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1. Introduction

R&D collaborations have become a widespread phenomenon especially in industries with a

rapid technological development such as the pharmaceutical, chemical and computer industries

[cf. Hagedoorn, 2002; Roijakkers and Hagedoorn, 2006]. Through such collaborations firms

generate R&D spillovers not only to their direct collaboration partners but also indirectly to

other firms that are connected to them within a complex network of R&D collaborations. At

the same time an increasing number of countries have resorted to various financial policies to

stimulate R&D investments by private firms [cf. e.g. Cohen, 1994; Czarnitzki et al., 2007]. In

particular, OECD countries spend more than 50 billion dollars per year on such R&D policies

[cf. Takalo et al., 2017], including direct R&D subsidies and R&D tax credits.1 The aim of

this paper is to develop and structurally estimate an R&D network model and to empirically

evaluate different R&D subsidy policies that take spillovers in R&D networks into account.

We consider a general model of competition à la Cournot where firms choose both their R&D

expenditures and output levels. Firms can reduce their costs of production by exerting R&D

efforts. We characterize the Nash equilibrium of this game for any type of R&D collaboration

network as well as for any type of competition structure between firms (Proposition 1). We

show that there exists a key trade-off faced by firms between the technology (or knowledge)

spillover effect of R&D collaborations and the product rivalry effect of competition. The former

effect captures the positive impact of R&D collaborations on output and profit while the latter

captures the negative impact of competition and market stealing effects.

Due to the existence of externalities through technology spillovers and competition effects

that are not internalized in the R&D decisions of firms, the social benefits of R&D differ from

the private returns of R&D. This creates an environment where government funding programs

that aim at fostering firms’ R&D activities can be welfare improving. We analyze the optimal

design of such R&D subsidy programs (where a planner can subsidize a firm’s R&D effort) that

take into account the network externalities in our model. We derive an exact formula for any

type of network and competition structure that determines the optimal amount of subsidies per

unit of R&D effort that should be given to each firm. We discriminate between homogeneous

1Different papers have evaluated how effective these policies are. See e.g. Zunica-Vicente et al. [2014] for an
overview of this literature.
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subsidies (Proposition 2), where each firm obtains the same amount of subsidy per unit of R&D

effort and targeted subsidies (Proposition 3), where subsidies are firm specific.

We then bring the model to the data by using a unique panel of R&D collaborations and

annual company reports over different sectors, regions and years. We adopt an instrumental

variable (IV) strategy to estimate the best-response function implied by the theoretical model

to identify the technology (or knowledge) spillover effect of R&D collaborations and the product

rivalry effect of competition in a panel data model with both firm and time fixed effects. In

particular, following Bloom et al. [2013], we use changes in the firm-specific tax price of R&D

to construct IVs for R&D expenditures. Furthermore, to address the potential endogeneity of

R&D networks, we use predicted R&D networks based on predetermined dyadic characteristics

to construct IVs to identify the casual effect of R&D spillovers. As predicted by the theoretical

model, we find that the spillover effect has a positive and significant impact on output and

profit while the competition effect has a negative and significant impact.

Using our estimates and following our theoretical results, we then empirically determine the

optimal subsidy policy, both for the homogenous case where all firms receive the same subsidy

per unit of R&D effort, and for the targeted case, where the subsidy per unit of R&D effort

may vary across firms. The targeted subsidy program turns out to have a much higher impact

on total welfare as it can improve welfare by up to 80%, while the homogeneous subsidies

can improve total welfare only by up to 4%. We then empirically rank firms according to the

welfare-maximizing subsidies that they receive by the planner. We find that the firms that

should be subsidized the most are not necessarily the ones that have the highest market share,

the largest number of patents or the most central position in the R&D network. Indeed, these

measures can only partially explain the ranking of firms that we find, as the market share

is more related to the product market rivalry effect, while the R&D network and the patent

stocks are more related to the technology spillover effect, and both effects are incorporated in

the design of the optimal subsidy program.

The rest of the paper is organized as follows. In Section 2, we compare our contribution

to the existing literature. In Section 3, we develop our theoretical model, characterize the

Nash equilibrium of this game, and define the total welfare. Section 4 discusses optimal R&D

subsidies. Section 5 describes the data. Section 6 is divided into four parts. In Section 6.1,
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we define the econometric specification of our model while, in Section 6.2, we highlight our

identification strategy. The estimation results are given in Section 6.3. Section 6.4 provides a

robustness check. The policy results of our empirical analysis are given in Section 7. We discuss

our main assumptions in Section 8. Finally, Section 9 concludes. In the Online Appendix, we

provide the proofs of the propositions (Appendix A), introduce the network definitions and

characterizations used throughout the paper (Appendix B), highlight the contribution of our

model with respect to the literature on games on networks (Appendix C), discuss the Herfindahl

concentration index (Appendix D), perform an analysis in terms of Bertrand competition in-

stead of Cournot competition (Appendix E), provide a theoretical model of direct and indirect

technology spillovers (Appendix F), determine market failures due to technological externalities

that are not internalized by the firms and investigate the optimal network structure of R&D

collaborations (Appendix G), give a detailed description of how we construct and combine

our different datasets for the empirical analysis (Appendix H), provide a numerical algorithm

for computing optimal subsidies (Appendix I) and, finally, provide some additional robustness

checks for the empirical analysis (Appendix J).

2. Related Literature

Our theoretical model analyzes a game with strategic complementarities where firms decide

about production and R&D effort by treating the network as exogenously given. Thus, it

belongs to a particular class of games known as games on networks [cf. Jackson and Zenou,

2015].2,3

Compared to this literature, we develop an R&D network model where competition between

firms is explicitly modeled, not only within the same product market but also across different

product markets (see Proposition 1). This yields very general results that can encompass any

possible network of collaborations and any possible market interaction structure of competi-

tion between firms. We also provide an explicit welfare characterization and determine which

network maximizes total welfare in certain parameter ranges (see Proposition 4 in the Online

2The economics of networks is a growing field. For recent surveys of the literature, see Jackson [2008] and
Jackson et al. [2017].

3Two prominent papers in this literature are that of Ballester et al. [2006] and Bramoullé et al. [2014]. In
the Online Appendix C, we discuss in detail the differences between our model and theirs.

3



Appendix G). To the best of our knowledge, this is one of the first papers that provides such

an analysis.4

We also perform a policy analysis of R&D subsidies that consists in subsidizing firms’ R&D

costs. We are able to determine the optimal subsidy levels both, when it is homogenous across

firms (Proposition 2) and when it is targeted to specific firms (Proposition 3). We are not

aware of any other studies of subsidy policies in the context of R&D collaboration networks.5

In the industrial organization literature, there is a long tradition of models that analyze

product and price competition with R&D collaborations (see, e.g. D’Aspremont and Jacquemin

[1988] and Suzumura [1992]). One of their main insights is that the incentives to invest in R&D

are reduced by the presence of such technology spillovers. In this literature, however, there is

no explicit network of R&D collaborations. The first paper that provides an explicit analysis of

R&D networks is that by Goyal and Moraga-Gonzalez [2001]. The authors introduce a strategic

Cournot oligopoly game in the presence of externalities induced by a network of R&D collab-

orations. Benefits arise in these collaborations from sharing knowledge about a cost-reducing

technology. However, by forming collaborations, firms also change their own competitive posi-

tion in the market as well as the overall market structure. Thus, there exists a two-way flow of

influence from the market structure to the incentives to form R&D collaborations and, in turn,

from the formation of collaborations to the market structure. Westbrock [2010] extends their

framework to analyze welfare and inequality in R&D collaboration networks, but abstracts from

R&D investment decisions. Even though we do not study network formation as, for example,

in Goyal and Moraga-Gonzalez [2001], compared to these papers, we are able to provide results

for all possible networks with an arbitrary number of firms and a complete characterization

of equilibrium output and R&D effort choices in multiple interdependent markets. We also

determine policies related to network design and optimal R&D subsidy programs.

From an econometric perspective, there has been a significant progress in the literature

on identification and estimation of social network models recently (see Blume et al. [2011]

and Chandrasekhar [2016], for recent surveys). One of the most popular models in applied

4An exception is the recent paper by Belhaj et al. [2016], who study network design in a game on networks
with strategic complements, but neglect competition effects (global substitutes).

5There are papers that look at subsidies in industries with technology spillovers but the R&D network is not
explicitly modeled. See e.g. Acemoglu et al. [2012]; Akcigit [2009]; Bloom et al. [2002]; Hinloopen [2001]; Leahy
and Neary [1997]; Spencer and Brander [1983].
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research is the linear social network models. Bramoullé et al. [2009] provide identification

conditions for this model based on the intransitivities in the network structure and propose an

IV-based estimation strategy exploiting exogenous characteristics of indirect connections. This

estimation strategy gains its popularity due to its simplicity. Yet, the validity of the IVs relies

on the assumption that the network structure captured by the adjacency matrix is exogenous.

If the adjacency matrix depends on some unobserved variables that are correlated with the

error term of the social interaction regression, then the adjacency matrix is endogenous and

this IV-based estimator would be inconsistent. In this paper, taking advantage of the panel data

structure in the empirical analysis, we introduce both firm and time fixed effects into the linear

social network model to attenuate the potential asymptotic bias caused by the endogenous

adjacency matrix. To further reduce this potential bias, we use the predicted adjacency matrix

based on predetermined dyadic characteristics (instead of the observed adjacency matrix) to

construct IVs for this model. This allows us to estimate the causal impact of R&D spillovers.

There is a large empirical literature on technology spillovers [see e.g. Bloom et al., 2013;

Einiö, 2014; Griffith et al., 2004; Singh, 2005], and R&D collaborations [see e.g. Hanaki et al.,

2010]. There is also an extensive literature that estimates the effect of R&D subsidies on

private R&D investments and other measures of innovative performance (see e.g. Bloom et al.

[2002], Feldman and Kelley [2006], Dechezleprêtre et al. [2016], and, for a survey, see Klette

et al. [2000]). However, to the best of our knowledge, our paper is the first that provides a

ranking of firms according to the welfare maximizing subsidies that they should receive. We

show, in particular, that the highest subsidized firms are not necessarily those with the largest

market share, a larger number of patents or the highest (betweenness, eigenvector or closeness)

centrality in the network of R&D collaborations. We find, however, that larger firms should

receive higher subsidies than smaller firms as they generate more R&D spillovers. This result

is in line with that of Bloom et al. [2013] who also find that smaller firms generate lower social

returns to R&D because they operate more in technological niches.

Furthermore, contrary to Akcigit [2009] and Acemoglu et al. [2012], we do not focus on

entry and exit but instead incorporate the network structure of R&D collaborating firms. This

allows us to take into account the R&D spillover effects of incumbent firms, which are typically

ignored in studies of the innovative activity of incumbent firms versus entrants. Therefore, we
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see our analysis as complementary to that of Akcigit [2009] and Acemoglu et al. [2012], and

we show that R&D subsidies can trigger considerable welfare gains when technology spillovers

through R&D alliances are incorporated.

3. Theoretical Framework

3.1. Network Game

We consider a general Cournot oligopoly game where a set of firms N = {1, . . . , n} is parti-

tioned in M ≥ 1 heterogeneous product markets Mm, m = 1, . . . ,M . Let |Mm| denote the

size of market Mm. We allow for consumption goods to be imperfect substitutes (and thus

differentiated products) by adopting the consumer utility maximization approach of Singh and

Vives [1984]. We first consider qi the demand for the good produced by firm i in market Mm.

A representative consumer in market Mm obtains the following gross utility from consumption

of the goods {qi}i∈Mm

Ūm({qi}i∈Mm
) = αm

∑
i∈Mm

qi −
1

2

∑
i∈Mm

q2i −
ρ

2

∑
i∈Mm

∑
j∈Mm,j ̸=i

qiqj.

In this formulation, the parameter αm captures the heterogeneity in market sizes, whereas

ρ ∈ [0, 1) measures the degree of substitutability between products. In particular, ρ → 1

depicts a market of perfectly substitutable goods, while ρ = 0 represents the case of local

monopolies.

The consumer maximizes net utility Um = Ūm −
∑

i∈Mm
piqi, where pi is the price of good

i. This gives the inverse demand function for firm i

pi = ᾱi − qi − ρ
∑

j∈Mm,j ̸=i

qj, (1)

where ᾱi =
∑M

m=1 αm1{i∈Mm}. In the model, we will study both the general case where ρ > 0

but also the special case where ρ = 0. The latter case is when firms are local monopolists so

that the price of the good produced by each firm i is only determined by its own quantity qi

(and the size of the market) but not by the quantities of other firms, i.e. pi = ᾱi − qi.

Firms can reduce their production costs by investing in R&D as well as by benefiting from
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an R&D collaboration with another firm.6 The amount of this cost reduction depends on the

R&D effort ei of firm i and the R&D efforts of the R&D collaboration partners of firm i. Given

the effort level ei, the marginal cost ci of firm i is given by:7

ci = c̄i − ei − φ
n∑

j=1

aijej, (2)

The network of R&D collaborations, G, can be represented by a symmetric n × n adjacency

matrix A. Its elements aij ∈ {0, 1} indicate whether there exists a link between nodes i and

j.8 In the context of our model, aij = 1 if firms i and j have an R&D collaboration and aij = 0

otherwise. As a normalization, we set aii = 0. In Equation (2), the total cost reduction for

firm i stems from its own research effort ei and the research effort of all other collaborating

firms (via knowledge spillovers), which is captured by the term
∑n

j=1 aijej, where φ ≥ 0 is the

marginal cost reduction due to a collaborator’s R&D effort. We assume that R&D effort is

costly. In particular, the cost of R&D effort is given by 1
2
e2i , which is increasing in effort and

exhibits decreasing returns. Firm i’s profit is then given by

πi = (pi − ci)qi −
1

2
e2i . (3)

Inserting the inverse demand from Equation (1) and the marginal cost from Equation (2) into

Equation (3) gives the following strictly quasi-concave profit function for firm i

πi = (ᾱi − c̄i)qi − q2i − ρ

n∑
j=1

bijqiqj + qiei + φqi

n∑
j=1

aijej −
1

2
e2i , (4)

where bij = 1 if firms i and j operate in the same market and bij = 0 otherwise. Consequently,

the market structure can be represented by an n×n competition matrix B = [bij]. If we arrange

firms by markets they operate in, the competition matrix B will be a block diagonal matrix

with a zero diagonal and blocks of sizes |Mm|, m = 1, . . . ,M . An illustration can be found

below.

6For example, Bernstein [1988] finds that R&D spillovers decrease the unit costs of production for a sample
of Canadian firms.

7We assume that the R&D effort independent marginal cost c̄i is large enough such that marginal costs, ci,
are always positive for all firms i ∈ N .

8See Online Appendix B.1 for definitions and characterizations of networks.
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3.2. Nash Equilibrium

We consider quantity competition among firms à la Cournot.9 The following proposition estab-

lishes the Nash equilibrium where each firm i simultaneously chooses both its output qi and R&D

effort ei in an arbitrary network of R&D collaborations represented by the adjacency matrix A

and an arbitrary market structure represented by the competition matrix B. Throughout the

paper, denote by I the n×n identity matrix, ι the n×1 vector of ones, and λmax(A) the largest

eigenvalue of A. Denote by µi ≡ ᾱi − c̄i for all i ∈ N , and µ the corresponding n × 1 vector

with components µi. Denote also by µ = mini {µi | i ∈ N} and µ = maxi {µi | i ∈ N}, with

0 < µ ≤ µ. Finally, denote by bµ(G, ϕ) ≡ (I−ϕA)−1µ the vector of µ-weighted Katz-Bonacich

centralities, and bι(G, ϕ) ≡ (I − ϕA)−1ι the vector of unweighted Katz-Bonacich centralities,

where ϕ = φ/(1− ρ). 10

Proposition 1. Consider the n-player simultaneous-move game with the payoff given by Equa-

tion (4), where φ ≥ 0, 0 ≤ ρ < 1 and 0 < µ ≤ µi ≡ ᾱi − c̄i ≤ µ.

(i) If φ = 0 or

φλmax(A) + ρ max
m=1,...,M

{|Mm| − 1} < 1 (5)

then there exists a unique Nash equilibrium with the equilibrium R&D efforts e∗ and outputs

q∗ given by

e∗ = q∗ = (I− φA+ ρB)−1µ. (6)

9In the Online Appendix E we show that the same functional forms for best response quantities and efforts
can be obtained for price setting firms under Bertrand competition as we find them in the case of Cournot
competition.

10The proof of Proposition 1 is given in the Online Appendix A. See the Online Appendix B.3 for a precise
definition of the Katz-Bonacich centrality used in the proposition.
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and the equilibrium profits π∗
i given by

π∗
i =

1

2
(q∗i )

2, ∀i ∈ N . (7)

(ii) If ϕ ≡ φ/(1− ρ) < λmax(A)−1, then there exists a unique Nash equilibrium in the case when

all firms operate in a single market (i.e., M = 1), with the equilibrium R&D efforts e∗ and

outputs q∗ given by

e∗ = q∗ =
1

1− ρ

(
bµ(G, ϕ)−

ρ ∥bµ(G, ϕ)∥1
(1− ρ) + ρ ∥bι(G, ϕ)∥1

bι(G, ϕ)

)
. (8)

In addition, if

ϕλmax (A) +
nρ

1− ρ

(
µ

µ
− 1

)
< 1 (9)

then, e∗ = q∗ > 0.

(iii) If φ < λmax(A)−1, then there exists a unique Nash equilibrium in the case when goods are

non-substitutable (i.e., ρ = 0), with the equilibrium R&D efforts e∗ and outputs q∗ given by

e∗ = q∗ = bµ(G,φ) = (I− φA)−1µ > 0.

(iv) If the conditions stated in (i)-(iii) hold, then e∗ = q∗ ≥ e∗ = q∗ ≥ e∗ = q∗ > 0, where

e∗ = q∗ is the vector of equilibrium outputs in the general case given by Equation (6).

Proposition 1 (i) characterizes the Nash equilibrium for the most general case with a general

R&D network and product market structure, while (ii) and (iii) characterize the equilibria of two

special cases, namely, the case where all firms operate in the same market and the case where

goods are non-substitutable, which provide the lower and upper bounds for the equilibrium in

the general case as shown in (iv).

The first-order condition of profit maximization with respect to the R&D effort leads to
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ei = qi,11 while the first-order condition with respect to the output leads to

qi = µi + φ
n∑

j=1

aijqj − ρ
n∑

j=1

bijqj, (10)

or, in matrix form, q = µ+ φAq− ρBq. If φ = 0 and 0 ≤ ρ < 1, or if the condition given by

Equation (5) holds, the matrix I−φA+ ρB is positive definite, and thus there exists a unique

Nash equilibrium characterized by Equation (6). This result generalizes those of Ballester

et al. [2006], Calvó-Armengol et al. [2009] and Bramoullé et al. [2014] to allow agents to make

multivariate choices on R&D effort and output levels in the presence of both network effects

and competition effects.12

Furthermore, to provide bounds on the equilibrium output in the general case characterized

by Equation (6), we consider two special cases, namely, the case where all firms operate in the

same market and the case where goods are non-substitutable. In particular, the lower bound is

given by the equilibrium output of the case where all firms operate in the same market, which

is strictly positive if the condition given by Equation (9) holds. Observe that, when all firms

are homogenous, i.e., µi = µ for all i ∈ N , then Equation (9) holds if ϕλmax(A) < 1. On the

other hand, everything else equal, the higher the discrepancy of marginal payoffs µ/µ, the lower

is the level of network complementarities ϕλmax(A) that are compatible with this condition. A

similar condition is obtained in Calvó-Armengol et al. [2009].

More generally, the key insight of Proposition 1 is the interaction between the network effect,

through the adjacency matrix A, and the market effect, through the competition matrix B,

and this is why the first-order condition with respect to qi given by Equation (10) takes both

of them into account. To better understand this result, consider the following simple example

where firms 1 and 2 as well as firms 1 and 3 are engaged in R&D collaborations. Suppose that

there are two markets where firms 1 and 2 operate in the same market M1 while firm 3 operates

alone in market M2 (see Figure 1). Then, the adjacency matrix A and the competition matrix

11The proportional relationship between R&D effort levels and outputs has been confirmed in a number of
empirical studies [see e.g. Cohen and Klepper, 1996; Klette and Kortum, 2004]. In the data used in our empirical
analysis, the Pearson product-moment correlation coefficient of R&D effort levels and outputs is 0.66, which
indicates strong linearity between these two variables.

12In Online Appendix C we highlight the contribution of our model with respect to the literature on games on
networks by, first, shutting the network effects, second, the competition effects, and then comparing our model
to that of Ballester et al. [2006] and Bramoullé et al. [2014].
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Figure 1: Equilibrium output from Equation (11) and profits for the three firms with µ = 1, φ = 0.1 and varying
values of the competition parameter 0 ≤ ρ < 1 −

√
2φ. Profits of firms 1 and 3 intersect at ρ = φ (indicated

with a dashed line).

B are given by

A =


0 1 1

1 0 0

1 0 0

 , B =


0 1 0

1 0 0

0 0 0

 ,

with λmax(A) =
√
2 and λmax(B) = 1. Assume that firms are homogeneous such that µi = µ

for i = 1, 2, 3. Using Proposition 1, the condition for the existence of a unique Nash equilibrium

with positive outputs is
√
2φ+ ρ < 1. The equilibrium outputs are given by

q∗ = µ(I− φA+ ρB)−1ι =
µ

1− 2φ2 + 2φρ− ρ2


1 + 2φ− ρ

(1 + φ)(1− ρ)

(1 + ρ)(1 + φ− ρ)

 , (11)

and equilibrium profits are given by π∗
i = (q∗i )

2/2 for i = 1, 2, 3. Figure 1 shows an illustration

of equilibrium outputs and profits for the three firms with µ = 1, φ = 0.1 and varying values

of the competition parameter 0 ≤ ρ < 1 −
√
2φ. We see that firm 1 has higher profits due to

having the largest number of R&D collaborations when competition is weak (ρ is low compared

to φ). However, when ρ increases, its profits decrease and become smaller than the profit of firm

3 when ρ > φ. This result highlights the key trade-off faced by firms between the technology

(or knowledge) spillover effect and the product rivalry effect of R&D [cf. Bloom et al., 2013]

since the former increases with φ, which captures the intensity of the spillover effect while the
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latter increases with ρ, which indicates the degree of competition in the product market.

