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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES
SCHOOL OF CHEMISTRY

Doctor of Philosophy

by Stuart James Elliott

Nuclear magnetic resonance (NMR) experiments are time-limited by relaxation dynam-
ics. Observing non-equilibrium magnetization is restricted to timescales governed by the
longitudinal relaxation time Tj. The use of long-lived states (LLS) offers a promising
means to transcend this limitation. LLS are configurations of nuclear spins that are
protected against the in pair dipole-dipole relaxation mechanism, with other sources of
relaxation significantly attenuated. In systems of spin-1/2 pairs, the LLS is called singlet
order and the decay time constant is denoted Ts.

The field of LLS NMR is now flourishing, LLS lifetimes exceeding T3 by a factor
of 50 have been observed, with a lifetime Tg > 1 hour observed in room-temperature
solution in one case. LLS have even been observed in the 3-spin-1/2 systems of rapidly
rotating methyl groups in solution.

The work presented in this thesis builds on previous efforts from the LLS com-
munity. Most notably, prior attempts at methyl LLS are restricted to just a single case.
Through my work, I have extended the family of molecules in which methyl LLS are
accessible, achieved with high conversion efficiencies in suitable cases. The use of mon-
odeuterated methyl groups as coherently accessible reservoirs for nuclear singlet order
has lead to the longest observed methyl LLS. The relaxation dynamics of two motion-
ally different cases are examined and geometrical models are presented to explain the
experimental results. Hyperpolarization results for these systems are also presented.

My work has lead to the investigation of more curious phenomena such as the
singlet-scalar relaxation of the second kind (S-SR2K) mechanism. In the regime of slow
quadrupolar relaxation, where T4 is significantly slower than the timescale of the nu-
clear Larmor period, this relaxation mechanism dramatically shortens singlet lifetimes.
An experimental demonstration is provided for the case of a 13C labelled, deuterated
fumarate derivative. This study differs from previous work on this subject, which exam-
ines the limit where the T} of the third spin is on the timescale of the nuclear Larmor
frequency, rarely the case for deuterium nuclei. I provide rate expressions and numerical

simulations for the LLS decay in the S-SR2K regime of slow quadrupolar relaxation.
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Thesis Outline

The work presented in this thesis is the result of multiple research projects under-
taken whilst in candidature for a PhD at the University of Southampton. The work
is centred around long-lived nuclear spin states, which is an ongoing research effort in
the group of Prof. Malcolm H. Levitt. The two main research themes of this thesis
are hyperpolarized long-lived states in monodeuterated methyl groups, and singlet state

relaxation via scalar relaxation of the second kind. The thesis is organised as follows:

Chapter 1: Introduction

e Introduction to the basics of nuclear magnetic resonance (NMR).

e A discussion of angular momentum, spin, precession, relaxation and other topics
relevant to NMR.

e Particular attention is paid to near chemically equivalent spin systems, and the
effects on NMR spectra.

e A summary of rotations and other mathematical /quantum mechanical tools.

e A presentation of the main interactions covered by the work in this thesis.

Chapter 2: Hyperpolarization and singlet states

e A section on NMR hyperpolarization and dissolution-dynamic nuclear polarization
(D-DNP).

e An in depth coverage of singlet state NMR, including the key properties of nuclear

singlet states.

e Discussion is facilitated by quantum mechanical descriptions and useful mathe-

matical instruments.

e A small section on singlet NMR techniques, such as the use of radiofrequency pulse
sequences, is included to provide background for the reader before discussion of

the experimental results.

Xvii



xviil

LIST OF TABLES

Chapter 3: Long-lived nuclear spin states in monodeuterated methyl

groups

Results of long-lived state NMR experiments on monodeuterated methyl group

(CH3D) bearing compounds.

A constant ratio between the lifetimes of singlet order and longitudinal magneti-

zation was observed over a wide range of conditions.
A distorted CH2D geometry is put forward to describe the experimental results.

Examples are presented for two compounds with different motional regimes.

Chapter 4: Direct hyperpolarization and coherent readout of long-
lived proton singlet order

Hyperpolarization experiments on CHoD containing molecules.
Hyperpolarized singlet order is generated directly from D-DNP.

CH3D singlet order was found to be long-lived under hyperpolarized conditions.

Chapter 5: Singlet-scalar relaxation of the second kind in the
regime of slow quadrupolar relaxation

A discussion of the singlet-scalar relaxation of the second kind (S-SR2K) mecha-

nism.

The theoretical aspects of the mechanism are described, supported by numerical

simulations.

Experimental findings are presented for the case of a 13C-labelled, deuterated fu-

marate diester.

Conclusions and further work are presented at the end of each chapter, including

a summary of the main results found. Perspectives on hyperpolarized singlet NMR are

given at the end of the thesis.
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Chapter 1

Introduction

1.1 NMR spectroscopy

Spectroscopy is a scientific territory concerning the interaction between energy and mat-
ter. Matter either emits or absorbs radiation and the resulting change in energy is de-
tected and interpreted. Spectroscopic techniques can ultimately provide information on
the substructure of atoms and molecules in a variety of systems. In chemistry, scientists
are involved with the reactivity and kinetics of matter, in which molecular structure and
motion play a vital role. Nuclear magnetic resonance (NMR) spectroscopy is a widely
used technique in the physical sciences and can reveal information regarding transfor-
mation and dynamics over a wide range of timescales. NMR is a powerful analytical tool
and is also able to correctly determine material structures. Structural interpretation is
often found to be in good agreement with elegant data-to-structure techniques such as
X-ray crystallography, see figure 1.1a). The non-invasive nature of magnetic resonance
is additionally highly suitable for in vivo work in hospital clinics and magnetic resonance

imaging (MRI) is at the forefront of medical healthcare diagnostics.

Magnetic resonance phenomena were first observed by Rabi in 1938 using molec-
ular beams [3]. Rabi, together with coworkers, developed a new method for measuring
nuclear magnetic moments, which was awarded the Nobel prize in physics in 1944 [4].
A short while later, Purcell, Torrey and Pound [5], with simultaneous development ef-
forts offered by Bloch and Packard [6], invented and expanded the relatively new field
of NMR in bulk matter. In 1952, Purcell and Bloch shared the Nobel prize in physics
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FIGURE 1.1: a) Superimposed structures of ubiquitin determined by x-ray crystallog-

raphy (red) and NMR (blue). The structural determination of ubiquitin by NMR is

remarkably accurate and in this case was achieved purely by using two-dimensional

techniques, without assignments of one-dimensional spectra [1]. b) Diffusion spectrum

imaging (DSI) tractography of a rat heart. The muscle fibres of the rat heart are colour
coded with respect to helix angle [2].

for these feats. It must be noted that the effect was narrowly missed by Gorter in 1942
due to the long relaxation times of the LiCl crystals used in his experiments [7]. NMR
has come a long way in just 65 years. For example, modern day NMR magnets pro-
vide large magnetic fields (> 10 T) through the use of superconducting materials which
are cooled to ~4K by cryogenic substances. The improved resolution and sensitivity
granted by large magnetic fields has advanced NMR, spectroscopy and surrounding sci-
entific fields, such that previously troublesome structure assignments [8] and metabolic

tracing experiments [9] are now common practices.

NMR spectroscopy concerns the behaviour of a nuclear ensemble in the presence
of a magnetic field. Particles with inherent nuclear spin are subjected to manipulation
of their quantum mechanical properties by interactions with intricately designed elec-
tromagnetic pulses. In this way, a real grasp of the microscopic world around us may
be achieved and the probing of complicated systems is made possible. A well harnessed
phenomenon in NMR, which is used for structural assignment and process monitoring,
is the loss of spin order during the relaxation times T} and 75. After the excitation of
a particular isotopic species in a sample, or molecular tag in a human patient, informa-
tion is continuously lost until the unperturbed starting conditions are restored. Although
typically restricted to a just a few seconds, relaxation times have already served research
and clinical scientists in efforts to probe regimes of slow molecular motion such as dif-
fusion [10], which can be used to investigate the structure of muscle fibres in the heart,
see figure 1.1b). Measurements of proton 77 and T have allowed a preview into the

world of protein folding and unfolding [11], and conformational exchange [12]. Labelling
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of biologically relevant materials with >C and "N isotopes has also become increasing
popular, as NMR not only provides clear cut information regarding molecular structure
but the longer lifetimes of these agents opens up the possibility to study exchange rates

and obtain diffusion coefficients over extended time periods [11, 13].

A relatively new form of nuclear information storage is provided by long-lived
states [14-23, 23-27] which aims to overcome the limiting nuclear relaxation time in an
alternative fashion. The pioneering work of Levitt and co-workers has unequivocally
demonstrated that, by using the symmetry properties of nuclear spin-1/2 pairs, it is
possible to extend the lifetime of spin order, and lengthen relaxation times by more
than an order of magnitude [28-35]. Previously undetectable quantum states are now
accessed via novel pulsed methods, and the slow harvesting of spin order is facilitated by
symmetry protected molecular systems. A particularly successful early case of a long-
lived bearing substance was a partially deuterated saccharide system [18] with a “hidden”
relaxation time 37 times longer than that associated with T;. An equally impressive
achievement came from Pileio and coworkers, who recorded a 9 minute lifetime for
N5O dissolved in blood. Recently, a Naphthalene derivative with a long-lived lifetime

exceeding 1 hour in a room temperature solution has been observed.

The opening couple of chapters in this thesis are intended to assist the reader in

understanding how some of the phenomena described above are possible.

1.2 The basics of NMR

1.2.1 Spin angular momentum

Atoms and molecules are known to carry two distinct forms of momentum. Angular
momentum arises when a particle executes a trajectory along a curved path, much like
the electron orbiting the nucleus. Spin is the second variety of angular momentum and
is intrinsic to the majority of nuclei in nature. However, spin is not related in any way

to the rotation of a molecule. In quantum mechanics, spin angular momentum [ is

quantized in units of & (6.63 x 1073%/2x Js). The allowed, quantized values of I are:

I=hJ/II+1), (1.1)



4 Chapter 1: Introduction

where [ is the principal spin quantum number and can be any non-negative n-integer

value of n/2, i.e. 0, 1/2, 1, 3/2, etc.

The initial formalism of spin was gradually accepted by the scientific community,
and was later supported by clear-cut experimental evidence. One confounding finding
emerged from the Stern-Gerlach experiment in 1922 [36], some years before Uhlenbeck
and Goudsmit formulated the hypothesis of the spin-1/2 electron [37]. Later, in 1928,
Dirac successfully modelled a spin-1/2 electron from a theory of relativistic quantum

mechanics [38].

The spin angular momentum of a nucleus manifests itself as a discrete set of energy
levels governed by a certain group of quantization conditions: my = -1, -I+1, ..., I-1,
I, where my is known as the spin projection quantum number. The energy levels of a
nucleus are 2/ 4+ 1 degenerate, meaning there are 27 + 1 spin states of equal energy in the
absence of a magnetic field. The degeneracy is lifted in the presence of a magnetic field
B and the 27 + 1 sublevels are consequently unveiled [39]. This is an important feature
of quantum mechanics which, in magnetic surroundings, allows NMR to function. In the
simplest case, one might consider the primary isotope of the hydrogen atom, the nucleus
of which consists of a single proton (*H) with a nuclear spin I = 1/2 [40]. Therefore,
for the hydrogen nucleus in a magnetic field, the degenerate energy levels are split into
two sublevels, with m; = £1/2. The quantized energy difference AE between the two
states in the revealed energy level structure is the subject of interrogation by NMR

spectroscopy, see figure 1.2.

1.2.2 Magnetic moments

The interaction between a nuclear spin and its magnetic environment is expressed by
the magnetic moment ji. A scalar product between [ and the magnetic field vector B

leads to the magnetic energy V,,, of such an interaction:
Vin = —ii- B = —|fi||B| cos(¢), (1.2)

where ¢ is the angle between the nuclear magnetic moment and the magnetic field. In
NMR, the direction of the static magnetic field B is defined to be along the z-axis of

a right-handed Cartesian coordinate system, which has orthonormal unit vectors. The
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I=1/2 m =-172
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FIGURE 1.2: The presence of a magnetic field lifts the energy degeneracy for a nucleus

with inherent nuclear spin. An energy level structure with splittings proportional to

the nuclear spin number [ is revealed. This phenomenon is known as the Zeeman effect
and is shown for the case of I = 1/2.

orientational dependence of V,,, on the magnetic moments alignment with or against B
is clear. When the two vectors are aligned parallel the energy achieved is lower than any
other orientational configuration. Therefore, any free magnetic moment in a magnetic

field will minimize its magnetic energy and align parallel to the magnetic field [41].

1.2.3 Microscopic magnetism

Magnetism on the microscopic scale is dictated by three major sources:

e clectrical currents on the molecular length scale
e magnetic moments of electrons

e magnetic moments of nuclei

The circulation of electronic currents contribute negatively to the magnetic susceptibility
(a measure of the extent to which a material develops a magnetic moment on exposure
to a magnetic field). The presence of magnetic moments contributes positively to the
magnetic susceptibility, i.e. these properties tend to align with an external magnetic

field.

Nuclei, like electrons, simply possess an intrinsic permanent magnetism, as they do

intrinsic spin, which is not a consequence of an electrical current. The nuclear magnetic
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é

F1cURE 1.3: The Einstein-de Haas effect. A ferromagnetic rod is vertically magnetized

by a current passing through an encasing solenoid. The rod rotates in order to conserve

angular momentum and its motion is captured via the use of a laser and mirror. In this
figure, I represents the current in the solenoid [43].

e
@y

moment is a fundamental property and is related to the spin angular momentum:

=i, (13)

where the “hats” indicate that these two properties are quantum mechanical operators.
v is the gyromagnetic ratio and as a scalar may carry either sign. Hence, the magnetic
moment can either orient parallel or anti-parallel to the spin angular momentum, de-
pending on the sign of . A positive v implies that the nuclear magnetic moment and
spin angular momentum point in the same direction in space. A similar relationship
was cleverly demonstrated for the orbital angular momentum of the electron by Ein-
stein and de Haas in 1915. An experiment was constructed whereby a ferromagnetic rod
suspended vertically by its long axis was subsequently magnetised along its entire length
by an aligned magnetic field emanating from a surrounding coil [42]. As a net magneti-
zation attributed to an alignment of magnetic moments corresponds to a gain in angular
momentum, the rod began to rotate in the opposite sense to fulfil the conservation laws

of angular momentum, see figure 1.3.
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1.2.4 Spin polarization vector

As shown in equation 1.2, the magnetic moment is described by using a vector represen-
tation. In the same way, the spin angular momentum of a nucleus is also represented as
a vector. The direction of the spin angular momentum vector is more commonly referred
to as spin polarization. The spin polarization vector may point in any direction in space.
From previous arguments one may assume that only two directions of spin polarization
are permitted, with and against the magnetic field. However, this perception is incorrect
and fuller quantum mechanical description is necessary [44]. In the language of quantum
mechanics, the direction of the spin polarization vector may be expressed as a superpo-
sition of well defined quantum states. The expectation value of the operator I acting on

this state would return the classical analogue, see chapter 2 for more details [39].

The concept of the spin polarization vector may too be applied to an ensemble of
nuclei in order to describe the direction of the overall spin angular momentum vector
at thermal equilibrium. The governing state of the entire system would be written as a
superposition of quantum states summed over the entire nuclear ensemble. The expec-
tation integral of this overall state would yield a small but non-zero measurement in the
absence of a magnetic field. In this a case, the individual angular momentum vectors for
an ensemble of spins would maintain a completely isotropic geometrical distribution [41],

leading to a near zero net spin polarization or magnetization M:
N
M=) ji~0, (1.4)
i

for N spins in the nuclear ensemble. Suppose the nuclear ensemble is instantaneously
moved into a region of non-zero magnetic field. The lowest energy orientation for a
single spin occurs from an alignment of the magnetic moment with the magnetic field,
see equation 1.2. Therefore, a free spin will align its magnetic moment along the magnetic
field axis. Under these conditions, the expectation value of I for the ensemble of nuclei
corresponds to a larger net spin polarization which is aligned with the static magnetic

field, see section 1.2.6 for more details.
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FIGURE 1.4: Precession cones of three spin-1/2 nuclei (y>0) oriented at various angles

with respect to the static magnetic field. If the spin polarization vector is tilted away

from the axis of the static magnetic field, precessional motion sweeps out a cone of
constant angle.

1.2.5 Precession

A torque or turning force G acts upon a magnetic moment when situated in a magnetic

field:
G = in B = || Bl sin(o), (1.5)

where the vector G is orthogonal to both vectors ji and B provided A B +£ (. The
direction of G is determined by the “right-hand rule”. Torque is a property related to
the rate of change of angular momentum. By using equations 1.3 and 1.5 one achieves:

‘;—’; =~iiAB. (1.6)
Hence, motion is perpendicular to both i and B and the effect is for the spin polarization
to precess around the magnetic field in a cone, see figure 1.4. The cone angle depends on
the initial direction of the nuclear spin polarization vector in space with respect to the
static magnetic field. This type of motion is called precession. Precessional motion is
shown in figure 1.4 for nuclei with different orientations of the nuclear spin polarization
vector. This idea can also be translated to the overall spin polarization vector and is

used when considering the application of radiofrequency pulses to the nuclear ensemble.

The frequency of spin precession &y is known as the nuclear Larmor frequency

and is related to the magnetic field strength and direction via ~y:

030 = _7507 (]‘7)
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where By is the magnetic field at the location of the nucleus. The sign of the spin pre-
cession indicates its direction. Most nuclei have a positive gyromagnetic ratio resulting
in a negative Larmor frequency, viewed as a clockwise precession when observing down

the positive magnetic field axis [42].

1.2.6 Relaxation

The majority of the research effort associated with the work in this thesis concerns the
relaxation of singlet states in NMR. As will be seen the chapters that follow, relaxation
is shown to be heavily dependent on the nuclear environment i.e. the structure and
dynamics of the spin system. In this section, a concise description of longitudinal and

transverse relaxation of the spin polarization vector is presented.

