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Abstract

Nonlinear Parametrically Excited (NPE) systems govern the dynamics of many engineering applications, from cable-
stayed bridges where vibrations need to be suppressed, to energy harvesters, transducers and acoustic amplifiers
where vibrations need to be amplified. This work investigates the effect of different system parameters on the dynamics
of a prototype NPE system. The NPE system in this work is a cantilever beam with an electromagnetic subsystem
excited at its base. This system allows cubic stiffness, parametric stiffness, cubic parametric stiffness, and the phase
difference between different sources of excitation to be varied independently to achieve different dynamic behaviours.
A mathematical model is also derived, which provides theoretical understanding of the effects of these parameters, and
allows the analysis to be extended to other applications.
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Introduction minimize the chaotic behavior of a parametrically excited

pendulumZaghari et al(2016 presented a parametric study
Dynamical systems are under Parametric Excitation (P& compare the gain associated with a base excited Linear
when the system parameters vary periodically with im@g (LPE) and a NPE system at several phase differences
In this case, the system can experience Parametric Resetween the base excitation and the parametric excitation.
nance (PR), and the amplitude of the oscillation will ben this study the optimum gain was found when the system
large (Nayfeh and MooK2008). Examples of parametri- parameters including parametric stiffness, positive cubi
cally excited systems subject to base excitation includgiffness and positivenegative cubic parametric stiffness
cables moving due to the vibration of the deck iRvere considered. It was shown that the NPE system with
cable-stayed bridges. These systems also exhibit st#-negative parametric stiffness has maximum gain when
ness and inertia nonlinearities due to large deflectionfpe phase difference between the base excitation and the
which lead to Nonlinear Parametrically Excited (NPEparametric excitation i .

systems. Failures of engineering structures due to highrpoads et al200§ demonstrated the potential of LPE in
vibrations have been caused by PR despite the implemacro-scale mechanical amplifier. They used a cantilever
mentation of damping systems. However, PR can also Bgam under longitudinal and transverse base excitation as
used beneficially in some engineering systems. In micrgp example of a parametrically excited system. They found
electrical resonators, PE is exploited to perform eleg can increase the gain, where the gain is defined as the
trical filtering or sensing without considerably amplify-atig petween the amplitude of response without and with
ing noise DeMartini et al.(2003; Hu etal.(201D). PE is pg py changing the phase difference between the direct
also used in the design of vibration energy harvesters 43 parametric excitation. They identified maximum and
maximise the motion of the harvester at parametric reginimum gain when the phase difference is néarand
onance faghari etal(2014). A vertically standing can- = respectively. The parametrically excited system present
tilever beam with a piezoelectric or an electromagnetisy, rRhoads et al(2008 was considered for the cantilever
energy harvester under parametric excitation can prodygg€sm excited at twice its natural frequency. Only the
significant energy if it overcomes an initial threshold ampl yarametric stiffness was varied in the experimental model,
tude. The initial threshold in PE systems is a function ofnq the effects of geometric or inertial nonlinearitiestie t

linear damping in the system. When the level of inpuystem were not investigated, and their effect on the gain wa
excitation exceeds the initial threshold, the amplitudénef 4t identified.

response is not limited by the total linear damping pregent i
the system, unlike in non-PE systems.