3.3. Welfare

We next turn to analyzing welfare in the economy. Inserting the inverse demand from Equation

(1) into net utility Um of the consumer in market Mm shows that

Um =
1

2

∑
i∈Mm

q2i +
ρ

2

∑
i∈Mm

∑
j∈Mm,j ̸=i

qiqj.

For given quantities, the consumer surplus is strictly increasing in the degree ρ of substitutability

between products. In the special case of non-substitutable goods, when ρ = 0, we obtain

Um = 1
2

∑
i∈Mm

q2i , while in the case of perfectly substitutable goods, when ρ → 1, we get

Um = 1
2

(∑
i∈Mm

qi
)2. The total consumer surplus is then given by U =

∑M
m=1 Um. The

producer surplus is given by aggregate profits Π =
∑n

i=1 πi. As a result, the total welfare is

equal to W = U +Π. Inserting profits as a function of equilibrium outputs from Equation (7)

leads to the total welfare in the Nash equilibrium given by

W =
n∑

i=1

(q∗i )
2 +

ρ

2

n∑
i=1

n∑
j=1

bijq
∗
i q

∗
j = q∗⊤q∗ +

ρ

2
q∗⊤Bq∗. (12)

As welfare in Equation (12) is increasing in the output levels of the firms, it is clear that the

higher the production levels of the firms, the higher is welfare.13 Since output is proportional to

R&D, this shows that there is a general problem of underinvestment in R&D (see also Online

Appendix G.1). In the following section we therefore study the welfare gains from a policy that

encourages firms to spend more on R&D.

4. R&D Subsidy Policies

Because of the externalities generated by R&D activities, market resource allocation will typi-

cally not be socially optimal. In Online Appendix G.1, we show that, indeed, there is a generic

problem of under-investment in R&D, as the private returns from R&D are lower than the

13A discussion of how welfare is affected by the network structure can be found in the Online Appendix G.2.
In particular, we investigate which network structure maximizes welfare.
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social returns from R&D. A policy intervention can correct this market failure through R&D

subsidy or tax programs. We extend our framework by considering an optimal R&D subsidy

program that reduces the firms’ R&D costs. For our analysis, we first assume that all firms

obtain a homogeneous subsidy per unit of R&D effort spent. Then, we proceed by allowing the

social planner to differentiate between firms and implement firm-specific R&D subsidies.14

4.1. Homogeneous R&D Subsidies

Following Spencer and Brander [1983] and Hinloopen [2000, 2001], an government (or planner)

is introduced that can provide a subsidy, s ∈ [0, s̄] per unit of R&D effort for some s̄ > 0. It is

assumed that each firm receives the same per unit R&D subsidy. With a homogeneous R&D

subsidy, the profit of firm i given by Equation (4) becomes:

πi = (ᾱi − c̄i)qi − q2i − ρqi

n∑
j=1

bijqj + qiei + φqi

n∑
j=1

aijej −
1

2
e2i + sei. (13)

The game consists of two stages. In the first stage, the planner sets a subsidy rate on R&D

effort, and in the second stage, the firms choose outputs and R&D efforts given the subsidy rate

set in the first stage. The assumption that the planner can pre-commit itself to the subsidy

rate and thus can act in this leadership role is fairly natural. In this context, the optimal R&D

subsidy s∗ determined by the planner is found by maximizing the total welfare W (G, s) less

the cost of the subsidy s
∑n

i=1 ei, taking into account the fact that firms choose outputs and

R&D efforts for a given subsidy rate by maximizing profits in Equation (13). If we define the

net welfare as W (G, s) ≡ W (G, s)− s
∑n

i=1 ei, the social planner’s problem is given by

s∗ = argmaxs∈[0,s̄]W (G, s).

The following proposition characterizes the Nash equilibrium and derives the optimal subsidy

rate that solves the planner’s problem.15

Proposition 2. Consider the n-player simultaneous-move game with the payoff given by

14We would like to emphasize that, as we have normalized the cost of R&D to one in the profit function of
Equation (3), the absolute values of R&D subsidies are not meaningful in the subsequent analysis, but rather
relative comparisons across firms are.

15The proofs of Propositions 2 and 3 are given in Online Appendix A.
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Equation (13), where φ ≥ 0, 0 ≤ ρ < 1 and 0 < µ ≤ µi ≡ ᾱi − c̄i ≤ µ. Let R =

(I− φA+ ρB)−1(I+ φA) and H = I+R+R⊤ − 2R⊤R− ρR⊤BR.

(i) If φ = 0 or the condition given by Equation (5) holds, then there exists a unique Nash

equilibrium with the equilibrium outputs given by

q∗ = (I− φA+ ρB)−1µ+ sRι, (14)

the equilibrium R&D efforts given by

e∗i = q∗i + s, ∀i ∈ N , (15)

and the equilibrium profits given by

π∗
i =

(q∗i )
2 + s2

2
, ∀i ∈ N . (16)

(ii) If ι⊤Hι > 0, the optimal subsidy level is given by

s∗ =
ι⊤(2R+ ρBR− I)⊤(I− φA+ ρB)−1µ

ι⊤Hι
, (17)

provided that 0 < s∗ < s̄.

In part (i) of Proposition 2, we solve the second stage of the game where firms decide their

outputs and R&D efforts given the homogenous subsidy s. In part (ii) of the proposition,

we solve the first stage of the game where the planner optimally determines the subsidy rate.

In the special case that goods are not substitutable, i.e. ρ = 0, the optimal subsidy level is

s∗ = ι⊤(2R̃− I)⊤(I− φA)−1µ/(ι⊤H̃ι), given that ι⊤H̃ι > 0, where R̃ = (I− φA)−1(I+ φA)

and H̃ = I+ R̃+ R̃⊤ − 2R̃⊤R̃.

4.2. Targeted R&D Subsidies

We now consider the case where the planner can offer different subsidy rates to different firms,

so that firm i, for all i = 1, . . . , n, receives a subsidy si ∈ [0, s̄] per unit of R&D effort. Let s
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be an n× 1 vector with components si. With target R&D subsidies, the profit of firm i given

by Equation (4) becomes:

πi = (ᾱi − c̄i)qi − q2i − ρqi

n∑
j=1

bijqj + qiei + φqi

n∑
j=1

aijej −
1

2
e2i + siei. (18)

As in the case of homogenous subsidies, the optimal R&D subsidies s∗ are found by maximizing

the welfare W (G, s) less the cost of the subsidy
∑n

i=1 siei, given that firms are choosing outputs

and R&D efforts for a given subsidy level by maximizing profits in Equation (18). If we define

the net welfare as W (G, s) ≡ W (G, s) −
∑n

i=1 eisi, then the solution to the social planner’s

problem is given by

s∗ = argmaxs∈[0,s̄]nW (G, s).

The following proposition characterizes the Nash equilibrium and derives the optimal subsidy

rate that solves the planner’s problem.

Proposition 3. Consider the n-player simultaneous-move game with the payoff given by

Equation (18), where φ ≥ 0, 0 ≤ ρ < 1 and 0 < µ ≤ µi ≡ ᾱi − c̄i ≤ µ. Let R =

(I− φA+ ρB)−1(I+ φA) and H = I+R+R⊤ − 2R⊤R− ρR⊤BR.

(i) If φ = 0 or the condition given by Equation (5) holds, then there exists a unique Nash

equilibrium with the equilibrium outputs given by

q∗ = (I− φA+ ρB)−1µ+Rs, (19)

the equilibrium R&D efforts given by

e∗ = q∗ + s, (20)

and the equilibrium profits given by

π∗
i =

(q∗i )
2 + s2i
2

, ∀i ∈ N . (21)
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(ii) If the matrix H is positive definite, the optimal subsidy levels are given by

s∗ = H−1(2R+ ρBR− I)⊤(I− φA+ ρB)−1µ, (22)

provided that 0 < s∗i < s̄ for all i = 1, . . . , n.

As in the previous proposition, in part (i) of Proposition 3, we solve for the second stage of

the game where firms decide their outputs and R&D efforts given the targeted subsidy si. In

part (ii), we solve the first stage of the game where the planner optimally decides the targeted

subsidy rate.16 In the special case that goods are not substitutable, i.e. ρ = 0, the optimal

subsidy level is s∗ = H̃−1(2R̃ − I)⊤(I − φA)−1µ, given that the matrix H̃ is positive definite,

where R̃ = (I− φA)−1(I+ φA) and H̃ = I+ R̃+ R̃⊤ − 2R̃⊤R̃.

In the following sections we will test the different parts of our theoretical predictions. First,

we will test Proposition 1 and try to disentangle between the technology (or knowledge) spillover

effect and the product rivalry effect of R&D. Second, once the parameters of the model have

been estimated, we will use Propositions 2 and 3, respectively, to determine which firms should

be subsidized, and how large their subsidies should be in order to maximize net welfare.

5. Data

To obtain a comprehensive picture of R&D alliances, we use data on interfirm R&D collabo-

rations stemming from two sources that have been widely used in the literature [cf. Schilling,

2009]. The first one is the Cooperative Agreements and Technology Indicators (CATI) database

[cf. Hagedoorn, 2002]. This database only records agreements for which a combined innovative

activity or an exchange of technology is at least part of the agreement.17 The second source is

the Thomson Securities Data Company (SDC) alliance database. SDC collects data from the

U.S. Securities and Exchange Commission (SEC) filings (and their international counterparts),

16Note that when the condition for positive definiteness is not satisfied then we can sill use part (ii) of
Proposition 3, respectively, as a candidate for a welfare improving subsidy program. However, there might exist
other subsidy programs which yield even higher welfare gains.

17Firms might benefit from each other’s research beyond what is captured by the network of R&D collabora-
tions. Thus, in Section 6.4, we also define R&D collaborations between firms more broadly by their degree of
technological proximity.
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trade publications, wires, and news sources. We include only alliances from SDC that are clas-

sified explicitly as R&D collaborations. The Online Appendix H.1 provides more information

about the different R&D collaboration databases used for this study.

We then merged the CATI database with the Thomson SDC alliance database. For the

matching of firms across datasets we used the name matching algorithm developed as part of

the NBER patent data project [Atalay et al., 2011; Trajtenberg et al., 2009].18 The merged

datasets allow us to study patterns in R&D partnerships in several industries over an extended

period of several decades.

Observe that because of our IV strategy (See Section 6.2.3 below), which is based on R&D

tax credits in the U.S., we only consider U.S. firms as in Bloom et al. [2013].19

The systematic collection of inter-firm alliances started in 1987 and ended in 2006 for

the CATI database. However, information about alliances prior to 1987 is available in both

databases, and we use all information available starting from the year 1963 and ending in

2006.20 We construct the R&D alliance network by assuming that an alliance lasts 5 years. In

the Online Appendix (Section J.1), we conduct robustness checks with different specifications

of alliance durations.

Some firms might be acquired by other firms due to mergers and acquisitions (M&A) over

time, and this will impact the R&D collaboration network [cf. e.g. Hanaki et al., 2010]. We

account for M&A activities by assuming that an acquiring firm inherits all the R&D collabo-

rations of the target firm. We use two complementary data sources to obtain comprehensive

information about M&As. The first is the Thomson Reuters’ SDC M&A database, which has

historically been the reference database for empirical research in the field of M&As. The second

database for M&As is Bureau van Dijk’s Zephyr database, which is an alternative to the SDC

M&As database. A comparison and more detailed discussion of the two M&As databases can

be found in the Online Appendix H.2.

Figure 2 shows the number of firms, n, participating in an alliance in the R&D network, the

18See https://sites.google.com/site/patentdataproject. We thank Enghin Atalay and Ali Hortacsu
for making their name matching algorithm available to us.

19In the working paper version, König et al. [2014], we also consider non-U.S. firms, but with a different
estimation strategy.

20Fama and French [1992] note that Compustat suffers from a large selection bias prior to 1962, and we
discard any data prior to 1962 from our sample.
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Figure 2: The number of firms, n, participating in an alliance, the average degree, d̄, the degree variance, σ2
d,

and the degree coefficient of variation, cv = σd/d̄.

average degree, d̄, the degree variance, σ2
d, and the degree coefficient of variation, cv = σd/d̄,

over the years 1990 to 2005. It can be seen that there are very large variations over the years in

the number of firms having an R&D alliance with other firms. Starting from 1990, we observe

a strong increase (due to the IT boom) followed by a steady decline from 1997 onwards. Both,

the average number of alliances per firm (captured by the average degree d̄) and the degree

variance σ2
d follow a similar pattern. In contrast, the degree coefficient of variation, cv, has first

decreased and then increased over the years.

In Figure 3, exemplary plots of the largest connected component in the R&D network for

the years 1990, 1995, 2000 and 2005 are shown. The giant component has a core-periphery

structure with many R&D interactions between firms from different sectors.21

The combined CATI-SDC database provides the names for each firm in an alliance, but does

not contain balance sheet information. We thus matched the firms’ names in the CATI-SDC

database with the firms’ names in Standard & Poor’s Compustat U.S. annual fundamentals

21See also Figure H.5 in the Online Appendix H.1.
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(a) 1990 (b) 1995

(c) 2000 (d) 2005

Figure 3: Network snapshots of the largest connected component for the years (a) 1990, (b) 1995, (c) 2000 and
(d) 2005. Nodes’ sizes and shades indicate their targeted subsidies (see Section 7). The names of the 5 highest
subsidized firms are indicated in the network.
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Table 1: Summary statistics computed across the years 1967 to 2006.

Variable Obs. Mean Std. Dev. Min. Max. Compustat Mean

Sales [106] 21,067 2,101.56 7,733.29 9.98×10−8 168,055.80 1,085.05
Empl. 19,709 16,694.82 51,299.36 1 876,800.00 4,322.08
Capital [106] 20,873 1,629.29 7,388.32 3.82×10−8 170,437.40 663.44
R&D Exp. [106] 18,629 70.75 287.42 5.56×10−4 6,621.19 14.71
R&D Exp. / Empl. 17,203 20,207.79 55,887.27 3.37 2,568,507.00 4,060.12
R&D Stock [106] 17,584 406.87 1,520.97 5.58×10−3 22,292.97 33.13
Num. Patents 12,177 2,588.31 7,814.59 1 76,644.00 14.39

Notes: Values for sales, capital and R&D expenses are in U.S. dollars with 1983 as the base year.
Compustat means are computed across all firms in the Compustat U.S. fundamentals annual database
over all non-missing observations over the years 1967 to 2006.

database, as well as Bureau van Dijk’s Osiris database, to obtain information about their

balance sheets and income statements [see e.g. Dai, 2012]. Compustat and Osiris only contain

firms listed on the stock market, so they typically exclude smaller firms. However, they should

capture the most R&D intensive firms, as R&D is typically concentrated in publicly listed firms

[cf. e.g. Bloom et al., 2013]. The Online Appendix H.3 provides additional details about the

accounting databases used in this study.

For the purpose of matching firms across databases, we again use the above mentioned name

matching algorithm. We could match roughly 26% of the firms in the alliance data (considering

only firms with accounting information available). From our match between the firms’ names in

the alliance database and the firms’ names in the Compustat and Osiris databases, we obtained

a firm’s sales and R&D expenditures. Individual firms’ output levels are computed from deflated

sales using 2-SIC digit industry-year specific price deflators from the OECD-STAN database

[cf. Gal, 2013].22 Furthermore, we use information on R&D expenditures to compute R&D

capital stocks using a perpetual inventory method with a 15% depreciation rate (following Hall

et al. [2000] and Bloom et al. [2013]). Considering only firms with non-missing observations

on sales, output and R&D expenditures we end up with a sample of 1, 186 firms and a total of

1010 collaborations over the years 1967 to 2006.23

The empirical distributions for output P (q) (using a logarithmic binning of the data with

100 bins) and the degree distribution P (d) are shown in Figure 4. Both are highly skewed,

22In Online Appendix J.4, as a robustness check, we consider three alternative specifications of the competition
matrix based on the primary and secondary industry classification codes that can be found in the Compustat
Segments and Orbis databases [cf. Bloom et al., 2013], or using the Hoberg-Phillips product similarity indicators
[cf. Hoberg and Phillips , 2016].

23See the Online Appendix H for a discussion about the representativeness of our data sample, and Online
Appendix J.5 for a discussion about the impact of missing data on our estimation results.
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Figure 4: Empirical output distribution P (q) and the distribution of degree P (d) for the years 1990 to 2005.
The data for output has been logarithmically binned and non-positive data entries have been discarded. Both
distributions are highly skewed.

indicating a large degree of inequality in the number of goods produced as well as the number

of R&D collaborations. Industry totals are computed across all firms in the Compustat U.S.

fundamentals database (without missing observations). Basic summary statistics can be seen

in Table 1. The table shows that the R&D collaborating firms in our sample are typically

larger and have higher R&D expenditures than the average across all firms in the Compustat

database. This is consistent with previous studies which found that cooperating firms tend to

be larger and more R&D intensive [cf. e.g. Belderbos et al., 2004].

6. Econometric Analysis

6.1. Econometric Specification

In this section, we introduce the econometric equivalent to the equilibrium quantity produced

by each firm given in Equation (10). Our empirical counterpart of the marginal cost cit of firm

i from Equation (2) at period t has a fixed cost equal to c̄it = η∗i − ϵit − xitβ, and thus we get

cit = η∗i − ϵit − βxit − eit − φ
n∑

j=1

aij,tejt, (23)

where xit is a measure for the productivity of firm i, η∗i captures the unobserved (to the econo-

metrician) time-invariant characteristics of the firm, and ϵit captures the remaining unobserved

(to the econometrician) characteristics of the firm.
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Following Equation (1), the inverse demand function for firm i is given by

pit = ᾱm + ᾱt − qit − ρ
n∑

j=1

bijqjt, (24)

where bij = 1 if i and j are in the same market and zero otherwise. In this equation, ᾱm indicates

the market-specific fixed effect and ᾱt captures the time fixed effect due to exogenous demand

shifters that affect consumer income, number of consumers, consumer taste and preferences,

and expectations over future prices of complements and substitutes and future income.

Denote by κt ≡ ᾱt and ηi ≡ ᾱm−η∗i . Observe that κt captures the time fixed effect while ηi,

which includes both ᾱm and η∗i , captures the firm fixed effect. Then, proceeding as in Section 3

(see, in particular the proof of Proposition 1), adding subscript t for time and using Equations

(23) and (24), the econometric equivalent to the best-response quantity in Equation (10) is

given by

qit = φ
n∑

j=1

aij,tqjt − ρ
n∑

j=1

bijqjt + βxit + ηi + κt + ϵit. (25)

Observe that the econometric specification in Equation (25) has a similar specification as the

product competition and technology spillover production function estimation in Bloom et al.

[2013] where the estimation of φ will give the intensity of the technology (or knowledge) spillover

effect of R&D, while the estimation of ρ will give the intensity of the product rivalry effect.

However, as opposed to that paper, we explicitly model the technology spillovers stemming

from R&D collaborations using a network approach.

In vector-matrix form, we can write Equation (25) as

qt = φAtqt − ρBqt + xtβ + η + κtιn + ϵt, (26)

where qt = (q1t, · · · , qnt)⊤, At = [aij,t], B = [bij], xt = (x1t, · · · , xnt)
⊤, η = (η1, · · · , ηn)⊤,

ϵt = (ϵ1t, · · · , ϵnt)⊤, and ιn is an n-dimensional vector of ones.

For the T periods, Equation (26) can be written as

q = φdiag{At}q− ρ(IT ⊗B)q+ xβ + ιT ⊗ η + κ⊗ ιn + ϵ, (27)

where q = (q⊤
1 , · · · ,q⊤

T )
⊤, x = (x⊤

1 , · · · ,x⊤
T )

⊤, κ = (κ1, · · · , κT )
⊤, and ϵ = (ϵ⊤1 , · · · , ϵ⊤T )⊤. The
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Figure 5: The empirical competition matrix B = (bij)1≤i,j≤n measured by 4-digit level industry SIC codes.

vectors q, x and ϵ are of dimension (nT × 1), where T is the number of years available in the

data.

In terms of data, our main variables will be measured as follows. Output qit is calculated

using sales divided by the year-industry price deflators from the OECD-STAN database [cf. Gal,

2013]. The network data stems from the combined CATI-SDC databases and we set aij,t = 1 if

there exists an R&D collaboration between firms i and j in the last s years before time t, where

s is the duration of an alliance. The exogenous variable xit is the firm’s time-lagged R&D stock

at the time t−1. Finally, we measure bij as in the theoretical model so that bij = 1 if firms i and

j are the same industry (measured by the industry SIC codes at the 4-digit level) and bij = 0

otherwise. The empirical competition matrix B can be seen in Figure 5. The block-diagonal

structure indicating different markets is clearly visible.

6.2. Identification Issues

We adopt a structural approach in the sense that we estimate the first-order condition of the

firms’ profit maximization problem in terms of output and R&D effort, which lead to Equations

(25) and (26). The best-response quantity in Equation (26) then corresponds to a higher-order

Spatial Auto-Regressive (SAR) model with two spatial lags, Atqt and Bqt [cf. Lee and Liu,

2010].

There are several potential identification problems in the estimation of Equation (25) or
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(26). We face, actually, four sources of potential bias24 arising from (i) correlated or common-

shock effects, (ii) simultaneity of qit and qjt, (iii) endogeneity of the R&D stock, and (iv)

endogeneity of the R&D alliance matrix.

6.2.1. Correlated or Common-Shock Effects

Correlated or common-shock effects arise in network models due to the fact that there may be

common environmental factors that cause the individuals in the same network to behave in a

similar manner. They may be confounded with the network effects (i.e. φ and ρ) we are trying

to identify. To alleviate this problem, we incorporate both firm and time fixed effects (i.e. ηi

and κt) to the outcome Equation (25).

6.2.2. Simultaneity of Product Outputs

We use instrumental variables when estimating our outcome Equation (25) to deal with the issue

of simultaneity between qit and qjt. Indeed, the output of firm i at time t, qit, is a function of the

total output of all firms collaborating in R&D with firm i at time t, i.e. q̄a,it ≡
∑n

j=1 aij,tqjt, and

the total output of all firms that operate in the same market as firm i, i.e. q̄b,it ≡
∑n

j=1 bijqjt.

Due the feedback effect, qjt also depends on qit and, thus, q̄a,it and q̄b,it are endogenous.

Recall that xit denotes the time-lagged R&D stock of firm i at the time t− 1. To deal with

this issue, we instrument q̄a,it by the time-lagged total R&D stock of all firms with an R&D

collaboration with firm i, i.e.
∑n

j=1 aij,txjt, and instrument q̄b,it by the time-lagged total R&D

stock of all firms that operate in the same industry as firm i, i.e.
∑n

j=1 bijxjt. The rationale

for this IV strategy is that the time-lagged total R&D stock of R&D collaborators and product

competitors of firm i directly affects the total output of these firms but only indirectly affects

the output of firm i through the total output of these same firms.

