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Abstract
Nonlinear Parametrically Excited (NPE) systems govern the dynamics of many engineering applications, from cable-
stayed bridges where vibrations need to be suppressed, to energy harvesters, transducers and acoustic amplifiers
where vibrations need to be amplified. This work investigates the effect of different system parameters on the dynamics
of a prototype NPE system. The NPE system in this work is a cantilever beam with an electromagnetic subsystem
excited at its base. This system allows cubic stiffness, parametric stiffness, cubic parametric stiffness, and the phase
difference between different sources of excitation to be varied independently to achieve different dynamic behaviours.
A mathematical model is also derived, which provides theoretical understanding of the effects of these parameters, and
allows the analysis to be extended to other applications.
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Introduction

Dynamical systems are under Parametric Excitation (PE)
when the system parameters vary periodically with time.
In this case, the system can experience Parametric Reso-
nance (PR), and the amplitude of the oscillation will be
large (Nayfeh and Mook(2008)). Examples of parametri-
cally excited systems subject to base excitation include
cables moving due to the vibration of the deck in
cable-stayed bridges. These systems also exhibit stiff-
ness and inertia nonlinearities due to large deflections,
which lead to Nonlinear Parametrically Excited (NPE)
systems. Failures of engineering structures due to high
vibrations have been caused by PR despite the imple-
mentation of damping systems. However, PR can also be
used beneficially in some engineering systems. In micro-
electrical resonators, PE is exploited to perform elec-
trical filtering or sensing without considerably amplify-
ing noise (DeMartini et al.(2005); Hu et al.(2011)). PE is
also used in the design of vibration energy harvesters to
maximise the motion of the harvester at parametric res-
onance (Zaghari et al.(2014)). A vertically standing can-
tilever beam with a piezoelectric or an electromagnetic
energy harvester under parametric excitation can produce
significant energy if it overcomes an initial threshold ampli-
tude. The initial threshold in PE systems is a function of
linear damping in the system. When the level of input
excitation exceeds the initial threshold, the amplitude ofthe
response is not limited by the total linear damping present in
the system, unlike in non-PE systems.

PE oscillators have been used to amplify or suppress
the response amplitude (Chen et al.(2009)). The dynamic
behavior of parametrically excited systems can be controlled
to achieve periodic responses.Tusset et al.(2017) applied
active control by employing nonlinear saturation control
and a passive rotational magnetorheological damper to

minimize the chaotic behavior of a parametrically excited
pendulum.Zaghari et al.(2016) presented a parametric study
to compare the gain associated with a base excited Linear
PE (LPE) and a NPE system at several phase differences
between the base excitation and the parametric excitation.
In this study the optimum gain was found when the system
parameters including parametric stiffness, positive cubic
stiffness and positive/negative cubic parametric stiffness
were considered. It was shown that the NPE system with
a negative parametric stiffness has maximum gain when
the phase difference between the base excitation and the
parametric excitation isπ2 .

Rhoads et al.(2008) demonstrated the potential of LPE in
a macro-scale mechanical amplifier. They used a cantilever
beam under longitudinal and transverse base excitation as
an example of a parametrically excited system. They found
PE can increase the gain, where the gain is defined as the
ratio between the amplitude of response without and with
PE, by changing the phase difference between the direct
and parametric excitation. They identified maximum and
minimum gain when the phase difference is near3π

4 and
π
4 , respectively. The parametrically excited system presented
by Rhoads et al.(2008) was considered for the cantilever
beam excited at twice its natural frequency. Only the
parametric stiffness was varied in the experimental model,
and the effects of geometric or inertial nonlinearities in the
system were not investigated, and their effect on the gain was
not identified.
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Rhoads and Shaw(2010) analysed the effect of phase
difference on the gain when a nonlinear parameter, cubic
stiffness due to deflection, inertia, or the transduction was
considered in the model of a parametrically excited system.
They concluded that the effect of phase difference in
this NPE system is similar to the LPE system when the
system is parametrically excited with an amplitude less
than the linear instability threshold. However, this study
was not conducted for parametric excitation with amplitude
greater than the instability threshold.Kumar et al.(2011)
demonstrated the phase dependence of a NPE oscillator
for response amplification and suppression purposes. Their
experimental work only studied the response amplitude at a
fixed parametric frequency. The effect of the phase difference
on the response amplitude of NPE systems has not been
comprehensively investigated in the literature; this effect
can impact the design of parametric amplifiers, vibration
absorbers, and other applications where NPE systems are
prevalent.