PE oscillators have been used to amplify or suppress
the response amplitudeCien et al.(2009). The dynamic Institute of Sound and Vibration Research, University of Southampton,
behavior of parametrically excited systems can be coetlol| SC17 1BJ, UK
to gchieve periodic requnseﬁ.lssgt et al(2017) 'applied Corresponding author:
active control by employing nonlinear saturation contrdanareh zaghari
and a passive rotational magnetorheological damper HEail: bahareh.zaghari@soton.ac.uk
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Rhoads and Shav(2010Q analysed the effect of phasg
difference on the gain when a nonlinear parameter, culf-
stiffness due to deflection, inertia, or the transductiors w.
considered in the model of a parametrically excited syste
They concluded that the effect of phase difference
this NPE system is similar to the LPE system when t
system is parametrically excited with an amplitude les
than the linear instability threshold. However, this stud
was not conducted for parametric excitation with amplitug
greater than the instability thresholdumar et al.(2017)
demonstrated the phase dependence of a NPE oscilld
for response amplification and suppression purposes. T
experimental work only studied the response amplitude a|
fixed parametric frequency. The effect of the phase diffegen|
on the response amplitude of NPE systems has not bE====
comprehensively investigated in the literature; this c&n‘feFi ) ) - .

. . . . . . Figure 1. Experimental set-up consisting of a cantilever beam
can impact the design of parametric amplifiers, V|brat|05}1 a shaker and an electromagnetic system.
absorbers, and other applications where NPE systems are

prevalent. Table 1. Mechanical properties and dimensions.

This paper investigates the effect of varying phasbproperty Value Units
difference and excitation frequencies on the responsg- s ofthe magnets 0.015 -
amplitude of a NPE system with nonlinear terms, includingp ogiqyal magnetic flux density3() 1.1 T
cubic stiffness, cubic parametric stiffness, and no”hneaPermeabiIity (10) 4r10-7 NA-2
damping. The effect of phase difference on the uppej,.or radius of the coilr) 0.0085 m
and lower stable branches are presented. These branch@ﬁter radius of the coili) 00225 m
determine the response amplitude of the nonlinear SysteMyean radius of the coik() 00135 m
as well as the jumps between different branches of SOIUtionNumber of turns of in coil (N) 485 )

By using the results from these investigations, the pararset Length of wire in one rotation,)  0.078 m
of NPE systems can be tuned to optimise the responsg;; meter of the coil Dy) 0.00071 m
amplitude for a given application. To model a tunable NPEHeight of the coil with shieldK.;) 0.02 m
system, a cantilever beam with an electromagnetic subsyste~q 0. qinate for coil 4) 0.007 m
is used. The phase, cubic stiffness, cubic parametriossff, Coordinate for coil £,) 20.007 m
and nonlinear damping of the NPE system can be Changelgesistance of the cOl.;) 1.01 ohm
by altering the current of the electromagnetic system, Wwhic Inductance of the coilll..;)) 0.64 mH
is more consistent and reproducible than altering progeerti L oad resistor R) 0.1 ohm
of the equivalent NPE mechanical system. A mathematicalyijih of the beamif,) 0.01 m
model of this electromagnetic system is also derived wigh th Thickness of the beant() 0.002 m
method of averaging. Effective massr) 0.104 kg
Half of the distance between 0.03 m
Modelling the coils &)
Static stiffness of the beam 32.84 Nm!

To define a general NPE system with time-varyingwith magnets
and nonlinear stiffness, a cantilever beam with anand coils whert, = 0 (k1,)
electromagnetic system is proposed. There are advantagffeasured first natural frequency 17.76 rads~!
of using an electromagnetic system over a cantileverpf the beam with magnets and coils
beam system subject to longitudinal and transverse basghenr, = 0 (W exp)
excitations. These include the facts that: the electrom@gn Measured second natural frequency 202 rads™!
system excites the beam with a non-contact force, the bassf the beam with magnets and
and parametric excitations can be applied independentlygils whenr, = 0
in the electromagnetic case, and that the frequency anffiechanical damping coefficient 0.011 Nsm™!
amplitude of the excitation force can be controlled moreof the beam with magnets and
accurately using a DC/AC power source. Furthermore, theoijls whenl, = 0 (¢,,)
cubic and cubic parametric stiffness nonlinearities can be
controlled independently in the electromagnetic system,
which allows the effects of these nonlinearities on paramet mechanical properties, dimensions of the cantilever beam,
amplification to be investigated more easily. and the electromagnetic system are shown in TdbleA