When a nuclear spin undergoes precessional motion in a magnetic field the angle
between the magnetic moment and the magnetic field is always conserved. Now consider
a molecule tumbling in an isotropic liquid inside a magnetic field. The orientation and
position of the molecule will fluctuate wildly as a function of space and time but the
nuclear spin polarization for each nucleus will retains its precessional motion. This infers
that the translational and diffusive motions of nuclei in solution has little effect on the

behaviour of nuclear spins.

However, the immediate magnetic environment for a nuclear spin plays a far more
significant role. A microscopic field, caused by the inherent magnetism of a neighbour-
ing nucleus or electron, will fluctuate vigorously due to the thermal energy transferred
to the spin ensemble from the surroundings [45]. The external magnetic field will be
perturbed slightly on the molecular-length scale by a microscopic magnetic field which
contains a variable spatial and temporal dependence. Therefore, the total magnetic field
experienced by a single spin differs from that of a neighbouring spin, on the microscopic

level.

The precession of an individual magnetic moment is affected by the rapidly fluc-
tuating magnetic field, which is the sum of the external and local fields and may point
in any direction in space. The nuclear Larmor precession of each nuclear spin contains a
time-dependent component and may be different to the nuclear Larmor frequency of its

neighbour. The “constant angle” of Larmor precession between the magnetic moment
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FIGURE 1.5: In a standard NMR sample there are around 10%? spins, represented

here by empty circles, each with a magnetic moment which may point in any direction

in space. As lower energy configurations, i.e. magnetic moment aligned with the

static magnetic field éo, are preferred there is a slight preference for this orientation

of magnetic moments throughout the sample. A net magnetic moment M therefore

exists throughout the entire sample, which is also aligned with the z-axis of the static
magnetic field.

and the magnetic field breaks down. Over a long time, the angle between the magnetic

moment and the magnetic field samples all possible orientations.

But are some orientations more preferable? The answer is yes. Equation 1.2 states
that the magnetic energy is lower when the magnetic moment points with the magnetic
field. Since the surroundings are at a finite temperature, a nuclear spin is more likely to
be thermally driven into a lower energy configuration. Hence, an entire spin ensemble is
naturally driven towards a stable state of thermal equilibrium, where the net distribution

of spin polarizations favour alignment with the magnetic field [46], see figure 1.5.

Nuclear spin populations for a spin-1/2 nucleus at thermal equilibrium obey the

Boltzmann distribution:

Nparallel — e HABL; ) (18)

Nantiparallel
where kg = 1.38x 10723 JK~! is the Boltzmann constant, and 7 is the finite temperature
of the surroundings. The relative number of nuclear spins populating the parallel and
anti-parallel configurations is given as a function of the quantized splitting between
the nuclear spin states [47]. However, the polarization bias towards the preferential

orientation is only slight at room temperature, as AE is ~10* times smaller than the
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FIGURE 1.6: A populated energy level diagram for a spin-1/2 nucleus in a magnetic

field at thermal equilibrium. The figure greatly exaggerates the population bias. Due

to the finite temperature of the local environment, the population of nuclear spins is

marginally imbalanced in favour of the energy level associated with parallel nuclear spin
alignment. Filled balls represent nuclear spins.

energy of thermal fluctuations, and is approximately 1 spin in 15,625 at 9.4 T for protons,

see figure 1.6.

1.2.7 T, and T,

Consider a nuclear spin system at a state of thermal equilibrium in a magnetic field. The
net spin polarization has an equilibrium value M. .4,y Wwhich is aligned parallel to the
magnetic field. The majority of nuclear spins will be precessing on a cone of “constant”
angle with respect to the magnetic field, but there is no transverse magnetization at
thermal equilibrium as the distribution of nuclear spin polarizations is symmetric about
the z-axis of the magnetic field [41]. Consider a m/2 rotation of M, cqui about the z-
axis as a result of a radiofrequency (rf) pulse, the effect being to tilt the magnetization
vector parallel with the -y-axis. Each individual nuclear spin is assumed to be equally
affected by the rf-pulse. In cases where the net nuclear magnetic moment is oriented
perpendicular to the static magnetic field the term as transverse magnetization is used.
This is a subtle but essential objective of nearly all NMR experiments because typically
the nuclear spin magnetization is detected in the plane perpendicular to the static mag-
netic field of the NMR magnet. As the nuclear contribution to the samples magnetism
is orders of magnitude smaller than the electronic contributions, observation of M, cqui

parallel to the magnetic field is highly impractical.

Bloch formulated the first classical description of magnetization using a vector
model, which is valid for N non-interacting spin-1/2 nuclei. His description is adequate

for use here on the removal of the rf-pulse [4, 6, 48]. The behaviour of the magnetization
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FIGURE 1.7: Nuclear spins dephasing under a magnetic field inhomogeneity. a) At

an instantaneous time point after the rf-pulse is removed the magnetization vector is

assumed to be pointing along the -y-axis. b) Over time the dephasing of nuclear spins

spreads out the individual nuclear spin polarizations destroying all available NMR signal
in the xy-plane.

M in the presence of a magnetic field B and relaxation R is given by:

dz‘gt(t) = Ni(t) A B~ R (W (1) - ¥(0)) . (1.9)

Precession of individual magnetic moments forces the magnetization vector to precess
likewise in the xy-plane and relaxation will force the system to return to thermal equi-
librium [49]. This can occur via various mechanisms which are discussed in detail in
section 1.8. For simplicity, I will ignore the precessional motion and concentrate on the
effects of longitudinal relaxation R;. For the case of magnetization aligned with the
magnetic field M, equation 1.9 simplifies to:

dM (t)
dt

=—-R (Mz(t) - Mz,equil) ) (110)

where M, (t) is the magnetization aligned with the z-axis of the magnetic at a time t.
Equation 1.10 states that the rate of change of magnetization is proportional to the
deviation of M, (t) from thermal equilibrium. The solution of this equations yields the
relaxation behaviour of the magnetization component parallel to the external magnetic

field. M,(t) can be shown to relax with the characteristic time constant 71 = 1/Ry:
Mz(t) = Mz,equil - (Mz,equil - MZ(O))e_t/Tla (111)

as shown in appendix B. Different parts of the sample will relax with slightly different
rates due to small, local inhomogeneities in the magnetic field. Therefore, the wandering
motion of each nuclear spins precessional cone eventually causes the resulting signal to
slowly dephase, gradually losing all phase coherence with distinctive rate constant Ry =

1/Ty, see figure 1.7. The transverse components of the magnetization vector therefore
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a) b)

OH

H ‘ .'IIIIIIOH CH2

H 5 4 3 2 1 0
"H Chemical Shift / ppm

FIGURE 1.8: a) Molecular structure of ethanol. Methyl protons are indicated in red,

CH,, protons are indicated in blue, and the hydroxyl proton is indicated in pink. b)

'H NMR spectrum of ethanol. The J-couplings are small relative to the spectral width
and are not clearly visible at the current magnification.

evolve with the following form:

M (t) = Mgy sin(wot)e /12, (1.12)

My(t) = —Mequi cos(wgt)e_t/TQ. (1.13)

Unfortunately, the vector model of magnetization is limited as internuclear couplings,
non-selective rf pulses and magnetization transfer are not accounted for. A fuller, quan-
tum mechanical description of magnetization evolution is therefore warranted, see sec-

tions 1.5 and 1.6.

1.3 Symmetry and properties of molecules

1.3.1 Chemical shift

NMR has the superior capability to distinguish between nuclear spins in differing mag-
netic environments, such as those located in distant parts of the same organic material.
The dependence of the nuclear Larmor frequency on the strength of the local magnetic
field allows for this determination. This is increasingly evident for more sensitive nuclei,
such a protons, which is useful for the assignment of large structures, such as proteins,
by NMR. It should be noted that here I am assuming that the static magnetic field is
perfectly homogeneous. The classic question given to test undergraduate chemists when
first discovering NMR is: from the structure of ethanol, figure 1.8a), how are the peaks

in the NMR spectrum, figure 1.8b), assigned?
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Ignoring the splitting of the resonances, which is attributed to an phenomenon
known as scalar (J) coupling where the nuclear Larmor frequency depends on the direc-
tion of coupled magnetic moments in the same molecule, the answer relies on differences
in microscopic magnetic fields. The differences in local magnetic field are not explained
by an external magnetic field gradient, such as in magnetic resonance imaging (MRI)
experiments [41, 50], but purely on the makeup of the molecule and how magnetic en-

vironments are averaged as the molecule tumbles isotropically in solution.

As the electrons are not separated from the nuclei of the molecule, the resonance
position of a molecular group is also dependent on the electrons. In diamagnetic ma-
terials this is an effect known as chemical shift. Consider the methyl group (CHj)
protons, which are resonant at ~1.1 ppm. CHjs groups rotate rapidly in solution, and
so the nuclei are protected by a cloud of high electron density. This shielding effect
from the outer electrons shifts the methyl group resonance upfield, towards 0 ppm. The
hydroxyl resonance is often broad due to exchange of the proton with the solvent, and
is found downfield (>4 ppm) as the oxygen nucleus is heavily electronegative and pulls

the electron density away from the adjacent proton.

As the nuclear Larmor frequency, and to good approximation the chemical shift,
are proportional to the applied magnetic field, the ratio of these two quantities is fixed.

A field-independent expression of the chemical shift § is expressed as:

wo — w(E{EF
6= T UREF (1.14)
0
where wg”EF is the nuclear Larmor frequency of the same isotope in a reference compound

at the same magnetic field.

1.3.2 Chemical equivalence

Some nuclei, such as those labelled blue in figure 1.8a), have nuclei which resonate at
the same nuclear Larmor frequency. Therefore, the magnetic field experienced by the
protons H, and Hy, is the same, and the CHy protons all appear at the same resonance
frequency in the "H NMR spectrum. These spins are defined as “chemically equivalent”.

Chemical equivalence is also a common feature for CH3 groups. In chapter 3, I will
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FIGURE 1.9: The equivalent protons of a) methane and b) DMSO are highlighted in
blue. In each molecule, the protons are exchanged by a symmetry operation, such as a
three-fold rotation (Cg) or reflection (o).

show how chemical inequivalence can be induced and detected between the protons of a

rotating CHoD group.

For two or more spins in the same molecule, chemical equivalence is achieved if

both of the following criteria are satisfied:

e The nuclear spins are of the same isotope,

e A molecular symmetry operation exists which exchanges the nuclear spins.

If both of these criteria cannot be satisfied, then the spins are said to be chemically
inequivalent. As an example, consider the protons in a molecule of water. The two pro-
tons are chemically equivalent. Each spin is of the same isotope and both spins sense the
electron withdrawal due to the electronegativity of the oxygen, shifting the resonance
frequency for both protons downfield simultaneously. Furthermore, a reflection opera-
tion, which runs down a line of symmetry within the molecule, exists and interchanges
the position of the two protons. Similar is true for the protons in a molecule of methane,
the CHs protons in a molecule of ethanol, or the methyl groups in a molecule of DMSO,

see the blue protons in figure 1.9.

1.3.3 Magnetic equivalence

Another widely used category to establish equivalence between the nuclei of a molecule

is magnetic equivalence. Two nuclei are said to be magnetically equivalent if:

e The two nuclei have identical chemical shifts,
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e The two nuclei have identical scalar couplings to all other nuclei in the molecule

(or if there are no other spins present in the molecule).

If both of these criteria cannot be satisfied, then the spins are said to be chemically

inequivalent.

Again, one could consider a molecule of water, but this time the water is labelled
with an 17O nucleus (I(}70)>0) such that a J-coupling exists between the protons and
the oxygen. As discussed above, the two protons in water have identical chemical shifts.
In this case, the J-coupling is also identical and the protons of water are said to be
magnetically equivalent. Magnetic equivalence does also imply chemical equivalence,

but chemical equivalence does not necessarily imply magnetic equivalence.

In the field of singlet-state NMR, an ideal molecular candidate is often chosen if
a pair of nuclei (of the same isotope) have almost identical nuclear Larmor frequencies,
such that a small chemical shift difference exists between the pair. Magnetic equivalence

is therefore a far more restrictive condition for singlet NMR.

1.4 Types of NMR spectra

The consequences of chemical and magnetic equivalence has interesting repercussions
for the outcome of the NMR spectrum. The size of the chemical inequivalence plays a
particular role in the frequency of the signal resonances and the relative signal intensities.
For a pair of spin-1/2 nuclei (i and j) there are three types of spectra (Ag, AB and AX)
which can be classified by defining a parameter which quantifies the level of chemical
inequivalence. Traditionally, the coupling regime in solution NMR is defined by the spin
system parameters .J;; and QX Jij is the in pair scalar coupling between spins ¢ and
7, and QZ is the difference in chemical shift between the two spins. A new parameter

tan(6;;), which is dimensionless, is constructed from these two properties:

2mJ;j
Q3

tan(&ij) = (1.15)

When 6;; — 0 the system is weakly coupled and when 6;; — /2 the system is strongly

coupled. The coherent Hamiltonian for a 2-spin-1/2 system with a scalar coupling J;;
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FIGURE 1.10: Energy level diagram in the Zeeman product basis for 2-spin-1/2 nuclei

in a magnetic field. The spin state of the spin-1/2 pair is represented as |¢112), where

[t;) can be either |a) or |3). Single quantum (-1) transitions between spin states are
shown by the direction of the arrows.

and a chemical shift difference Qg, written in the Zeeman product basis, is shown in
equation 2.46 of chapter 2. The |a3) and |S«) subspace yields the following polynomial:
(3772ij +(Q%)?)

wg + mJijwo — I =0, (1.16)

and hence provides the eigenvalues for the states |af) and |fa):

aB) 3 (g (2m)? + (90)2), (1.17)

Ba) (g — \(@ml)? + ()2, (1.18)

A second polynomial is additionally tractable in the |a«) and |33) subspace:

n2J23 — (QY)?

UJ% — WJijwo + 1 = 0. (1.19)
The eigenvalues for states |aa) and |53) are:
laa) 5(7TJZ']' —Q7), (1.20)
1
188) + 3w + ). (121)

Qg is the sum of chemical shift terms, and is zero if the resonance offset is assumed to be
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placed at the mean resonance frequency of the 2-spin-1/2 nuclei. The signal frequencies
are given by the difference in eigenvalues between spin states which are connected by
single quantum (-1) transitions, see figure 1.10. The signal frequencies are shown using
the notation S(w;;), where i and j represent either the spin state or -1 coherence for spins

i and j, see below. The signal frequencies of the four single quantum (-1) transitions are

given by:
S(wa) = mJi; — %\/ (@) + (20)2, (1.22)
S(w-a) = mJij + %\/(27%']')2 +(Q3)%, (1.23)
S(wg) = ~mliy + 5y Cm)? + (OF)2, (1.24)
S(ws) = —mJiy — %\/ (2mJi)? + ()2, (1.25)

The signal intensities ¢(S;;) in the NMR spectrum after the application of a m/2 pulse

are:

i(S_) = %(1 + sin(8y)), (1.26)
i(S_ ) = %(1 _sin(6;)), (1.27)
i(S_) = %(1 4 sin(63)), (1.28)
i(S5.) = %(1 — sin(8y;). (1.29)

1.4.1 A, spectra

For an A, spin system the chemical shift difference QZ approaches zero. This leaves
S(w_q) and S(wg—) with a 0 Hz resonance offset, whilst S(wq—) and S(w_g) are situated
at +J;; Hz, respectively. Furthermore, the parameter tan(6;;) tends to oo as 6;; tends to

/2. Signal intensities in the resulting spectrum for a “ideal” Ay system are as follows:

i(Sa_) — 1, (1.30)
i(S_q) — 0, (1.31)
i(S_g) = 1, (1.32)
i(S5_) = 0, (1.33)
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with sin(7/2) = 1. It therefore follows that the transition frequencies at £J;; have no
overall signal intensity, with the transition frequencies at zero resonance offset having

the fullest possible signal intensity.

1.4.2 AB spectra

In the case of an AB spin system the chemical shift difference Qg is on the order of the

scalar coupling J;;. Let’s consider the case of QX = 27J;j, for an unspecified value of

2mJy
a3

Qg and J;;. The ratio = 1. The resulting NMR signals appear at the following

frequencies:

S

S(wa-) = mJij(1 = V2), (1.34)
S(w_a) = 7Jij(1+V2), (1.35)
+V/2), (1.36)
S(ws-) = —7Jij(1 = V2), (1.37)

S(w_g) — —WJij(l

with the signal intensities i(S_,) and i(S_g) being \fjﬁl’ and the signal intensities

i(S,_) and i(S5_) being Vfg.

1.4.3 AX spectra

AX spectra are far more common for spin-1/2 pairs in nature, due to the environments
of the molecules in which these pairs are situated. In this example, the scalar coupling

Jij will be finite but small in comparison with the chemical shift difference QX The

%i” tends to zero, with tan(6;;) and 6;; (small angle approximation) also tending

A
to zero. Assignment of signal frequencies and intensities is again relatively simple. The

ratio

resonance frequencies are given by equations 1.22-1.25, and the signal intensities are all

equal.
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i(Sa-) i(S_)

JuN Ju

0.15 0.10 0.05 0.00 -0.05 -0.10 -0.15
"H Chemical Shift / ppm

FIGURE 1.11: AX spectrum for a pair of weakly coupled spin-1/2 nuclei. J;; = 15.55Hz

and Qg = 160Hz. The signal intensity of each peak is labelled as i(S;;). An effect
known as “roofing” is clearly visible in the NMR, spectrum of this system.