This paper investigates the effect of varying phase
difference and excitation frequencies on the response
amplitude of a NPE system with nonlinear terms, including
cubic stiffness, cubic parametric stiffness, and nonlinear
damping. The effect of phase difference on the upper
and lower stable branches are presented. These branches
determine the response amplitude of the nonlinear system,
as well as the jumps between different branches of solutions.
By using the results from these investigations, the parameters
of NPE systems can be tuned to optimise the response
amplitude for a given application. To model a tunable NPE
system, a cantilever beam with an electromagnetic subsystem
is used. The phase, cubic stiffness, cubic parametric stiffness,
and nonlinear damping of the NPE system can be changed
by altering the current of the electromagnetic system, which
is more consistent and reproducible than altering properties
of the equivalent NPE mechanical system. A mathematical
model of this electromagnetic system is also derived with the
method of averaging.

Modelling

To define a general NPE system with time-varying
and nonlinear stiffness, a cantilever beam with an
electromagnetic system is proposed. There are advantages
of using an electromagnetic system over a cantilever-
beam system subject to longitudinal and transverse base
excitations. These include the facts that: the electromagnetic
system excites the beam with a non-contact force, the base
and parametric excitations can be applied independently
in the electromagnetic case, and that the frequency and
amplitude of the excitation force can be controlled more
accurately using a DC/AC power source. Furthermore, the
cubic and cubic parametric stiffness nonlinearities can be
controlled independently in the electromagnetic system,
which allows the effects of these nonlinearities on parametric
amplification to be investigated more easily.

A clamped-free cantilever beam with an electromagnetic
sub-system is fixed to a shaker plate (Figure1). The
cantilever beam is excited horizontally perpendicular to
the beam using an electromagnetic system. A controllable
current is generated and flows through the coils. The

shaker

cantilever beam

magnet

coil

Figure 1. Experimental set-up consisting of a cantilever beam
on a shaker and an electromagnetic system.

Table 1. Mechanical properties and dimensions.

Property Value Units
Radius of the magnets 0.015 m
Residual magnetic flux density (Br) 1.1 T
Permeability (µ0) 4π10−7 NA−2

Inner radius of the coil (r1) 0.0085 m
Outer radius of the coil (r2) 0.0225 m
Mean radius of the coil (rc) 0.0135 m
Number of turns of in coil (N) 485 -
Length of wire in one rotation (lw) 0.078 m
Diameter of the coil (Dw) 0.00071 m
Height of the coil with shield (hcoil) 0.02 m
Coordinate for coil (z1) 0.007 m
Coordinate for coil (z2) -0.007 m
Resistance of the coil (Rcoil) 1.91 Ohm
Inductance of the coil (Lcoil) 0.64 mH
Load resistor (R) 0.1 Ohm
Width of the beam (bb) 0.01 m
Thickness of the beam (tb) 0.002 m
Effective mass (mt) 0.104 kg
Half of the distance between 0.03 m
the coils (h)
Static stiffness of the beam 32.84 Nm−1

with magnets
and coils whenIc = 0 (kb)
Measured first natural frequency 17.76 rad s−1

of the beam with magnets and coils
whenIc = 0 (ωn,exp)
Measured second natural frequency 202 rad s−1

of the beam with magnets and
coils whenIc = 0
Mechanical damping coefficient 0.011 Nsm−1

of the beam with magnets and
coils whenIc = 0 (cm)

mechanical properties, dimensions of the cantilever beam,
and the electromagnetic system are shown in Table1. A
Single Degree of Freedom (SDOF) model of a NPE system
subject to base excitation is presented in Figure2(a). In
this figure, wherex is the displacement of moving massmt