A clamped-free cantilever beam with an electromagnet®ingle Degree of Freedom (SDOF) model of a NPE system
sub-system is fixed to a shaker plate (Figute The subject to base excitation is presented in Figi¢a). In
cantilever beam is excited horizontally perpendicular tihis figure, where: is the displacement of moving mass
the beam using an electromagnetic system. A controllal{tbe effective mass of the beam with attached magngts),
current is generated and flows through the coils. Thhe base displacement, aligl is the amplitude of harmonic
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(a) In this study the base excitation frequency is consid-
- ered to be half the parametric frequeney =€ %), hence
l@"'f maximum response amplitude can be achieved when
the parametric frequency is at twice the natural fre-
y my quency Zaghari et al(2016). Equation §) is normalised by

the time scaling = Qt, and is expressed as derivatives with
) %k . respect tor. Prime (.)’ represents a quantity differentiated

’ | b LAmm with respect toar. Normalisation in this way results in

Y=Y, cos(wt+¢) o 2ewn (G + Ces,appZQ) v ,ZL

(14 ed cos(7))z+

Q 02
2
(b) (;;2 (ea +eycos(r))z® = iYg cos (g + ¢> , (6)

where ¢, is the mechanical damping ratio, an@s app
is the electrical damping ratio, which is obtained from
equation B.2). Parametric stiffness, cubic stiffnessy, and
cubic parametric stiffness, are defined in equation8 (3),
(B.4), and @.5). ¢ is the small parameter.

The method of averaging is used to solve equati®n (
To capture the system’s near-resonance behaviour, the
parametric frequency() varies around the reference

Powcr supply

Figure 2. (a) Schematic of the base excited NPE oscillator with

an electromagnetic system. (b) Circuit diagram, Lco; is the frequency Qo; the detuning parameteA is introduced
inductance of one of the coils, R is the electrical resistance N 2 = Qg (1 —eA) (Murdock(1999). When the system
of one of the coils, R is a resistor connected in series with the is simplified to an undamped oscillator, the solutions of
coils, and Ve is the induced voltage. equation 6) take the form

. . z (1) = acos (T - gp) , @)
base displacement at frequencyand phase. The relative Qo

displacement is the displacement between the mass and th

base. The current, supplied to the coils is %erea and¢ are the amplitude and the phase. The steady-

state values are found from

I. = Ipc + Iac COS(Qt), (1) 1 w2 1 2
_ _ _ a (1) = —CmaQ 75(1@ sin(2¢) — fva @ % sin(2y)
wherelp¢ is the direct current an@ is the frequency of the )
alternating currenfyc. + =Yy sin(¢ + ) — M 2102, (8)
The equations governing the motion of the mechanical 4 4Q
system and the electric circuit are,
/ 1 1 w2 3 3 727
Mm% + cm + kpz + Fomg + Fo = myw?Y cos(wt + ¢), ag'(T) = —§Aa *Mﬁ cos(2¢) — 14002
2 1 2 1
where the overdot represents a derivative with respect to — Eva @ = cos(2¢p) + 1Yo cos(¢ + ) + O(?), (9)

time ¢, ¢, Is the mechanical dampings, is the static _ _
stiffness, Fum; is the electromagnetic force induced by th&vhena’ (1) = ¢'(7) = 0. Hence the amplitude is

interaction of oscillating magnet and coils . Q%Yy\/d3 + (p2 — p3 cos(26))?
ot = ke(2)ics, (3) 82 (2 = G2 = (3Ceapp®)?)

where £ (z) is electromechanical coupling factor (segynere o, — —p1Sin(20) + Cm + LCos.appa® — pasin(e),
Appendix A). ics is the induced current generated by, :p%(l—cos(2¢)2 +p2 cos(2</))28—1;%,
electro_magnets._ 16+ 1ya?), P2 = 3aa® - 22 +1, and

F, in equz_mon ?) is the force applied by thep (5+7a ) Equation 6) has five stable and
electromagnetic system

unstable solutions when the system parameters are non-zero
Fo = Hy (I +ies)z + Ho(Io +ies)2® + O(25). (4) (0{' d,v # 0). The effgct qf system parameter;, such as cgbic

stiffnessa, parametric stiffness, and the cubic parametric

where H; and H, are function of coil parameters and theystiffnessy, and phase differencg on response amplitude is

are defined in Appendix A (equationg.f) and (A.7)). investigated in the following sections.