More formally, to estimate Equation (27), first we transform it with the projection matrix

J = (IT − 1
T
ιT ι

⊤
T )⊗ (I− 1

n
ιnι

⊤
n ). The transformed Equation (27) is

Jq = φJdiag{At}q− ρJ(IT ⊗B)q+ Jxβ + Jϵ, (28)

24It should be clear that there is no exogenous contextual effect (and thus no reflection problem) in Equation
(25).

24



where the firm and time fixed effects η and κ have been eliminated by the projection matrix.25

Let Q1 = J[diag{At}x, (IT ⊗B)x,x] denote the IV matrix and Z = J[diag{At}q, (IT ⊗B)q,x]

denote the matrix of regressors in Equation (28). As there is a single exogenous variable in

Equation (28), the model is just-identified. The IV estimator of parameters (φ,−ρ, β)⊤ is given

by (Q⊤
1 Z)

−1Q⊤
1 q. With the estimated (φ,−ρ, β)⊤, one can recover η and κ by the least squares

dummy variables method.

Obviously, the above IV-based identification strategy is valid only if the time-lagged R&D

stock, xi,t−1, and the R&D alliance matrix, At = [aij,t], are exogenous. In Section 6.2.3 we

address the potential endogeneity of the time-lagged R&D stock, while the endogeneity of the

R&D alliance matrix is discussed in Section 6.2.4.

6.2.3. Endogeneity of the R&D Stock

The R&D stock depends on past R&D efforts, which could be correlated with the error term

of Equation (25). However, as the R&D stock is time-lagged and fixed effects are included,

the existing literature has argued that the correlation between the (time-lagged) R&D stock

and the error term of Equation (25) is likely to be weak. To further alleviate the potential

endogeneity issue of the time-lagged R&D stock, we use supply side shocks from tax-induced

changes to the user cost of R&D to construct IVs as in Bloom et al. [2013].26 To be more specific,

we use changes in the firm-specific tax price of R&D to construct instrumental variables for

R&D expenditures. Let wit denote the time-lagged R&D tax credit firm i received at time

t− 1.27 We instrument q̄a,it by the time-lagged total R&D tax credits of all firms having R&D

collaborations with firm i, i.e.
∑n

j=1 aij,twjt, instrument q̄b,it by the time-lagged total R&D tax

credits of all firms that operate in the same industry as firm i, i.e.
∑n

j=1 bijwjt, and instrument

the time-lagged R&D stock xit by the time-lagged R&D tax credit wit. The rationale for

this IV strategy is that the time-lagged total R&D credits of R&D collaborators and product

competitors of firm i directly affects the total output of these firms but only indirectly affects

the output of firm i through the total output of these same firms.

25For unbalanced panels, the firm and time fixed effects can be eliminated by a projection matrix given in
Wansbeek and Kapteyn [1989].

26We would like to thank Nick Bloom for making the tax credit data available to us.
27See Appendix B.3 in the Supplementary Material of Bloom et al. [2013] for details on the specification of

wit.
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More formally, let Q2 = J[diag{At}w, (IT ⊗ B)w,w], where w = (w⊤
1 , · · · ,w⊤

T )
⊤ and

wt = (w1t, · · · , wnt)
⊤, denote the IV matrix, and Z = J[diag{At}q, (IT ⊗ B)q,x] denote the

matrix of regressors in Equation (28). The IV estimator of parameters (φ,−ρ, β)⊤ is given by

(Q⊤
2 Z)

−1Q⊤
2 q.

6.2.4. Endogeneity of the R&D Alliance Matrix

The R&D alliance matrix At = [aij,t] is endogenous if there exists an unobservable factor that

affects both the outputs, qit and qjt, and the R&D alliance, indicated by aij,t. If the unobservable

factor is firm-specific, then it is captured by the firm fixed-effect ηi. If the unobservable factor

is time-specific, then it is captured by the time fixed-effect κt. Therefore, the fixed effects in

the panel data model are helpful for attenuating the potential endogeneity of At.

However, it may still be that there are some unobservable firm-specific time-varying factors

that affect the formation of R&D collaborations and thus make the R&D alliance matrix At

endogenous. To deal with this issue, we run a two-stage IV estimation as in Kelejian and

Piras [2014] where, in the first stage, we obtain a predicted R&D alliance matrix based on

predetermined dyadic characteristics, and, in the second stage, we employ the IV strategy

explained above using IVs constructed with the predicted adjacency matrix from the first stage.

Let us now explain how to obtain a predicted R&D alliance matrix in the first stage. We

estimate a logistic regression model with the corresponding log-odds ratio as a function of

predetermined dyadic characteristics:

log

(
P
(
aij,t = 1 | (Aτ )

t−s−1
τ=1 , fij,t−s−1, cityij,marketij

)
1− P

(
aij,t = 1 | (Aτ )

t−s−1
τ=1 , fij,t−s−1, cityij,marketij

))

= γ0 + γ1 max
τ=1,...,t−s−1

aij,τ + γ2 max
τ=1,...,t−s−1

k=1,...,n

aik,τakj,τ + γ3fij,t−s−1 + γ4f
2
ij,t−s−1 + γ5cityij + γ6marketij,

(29)

In this model, maxτ=1,...,t−s−1 aij,τ is a dummy variable, which is equal to 1 if firms i and j

had an R&D collaboration before time t− s (s is the duration of an alliance) and 0 otherwise;

maxτ=1,...,t−s−1;k=1,...,n aik,τakj,τ is a dummy variable, which is equal to 1 if firms i and j had

a common R&D collaborator before time t − s and 0 otherwise; fij,t−s−1 is the time-lagged

technological proximities between firms i and j, measured here by either the Jaffe or the Maha-
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lanobis patent similarity indices at time t− s− 1;28 cityij is a dummy variable, which is equal

to 1 if firms i and j are located in the same city29 and 0 otherwise; and marketij is a dummy

variable, which is equal to 1 if firms i and j are in the same market and 0 otherwise.30

The rationale for this IV solution is as follows. Take, for example, the dummy variable,

which is equal to 1 if firms i and j had a common R&D collaborator before time t − s, and 0

otherwise. This means that, if firms i and j had a common collaborator in the past (i.e. before

time t− s), then they are more likely to have an R&D collaboration in period t, i.e. aij,t = 1,

but, conditional on the firm and time fixed effects, having a common collaborator in the past

should not directly affect the outputs of firms i and j in period t (i.e. the exclusion restriction

is satisfied). A similar argument can be made for the other variables in Equation (29). As a

result, using IVs based on the predicted adjacency matrix Ât should alleviate the concern of

invalid IVs due to the endogeneity of the adjacency matrix At.

Formally, let Q3 = J[diag{Ât}x, (IT ⊗B)x,x] denote the IV matrix based on the predicted

R&D alliance matrix and Z = [diag{At}q, (IT ⊗ B)q,x] denote the matrix of regressors in

Equation (28). Then, the estimator of the parameters (φ,−ρ, β)⊤ with IVs based on the

predicted adjacency matrix is given by (Q⊤
2 Z)

−1Q⊤
3 q.

6.3. Estimation Results

6.3.1. Main results

Table 2 reports the parameter estimates of Equation (26) with time fixed effects (Model A) and

with both firm and time fixed effects (Model B). In these regressions, we assume that the time-

lagged R&D stock and the R&D alliance matrix are exogenous. We see that, with both firm

and time fixed effects, the estimated parameters in Model B are statistically significant with the

28 We matched the firms in our alliance data with the owners of patents recorded in the Worldwide Patent
Statistical Database (PATSTAT). This allowed us to obtain the number of patents and the patent portfolio held
for about 36% of the firms in the alliance data. From the firms’ patents, we then computed their technological
proximity following Jaffe [1986] as fJ

ij =
P⊤

i Pj√
P⊤

i Pi

√
P⊤

j Pj

, where Pi represents the patent portfolio of firm i and is
a vector whose k-th component Pik counts the number of patents firm i has in technology category k divided by
the total number of technologies attributed to the firm. As an alternative measure for technological similarity
we also use the Mahalanobis proximity index fM

ij introduced in Bloom et al. [2013]. The Online Appendix
H.5 provides further details about the match of firms to their patent portfolios and the construction of the
technology proximity measures fk

ij , k ∈ {J,M}.
29See Singh [2005] who also tests the effect of geographic distance on R&D spillovers and collaborations.
30Observe that the predictors for the link-formation probability are either time-lagged or predetermined so

the IVs constructed with Ât are less likely to suffer from any endogeneity issues.
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Table 2: Parameter estimates from a panel regression of Equation (26). Model
A includes only time fixed effects, while Model B includes both firm and time
fixed effects. The dependent variable is output obtained from deflated sales.
Standard errors (in parentheses) are robust to arbitrary heteroskedasticity
and allow for first-order serial correlation using the Newey-West procedure.
The estimation is based on the observed alliances in the years 1967–2006.

Model A Model B

φ -0.0118 (0.0075) 0.0106** (0.0051)
ρ 0.0114*** (0.0015) 0.0189*** (0.0028)
β 0.0053*** (0.0002) 0.0027*** (0.0002)

# firms 1186 1186
# observations 16924 16924
Cragg-Donald Wald F stat. 6454.185 7078.856

firm fixed effects no yes
time fixed effects yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

expected signs, i.e., the technology (or knowledge) spillover effect (estimate of φ) has a positive

impact on own output while the product rivalry effect (estimate of ρ) has negative impact

on own output. However, without controlling for firm fixed effects, the estimated technology

spillover effect in Model A is negative.

As Equation (6) of the theoretical model suggests, a firm’s R&D effort is proportional to

its production level, the positive technology spillover effect indicates that the higher a firm’s

production level (or R&D effort) is, the more its R&D collaborator produces. That is, there

exist strategic complementarities between allied firms in production and R&D effort. On the

other hand, the negative product rivalry effect indicates the higher a firm’s production level (or

R&D effort) is, the less its product competitors in the same market produce. Furthermore, this

table also shows that a firm’s productivity captured by its own time-lagged R&D stock has a

positive and significant impact on its own production level. Finally, the Cragg-Donald Wald F

statistics for both models are well above the conventional benchmark for weak IVs [cf. Stock

and Yogo, 2005].

6.3.2. Endogeneity of R&D Stocks and Tax-Credit Instruments

Table 3 reports the parameter estimates of Equation (26) with tax credits as IVs for the time-

lagged R&D stock as discussed in Section 6.2.3. Similarly to the benchmark results reported

in Section 6.3.1, with both firm and time fixed effects, the estimated parameters in Model D

are statistically significant with the expected signs, i.e., the technology (or knowledge) spillover
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Table 3: Parameter estimates from a panel regression of Equation (26) with
IVs based on time-lagged tax credits. Model C includes only time fixed ef-
fects, while Model D includes both firm and time fixed effects. The dependent
variable is output obtained from deflated sales. Standard errors (in parenthe-
ses) are robust to arbitrary heteroskedasticity and allow for first-order serial
correlation using the Newey-West procedure. The estimation is based on the
observed alliances in the years 1967–2006.

Model C Model D

φ -0.0133 (0.0114) 0.0128* (0.0069)
ρ 0.0182*** (0.0018) 0.0156** (0.0076)
β 0.0054*** (0.0004) 0.0023*** (0.0006)

# firms 1186 1186
# observations 16924 16924
Cragg-Donald Wald F stat. 138.311 78.791

firm fixed effects no yes
time fixed effects yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

effect is positive while the product rivalry effect is negative. However, without firm fixed effects,

the estimated technology spillover effect in Model C is biased downward to become negative,

which is similar to what we obtained without the tax-credit instruments (Table 2). Furthermore,

a firm’s productivity captured by its own time-lagged R&D stock has a positive and significant

impact on its own production level. Finally, the reported Cragg-Donald Wald F statistics for

both models suggest the IVs based on tax credits are informative.

6.3.3. Endogeneity of the R&D Alliance Matrix

We also consider IVs based on the predicted R&D alliance matrix, i.e. Âtxt, as discussed in

Section 6.2.3.

First, we obtain the predicted alliance-formation probability âij,t from the logistic regression

given by Equation (29). The logistic regression result, using either the Jaffe or Mahalanobis

patent similarity measures, is reported in Table 4. The estimated coefficients are all statistically

significant with expected signs. Interestingly, having a past collaboration or a past common

collaborator, being established in the same city, or operating in the same industry/market

increases the probability that two firms have an R&D collaboration in the current period.

Furthermore, being close in technology (measured by either the Jaffe or Mahalanobis patent

similarity measure) in the past also increases the chance of having an R&D collaboration in the

current period, even though this relationship is concave.

Next, we estimate Equation (26) with IVs based on the predicted alliance matrix. The
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Table 4: Link formation regression results. Technological
similarity, fij , is measured using either the Jaffe or the Ma-
halanobis patent similarity measures. The dependent vari-
able aij,t indicates if an R&D alliance exists between firms
i and j at time t. The estimation is based on the observed
alliances in the years 1967–2006.

technological similarity Jaffe Mahalanobis

Past collaboration 0.5981*** 0.5920***
(0.0150) (0.0149)

Past common collaborator 0.1162*** 0.1164***
(0.0238) (0.0236)

fij,t−s−1 13.6977*** 6.0864***
(0.6884) (0.3323)

f2
ij,t−s−1 -20.4083*** -3.9194***

(1.7408) (0.4632)
cityij 1.1283*** 1.1401***

(0.1017) (0.1017)
marketij 0.8451*** 0.8561***

(0.0424) (0.0422)

# observations 3,964,120 3,964,120
McFadden’s R2 0.0812 0.0813

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

estimates are reported in Table 5. We find that the estimates of both the technology spillovers

and the product rivalry effect are still significant with the expected signs. Compared to Table 2,

the estimate of the technology spillovers (i.e. the estimation of φ) has, however, a larger value

and a larger standard error. Finally, the reported Cragg-Donald Wald F statistics suggest the

IVs based on the predicted alliance matrix are informative.

6.3.4. Robustness Analysis

In Online Appendix J, we perform some additional robustness checks. First, in Appendix J.1,

we estimate our model for alliance durations ranging from 3 to 7 years. Second, in Appendix

J.2, we consider a model where the spillover and competition coefficients are not identical

across markets. We perform a robustness check using two major divisions in our data, namely

the manufacturing and services sectors that cover, respectively, 76.8% and 19.3% firms in our

sample. Third, in Appendix J.3, we conduct a robustness analysis by directly controlling

for potential input-supplier effects. Fourth, in Appendix J.4, we consider three alternative

specifications of the competition matrix. Finally, in Appendix J.5, we discuss the issue of

possible biases due to sampled network data. We find that the estimates are robust to all these

extensions.
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Table 5: Parameter estimates from a panel regression of Equation (26) with
endogenous R&D alliance matrix. The IVs are based on the predicted links
from the logistic regression reported in Table 4, where technological similar-
ity is measured using either the Jaffe or the Mahalanobis patent similarity
measures. The dependent variable is output obtained from deflated sales.
Standard errors (in parentheses) are robust to arbitrary heteroskedasticity
and allow for first-order serial correlation using the Newey-West procedure.
The estimation is based on the observed alliances in the years 1967–2006.

technological similarity Jaffe Mahalanobis

φ 0.0582* (0.0343) 0.0593* (0.0341)
ρ 0.0197*** (0.0031) 0.0197*** (0.0031)
β 0.0024*** (0.0002) 0.0024*** (0.0002)

# firms 1186 1186
# observations 16924 16924
Cragg-Donald Wald F stat. 48.029 49.960

firm fixed effects yes yes
time fixed effects yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

6.4. Direct and Indirect Technology Spillovers

In this section, we extend our empirical model of Equation (25) by allowing for both, direct

(between firms with an R&D alliance) and indirect (between firms without an R&D alliance)

technology spillovers. The generalized model is given by31

qit = φ
n∑

j=1

aij,tqjt + χ
n∑

j=1

fij,tqjt − ρ
n∑

j=1

bijqjt + βxit + ηi + κt + ϵit, (30)

where fij,t are weights characterizing alternative channels for technology spillovers (measured

by the technological proximity between firms using either the Jaffe or the Mahalanobis patent

similarity measures; see Bloom et al. [2013]) other than R&D collaborations, and the coefficients

φ and χ capture the direct and the indirect technology spillover effects, respectively. In vector-

matrix form, we then have

qt = φAtqt + χFtqt − ρBqt + xtβ + η + κtιn + ϵt. (31)

The results of a fixed-effect panel regression of Equation (31) are shown in Table 6. Both

technology spillover coefficients, φ and χ, are positive, while only the direct spillover effect is

significant. This suggests R&D alliances are the main channel for technology spillovers.

31The theoretical foundation of Equation (30) can be found in Online Appendix F.
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Table 6: Parameter estimates from a panel regression of Equation (31) with
both firm and time fixed effects. Technological similarity, fij , is measured
using either the Jaffe or the Mahalanobis patent similarity measures. The
dependent variable is output obtained from deflated sales. Standard errors
(in parentheses) are robust to arbitrary heteroskedasticity and allow for first-
order serial correlation using the Newey-West procedure. The estimation is
based on the observed alliances in the years 1967–2006.

technological similarity Jaffe Mahalanobis

φ 0.0102** (0.0049) 0.0102** (0.0049)
χ 0.0063 (0.0052) 0.0043 (0.0030)
ρ 0.0189*** (0.0028) 0.0192** (0.0028)
β 0.0027*** (0.0002) 0.0027*** (0.0002)

# firms 1190 1190
# observations 17105 17105
Cragg-Donald Wald F stat. 4791.308 4303.563

firm fixed effects yes yes
time fixed effects yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

7. Empirical Implications for the R&D Subsidy Policy

With our estimates from the previous sections – using Model B in Table 2 as our baseline

specification – we are now able to empirically determine the optimal subsidy policy, both for

the homogenous case, where all firms receive the same subsidy per unit of R&D (see Proposition

2), and for the targeted case, where the subsidy per unit of R&D may vary across firms (see

Proposition 3).32

As our empirical analysis focuses on U.S. firms, the central planner that would implement

such an R&D subsidy policy could be the U.S. government or a U.S. governmental agency. In

the U.S., R&D policies have been widely used to foster the firms’ R&D activities. In particular,

as of 2006, 32 states in the U.S. provided a tax credit on general, company funded R&D [cf.

Wilson, 2009]. Moreover, another prominent example in the U.S. is the Advanced Technology

Program (ATP), which was administered by the National Institute of Standards and Technology

(NIST) [cf. Feldman and Kelley, 2003].

Observe that we provide a network-contingent subsidy program, that is, each time an R&D

subsidy policy is implemented, it takes into account the prevalent network structure. In other

words, we determine how, for any observed network structure, the R&D policy should be

32Additional details about the numerical implementation of the optimal subsidies program can be found in
Online Appendix I.
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Figure 6: (Top left panel) The total optimal subsidy payments, s∗∥e∥1, in the homogeneous case over time,
using the subsidies in the year 1990 as the base level. (Top right panel) The percentage increase in welfare due
to the homogeneous subsidy, s∗, over time. (Bottom left panel) The total subsidy payments, e⊤s∗, when the
subsidies are targeted towards specific firms, using the subsidies in the year 1990 as the base level. (Bottom
right panel) The percentage increase in welfare due to the targeted subsidies, s∗, over time.

specified (short-run persepctive). The rationale for this approach is that, in an uncertain

and highly dynamic environment such as the R&D intensive industries that we consider, an

optimal contingent policy is typically preferable over a fixed policy [see, e.g. Buiter, 1981].33 In

the following we will then calculate the optimal subsidy for each firm in every year that the

network is observed.

In Figure 6, in the top panel, we calculate the optimal homogenous subsidy times R&D

effort over time, using the subsidies in the year 1990 as the base level (top left panel), and the

percentage increase in welfare due to the homogenous subsidy over time (top right panel). The

total subsidized R&D effort more than doubled over the time between 1990 and 2005. In terms

of welfare, the highest increase (around 3.5 %) is obtained in the year 2001, while the increase in

welfare in 1990 is smaller (below 2.5 %). The bottom panel of Figure 6 does the same exercise

33Note that, as the subsidy reacts to changes in the link structure, there is no point in the firms adjusting
their links to extract extra subsidies. In particular, if a firm were to form redundant links (with diminishing
value added to welfare) then our policy would reduce the subsidies allocated to this firm.
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1990 1995 2000 2005
year

100

101

102

103

ra
n
k

1 General Motors Corp.
2 Exxon Corp.
3 Ford Motor Co.
4 AT&T Corp.
5 Chevron
6 Texaco
7 Lockheed
8 Mobil Corp.
9 TRW Inc.

10 Altria Group
11 Alcoa Inc.
12 Shell Oil Co.
13 Chrysler Corp.
14 Schlumberger Ltd. Inc.
15 Hewlett-Packard Co.
16 Intel Corp.
17 Hoechst Celanese Corp.
18 Motorola
19 PPG Industries Inc.
20 Himont Inc.
21 GTE Corp.
22 National Semiconductor Corp.
23 Marathon Oil Corp.
24 Bellsouth Corp.
25 Nynex

Figure 7: Change in the ranking of the 25 highest subsidized firms (Table 7) from 1990 to 2005.

for the targeted subsidy policy. The largest total expenditures on the targeted subsidies are

higher than the ones for the homogeneous subsidies, and they can also vary by several orders

of magnitude. The targeted subsidy program also turns out to have a much higher impact on

total welfare, as it can improve welfare by up to 80 %, while the homogeneous subsidies can

improve total welfare only by up to 3.5 %. Moreover, the optimal subsidy levels show a strong

variation over time. Both the homogeneous and the aggregate targeted subsidy seem to follow

a cyclical trend (while this pattern seems to be more pronounced for the targeted subsidy),

similar to the strong variation we have observed for the number of firms participating in R&D

collaborations in a given year in Figure 2. This cyclical trend is also reminiscent of the R&D

expenditures observed in the empirical literature on business cycles [cf. Galí, 1999].

We can compare the optimal subsidy level predicted from our model with the R&D tax

subsidies actually implemented in the United States and selected other countries between 1979

to 1997 [see Bloom et al., 2002; Impullitti, 2010]. While these time series typically show a

steady increase of R&D subsidies over time, they do not seem to incorporate the cyclicality

that we obtain for the optimal subsidy levels. Our analysis thus suggests that policy makers

should adjust R&D subsidies to these cycles.