(the effective mass of the beam with attached magnets),y is
the base displacement, andY0 is the amplitude of harmonic
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Figure 2. (a) Schematic of the base excited NPE oscillator with
an electromagnetic system. (b) Circuit diagram, Lcoil is the
inductance of one of the coils, Rcoil is the electrical resistance
of one of the coils, R is a resistor connected in series with the
coils, and Vemf is the induced voltage.

base displacement at frequencyω and phaseφ. The relative
displacementz is the displacement between the mass and the
base. The currentIc supplied to the coils is,

Ic = IDC + IAC cos(Ωt), (1)

whereIDC is the direct current andΩ is the frequency of the
alternating currentIAC.

The equations governing the motion of the mechanical
system and the electric circuit are,

mtz̈ + cmż + kbz + Femf + Fe = mtω
2Y0 cos(ωt+ φ),

(2)
where the overdot represents a derivative with respect to
time t, cm is the mechanical damping,kb is the static
stiffness,Femf is the electromagnetic force induced by the
interaction of oscillating magnet and coils

Femf = kt(z)ies, (3)

where kt(z) is electromechanical coupling factor (see
Appendix A). ies is the induced current generated by
electromagnets.
Fe in equation (2) is the force applied by the

electromagnetic system

Fe = H1(Ic + ies)z +H2(Ic + ies)z
3 +O(z5). (4)

whereH1 andH2 are function of coil parameters and they
are defined in Appendix A (equations (A.7) and (A.7)).
Substituting equations (3) and (4) into equation (2) results
in

z̈ + 2εωn(ζm + ζes,appz
2)ż + ω2

n(1 + εδ cos(Ωt))z+

ω2
n(εα+ εγ cos(Ωt))z3 = Y0ω

2 cos (ωt+ φ) . (5)

In this study the base excitation frequency is consid-
ered to be half the parametric frequency (ω = Ω

2 ), hence
maximum response amplitude can be achieved when
the parametric frequency is at twice the natural fre-
quency (Zaghari et al.(2016)). Equation (5) is normalised by
the time scalingτ = Ωt, and is expressed as derivatives with
respect toτ . Prime(.)′ represents a quantity differentiated
with respect toτ . Normalisation in this way results in

z′′ +
2εωn(ζm + ζes,appz

2)

Ω
z′ +

ω2
n

Ω2
(1 + εδ cos(τ))z+

ω2
n

Ω2
(εα+ εγ cos(τ))z3 =

1

4
Y0 cos

(τ

2
+ φ

)

, (6)

where ζm is the mechanical damping ratio, andζes,app
is the electrical damping ratio, which is obtained from
equation (B.2). Parametric stiffnessδ, cubic stiffnessα, and
cubic parametric stiffnessγ, are defined in equations (B.3),
(B.4), and (B.5). ε is the small parameter.

The method of averaging is used to solve equation (6).
To capture the system’s near-resonance behaviour, the
parametric frequencyΩ varies around the reference
frequency Ω0; the detuning parameter∆ is introduced
in Ω = Ω0 (1− ε∆) (Murdock(1999)). When the system
is simplified to an undamped oscillator, the solutions of
equation (6) take the form

z (τ) = a cos

(

ωn

Ω0
τ − ϕ

)

, (7)

wherea andϕ are the amplitude and the phase. The steady-
state values are found from

a′ (τ) = −ζma
1

Ω
−

1

2
δa

ω2
n

Ω2
sin(2ϕ)−

1

4
γa3

ω2
n

Ω2
sin(2ϕ)