Substituting equations3) and @) into equation 2) results

in Nonlinear system with positive cubic

stiffness

(10)

Z 4+ 26w (Cm + Ces,app? 2+ w2 (1 + &6 cos(Q ) - o
(G + Cenoop=”) nl Q)=+ A nonlinear system has positive cubic stiffness when 0
wi (eo + ey cos(Q))2° = Yow® cos (wt +¢) . (5)  ands — ~ = 0in equation 6). The effect of cubic stiffness

Prepared using sagej.cls



4 Journal of Vibration and Control XX(X)

0.030 T Experimental sweep 1 ~— The experimental results show that the hardening
00251 °  Toperimentalsweep down <P nonlinearity shifts the maximum peak amplitude to
00201 a higher frequency. When the response amplitude is
£ 00151 large @ > 0.017m) and the magnets are close to the

S 0,010 coils, there are discrepancies between the experimental

0.005 o and analytical results. This is due to the varying
’ ; inclination of the magnets with the beam at large
0.8 0.9 1 11 12 13 14 amplitudes I(iu and Liu (2006), which is not considered in
our mathematical model. For example, betwegn= 1.1

% and = =115, there are experimental points close to the
n unstable branch. In this frequency region the stable steady
state solutions from the analytical stable branch do notimat
Figure 3. Analytical and experimental amplitude-frequency with the steady-state solutions from experiments. In other

relation, a versus . The dotted line is the backbone curve.
The solid lines are the stable branches, and the dashed line is
the unstable branch. The grey bar shows the limit for the beam
transverse vibration above which the magnets hit the coils. The ~ agreement.
coil distance h is chosen to be equal to 0.03 m, hence the

maximum displacement of the beam is 0.022 m.

frequency regions where the magnets are not close to the
coils, the experimental and analytical results are in good

The effects of parametric stiffness for
varying phase
on the response is investigated experimentally in this@ect

and these results are compared with expected behavi . S . . . .
from the analytical model. Figuré shows the analytical on the response amplitude is investigated in this section.

and experimental amplitude-frequency relation. Analjtic Owing to the difficulty in controlling the phase difference

results show that the peak amplitude is shifted to afrequen%etween the current and the ba_lse equtauon, the freque_ncy
ﬁ\%eep method used generally in nonlinear systems to find

Efg}ﬁre;?i?; resonance frequency due to the hardemth stable branches has not been applied in this investigati
Instead, each frequency is considered independently in the
The experiment is set up to achieve zero cubic parametgigperimental analysis. This investigation requires thasgh
stiffness~, so that the effect of the hardening nonlinearityifference between the base and parametric excitatiom
is studied independently. This is obtained by settinge varied;¢ is controlled by adjusting the phase between
Inc =0 when Ipc =0.384. The cantilever beam s the shaker acceleration and current supplied to the coils.
placed on the shaker and excited with the displacemer$ generate a current with various phase differences with
amplitudeY;, = 0.001m. This small displacement amplitudethe acceleration of the shaker, a separate hardware was

is considered to prevent the magnets from hitting th§rogrammed to generate current with different phase. More
coils. Equation B.4) shows that the cubic stiffnessdetails are explained ifiaghari(2016).