1.5 Ensembles of spins

1.5.1 Spin density operator

Consider an ensemble of identical spin-1/2 nuclei in solution. Each nucleus has a spin
polarization vector which may point in any direction in space. If one were to take a
snapshot of the ensemble at any given point in time, the spin polarization vectors would
be pointing in all possible directions in a uniform manner. In section 1.2, I discussed
that the lowest energy orientation for a spin-1/2 nucleus in a magnetic field occurs when
the intrinsic magnetism of the nucleus is aligned with the static magnetic field. This
alignment is represented quantum mechanically by the state |«). The opposite case,
when the magnetic moment of the spin-1/2 nucleus is aligned anti-parallel to the static
magnetic field, is represented by the state |5). A quantum state is represented by the
numbers I and mj as the ket |I,m;), using Dirac notation. The |a) and |3) states are

therefore defined as:

@) = l35), (1.38)
8) = I3.-2), (1.39)
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i.e. an isolated spin-1/2 nucleus has two eigenstates, |a) and |3), of angular momentum

along the z-axis. The Zeeman eigenstates obey the following equations:

I]a) = —i—%]a), (1.40)
LBy = —318), (141)

where I, is the z-projection angular momentum operator, see chapter 2 for more details.
A spin in state |a) is said to be polarized along the z-axis, with eigenvalue —1—%. All
of the spin polarization vectors in the nuclear ensemble can easily be described by a
superposition state. The quantum state of a spin |1)) can be expanded according to

linear combination of ket vectors |t);):
) = cilii) (1.42)
i

where ¢; is a complex coefficient, and [¢) is a superposition of states [¢;). If ¢; is
time dependent, then it must also be a solution of the Schrédinger equation. In the
current case, it is convenient to write the spin state for an individual nucleus |¢) as a

superposition of “spin-up” |a) and “spin-down” |3) states:

) = cala) +c518), (1.43)

where the superposition coefficients c, and cg may again be complex, and quantify the
contribution of the |a) and |3) states to the superposition state [1)). The values of the

superposition coefficients are restricted via normalization:
lcal® + Jeg)? = 1. (1.44)

In this way, nuclear spins are not restricted simply to the |a) and |3) states.

The total spin polarization for the entire spin-1/2 ensemble is the sum over all
nuclear magnetic moments. This calculation is exceedingly difficult considering the

0?3 spins at 1 M concentration. The “spin density operator” is

ensemble will have ~1
therefore used to describe the dynamics of the whole nuclear ensemble, and can report
on the overall spin state for the “entire” nuclear ensemble [41]. To find the form of

the spin density operator, I begin by constructing a superposition state for a spin-1/2
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nucleus using the superposition coefficients:

) = : (1.45)

The expectation value of the operator @ acting on |1y is given by:

Q) = @ Q). (1.46)

To have a well defined value of Q, |1)) must be an eigenvalue of Q, ie. Q ) = (Q) |1).
The expectation value <Q> may be expanded to reveal complex products of the coeffi-
cients ¢, and cg. A matrix is constructed by the column vector [¢) and the row vector

(1| which contains the complex product of these coefficients:

Ca CaClh caczg
1) (Y] = - (Carcp) = (1.47)
cg €aC,  CAChH
The expectation value of the operator Q is extracted as follows:
Q) =Tr |[0)(w1Q), (1.48)

where Tr represents the trace operation. Now suppose that two identical spin-1/2 nuclei
are involved. The first spin is in state |¢)1) and the second spin is in state |¢2). The

most likely outcome of measuring @ is the sum of the two expectation values:

Q) = (W] Qv1) + (1| Q 1) - (1.49)

For a large number of spins (i.e. all the spins in the ensemble) this expression can again

be rewritten:

(@Q) = (W1] Q [¥1) + (2] Qo2) + ... + (¥n| Q¥w) (1.50)

and as such allows equation 1.48 to be rewritten as:

(Q) = Tr | (|1) (1] + [tb2) (Wo| + ... + [ (o ]) Q] - (1.51)
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The operator p is defined as:

p = N"Y(|1h1) (1| + [ha) (o + ... + [N ) (Wn ), (1.52)

where N is the number of spins in the ensemble. The above expression of p may also be

rewritten as:

p=[¥){¥l, (1.53)

where the overbar indicates an average over all the spins in the ensemble. For NMR
spectroscopy, the concept of the spin density operator p is important for the macroscopic

observation of the operator Q for an entire ensemble of spins:

N Quacro) = Tr [5Q] (1.54)

where N *1<Qma0m> is the average contribution of each ensemble member to the final
macroscopic result. This can be considered as the “average expectation value” for the
entire spin system. This result suggests that a macroscopic observable may be extracted
from the current state the spin system as a whole, and the observable. This dramatic
simplification therefore allows the entire spin ensemble to be described by just a single

operator p.

1.5.2 Populations and coherences

For an ensemble of non-interacting spin-1/2 particles, the matrix representation for the

spin density operator p is as follows:

Pa P+ | | CaCh CaCp (1.55)

>
Il
|

p— pg CBCh  CBCh
where the diagonal components p, and p, are the populations of states |«) and |3),
respectively, and the off-diagonal components p; and p_ are the coherences between

states |a) and |3), respectively. The populations of states |a) and |3) are defined as:

pa = {a|pla) = cacs, (1.56)

ps = (BlpIB) = cac, (1.57)
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and the coherences between states |a) and |5) are defined as:

pr = (0l plB) = cacs, (1.58)

p— = (Blpla) = cack. (1.59)

The spin density operator p may also be expressed as:
p=pad®+p It +p I+ ppl®, (1.60)

using the shift operators Itand I ~, and the projection operators I and IP. As the spin

state of a nucleus is normalized, the nuclear spin populations are mutually dependent:
CaCp + cpcy = 1. (1.61)

Equation 1.61 applies to all the nuclear spins in the ensemble, and hence the average

over the nuclear spin ensemble. The sum of the populations is therefore unity:

pa+ps = 1. (1.62)

Populations are real, positive and in this case range from 0 to 1. Coherences are complex
numbers. The p; and p_ coherences are complex conjugates of one and other, i.e. a

conjugate pair:

p+ = CaCh = [@r =p_. (1.63)

1.5.3 Thermal equilibrium

The principle of the spin density operator is to specify the state of an entire spin-1/2
ensemble with only a small number of parameters. These parameters can be used to
predict the evolution of the nuclear ensemble by applying the Schrodinger equation,
see equation 1.83. Consider an ensemble of spins which has been left to make thermal
contact with its surroundings for a considerable length of time. One would say that the
system is in thermal equilibrium with its surroundings. One can make an educated guess
as to the populations of the spin density operator p at any point in time, assuming there

are no coherences between spin states.
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Consider the Hamiltonian for an ensemble with eigenstates |n), and energies wy,:
Hn) = wy|n). (1.64)

An eigenequation of this kind has already been shown in equations 1.40 and 1.41. For

the case of a spin-1/2 nucleus, the eigenstates correspond to:

1 =

o = 2, (1.65)
1 =

wg = —5730. (1.66)

The populations should obey the Boltzmann distribution:

) o

n hw I
S eap (~12¥)

where py! is the relative population of the state |n) at thermal equilibrium, one can

define the Boltzmann factor By:

h’be
Br = . 1.68
I (1.68)
The exponential population factors may therefore written as:
hw 1
exp <—,€B§:> = exp (QBf> ) (1.69)
hwg 1
——= | = ——B . 1.
exp ( KBT> exp ( 5 f> (1.70)
Each exponential may be extended as a power series considering that By < 1.
1 1
exp (2Bf> -1+ §Bf, (1.71)
1 1
exp —§Bf —-1- iBf' (1.72)

The denominator of equation 1.67 is ~2. The populations of the o and [ states are

therefore:

(1.73)

By, (1.74)
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and the thermal equilibrium spin density operator may be written as:

Byl (1.75)

DN | =

1
Pequil = 5 +

This situation is known as the high temperature approximation, and means that for
nuclei with v > 0 the |a) state is slightly more populated than the |3) state at room
temperature. This means that there is only a very small polarization vector for the
total angular momentum of the nuclear spin-1/2 ensemble in the direction of the static
magnetic field. As mentioned in section 1.2.6, this population difference corresponds
to 1 spin in 15,625 for protons at 9.4 T. Hyperpolarization techniques (as described in
chapter 2, section 2.3) can boost the population difference between the eigenstates of

spin-1/2 ensembles.

1.6 Evolution of observables

1.6.1 Introduction to Quantum Mechanics

The wavefunction acts as a bridge between the classical and quantum worlds for large
spin systems, and clearly describes the properties and evolution for a single spin, or
even a small cluster of spins, but calculations remains troublesome for large numbers or
ensembles of spins. The wavefunction 1 (t) may depend on the variables position, mo-
mentum, time, and other parameters of the spin ensemble. It is possible to reformulate
¥ (t) such that it does not depend on a particular representation. Using Dirac notation,
each state of the spin ensemble is associated a vector [1)(t)) called a ket. [1)(t)) describes
the state of a spin within the ensemble. An important postulate of quantum mechanics
states that |¢(t)) contains all the known information about the spin state. The bra

vector (1(t)| is the counterpart of the ket, the two are related by complex conjugation:

(i |[%i())" = ¢ (di(D)], (1.76)

where ¢; is a scalar. The wavefunction (t) is correspondingly normalized:

“+o0o “+oo
WO(E) = / dr (t)p(t) = / drllw@)|? = 1, (1.77)

—00 —0o0
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where [|1(t)||? is the probability distribution of ¥(¢). Two separate wavefunctions |1;(t))

and [¢;(t)) with different eigenvalues are orthonormal (orthogonal and normalized) if:

+oo
Wil 0) = [ drvi (oo = b (1.78)
where 6;; is the Kronecker delta:
1 fori=j
8i; = : (1.79)
0 fori#j
An operator Oy is Hermitian if:
(i) O [v3() = (3(D)] Omr [ ()T, (1.80)

ie. O = OL A Hermitian (or self-adjoint) operator Oy has defined kets |4 (t)) for
which:

Om [(t)) = am [(t)) (1.81)

where ap is shown to be a real number by using the Hermicity condition from equa-

tion 1.80,
(i) Omlt (1)) = afy (i(1) 1)) = (Wit |15 (1)) am, (1.82)

demonstrating that ay = a7;.

1.6.2 Evolution in Hilbert space

The state space spanned by the kets |¢(t)) is known as a Hilbert space. The time
evolution of a state |[¢)(¢)) in Hilbert space is controlled by the equation of motion,

known as the Schrodinger equation:

d .
5 (@) = —tH @) [¥(t)) (1.83)

where i is the imaginary number (i = /—1), H is the Hamiltonian, and the “hat”
signifies that the Hamiltonian is an operator. The properties of the Hamiltonian dictate

the time evolution of the spin state |¢(¢)). The initially known state |¢)(t)) is propagated
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forward in time in the following way:

[$(ts)) = Ults, ta) [9(ta)) , (1.84)

where time propagator U(tb, tq) is given by:
. o
Oty ta) = cap[—i / (). (1.85)
tq

U (t,0) is the exact solution to a time-independent Schrodinger equation:

d

e (0)) = Hem 1 (0)) (1.86)

For details of time dependent Hamiltonian propagation, see appendix B. The time prop-
agator allows for the deterministic prediction, or target, of a state at some point in the

future, given a set of initial conditions:

lim U (t,0) [¢:(0)) — [1(0)). (1.87)

The time propagator U(tb, to) is also a unitary operator, i.e.:

Ulta,ta) = 1, (1.88)
U Nty te) = Ultarty), (1.89)
U(tmta) = U(tCatb)U(tbv )v (190)

where t, < t < t.. The time evolution of an observable (Q(t)), on the other hand, is

predictable by the use of a time propagator sandwich:

(Qts)) = Ultn, ta)(Q(ta)) U (1 ta)" = ((ta)| U (th, ta)Q(ta) U (t, ta) [¢h(ta)) »  (1.91)

where U (ty,ta)! is the Hermitian adjoint of the time propagator U (ty,tq). The operator
U(ty, tq) acts directly on a constantly evolving state |4(t)), and hence the expectation

value (Q(t)) evolves simultaneously.
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1.6.3 Liouville space

In Hilbert space, quantum states represented by basis kets are written using column
vectors, with the operators which act upon the quantum states written as matrices.
However, the transformation between two operators A and B takes places in a higher-
dimensional space, called Liouville space, where the operators are represented as column
vectors. This is an n?-dimensional space, where n? is the number of elements in the
predefined operator basis. Mapping Hilbert space to Liouville space can be shown by

an example using the operator flij, which in Hilbert space is written as a n X n matrix:

@Ay AR - QAN |
ao | AL e @A | o)
NI (VIAR) - (VA

In Liouville space, the operator is represented as a 1 x n? column vector or list:

(1| A1) Ay
(11412) Ay
Ay=1 QlAINy | = | Ax |, (1.93)
(2| A1) Ay
(NJA|N) Ape

which uses the same set of indices ¢ and j as in the Hilbert space representation of the
operator flm For convenience, the elements of Aij are relabelled in such a way that: Ay
— (1] A|1) ete. Tt is therefore clear that there are n? components in the Liouville space
representation of the operator Aij, and that the Liouvillian operator basis also has n?

components.
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1.6.4 Superoperators

Working with the spin density operator requires double sided multiplications, and most
notably commutation operations. A repercussion, however, is the extensive and compli-
cated expressions that ultimately describe any intricate NMR experiment, and which are
occasionally computationally demanding. The use of superoperators greatly simplifies
these efforts [51]. Superoperators are generally sparse, and block-diagonal substruc-
tures can be often used for calculations of reduced computational size. The operands in
Liouville space are operators, and these are transformed or acted upon by superopera-
tors [51]. For example, the operator A is acted upon by a superoperator éij and “maps”
the operator A onto another operator B, in a similar manner to how the Schrédinger
equation considers quantum state to quantum state transformations in Hilbert space.

The superoperator Qij maps the operator A onto the operator B in the following way:

Operators and superoperators are distinguished by the use of a single hat "~ for operators
and a double hat " for superoperators. The salient point from section 1.6.3 is that a n
X n matrix representation of an operator in Hilbert space is represented as a 1 x n?
column vector in Liouville space. This principle can be used to deduce via inspection

that a superoperator in Liouville space behaves in the following way:

A B,

i A A 2 ] 1212 BQ
ARy QR - alQIv) | |
@QM) @) - (2QINY ; .

A A 2 AN+1 BN-H

(N?[QI1) (N?1Q[2) -+ (N?IQIN?)
AN2 BNQ
The superoperator Qij is represented as a n? x n? matrix in Liouville space, with n*

elements. The indices ¢ and j of Qij both extend from 1 to n?. It should be noted

that the use of the word super has no connection to other areas of physics such as
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supersymmetry but is instead employed to distinguish this higher class of mathematical

object from the state operators which are acted upon.

1.6.5 Evolution in Liouville space

For tracking the evolution of a large group of spins, the spin density operator is the
weapon of choice. The state of the entire nuclear ensemble may be represented by the
state of a single spin, which simplifies enormously the task at hand. An alternative
approach is to propagate a state wavefunction in Hilbert space, construct the operator
|4) (1|, and take the ensemble average [t)(1)|. The spin density operator is propagated
forward in time in Liouville space. One of the defining properties of Liouville space, is
the representation of operators as vectors, see section 1.6.3. The spin density operator
p, previously defined in Hilbert space by using equation 1.55, has the following vector
representation in Liouville space: o

Pa

P (1.96)

R}
Il

p—
P

p has been flattened from a n x n matrix in Hilbert space into a state operator with
dimension 1 x n? in Liouville space. The time evolution of j in Liouville space is governed
by a super-time propagator U(tb, ta), which acts on the operator vector representation

of p in the following way:
p(ts) = Ul(ty, ta) plta) = U(th, ta) p(ta)U (th, ta)", (1.97)
where the super-time propagator has the following form:

Uty to) = exp[—i / " ). (1.98)

ta

2 2

In Liouville space, U (tp,ta) has a dimension n* x n?, i.e. the square of the operator

basis dimension n2.
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1.6.6 Evolution with relaxation

A magnetic nucleus attached to a molecule will evolve under time dependent and inde-
pendent dynamics. Time dependent dynamics may be caused by the rotational mod-
ulation of the molecule tumbling in solution or by fluctuating interactions with other
magnetic nuclei. This phenomenon occurs for each spin and will differ slightly depending
on the location of the spins in the molecule. The rate of relaxation for each spin will
therefore have a likewise spatial dependence. Over time an effect known as relaxation
occurs, and nuclear spin order for an ensemble of spins is gradually lost. Relaxation is a

one-way process, and returns perturbed nuclear spin order towards thermal equilibrium.

The time evolution of an ensemble of spins, where the overall spin state is rep-
resented by the spin density operator p(t), is governed by the Liouville-von Neumann
equation:

L p(t) = Lp(o), (1.99)

where L is the Liouvillian superoperator, and is expressed as:

>>

L= —ify+T, (1.100)

where ~ identifies the interaction frame of Hy. The Hamiltonian H is split into a uniform,
coherent part Hy and an incoherent, fluctuating term H, = H - Hy. The coherent
Hamiltonian ﬁo is responsible for the spin system evolution without relaxation. The
spin density operator p has the following time dependence on the coherent Hamiltonian

commutation superoperator Hy:

% 5(6) = ~ith (1) (1.101)

with Iifo acting on p(t) expressed by using the commutator relations:
Ho[p(t)] = [Ho, p(t)] = Ho @ p(t) — p(t) ® Ho, (1.102)

i.e. the commutation superoperator generates the commutator of the two operators, with
® indicating an outer-product. This is a primary example of commutation superoperator

usage, and the results of this formalism are widely used across the field of NMR [51, 52].
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The Liouville-von Neumann equation includes an additional term [ attributed
to the incoherent relaxation of the spin ensemble towards thermal equilibrium after an
rf-perturbation of the nuclear spin populations. I' is the relaxation superoperator, and

is written as follows:

~ 0 = =
f —/ drH, (¢ + 7)H(2), (1.103)

—0o0

where ﬁl (t) is the time dependent, perturbing part of the nuclear spin Hamiltonian.
Equation 1.103 is derived, and only valid, in the extreme narrowing regime: <fI D270 <
1, where <f[12)1/ 2 is the root-mean-square fluctuation of the perturbing Hamiltonian H 1,
and 7¢ is the correlation time for the motions in the environment surrounding the spins,
i.e. the lattice. Inside the relaxation integral lies a double commutation superoperator,
consisting of a commutation superoperator inside a commutation superoperator, which

acts on p to give:

Hy(t+ TV H (H)p(t) = Hi(t +7)[H (8) [p(2)]): (1.104)

Using the commutator relations, the double commutation relaxation superoperator I

acting on the spin density operator p may be expressed as:
Hu(t+m)[E ()[p(0)]) = [ (¢ + 1), [ (2), 5(2)]) (1.105)

with the continued expansion of f described by equation 1.102. The double commutation
relaxation superoperator is widely used in this thesis to describe perturbative relaxation
processes for an ensemble of spins diluted in a “lattice”. For longitudinal and singlet
relaxation, intermolecular interactions are ignored and Hj is associated with interactions

between the spins and the lattice.