+
1

4
Y0 sin(φ+ ϕ)−

ζes,appωn

4Ω
a2 +O(ε2), (8)

aϕ′(τ) = −
1

2
∆a−

1

2
δa

ω2
n

Ω2
cos(2ϕ)−

3

4
αa3

ω2
n

Ω2

−
1

2
γa3

ω2
n

Ω2
cos(2ϕ) +

1

4
Y0 cos(φ+ ϕ) +O(ε2), (9)

whena′ (τ) = ϕ′(τ) = 0. Hence the amplitude is

a =
Ω2Y0

√

d21 + (p2 − p3 cos(2φ))2

8ω2
n

(

d2 − ζ2m −
(

1
8ζes,appa

2
)2
) , (10)

where d1 = −p1 sin(2φ) + ζm + 1
8ζes,appa

2 − p4 sin(φ),
d2 = p21(1− cos(2φ)2 + p23 cos(2φ)

2 − p22,
p1 = 1

4

(

δ + 1
2γa

2
)

, p2 = 3
8αa

2 − Ω
2ωn

+ 1, and
p3 = 1

4

(

δ + γa2
)

. Equation (6) has five stable and
unstable solutions when the system parameters are non-zero
(α, δ, γ 6= 0). The effect of system parameters, such as cubic
stiffnessα, parametric stiffnessδ, and the cubic parametric
stiffnessγ, and phase differenceφ on response amplitude is
investigated in the following sections.

Nonlinear system with positive cubic
stiffness

A nonlinear system has positive cubic stiffness whenα > 0
andδ = γ = 0 in equation (6). The effect of cubic stiffnessα
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Figure 3. Analytical and experimental amplitude-frequency
relation, a versus ω

ωn

. The dotted line is the backbone curve.
The solid lines are the stable branches, and the dashed line is
the unstable branch. The grey bar shows the limit for the beam
transverse vibration above which the magnets hit the coils. The
coil distance h is chosen to be equal to 0.03m, hence the
maximum displacement of the beam is 0.022m.

on the response is investigated experimentally in this section,
and these results are compared with expected behaviour
from the analytical model. Figure3 shows the analytical
and experimental amplitude-frequency relation. Analytical
results show that the peak amplitude is shifted to a frequency
higher than resonance frequency due to the hardening
nonlinearity.

The experiment is set up to achieve zero cubic parametric
stiffnessγ, so that the effect of the hardening nonlinearity
is studied independently. This is obtained by setting
IAC = 0 when IDC = 0.38A. The cantilever beam is
placed on the shaker and excited with the displacement
amplitudeY0 = 0.001m. This small displacement amplitude
is considered to prevent the magnets from hitting the
coils. Equation (B.4) shows that the cubic stiffness
is α = 937.58m−2, and equation (B.2) shows that the
nonlinear damping isζes,app = 217.8. The linear natural
frequency and the linear mechanical damping ratio are
measured from impact tests asωn = 32.59 rad s−1 and
ζm = 0.001, respectively. More information regarding these
measurements can be found inZaghari(2016).

Figure3 shows the amplitude-frequency relation for step
up and down tests, which are carried out by increasing
and decreasing the base excitation (shaker) frequency. For
the step up test, the shaker frequency increases from
5Hz to 8Hz at a rate of0.0025Hz/sec, with constant
displacement amplitudeY0 = 0.001m at all frequencies.
Each experimental point in Figure3 corresponds to the
amplitude of the steady-state response (the amplitude of
the relative displacementz(t)) at some selected frequencies.
The beam displacementx(t) is subtracted by the base
displacementy(t) to find the relative displacement. The
cantilever beam velocity is measured by the vibrometer,
and is integrated numerically with respect to time to find
the beam displacement. The acceleration of the shaker is
recorded by an accelerometer attached to the shaker plate,
which is integrated with respect to time twice to find the
displacement of the shakery(t). The velocity response
and the acceleration signal are filtered with a fourth-order
Butterworth high pass filter with a cutoff frequency of1Hz.

The experimental results show that the hardening
nonlinearity shifts the maximum peak amplitude to
a higher frequency. When the response amplitude is
large (a > 0.017m) and the magnets are close to the
coils, there are discrepancies between the experimental
and analytical results. This is due to the varying
inclination of the magnets with the beam at large
amplitudes (Liu and Liu (2006)), which is not considered in
our mathematical model. For example, betweenω

ωn

= 1.1
and ω

ωn

= 1.15, there are experimental points close to the
unstable branch. In this frequency region the stable steady-
state solutions from the analytical stable branch do not match
with the steady-state solutions from experiments. In other
frequency regions where the magnets are not close to the
coils, the experimental and analytical results are in good
agreement.