) B 5 ,
1S Oi._937a58m. ' gnd equ_agcln;\ E(.21)_hshlqws that thel Figure 4 shows the stable solutions versus phase
nonlinear damping 1Scs,app = 217.8. The linear natural o, parametric stiffness is below the instability thrddho

frequency and the linear mechanical damping ratio agg 5. and when it is above the instability threshold
measured from impact tests ag, = 32.59rads and %q

- velv. More inf . dina th 0 > &) wheredy, = 4¢,. The mathematical model shows
Gm = 0.001, respectively. More in ormation regarding thesg, ¢ increasing the parametric stiffness over the instgbil
measurements can be founddaghari(2016.

threshold increases the response amplitude for all phases
Figure 3 shows the amplitude-frequency relation for stepn both the stable branch (shown by the black lines in
up and down tests, which are carried out by increasiggure 4) and on the additional branch shown by the
and decreasing the base excitation (shaker) frequency. Boey line. Figure4(a) shows that the additional branch
the step up test, the shaker frequency increases fralmes not exist when the parametric stiffness in under
5Hz to 8Hz at a rate of0.0025Hz/sec, with constant the instability threshold. This is due to the influence of
displacement amplitudéy = 0.001m at all frequencies. parametric resonance on the response of the NPE system.
Each experimental point in Figurg corresponds to the The experimental and analytical results in Figdreshow
amplitude of the steady-state response (the amplitude tbét the minimum and maximum response amplitudes occur
the relative displacementt)) at some selected frequenciesat phases = Orad and¢ = +7rad, respectively. Figuré
The beam displacement(t) is subtracted by the basealso shows that the phase that maximises or minimises
displacementy(t) to find the relative displacement. Thethe response amplitude does not change for varyirend
cantilever beam velocity is measured by the vibrometey, This behaviour is different from the system presented
and is integrated numerically with respect to time to finth Kumar et al(2011), becaused is coupled to « in
the beam displacement. The acceleration of the shakerthiat system. Figured(b) and 4(c) show that, during an
recorded by an accelerometer attached to the shaker platgeriment, the motion dynamics can match either the stable
which is integrated with respect to time twice to find théranch, or the additional stable branch. This cannot béyeasi
displacement of the shakey(t). The velocity response controlled because the response can jump from one branch
and the acceleration signal are filtered with a fourth-ordéw the other with little perturbation, particularly wheneth
Butterworth high pass filter with a cutoff frequencyldfiz.  solutions have a similar response amplitude.

Emle effect of parametric stiffnessand phase difference
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@ Table 2. System parameters
0.020] Parameters  Figuya) Figured(b) Figure4(c)
’ Measured parameters
00157 0 & o5 T Ipc(A) 0.54 0.54 0.54
= Ixc(A) 0.002 0.05 0.16
50.0107 Yo(m) 0.001 0.001 0.001
wn(rads™) 37.3 37.3 37.3
0005 6 < p Qrads™1h) 2w 2w 2w
01— : : w(rads™1) Wn Wn wWn
2 2 Calculated parameters from equatioBs?) - (B.5)
o Ces,app 144.51 144,51 144,51
(b) 0 0.0027 0.068 0.218
a (m~2) 1042.40 1042.40 1042.40
0.0201 v (m~2) 3.86 96.52 308.86
ol T T o o
204010, the upper stable branch whén= 0, and is maximised when
—————————————————————————————— ¢ = 5. The opposite is true for the lower stable branch.
00053 5 Bit Five distinct response branches are shown in Fidgure
ol | | The two additional branches relative to Figuge arise
T 0 T from the additional resonance frequencies in the nonlinear
) o parametric system. One resonance frequency is induced by a
o combination of base and parametric excitation, and therothe
is caused by only the parametric excitation. Previous studi
© assume that, for a NPE system without nonlinear damping,
0.0205W' a change in the phase difference does not affect additional
branches (grey lines in Figug. However this study shows
0015 that, since the parametric frequency changes the response
50 o10] amplitude, the change in the response amplitude affects the
s nonlinear damping, which causes the additional branch to
0.005 change.
6 > bt Labels (a)-(f) in Figures indicate individual experiments
0 ‘ conducted at different parametric frequenci€s The
T 0 T amplitude-frequency relation plots at each frequency are
2 6 2 shown in Figurés. The experimental results in Figusegree