We next proceed by providing a ranking of firms in terms of targeted subsidies. Such a

ranking can guide a planner who wants to maximize total welfare by introducing an R&D

subsidy program, identify which firms should receive the highest subsidies, and how high these

subsidies should be. The ranking of the first 25 firms by their optimal subsidy levels in 1990
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Figure 8: Pair correlation plot of market shares, R&D stocks, the number of patents, the degree, the ho-
mogeneous subsidies and the targeted subsidies (cf. Table 8), in the year 2005. The Spearman correlation
coefficients are shown for each scatter plot. The data have been log and square root transformed to account for
the heterogeneity in across observations.

can be found in Table 7 while the one for 2005 is shown in Table 8.34 We see that the ranking of

firms in terms of subsidies does not correspond to other rankings in terms of network centrality,

patent stocks or market share.

There is also volatility in the ranking since many firms that are ranked in the top 25 in

1990 are no longer there in 2005 (for example TRW Inc., Alcoa Inc., Schlumberger Ltd. Inc.,

etc.). Figure 7 shows the change in the ranking of the 25 highest subsidized firms (Table 7)

from 1990 to 2005.

A comparison of market shares, R&D stocks, the number of patents, the degree (i.e. the

number of R&D collaborations), the homogeneous subsidy and the targeted subsidy shows

a high correlation between the R&D stock and the number of patents, with a (Spearman)

correlation coefficient of 0.65 for the year 2005. A high correlation can also be found for the

homogeneous subsidy and the targeted subsidy, with a correlation coefficient of 0.75 for the year

34The network statistics shown in these tables correspond to the full CATI-SDC network dataset, prior to
dropping firms with missing accounting information. See Online Appendix H.1 for more details about the data
sources and construction of the R&D alliances network.
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2005. The corresponding pair correlation plots for the year 2005 can be seen in Figure 8. We

also find that highly subsidized firms tend to have a larger R&D stock, and also a larger number

of patents, degree and market share. However, these measures can only partially explain the

subsidies ranking of the firms, as the market share is more related to the product market rivalry

effect, while the R&D and patent stocks are more related to the technology spillover effect, and

both enter into the computation of the optimal subsidy program.

Observe that our subsidy rankings typically favor larger firms as they tend to be better

connected in the R&D network than small firms. This adds to the discussion of whether

large or small firms are contributing more to the innovativeness of an economy [cf. Mandel,

2011], by adding another dimension along which larger firms can have an advantage over small

ones, namely by creating R&D spillover effects that contribute to the overall productivity of the

economy. While studies such as Spencer and Brander [1983] and Acemoglu et al. [2012] find that

R&D should often be taxed rather than subsidized, we find in line with e.g. Hinloopen [2001]

that R&D subsidies can have a significantly positive effect on welfare. As argued by Hinloopen

[2001], the reason why our results differ from those of Spencer and Brander [1983] is that we

take into account the consumer surplus when deriving the optimal R&D subsidy. Moreover,

in contrast to Acemoglu et al. [2012], we do not focus on entry and exit but incorporate the

network of R&D collaborating firms. This allows us to take into account the R&D spillover

effects of incumbent firms, which are typically ignored in studies of the innovative activity of

incumbent firms versus entrants. Therefore, we see our analysis as complementary to that of

Acemoglu et al. [2012], and we show that R&D subsidies can trigger considerable welfare gains

when technology spillovers through R&D alliances are incorporated.

8. Discussion

In this section we discuss some assumptions of our model and their implications on the empirical

and policy analysis.

Inertia of R&D networks One of the underlying assumptions of our model is that the R&D

network exhibits inertia. That is, compared to making adjustments to production and R&D

expenditures, it is relatively costly – both in terms of money and time – to form new alliances
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in the R&D network. Therefore, we consider a short-run policy analysis, where we treat the

R&D network as given and design the optimal subsidy program by taking into account the

equilibrium production and R&D investment decisions of the firms. In the long run, the R&D

network might itself also respond to the subsidy program, and thus, the design of a long-run

subsidy program should take the evolution of the R&D network into account. However, such a

dynamic forward looking network formation game would be very hard to solve, and despite the

recent developments in analyzing network formation models, there does not exist a commonly

agreed procedure for solving such dynamic problems. For this reason, we focus on a short-run

policy analysis in this paper, leaving the long-run policy analysis for future work.

Independent markets In our basic model, we consider independent markets, i.e., firms only

compete against firms in the same product market, but not against firms from different product

markets. This assumption can be relaxed, however, in our theoretical framework. In Proposition

1 we characterize the Nash equilibrium with a single product market (i.e., M = 1), where all

firms compete against each other. Furthermore, by allowing the elements of the competition

matrix B to take arbitrary weights instead of the binary values 0 or 1, the competition matrix

can be flexibly specified to represent more general market structures.

Based on these ideas, we conduct a robustness analysis for our empirical results with alter-

native specifications of the competition matrix. First, in Section J.2 of the Online Appendix, we

re-estimate Equation (27) using two major sectors in our data, namely the manufacturing and

services sectors, that, respectively, cover 76.8% and 19.3% firms in our sample. The estimated

spillover and competition parameters of these two sectors are largely the same as those in our

benchmark specification.

Next, in Section J.4 of the Online Appendix, we consider a richer specification of the B

matrix. This extension follows Bloom et al. [2013] by considering three alternative specifications

for the competition matrix based on the primary and secondary industry classification codes

that can be found in (i) the Compustat Segments database, (ii) the Orbis database [cf. Bloom

et al., 2013], or (iii) the Hoberg-Phillips product similarity database [cf. Hoberg and Phillips ,

2016]. These alternative competition matrices capture (in a reduced form) the product portfolio

of a firm by taking into account the different industries a firm is operating in. We find that

irrespective of what type of competition matrix is being used, the estimated technology spillover
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effect is positively significant, with the magnitude similar to that obtained in the benchmark

model. Moreover, the product rivalry effect with alternative specifications of the competition

matrix is also statistically significant with the expected sign.

No input-output linkages Our theoretical model considers horizontally related firms, while

it does not incorporate the possible vertical relationships of firms through input-output linkages.

To test for potential R&D spillovers between vertically related firms, we conduct a robustness

analysis by directly controlling for potential input-supplier effects. We obtain information

about firms’ buyer-supplier relationships from two data sources. The first is the Compustat

Segments database [cf. e.g. Atalay et al., 2011; Barrot and Sauvagnat, 2016]. Compustat

Segments provides business details, product information and customer data for over 70% of the

companies in the Compustat North American database, with firms’ coverage starting in the

year 1976. We also use as a second datasource the Capital IQ Business Relationships database

[Barrot and Sauvagnat, 2016; Lim, 2016; Mizuno et al., 2014]. The Capital IQ data includes

any customers/suppliers that are mentioned in the firms’ annual reports, news, websites surveys

etc, with firms coverage starting in the year 1990. We then merged these two datasources to

obtain a more complete picture of the potential buyer-supplier linkages between the firms in

our R&D network. Aggregated over all years we obtained a total of 2, 573 buyer-supplier

relationships for the firms matched with our R&D network dataset. Using these data on firms’

buyer-supplier relationships, we find that, after controlling for the input-supplier effect, the

spillover and competition effects remain statistically significant with the expected signs.

In terms or our policy analysis, the additional R&D spillover effects through input-output

relationships could be easily incorporated in our optimal subsidy program by adding another

technology spillover matrix from input-output linkages (as in Appendix F). However, as the

focus of the current paper is on R&D collaborations, we consider only spillovers stemming from

R&D alliances between firms.

No market entry and exit As we focus on a short-run policy analysis in this paper, we

consider only incumbent firms and abstract from the complication of market entry and exit.

This allows us to study the R&D spillover effects using a network approach, which are typically

ignored in studies of innovative activities of incumbent firms versus entrants as for example
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Acemoglu et al. [2012]. Therefore, we see our analysis as complementary to that of Acemoglu

et al. [2012], and we show that R&D subsidies can trigger considerable welfare gains when

technology spillovers through R&D alliances are taken into account.

No foreign firms Another possible extension of the current model is to partition the firms

into domestic firms and foreign firms, and consider a subsidy program that only subsidizes

domestic firms. This extension would be possible under our current framework as our targeted

subsidy program is very flexible. In particular, it is allowed to assign zero subsidies to certain

firms (e.g. foreign firms). However, we do not pursue this extension in this paper as in the

data we only consider U.S. firms.

9. Conclusion

In this paper, we have developed a model where firms benefit form R&D collaborations (net-

works) to lower their production costs while at the same time competing on the product market.

We have highlighted the positive role of the network in terms of technology spillovers and the

negative role of product rivalry in terms of market competition. We have also determined the

importance of targeted subsidies on the total welfare of the economy.

Using a panel of R&D alliance networks and annual reports, we have then tested our theo-

retical results and first showed that both, the technology spillover effect and the market com-

petition effect have the expected signs and are significant. We have also identified the firms in

our data that should be subsidized the most to maximize welfare in the economy. Finally, we

have drawn some policy conclusions about optimal R&D subsidies from the results obtained

over different sectors, as well as their temporal variation.

We believe that the methodology developed in this paper offers a fruitful way of analyzing

the existence of R&D spillovers and their policy implications in terms of firms’ subsidies across

and within different industries. We also believe that putting forward the role of networks

in terms of R&D collaborations is important to understanding the different aspects of these

markets.
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A. Proofs
Proof of Proposition 1 (i) The FOCs of maximizing the profit function given by Equation

(4) with respect to the R&D effort ei and the output qi of firm i are given by

∂πi

∂ei
= qi − ei = 0,

∂πi

∂qi
= µi − 2qi − ρ

n∑
j=1

bijqj + ei + φ

n∑
j=1

aijej = 0,

where µi ≡ ᾱi − c̄i. Solving the FOCs gives

ei = qi, (A.1)

qi = µi − ρ
n∑

j=1

bijqj + φ
n∑

j=1

aijqj, (A.2)

or, in vector-matrix form,

e = q,

q = µ− ρBq+ φAq.

Therefore, there exists a unique Nash equilibrium with the equilibrium outputs and R&D
efforts given by Equation (6) if the matrix I+ ρB− φA is positive definite. The symmetric
matrix In + ρB− φA is positive definite if its smallest eigenvalue is positive, that is when

1 + λmin(ρB− φA) > 0. (A.3)

First we consider the case of φ = 0. In this case, Equation (A.3) becomes 1+ ρλmin(B) > 0.
Since B can be written as a block diagonal matrix with a zero diagonal and blocks of sizes
|Mm|, m = 1, . . . ,M , the spectrum (set of eigenvalues) of B is given by {|M1| − 1, |M2| −
1, ..., |MM | − 1,−1, . . . ,−1}, with λmin(B) = −1. As 0 ≤ ρ < 1, 1 + ρλmin(B) > 0 and thus
Equation (A.3) holds. Next we consider the general case that φ may not be zero. In this case,
Equation (A.3) is equivalent to λmax(φA − ρB) < 1. Since λmax(φA − ρB) ≤ φλmax(A) +
ρλmax(B) and λmax(B) = maxm=1,...,M{|Mm|− 1},1 a sufficient condition for Equation (A.3)
to hold is given by Equation (5). Finally, substitution of the equilibrium outputs and R&D
efforts given by Equation (6) into the profit function (4) gives the equilibrium profits in
Equation (7).

(ii) When all firms operate in the same market so that M = 1, the best response function given
by Equation (A.2) can be written as

qi =
1

1− ρ
µi −

ρ

1− ρ
q̂ +

φ

1− ρ

n∑
j=1

aijqj. (A.4)

where q̂ ≡
∑n

j=1 qj corresponds to the total output of all firms. Observe that 0 < 1− ρ ≤ 1

1Let ∥·∥ be any matrix norm, including the spectral norm, which is just the largest eigenvalue. Then we have
that ∥

∑n
i=1 αiAi∥ ≤

∑n
i=1 |αi|∥Ai∥ ≤ (

∑n
i=1 |αi|)maxi ∥Ai∥ by Weyl’s theorem [cf. e.g. Horn and Johnson,

1990, Theorem 4.3.1].
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as 0 ≤ ρ < 1. In matrix form, Equation (A.4) can be written as

(I− ϕA)q =
1

1− ρ
(µ− ρq̂ι),

where ϕ = φ/(1 − ρ), µ = (µ1, . . . , µn)
⊤, and ι = (1, . . . , 1)⊤. If ϕ < λmax(A)−1, this is

equivalent to

q =
1

1− ρ
(bµ(G, ϕ)− ρq̂ bι(G, ϕ)) , (A.5)

where bι(G, ϕ) = (I − ϕA)−1ι is the vector of unweighted Katz-Bonacich centralities and
bµ(G, ϕ) = (I−ϕA)−1µ is the vector of weighted Katz-Bonacich centralities with the weights
given by µi for i = 1, . . . , n. Premultiplying Equation (A.5) by ι⊤, we obtain

(1− ρ) q̂ = ∥bµ(G, ϕ)∥1 − ρq̂ ∥bι(G, ϕ)∥1 ,

where ∥bµ(G, ϕ)∥1 = ι⊤bµ(G, ϕ) is the sum of the weighted Katz-Bonacich centralities and
∥bι(G, ϕ)∥1 = ι⊤bι(G, ϕ) is the sum of the unweighted Katz-Bonacich centralities. Solving
this equation, we get

q̂ =
∥bµ(G, ϕ)∥1

(1− ρ) + ρ ∥bι(G, ϕ)∥1
.

Plugging this value of q̂ into Equation (A.5), we finally obtain Equation (8) in the proposition.
In the following we provide a condition which guarantees that the equilibrium outputs given
by Equation (8) are positive. According to Equation (8), q∗ > 0 if and only if

bµ(G, ϕ) >
ρ ∥bµ(G, ϕ)∥1

(1− ρ) + ρ ∥bι(G, ϕ)∥1
bι(G, ϕ). (A.6)

Denote by µ = mini {µi | i ∈ N} and µ = maxi {µi | i ∈ N}, with µ ≤ µ. Then, we have

∥bµ(G, ϕ)∥1 ≤ µ ∥bι(G, ϕ)∥1 ,
bµ(G, ϕ) ≥ µbι(G, ϕ).

Thus, a sufficient condition for Equation (A.6) to hold is

µbι(G, ϕ) >
ρµ ∥bι(G, ϕ)∥1

(1− ρ) + ρ ∥bι(G, ϕ)∥1
bι(G, ϕ),

or equivalently
1− ρ > ρ ∥bι(G, ϕ)∥1

(
µ

µ
− 1

)
. (A.7)

Next, observe that, by definition

∥bι(G, ϕ)∥1 =
∞∑
p=0

ϕpι⊤Apι. (A.8)

We know that λmax(A
p) ≤ λmax(A)p, for all p ≥ 0.2 Also, ι⊤Apι/n is the average connec-

2Observe that the relationship λmax (A
p) = λmax (A)

p, p ≥ 0, holds true for both symmetric as well as
asymmetric adjacency matrices A as long as A has non-negative entries, aij ≥ 0.
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tivity in the matrix Ap of paths of length p in the original network A, which is smaller than
its spectral radius λmax(A

p) [Cvetkovic et al., 1995], i.e. ι⊤Apι/n ≤ λmax(A
p) ≤ λmax(A)p.

Therefore, Equation (A.8) leads to the following inequality

∥bι(G, ϕ)∥1 =
∞∑
p=0

ϕpι⊤Apι ≤ n
∞∑
p=0

ϕpλmax(A)p =
n

1− ϕλmax(A)
.

A sufficient condition for Equation (A.7) to hold is thus given by Equation (9). In the case
that all firms are homogenous, µ/µ = 1, and Equation (A.7) holds as 0 ≤ ρ < 1.

(iii) When ρ = 0, if φ < λmax(A)−1, the matrix I− φA is nonsingular. From the FOCs of profit
maximization, the equilibrium R&D efforts and outputs are given by

e∗ = q∗ = (I− φA)−1µ =
∞∑
p=0

φpApµ > 0.

(iv) Let B denote the competition matrix with an arbitrary number of markets. Under the
competition matrix B, the Nash equilibrium output levels are the solution to the following
system of equations

qi = fi(q) ≡ µi − ρ
n∑

j=1

bijqj + φ
n∑

j=1

aijqj. (A.9)

We can compare this to the Nash equilibrium output levels with a single market, which solve

qi = f
i
(q) ≡ µi − ρ

n∑
j=1,j ̸=i

qj + φ
n∑

j=1

aijqj,

and the Nash equilibrium output levels with non-substitutable goods, which solve

qi = f i(q) ≡ µi + φ
n∑

j=1

aijqj.

As f i(q) ≥ fi(q) ≥ f
i
(q) when q > 0, the desired result follows by the comparison lemma

(cf. Lemma 3.4 in Khalil [2002]).

Proof of Propositions 2 and 3 As Proposition 2 is a special case of Proposition 3 with
si = s for i = 1, . . . , n, we give the proof of the two propositions together.

(i) The FOCs of maximizing the profit function given by Equation (18) with respect to the R&D
effort ei and the output qi of firm i are given by

∂πi

∂ei
= qi − ei + si = 0,

∂πi

∂qi
= µi − 2qi − ρ

n∑
j=1

bijqj + ei + φ

n∑
j=1

aijej = 0,

4



where µi ≡ ᾱi − c̄i. Solving the FOCs gives

ei = qi + si,

qi = µi − ρ

n∑
j=1

bijqj + φ

n∑
j=1

aijqj + si + φ

n∑
j=1

aijsj,

or, in vector-matrix form,

e = q+ s,

q = µ− ρBq+ φAq+ s+ φAs.

Therefore, there exists a unique Nash equilibrium with the equilibrium outputs and R&D
efforts given by Equations (19) and (20) if the matrix I+ ρB− φA is positive definite. From
the proof of Proposition 1, a sufficient condition for the matrix I + ρB − φA to be positive
definite is φ = 0 or the condition given by Equation (5) holds. Substitution of Equations
(19) and (20) into the profit function given by Equation (18) gives the equilibrium profits in
Equation (21). Equations (14) and (15) can be obtained by replacing s in Equations (19) and
(20) by sι. Substitution of Equations (14) and (15) into the profit function given by Equation
(13) gives the equilibrium profits in Equation (16).

(ii) The net welfare can be written as

W (G, s) =
1

2

(
n∑

i=1

(q∗i )
2 + ρ

n∑
i=1

n∑
j=1

bijq
∗
i q

∗
j

)
+

n∑
i=1

π∗
i −

n∑
i=1

sie
∗
i

=
n∑

i=1

(q∗i )
2 −

n∑
i=1

q∗i si −
1

2

n∑
i=1

s2i +
ρ

2

n∑
i=1

n∑
j=1

bijq
∗
i q

∗
j

= q∗⊤q∗ − 1

2
(q∗⊤s+ s⊤q∗)− 1

2
s⊤s+

ρ

2
q∗⊤Bq∗.

Using the fact that q∗ = q̃+Rs, where q̃ ≡ (I+ρB−φA)−1µ and R ≡ (I+ρB−φA)−1(I+φA),
we can write the net welfare as

W (G, s) = q̃⊤q̃+
ρ

2
q̃⊤Bq̃+ s⊤(2R+ ρBR− I)⊤q̃− 1

2
s⊤Hs, (A.10)

where
H = I+R+R⊤ − 2R⊤R− ρR⊤BR.

Observe that the matrix H is symmetric. The FOC of maximizing the net welfare with respect
to s is given by

∂W (G, s)

∂s
= (2R+ ρBR− I)⊤q̃−Hs = 0,

with the hessian given by ∂2W (G,s)
∂s∂s⊤

= −H. When the matrix H is positive definite, we obtain
a global maximum for the concave quadratic optimization problem with the optimal subsidy
levels given by Equation (22). To obtain the optimal homogenous subsidy level given by
Equation (17), replace s in the net welfare given by Equation (A.10) by sι and maximize the
net welfare with respect to s.
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B. Definitions and Characterizations
B.1. Network Definitions

A network (graph) G ∈ Gn is the pair (N , E) consisting of a set of nodes (vertices) N = {1, . . . , n}
and a set of edges (links) E ⊂ N ×N between them, where Gn denotes the family of undirected
graphs with n nodes. A link (i, j) is incident with nodes i and j. The neighborhood of a node
i ∈ N is the set Ni = {j ∈ N : (i, j) ∈ E}. The degree di of a node i ∈ N gives the number of links
incident to node i. Clearly, di = |Ni|. Let N (2)

i =
∪

j∈Ni
Nj\ (Ni ∪ {i}) denote the second-order

neighbors of node i. Similarly, the k-th order neighborhood of node i is defined recursively from
N (0)

i = {i}, N (1)
i = Ni and N (k)

i =
∪

j∈N (k−1)
i

Nj\
(∪k−1

l=0 N (l)
i

)
. A walk in G of length k from i to

j is a sequence ⟨i0, i1, . . . , ik⟩ of nodes such that i0 = i, ik = j, ip ̸= ip+1, and ip and ip+1 are
(directly) linked, that is ipip+1 ∈ E , for all 0 ≤ p ≤ k − 1. Nodes i and j are said to be indirectly
linked in G if there exists a walk from i to j in G containing nodes other than i and j. A pair
of nodes i and j is connected if they are either directly or indirectly linked. A node i ∈ N is
isolated in G if Ni = ∅. The network G is said to be empty (denoted by Kn) when all its nodes
are isolated.

A subgraph, G′, of G is the graph of subsets of the nodes, N (G′) ⊆ N (G), and links,
E(G′) ⊆ E(G). A graph G is connected, if there is a path connecting every pair of nodes.
Otherwise G is disconnected. The components of a graph G are the maximally connected
subgraphs. A component is said to be minimally connected if the removal of any link makes
the component disconnected.

A dominating set for a graph G = (N , E) is a subset S of N such that every node not in S
is connected to at least one member of S by a link. An independent set is a set of nodes in a
graph in which no two nodes are adjacent. For example the central node in a star K1,n−1 forms
a dominating set while the peripheral nodes form an independent set.

Let G = (N , E) be a graph whose distinct positive degrees are d(1) < d(2) < . . . < d(k), and let
d0 = 0 (even if no agent with degree 0 exists in G). Furthermore, define Di = {v ∈ N : dv = d(i)}
for i = 0, . . . , k. Then the set-valued vector D = (D0,D1, . . . ,Dk) is called the degree partition
of G.