1.7 Tools for NMR relaxation

1.7.1 Rotations

Rotations are useful tools in NMR, and allow a pictorial grasp of a few fundamental
concepts. For example, the application of a 90° pulse about the z-axis of a right-

handed coordinate system can easily be visualized by the rotation of the spin polarization
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vector into the —y-axis. More complex examples of when rotations are used in NMR
include the rotation of an object between frames of reference, such as the rotating frame
transformation (see appendix B). Rotations are primarily defined in terms of exponential
operators, where the exponent itself is an operator. An exponential operator is defined

through an exponential series expansion:
. .02
eQ:1+Q+§+... (1.106)

If operators P and Q commute, then the following relationship also holds:

ePeQ = (PHQ), (1.107)

Complex exponentials of the angular momentum operators are rotation operators. Con-
sider an xyz Cartesian axis system, the rotation operators around these axes are given

by:

Ro(0) = e il (1.108)
Ry(0) = e, (1.109)
R.(0) = e, (1.110)

where the subscript denotes the axis of rotation through an angle 6. In general, the
operators I, fy and I, do not commute. However, a rotation operator commutes with

the angular momentum operator about the same axis:

Ro(0)I, = I, R.(0), (1.111)

which implies the following sandwich relation:

~ A

Ro(0)I,Ry(—0) = I, (1.112)
where R, (—6) is the reverse rotation through an angle 8 about the z-axis, i.e. Ry(—0)R,(0) =
1. Since the angular momentum operators are Hermitian, the rotation operators are uni-

tary:
Ru(0)" = Ra(6) ™" = Ru(-0), (1.113)
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and therefore equation 1.112 may be rewritten as:

N

R.(0)I,R;* () = I,. (1.114)

When a rotation operator is applied to the angular momentum operator about a different

axis, the sandwich relationship reads:

~

R.(0)[.R;1(0) = I, cos(8) + I, sin(0). (1.115)
This relationship can be proved as follows. Explicitly write out R, (0)I,R;'(0):

=01 ] il (1.116)
.02, . .02,
= (1 —ifI, — 513 - ) I, (1 + 401, — 513 + ) (1.117)

02 . o .
= Lo =00, L] 4 =S L B Bl o [ [ [ L)+ (1118)

This appears to be quite a formidable equation. Luckily, the angular momentum oper-
ators possess cyclic commutivity, i.e. [fx, fy] = iexyz.f », where €3, = +1 if the permuta-

tion order xyz is maintained. The above equation is therefore simplified to:

L . .02, 6.
R.(OIR;Y0) =1, +0I,— S le =Gy + - (1.119)

A parallel series of sines and cosines is cleanly produced:

L . 6> . 63
R.(O)I,R7'(0) = I, e T Kt (1.120)

where the cos(f) and sin(f) series are identified as:
92
cos(f) = [1— 5 +.o 0, (1.121)
6

sin(f) = (0 7 + ) : (1.122)

resulting in:

R.(0)I,R;1(9) = I, cos(f) + I, sin(). (1.123)
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The sandwich relation described in equation 1.123 also follows a cyclic commutation

rule, and implies a second sandwich relation:

R (0) Ry (9) Ro(—0) = ¢ i0s cosO) 1y 5n(0)) (1.124)

1.7.2 Euler angles

The orientation of an object in three-dimensional (3D) space can be specified by three
finite, arbitrary rotations around the axes of an orthogonal coordinate system {x,y, z}.
NMR spectroscopy makes use of the FEuler angle conventions, which become particu-
larly useful when discussing magnetic interactions and relaxation theory (see chapter
3). Throughout this thesis, the Euler angle convention used is zyz. This convention
indicates that the orientation of an object in 3D space is given by the product of three
general rotations with respect to a single axis frame {z,y, z}; firstly a rotation around
the z-axis, followed by a rotation around the y-axis, followed by a final rotation around
the z-axis again:

R(Q) = R(a, B,7) = R.(a)Ry(B)R.(v), (1.125)

where €) provides a quick substitution for «, 3,~. The set of Euler angles presented in
equation 1.125 allow the transformation of an object in the {z,y, z} frame to a second
frame, with orthogonal {X,Y, Z} axes. One can consider this to be the rotation of a
frame coincident with the starting {z,y, z} axis system. The first rotation reorients the
object by an angle v about the z-axis of the {x,y, z} axis system, taking the coincident
frame into an axis system described by the axes {z’, 3/, 2'}. The second rotation reorients
the object by an angle 8 about the y-axis of the original {x,y,z} frame. The frame
{z',1/, 2’} is rotated into the frame {2, y", 2”}. The final rotation reorients the object by
an angle o about the z-axis of the {x,y, z} frame, and hence the {z,y, 2z} and {X,Y, Z}
frames are now coincident. As is the convention with matrix multiplication, the right-
most operator is applied first. A second way to think of how to apply the Euler angles
is to give the object being reoriented an axis system {z,y, z} of its own, and then apply
the rotations in the opposite order, with the first rotation being Rz(a) around the z-
axis of the {z,y,z} axis system. Apply the second rotation Ry(ﬂ) around the new
y-axis of the objects own coordinate system 3, therefore the second rotation is Ry/(ﬁ).

Consequently, the final rotation Rz(W) reorients the object about the newest z-axis of
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the objects coordinate system z”, with the final rotation being ]:Zzu(a). The two sets of

Euler angles are equivalent:

R.(a)Ry(B)R:(7) = RI(7)R,(B)R:(a). (1.126)

The Euler angle rotation matrices R;(#), the matrix equivalent of the rotation operator

}?i(ﬁ), for a rotation in 3D space (zyz convention) are expressed as follows:

cos(y) —sin(y) 0
R.(y) = sin(y) cos(y) O |, (1.127)
0 0 1

cos(f) 0 —sin(pB)
R,(8) = 0 1 0 , (1.128)

sin(B) 0 cos(pB)

cos(a) —sin(a) O
R.(a) = sin()  cos(a) O (1.129)
0 0 1

The rotation matrix R,(y) is verified by taking the unit vectors {é;,é,,é.} for the
{z,y, z} frame, which are coincident with the axis system, and performing the operation
R.(7)é;, where i = z,y, z. The rotated unit vector points along the appropriate axis of
the rotated frame. Rotation matrices R,(3) and R,(«) are verified in the same manner.
The rotation matrices R, (), Ry(f) and R;(a) lead to the following accumulative ro-

tation of an object between two axis systems, given by the Euler angle rotation matrix

R(a, §,7):

R(a,B,7) = (1.130)

cos(a) cos(B) cos(y) — sin(a) sin(y) —sin(a) cos(y) — cos(a) cos(B) sin(y)  cos(a) sin(B)
sin(a) cos(B) cos(7y) + cos(a) sin(y)  cos(a) cos(y) — sin(a) cos(B) sin(y)  sin(«) sin(S3)
—sin(f) cos(7) sin(f) sin(7) cos(f)

Often one would like to rotate a Cartesian tensor, which describes a physical quantity,

expressed in a frame {x,y, z} to a frame {X,Y, Z}. The appropriate transformation for
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F1GURE 1.12: The rotation operator R(Q) specified by the Euler angles {«, 3,7} rotates
an object from a frame with axes {z,y, z} to a frame with axes {X,Y, Z} in which the
Z axis is defined to be parallel with the static magnetic field B.

a tensor A under these circumstances is:
A{X,Y, Z} = R(e, B,7) A{z,y, 2}R (e, B,7), (1.131)

where R™!(c, 3,7) specifies the reverse rotation R(—a, —3, —y). Two successive Euler

rotations, R(€;) and R({y), are also accumulative: R(21,Q2) = R(22)R ().

1.7.3 Wigner rotation matrices

The Euler angles are a useful tool for defining the relative orientations of orthogonal
axis systems, such as those defined by the laboratory frame and the molecular frame,
see figure 1.12. Using equations 1.108-1.110, the rotation operator can be rewritten
as [53]:

R(a, B,7) = emiols g=iBly g—inl: (1.132)

The Wigner function D! , is the rotation operator R(oz, B,7) in the eigenket basis of

m'm

the Hamiltonian, with matrix elements:
<lm/‘R(avﬁ77) |lm> = Din’m(a’ﬁaf}/)' (1133)

The Wigner function Dfn,m(a,ﬁ,'y) is of 2l + 1 dimension, where [ is the rank of
the Wigner rotation matrix. The indices m and m/ indicate the components of the
Wigner function Din,m(a, B,7). The Wigner function is a matrix of complex num-

bers, and complex exponentials which define the reorientation of an object in 3D space.
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(Dfn,m(a, B,7))T is the adjoint of Dfn,m(a,ﬁ,'y) and hence the matrix elements are re-

lated by:
(Im'| R (a, B,7) lm) = ((Im/| R(ev, B,7) [lm)) ™" = (Dl (e, B,7)) 71 (1.134)

Furthermore, as the rotation operators ]:Z(a, B,7) are unitary:

(Dfn’m(aaﬁf}/))_l = Dfn’m(_av_ﬁa _7)7 (1'135)

the Wigner rotation matrices are also unitary:

Z = (Dfn’n(OQBv7))_1D£n’m(avﬁ77) = Omn.- (1136)

m/

As the basis vectors are given by the angular momentum eigenfunctions I, I, and I,

equation 1.133 becomes:

DL, (a,B,7) = <lm'\e_”fze_wfye_io‘fz |lm) , (1.137)
= e eAmB) (1| =Py |1 (1.138)
= erimlatmBgl (), (1.139)

where dfn,m(ﬁ) is the reduced Wigner matrix element. For the rotations of rank-2
spherical tensors, the reduced Wigner matrix becomes large and complicated. A key

element of this matrix is d(2)01
3cos?(B) — 1

d?, =
00 2

(1.140)

This component vanishes at the magic angle tan~'(1/2), and is useful property for the

technique of singlet-filtration [54-56].

1.7.4 Spherical tensors

So far during this chapter I have discussed NMR using a Cartesian operator basis, which
provides a simple way of describing nuclear spin interactions. The NMR Hamiltonian
can be written using either Cartesian operators or spherical tensor operators [57]. The
operator basis is largely a matter of choice but there will likely be situations in which a

certain operator basis is more convenient to use than another. For example, the spherical
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tensor operator basis has specific symmetry properties which prove more convenient for
3D rotations in space, such as the rank of the spherical tensor operator being an invariant

property under a rotation, compared with using a Cartesian operator basis.

In general, an NMR Hamiltonian is expressed in the following way:
ﬁlocal = _’YIA . Alocal . K, (1141)

where Ajcal is a second-rank Cartesian tensor describing the interaction strength and
orientational dependence of a local interaction A. The vector operator K depends on
the type of spin interaction. Expanding the scalar product allows one to restructure the

Hamiltonian:

Hioeal = » _ Aij LK, (1.142)
i?j

with —yAjpcal — Ajj. Collecting the vector operators I; and K ; simplifies the Hamilto-

nian further:

Hioear = Y AT, (1.143)
1,]

with IAl @ K j = sz T is a second rank Cartesian tensor operator with nine elements

T;; that can be decomposed into:

T); = c%ﬁé” + Tfj” + TAZK]?), (1.144)

or more specifically:

The index in brackets represents the rank of the spherical tensor operator. 52‘]‘@2'0) is

(1)

a scalar and is hence invariant under rotations. The three components of T;; form a
vector, and transform between themselves under rotations. The five (6-1) components
of Ti(f) form a linear superposition under a rotation of a single component of Ti(j?).
The matrix representation of these objects is discussed in terms of the chemical shift
interaction in section 1.8.3. The number of components for each rank matches the

multiplicities of an object with angular momentum [=0, [=1 and [=2, respectively.

Therefore, we have successfully decomposed a Cartesian tensor operator into spherical
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tensors operators.

Earlier I discussed the consequences of degenerate nuclear spin energy levels in
the presence of a magnetic field. For an angular momentum quantum number I, the
spin state is 21 + 1 degenerate. Spherical tensor operators possess a similar property. A
spherical tensor operator of rank [ is formally a set of 2 + 1 objects. These objects all
possess the following property: if a single object in the 2 + 1 set is arbitrarily rotated
in 3D space about any axis and any angle, the result is a linear superposition of the
same 2] 4+ 1 objects. Therefore, to rewrite equation 1.143 in terms of spherical tensor
operators, one must use the definition of the transformation properties for a spherical
tensor operator, of rank [ and component m, under a rotation defined by the axes and
angles of ]:Z(Q) A component of the spherical tensor operator T}, must transform under

a rotation, in the axis system defining Tlm, according to:

Rla, 8,9 i = Rlo, B,7)TimB (0, 8,7), (1.146)

l
= Z ﬂm/D,f?,.le(a,/B7’y), (1147)
m/=—1

where Dfn/m(a,ﬂ,*y) is the Wigner rotation matrix for the rotation R(a,ﬁ,’y) and is
defined in section 1.7.3. The rotation superoperator R(a, B,7) is constructed from the

unitary rotation operator R(a, B,7) as follows:

R(a, 8,7) = R, B,7) ® R(a, B,7) " (1.148)

As expected, the result of this general 3D rotation is a linear superposition of a 2[ + 1
set of operators, with the value of I conserved. Spherical tensor components A;, also

have a similar rotational property:

!
]%(a,ﬂ,’y)Alm = Z Alm/Dfn,m(a,,B,'y). (1.149)
m/=—I
The representation of the Hamiltonian operator in NMR is usually of the form:

l
HY =% ()AL WTE,, (1.150)
l

m=—I
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for an interaction A with A} (¢) and Tlﬁ ., defined in equations 1.149 and 1.146, respec-
tively. This definition of the NMR, Hamiltonian, which uses spherical tensor operators,

is exploited in chapter 3 during a discussion of intra-methyl group interactions.

A nice aftereffect of equation 1.146 is the mathematical foundation for the laws of
commutation between the components of the angular momentum I, and the components
of the spherical tensor operator sz- Consider the infinitesimal rotation operator which
rotates an object through an infinitesimal angle o about the z-axis: Ry =1-ial 2

where I, is Hermitian. This can be demonstrated by transforming the operator I, from

a frame with axes {z,y, 2z} to a frame with axes {X,Y, Z} as follows:

Ix = R IR, (1.151)
= (A —ial)I,(1+ial,), (1.152)
= I, +ia(lI, — I.L). (1.153)

By using know commutation relations, equation 1.153 becomes:

~

Ix = I, +iall,, 1) = I, — al,. (1.154)

The commutation relation for angular momentum and spherical tensor operators is de-

rived by using equation 1.133:
DL, = (Im'|1 —ialy |[Im) = 6 — io (Im/| I |Im) . (1.155)

With this rotation and equation 1.146 one finds:

(1 —iad\)Tj(1 + ialy) = Z T DL (1.156)
which simplifies to:
DT — Timdy =Y Ty (1| 1y [Im) . (1.157)
m/

For example, substituting A for 4 yields [53]:

[, Tp] = [ £ m+ 1)1 F m)]Y *Tima1, (1.158)
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using the relation:

(Im + 1| Is|lm) = [(1 £ m 4+ 1)(1 T m)]Y/2, (1.159)

In the case of A = z:

(1., Tim] = mTjm. (1.160)

In chapter 2 similar properties are used to show that the scalar operator Ai(;)) = Tég isa

constant of the motion for the Liouville-von Neumann equation, see equation 1.99.

1.8 NMR interactions

In general, the nuclear spin Hamiltonian is the summation of a number of individual

Hamiltonians which each represent an interaction in NMR:
H=Hy+ Hpp + Ho + Hes + Hopher + Hrr, (1.161)

where Hy represents the Zeeman Hamiltonian (the Zeeman effect has previously been
discussed in section 1.2, and the Zeeman Hamiltonian is discussed in chapter 2, sec-
tion 2.9). Hpp represents the dipole-dipole Hamiltonian defining the direct magnetic
interaction between two nuclei. ﬁQ describes the quadrupole interaction for spins with
an angular momentum quantum number [ >1/2. Heg is the chemical shift Hamiltonian
and governs the orientationally dependent interaction between a nuclear spin and the
immediate electronic environment. Other Hamiltonians include the scalar (J) coupling
Hamiltonian H 7, and the spin-rotation Hamiltonian H sr. These additional interactions,
including interactions with externally applied radiofrequency fields Hpp, are not covered
in this thesis, and the details of which are found in references [41, 45, 47, 50, 58-61]. In
this section I will discuss the dipole-dipole, quadrupole and chemical shift Hamiltonians,

and the interaction each Hamiltonian describes.

1.8.1 Dipole-dipole interaction

Most nuclear spins are inherently magnetic, and possess an intrinsic magnetic moment.
Magnetic nuclei also generate a dipole field, see figure 1.13. A two-dimensional projection
of the dipole field can easily be observed by the traditional “bar magnet and iron filings”

experiment. The direction of the magnetic field vector (along a magnetic field loop)
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FIGURE 1.13: Schematic depicting the direct dipole-dipole interaction. The magnetic

field generated by spin ¢ is experienced at the site of spin 7, i.e. the local field emanating

from one magnetic nucleus influences any neighbouring nuclei, and vice versa. The

strength of the interaction depends on the distance and relative orientation of the
magnetic moments. The loops represent the magnetic field lines.

depends on the orientation of the magnetic moment. Suppose that a magnetic nucleus
i is brought into the close proximity of a second nucleus j. Here close proximity is
associated with the molecular length scale, which is on the order of Angstroms. As each
magnetic nucleus naturally generates its own dipole field, the two fields can mutually
interact through space, i.e. the first spin experiences the field from the second spin, and
vice versa. The full form of the dipole-dipole interaction between spins ¢ and j is given

by the dipole-dipole Hamiltonian ﬁg D!