The effects of parametric stiffness for
varying phase

The effect of parametric stiffnessδ and phase differenceφ
on the response amplitude is investigated in this section.
Owing to the difficulty in controlling the phase difference
between the current and the base excitation, the frequency
sweep method used generally in nonlinear systems to find
the stable branches has not been applied in this investigation.
Instead, each frequency is considered independently in the
experimental analysis. This investigation requires the phase
difference between the base and parametric excitationφ to
be varied;φ is controlled by adjusting the phase between
the shaker acceleration and current supplied to the coils.
To generate a current with various phase differences with
the acceleration of the shaker, a separate hardware was
programmed to generate current with different phase. More
details are explained inZaghari(2016).

Figure 4 shows the stable solutions versus phaseφ
when parametric stiffness is below the instability threshold
(δ < δth), and when it is above the instability threshold
(δ > δth) whereδth = 4ζm. The mathematical model shows
that increasing the parametric stiffness over the instability
threshold increases the response amplitude for all phases
on both the stable branch (shown by the black lines in
Figure 4) and on the additional branch shown by the
grey line. Figure4(a) shows that the additional branch
does not exist when the parametric stiffness in under
the instability threshold. This is due to the influence of
parametric resonance on the response of the NPE system.
The experimental and analytical results in Figure4 show
that the minimum and maximum response amplitudes occur
at phasesφ = 0 rad andφ = ±π

2 rad, respectively. Figure4
also shows that the phase that maximises or minimises
the response amplitude does not change for varyingδ and
γ. This behaviour is different from the system presented
in Kumar et al.(2011), becauseδ is coupled to α in
that system. Figures4(b) and 4(c) show that, during an
experiment, the motion dynamics can match either the stable
branch, or the additional stable branch. This cannot be easily
controlled because the response can jump from one branch
to the other with little perturbation, particularly when the
solutions have a similar response amplitude.
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(a)

δ < δth

(b)

δ > δth

(c)

δ >  δth>

Figure 4. Amplitude of the steady-state response versus phase
φ for the NPE system (a) below the instability threshold
(δ = 0.0027), (b) slightly above the instability threshold
(δ = 0.068), and (c) above the instability threshold (δ = 0.218).
The system parameters are given in Table 2. The thick black
lines represent stable solutions caused by base and parametric
excitation, the thin grey line represents additional stable
solutions caused by only the parametric excitation, and the
dashed line represent the unstable branch. Points shown by ◦

denote experimental results.

The effects of parametric frequency for
varying phase

In this section, the effects of parametric frequencyΩ
and phase differenceφ on the response amplitude are
determined. The amplitude-frequency relations are plotted
analytically in Figure 5 for Y0 = 0.001m, ζm = 0.001,
ωn = 36.8 rad s−1, and for phase differencesφ = π

2 rad and
φ = 0 rad.ζes,app = 142.58, δ = 0.167, α = 1031m−2, and
γ = 238.12m−2 are calculated from equations (B.2) - (B.5)
for IDC = 0.52A and IAC = 0.1A. The analytical results
show that the amplitude of the response is minimised on

Table 2. System parameters

Parameters Figure4(a) Figure4(b) Figure4(c)
Measured parameters

IDC(A) 0.54 0.54 0.54
IAC(A) 0.002 0.05 0.16
Y0(m) 0.001 0.001 0.001
ωn(rad s−1) 37.3 37.3 37.3
Ω(rad s−1) 2ω 2ω 2ω
ω(rad s−1) ωn ωn ωn

ζm 0.001 0.001 0.001
Calculated parameters from equations (B.2) - (B.5)

ζes,app 144.51 144.51 144.51
δ 0.0027 0.068 0.218
α (m−2) 1042.40 1042.40 1042.40
γ (m−2) 3.86 96.52 308.86

the upper stable branch whenφ = 0, and is maximised when
φ = π

2 . The opposite is true for the lower stable branch.
Five distinct response branches are shown in Figure5.