Figure 4. Amplitude of the steady-state response versus phase
¢ for the NPE system (@) below the instability threshold

(6 = 0.0027), (b) slightly above the instability threshold

(6 = 0.068), and (c) above the instability threshold (§ = 0.218).
The system parameters are given in Table 2. The thick black
lines represent stable solutions caused by base and parametric
excitation, the thin grey line represents additional stable
solutions caused by only the parametric excitation, and the
dashed line represent the unstable branch. Points shown by o
denote experimental results.

The effects of parametric frequency for
varying phase

In this section, the effects of parametric frequenQy

with the mathematical model, in that the response amplitude
of the NPE system withp = Jrad is greater than the
response of the nonlinear system without parametric sg#n
shown in Figure3. The experimental results presented in
Figure6 also show that the response amplitude is minimised
on the upper stable branch when= 0, and is maximised
when¢ = 7 (Figure6(a-e)), while the opposite is true for the
lower branch (Figuré(f)). Between labels (e)-(f) in Figur®
where2.15 < wﬂ < 2.62, no experimental data was gathered
because the r@sponse amplitude caused the magnets to hit
the coils. Also, when the response amplitude is large and
the magnets are close to the coils, there are discrepancies
between the experimental and analytical results due to the
inclination of the magnets.

Conclusion

and phase difference on the response amplitude areThis paper introduces a base-excited cantilever beam
determined. The amplitude-frequency relations are plottevith an electromagnetic subsystem as a prototypical NPE

analytically in Figure5 for Yy, = 0.001m, ¢, = 0.001,
w, = 36.8rads ™!, and for phase differences= 5 rad and
¢ = 0rad.Ces app = 142.58, 0 = 0.167,« = 1031 m~2, and
~ = 238.12m~? are calculated from equationB.p) - (B.5)

system. This system allows cubic stiffness, parametric
stiffness, cubic parametric stiffness, and the phaserdififee

between the base excitation and the excitation from the
electromagnetic subsystem to be varied independently, so

for Ipc = 0.52A and Ixc = 0.1A. The analytical results their individual effect on the amplitude of the response
show that the amplitude of the response is minimised @an be determined. A mathematical model of this physical
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@) (@)
0.030 0.0201 O Experimental results
0.0251 abcde f 5 00154
////// \B/U.Ol()’l e Xe) o o o
__0.0201 s 0005 =l o S ]
£ 0.015 A ‘ ‘ ‘
< | o 0 L]
0.0109 | 2 2
0.005 ! &}_ ¢
0 i o (b)
16 1.8 2 22 24 26 28 0.020; ®
o) 7 00153
— ;o.mo—‘w-
® 0.005] S
t °
0.0301 0
0.025] (c)
__0.0201 0.020] ©
50.015 —0.0154 00
S 0.0101 20.010— ©
: 0.005
0.0051 0 : :
_n 0 L
0= 2 2
’ o
— (d)
u)n 0.0204 |
,E\o.msfw
Figure 5. Analytical amplitude-frequency relations for (a) gg:gég, @
¢ = 5, and (b) ¢ = 0. Solid lines denote stable branches, and of
dashed lines denote unstable branches. Grey lines denote k3 0 n
additional branches. Labels (a)-(f) mark individual experiments T2 2
conducted at different parametric frequencies €2. The values of o
these experiments are mapped onto the amplitude-frequency
relation plots in Figure 6. O]
oS —— 0o
—~0.0151 o ©
system is also presented to demonstrate general NP %0-010’
system behaviour; good agreement is found between th 00057 C:D ]
mathematical model and the experiments. . 0 B
By increasing cubic stiffness, and consequently hardenin ) o
nonlinearity, the response frequency of the peak respons o
amplitude was increased. This agrees with studies condlucte (
in the literature leumeyer et a2016§), demonstrating 0.004
compatibility of this system with existing models. 0.003] O
An increase in parametric stiffness increases the respon: g .1 5 o ° o
amplitude, though the magnitude of this increases depenc s go1] ° ° o
strongly on the phase difference between the excitatiol : : :
and the response. On the upper-stable branch, the respor ,% 0 g