~

<.

where b;; is the dipole-dipole coupling constant between spins 7 and j and is expressed

as:
Lol iy

3 b
4mrs 7

bij = — (1.163)

where pg is the magnetic constant: pg = 47 x 107" Hm™!, ~; and ~; are the gyromag-
netic ratios of spins ¢ and j, respectively, 7;; is the internuclear separation between the
two spins, and €é;; is a unit vector parallel to the internuclear vector connecting the two
nuclei [50]. The dipole-dipole coupling constant b;; determines the size of the dipole-
dipole interaction. Dipole-dipole couplings can either be homonuclear (same isotopic
type) or heteronuclear (different isotopic type). Homonuclear dipole-dipole couplings
always have a negative sign. It should be noted that b;; is a constant for a fixed inter-
nuclear separation 7;; between spins 7 and j, and is a function of the third power of the
internuclear separation. b;; is not orientationally dependent, i.e. it is a constant for any

relative orientation of the two magnetic nuclei. However, the dipole-dipole Hamiltonian
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Hpp is orientationally dependent due to the scalar product of the unit vector é;; with
the spin angular momentum I;. The direction in which the unit vector €ij points, relative
to a fixed frame of reference, can change due to e.g. molecular tumbling in solution. The
negative sign of the dipole-dipole Hamiltonian Hpp indicates that the overall energy of
the interaction is minimized when both nuclei point in the same direction, i.e. along the
internuclear vector. This interaction can be extended to a cluster of magnetic nuclei,
where each spin pair has a mutual dipole-dipole interaction. The cluster dipole-dipole

Hamiltonian in this case is given by:
i—1 B
HpS' =Y "> Hp ), (1.164)
i

which considers all pairs of spins ij with ¢ # j in the cluster. At high magnetic field, the
cluster dipole-dipole Hamiltonian containing the double summation can be simplified
depending on whether spins ¢ and j are of the same isotopic species. This process is

known as the secular approximation:

e The secular approximation concerns the general case where a nuclear spin Hamil-
tonian is comprised of two separate sub-Hamiltonians Hyj and H B, Where Hy >
H B. Since H 4 and H B are assumed to be hermitian, if H B does not commute
with H4 then the matrix representation of Hp in the orthonormal eigenbasis of
H, will consist of finite elements at all positions. The secular approzimation
etches a block-diagonal structure from this matrix, and disregards all connecting
components, generating a new matrix H . The block-diagonal subspaces denote
degenerate or near-degenerate eigenvalues of Hy. The ignored off-diagonal com-
ponents include those with amplitudes which are significantly smaller than the

difference in the connected terms.

In the case of a homonuclear spin pair (same isotopic species), the secularized

dipole-dipole Hamiltonian is written as:

A

Hpp(04) = dij(©3) (31 - Lz — I - 1), (1.165)

>
>

~
<

where d;; is the secular dipole-dipole coupling, and is given by:

3 cos?(0;5) — 1

dij(©45) = bij 5 )

(1.166)
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where ©;; is the angle between the internuclear vector connecting spins 7 and j, and the
static magnetic field By:

COS(@U) = éij . éz. (1.167)

The secularized dipole-dipole coupling d;;(©;;) differs from the non-secularized dipole-
dipole coupling b;; by its orientational dependence. In the case of a heteronuclear spin
pair (different isotopic species), the secular part of the dipole-dipole Hamiltonian is
written as:

HY(04) = 2dijl;. - 1. (1.168)
The homonuclear secular dipole-dipole coupling is equal to zero when ©;;, the angle

between the internuclear vector and the static magnetic field, satisfies:
0,; = tan~!(V2). (1.169)

This solution is referred to as the “magic angle” and has important consequences in
solid-state NMR. Spinning samples at frequencies in excess of ~1kHz at the magic
angle relative to the static magnetic field significantly improves spectral resolution as
the resonance lines are narrowed upon the removal of dipole-dipole (and other second

rank) interactions [50].

Liquid state NMR on the other hand is typically performed in isotropic solution.
This is of important consequence for the acquired NMR spectra. In isotropic liquids,
the secular parts of the intramolecular dipole-dipole coupling average to zero, to good

approximation. Consider the following integral:

/ d©;bi; sin(6);5) (W) —0, (1.170)
0

with the factor of sin(©;;) necessary to give all possible orientations equal probability.
The short range dipole-dipole couplings are completely averaged by the rotational and
translational motions of the molecules in solution. Long range dipole-dipole couplings
are not completely averaged out by the same motions, but are relatively small and
can often be neglected. The dipole-dipole Hamiltonian in an isotropic liquid therefore

becomes, too good approximation:

N

HY (04) 20. (1.171)
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FIGURE 1.14: The majority (~74%) of active NMR nuclei are quadrupolar, as
depicted by the periodic table of quadrupole nuclei. I = 1/2 isotopes are
coloured blue, I > 1/2 isotopes are coloured red. Magnetically inert nuclei are
coloured grey. The most abundant, NMR active isotope is shown for each ele-
ment. For example, a spin-1/2 isotope of nitrogen (!°N) also exists and has many
important uses in magnetic resonance spectroscopy. Source: http://kuchem.kyoto-
u.ac.jp/bun/projects/microMAS /microMAS _e.html.

Appendix B covers this topic in more detail. The non-secular parts of the dipole-
dipole Hamiltonian are not averaged out in solution, and this has consequences for

NMR relaxation in isotropic liquids, see appendix B.

1.8.2 Electric quadrupole interaction

As of yet, discussion of magnetic nuclei and spin angular momentum has been limited
to spins with an angular momentum quantum number I = 1/2. Quadrupolar nuclei on
the other hand, identify nuclear spins with an angular momentum quantum number I

> 1/2. Such nuclei are very common in the periodic table, see figure 1.14.

Quadrupolar nuclei possess an electric quadrupole moment. The electric quadrupole
moment arises from the non-spherical distribution of charge in the nucleus. The distri-
bution of charge for a quadrupole nucleus cannot be adequately described by the total
charge, and should be treated as a series of multipoles, known as a multipole expansion,
see figure 1.15. Details of the multipole expansion for a quadrupolar nucleus are given
in appendix B. The second-order term in the multipole series expansion yields the elec-

tric quadrupole moment. The electric quadrupole moment interacts strongly with an
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F1cURE 1.15: A non-spherical nuclear charge structure can be described by a series

expansion of multipoles. The zeroth-order multipole term is the total charge, the first-

order multipole term is the electric dipole moment, and the second-order multipole

term is the electric quadrupole moment. The high (red +) and low (blue -) electron

density around the nucleus creates an electric field gradient (EFG) which interacts with
the electric quadrupole moment [50].

electric field gradient (EFG) present at the nucleus due to the asymmetric distribution
of the surrounding electron density. Quadrupolar nuclei therefore have both nuclear
(magnetic moment) and electric (quadrupole moment) properties, and as a consequence
quadrupolar nuclei interact with all applied and local magnetic fields, and electric field

gradients.

The static magnetic field By acts to align the magnetic dipole moment of a nucleus
with the magnetic field, for the case of v > 0. The electric field gradient on the other
hand depends on the immediate environment of the nucleus, through the whereabouts
of other nuclei and electrons, i.e. the geometry of the bonds attached the nucleus. The
size of the electric quadrupole interaction therefore depends on more than just the size

of the quadrupole moment, namely:
e The orientation of the molecule with respect to go,
e The environment in which the quadrupolar nucleus is located.
Large quadrupolar couplings may be cancelled by symmetrical environments, and small
quadrupolar couplings may be amplified by large electric field gradients.
The electric field gradient (EFG) at a quadrupolar nucleus is classified with respect
to two properties:

1. eq the largest principal value of the EFG tensor,

2. ng the biaxality of the EFG tensor.
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These two properties are defined as follows:

eq = V., (1.172)

V;CI_V
ng = Ve = Vi) yy), (1.173)

where eq is a constant and is independent of the molecular environment. 7 is a scalar

and has values between 0 and 1. The EFG tensor V is written as:

Ve 0 0
V=10 V, 0 [, (1.174)
0 0 V.

where V' has a zero-trace, i.e. Vyp +Vyy + V.. = 0, and is symmetric, i.e. V;; = Vj;. The
EFG tensor in the principal axis system (PAS) frame is strictly diagonal. The diagonal
components V;; are called the principal components. The principal components corre-
spond to the principal axes of the EFG tensor. The principal axes of the EFG tensor
are defined by: V.. >V}, > V. Interaction tensors, such as those for the quadrupolar
interaction, are often represented by ellipsoids. Figure 1.16 shows the ellipsoids repre-
senting the quadrupolar interaction for different values of V., and ng. The principal axes
for different values of V., and 7¢ are also shown pictorially in figure 1.16. Figure 1.16a)
gives the case of an isotropic quadrupole tensor V., = 0 since the quadrupolar interac-
tion has a zero isotropic average, b) describes the case of a uniaxial quadrupole tensor
V.. # 0, ng = 0, and c) shows the case of a biaxial tensor V.. # 0, ng # 0. It should be
noted that for the quadrupolar interaction situation a) is not realistic, and is far more
present for the case of chemical shift anisotropy (CSA) interaction, see section 1.8.3. The
one case where situation a) is present in quadrupolar NMR is for a molecule of 14NH2‘,
which has a remarkably symmetric electron density surrounding the N nucleus. As
a result, the magnitude of the quadrupolar interaction is very small, and the tensor is
highly symmetric. This outcome is brought about because the electric field gradients
cancel at the centre of the "N nucleus. Situation b) is common for deuterium nuclei
in methyl groups [62], and case c) arises for nuclei such as 17O in H2'7O, in which the

EFG tensor shows a large biaxality for the 17O nucleus (g ~ 0.8) [63].
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FIGURE 1.16: Ellipsoids representing the quadrupolar interaction. a) isotropic EFG

tensor: V.. = 0. b) uniaxial EFG tensor: V.. # 0, g = 0. c) biaxial EFG tensor: V..

# 0, ng # 0. Arrows point in the direction of the principal axes of the EFG tensor.
Adapted from reference [41].

For any arbitrary molecular orientation, with respect to the static magnetic field,

the quadrupolar Hamiltonian is expressed in the PAS frame as:
Ho = %Q 3f§—f(f+1)+g(fi+f3) . (1.175)

where the nuclear quadrupolar coupling frequency wq is defined as:

o — e2qQ _ 2mCq
@721 —1)h 2120 —1)’

(1.176)

where Cg is referred to as the “quadrupole coupling constant”. Another convention

which is often used is w{z. In units of hertz, this quantity is given as:

3wg 3e2qQ
2r  2I(2I — 1)h’

fo= (1.177)

This parameter corresponds to the distance between the outer lines in the NMR spectrum

of a quadrupolar nucleus where the biaxality of the EFG tensor is zero. Half this value
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F1GURE 1.17: A simulated example of a solid-state NMR spectrum for a spin /=1 nu-
cleus with a quadrupolar coupling constant Cq/2m = 167 kHz, and with n = 0. wg /27
therefore corresponds to 83.5kHz. The spectrum was simulated using the Hamilto-
nian in equation 1.175. The distance between the resonance lines is given by: fo =
250.5kHz. The distance between the peaks in the Pake doublet is given by fo/2. The
powder averaged solid-state NMR spectrum was simulated by using the “ZCW538” ori-
entational sampling scheme available in the Mathematica-based NMR software package
SpinDynamica. An artificial Lorentzian line broadening of 1.2 kHz was also applied.

is also occasionally used, which corresponds to the distance between the peaks in a
Pake doublet, again for a quadrupolar nucleus with = 0. A typical scenario for the
NMR Hamiltonian is the Zeeman splitting dwarfing the size of all other interactions. In
this case approximations can be made to simplify the NMR Hamiltonian. Consider the
quadrupole interaction, the Hamiltonian of which can be written as a series:

Ao =0 +05 + ., (1.178)

where the number in brackets corresponds to the order of the term in the quadrupolar

Hamiltonian. The case: ﬁQ = ﬁg) is equivalent to the secular approximation for the

quadrupolar Hamiltonian, and is sufficient for small scale quadrupolar interactions. H 8 )

is written as:

A~

W= “763(312 —I(f+1)). (1.179)

Second order terms flg)

are required when wg becomes large. It should also be noted
that in isotropic liquids the first order term of the quadrupolar Hamiltonian averages
to zero. The removal of this interaction does not influence the NMR peak positions but

has important consequences for the relaxation of quadrupolar spins in solution.
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1.8.3 Chemical shift interaction

The magnetic field experienced by a nucleus at two separate sites in a molecule may
differ. This has previously been demonstrated in section 1.3.1 for the case of ethanol,
see figure 1.8. The 'H NMR spectrum has peaks at known chemical shifts, and serves
a useful probe for determining the molecular structure of ethanol. The principle reason
for this phenomenon is the magnetic fields generated by the electrons circulating each
nucleus. The electrons of a molecule placed in a magnetic field behave in the following

way:

1. The static magnetic field éo induces “currents” in the molecules electronic clouds,

2. The molecular currents generate a back magnetic field, the “induced” field, via

Lenz’s law.

The induced magnetic field is experienced by the nucleus at the centre of the molecular
currents. The total magnetic field experienced by a nucleus is therefore the combination
of static and induced magnetic fields, with the induced magnetic field acting to shield

or deshield the nucleus from the static magnetic field.

Note: This is a very small effect. Chemical shifts are measured on the “parts
per million” or ppm scale. However, the effect is certainly large enough as to create
observably different magnetic environments and hence deviations in nuclear Larmor

frequencies at distinct locations within a molecule.

The induced field is approximately linearly dependent on the applied field, the
chemical shift tensor d is therefore used and takes into account the fact that the induced

magnetic field may not be parallel to the direction of the static magnetic field By:

E z?cnd 5m7 5acy 53:2 0
Biynd = 5ym 5yy 5yz X 0 ) (1 180)
iznd 52:9[: 6zy 5zz éo

assuming that, in this case, the static magnetic field is parallel to the z-axis of the
laboratory frame. B}nd is the i component of the induced magnetic field, and 0ij

is the 75" component of the chemical shift tensor. The chemical shift tensor 6 may
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be decomposed into symmetric and antisymmetric parts. The symmetric part of the

chemical shift tensor 67 is defined as [53]:

5t = (5 + 5T) , (1.181)

N

where 67 is the transpose of 6. The symmetric part of the chemical shift tensor 5+ has

the following form:

1
5+ = 5 ((Smy + (Sym) (Syy ((Syz + (Szy) : (1182)
(5:(:2 + 5zz) (53,12 + 6zy) 0zz

The symmetric part of the chemical shift tensor d* can be decomposed again into

isotropic and traceless symmetric parts:

0" = big0 + 6 (1.183)

traceless”

The isotropic chemical shift dig, is the mean value of the principal values of the symmetric

chemical shift tensor 7 and is defined as:

dez 0 0
Tr[6t]
diso = 3 =10 6, 0 [, (1.184)
0 0 o

where Tr is the trace operation and 1 is the identity matrix. The antisymmetric part of

the chemical shift tensor §~ is defined as:

_ 1 T
5 _5(5—5 ) (1.185)
and has the following form:
_ 1
0" = 9 (Oye = Ozy) 0 (Oyz +0z) | - (1.186)
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The reason for this decomposition is that only the symmetric part of the chemical shift
tensor effects the lineshape of the NMR spectrum [50]. These concepts are covered in
more detail in section 1.7.4. The chemical shift Hamiltonian represents the interaction

between the nuclear magnetic moment and the magnetic field, and is expressed as:

i
This equation implies that if the magnetic field is applied along one of three directions,
the principal axes, then the induced field is parallel to the applied field, i.e. ;7 =
E{nd/ Eo if 50 is applied along the I*" principal axis. The chemical shift Hamiltonian

retained after the secular approximation is [41]:
Hes = —71.6..(0) By, (1.188)

where the zz-component of § depends on the orientation of the molecule # with respect to
the static magnetic field By. The true Larmor frequency of a nucleus therefore includes

the presence of the induced magnetic field:
wo(0) = —vBo(1 + 6..(6)), (1.189)

and is shifted in frequency from the nuclear Larmor frequency of an isolated nucleus wy

by —75Z2(0)§0.

Consider the following for a molecule of cyclopentadiene. The small magnetic
fields generated by the atom’s electrons run in loops, as the first of Maxwell’s equations
states. Therefore, the direction of the magnetic field changes around the molecule, see
figure 1.18. Here, the electrons are circulating through the doughnut-like hole in the
middle of the cyclopentadiene ring and then around the sides of the ring before joining
up again. If the ring is fixed in a particular orientation with respect to the static magnetic
field, the magnetic field induced at a nuclear site will depend on the orientation of the
cyclopentadiene ring with respect to the static magnetic field, and also the location of
the spin inside the molecule. The anisotropy in magnetic field around the nucleus, known
as the chemical shift anisotropy (CSA), is defined as the largest deviation in chemical

shift from the isotropic value:

gm0 = 61 — 5" (1.190)
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FIGURE 1.18: Schematic depiction of the chemical shift anisotropy in cyclopentadiene.

0+ denotes high (+) and low (-) electron density surrounding the ring. The magnetic

field of the electrons runs through the doughnut shaped hole in the centre of the ring

and around the molecule before joining up again. This results in an electron deficient
zone above and below the plane of the cyclopentadiene ring.

The biaxality of the CSA tensor 7 is defined as the difference between the other two

principal values:

g= e (1.191)

5aniso

These principal axes are defined in a similar way to the quadrupolar interaction, but

with X and Y principal axes reversed.