Consider a nested split graph G = (N , E) and let D = (D0,D1, . . . ,Dk) be its degree
partition [cf. Cvetkovic and Rowlinson, 1990; Mahadev and Peled, 1995]. Then the nodes N
can be partitioned in independent sets Di, i = 1, . . . ,

⌊
k
2

⌋
and a dominating set

∪k
i=⌊ k

2⌋+1
Di in

the graph G′ = (N\D0, E). Moreover, the neighborhoods of the nodes are nested, such that the
set of neighbors of each node is contained in the set of neighbors of each higher degree node.
In particular, for each node v ∈ Di, Nv =

∪i
j=1Dk+1−j if i = 1, . . . ,

⌊
k
2

⌋
if i = 1, . . . , k, while

Nv =
∪i

j=1Dk+1−j \ {v} if i =
⌊
k
2

⌋
+ 1, . . . , k.

In a complete graph Kn, every node is adjacent to every other node. The graph in which no
pair of nodes is adjacent is the empty graph Kn. A clique Kn′ , n′ ≤ n, is a complete subgraph
of the network G. A graph is k-regular if every node i has the same number of links di = k for
all i ∈ N . The complete graph Kn is (n− 1)-regular. The cycle Cn is 2-regular. In a bipartite
graph there exists a partition of the nodes in two disjoint sets S1 and S2 such that each link
connects a node in S1 to a node in S2. S1 and S2 are independent sets with cardinalities n1 and
n2, respectively. In a complete bipartite graph Kn1,n2 each node in S1 is connected to each other
node in S2. The star K1,n−1 is a complete bipartite graph in which n1 = 1 and n2 = n− 1.

The complement of a graph G is a graph G with the same nodes as G such that any two
nodes of G are adjacent if and only if they are not adjacent in G. For example the complement
of the complete graph Kn is the empty graph Kn.

Let A be the symmetric n×n adjacency matrix of the network G. The element aij ∈ {0, 1}
indicates if there exists a link between nodes i and j such that aij = 1 if (i, j) ∈ E and
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aij = 0 if (i, j) /∈ E . The k-th power of the adjacency matrix is related to walks of length
k in the graph. In particular,

(
Ak
)
ij

gives the number of walks of length k from node i

to node j. The eigenvalues of the adjacency matrix A are the numbers λ1, λ2, . . . , λn such
that Avi = λivi has a nonzero solution vector vi, which is an eigenvector associated with
λi for i = 1, . . . , n. Since the adjacency matrix A of an undirected graph G is real and
symmetric, the eigenvalues of A are real, λi ∈ R for all i = 1, . . . , n. Moreover, if vi and vj

are eigenvectors for different eigenvalues, λi ̸= λj, then vi and vj are orthogonal, i.e. v⊤
i vj = 0

if i ̸= j. In particular, Rn has an orthonormal basis consisting of eigenvectors of A. Since A
is a real symmetric matrix, there exists an orthogonal matrix S such that S⊤S = SS⊤ = I
(that is S⊤ = S−1) and S⊤AS = D, where D is the diagonal matrix of eigenvalues of A
and the columns of S are the corresponding eigenvectors. The Perron-Frobenius eigenvalue
λPF(G) is the largest real eigenvalue of A associated with G, i.e. all eigenvalues λi of A satisfy
|λi| ≤ λPF(G) for i = 1, . . . , n and there exists an associated nonnegative eigenvector vPF ≥ 0
such that AvPF = λPF(G)vPF. For a connected graph G the adjacency matrix A has a unique
largest real eigenvalue λmax(G) and a positive associated eigenvector vPF > 0. The largest
eigenvalue λmax(G) has been suggested to measure the irregularity of a graph [Bell, 1992], and
the components of the associated eigenvector vPF are a measure for the centrality of a node
in the network. A measure Cv : G → [0, 1] for the centralization of the network G has been
introduced by Freeman [1979] for generic centrality measures v. In particular, the centralization
Cv of G is defined as Cv(G) ≡

∑
i∈G (vi∗ − vi) /maxG′∈Gn

∑
j∈G′ (vj∗ − vj), where i∗ and j∗ are

the nodes with the highest values of centrality in the networks G, G′, respectively, and the
maximum in the denominator is computed over all networks G′ ∈ Gn with the same number n
of nodes. There also exists a relation between the number of walks in a graph and its eigenvalues.
The number of closed walks of length k from a node i in G to herself is given by

(
Ak
)
ii

and the
total number of closed walks of length k in G is tr

(
Ak
)
=
∑n

i=1

(
Ak
)
ii
=
∑n

i=1 λ
k
i . We further

have that tr (A) = 0, tr (A2) gives twice the number of links in G and tr (A3) gives six times
the number of triangles in G.

A nested split graph is characterized by a stepwise adjacency matrix A, which is a symmetric,
binary (n × n)-matrix with elements aij satisfying the following condition: if i < j and aij = 1

then ahk = 1 whenever h < k ≤ j and h ≤ i. Both, the complete graph, Kn, as well as the star
K1,n−1, are particular examples of nested split graphs. Nested split graphs are also the graphs
which maximize the largest eigenvalue, λmax(G), [Brualdi and Solheid, 1986], and they are the
ones that maximize the degree variance [Peled et al., 1999].3

The cores of a graph are defined as follows: Given a network G, the induced subgraph
Gk ⊆ G is the k-core of G if it is the largest subgraph such that the degree of all nodes in Gk is
at least k. Note that the cores of a graph are nested such that Gk+1 ⊆ Gk. Cores can be used
as a measure of centrality in the network G, and the largest k-core centrality across all nodes in
the graph is called the degeneracy of G. Note that k-cores can be obtained by a simple pruning
algorithm: at each step, we remove all nodes with degree less than k. We repeat this procedure
until there exist no such nodes or all nodes are removed. We define the coreness of each node
as follows: The coreness of node i, cori, is k if and only if i ∈ Gk and i /∈ Gk+1. We have that
cori ≤ di. However, there is no other relation between the degree and coreness of nodes in a
graph.

B.2. Walk Generating Functions

Denote by ι = (1, . . . , 1)⊤ the n-dimensional vector of ones and define M(G, ϕ) = (I− ϕA)−1.
Then, the quantity NG(ϕ) = ι⊤M(G, ϕ)ι is the walk generating function of the graph G [cf.

3See for example König et al. [2014] for a discussion of further properties of nested split graphs.
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Cvetkovic et al., 1995]. Let Nk denote the number of walks of length k in G. Then we can
write Nk as follows

Nk =
n∑

i=1

n∑
j=1

a
[k]
ij = ι⊤Akι,

where a
[k]
ij is the ij-th element of Ak. The walk generating function is then defined as

NG(ϕ) ≡
∞∑
k=0

Nkϕ
k = ι⊤

(
∞∑
k=0

ϕkAk

)
ι = ι⊤ (I− ϕA)−1 ι = ι⊤M(G, ϕ)ι.

For a k-regular graph Gk, the walk generating function is equal to

NGk
(ϕ) =

n

1− kϕ
.

For example, the cycle Cn on n nodes (see Figure B.1, left panel) is a 2-regular graph and its
walk generating function is given by NCn(ϕ) = 1

1−2ϕ
. As another example, consider the star

K1,n−1 with n nodes (see Figure B.1, middle panel). Then the walk generating function is given
by

NK1,n−1(ϕ) =
n+ 2(n− 1)ϕ

1− (n− 1)ϕ2
.

In general, it holds that NG(0) = n, and one can show that NG(ϕ) ≥ 0. We further have
that

M(G, ϕ) = (I− ϕA)−1 =
∞∑
k=0

ϕkAk =
∞∑
k=0

ϕkSΛkS⊤,

where Λ ≡ diag(λ1, . . . , λn) is the diagonal matrix containing the eigenvalues of the real,
symmetric matrix A, and S is an orthogonal matrix with columns given by the orthogonal
eigenvectors of A (with S⊤ = S−1), and we have used the fact that A = SΛS⊤ [Horn and
Johnson, 1990]. The eigenvectors vi have the property that Avi = λivi and are normalized
such that v⊤

i vi = 1. Note that A = SΛS⊤ is equivalent to A =
∑n

i=1 λiviv
⊤
i . It then follows

that
ι⊤M(G, ϕ)ι = ι⊤S

∞∑
k=0

ϕkΛkS⊤ι,

where
S⊤ι =

(
ι⊤v1, . . . , ι

⊤vn

)⊤
,

and

Λk =


λk
1 0 . . . 0
0 λk

2 . . . 0
... . . . ...
0 . . . λk

n

 = λk
1


1 0 . . . 0

0
(

λ2

λ1

)k
. . . 0

... . . . ...
0 . . .

(
λn

λ1

)k

 .
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We then can write

ι⊤M(G, ϕ)ι =
∞∑
k=0

ϕkλk
1

(
ι⊤v1, . . . , ι

⊤vn

)

1 0 . . . 0

0
(

λ2

λ1

)k
. . . 0

... . . . ...
0 . . .

(
λn

λ1

)k


(
ι⊤v1, . . . , ι

⊤vn

)⊤
,

which gives

ι⊤M(G, ϕ)ι =
∞∑
k=0

ϕkλk
1

(
(ι⊤v1)

2 +

(
λ2

λ1

)k

(ι⊤v2)
2 + . . .+

(
λn

λ1

)k

(ι⊤vn)
2

)

=
n∑

i=1

(ι⊤vi)
2

∞∑
k=0

ϕkλk
i

=
n∑

i=1

(ι⊤vi)
2

1− ϕλi

.

The above computation also shows that

Nk = ι⊤Akι =
n∑

i=1

(ι⊤vi)
2λk

i .

Hence, we can write the walk generating function as follows

NG(ϕ) = ι⊤M(G, ϕ)ι =
∞∑
k=0

Nkϕ
k =

n∑
i=1

(v⊤
i u)

2

1− λiϕ
.

If λ1 is much larger than λj for all j ≥ 2, then we can approximate

NG(ϕ) ≈ (ι⊤v1)
2

∞∑
k=0

ϕkλk
1 =

(ι⊤v1)
2

1− ϕλ1

.

Moreover, there exists the following relationship between the largest eigenvalue λmax of the
adjacency matrix and the number of walks of length k in G [cf. Van Mieghem, 2011, p. 47]

λmax(G) ≥
(
Nk(G)

n

) 1
k

,

and, in particular,

lim
k→∞

(
Nk(G)

n

) 1
k

= λmax(G).

Hence, we have that nλmax(G)k ≥ Nk(G), and

NG(ϕ) =
∞∑
k=0

Nkϕ
k ≤ n

∞∑
k=0

(λmax(G)ϕ)k =
n

1− ϕλmax(G)
. (B.11)

To derive a lower bound, note that for ϕ ≥ 0, NG(ϕ) is increasing in ϕ, so that NG(ϕ) ≥
N0 + ϕN1 + ϕ2N2. Using the fact that N0 = n, N1 = 2m = nd̄ and N2 =

∑n
i=1 d

2
i = n(d̄2 + σ2

d),
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we then get the lower bound

NG(ϕ) ≥ n+ 2mϕ+ n(d̄2 + σ2
d)ϕ

2. (B.12)

Finally, Cvetkovic et al. [1995, p. 45] have found an alternative expression for the walk gener-
ating function given by

NG(ϕ) =
1

ϕ

(−1)n
cAc

(
− 1

ϕ
− 1
)

cA

(
1
ϕ

) − 1

 ,

where cA(ϕ) ≡ det (A− ϕIn) is the characteristic polynomial of the matrix A, whose roots
are the eigenvalues of A. It can be written as cA(ϕ) = ϕn − a1ϕ

n−1 + . . . + (−1)nan, where
a1 = tr(A) and an = det(A). Furthermore, Ac = ιι⊤ − I−A is the complement of A, and ιι⊤

is an n×n matrix of ones. This is a convenient expression for the walk generating function, as
there exist fast algorithms to compute the characteristic polynomial [Samuelson, 1942].

B.3. Bonacich Centrality

In the following we introduce a network measure capturing the centrality of a firm in the
network due to Katz [1953] and later extended by Bonacich [1987]. Let A be the symmetric
n × n adjacency matrix of the network G and λPF its largest real eigenvalue. The matrix
M(G, ϕ) = (I−ϕA)−1 exists and is non-negative if and only if ϕ < 1/λPF.4 Then

M(G, ϕ) =
∞∑
k=0

ϕkAk. (B.13)

The Bonacich centrality vector is given by

bι(G, ϕ) = M(G, ϕ) · ι, (B.14)

where ι = (1, . . . , 1)⊤. We can write the Bonacich centrality vector as

bι(G, ϕ) =
∞∑
k=0

ϕkAk · ι = (I− ϕA)−1 · ι.

For the components bι,i(G, ϕ), i = 1, . . . , n, we get

bι,i(G, ϕ) =
∞∑
k=0

ϕk(Ak · ι)i =
∞∑
k=0

ϕk

n∑
j=1

(
Ak
)
ij
. (B.15)

The sum of the Bonacich centralities is then exactly the walk generating function we have
introduced in Section B.2

n∑
i=1

bι,i(G, ϕ) = ι⊤bu(G, ϕ) = ι⊤M(G, ϕ)ι = NG(ϕ).

Moreover, because
∑n

j=1

(
Ak
)
ij

counts the number of all walks of length k in G starting from
i, bu,i(G, ϕ) is the number of all walks in G starting from i, where the walks of length k

4The proof can be found e.g. in Debreu and Herstein [1953].
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Figure B.1: Illustration of a cycle C6, a star K1,6 and a complete graph, K6.

are weighted by their geometrically decaying factor ϕk. In particular, we can decompose the
Bonacich centrality as follows

bi(G, ρ) = bii(G, ϕ)︸ ︷︷ ︸
closed walks

+
∑
j ̸=i

bij(G, ϕ)︸ ︷︷ ︸
out-walks

, (B.16)

where bii(G, ϕ) counts all closed walks from firm i to i and
∑

j ̸=i bij(G, ϕ) counts all the other
walks from i to every other firm j ̸= i. Similarly, Ballester et al. [2006] define the intercentrality
of firm i ∈ N as

ci(G, ϕ) =
bi(G, ϕ)2

bii(G, ϕ)
, (B.17)

where the factor bii(G, ϕ) measures all closed walks starting and ending at firm i, discounted by
the factor ϕ, whereas bi(G, ϕ) measures the number of walks emanating at firm i, discounted by
the factor ϕ. The intercentrality index hence expresses the ratio of the (square of the) number
of walks leaving a firm i relative to the number of walks returning to i.

We give two examples in the following to illustrate the Bonacich centrality. The graphs
used in these examples are depicted in Figure B.1. First, consider the star K1,n−1 with n nodes
(see Figure B.1, middle panel) and assume w.l.o.g. that 1 is the index of the central node with
maximum degree. We now compute the Bonacich centrality for the star K1,n−1. We have that

M(K1,n−1, ϕ) = (I− ϕA)−1 =



1 −ϕ · · · · · · −ϕ
−ϕ 1 0 0
... 0

. . . . . . ...

. . . ...
... ... 0

−ϕ 0 · · · 0 1



−1

=
1

1− (n− 1)ϕ2



1 ϕ · · · · · · ϕ
ϕ 1− (n− 2)ϕ2 ϕ2 ϕ2

... ϕ2 . . . . . . ...
. . . ...

... ... ϕ2

ϕ ϕ2 · · · ϕ2 1− (n− 2)ϕ2


.

Since b = M · ι we then get

b(K1,n−1, ϕ) =
1

1− (n− 1)ϕ2
(1 + (n− 1)ϕ, 1 + ϕ, . . . , 1 + ϕ)⊤ . (B.18)
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Next, consider the complete graph Kn with n nodes (see Figure B.1, right panel). We have

M(Kn, ϕ) = (I− ϕA)−1 =



1 −ϕ · · · · · · −ϕ
−ϕ 1 −ϕ −ϕ
... −ϕ

. . . . . . ...

. . . ...
... ... −ϕ

−ϕ −ϕ · · · −ϕ 1



−1

=
1

1− (n− 2)ϕ− (n− 1)ϕ2



1− (n− 2)ϕ ϕ · · · · · · ϕ
ϕ 1− (n− 2)ϕ ϕ ϕ
... ϕ

. . . . . . ...

. . . ...
... ... ϕ
ϕ ϕ · · · ϕ 1− (n− 2)ϕ


.

With b = M · ι we then have that

b(Kn, ϕ) =
1

1− (n− 1)ϕ
(1, . . . , 1)⊤ . (B.19)

The Bonacich matrix of Equation (B.13) is also a measure of structural similarity of the
firms in the network, called regular equivalence. Leicht et al. [2006] define a similarity score
bij, which is high if nodes i and j have neighbors that themselves have high similarity, given
by bij = ϕ

∑n
k=1 aikbkj + δij. In matrix-vector notation this reads M = ϕAM+ I. Rearranging

yields M = (I − ϕA)−1 =
∑∞

k=0 ϕ
kAk, assuming that ϕ < 1/λPF. We hence obtain that the

similarity matrix M is equivalent to the Bonacich matrix from Equation (B.13). The average
similarity of firm i is 1

n

∑n
j=1 bij = 1

n
bι,i(G, ϕ), where bι,i(G, ϕ) is the Bonacich centrality of i.

It follows that the Bonacich centrality of i is proportional to the average regular equivalence
of i. Firms with a high Bonacich centrality are then the ones which also have a high average
structural similarity with the other firms in the R&D network.

The interpretation of eingenvector-like centrality measures as a similarity index is also im-
portant in the study of correlations between observations in principal component analysis and
factor analysis [cf. Rencher and Christensen, 2012]. Variables with similar factor loadings can be
grouped together. This basic idea has also been used in the economics literature on segregation
[e.g. Ballester and Vorsatz, 2013].

There also exists a connection between the Bonacich centrality of a node and its coreness
in the network (see Appendix B.1). The following result, due to Manshadi and Johari [2010],
relates the Nash equilibrium to the k-cores of the graph: If cori = k then bi(G, ϕ) ≥ 1

1−ϕk
,

where the inequality is tight when i belongs to a disconnected clique of size k+1. The coreness
of networks of R&D collaborating firms has also been studied empirically in Kitsak et al. [2010]
and Rosenkopf and Schilling [2007]. In particular, Kitsak et al. [2010] find that the coreness of
a firm correlates with its market value. We can easily explain this from our model because we
know that firms in higher cores tend to have higher Bonacich centrality, and therefore higher
sales and profits (cf. Proposition 1).
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C. Games on Networks: The contribution of our model
In this section, we show how our model embeds standard models of games on networks. Our
profit function is given by Equation (4), that is

πi = µi qi − q2i − ρ

n∑
j=1

bijqiqj + qiei + φqi

n∑
j=1

aijej −
1

2
e2i ,

where µi = αi − ci.

C.1. A Model without Network Effects

Let us consider a model with the product market alone, i.e. φ = 0. In that case, the profit
function in Equation (4) of firm i reduces to

πi = µi qi − q2i − ρ

n∑
j=1

bijqiqj + qiei −
1

2
e2i . (C.20)

This is, for example, a model that is commonly used in the industrial organization literature to
study product differentiation [cf. Singh and Vives, 1984]. In that case, the first-order condition
with respect to ei leads to ei = qi, while the first-order condition with respect to qi can be
written as:

qi = µi − ρ

n∑
j=1

bijqj .

Let µ be the n× 1 vector of µi’s.

Lemma 1. Consider the profit function in Equation (C.20). If
(
µ
µ − 1

)
< 1−ρ

nρ then there exists a
unique interior Nash equilibrium, which is given by

q = (I+ ρB)−1µ.

Proof of Lemma 1 First, the condition for existence and uniqueness of the Nash equilibrium is
that the matrix I+ ρB has to be positive definite. A sufficient condition is that all eigenvalues of this
matrix are positive, which is guaranteed by λmin (B) > −1/ρ. Since λmin (B) = −1, this is equivalent
to ρ < 1, which is always true by assumption. Second, Equation (9) in part (ii) of Proposition 1 requires
that the inequality nρ

1−ρ

(
µ
µ − 1

)
< 1 is satisfied for an interior solution to exist.

We can see that this is a special case of our Proposition 1, when φ = 0.

C.2. A Model without Competition Effects

Let us now consider a model with no competition effect so that ρ = 0. In that case, the profit
function in Equation (4) of firm i reduces to:

πi = µi qi − q2i + qiei + φqi

n∑
j=1

aijej −
1

2
e2i .

The first-order with respect to ei leads to: ei = qi while that with respect to qi is given by:

µi − 2qi + ei + φ

n∑
j=1

aijej = 0.
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Using the fact that ei = qi, we easily obtain:

qi = µi + φ

n∑
j=1

aijqj .

If φλmax(A) < 1, there exists a unique Nash equilibrium given by

q∗ = bµ (G,φ) ≡ (I− φA)−1µ,

where bµ (G,φ) is the µ-weighted Katz-Bonacich centrality. This is part (iii) of our Proposition
1.

C.3. Comparison of our model with Ballester et al. [2006] and Bramoullé et al.
[2014]

Ballester et al. [2006] (BCZ) consider a single market (i.e., M = 1) without R&D investment
decisions. They also assume that firms are ex ante homogenous with µi = µ. The equilibrium
best response function in their case is given by

qi = µ− ρ

n∑
j=1,j ̸=i

qj + φ

n∑
j=1

aijqj .

This is a special case of part (ii) of our Proposition 1 when µi = µ.
Bramoullé et al. [2014] generalize Ballester et al. [2006] by allowing for ex ante heterogeneity.

5 However, they still assume a single market (i.e., M = 1), and abstract away from R&D
investment decisions. Their equilibrium best response function is

qi = µi − ρ

n∑
j=1,j ̸=i

qj + φ

n∑
j=1

aijqj .