The two additional branches relative to Figure3 arise
from the additional resonance frequencies in the nonlinear
parametric system. One resonance frequency is induced by a
combination of base and parametric excitation, and the other
is caused by only the parametric excitation. Previous studies
assume that, for a NPE system without nonlinear damping,
a change in the phase difference does not affect additional
branches (grey lines in Figure5). However this study shows
that, since the parametric frequency changes the response
amplitude, the change in the response amplitude affects the
nonlinear damping, which causes the additional branch to
change.

Labels (a)-(f) in Figure5 indicate individual experiments
conducted at different parametric frequenciesΩ. The
amplitude-frequency relation plots at each frequency are
shown in Figure6. The experimental results in Figure6 agree
with the mathematical model, in that the response amplitude
of the NPE system withφ = π

2 rad is greater than the
response of the nonlinear system without parametric stiffness
shown in Figure3. The experimental results presented in
Figure6 also show that the response amplitude is minimised
on the upper stable branch whenφ = 0, and is maximised
whenφ = π

2 (Figure6(a-e)), while the opposite is true for the
lower branch (Figure6(f)). Between labels (e)-(f) in Figure5,
where2.15 ≤ Ω

ωn

≤ 2.62, no experimental data was gathered
because the response amplitude caused the magnets to hit
the coils. Also, when the response amplitude is large and
the magnets are close to the coils, there are discrepancies
between the experimental and analytical results due to the
inclination of the magnets.

Conclusion

This paper introduces a base-excited cantilever beam
with an electromagnetic subsystem as a prototypical NPE
system. This system allows cubic stiffness, parametric
stiffness, cubic parametric stiffness, and the phase difference
between the base excitation and the excitation from the
electromagnetic subsystem to be varied independently, so
their individual effect on the amplitude of the response
can be determined. A mathematical model of this physical
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(a)

(b)

Figure 5. Analytical amplitude-frequency relations for (a)
φ =

π

2
, and (b) φ = 0. Solid lines denote stable branches, and

dashed lines denote unstable branches. Grey lines denote
additional branches. Labels (a)-(f) mark individual experiments
conducted at different parametric frequencies Ω. The values of
these experiments are mapped onto the amplitude-frequency
relation plots in Figure 6.

system is also presented to demonstrate general NPE
system behaviour; good agreement is found between the
mathematical model and the experiments.

By increasing cubic stiffness, and consequently hardening
nonlinearity, the response frequency of the peak response
amplitude was increased. This agrees with studies conducted
in the literature (Neumeyer et al.(2016)), demonstrating
compatibility of this system with existing models.

An increase in parametric stiffness increases the response
amplitude, though the magnitude of this increases depends
strongly on the phase difference between the excitation
and the response. On the upper-stable branch, the response
amplitude is maximised at phaseφ = π

2 . However, the
response on the lower-stable branch is maximised atφ = 0.
This result holds regardless of the parametric stiffness
and the cubic parametric stiffness. This phase relationship
significantly impacts the design of energy harvesters and
amplifiers, where a greater response amplitude is desirable,
and where the branch of the response and the phase
difference can be both controlled.
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Appendix A

Mathematical model of the electromagnetic
system

Based on Lenz’s law, the forceFemf in equation (2) is
proportional to the induced current in coilsies,

Femf = kt(z)ies, (A.1)

wherekt(z) is electromechanical coupling factor.

When the magnet is moved along the axis of the coil, an
electric potential across the coils is generated.