Chapter 2

Hyperpolarization and singlet

states

2.1 NMR Sensitivity

Sensitivity is one of the primary concerns in the magnetic resonance community, and
limits a number of experiments from solid-state NMR to medical imaging [64]. As
previously discussed, the small population imbalance between the spin states of a nuclear
ensemble in thermal equilibrium at room temperature leads to inherently weak NMR
signals. In some cases, the readout of an NMR signal can be almost indistinguishable
from the random noise associated with the signal detection itself. In the context of
this work, the two most influential factors which determine the sensitivity level of an
NMR experiment are the initial polarization of the spin ensemble and the relaxation
phenomena which occur before detection. The two effects are interlinked, and can be
partially controlled by a favourable choice of spin system and experimental conditions.
In this chapter, I begin with a discussion regarding the concept of signal sensitivity in
NMR, and how the influence of additional experimental complexity can considerably
improve the initial spin polarization for an ensemble of nuclear spins. The reality of
longer-lived encodement for nuclear spin order is additionally addressed by selecting
substances which are sympathetic to nuclear spin relaxation. The symmetry properties
of spin-1/2 pairs in contrasting regimes of equivalence are discussed, along with the

radiofrequency pulse sequences designed to access the long-lived nuclear spin order.

o7
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2.1.1 Signal summation

Sensitivity can be improved in its most basic form by repeated signal summation. When
a signal S(t) is detected in the NMR coil surrounding the sample, the pickup coil senses:
1. the perturbation of nuclear spin populations from thermal equilibrium; and 2. an

additional contribution in the form of random noise:

S(t) = Ssample (t) + Selectronics(t)> (21)

where Sgample(t) is the signal contribution from the spins in the sample, and Sejectronics (t)
is the signal contribution from noise. The coil induction is time-dependent and propor-
tional to magnetization precessing in the zy-plane. The signal S(¢) is recorded until deco-
herence renders Sgample(t) undetectable against a noise level determined by Sejectronics(t),
which is mainly attributed to the thermal noise of the resonant radiofrequency circuit

in the probehead, and the preamplifier of the spectrometer.

Suppose one intends to sum the NMR signals from two identical experiments.
After the first signal is detected, the spin ensemble is permitted to return to thermal
equilibrium (see section 1.2.6) before the second experiment commences. The NMR
signal detected in the second experiment should therefore be indistinguishable from
that of the first experiment. The signals sampled in each case have a decaying profile
known as a free induction decay or FID, see figure 2.1. The noise associated with each
experiment has an “irreproducible” random profile. Therefore, accumulation of NMR
signals is a surefire way of differentiating the FID from the noise. But how does this
work in practice? And how does this achieve spectra in which the dominant source of
the NMR signal comes from the sample? The sample is assumed to be well controlled in
these two experiments, the parameters of the spectrometer and probe are well defined
and are constant, and the sample is allowed sufficient time between experiments to
reach thermal equilibrium. The NMR signals associated with the spins in the sample

are assumed to generate identical signals such that:

Ssample(tl) + Ssample(tQ) = 2Ssample(t1)7 (22)

where (t;) denotes the time at which the FIDs are recorded, with ¢o - t; > 577 and

to > t;. The uncorrelated noise contributions to the NMR signals are random, and
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FIGURE 2.1: a) The free induction decay (FID) is the result of detecting the signal
Ssample (t) with the rf-coil of the NMR probe. The FID is a combination of a sinusoidal
modulation and an exponential decay. b) The noise of an NMR experiment, assuming
a noise source which is fixed in time, will oscillate randomly either side of zero intensity.
The root-mean-square amplitude is therefore the most appropriate measure of the noise

amplitude.

assuming the source of the noise remains fixed throughout time, i.e. stationary noise,

the amplitude of the noise is given by its root-mean-square:

Selectronics (tz> = <Selectronics (ti ) 2> 1/2 .

(2.3)

This definition of the noise amplitude is used as the motion of the noise is random, and

wanders back and forth between positive and negative values, and hence the average

noise of an NMR experiment is zero. Using this definition:

Selectronics (tl ) + Selectronics (t2) = \/Eselectronics (tl ) )

(2.4)
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where Sejectronics (£1) ™ Selectronics(t2). The ratio of the signal to the noise (signal-to-noise,

SNR) is therefore given by:

SNR = 2Ssample(t1) — ﬁM (2 5)

\/§Se1ectronics (tl ) S electronics (tl )
Now consider a set of identical experiments which are repeated N number of times, with
sufficient time between experiments for the sample to recover to thermal equilibrium.

The signal-to-noise in this case is given by:

Ssample (tl)

SNR=+VN .
Selectronics (tl)

(2.6)

Hence signal summation does indeed enhance the signal-to-noise ratio of an NMR ex-
periment, with the SNR improving as the square root of the number of transients. Sadly
signal summation is a slow process, and experiments can sometimes take days or weeks
to achieve a good SNR for a sample with low sensitivity or long relaxation times. Signal
averaging is also not ideal in the context of process monitoring via NMR. The summa-
tion from signals does not allow for monitoring of chemical or kinetic reactions, and an
inherently good SNR is required from the outset of the time course experiment. MRI

also suffers from similar problems due to the motion of the patient between scans.

2.1.2 Other methods

Rather fortunately, other options exist which aim to improve the signal-to-noise ratio of

an NMR experiment:

e Coil design. The design of an NMR probe can be optimized for specific nuclei
by placing the pickup coil closer to the sample. This increases the filling-factor of
the coil and improves the signal-to-noise ratio [65]. SNR can also be boosted by
increasing the homogeneity of B, magnetic fields, which leads to a strong electronic

response from the coil.

e Field compensation. By homogeneity is improved by the process of shimming,
which corrects for variations in the static magnetic field. Correcting for inhomo-

geneous B, fields is facilitated by rational pulse sequence design. Levitt et al.
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compensated for the poor homogeneity of rf-fields in the 1970s by developing the

“composite pulse” [66].

e Cryoprobes. The use of cryoprobes, particularly for use in protein NMR, has
become very popular in the last two decades [67]. By cooling the electronics of
the detection circuit to ~20 K with helium gas, signal-to-noise gains of ~10 (and

~16-fold reductions in data acquisition times) have been reported [68].

e Pulse sequences. Polarization is efficiently transferred between heteronuclei by
familiar NMR, experiments such as the insensitive nuclei enhanced by polarization
transfer (INEPT) and cross-polarization (CP), with enhancements of ~4 and ~10
achievable for *C and '°N nuclei, respectively. However, pulse schemes can only
go so far in delivering signal enhancements, and are ultimately limited by the

gyromagnetic ratios of the participating nuclei.

e Sample concentration. If in doubt, throw more sample in. The signal intensity

from the sample is directly proportional to the number of spins:

NA2R2I(I +1) 5
—t - B 2.
3kpT 0 (2.7)

M=
where N is the number of spins in the sample [42]. In this way, one works with an
inherently greater SNR from the very first experiment, and fewer transients are
ultimately required per experiment. However, this may not be so easily achievable.
In solid state magic angle spinning (MAS) experiments the number of spins are
limited by the volume of the MAS rotor. In liquid state NMR, experiments there
may be limited solubility of the material in the choice solvent, which can be a
problem when investigating inherently insensitive nuclei. Gas phase NMR experi-
ments are also known to be difficult due to the reduced number of spins available

for detection [69].

NMR hyperpolarization is a technique used to vastly improve the sensitivity of NMR
experiments, and comes from two main sources; electrons and spin isomers. In this thesis,
the nuclear hyperpolarization presented is achieved by borrowing the strong alignment

possessed by electron spins in a magnetic field at low temperature.
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e Unpaired electrons. Unpaired electrons are persistently used in dynamic nuclear
polarization (DNP) experiments as a source of high polarization at low tempera-
ture. Microwave irradiation is applied specifically “just off” the electron transition
frequency in an effort to transfer the high levels of electron spin polarization to
the adjacent nuclei [70]. Dissolution-DNP allows a liquid state readout of the hy-
perpolarized spin order in a separate magnet after the sample is flushed out of its

frozen environment by a jet of superheated solvent [71].

e Spin isomers. The spin isomers of hydrogen (destructive addition of spin angular
momentum, [=0) also serve as a means to improve sensitivity. The para-state is
easily populated by cooling hydrogen gas to low temperatures (~77 K is sufficient)
and flowing the cooled gas over a paramagnetic catalyst [72, 73]. The energy level
separation between the para- and ortho-states of hydrogen (ortho-states are the
result of a constructive interference of spin angular momentum, I=1) is sufficiently
large such that the population imbalance persists upon removal of the catalyst and
equilibration of the gas to room temperature. The hyperpolarized spin order can
survive for many weeks before being transferred to a substance of interest via a

parahydrogenation reaction [74, 75].

2.2 Polarization

A measure of the sensitivity level for an NMR, experiment is achieved by considering
the Zeeman polarization for a sample in a magnetic field. The Zeeman polarization
corresponds to the amount of normalized longitudinal spin order contained within the
spin density operator. For a single spin-1/2 nucleus, the Zeeman polarization pz may be
expressed as the projection of the spin density operator p onto the angular momentum
operator I, (see appendix B for more details):
Te[Ilp

Pz = T&, (2.8)
where pyz is normalized to establish the maximum Zeeman polarization as +1, i.e. the
| Ty, ) state is saturated with population whilst the |75, ) state is entirely depleted of

population. The bounds on nuclear Zeeman polarization are therefore: —1 < py < +1.
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For an ensemble of non-interacting spin-1/2 nuclei, the eigenstates of the coherent
Hamiltonian are the nuclear Zeeman states |a) and |3). For a spin-1/2 nucleus, the
states |a) and |3) denote the alignment of the intrinsic magnetic moment parallel and
anti-parallel to the static magnetic field, respectively. The Zeeman polarization for an
ensemble of nuclear spins is defined as the normalized imbalance between the |a) state
population p(a) and the |3) state population p(f), i.e. the net population difference

(la){a| = |B)(B]). The Zeeman polarization pz is given as follows:

pz = p(a) — p(B), (2.9)

where p(o) = 1/2 4+ By/4 and p(B) = 1/2 — By/4, as described in equations 1.73
and 1.74. Normalization occurs with respect to the total population of the nuclear
ensemble p(a) + p(B), i.e. there is an additional constraint p(a) + p(8) = 1. At room
temperature, and in a field of 11.7 T, the thermal equilibrium Zeeman polarization for an
ensemble of protons is py,' = ~4 x 107°. A strongly hyperpolarized spin system obtains
a Zeeman polarization of py — +1, depending on the nature of the hyperpolarization,

and is considerably greater than py’.

The population ratio p(«)/p(f3) is defined as:

o —hwq
pe) _ (F3) (2.10)
p(B)
where wq is the nuclear Larmor frequency, kg is the Boltzmann constant and 7" is the
temperature, see equation 1.8. For a thermally polarized sample, the Zeeman polariza-

tion may be rewritten by using equations 1.7 and 2.10:

(2.11)

B
pZ:tanh<h’Y O).

26T
Equation 2.11 states that the Zeeman polarization of a thermally equilibrated sample
is represented by a hyperbolic tangent which is a function of both magnetic field and
temperature, see appendix B for more details. The observed NMR signal from the spins
in the sample is proportional to the Zeeman polarization through:

Iy By
2/<LBT

—t .
Ssample(t) o tanh ( ) - Niot - €T2 - ¢~ w0t (2.12)

where N is the total number of spins in the sample. The Zeeman polarization py can
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FIGURE 2.2: Zeeman polarization pyz of a 'H nucleus described by using the hyperbolic

tangent in equation 2.11 as a function of: a) temperature (By=11.7 T); and b) magnetic
field (T' = 298 K). a) A Zeeman polarization of unity is maintained until the temperature
of the spin system reaches ~10mK, at which point there is a sharp decline in the level
of Zeeman polarization. At just 1K, ~88.5% of Zeeman polarization has been lost, and
the effect is greatly exaggerated for nuclei with lower gyromagnetic ratios. b) Over the
range of magnetic fields currently produced by modern day superconducting magnet
technologies (< 1.2 GHz) the gains in Zeeman polarization at thermal equilibrium are
relatively small (~107°). For protons at 298 K, magnet fields exceeding 10 THz are
required in order to obtain a Zeeman polarization approaching unity.

be investigated as a function of magnetic field and temperature by using equation 2.11.
To achieve high levels of Zeeman polarization, i.e. pz — 1, low temperatures and large

magnetic fields are required.

Temperature. The temperature profile of pz for an ensemble of non-interacting,
spin-1/2 protons at 500 MHz is shown in figure 2.2a). A Zeeman polarization of ~1
is achieved for temperatures below ~10mK. Conventional cryostats, which are often
employed in dynamic nuclear polarization (DNP) experiments, can achieve temperatures
as low as ~1.3 K. ~4.2K is also used as liquid helium consumption can be considerable.
At 4.2K, a Zeeman polarization of 0.27% is reached for the proton spin ensemble, which
is a factor of ~71 greater than at 298 K but remains woefully short of being considered
as a hyperpolarized system.

In the majority of cases, low temperatures alone are insufficient as to achieve
considerable nuclear hyperpolarization. Therefore, more than simply low temperatures
are required to vastly improve the low levels of sensitivity which are common place in
NMR experiments, see section 2.3. However, considerably lower temperatures remain an
option. Extensive efforts have been made in the field of brute force hyperpolarization,
whereby the operation of dilution fridges achieves ~mK temperatures and can boost
the Zeeman polarization level for an ensemble of protons to ~80% [76]. Commercial
instruments routinely output ~50% 3C polarization [77]. The considerable drawback

of working at ~mK temperatures is the long equilibration time of nuclear spin orders, i.e.
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conventional relaxation times become increasingly longer as the temperature is lowered,

and are often on the order of days or weeks in the millikelvin regime [78-82].

Magnetic field. An alternative route to improved NMR sensitivity is to con-
struct NMR, magnets capable of producing higher static magnetic fields. Difficulties in
accomplishing this task include the size and weight of the magnet, the use of new su-
perconducting materials, and most likely, the grand expense associated with developing
high field magnetic resonance technologies. The magnetic field profile of the Zeeman
polarization pz at 298 K for an ensemble of protons is shown in figure 2.2b). pz has a
linear relationship in the regime of magnetic fields produced by superconducting NMR
magnets available on today’s market (go < 1.2GHz). At these magnetic fields, ther-
mal fluctuations remain large in comparison to the quantized energy difference between
spin states, and low levels of Zeeman polarization pyz are observed. This being said, the
increase in resolution with magnetic field holds significant advantages in areas of solid
state NMR.

As is clearly demonstrated in figure 2.2b), increasing the magnetic field by ~100 MHz
or so only raises the Zeeman polarization to a certain extent. However, the SNR of an
NMR experiment can also be improved with the assistance of higher magnetic fields.
The NMR signal deriving from the spins in the sample Sggmpic(t) is related to the Zee-
man polarization and induction processes in the rf-coil, both of which are proportional
to the static magnetic field By, and hence Ssample(t) scales as B2[83, 84]. The random

/4

noise contribution to the NMR signal Sejectronics(t) is proportional to BO1 , and therefore

the overall SNR of an NMR experiment scales with the magnetic field as Bg/ ! (85, 86].

2.3 Hyperpolarization

Hyperpolarization in NMR, spectroscopy concerns perturbing nuclear spin populations
far from thermal equilibrium. The aim being to enhance the sensitivity of NMR experi-
ments, spectra and images through increasing the nuclear polarization of a spin ensemble
by factors of up to 10%-10°, compared with thermal equilibrium. Multiple hyperpolar-
ization techniques exist; ranging from hyperpolarized gas NMR using '?*Xe and 3He
isotopes, spin exchange optical pumping (SEOP), parahydrogen induced polarization

(PHIP), quantum rotor induced polarization (QRIP), and dynamic nuclear polarization
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FIGURE 2.3: Schematic of nuclear hyperpolarization. Thermal equilibrium Zeeman po-

larization is small due to the fluctuations in room temperature which readily equilibrate

the spin populations for an ensemble of nuclei in a magnetic field. Hyperpolarization

techniques exist to drive the arrangement of nuclear spin populations away from thermal

equilibrium, with the idea of preferentially populating a single spin state and creating
an impressive population imbalance for observation.

(DNP), the latter of which is occasionally accompanied by a dissolution process to en-
able a liquid state readout. A schematic of the hyperpolarization ideology is shown in
figure 2.3. Applications of hyperpolarized NMR are also evident, noble gases are often
used to image lungs in MRI experiments [71], and hyperpolarized metabolites have been
used to monitor prostate cancer in human patients [87]. In the context of this thesis,
dynamic nuclear polarization (DNP) is discussed as one method to produce nuclear hy-
perpolarization. Later on in this thesis, DNP experiments are reviewed in conjunction

with a rapid dissolution process in order to hyperpolarize long-lived nuclear spin states.

2.3.1 Dynamic nuclear polarization

The aforementioned methods have the capability to produced non-equilibrium Zeeman
polarization, py — £1. However, each method is also limited. SEOP is restricted to hy-
perpolarization of a few noble gas isotopes, and PHIP depends on the presence of double
or triple bonds in the substrate molecule. A highly feasible approach to improve the
low levels of nuclear Zeeman polarization is to borrow the already enhanced polarization
of electron spins at low temperature. The proportionality factor between the gyromag-
netic ratio of an electron and a proton is: yig/v.- ~ —660, i.e. the gyromagnetic ratio
of an electron is significantly larger than that of a proton. This proportionality factor

becomes even greater for nuclei with lower gyromagnetic ratios, e.g. '3C, ®N, with
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FIGURE 2.4: Thermal equilibrium Zeeman polarization pz as a function of temperature

(By=11.7T) for electrons (blue), protons (red), carbon-13 (orange) and nitrogen-15
(green). Electron polarization at low temperatures (<10 K) is considerably greater than
that of nuclei. Beyond ~10 K, the electron polarization is consistently a factor of ~660
greater than the proton polarization, and even more so for carbon-13 and nitrogen-15
nuclei. As conventional DNP apparatus is unable to achieve temperatures lower than
~1.3 K, the level of nuclear Zeeman polarization is limited. Polarization must therefore
be borrowed from the nearby electrons, and an additional factor of 7. /7, can be gained
in terms of the nuclear Zeeman polarization.

respect to that of a proton. Therefore, efficient or sustained transfer of electron spin
polarization to nuclei can result in Zeeman polarizations on the order of ~50%, a remark-
able improvement over p%q at room temperature, see figure 2.4. This is the approach
taken by dynamic nuclear polarization (DNP). DNP was first predicted by Overhauser
in 1953 [88], and was met with criticism from the NMR community. However, the suc-
cessful demonstration of DNP by Carver and Slichter later that year, and Abragam in
1959, cemented DNP as a powerful NMR tool for boosting the poor sensitivity levels of
common NMR experiments. DNP is now a widely used technique in magnetic resonance,
and has far reaching applications such as the structural determination of proteins and

other materials in conjunction with magic angle spinning methodologies [89-93].