In that case, their main result (their Proposition 3) corresponds to part (ii) of our Proposition
1.6

D. Herfindahl Index and Market Concentration

The Herfindahl-Hirschman industry concentration index is defined as H =
∑n

i=1 s
2
i , where the

market share of firm i is given by si =
qi∑n

j=1 qj
[cf. e.g. Hirschman, 1964; Tirole, 1988]. Hence,

we can write

H =
n∑

i=1

(
qi∑n
j=1 qj

)2

=
∥q∥22
∥q∥21

, (D.21)

5See also Calvó-Armengol et al. [2009].
6The condition for existence and uniqueness of equilibrium in Bramoullé et al. [2014] is slightly different since

it involves λmin (A), the lowest eigenvalue of A, rather than λmax (A), the largest eigenvalue of A. Observe that,
in our paper, it can be seen from the proof of Proposition 1 that we have another condition for the existence and
uniqueness of equilibrium, which is given by: λmin (ρB−φA)+1 > 0, which is similar to that of Bramoullé et al.
[2014]. We then write an equivalent condition in terms of λmax (A). Also, in most of their paper, Bramoullé
et al. [2014] assume that ρ = 0 so that they do not have to worry about the interiority of the solution.
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With q = bι(G, ϕ) = M(G, ϕ)ι in the Nash equilibrium (see Proposition 1), we can write the
Herfindahl index of Equation (D.21) as follows

H(G) =
ι⊤M(G, ϕ)2ι

(ι⊤M(G, ϕ)ι)2
=

∥b∥22
∥b∥21

=

∑n
i=1 b

2
i

(
∑n

i=1 |bi|)
2 = γ(b)−1,

which is the inverse of the participation ratio γ(·). The participation ratio γ(x) measures the
number of elements of x which are dominant. We have that 1 ≤ γ(x) ≤ n, where a value
of γ(x) = n corresponds to a fully homogenous case, while γ(x) = 1 corresponds to a fully
concentrated case (note that, if all xi are identical then γ(x) = n, while if one xi is much larger
than all others we have γ(x) = 1). Moreover, γ(x) is scale invariant, that is, γ(αx) = γ(x)
for any α ∈ R+. The participation ratio γ(x) is further related to the coefficient of variation
cv(x) =

σ(x)
µ(x)

, where σ(x) is the standard deviation and µ(x) the mean of the components of x,
via the relationship cv(x)

2 = n
γ(x)

− 1. This implies that

H(G) =
ι⊤M(G, ϕ)2ι

(ι⊤M(G, ϕ)ι)2
=

cv(b)
2 + 1

n
∼ cv(b)

2

n
.

Hence, the Herfindhal index is maximized for the graph G with the highest coefficient of varia-
tion in the components of the Bonacich centrality bι(G, ϕ). Finally, as for small values of ϕ the
Bonacich centrality becomes proportional to the degree, the variance of the Bonacich centrality
will be determined by the variance of the degree. It is known that the graphs that maximize
the degree variance are nested split graphs [cf. Peled et al., 1999].

E. Bertrand Competition

In the case of price setting firms we obtain from the profit function in Equation (3) the FOC
with respect to price pi for firm i

∂πi

∂pi
= (pi − ci)

∂qi
∂pi

− qi = 0.

When i ∈ Mm, then observe that from the inverse demand in Equation (1) we find that

qi =
αm(1− ρm)− (1− (nm − 2)ρm)pi + ρm

∑
j∈Mm,j ̸=i pj

(1− ρ)(1 + (nm − 1)ρm)
,

where nm ≡ |Mm|. It then follows that

∂qi
∂pi

= − 1− (nm − 2)ρm
(1− ρm)(1 + (nm − 1)ρm)

.

Inserting into the FOC with respect to pi gives

qi = − 1− (nm − 2)ρm
(1− ρm)(1 + (nm − 1)ρm)

(pi − ci).

15



Inserting Equations (1) and (2) yields

qi =
(1− (nm − 2)ρm)(αm − c̄i)

ρm(4− (2− ρm)nm − ρm)
− 1− (nm − 2)ρm

4− (2− ρm)nm − ρm

∑
j∈Mm,j ̸=i

qj

+
(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm
ei +

(1− (nm − 2)ρm)φ

ρm(4− (2− ρm)nm − ρm

n∑
j=1

aijej.

The FOC with respect to R&D effort is the same as in the case of perfect competition, so that
we get ei = qi. Inserting equilibrium effort and rearranging terms gives

qi =
(1− (nm − 2)ρm)(αm − c̄i)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)

− ρm(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)

∑
j∈Mm,j ̸=i

qj

+
φ(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)

n∑
j=1

aijqj.

If we denote by

µi ≡
(1− (nm − 2)ρm)(αm − c̄i)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)
,

ρ ≡ ρm(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)
,

λ ≡ φ(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)
.

Then we can write equilibrium quantities as follows

qi = µi − ρ
n∑

j=1

bijqj + λ
n∑

j=1

aijqj. (E.22)

Observe that the reduced form Equation (E.22) is identical to the Cournot case in Equation
(10).

F. Equilibrium Characterization with Direct and Indirect Technology
Spillovers

We extend our model by allowing for direct (between collaborating firms) and indirect (between
non-collaborating firms) technology spillovers. The profit of firm i ∈ N is still given by πi =

(pi − ci)qi − 1
2e

2
i , where the inverse demand is pi = ᾱi − qi − ρ

∑n
j=1 bijqj. The main change is in

the marginal cost of production, which is now equal to7

ci = c̄i − ei − φ

n∑
j=1

aijej − χ

n∑
j=1

wijej , (F.23)

7See also Eq. (1) in Goyal and Moraga-Gonzalez [2001].
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where wij are weights characterizing alternative channels for technology spillovers than R&D
collaborations (representing for example a patent cross-citation, a flow of workers, or technolog-
ical proximity measured by the matrix Pij introduced in Footnote 28). Inserting this marginal
cost of production into the profit function gives

πi = (ᾱi − c̄i)qi − q2i − ρqi

n∑
j=1

bijqj + qiei + φqi

n∑
j=1

aijej + χqi

n∑
j=1

wijej −
1

2
e2i .

As above, from the first-order condition with respect to R&D effort, we obtain ei = qi. Inserting
this optimal effort into the first-order condition with respect to output, we obtain

qi = ᾱi − c̄i − ρ

n∑
j=1

bijqj + φ

n∑
j=1

aijqj + χ

n∑
j=1

wijqj .

Denoting by µi ≡ ᾱi − c̄i, we can write this as

qi = µi − ρ

n∑
j=1

bijqj + φ

n∑
j=1

aijqj + χ

n∑
j=1

wijqj . (F.24)

If the matrix I+ ρB− φA− χW is invertible, this gives us the equilibrium quantities

q = (I+ ρB− φA− χW)−1µ.

Let us now write the econometric equivalent of Equation (F.24). Proceeding as in Section 6.1,
using Equations (23) and (24) and introducing time t, we get

µit = x⊤
itβ + ηi + κt + ϵit.

Plugging this value of µit into Equation (F.24), we obtain

qit = φ

n∑
j=1

aij,tqjt + χ

n∑
j=1

wij,tqjt − ρ

n∑
j=1

bijqjt + x⊤
itβ + ηi + κt + ϵit.

This is Equation (30) in Section 6.4.

G. Additional Results on Welfare and Efficiency
In the following sections we illustrate how the private returns from R&D can be lower than the
social returns (Appendix G.1), and we show which network structures are efficient (Appendix
G.2).

G.1. Private vs. Social Returns to R&D

The aim of this section is to show that the choice of qi by each firm i at the Nash equilibrium
is not efficient so that the private returns of R&D effort and output are different from the social
returns of R&D effort and output.

Let us first calculate the Nash equilibrium as in the main text in Section 3. The profit
function is given by Equation (4), that is

πi = µi qi − q2i − ρ

n∑
j=1

bijqiqj + qiei + φqi

n∑
j=1

aijej −
1

2
e2i , (G.25)
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where µi := αi − ci. The first-order condition with respect to ei yields qi = ei, so that the
first-order condition with respect to qi leads to:

qi = µi − ρ

n∑
j=1

bijqj + φ

n∑
j=1

aijqj . (G.26)

In part (i) and (ii) of Proposition 1, we showed that if Equations (5) and (9) hold, then there
exists a unique interior Nash equilibrium, which is given by Equation (G.26). Under these
conditions we can write the output levels as

qNE = (I+ ρB− φA)−1µ, (G.27)

where the superscript NE refers to the “Nash equilibrium ”. Let us now show that the Nash
equilibrium defined by Equation (G.27) is not efficient. For this purpose we consider a planner
who chooses both R&D efforts, e ∈ Rn

+, and output levels, q ∈ Rn
+, in order to maximize welfare

W , defined as the sum of producer and consumer surplus, U and Π, respectively. Consumer
surplus is given by U = 1

2

∑n
i=1 q

2
i +

ρ
2

∑n
i=1

∑n
j=1 bijqiqj while producer surplus is defined as the

sum of firms’ profits, Π =
∑n

i=1 πi, with πi given by Equation (G.25). That is, the planner
solves the following program:8

max
e,q∈Rn

+

W = max
e,q∈Rn

+

(U +Π)

= max
e,q∈Rn

+

n∑
i=1

1

2
q2i +

ρ

2

n∑
j=1

bijqiqj + µi qi − q2i − ρ

n∑
j=1

bijqiqj + qiei + φqi

n∑
j=1

aijej −
1

2
e2i


= max

e,q∈Rn
+

n∑
i=1

µi qi −
1

2
q2i −

ρ

2

n∑
j=1

bijqiqj + qiei + φqi

n∑
j=1

aijej −
1

2
e2i


= max

e,q∈Rn
+

 n∑
i=1

(
µi qi −

1

2
q2i + qiei −

1

2
e2i

)
− ρ

2

n∑
i=1

n∑
j=1

bijqiqj + φ

n∑
i=1

n∑
j=1

aijqiej

 .

From the first-order condition with respect to R&D effort, ei, given by

∂W

∂ei
= qi − ei + φ

n∑
j=1

aijqj = 0,

we see that
ei = qi + φ

n∑
j=1

aijqj . (G.28)

Compared to the Nash equilibrium effort levels (ei = qi) we see that firms do not spend enough
on R&D as compared to what is socially optimal. This is because they do not take into account
the spillovers they generate on other connected firms (captured by the term φ

∑n
j=1 aijqj in

Equation (G.28)). That is, there is a generic problem of under-investment in R&D, as the private
returns from R&D are lower than the social returns from R&D. This motivates policies for
fostering R&D investments as we have introduced them in Section 4 in the paper.

8We consider an interior solution such that the conditions in the proof of Proposition 1 are implicitly assumed
to be satisfied.
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Similarly, the first-order condition with respect to output is given by

∂W

∂qi
= µi − qi + ei − ρ

n∑
j=1

bijqj + 2φ

n∑
j=1

aijej = 0.

Inserting the socially optimal R&D effort levels from Equation (G.28) yields

µi − qi + qi + φ

n∑
j=1

aijqj − ρ

n∑
j=1

bijqj + 2φ

n∑
j=1

aij

(
qj + φ

n∑
k=1

ajkqk

)
= 0.

This can be written as follows

µi + 3φ

n∑
j=1

aijqj − ρ

n∑
j=1

bijqj + 2φ2
n∑

j=1

aij

n∑
k=1

ajkqk = 0.

In vector-matrix notation this is

µ+ 3φAq− ρBq+ 2φ2A2q = 0,

or equivalently
µ =

(
ρB− 3φA− 2φ2A2

)
q = 0.

When the matrix ρB− 3φA− 2φ2A2 is invertible, we get

qO =
(
ρB− 3φA− 2φ2A2

)−1
µ, (G.29)

where the superscript O refers to the “social optimum”. An examination of (G.27) and (G.29)
shows that the two solutions differ and that the Nash equilibrium in such a game is inefficient,
as there are negative and positive externalities in output (and R&D efforts) due to competition
and spillover effects that are not internalized by the firms.

G.2. Efficient Network Structure

The aim of this section is to determine the optimal network structure, i.e. the network structure
that maximizes total welfare. We will assume in the following that there is only a single market
(with M = 1, bij = 0 for i ̸= j and bii = 1 for all i, j ∈ N ) and make the homogeneity assumption
that µi = µ for all i ∈ N . Then, welfare can be written as follows

W (G) =
2− ρ

2
∥q∥22 +

ρ

2
∥q∥21,

where ∥q∥p ≡ (
∑n

i=1 q
p
i )

1

p is the Lp-norm of q. Further, note that the Herfindahl-Hirschman
industry concentration index is given by9

H =

n∑
i=1

(
qi∑n
j=1 qj

)2

=
∥q∥22
∥q∥21

,

9For more discussion of the Herfindahl index in the Nash equilibrium see Appendix D.
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Figure G.2: (Left panel) The upper and lower bounds of Equation (G.31) with n = 50, ρ = 0.25 for varying
values of φ. (Right panel) The upper and lower bounds of Equation (G.31) with n = 50, φ = 0.015 for varying
values of ρ.

and denoting total output by Q = ∥q∥1, we can write welfare as follows

W (G) =
1

2
∥q∥21

(
(2− ρ)

∥q∥22
∥q∥21

+ ρ

)
=

Q2

2
((2− ρ)H + ρ) . (G.30)

One can show that total output Q is largest in the complete graph [cf. Ballester et al., 2006].
However, as welfare depends on both, output Q and industry concentration H, it is not obvious
that the complete graph (where H = 1/n is small) is also maximizing welfare. As the following
proposition illustrates, we can conclude that the complete graph is welfare maximizing (i.e.
efficient) when externalities are weak, but this may no longer be the case when ρ or φ are high.

Proposition 4. Assume that µi = µ for all i = 1, . . . , n, and let ρ, µ, φ and ϕ satisfy the restrictions of
Proposition 1. Denote by Gn the class of graphs with n nodes, Kn ∈ Gn the complete graph, K1,n−1 ∈ Gn

the star network, and let the efficient graph be denoted by G∗ = argmaxG∈Gn W (G).

(i) Welfare of the efficient graph G∗ can be bounded from above and below as follows:

µ2n(2 + (n− 1)ρ)

2(1 + (n− 1)(ρ− φ))2
≤ W (G∗) ≤

µ2n
(
(1− ρ)2(2 + (n− 1)ρ)− n(n− 1)2ρφ2

)
2((1 + (n− 1)(ρ− φ))2 ((1− ρ)2 − (n− 1)2φ2)

. (G.31)

(ii) In the limit of independent markets, when ρ → 0, the complete graph is efficient, Kn = G∗.

(iii) In the limit of weak R&D spillovers, when φ → 0, the complete graph is efficient, Kn = G∗.

(iv) There exists a φ∗(n, ρ) > 0 (which is decreasing in ρ) such that W (Kn) < W (K1,n−1) for all
φ > φ∗(n, ρ), and the complete graph is not efficient, Kn ̸= G∗.

Proof of Proposition 4 (ii) Assuming that µi = µ for all i = 1, . . . , n, at the Nash equilib-
rium, and that ρ = 0, we have that q = µM(G,φ)ι, where we have denoted by M(G,φ) ≡
(I − φA)−1.10 We then obtain W (G) = q⊤q = µ2ι⊤M(G,φ)2ι. Observe that the quan-
tity ι⊤M(G,φ)ι is the walk generating function, NG(φ), of G that we defined in detail in

10Note that there exists a relationship between the matrix M(G,φ) with elements mij(G,φ) and the length
of the shortest path ℓij(G) between nodes i and j in the network G. Namely ℓij(G) = limφ→0

∂ lnmij(G,φ)
∂ lnφ =

limφ→0
φ

mij(G,φ)
∂mij(G,φ)

∂φ . See also Newman [2010, Chap. 6]. This means that the length of the shortest path
between i and j is given by the relative percentage change in the weighted number of walks between nodes i
and j in G with respect to a relative percentage change in φ in the limit of φ → 0.
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Appendix B.2. Using the results of Appendix B.2, we obtain

ι⊤M(G,φ)2ι = ι⊤

(
∞∑
k=0

φkAk

)2

ι

= ι⊤

(
∞∑
k=0

k∑
l=0

φlAlφk−lAk−l

)
ι

=
∞∑
k=0

(k + 1)φkι⊤Akι

= NG(φ) +
∞∑
k=0

kφkι⊤Akι.

Alternatively, we can write
∞∑
k=0

(k + 1)φkι⊤Akι =
∞∑
k=0

(k + 1)Nkφ
k =

d

dφ
(φNG(φ)),

so that
ι⊤M(G,φ)2ι =

d

dφ
(φNG(φ)) = NG(φ) + φ

d

dφ
NG(φ).

In the k-regular graph Gk it holds that NG(φ) =
n

1−kφ
and d

dφ
(φNG(φ)) = NG(φ) + φ d

dφ
=

NG(φ) = n
1−kφ

+ nkφ
(1−kφ)2

= n
1−kφ

(
1 + kφ

1−kφ

)
= n

(1−kφ)2
. Using the fact that the number of

links in a k-regular graph is given by m = nk
2

we obtain a lower bound on welfare in the
efficient graph given by µ2n

(1− 2m
n

φ)2
≤ W (G∗). This lower bound is highest for the complete

graph Kn where m = n(n− 1)/2, so that11

µ2n

(1− (n− 1)φ)2
≤ W (G∗).

In order to derive an upper bound, observe that

ι⊤Akι =
n∑

i=1

(ι⊤vi)
2λk

i ,

NG(φ) =
n∑

i=1

(v⊤
i ι)

2

1− λiφ
,

11 Using Rayleigh’s inequality, one can show that d
dφ (φNG(φ)) ≥ 1

λ1

d
dφ [Van Mieghem, 2011, p. 51]. From

this we can obtain a lower bound on welfare given by W (G) ≥ µ2 1
λ1

d
dφ (NG(φ)).

21



so that we can write

ι⊤M(G,φ)2ι =
n∑

i=1

(v⊤
i ι)

2

1− λiφ
+

n∑
i=1

(ι⊤vi)
2

∞∑
k=0

kφkλk
i

=
n∑

i=1

(v⊤
i ι)

2

1− λiφ
+

n∑
i=1

(ι⊤vi)
2φλi

(1− φλi)2

=
n∑

i=1

(ι⊤vi)
2

1− φλi

(
1 +

φλi

1− φλi

)
=

n∑
i=1

(ι⊤vi)
2

(1− φλi)2
.

From the above it follows that welfare can also be written as

W (G) = µ2 d

dφ
(φNG(φ)) = µ2

n∑
i=1

(ι⊤vi)
2

(1− φλi)2
.

This expression shows that gross welfare is highest in the graph where λ1 approaches 1/φ.
We then can upper bound welfare as follows12

W (G) = µ2

n∑
i=1

(ι⊤vi)
2

(1− φλi)2
≤ µ2

∑n
i=1(ι

⊤vi)
2

(1− φλ1)2
≤ µ2 n

(1− φλ1)2
,

where we have used the fact that NG(0) =
∑n

i=1(ι
⊤vi)

2 = n so that (ι⊤v1)
2 < n. Note

that the largest eigenvalue λ1 is upper bounded by the largest eigenvalue of the complete
graph Kn, where it is equal to n− 1. In this case, upper and lower bounds coincide, and the
efficient graph is therefore complete, that is Kn = argmaxG∈Gn W (G).

(i) Welfare can be written as

W (G) =
2− ρ

2

µ2

ρ2

ι⊤M(G, ϕ)2ι+ ρ
2−ρ

(ι⊤M(G, ϕ)ι)2(
1−ρ
ρ

+ ι⊤M(G, ϕ)ι
)2 .

For the k-regular graph Gk we have that

ι⊤M(G, ϕ)ι =
n

1− (k − 1)ϕ
,

ι⊤M(G, ϕ)2ι =
n

(1− (k − 1)ϕ)2
,

and welfare is given by

W (Gk) =
µ2n((n− 1)ρ+ 2)

2(ρ(kϕ+ n− 1)− kϕ+ 1)2
.

12An alternative proof uses the fact that λ1 ≥
(

Nk(G)
n

) 1
k [cf. Van Mieghem, 2011, p. 47], so that

d
dφ (φNG(φ)) =

∑∞
k=0 φ

k(k + 1)Nk(φ) ≤ n
∑∞

k=0(λ1φ)
k(k + 1) = n

∑∞
k=0(λ1φ)

k + n
∑∞

k=0 k(λ1φ)
k =

n
(

1
1+φλ1

+ φλ1

(1+φλ1)2

)
= n

(1+φλ1)2
.
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As k = 2m/n this is

W (Gk) =
µ2n3((n− 1)ρ+ 2)

2(2m(ρ− 1)ϕ+ (n− 1)nρ+ n)2
.

Together with the definition of the average degree d̄ = 2m
n

this gives us the lower bound on
welfare for all graphs with m links. For the complete graph Kn we get

ι⊤M(G, ϕ)ι =
n

1− (n− 1)ϕ
,

ι⊤M(G, ϕ)2ι =
n

(1− (n− 1)ϕ)2
,

so that we obtain for welfare in the complete graph

W (Kn) =
µ2n(2 + (n− 1)ρ)

2((n− 1)ρ(ϕ+ 1)− (n− 1)ϕ+ 1)2
.

Using the fact that ϕ = φ
1−ρ

we can write this as follows

W (Kn) =
µ2n(2 + (n− 1)ρ)

2((n− 1)ρ− (n− 1)φ+ 1)2
.

This gives us the lower bound on welfare W (Kn) ≤ W (G∗). To obtain an upper bound, note
that welfare can be written as

W (G) =
µ2

2ρ2

(2− ρ) ι⊤M(G,ϕ)2ι
(ι⊤M(G,ϕ)ι)2

+ ρ

( 1−ρ
ρ

+ι⊤M(G,ϕ)ι)
2

(ι⊤M(G,ϕ)ι)2

.

Next, observe that(
1−ρ
ρ

+ ι⊤M(G, ϕ)ι
)2

(ι⊤M(G, ϕ)ι)2
=

(
1 +

1− ρ

ρ

1

ι⊤M(G, ϕ)ι

)2

≥
(
1 +

1− ρ

ρ

1− λ1ϕ

n

)2

,

where we have used the fact that ι⊤M(G, ϕ)ι = NG(ϕ) ≤ n
1−λ1ϕ

. This implies that

W (G) ≤ µ2

2ρ2

(2− ρ) ι⊤M(G,ϕ)2ι
(ι⊤M(G,ϕ)ι)2

+ ρ(
1 + 1−ρ

ρ
1−λ1ϕ

n

)2 (G.32)

Next, observe that the Herfindahl industry concentration index is defined as H =
∑n

i=1 s
2
i ,

where the market share of firm i is given by si =
qi∑n

j=1 qj
[cf. e.g. Tirole, 1988]. Using our

equilibrium characterization from Equation (8) we can write

H(G) =
n∑

i=1

(
qi∑n
j=1 qj

)2

=

∑n
i=1 bi (G, ϕ)2(∑n
j=1 bj (G, ϕ)

)2 =
b (G, ϕ)⊤ b (G, ϕ)

(ι⊤b (G, ϕ))2
=

ι⊤M(G, ϕ)2ι

(ι⊤M(G, ϕ)ι)2
.

(G.33)
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Figure G.3: The RHS in Equation (G.35) with varying values of m ∈ {0, 1, . . . , n(n − 1)/2} for n = 100,
φ = 0.9(1− ρ)/n and ρ ∈ {0.05, 0.1, 0.25, 0.5, 0.99}.