Vemf =
d

dt

∫

A

BdA = kt(z)ż, (A.2)

where B is the magnetic field generated by the moving
magnet,A indicates the area enclosed by the wire loop,z
is the magnet displacement. The quantitykt for two coils in
series and a magnet, based on (Sneller and Mann(2010)) is

kt(z) =
3ςVmBr

2(r2 − r1)(z2 − z1)

(

2
∑

n,m=1

(−1)n+mznm

)

,

(A.3a)

znm = ln(rn + z′nm)−
rn
z′nm

− ln(rn + z′′nm) +
rn
z′′nm

,

(A.3b)

z′nm =

√

r2n + (zm − (z + h))
2
, (A.3c)

z′′nm =

√

r2n + (zm − (−z + h))
2
, (A.3d)

where the fill factorς is

ς =
D2

wlwN

4(r22 − r21)hcoil
, (A.4)

Vm is the volume of the magnet,Br is the residual magnetic
flux density,Dw is the coil diameter,lw is the length of
the wire in one rotation,N is the number of turns in each
coil, hcoil is the height of the coil,z1 and z2 refer to the
height of the coil, andr1 and r2 are the inner and outer
radius of the coil respectively. Note that assumptions for the
nonlinear coupling coefficient may not be valid for all coil
configurations, and careful consideration is needed when the
electromagnetic system geometry is varied.

In equation 2 the electromagnetic force
Fe = −µ · dBz

dz
(Hammond(2013)), where µ is the

magnitude of magnetic moment and the magnetic field
Bz generated by the two pairs of coils can be obtained from
the Biot-Savart law,

Bz(z) = −
µ0r

2
c (Ic + ies)N

2((h+ z)2 + r2c )
3

2

−
µ0r

2
c (Ic + ies)N

2((z − h)2 + r2c )
3

2

,

(A.5)
whereh is the distance between the centre of coil and the
equilibrium position, and other parameters are defined in
Table1. Using the Taylor expansion aboutz = 0, the force
applied to the cantilever beam can be expressed as

Fe = H1(Ic + ies)z +H2(Ic + ies)z
3 +O(z5), (A.6)

whereH1 andH2 are

H1 =
−2G

(h2 + rc2)
5

2

+
10Gh2

(h2 + rc2)
7

2

, (A.7)

H2 =
5G

(r2c + h2)
7

2

−
70Gh2

(r2c + h2)
9

2

+
105Gh4

(r2c + h2)
11

2

, (A.8)

G =
3

2
µµ0r

2
cN. (A.9)
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Appendix B

Parameter identification

SubstitutingFemf (equation (A.1)) andFe (equation (A.6))
into equation (6) and normalising by the total effective mass
mt results in

z̈ + 2εωn(ζm + ζes,appz
2)ż + ω2

n(1 + εδ cos(Ωt))z+

ω2
n(εα+ εγ cos(Ωt))z3 = Y0ω

2 cos (ωt+ φ) . (B.1)

In equation (B.1) small parameterε is added to solve this
equation with the method of averaging, the mechanical
damping ratioζm = cm

2mtωn

, andζes,app is the approximate
electrical damping applied from the electromagnetic system.
The dissipative feedback force due to the electromagnetic
system can be calculated from equation (A.2). The electrical
damping ratio is

ζes,app =
k2t,app

2mtωn (2Rcoil +R)
, (B.2)

where first natural frequency of the cantilever beam with the
electromagnetic systemωn is estimated using the Rayleigh
Energy Method.

The change of electromechanical coupling with respect
to z is considered linearkt(z) = kt,appz +O(z2), where

kt,app = ∂kt(z)
∂z

∣

∣

∣

z=0
.

In equation (6), normalised dimensionless parametric
stiffnessδ, normalised dimensionless cubic stiffnessα, and
normalised dimensionless cubic parametric stiffnessγ are
derived from electromagnetic forces

δ =
H1IAC

k1
, (B.3)

where k1 = kb + IDCH1 is the total linear stiffness. The
normalised cubic stiffnessα is

α =
H2IDC

k1
. (B.4)

The cubic stiffness is strongly affected by the direct current
and the parameters of the electromagnetic system, such the
distance between the coils, the number of turns in each
coil, and the mean radius of the coil. The normalised cubic
parametric stiffness is

γ =
H2IAC

k1
. (B.5)
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