amplitude is maximised at phasg= 7. However, the
response on the lower-stable branch is maximisesl -at0.
This result .holds regard|e§s of the 'parametrlc SI.Iﬁne}'i—.Tc’gure 6. Analytical and experimental results for labels (a)-(f)
a_nd _t_he CUbI_C parametric St'ﬁness' This phase rEIathms enote in Figure 5. Solid lines denote stable branches, and
significantly impacts the design of energy harvesters aggshed lines denote unstable branches. Grey lines denote
amplifiers, where a greater response amplitude is desjrakigditional branches.

and where the branch of the response and the phase

difference can be both controlled.
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response of a nonlinear parametrically excited system SUbj%‘auiIibrium position, and other parameters are defined in
to harmonic base excitation. ldournal of Physics: Conference  15pje1. Using the Taylor expansion about= 0, the force
Series, volume 744. 10P Publishing, p. 012125. applied to the cantilever beam can be expressed as

Fo=Hi(I. +ies)z + Ho(I. +ics)2® + O(2°), (A.6)

Appendix A whereH,; andH, are
Mathematical model of the electromagnetic H - —2G N 10Gh? (A7)
1= 5 9 .
system (h2 + 127 (h2+7r.2)%
Based on Lenz’s _Iaw, the forcFm}f in‘equation ?) is 5G 70Gh2 105G h4
proportional to the induced current in coils, Hy = = - T + 0 (A8)
(24 02)F (2R (24 h2)
Fomt = s A.l
emf kt (Z)Zeéﬂ ( ) G — gMMOTzN (Ag)

wherek; (z) is electromechanical coupling factor.
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Appendix B

Parameter identification

SubstitutingFe,¢ (equation A.1)) and F,, (equation A.6))
into equation §) and normalising by the total effective mass
my results in

%+ 2ewn (G + Cos,appz?) 2 + w2 (1 + &8 cos(Q)) 2+
w2 (ea + ey cos()) 2 = Yow? cos (wt + ¢).  (B.1)

In equation B.1) small parametet is added to solve this
equation with the method of averaging, the mechanical
damping ratio(,, = T and (es app IS the approximate
electrical damping applied from the electromagnetic syste
The dissipative feedback force due to the electromagnetic
system can be calculated from equatién?). The electrical

damping ratio is

2

kt app
es,app — - 5 B.2
C app 2mtwn (2Rcoil + R) ( )

where first natural frequency of the cantilever beam with the
electromagnetic system, is estimated using the Rayleigh
Energy Method.

The change of electromechanical coupling with respect
to z is considered lineak;(z) = k¢ appz + O(2?), where

_ Oki(z)
kt,app— 0z .

In equation 26_)0 normalised dimensionless parametric
stiffnessd, normalised dimensionless cubic stiffnegsand
normalised dimensionless cubic parametric stiffnresare
derived from electromagnetic forces

oI
§ = —LAC (B.3)
k1

where k1 = ky, + IpcH; is the total linear stiffness. The
normalised cubic stiffness is
_ HiIpc

o= o (B.4)

The cubic stiffness is strongly affected by the direct coirre
and the parameters of the electromagnetic system, such the
distance between the coils, the number of turns in each
coil, and the mean radius of the coil. The normalised cubic
parametric stiffness is

HyIzc
kq

. (B.5)
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