The upper bound for welfare can then be written more compactly as follows

W (G) ≤ µ2

2ρ2
(2− ρ)H(G) + ρ(
1 + 1−ρ

ρ
1−λ1ϕ

n

)2 . (G.34)

Further, we have that

H(G) =
ι⊤M2(G, ϕ)ι

(ι⊤M(G, ϕ)ι)2
=

d
dϕ

(ϕNG(ϕ))

NG(ϕ)2
=

∑n
i=1

(ι⊤vi)
2

(1−ϕλi)2(∑n
i=1

(ι⊤vi)2

1−ϕλi

)2 ≤
1

1−ϕλ1

∑n
i=1

(ι⊤vi)
2

1−ϕλi(∑n
i=1

(ι⊤vi)2

1−ϕλi

)2
=

1

(1− ϕλ1)NG(ϕ)
≤ 1

(1− ϕλ1)(n+ 2mϕ)
≤ 1

(1− ϕ
√

2m(n−1)
n

)(n+ 2mϕ)
,

where we have used the fact that NG(ϕ) ≥ n+ 2mϕ for ϕ ∈ [0, 1/λ1), and the upper bound
λ1 ≤

√
2m(n−1)

n
[cf. Van Mieghem, 2011, p. 52]. Inserting into the upper bound in Equation

(G.32) and substituting ϕ = (1− ρ)/φ gives

W (G∗) ≤ µ2n2

2

ρ+ (2− ρ) (1−ρ)2

(n(1−ρ)+2mφ)

(
1−ρ−φ

√
2m(n−1)

n

)
(
1 + (n− 1)ρ− φ

√
2m(n−1)

n

)2 . (G.35)

The RHS in Equation (G.35) is increasing in m (see Figure G.3) and attains its maximum
at m = n(n− 1)/2, where we get

W (G∗) ≤ µ2n ((ρ− 1)2((n− 1)ρ+ 2)− (n− 1)2nρφ2)

2((n− 1)ρ− nφ+ φ+ 1)2 ((ρ− 1)2 − (n− 1)2φ2)
.

(iii) Assuming that µi = µ for all i = 1, . . . , n, we have that

q =
µ

1 + ρ(ι⊤M(G, ϕ)ι− 1)
M(G, ϕ)ι,
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with M(G, ϕ) ≡ (I− ϕA)−1, and we can write

W (G) =
µ2

2(1 + ρ(ι⊤M(G, ϕ)ι− 1))2
(
(2− ρ)ι⊤M(G, ϕ)2ι+ ρ(ι⊤M(G, ϕ)ι)2

)
.

Using the fact that ι⊤M(G, ϕ)ι = NG(ϕ) and ι⊤M(G, ϕ)2ι = d
dϕ

(ϕNG(ϕ)), we then can
write welfare in terms of the walk generating function NG(ϕ) as

W (G) =
µ2

2(1 + ρ(NG(ϕ)− 1))2

(
(2− ρ)

d

dϕ
(ϕNG(ϕ)) + ρNG(ϕ)

2

)
.

Next, observe that
NG(ϕ) = N0 +N1ϕ+N2ϕ

2 +O(ϕ3),

and consequently
d

dϕ
(ϕNG(ϕ)) = N0 + 2N1ϕ+ 3N2ϕ

2 +O(ϕ3).

Inserting into welfare gives

W (G) =
µ2N0((N0 − 1)ρ+ 2)

2((N0 − 1)ρ+ 1)2
− µ2N1(ρ− 1)((N0 − 1)ρ+ 2)

((N0 − 1)ρ+ 1)3
ϕ+O(ϕ)2.

Using the fact that N0 = n and N1 = 2m we get

W (G) =
µ2n((n− 1)ρ+ 2)

2((n− 1)ρ+ 1)2
+

2µ2m(1− ρ)(2 + (n− 1)ρ)

(1 + (n− 1)ρ)3
ϕ+O(ϕ)2.

Up to terms linear in ϕ this is an increasing function of m, and hence is largest in the
complete graph Kn.

(iv) Welfare can be written as

W (G) =
µ2
(
(ι⊤M(G, ϕ)ι)2ρ+ ι⊤M(G, ϕ)2ι(2− ρ)

)
2((ι⊤M(G, ϕ)ι− 1)ρ+ 1)2

.

For the complete graph we obtain

ι⊤M(Kn, ϕ)ι =
n

1− (n− 1)ϕ
,

ι⊤M(Kn, ϕ)
2ι =

n

(1− (n− 1)ϕ)2
.

With ϕ = φ
1−ρ

welfare in the complete graph is given by

W (Kn) =
µ2n((n− 1)ρ+ 2)

2((n− 1)ρ− nφ+ φ+ 1)2
,

For the star K1,n−1

ι⊤M(K1,n−1, ϕ)ι =
2(n− 1)ϕ+ n

1− (n− 1)ϕ2
,

ι⊤M(K1,n−1, ϕ)
2ι =

(n− 1)nϕ2 + 4(n− 1)ϕ+ n

((n− 1)ϕ2 − 1)2
.
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Inserting ϕ = φ
1−ρ

, welfare in the star is then given by

W (K1,n−1)

=
µ2 ((n− 1)φ2(n(3ρ+ 2)− 4ρ)− 4(n− 1)(ρ− 1)φ((n− 1)ρ+ 2) + n(ρ− 1)2((n− 1)ρ+ 2))

2 (−2(n− 1)ρφ+ (ρ− 1)((n− 1)ρ+ 1) + (n− 1)φ2)2
.

(G.36)

Welfare of the star K1,n−1 for varying values of ρ can be seen in Figure G.4, right panel. For
the ratio of welfare in the complete graph and the star we then obtain

W (Kn)

W (K1,n−1)
= n(2 + (n− 1)ρ)

(
2(n− 1)ρφ+ (1− ρ)((n− 1)ρ+ 1)− (n− 1)φ2

)2
×
(
(1 + (n− 1)ρ− (n− 1)φ)2

(
(n− 1)φ2(n(3ρ+ 2)− 4ρ)

+4(n− 1)(1− ρ)φ((n− 1)ρ+ 2) + n(1− ρ)2((n− 1)ρ+ 2)
))−1

.

This ratio equals one when φ = φ∗(n, ρ), which is given by

φ∗(n, ρ) =
1

6A(n− 1)((n− 1)ρ+ n)

×
(

3
√
2A2 + 2A(n− 1)(2− ρ(3(n− 1)ρ+ 5)) + 22/3(n− 1)

)
×
(
6n2 − (n− 1)(15(n− 2)n+ 8)ρ2 + (n(3(n− 16)n+ 76)− 16)ρ− 32n+ 8

)
,

where we have denoted by

A =
(
−3(n− 1)2

(
n
(
3n
(
6n2 − 33n+ 86

)
− 248

)
+ 32

)
×ρ2 − 27(n− 2)(n− 1)4nρ4 + (n− 1)3(9(n− 2)n(3n− 19)− 32)ρ3

+3
√
3B − 12n(n(5n(3(n− 5)n+ 31)− 153) + 66)ρ− 16n(n(n(9n− 29) + 33)− 15) + 96ρ− 32

) 1
3
,

and

B =
(
(n− 2)(n− 1)3n((n− 1)ρ+ n)2

×
(
27(n− 2)(n− 1)3nρ6 − 2(n− 1)2(9(n− 2)n(6n− 19)− 32)ρ5

+(n− 1)(n(n(2n(37n− 526) + 3283)− 3046) + 384)ρ4

+2(n(n(n(n(n+ 242)− 1936) + 4384)− 3264) + 448)ρ3

+4((n− 2)n(n(3n+ 302)− 786)− 256)ρ2 + 24(n− 2)(n(n+ 56)− 12)ρ+ 16(n(n+ 34)− 8)
)) 1

2 .

We then have that W (Kn) > W (K1,n−1) if φ < φ∗(n, ρ) and W (Kn) < W (K1,n−1) otherwise.
An illustration can be seen in Figure G.4, left panel.

The upper and lower bounds of case (i) in Proposition 4 on welfare can be seen in Figure G.2.
The bounds indicate that welfare is typically increasing in strength of technology spillovers, φ,
and decreasing in the degree of competition, ρ, at least when these are not too high. The
figure is also consistent with cases (ii) and (iii), where it is shown that for weak spillovers
the complete graph is efficient. However, Proposition 4, case (iv), shows that in the presence
of stronger externalities through R&D spillovers and competition, the star network generates
higher welfare than the complete network. This happens when the welfare gains through
concentration, which enter the welfare function through the Herfindahl index H in Equation
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Figure G.4: (Left panel). The ratio of welfare in the complete graph, Kn, and the star, K1,n−1, for n = 10,
ρ = 0.981 and varying values of φ (< ((1 − ρ)/λmax(Kn) = 0.002) (Right panel) Welfare in the star, K1,n−1,
with varying values of ρ for n = 10 and φ = 0.001 (< (1− ρ)/λmax(K1,n−1) for all values of ρ considered).

(G.30), dominate the welfare gains through maximizing total output Q.
While total output Q (and total R&D) is increasing with the degree of competition, mea-

sured by ρ (Schumpeterian effect; see e.g. Aghion et al. [2014]), this may not necessarily hold for
welfare. This is illustrated in the right panel in Figure G.4 where welfare for the star is shown
for varying values of ρ. The presence of externalities through R&D spillovers and business
stealing effects through market competition in highly centralized networks can thus give rise to
a non-monotonic relationship between competition and welfare [cf. Aghion et al., 2005]. The
centralization of the network structure, however, seems to be important for this result, as for
example in a regular graph (such as the complete graph) welfare is decreasing monotonically
with increasing ρ.13

H. Data
In the following appendices we give a detailed account on how we constructed our data sample.
In Appendix H.1 we describe the two raw datasources we have used to obtain information
on R&D collaborations between firms. In Appendix H.2 we explain how we complemented
these data with information about mergers and acquisitions, while Appendix H.3 explains how
we supplemented the alliance information with firms’ balance sheet statements. Moreover,
Appendix H.4 discusses the geographic distribution of the firms in our data sample. Finally,
Appendix H.5 provides the details on how we complemented the alliance data with the firms
patent portfolios and computed their technological proximities.

H.1. R&D Network

To get a comprehensive picture of alliances we use data on interfirm R&D collaborations stem-
ming from two sources which have been widely used in the literature [cf. Schilling, 2009]. The
first is the Cooperative Agreements and Technology Indicators (CATI) database [cf. Hagedoorn,
2002]. The database only records agreements for which a combined innovative activity or an
exchange of technology is at least part of the agreement. Moreover, only agreements that
have at least two industrial partners are included in the database, thus agreements involving
only universities or government labs, or one company with a university or lab, are disregarded.
The second is the Thomson Securities Data Company (SDC) alliance database. SDC collects

13Decreasing welfare with increasing competition is a feature not only of the standard Cournot model (without
externalities) but also of many traditional models in the literature including Aghion and Howitt [1992], and
Grossman and Helpman [1991].
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data from the U. S. Securities and Exchange Commission (SEC) filings (and their international
counterparts), trade publications, wires, and news sources. We include only alliances from
SDC which are classified explicitly as research and development collaborations. A comparative
analysis of these two databases (and other alternative databases) can be found in Schilling
[2009].

We then merged the CATI database with the Thomson SDC alliance database. For the
matching of firms across datasets we adopted the name matching algorithm developed as part
of the NBER patent data project [Trajtenberg et al., 2009] and developed further by Atalay
et al. [2011].14 From the firms in the CATI database and the firms in the SDC database we
could match 21% of the firms appearing in both databases. Considering only firms without
missing observations on sales, output and R&D expenditures (see also Appendix H.3 below on
how we obtained balance sheet and income statement information), gives us a sample of 1, 186
firms and a total of 1010 collaborations over the years 1967 to 2006.15 The average degree of
the firms in this sample is 1.68 with a standard deviation of 4.83 and the maximum degree is
63 attained by Motorola Inc.. Figure H.5 shows the largest connected component of the R&D
collaboration network with all links accumulated up to the year 2005 (see Appendix B.1). The
figure indicates two clusters appearing which are related to the different industries in which
firms are operating. This may indicate specialization in R&D alliance partnerships.

Figure H.6 shows the average clustering coefficient, C, the relative size of the largest con-
nected component, max{H⊆G} |H|/n, the average path length, ℓ, and the eigenvector centraliza-
tion Cv (relative to a star network of the same size) over the years 1990 to 2005 (see Wasserman
and Faust [1994] and Appendix B.1 for the definitions). We observe that the network shows the
highest degree of clustering in the year 1990 and the largest connected component around the
year 1997, an average path length of around 5, and a centralization index Cv between 0.3 and
0.7. Moreover, comparing our subsample and the original network (where firms have not been
dropped because of missing accounting information) we find that both exhibit similar trends
over time. This seems to suggest that the patterns found in the subsample are representative
for the overall patterns in the data (see also Section J.5). Further, the clustering coefficient
and the size of the largest connected component exhibit a similar trend as the number of firms
and the average number of collaborations that we have seen already in Figure 2.

Figure H.7 shows the degree distribution, P (d), the average nearest neighbor connectivity,
knn(d), the clustering degree distribution, C(d), and the component size distribution, P (s) across
different years of observation [cf. e.g. König, 2016]. The degree distribution decays as a power
law, the average nearest neighbor degree is weakly increasing with the degree, indicating a
weakly assortative network, the clustering degree distribution is decreasing with the degree and
the component size distribution indicates a large connected component (see also Figure H.5)
with smaller components decaying as a power law.

Figure H.8 and Tables H.1 and H.2 illustrate the industrial composition of our sample of
R&D collaborating firms at the main 2-digit and 4-digit standard industry classification (SIC)
levels, respectively. At the 2-digit level, the chemicals and allied products sectors make up for
the largest fraction (22.43%) of firms in our data, followed by business services and electronic
equipment. This sectoral composition is similar to the one provided in Schilling [2009], who
identifies the biotech and information technology sectors as the most prominent in the CATI
and SDC R&D collaboration databases.

14See https://sites.google.com/site/patentdataproject. We would like to thank Enghin Atalay and
Ali Hortacsu for sharing their name matching algorithm with us.

15This is the sample that we have used for our empirical analysis in Section 6.
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Figure H.5: The largest connected component of the R&D collaboration network with all links accumulated
until the year 2005. The nodes’ colors indicate sectors according to 4-digit SIC codes while the nodes’ sizes
indicate the number of collaborations of a firm.

29



1990 1995 2000 2005
year

0

0.05

0.1

0.15

0.2

0.25
C

1990 1995 2000 2005
year

0.05

0.1

0.15

0.2

0.25

0.3

m
a
x
{
H
⊆
G
}
|H

|/
n

1990 1995 2000 2005
year

3

3.5

4

4.5

5

5.5

ℓ

1990 1995 2000 2005
year

0.3

0.4

0.5

0.6

0.7

0.8

C
v

Figure H.6: The average clustering coefficient, C, the relative size of the largest connected component,
max{H⊆G} |H|/n, the average path length, ℓ, and the eigenvector centralization Cv (relative to a star net-
work of the same size) over the years 1990 to 2005 (see Appendix B.1). Dashed lines indicate the corresponding
quantities for the original network (where firms have not been dropped because of missing accounting infor-
mation), while solid lines indicate the subsample with 1, 186 firms that we have used in the empirical Section
6.

Table H.1: The 20 largest sectors at the 2-digit SIC level.

Sector 2-dig SIC # firms % of tot. Rank

Chemical and Allied Products 28 266 22.43 1
Business Services 73 198 16.69 2
Electronic and Other Electric Equipment 36 187 15.77 3
Instruments and Related Products 38 154 12.98 4
Industrial Machinery and Equipment 35 150 12.65 5
Transportation Equipment 37 47 3.96 6
Engineering and Management Services 87 25 2.11 7
Primary Metal Industries 33 18 1.52 8
Fabricated Metal Products 34 15 1.26 9
Oil and Gas Extraction 13 14 1.18 10
Communications 48 14 1.18 11
Rubber and Miscellaneous Plastics Products 30 10 0.84 12
Paper and Allied Products 26 9 0.76 13
Petroleum and Coal Products 29 9 0.76 14
Health Services 80 9 0.76 15
Food and Kindred Products 20 8 0.67 16
Miscellaneous Manufacturing Industries 39 7 0.59 17
Electric Gas and Sanitary Services 49 6 0.51 18
Textile Mill Products 22 5 0.42 19
Stone Clay and Glass Products 32 5 0.42 20
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Figure H.7: The degree distribution, P (d), the average nearest neighbor connectivity, knn(d), the clustering
degree distribution, C(d), and the component size distribution, P (s).
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Figure H.8: The shares of the ten largest sectors at the 2-digit (left panel) and 4-digit (right panel) SIC levels.
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Table H.2: The 20 largest sectors at the 4-digit SIC level.

Sector 4-dig SIC # firms % of tot. Rank

Services-Prepackaged Software 7372 163 13.74 1
Pharmaceutical Preparations 2834 129 10.88 2
Semiconductors and Related Devices 3674 79 6.66 3
Biological Products (No Diagnostic Substances) 2836 74 6.24 4
Telephone and Telegraph Apparatus 3661 39 3.29 5
Electromedical and Electrotherapeutic Apparatus 3845 28 2.36 6
Electronic Computers 3571 26 2.19 7
In Vitro and In Vivo Diagnostic Substances 2835 24 2.02 8
Computer Peripheral Equipment NEC 3577 22 1.85 9
Surgical and Medical Instruments and Apparatus 3841 22 1.85 10
Special Industry Machinery NEC 3559 21 1.77 11
Laboratory Analytical Instruments 3826 20 1.69 12
Services-Computer Integrated Systems Design 7373 20 1.69 13
Radio and TV Broadcasting and Communications Equipment 3663 18 1.52 14
Motor Vehicle Parts and Accessories 3714 18 1.52 15
Instruments For Meas and Testing of Electricity and Elec Signals 3825 17 1.43 16
Computer Storage Devices 3572 15 1.26 17
Computer Communications Equipment 3576 14 1.18 18
Search Detection Navigation Guidance Aeronautical Sys 3812 14 1.18 19
Services-Commercial Physical and Biological Research 8731 14 1.18 20

H.2. Mergers and Acquisitions

Some firms might be acquired by other firms due to mergers and acquisitions (M&A) over time,
and this will impact the R&D collaboration network [cf. Hanaki et al., 2010].

To get a comprehensive picture of the M&A activities of the firms in our dataset, we use two
extensive datasources to obtain information about M&As. The first is the Thomson Reuters’
Securities Data Company (SDC) M&A database, which has historically been the most widely
used database for empirical research in the field of M&As. Data in SDC dates back to 1965 with
a slightly more complete coverage of deals starting in the early 1980s. The second database
with information about M&As is Bureau van Dijk’s (BvD) Zephyr database, which is a recent
alternative to the SDC M&As database. The history of deals recorded in Zephyr goes back
to 1997. In 1997 and 1998 only European deals are recorded, while international deals are
included starting from 1999. According to Huyghebaert and Luypaert [2010], Zephyr “covers
deals of smaller value and has a better coverage of European transactions”. A comparison and
more detailed discussion of the two databases can be found in Bollaert and Delanghe [2015]
and Bena et al. [2008].

We merged the SDC and Zephyr databases (with the above mentioned name matching
algorithm; see also Atalay et al. [2011]; Trajtenberg et al. [2009]) to obtain information on M&As
of 116, 641 unique firms. Using the same name matching algorithm we could identify 43.08%

of the firms in the combined CATI-SDC alliance database that also appear in the combined
SDC-Zephyr M&As database. We then account for the M&A activities of these matched firms
when constructing the R&D collaboration network by assuming that an acquiring firm in a
M&A inherits all the R&D collaborations of the target firm, and we remove the target firm
form from the network.

H.3. Balance Sheet Statements

The combined CATI-SDC alliance database provides the names for each firm in an alliance,
but it does not contain information about the firms’ output levels or R&D expenses. We there-
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fore matched the firms’ names in the combined CATI-SDC database with the firms’ names
in Standard & Poor’s Compustat U.S. fundamentals annual database and Bureau van Dijk
(BvD)’s Osiris database, to obtain information about their balance sheets and income state-
ments.16 These databases contain only firms listed on the stock market, so they typically
exclude smaller private firms, but this is inevitable if one is going to use market value data.
Nevertheless, R&D is concentrated in publicly listed firms, and our data sources thus cover
most of the R&D activities in the economy [cf. e.g. Bloom et al., 2013]. Compustat contains
financial data extracted from company filings.

Compustat North America is a database of U.S. and Canadian fundamental and market
information on active and inactive publicly held companies. It provides more than 300 annual
and 100 quarterly income statements, balance sheets and statement of cash flows. The Compu-
stat database covers 99% of the total market capitalization with annual company data history
available back to 1950.

Osiris is owned by Bureau van Dijk (BvD) and it contains a wide range of accounting and
other items for firms from over 120 countries. Osiris contains financial information on globally
listed public companies with coverage for up to 20 years on over 62, 191 companies by major
international industry classifications. It claims to cover all publicly listed companies worldwide.
In addition, it covers major non-listed companies when they are primary subsidiaries of pub-
licly listed companies, or in certain cases, when clients request information from a particular
company.

For a detailed comparison and discussion of the Compustat and Osiris databases see Dai
[2012] and Papadopoulos [2012].

For the matching of firms across datasets we adopted the name matching algorithm devel-
oped as part of the NBER patent data project [Atalay et al., 2011; Trajtenberg et al., 2009].
We could match 25.53% of the firms in the combined CATI-SDC database with the combined
Compustat-Osiris database (where accounting information was available). For the matched
firms we obtained their sales and R&D expenditures. We adjusted for inflation using the con-
sumer price index of the Bureau of Labor Statistics (BLS), averaged annually, with 1983 as
the base year. Individual firms’ output levels are computed from deflated sales using 2-SIC
digit industry-year specific price deflators from the OECD-STAN database [cf. Gal, 2013]. We
then dropped all firms with missing information on sales, output and R&D expenditures. This
pruning procedure left us with a subsample of 1, 186, on which the empirical analysis in Section
6 is based.17

The empirical distributions for sales, P (s), output, P (q), R&D expenditures, P (e), and the
patent stocks, P (k), across different years ranging from 1990 to 2005 (using a logarithmic binning
of the data with 100 bins [cf. McManus et al., 1987]) are shown in Figure H.9. All distributions
are highly skewed, indicating a large degree of inequality in firms’ sizes and patent activities.