2.3.2 Elements of DNP

Before discussing the physical mechanisms of electron-nuclear polarization transfer, a
discussion of the items required for a typical DNP experiment is necessary. The main

prerequisites for the success of a DNP experiment are:
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e Unpaired electrons. Traditionally in the form of a radical system; BDPA, trityl,

ox63, TEMPO, TEMPOL and others [94], an added electron source is required
for adequate polarization transfer. The resulting DNP mechanisms and signal

enhancements are dependent on the type and concentration (~25mM) of radicals.

Glassing agent. Mixtures of common laboratory solvents; HoO, D2O, glycerol
etc. form satisfactory glassy matrices for DNP upon freezing. HoO and D-5O
form a suitable aqueous solution in which to dissolve the sample of interest to
sufficient concentration, and glycerol is a glass-former added to prevent crystal-
lization. The radicals becomes homogeneously embedded within the amorphous

solid when frozen.

Microwave irradiation. Exciting electron-nuclear transitions at near-resonant
microwave frequencies exchanges spin populations between coupled electron-nuclear
systems in the solid state, and ultimately transfers polarization from electrons to
nuclei [62, 95]. Depending on the strength of the polarizing field, either a Gunn
diode (low power) or gyrotron (high power) can be used as the electron source [96—

99.

Low temperatures. Clearly, in order to freeze the mixture of sample, radical
system and glassing agent, low temperatures are required. Near-unity electron
polarization is additionally present below ~10K at 6.7T. Low temperatures are
often provided by the use of a cryostat, which will have a specially designed custom-

insert for sample insertion and microwave irradiation.

2.3.3 Overview of the DNP process

The procedure for DNP experiments is now well established, and is laid out plainly

below. A schematic overview of the DNP process is shown in figure 2.5.

1. The mixture of sample, electron source and glassy matrix, is cooled to ~1.3 K. At

this temperature, electron spin polarization is abundant, and near unity. Nuclei

are weakly polarized and have long relaxation times at these temperatures.

2. Electron spin polarization is transferred to nearby nuclei by the application of a

continuous microwave (W) field with a frequency close to the EPR transition. The
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FIGURE 2.5: Overview of the DNP process. Red spheres denote nuclei (y > 0), blue
spheres denote unpaired electrons. Dashed white lines denote the core nuclei surround-
ing each electron. a) A mixture of sample, glassing agents and radical, is prepared
by freezing beads (10 uL volume) of this concoction in liquid nitrogen. b) The frozen
DNP mixture is inserted into a sample cup (approx. 150 uL volume) and placed into
the cryostat (temperature = 1.3-4.2K). ¢) Approximately resonant microwave fields
are applied to the frozen material, and polarization is transferred from electrons to
nuclei via various DNP mechanisms. d) The build up of nuclear Zeeman polarization is
achieved throughout the majority of the sample by the process of spin diffusion, which
transfers polarization between dipolar coupled nuclei.

polarization transfer process is constantly fighting against the return of electron

spin populations to thermal equilibrium at ~1.3 K.

3. Spin diffusion spreads the high nuclear polarization levels among the nuclei in the
sample bulk. The DNP process may therefore take many minutes or hours in order
to achieve the maximum experimental polarization, but is relatively fast compared

to signal summation methods.

2.4 DNP mechanisms

Multiple mechanisms have now been proposed to explain the DNP process. The pre-
dominant DNP mechanisms in the solid state are the solid-effect (SE), the cross-effect
(CE), and thermal mixing (TM). Each mechanism can be responsible for the polariza-
tion of a particular molecule or material, with polarization efficiency highly dependent
on nucleus, radical choice, radical concentration and magnetic field. In this section, the
ESR properties of the electron species are examined, followed by an exploration of the

solid-effect and cross-effect DNP mechanisms.

2.4.1 Electron spin resonance spectra

As mentioned above, the transfer of electron spin polarization from radical centres within
the sample to nuclei of interest is dependent on many factors. One such aspect is the

electron spin resonance (ESR) spectrum, which is specific to individual radical species,
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FIGURE 2.6: Echo-detected ESR spectra of BDPA (blue, dashed line) and TEMPO
(red, dotted line) radicals at 140 GHz and 20 K. BDPA is a narrow line radical used for
polarizing nuclei such as 13C and '®N, and has a linewidth of ~40 MHz (full-width at
half-maximum). TEMPO is a wide line radical and is predominantly used for polarizing
protons. The linewidth of the TEMPO resonance is ~400 MHz (full-width at half-
maximum). Adapted from reference [100].
see figure 2.6. The resonance frequency of the ESR line indicates the energy at which the
electron emits and absorbs radiation, and the lineshape of the ESR spectrum dictates
the nature of the polarization transfer to different nuclei, i.e. the DNP mechanism.
The choice of radical is therefore a vital consideration when aiming to hyperpolarize a

particular nuclear species via DNP. The effects of preferred radicals on particular DNP

mechanisms are discussed later.

At high magnetic field (>3.35T) and low temperature (<4.2K) the electron and
nuclear resonances are well isolated (<200 GHz separation, nuclei and magnetic field de-
pendent), i.e. the unpaired electron absorbs radiation which is 7. /7, higher in frequency
than the nuclei of the sample. It should be noted that the electron (linewidth <1 GHz)
and nuclear (linewidth ~30 MHz) resonances do not overlap in the solid state. The severe
difference in linewidth is related to the solid state interactions of electrons and nuclei,
and the orientations of the unpaired radical species in the frozen medium. In this case,
the linewidth of the NMR resonance for a nucleus at ~4.2 K is governed predominantly
by dipolar interactions with electrons and other nuclei, and is hence proportional to the

concentration of nuclei within the sample.
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For the electron spins, the shape and linewidth of the ESR line is a little more
complicated as there are two effects responsible for the overall broadening of the ESR
spectrum, both of which depend on the type of radical used to paramagnetically dope
the sample. Homogeneous broadening is attributed to field-independent dipole-dipole
interactions between electrons embedded within the sample [101], and can be controlled
by optimizing the electron spin concentration. Inhomogeneous broadening is related to
the hyperfine interaction and g-anisotropy of the electron [102, 103]. In this case, the
individual electrons experience different magnetic fields throughout the sample. If the
radical electron is located on a nucleus with non-zero spin, such as *N in TEMPO, a
hyperfine coupling exisits between the electron and the nucleus, and the resulting ESR
spectrum is split into individual components corresponding to the quantum number m;
of the nucleus. Splittings are often on the order of megahertz. The ESR spectrum
of radicals frozen into the glassy matrix is additionally a superposition spectrum of
individual electron moments at many different orientations with respect to the static
magnetic field. The electron g-tensor allows a measure of the orientational dependence
of the Zeeman interaction for electrons in the solid state, and the anisotropy of the

g-tensor (g-anisotropy) partly specifies the inhomogeneous lineshape of the ESR line.

With the above information at hand, one can now design an efficient scheme for
electron-nuclear polarization transfer, which is ultimately achieved by saturating the

ESR line of the chosen radical species at a particular frequency.

2.4.2 Solid-effect DNP

Overhauser first suggested applying microwaves to materials in order to engage specific
transitions involving simultaneous flip-flop processes of the electrons and nuclei [88]. In
1953, Carver and Slichter confirmed the SE by performing DNP experiments on lithium
metal [104]. A few years later, preliminary descriptions of the solid-effect (SE) were
provided by Jeffries [105]. Another key breakthrough was provided by Abragam and
Proctor in 1958. The pair published work suggesting that by pumping microwaves at
formally “forbidden” transition frequencies, coupled electron-nuclear population con-
version could be induced [106]. The phenomenon was subsequently demonstrated by
employing microwave irradiation at the frequencies we &+ w,, in the presence of paramag-

netic centres [107], and the solid-effect was born. Another important piece of evidence
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for solid-effect DNP was reported in 1978 by Abragam and Goldman [108], in which
the transfer of electron polarization to nuclei was found to be executed through dipolar

interactions.

The solid-effect (SE) is the perhaps the simplest DNP mechanism to explain, and
only concerns the interactions between a single electron-nuclear pair. The process is

illustrated in more detail below, but a brief synopsis is given here:

1. Microwaves off. The bath of electrons is hyperpolarized at low temperatures,
and nearly all electron spins are in the state |ae). Nuclei are initially poorly

polarized.

2. Microwaves on. A microwave field of frequency w. —w,, is applied to the sample.
An electron-nuclear pair in the state |a.f,) undergoes a flip-flop transition. The

new coupled spin state is |Secuy,).

3. Relaxation. The relaxation time of the electron T}, (milliseconds) is significantly
shorter than the relaxation time of the nucleus T3, (minutes) at low temperature.

The spin pair transforms into the state |aeay,).

4. Repolarize. Steps 2 and 3 may now be repeated several times and for other
electron-nuclear pairs, eventually leading to the hyperpolarization of small pockets

of nuclei within the sample.

The solid-effect (SE) is a 2-spin interaction, involving one nucleus and one electron, with
external influences from an applied microwave field. In order for the SE to be valid, a
narrow line radical must be implemented in the DNP process. Narrow line radicals have
ESR linewidths which are narrower than the Larmor frequency of the nucleus to be
polarized: Aw. < w,. Radicals such as BDPA, trityl and ox063 display narrow ESR
lines, as these radicals are symmetric in molecular structure and do not possess strong

electron-nuclear hyperfine couplings.

The efficiency of electron-nuclear polarization transfer can be investigated as a
function of the microwave frequency, see figure 2.7. The z-axis represents the microwave
frequency and the y-axis shows the ensuing enhancement of the NMR signal or “DNP
signal”. Maximum polarization enhancements are observed when the microwave condi-

tion we + wy, is satisfied. The positive sign of the condition corresponds to the negative
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FIGURE 2.7: Microwave swept DNP enhancement (DNP spectrum) of a narrow line

radical such as BDPA at 6.7T and 1.4K. A positive DNP enhancement is recorded

at a microwave frequency of w. — w,, and a negative DNP enhancement is observed

at we + wy. The maximum enhancements have been normalized to +1, respectively.

The flat region around w,. and the distinct peaks at w, £+ w, indicate a well resolved
solid-effect.

lobe of the “DNP spectrum” and the negative sign corresponds to the positive lobe.
The frequency of the microwave field is therefore chosen specifically to be w, £+ wy, to en-
courage the flow of polarization from the electrons to the nuclei. Microwave irradiation
applied at any other frequency results in a reduced electron-nuclear polarization transfer
efficiency. If a wide line radical is used for SE DNP, under the application of the same
microwave field, competing contributions from the condition w, + w,, are simultaneously

satisfied, and ultimately nullify the hyperpolarization of a particular spin state.

Consider the spin state of the electrons |a.) at high magnetic field (>3.35T) and
low temperature (<4.2K). The magnetic moments of the electron bath are approxi-
mately 100% anti-aligned with the static magnetic field. The nuclei are poorly polarized
under these conditions, and the polarization bias towards the preferential orientation is
approximately 63 out of every 2000 spins for protons at 6.7 T and 4.2 K, i.e. the majority
of nuclei possess no preferential alignment with the static magnetic field. To consider
the effect of applying microwave irradiation at this frequency, one should consult a state
population diagram, see figure 2.8. At thermal equilibrium (~4.2 K) the populations of
the coupled electron-nuclear spin states are described by the Boltzmann distribution,
see chapter 1. It should be noted that the state |ae) corresponds to an electron in
anti-alignment with the static magnetic field, as the electron has a gyromagnetic ratio
~Ye < 0. Consider the electron-nuclear pairs which are in the state |a.3,), and turn on

the microwave field. In this case, the frequency of the microwave irradiation is we — wy,.
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F1GURE 2.8: Schematic for solid-effect DNP at 6.7T and ~4.2K. The grey arrow
denotes flip-flop transitions, and the black arrow (7}.) denotes longitudinal electron
relaxation. a) At thermal equilibrium, the electron and nuclear spin populations are
dictated by Boltzmann distribution. b) The populations are rearranged under the action
of flip-flop transitions induced by the application of a microwave field with frequency
we —wp,. Polarization is accrued in the ground state |y, ) as the relaxation time of the
electron T, is significantly shorter than the relaxation of the nuclei Ty,,. ¢) Microwave
irradiation condition w, — w, for the solid effect.

The electrons in the |a.3,) pairs which are subjected to the microwave irradiation expe-
rience a “flip-flop” transition with the coupled nucleus. This mechanism is only feasible
if the nuclear spin is pointing in the opposite sense to the electron spin, since the flip-
flop transition must conserve energy. The flip-flop transition induced by the microwave

irradiation converts population from the |a.f,) spin state to the |Sec,) spin state.

Electron spins are known to relax quickly in most cases, and usually far more
rapidly than the majority of nuclei. The rapid Ti. processes associated with the elec-
tron spins promptly deplete the |Sea,) state of population as the electron spins return to
thermal equilibrium. Population is consequently transferred to the ground state |aeay,),
and a population difference is accrued across the states separated by w,. At low tem-
peratures (~4.2K) the nuclear spin relaxation time T}, is typically very long, and is
usually on the order of minutes or hours. The nuclear population imbalance is therefore
maintained, and the sample is said to be hyperpolarized. The short T}, of the electron
is a valuable asset for DNP, as the process can now be repeated several times and for
other electron-nuclear pairs. In practice an electron can have many nuclear counterparts
during the hyperpolarization stage. Hence, a high efficiency is realized for the solid-effect

if the following condition is satisfied [109]:

NnTle
NeTln

< 1, (2.13)

where N, and N, are the number of nuclear and electron spins embedded within the
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frozen sample, respectively. The ideal conditions for the solid effect are therefore high
concentrations of nuclei with long relaxation times, comixed with a minimal amount of

electron spins which relax rapidly.

The SE directly polarizes nuclei surrounding the unpaired electron. As previously
touched upon, an additional process, known as spin diffusion, spreads the population
imbalance throughout the sample bulk [110]. For spin diffusion to be effective, the bulk
nuclei must be in dipolar contact with a polarized nucleus [111]. This is not the case
for the core nuclei immediately surrounding the unpaired electron, as the paramagnetic
centre shifts the resonance frequencies of the adjacent nuclei, in comparison to the bulk
nuclei. The spin diffusion process is therefore quenched, and the nuclear hyperpolariza-
tion is trapped within a “DNP shell” [110]. The DNP shell is limited to a finite locus
around each unpaired electron to due to distance dependent nature of the electron-
nuclear hyperfine interaction [112]. Spin diffusion instead uses bulk nuclei outside of the
DNP shell to extend the nuclear hyperpolarization to the rest of the sample. This is
profitable for the hyperpolarization of the entire sample, as the nuclei are fixed within
the lattice and may not undergo direct hyperpolarization via the solid-effect. It should
be noted that the NMR signals available from the core nuclei are “bleached” due to the
short nuclear T3, attributed to the large hyperfine interaction with the nearby unpaired
electron [113]. The enhanced NMR signal is therefore associated with the bulk nuclei

which are hyperpolarized via the spin diffusion process.

2.4.3 Cross-effect DNP

The SE was extensively studied in crystals, but to obtain higher concentrations of nuclear
spins a switch was made to frozen alcohols [114]. The ESR lines in these systems are
inhomogeneously broadened due to the anisotropy of the g-factor. Dipole-dipole inter-
actions between electrons also contribute to the ESR linewidth. This is analogous to the
situation with wide line radical systems [115, 116]. As discussed in section 2.4.1, inho-
mogeneous effects can provide a larger distribution of ESR resonances than a Gaussian
distribution. Such ESR spectra can therefore be thought of as containing individual
“spin-packets” that act independently under the effects of microwave irradiation. It

can be very difficult, but possible, to “burn a hole” in an inhomogeneously broadened
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FIGURE 2.9: Microwave swept DNP enhancement (DNP spectrum) of a wide line
radical such as TEMPO at 6.7T and 1.4 K. The forbidden transitions w, + w, begin
to superimpose with the allowed transition w.. The maximum enhancement has been
normalized to +1, respectively, with the maxima and minima separated by we; — wes-

ESR spectrum, by saturating spin packets at certain frequencies dictated by the ap-
plied microwave field. Upon continued microwave irradiation, off-resonant spin packets
subsequently become saturated through a process known as spectral diffusion. Spectral
diffusion is a phenomenon in which the individual spin-packets of an inhomogeneously
broadened ESR line overlap as result of dipolar contact with neighbouring electrons,
allowing energy to be transferred throughout the ESR spectrum. On first glance, this
might appear to diminish the DNP effect, as the formally forbidden transitions w, + wy,
begin to superimpose with the allowed w, transition and as such cannot be irradiated

separately, see figure 2.9.

In 1963 Kessenikh and Manenkov proposed a 3-spin DNP process involving simul-
taneous spin flips between two electrons and a single nucleus, which is today known as
the cross-effect (CE) [117-119]. Such transitions are allowed when the following match-
ing condition for the microwave field is met: we; — we2 = wy, which is possible as both
of the electrons can have different g-anisotropies. To facilitate the CE mechanism, wide
line radicals should be impregnated into the glassy DNP matrix. Wide line radicals
have ESR linewidths which are wider than the Larmor frequency of the nucleus to be
polarized: Awe > wy,. Nitroxide radicals such as TEMPO and TEMPOL display wide
ESR lines, as strong electron-nuclear hyperfine couplings and large g-anisotropies are
present in these systems. Owing to the use of wide line radicals for cross-effect DNP, it
is therefore sufficient to saturate an allowed transition corresponding to either electron

spin, and hence the cross-effect is simultanesouly active for two spin packets separated
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FIGURE 2.10: Schematic for cross-effect DNP at 6.7T and ~4.2K. The grey arrow
denotes flip-flop transitions, and the black arrow (73.) denotes longitudinal electron
relaxation. a) Coupled energy level structure for the two-electron, one-nucleus spin
system. b) Spin populations at thermal equilibrium are determined by the Boltzmann
distribution. At lower temperatures (S10K) electron spins are predominantly in the
|ae) state, whilst nuclei are poorly polarized. ¢) The populations are redistributed by
the three-spin cross-effect for electron-nuclear systems satisfying the condition we; —
We2 = wy under an applied microwave field of frequency we — w,. Nuclear Zeeman
polarization is accumulated in the |a.a;,) state as T relaxation is orders of magnitude
shorter than the nuclear relaxation time T7,,.

by wy,. In this regime, the cross-effect becomes a more efficient method of polarization

transfer than the solid-effect.

