). For the visualization purpose, we
plotted the results after the refinement step for the case of n =
500 and m = 20, 40, 60. As shown in Fig. 6, the black points
were anchors and the rest were sensors. Compared with the
shape of the ground truth EDM network in Fig. 1, the letters
‘E’, ‘D’ generated by ADMMSNL, SMACOF and SFSDP became
clearer as m increased, but ‘M’ was still deformed. ARAP well
captured the shapes of the three letters when m = 20 but got
a slightly deformed ‘M’ for m = 40. By contrast, SQREDM
was capable of capturing the shapes of the three letters for
both cases.

Next, we tested 8 problems with n = 400, 500, 1000, 2000
and m = 20, 40 respectively. Also, each problem was run 20
times with the averaged results being reported in Table II,
where it is easily observed that SQREDM always generated
the lowest rRMSD. In terms of computational speed, SQREDM
is the fastest and only used a fraction of the cpu consumed
by other methods.

(j) Comparison on Example 4.3 (166 ≤ n ≤ 4189).
These 12 problems represent a very challenging set of

embedding problems in three dimensions (r = 3) because of
the three reasons. One is that the size n ranges from hundreds
to a few thousands. The second reason is that the dissimilarity
matrix ∆ is very sparse and the third reason is that the lower
and upper bounds `ij and uij for (i, j) ∈ Nx have to be
physically satisfied due to the properties of the atoms involved.
Any violation of such box constraints would lead to certain
level of deformation in the final embedding. Our method has a
unique advantage in that it always obeys those box constraints,
while others may not. Furthermore, both ADMMSNL and ARAP
are purposely designed for SNL problems (i.e., r = 2). Their
current implementations do not support the case r = 3. Hence,
we have to exclude those two methods from our comparison.

In our test, we fixed R = 6, c = 50% and nf= 0.1. The
generated embeddings by the remaining three methods for the
two molecules 1GM2 and 1LFB were shown in Fig. 7, where
the true and estimated positions of the atoms were plotted
by blue circles and pink stars respectively. Each pink star
was linked to its corresponding blue circle by a pink line.
For both cases, SQREDM almost conformed the shape of the
original data. Clearly, the other two failed to conform. The
complete numerical results for the 12 problems were reported
in Table III. It can be clearly seen that SQREDM performed
significantly better in all three indicators: RMSD, rRMSD and
Time. In particular, the time used by SQREDM is just a small
fraction of that by the other two. For example, SQREDM only
used 36.83s for 2CLJ, which is a very large data set with
n = 4189. We feel that the significance of our proposed
method in terms of the solution quality and the speed has
been well demonstrated through this class of problems.

V. CONCLUSION

It is known that existing methods such as SMACOF and
SDP relaxations for the stress minimization do not work
satisfactorily in the context of SNL problems. In this paper,
we considered the stress criterion under box constraints. The
key concept used is the EDM cone with rank-r cut, which
governs how well a dissimilarity matrix can be approximated
by a true EDM with low-embedding dimensions. Based on
this geometric concept, we developed a very fast algorithm,
whose major computation for each step is from computing
a few largest eigenvalues of a symmetric matrix (and the
corresponding eigenvectors). Hence, the overall computational
complexity of each step is O(rn2). We further established its
theoretical convergence to a stationary point. One significant
result is that the algorithm follows a smooth path despite the
objective function is not everywhere differentiable. This result
has led to a neat and water-tight convergence analysis. The
performance of the proposed algorithm has been demonstrated
against a few leading algorithms both SNL and MC problems.
Based on our extensive numerical experiments, it is safe to say
that SQREDM is capable of producing embeddings comparable
to the best results by the tested algorithms, but only uses
a small fraction of their computing time. In particular, our
algorithm is potentially very useful and competitive for large
scale embedding problems.

The proposed model and the algorithm has a wider applica-
tions other than SNL and MC problems. For example, it could
be applied to image data for dimensionality reduction as done
in [7] and problems studied in [45], [46]. It also remains to
be seen whether the developed techniques can be used for the
variants of the stress function considered in [3] and for outlier
removal in the robust MDS [47]–[49]. We plan to investigate
those problems in near future.
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TABLE II: Comparisons of five methods for Example 4.2.
m = 20 m = 40

n ADMMSNL ARAP SFSDP SMACOF SQREDM ADMMSNL ARAP SFSDP SMACOF SQREDM

400

RMSD 7.44e+0 1.90e+0 9.77e+0 3.92e+1 4.72e+0 1.82e+0 2.07e+0 4.04e+0 3.90e+1 3.94e+0
rRMSD 6.49e+0 7.19e-1 8.61e+0 1.27e+1 5.60e-1 1.80e+0 5.40e-1 1.63e+0 4.72e+0 5.04e-1
SD 1.70e-2 3.79e-2 6.08e-2 6.73e-3 6.29e-2 3.97e-2 2.52e-2 2.26e-2 4.76e-3 1.20e-2
rTime 0.37 0.27 0.27 0.29 0.29 0.20 0.16 0.18 0.29 0.17
Time 116.82 58.85 18.25 0.57 0.68 118.11 88.62 17.08 0.75 0.62

500

RMSD 5.76e+0 1.92e+0 7.96e+0 4.01e+1 4.73e+0 3.51e+0 3.40e+0 5.08e+0 3.92e+1 4.76e+0
rRMSD 5.49e+0 4.09e-1 5.97e+0 7.04e+0 4.55e-1 3.46e+0 2.49e+0 4.07e+0 4.64e+0 5.46e-1
SD 2.00e-2 2.91e-3 3.55e-2 3.87e-3 2.21e-2 3.60e-2 1.52e-2 1.60e-2 3.70e-3 1.15e-2
rTime 0.46 0.40 0.40 0.41 0.31 0.44 0.44 0.41 0.46 0.28
Time 153.17 110.40 18.82 0.78 1.19 143.99 146.38 49.21 1.27 1.17
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rTime 1.56 1.51 1.77 1.78 1.74 0.81 1.06 1.19 1.88 1.28
Time 338.61 1096.82 95.27 3.80 3.34 341.62 1196.51 95.25 3.87 3.01

2000
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SD 3.46e-3 1.10e-3 1.49e-2 1.41e-4 1.03e-3 5.63e-3 2.89e-3 7.33e-3 1.25e-3 2.06e-3
rTime 12.53 12.55 13.94 13.81 13.88 10.07 7.15 7.75 11.24 10.38
Time 910.89 14707.36 493.12 29.46 24.10 899.92 14558.45 603.62 24.06 19.36

(a) SMACOF:rRMSD=7.813 (b) SFSDP:rRMSD=4.582 (c) SQREDM:rRMSD=0.238

(d) SMACOF:rRMSD=13.67 (e) SFSDP:rRMSD=13.54 (f) SQREDM:rRMSD=0.532

Fig. 7: Molecular conformation by SMACOF, SFSDP and SQREDM. Above: 1GM2 (n = 166). Below: 1LFB (n = 641).
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TABLE III: Comparisons of three methods for Example 4.3. For data 1RGS and 2CLJ, our desktop run out of memory with
SFSDP and hence we omitted its results.

Data n RMSD rRMSD Time
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104D 766 12.310 12.337 2.948 12.642 13.266 1.174 34.86 51.97 8.7
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