H.4. Geographic Location and Distance

In order to determine the locations of the firms in our data we have added the longitude and
latitude coordinates associated with the city of residence of each firm in our data. Among
the matched cities in our dataset 93.67% could be geo-localized using ArcGIS [cf. e.g. Dell,

16We chose to use two alternative database for firm level accounting data to get as much information as
possible about balance sheets and income statements for the firms in the R&D collaboration database. The
accounting databases used here are complementary, as Compustat features a greater coverage of large companies,
while BvD Osiris contains a higher number of small firms and tends to have a better coverage of European firms
[cf. Dai, 2012].

17Section J.5 discusses how sensitive our empirical results are with respect to subsampling (i.e. missing data).
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Figure H.9: The sales distribution, P (s), the output distribution, P (q), the R&D expenditures distribution,
P (e), and the patent stock distribution, P (k), across different years ranging from 1990 to 2005 using a loga-
rithmic binning of the data [McManus et al., 1987].

2009] and the Google Maps Geocoding API.18 We then used Vincenty’s algorithm to compute
the distances between pairs of geo-localized firms [cf. Vincenty, 1975]. The mean distance, d,
and the distance distribution, P (d), across collaborating firms are shown in Figure I.11, while
Figure H.10 shows the locations (at the city level) of firms in the database and the collaborations
between them. The largest distance between collaborating firms appears around the turn of the
millennium, while the distance distribution is heavily skewed. We find that R&D collaborations
tend to be more likely between firms that are close, showing that geography matters for R&D
collaborations and spillovers, in line with previous empirical studies [cf. Lychagin et al., 2010].

H.5. Patents

We identified the patent portfolios of the firms in our dataset using the EPO Worldwide Patent
Statistical Database (PATSTAT) [Hall et al., 2001; Jaffe and Trajtenberg, 2002]. The creation
of this worldwide statistical patent database was initiated by the OECD task force on patent
statistics. It includes bibliographic details on patents filed to 80 patent offices worldwide,
covering more than 60 million documents. Hence filings in all major countries and at the World
International Patent Office are covered. We matched the firms in our data with the assignees
in the PATSTAT database using the above mentioned name matching algorithm [Atalay et al.,
2011; Trajtenberg et al., 2009]. We only consider granted patents (or successful patents), as
opposed to patents applied for, as they are the main drivers of revenue derived from R&D
expenditures [cf. Copeland and Fixler, 2012]. Using our name matching algorithm we obtained

18See https://developers.google.com/maps/documentation/geocoding/intro.
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Figure H.10: The locations (at the city level) of firms and their R&D alliances in the combined CATI-SDC
databases.

matches for 36.05% of the firms in our data with patent information. The distribution of the
number of patents is shown in Figure H.9. The technology classes were identified using the
main international patent classification (IPC) numbers at the 4-digit level.

From the firms’ patents, we then computed the technological proximity of firm i and j as

fJ
ij =

P⊤
i Pj√

P⊤
i Pi

√
P⊤

j Pj

, (H.37)

where, for each firm i, Pi is a vector whose k-th component, Pik, counts the number of patents
firm i has in technology category k divided by the total number of technologies attributed to
the firm [cf. Bloom et al., 2013; Jaffe, 1989]. Thus, Pi represents the patent portfolio of firm i.
We use the three-digit U.S. patent classification system to identify technology categories [Hall
et al., 2001]. We denote by FJ the (n× n) matrix with elements (fJ

ij)1≤i,j≤n.
We next consider the Mahalanobis technology proximity measure introduced by Bloom et al.

[2013]. To construct this metric, we need to introduce some additional notation. Let N be the
number of technology classes, n the number of firms, and let T be the (N × n) patent shares
matrix with elements

Tji =
1∑n

k=1 Pki
Pji,

for all 1 ≤ i ≤ n and 1 ≤ j ≤ N . Further, we construct the (N × n) normalized patent shares
matrix T̃ with elements

T̃ji =
1√∑N
k=1 T

2
ki

Tji,

and the (n×N) normalized patent shares matrix across firms is defined by x̃ with elements

X̃ik =
1√∑N
i=1 T

2
ki

Tki.

Let Ω = x̃⊤x̃. Then the (n × n) Mahalanobis technology similarity matrix with elements
(fM

ij )1≤i,j≤n is defined as
FM = T̃⊤ΩT̃. (H.38)

Figure I.12 shows the average patent proximity across collaborating firms using the Jaffe metric
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fJ
ij of Equation (H.37) or the Mahalanobis metric fM

ij of Equation (H.38). Both are monotonic
increasing over almost all years of observations. This suggests that R&D collaborating firms
tend to become more similar over time.

I. Numerical Algorithm for Computing the Optimal Subsidies
The Nash equilibrium output levels, q ∈ [0, q̄]n, in the presence of the subsidy, s ∈ [0, s̄]n, satisfy

qi = 0, if − µi + qi + ρ

n∑
j=1

bijqj − φ

n∑
j=1

aijqj − si − φ

n∑
j=1

aijsj > 0,

qi = µi − ρ
∑
j ̸=i

bijqj + φ

n∑
j=1

aijqj + si + φ

n∑
j=1

aijsj , if − µi + qi + ρ

n∑
j=1

bijqj − φ

n∑
j=1

aijqj − si − φ

n∑
j=1

aijsj = 0,

qi = q̄, if − µi + qi + ρ

n∑
j=1

bijqj − φ

n∑
j=1

aijqj − si − φ

n∑
j=1

aijsj < 0.

(I.39)

The problem of finding a vector q such that the conditions in (I.39) hold is known as the
bounded linear complementarity problem [cf. Byong-Hun, 1983].

The bounded linear complementarity problem (LCP) of Equation (I.39) is equivalent to the
Kuhn-Tucker optimality conditions of the following quadratic programming (QP) problem with
box constraints

min
q∈[0,q̄]n

{
−ν(s)⊤q+

1

2
q⊤ (I+ ρB− φA)q

}
, (I.40)

where ν(s) ≡ µ+ (I+ φA)s. Moreover, net welfare is given by

W (G, s) =

n∑
i=1

(
q2i
2

+ πi − siei

)
= µ⊤q− q⊤

(ρ
2
B− φA

)
q+ φq⊤As− 1

2
s⊤As.

Finding the optimal subsidy program s∗ ∈ [0, s̄]n is then equivalent to solving the following
bilevel optimization problem [cf. Bard, 2013]

max
s∈[0,s̄]n

W (G, s) = µ⊤q∗(s)− q∗(s)⊤
(ρ
2
B− φA

)
q∗(s) + φq∗(s)⊤As− 1

2
s⊤As

s.t. q∗(s) = min
q∈[0,q̄]n

{
−ν(s)⊤q+

1

2
q⊤ (I+ ρB− φA)q

}
.

(I.41)

The bilevel optimization problem of Equation (I.41) can be implemented in MATLAB following
a two-stage procedure. First, one computes the Nash equilibrium output levels q∗(s) as a
function of the subsidies s by solving a quadratic programming problem, for example using
the MATLAB function quadprog, or the nonconvex quadratic programming problem solver with
box constraints QuadProgBB introduced in Chen and Burer [2012].19 Second, one can apply
an optimization routine to this function calculating the subsidies which maximize net welfare
W (G, s), for example using MATLAB’s function fminsearch (which uses a Nelder-Mead algorithm).

This bilevel optimization problem can be formulated more efficiently as a mathematical pro-

19However, in the data that we have analyzed in this paper the quadratic programming subproblem of
determining the Nash equilibrium outptut levels always turned out to be convex, and therefore we always
obtained a unique Nash equilibrium.
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Figure I.11: The mean distance, d, and the distance distribution, P (d), across collaborating firms in the
combined CATI-SDC database.
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Figure I.12: The mean patent proximity across collaborating firms using the Jaffe metric fJ
ij of Equation (H.37)

or the Mahalanobis metric fM
ij of Equation (H.38).

gramming problem with equilibrium constraints (MPEC; see also Luo et al. [1996]). While in the
above procedure the quadprog algorithm solves the quadratic problem with high accuracy for
each iteration of the fminsearch routine, MPEC circumvents this problem by treating the
equilibrium conditions as constraints. This method has recently been proposed to structural
estimation problems following the seminal paper by Su and Judd [2012]. The MPEC approach
can be implemented in MATLAB using a constrained optimization solver such as fmincon.20

Finally, to initialize the optimiziation algorithm we can use the theoretical optimal subsidies
from Propositions 2 and 3, by setting the output levels of the firms which would produce at
negative quantities under these policies to zero (if there are any), and then apply a bounded
quadratic programming algorithm to determine the Nash equilibrium quantities under these
subsidy policies.

20Su and Judd [2012] further recommend to use the KNITRO version of MATLAB’s fmincon function to improve
speed and accuracy.
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Table J.3: Parameter estimates from a panel regression of Equation (26) with both firm and
time fixed effects. The duration of an alliance ranges from 3 to 7 years. The dependent
variable is output obtained from deflated sales. Standard errors (in parentheses) are robust to
arbitrary heteroskedasticity and allow for first-order serial correlation using the Newey-West
procedure. The estimation is based on the observed alliances in the years 1967–2006.

alliance duration 3 years 4 years 5 years 6 years 7 years

φ 0.0131** 0.0119** 0.0106** 0.0089* 0.0077*
(0.0055) (0.0053) (0.0051) (0.0047) (0.0044)

ρ 0.0188*** 0.0188*** 0.0189*** 0.0189*** 0.0189***
(0.0028) (0.0028) (0.0028) (0.0028) (0.0028)

β 0.0027*** 0.0027*** 0.0027*** 0.0027*** 0.0027***
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

# firms 1186 1186 1186 1186 1186
# observations 16924 16924 16924 16924 16924
Cragg-Donald Wald F stat. 7064.104 7071.522 7078.856 7084.185 7096.780

firm fixed effects yes yes yes yes yes
time fixed effects yes yes yes yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

J. Additional Robustness Checks
In the following sections we perform some additional robustness checks related to the duration
of an alliance (Appendix J.1), heterogeneous competition and spillover effects across different
sectors (Appendix J.2), input-supplier effects (Appendix J.3), alternative specifications of the
competition matrix based on the product mix of the firms (Appendix J.4) and the impact of
missing data on our estimates (Appendix J.5).

J.1. Time Span of Alliances

In Section 6.3, we assume the duration of a R&D alliance is 5 years. Here, we analyze the impact
of different durations of an R&D alliance on the estimated spillover effect. The estimation
results for alliance durations ranging from 3 to 7 years are shown in Table J.3. We find that
the estimates are robust over the different durations considered.

However, our assumption that the duration is the same for all alliances may seem restric-
tive. As a further robustness check, we randomly draw a life span for each alliance from an
exponential distribution with the mean ranging from 3 to 7 years. The estimation results are
shown in Table J.4. We find that the estimates are still robust.

J.2. Heterogeneous Spillover and Competition Effects

In keeping with the literature such as Bloom et al. [2013], the spillover effect and competition
coefficients are assumed to be identical across markets in Equation (25). Here, we conduct
a robustness analysis using two major divisions in our data, namely the manufacturing and
services sectors that cover, respectively, 76.8% and 19.3% firms in our sample, in order to
re-estimate Equation (25). The estimation results are reported in Table J.5. The estimated
spillover and competition parameters for these two sectors are largely the same, supporting the
assumption of homogeneous spillover and competition effects as in the benchmark specifciation.
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Table J.4: Parameter estimates from a panel regression of Equation (26) with both firm and
time fixed effects. The duration of an alliance follows an exponential distribution with the
mean ranging from 3 to 7 years. The dependent variable is output obtained from deflated
sales. Standard errors (in parentheses) are robust to arbitrary heteroskedasticity and allow
for first-order serial correlation using the Newey-West procedure. The estimation is based on
the observed alliances in the years 1967–2006.

average alliance duration 3 years 4 years 5 years 6 years 7 years

φ 0.0106** 0.0139*** 0.0113** 0.0140** 0.0074
(0.0046) (0.0046) (0.0052) (0.0057) (0.0048)

ρ 0.0186*** 0.0188*** 0.0187*** 0.0188*** 0.0187***
(0.0028) (0.0028) (0.0028) (0.0028) (0.0028)

β 0.0027*** 0.0027*** 0.0027*** 0.0027*** 0.0027***
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

# firms 1186 1186 1186 1186 1186
# observations 16924 16924 16924 16924 16924
Cragg-Donald Wald F stat. 7046.331 7063.207 7081.713 7080.294 7045.043

firm fixed effects yes yes yes yes yes
time fixed effects yes yes yes yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

Table J.5: Parameter estimates from a panel regression of Equation (25) for
the manufacturing and services sectors with both firm and time fixed effects.
The dependent variable is output obtained from deflated sales. Standard
errors (in parentheses) are robust to arbitrary heteroskedasticity and allow for
first-order serial correlation using the Newey-West procedure. The estimation
is based on the observed alliances in the years 1967–2006.

Manufacturing Services

φ 0.0111* (0.0061) 0.0099** (0.0040)
ρ 0.0178*** (0.0030) 0.0164*** (0.0040)
β 0.0027*** (0.0002) 0.0027*** (0.0002)

# firms 911 229
# observations 14352 2073
Cragg-Donald Wald F stat. 6817.740 2196.649

firm fixed effects yes yes
time fixed effects yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.
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J.3. Input-output Linkages

If a firm is an input supplier of another firm, then their output levels are likely to be corre-
lated. Here, we conduct a robustness analysis by directly controlling for potential input-supplier
effects. More specifically, we estimate an extended version of Equation (25) given by

qit = φ

n∑
j=1

aij,tqjt + λ

n∑
j=1

cij,tqjt − ρ

n∑
j=1

bijqjt + βxit + ηi + κt + ϵit, (J.42)

where cij,t are indicator variables such that cij,t = 1 if firm j is an input supplier of firm i in
period t and cij,t = 0 otherwise.

We obtain information about firms’ buyer-supplier relationships from two data sources. The
first is the Compustat Segments database [cf. e.g. Atalay et al., 2011; Barrot and Sauvagnat,
2016]. Compustat Segments provides business details, product information and customer data
for over 70% of the companies in the Compustat North American database, with firms coverage
starting in the year 1976. However, this dataset suffers from a truncation bias as firms only
report customers which make up more than 10% of their total sales. We therefore use as a second
datasource the Capital IQ Business Relationships database [Barrot and Sauvagnat, 2016; Lim,
2016; Mizuno et al., 2014]. The Capital IQ data includes any customers/suppliers that are
mentioned in the firms’ annual reports, news, websites surveys etc, with firms coverage starting
in the year 1990.21 We then merged these two datasources to obtain a more complete picture
of the potential buyer-supplier linkages between the firms in our R&D network.22 Aggregated
over all years we obtained a total of 2, 573 buyer-supplier relationships for the firms matched
with our R&D network dataset.

As the data on the input-output linkages is only available in more recent years, the esti-
mation is based on years from 1980 to 2006. The estimation results are reported in Table J.6.
We find that, after controlling for input-supplier effects, the spillover and competition effects
remain statistically significant with the expected signs.

Furthermore, having a firm as an input supplier might increase the probability to form
an R&D alliance. We use the information on input-output linkages as an additional predic-
tor in the link formation regression of Equation (29), and use the predicted link-formation
probability to construct IVs as explained in Section 6.2.4. The estimation results of the link
formation regression Equations (29) and (25) are reported in Tables J.7 and J.8, respectively.
As expected, having an input-output linkage increases the likelihood of forming an R&D col-
laboration. Moreover, controlling for input-output linkages gives qualitatively the same result
as in the baseline specification.

J.4. Alternative Specifications of the Competition Matrix

In the empirical model estimated in Section 6.3, the entries of the competition matrix, B = [bij ],
are specified as indicator variables such that bij = 1 if firms i and j are the same industry
(measured by the industry SIC codes at the 4-digit level) and bij = 0 otherwise. Here, we
consider three alternative specifications of the competition matrix based on the primary and
secondary industry classification codes that can be found in the Compustat Segments and

21About 23.37% of the observations come with information about the date of the relationship in Capital IQ.
This gives a total of 38, 513 potential links.

22Note that it is possible to merge the firms in the Compustat Segments database with the Capital IQ database
using common firm identifiers (there exists a correspondence table for Capital IQ firm id’s with Compustat’s
gvkeys).
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Table J.6: Parameter estimates from a panel regres-
sion of Equation (J.42) with both firm and time fixed
effects. The dependent variable is output obtained
from deflated sales. Standard errors (in parentheses)
are robust to arbitrary heteroskedasticity and allow
for first-order serial correlation using the Newey-West
procedure. The estimation is based on the observed
alliances in the years 1980–2006.

φ 0.0126*** (0.0048)
λ 0.6933*** (0.1172)
ρ 0.0146*** (0.0021)
β 0.0022*** (0.0002)

# firms 1251
# observations 15463
Cragg-Donald Wald F stat. 2668.988

firm fixed effects yes
time fixed effects yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

Table J.7: Link formation regression results with input-
output linkage information. Technological similarity, fij , is
measured using either the Jaffe or the Mahalanobis patent
similarity measures. The dependent variable aij,t indicates
if an R&D alliance exists between firms i and j at time
t. The estimation is based on the observed alliances in the
years 1980–2006.

technological similarity Jaffe Mahalanobis

Past collaboration 0.5715*** 0.5682***
(0.0144) (0.0143)

Past common collaborator 0.1753*** 0.1779***
(0.0216) (0.0214)

Input supplier 4.0606*** 4.0215***
(0.1370) (0.1374)

fij,t−s−1 10.4884*** 4.3003***
(0.6798) (0.3212)

f2
ij,t−s−1 -15.5768*** -2.4457***

(1.6995) (0.4379)
cityij 1.0794*** 1.0922***

(0.1030) (0.1030)
marketij 0.9417*** 0.9501***

(0.0421) (0.0419)

# observations 2,776,488 2,776,488
McFadden’s R2 0.0856 0.0854

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.
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Table J.8: Parameter estimates from a panel regression of Equation (26) with
endogenous R&D alliance matrix. The IVs are based on the predicted links
from the logistic regression reported in Table J.7, where technological simi-
larity is measured using either the Jaffe or the Mahalanobis patent similarity
measures. The dependent variable is output obtained from deflated sales.
Standard errors (in parentheses) are robust to arbitrary heteroskedasticity
and allow for first-order serial correlation using the Newey-West procedure.
The estimation is based on the observed alliances in the years 1980–2006.

technological similarity Jaffe Mahalanobis

φ 0.0317** (0.0148) 0.0323** (0.0148)
ρ 0.0200*** (0.0028) 0.0201*** (0.0028)
β 0.0026*** (0.0002) 0.0026*** (0.0002)

# firms 1245 1245
# observations 15296 15296
Cragg-Donald Wald F stat. 191.866 192.407

firm fixed effects yes yes
time fixed effects yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

Orbis databases [cf. Bloom et al., 2013],23 or the Hoberg-Phillips product similarity measures
[cf. Hoberg and Phillips , 2016].24

The estimation results of Equation (26) with alternative specifications of the competition
matrix are reported in Table J.9. The estimated technology spillover effect is positively signifi-
cant, with the magnitude similar to that reported in Table 2, suggesting that the estimation of
the spillover effect is robust with respect to different specifications of the competition matrix.
The magnitude of the product rivalry effect reported in Table J.9, on the other hand, is more
difficult to compare with that reported in Table 2, as they are based on different competition
matrices. Nevertheless, the estimated product rivalry effect with alternative specifications of
the competition matrix remains statistically significant with the expected sign.

J.5. Sampled Networks

The balance sheet data we used for the empirical analysis covers only publicly listed firms. It is
now well known that the estimation with sampled network data could lead to biased estimates
[see, e.g. Chandrasekhar and Lewis, 2011]. To investigate the direction and magnitude of
the bias due to the sampled network data, we conduct a limited simulation experiment. In
the experiment, we randomly drop 10%, 20%, and 30% of the firms (and the R&D alliances
associated with the dropped firms) in our data (corresponding to the sampling rate of 90%,
80%, and 70%). For each sampling rate, we randomly draw 500 subsamples and re-estimate
Equation (26) for each subsample. We report the empirical mean and standard deviation of
the estimates for each sampling rate in Table J.10. As the sampling rate reduces, the standard
deviation of the estimates increases while the mean remains roughly the same. This simulation
result alleviates the concern on the estimation bias due to sampling (i.e. missing data).

23Our definition of the pairwise competition intensity is calculated as the Jaffe similarity score of the com-
bined vectors of primary and secondary industry codes (see also Footnote 28), and follows the product market
proximity index suggested in Bloom et al. [2013].

24The Hoberg-Phillips product similarity measures are based on firm pairwise similarity scores from text anal-
ysis of the firms’ 10K product descriptions. See Hoberg and Phillips [2016] for further details and explanation.

42



Table J.9: Parameter estimates from a panel regression of Equation (26) with both firm and time
fixed effects. The competition matrix is based on the Compustat Segments, Orbis or Hoberg-Phillips
industry/product similarity measures. The dependent variable is output obtained from deflated sales.
Standard errors (in parentheses) are robust to arbitrary heteroskedasticity and allow for first-order
serial correlation using the Newey-West procedure. The estimation is based on the observed alliances
in the years 1967–2006.

competition matrix Compustat Orbis Hoberg-Phillips

φ 0.0089* (0.0049) 0.0110** (0.0051) 0.0096** (0.0048)
ρ 0.0526*** (0.0088) 0.0438*** (0.0077) 0.4753*** (0.0761)
β 0.0029*** (0.0002) 0.0027*** (0.0002) 0.0026*** (0.0002)

# firms 1199 1199 1199
# observations 17433 17433 17433
Cragg-Donald Wald F stat. 3638.903 3079.453 1.1 ×104

firm fixed effects yes yes yes
time fixed effects yes yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

Table J.10: Parameter estimates from a panel regres-
sion of Equation (26) with both firm and time fixed
effects using a random subsample of the firms under
different sampling rates. The dependent variable is
output obtained from deflated sales. The empirical
mean and standard deviation (in parentheses) of the
estimates from 500 random subsamples are reported.
The estimation is based on the observed alliances in
the years 1967–2006.

sampling rate 90% 80% 70%

φ 0.0109 0.0114 0.0113
(0.0035) (0.0059) (0.0084)

ρ 0.0185 0.0187 0.0191
(0.0021) (0.0031) (0.0043)

β 0.0027 0.0027 0.0027
(0.0001) (0.0002) (0.0002)

firm fixed effects yes yes yes
time fixed effects yes yes yes
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