Just as with the solid-effect, cross-effect DNP can be sufficiently described with the
use of clear energy level diagrams, see figure 2.10. Consider the same initial conditions
as in section 2.4.2, but this time note that the initial spin populations to be concerned
with are |aeioeafn) and |Beicieafrn). Application of a microwave field with frequency
wea —wy, causes one of the electrons in the |aeieafn) and |Be1ae23,) states to experience
a “flip-flop” transition with the coupled nucleus. The flip-flop transition induced by
the microwave irradiation converts population into the |ae1Seactn) and |Be1Be2cty) spin
states, respectively, and polarization transfer is promoted between the electron pair and
the lone nucleus. Note, the electron subjected to the flip-flop interaction must again be
aligned in the opposite sense to the nucleus, with respect to the static magnetic field
direction. The separated timescales of electron and nuclear spin relaxation processes
allow an imbalance of population across states separated by w,,, and hence an increased

nuclear Zeeman polarization is obtainable through cross-effect DNP.



78 Chapter 2: Hyperpolarization and singlet states

2.4.4 Thermal mixing DNP

Highly efficient cross-effect DNP can occasionally be present at low radical concentra-
tions, and is sometimes observed alongside solid-effect DNP [120-125], despite the low
orientation probabilities of finding two electrons separated by the nuclear Larmor fre-
quency. Evidently, a great deal of spin-packets within the ESR line do not satisfy the
cross-effect condition. A more involved theory of DNP, which takes into account all spin-
spin and spectral diffusion processes, was developed by Redfield [126], Provotorov [127]
and Borghini [128, 129], and is today known as thermal mixing. Thermal mixing is a
thermodynamic model that describes the polarisation transfer between many electron
and nuclear spins [130, 131], and is now recognized as an efficient DNP mechanism. Ther-
mal mixing becomes dominant at lower temperatures when the electron 77, is extended
and the spin diffusion process finishes in less than one electron T7.. The thermal mixing
mechanism is additionally active in cases of homogeneously broadened electron systems,
i.e. when the electron concentration is increased, as the microwave field uniformly satu-
rates all ESR transitions. The solid-effect and cross-effect mechanisms become ineffective

under these conditions.

2.5 Dissolution-dynamic nuclear polarization

Jan-Hendrik Ardenkjaer-Larsen and coworkers pioneered the dissolution-DNP approach
in 2004, and their first experiments showed a >10,000-fold increase in liquid state po-
larization [71]. Recently, D-DNP has been directly applicable to in vivo research. The
first in-patient study demonstrating the feasibility of hyperpolarized [1-'3C]pyruvate as
a non-invasive marker of tumour metabolism was completed successfully [87]. Patients
with prostate cancer were safely injected with hyperpolarized pyruvate in order to char-
acterize rates of pyruvate-lactate conversion in localized tumours via real-time magnetic
resonance imaging [132]. D-DNP has also been used to evaluate tumour grades [133]
and to continuously monitor the treatment response of living organisms such as cancer

cells [134].
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FIGURE 2.11: Overview of the dissolution-DNP process. Red spheres denote nuclei
(v > 0), blue spheres denote unpaired electrons. a) Sufficient time is allowed as to
accrue maximum hyperpolarization of nuclear spins in the solid-state. b) The microwave
field is removed and the frozen material undergoes a rapid melt by using a jet of
warm solvent which is injected into the sample space. ¢) The warm, hyperpolarized
liquid is rapidly transferred to an external, high-field NMR magnet under the pressure
of helium gas. The sample voyage is engineered such that low-field relaxation from
unpaired electrons is negligible. d) High-resolution NMR experiments are performed
in the liquid state before relaxation processes return the hyperpolarized nuclear spin
populations to thermal equilibrium.

2.5.1 Overview of the dissolution process

D-DNP is a batch-mode experiment, not a continuous operation, and so the largest
achievable nuclear spin polarizations are required prior to dissolution in order to obtain
the best possible results. Once the applied microwaves are removed, the nuclear hyper-
polarization generated by DNP is lost by means of spin relaxation, which is attributed
to nuclear-electron interactions. Furthermore, the cryostat is often pressurized and tem-
peratures rise to ~3-4 K, which in turn induces faster relaxation of the nuclear spins.
The dissolution process, therefore, must be rapid in order to avoid further losses in the
nuclear Zeeman polarization. A schematic of the dissolution-DNP process is shown in

figure 2.11.

The dissolution process is a rather simple one, but is tricky to execute in practice.
Experimental conditions must be compatible with the dissolution procedure, and so most
dissolutions are performed at ~4.2 K, which is convenient as an electron spin polarization
approaching unity is achieved in the region of <10K. Once the desired level of Zeeman
polarization is amassed in the solid state, the frozen sample is rapidly heated with a jet
(~4-5 mL volume) of warm solvent (~150°C temperature). The heated solvent is located
in a bomb placed directly above the glassy matrix, radical and sample, and is injected
into the sample cup under the pressure of helium gas. The DNP mixture melts rapidly
upon contact with the warm solvent and the helium gas pushes the hyperpolarized liquid
sample towards a separate NMR magnet, where the acquisition of a hyperpolarized NMR
signal subsequently takes place. Accelerated relaxation is a potential concern in regions

of low magnetic field along the sample path, but can mostly be negated by the use of a
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magnetic tunnel [135]. In most cases, the high population imbalance established by DNP
is maintained during the sample voyage between NMR instruments, despite the sample
temperature equilibrating with room temperature by the time the hyperpolarized media

reaches the liquid state device.

The typical result of a D-DNP experiment is a liquid state spectrum with level
of sensitivity that can only usually be reproduced with thousands of individual signal
summations. The enhancements recorded using D-DNP are typically larger than those
observed for solid-state DNP (capped at 7./v,) due to the room temperature readout
of the hyperpolarized spin order in the liquid state. Determining the level of signal
enhancement depends on factors such as the presence of microwave irradiation, the state
of the sample matter, the temperature and the number of transients used to record the
reference spectrum. More details regarding DNP enhancements are given in chapter
4. The capability to transfer hyperpolarized media to high-resolution instruments also
comes with a few advantages, namely, cheap microwave sources can be employed as

samples can be polarized at lower magnetic fields.

As previously referred to, diffusion and translation of unpaired electron species
within the dissolution solvent drives paramagnetic relaxation of the hyperpolarized nuclei
during the sample voyage between polarization and detection magnets, with relaxation
particularly prevalent at low magnetic fields [136]. This process can be countered with
a fast, adiabatic dissolution, and the use of a magnetic tunnel [135]. Paramagnetic re-
laxation is additionally offset by co-freezing beads of ascorbate alongside the substance
of interest. When the frozen beads are rapidly dissolved by the warm solvent jet, the
ascorbate molecules scavenge the radical source. Upon radical quenching, ascorbyl radi-
cals are formed which disproportionate from the bulk solution. Paramagnetic relaxation
is therefore prevented as no unpaired electron species remain within the sample. Radical
scavenging is currently the preferred option for D-DNP experiments as no fast mechan-
ical radical filtering systems are available. Radicals may also be diluted by using an
increased solvent volume, however, the sample concentration and spectral quality will

consequently suffer.

Some disadvantages of dissolution-DNP remain a problem at present. D-DNP is a
one-shot experiment, meaning that all the available polarization accrued by DNP in the

solid state must be exploited in a single dissolution. Hyperpolarized spin order cannot
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be continuously replenished by bubbling a source of high spin order into the sample
volume, unlike some parahydrogen-based hyperpolarization experiments [137, 138]. One
significant drawback of the D-DNP approach is the limited time available for signal ac-
quisition. The resulting hyperpolarized signals cannot result from a series of summed
acquisitions, as is the case for solid state DNP measurements or traditional signal sum-
mation experiments. The brief acquisition period is in essence down to the short T3
for the substances of interest, which are often small molecules. The use of conventional
relaxation times currently prevents D-DNP from producing high-performance results in
alternative fields such as 2D-NMR spectroscopy. In the next section, the concept of
longer-lived spin states, and the symmetry properties that ensure signal longevity, are

explored.
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2.6 Overview of long-lived states

The longitudinal relaxation time constant 77 was traditionally seen as the limiting fac-
tor for the lifetime of NMR signals. After rf-perturbation, the original “memory” of
the spin system is fully recoverable in a time of approximately 5 x Tj [14]. The T}
window, typically a matter of seconds, has already provided unique opportunities for
NMR spectroscopists to probe processes such as diffusion, flow, and slow molecular mo-
tion [41, 139]. Nonetheless, the common time limit for an NMR experiment is governed
by the return of longitudinal spin order towards thermal equilibrium. Hyperpolariza-
tion techniques for use in NMR spectroscopy and imaging are also hampered by the
requirement of exploiting nuclear spin order within the 77 time frame. Lengthening T}
further usually requires chemical modification, such as isotopic labelling, which can be
expensive. In this section, I will discuss an alternative form of long-lived spin order, the

lifetime of which can far exceed that of ordinary magnetization.

Long-lived states (LLS) possess the capability to store nuclear spin order for du-
rations which considerably exceed the 77 time limit, providing a suitable approach to
overcome the constraints on relaxation dynamics. The first discovery of a long-lived
nuclear spin state occurred in the laboratory of Malcolm H. Levitt at the University
of Southampton in 2004 [14]. Together with coworkers Marina Caravetta and Ole
G. Johannessen, the proton pair in a molecule of 2,3-dibromothiophene was shown
to reveal “dark” quantum states with singlet lifetimes exceeding 77 by a factor of
7. As time progressed, a growing bank of molecules bearing long-lived singlet states
emerged [20, 22, 23, 28, 30, 32, 34, 35, 54, 55, 140-148], along with the knowledge of
what creates longevity for the nuclear spin order [16, 17, 26, 56, 149-155]. A key step in
this process was the synthesis of singlet molecules with spin pairs subject to small sym-
metry breaking interactions [24], and consequently the development of rf-pulse schemes

allowing coherent access to the nuclear singlet order [21, 31, 150, 156-160].

In more recent years, the phenomena of long-lived states has been developed and
applied in an endeavour to overcome the issue of limited signal lifetimes in near chemi-
cally equivalent spin systems. Molecular systems have therefore been designed to coax
out longer-lived singlet lifetimes, with small chemical shift differences specifically synthe-
sised for this purpose. A long-lived state with a lifetime surpassing one hour in a room

temperature solution has recently been achieved for a Napthalene derivative composed
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of a sufficiently isolated 3C spin-pair [35]. A lifetime for nuclear spin order exceeding
1 hour has only even been achieved previously in a gas phase NMR experiment [161].
The Naphthalene system embodies the majority of the current knowledge in the LLS
community, and currently holds the world record for a long-lived singlet lifetime. Simi-
lar achievements have also been recorded independently by Giuseppe Pileio and Alexej
Jerschow for a proton pair in a sample of dimethyl fumarate [29, 33, 145], which has a
long-lived state lifetime of ~10 minutes. The key fundamentals for long singlet lifetimes

in spin-1/2 pairs are:

e strong coupling regime i.e. J-stabilization, small singlet leakage, [17, 24]
e inversion symmetry, [144]

e low-v singlet nuclei, [146]

e isotopic substitution i.e. selective deuteration®, [22]

e 1no neighbouring magnetic nuclei. [28, 29, 33, 35, 145]

Other important considerations for extending nuclear singlet lifetimes are: a rigid molec-
ular structure, the removal of paramagnetic relaxation sources i.e. Oz, and avoiding re-
laxation sinks i.e. nearby methyl groups. It is likely that a few of the above constraints
cannot be met for the majority of LLS candidate molecules, but singlet lifetimes out-
lasting those of longitudinal magnetization are still achieved in the majority of cases.
Furthermore, the NMR spectroscoper can also manipulate the spin system at hand in
order to prolong the lifetime of the nuclear singlet order. The techniques of field-cycling
and rf-suppression are typically used to preserve singlet lifetimes, as the symmetry prop-

erties and relaxation dynamics are favourable altered in certain circumstances.

*In the final chapter of this thesis, discussion of a “new” singlet relaxation mecha-
nism is presented. This mechanism has been term singlet-scalar relaxation of the second
kind (S-SR2K). In this case, selective deuteration considerably shortens the nuclear sin-
glet lifetime. Singlet-SR2K could therefore be the rate limiting factor for long-lived

states in systems already exhibiting substantial singlet lifetimes.

This work presented in this thesis concentrates predominantly on the relaxation

behaviour of nuclear singlet states for coupled pairs of spin-1/2 nuclei. In this section, I
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will convey the fundamental aspects of nuclear singlet states for 2-spin-1/2 systems, and

how the properties of nuclear singlet states allows for long-lived relaxation behaviour.

2.7 Nuclear singlet and triplet states

As discussed in chapter 1, there are two eigenstates of the total angular momentum
for a single spin-1/2 nucleus. The eigenstates are denoted |o) and |f3), and specify the
absolute alignment of the intrinsic magnetic moment parallel |«) or anti-parallel |5) to
the static magnetic field. For a pair of spin-1/2 nuclei, the angular momentum couples
in both a constructive and destructive manner. A composite spin system is formed with
a total angular momentum of I=0 (destructive addition) or =1 (constructive addition).
Hence, there are four orthonormal eigenstates of the total angular momentum operator
for a pair of spin-1/2 nuclei. The nature of these four eigenstates depends highly on the
symmetry properties of the spin-pair at hand. Here I consider a pair of homonuclei (i
and j) in an A spin system connected via a scalar coupling J;;, i.e. the two spins-1/2

are chemically equivalent at high magnetic field.

The four eigenstates of the total angular momentum operator for a pair of spin-1/2

nuclei are constructed by using products of the |«) and |3) eigenstates, these are:

laa) , [aB) , [Ba),|B8B) - (2.14)

The above eigenstates are often referred to as the Zeeman product states. The multi-
plicity of the constructive and destructive combinations of angular momentum allows
one to speculate about the construction of the spin-0 and spin-1 eigenstates. The spin-1
configuration has three components of the angular momentum for a spin-1/2 pair: m; =
0, £1. Together these components form a spin-1 manifold consisting of three eigenstates

referred to as the nuclear triplet states:

Ty1) = [1,41) = |aaq), (2.15)

1
ﬁ(\a@ + [Ba)), (2.16)

1) = |1,-1)=18B). (2.17)

To) = |1,0) =
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There is just one destructive combination of angular momentum for a pair of spin-1/2
nuclei, i.e. the spin-0 eigenstate has a multiplicity of 1, and is known as the nuclear

singlet state:
1

V2

In general, the nuclear singlet and triplet states are declared using the bra-ket notation:

[S0) = 10,0) = —=(laf) — [Ba)). (2.18)

|I,mr). Here I will introduce the shorthand notation “S” for the nuclear singlet state,
and “T” for the three nuclear triplet states. For a spin-1/2 nuclear pair ij, the nuclear
singlet and triplet states are eigenstates of the total (IAZ + fj)Q and z-projection I+ sz

angular momentum operators:

(I + I)*|I,m;) = I(I+1)h*|I,myg), (2.19)

(I + I;2) I, mp) = myh|I,my), (2.20)

where the subscripts ¢ and j indicate the nucleus of the spin pair upon which the angular
momentum operator is acting. For the nuclear singlet state, which has a composite

nuclear spin of 0, the solutions to the eigenequations 2.19 and 2.20 are therefore:

(Ii + 1;)*[So) = 01So), (2.21)

and the nuclear singlet state is evidenced to act as a single, magnetically silent particle.
Direct observation of the spin-0 singlet state is therefore not feasible with NMR, and
detection of singlet spin order requires passage through the triplet manifold. The nu-

clear triplet states behave as the three eigenstates of a spin-1 particle, as shown by the

eigenequations:
(fl + fj)Q |Tm1> = 2n |Tm1> ) (2.23)
(Liz + I2) [ To,) = mih|T,), (2.24)
where my = 0,+1. In each case, the angular momentum operators (IAZ + fj)Q and

I, +1 ;- commute. It is therefore possible to know the eigenvalues to each eigenequation
simultaneously, as the commuting operators share a common set of eigenfunctions. In

which case, fzz + sz may be replaced with fm + fjx or fiy + ij.
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Combining the population operators for the nuclear singlet state |Sp)(Sp|, and the
nuclear triplet states |T,,)(Tm,|, allows one to construct an operator for the singlet-

triplet population imbalance Qsoi
Qs0 = 150)(Sol = [Tom) (T, (2.25)

where | T}, ) (T, | is the mean population operator for the triplet manifold:

T ) (T | = %Z (Tong) (T | = L1101+ |T0>3<T°| PO (g 9)

The population difference operator Qso is a property of spin-1/2 pairs known as nuclear
singlet order, and is a long-lived characteristic of singlet magnetic resonance experi-
ments [150, 151]. The imbalance between the population of the nuclear singlet state
and the mean population of the three nuclear triplet states is determined by the “ex-
pectation value” of the population difference operator Qso, see section 1.5.1. At room
temperature, and in thermal equilibrium, the ratio of populations between the triplet

and singlet manifolds is 3:1.

2.8 Symmetry properties of singlet order

It is the symmetry properties of the nuclear singlet and triplet states which enables
the singlet order of spin-1/2 pairs to achieve extraordinary lifetimes, with respect the

lifetime of ordinary magnetization. Consider the permutation operator P(mi, mj):

N

P(mi, mj) |mi,mj) = \mj,mi> . (227)

N

P(m;, mj) swaps the order of the two nuclei 7 and j, or equivalently exchanges the labels

of two spins:

P(mi,mj)[So) = —1So), (2.28)

~

Plmim)) | Tw,) = +|Tu,). (2.29)

As can be seen from equations 2.15-2.18, the nuclear singlet wavefunction is antisym-

metric with respect to spin exchange whilst the nuclear triplet wavefunctions are all
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exchange-symmetric.

The exchange symmetry imposes strict transition rules for the nuclear singlet and
triplet states under a fluctuating Hamiltonian. The fluctuating Hamiltonian is essentially
a matrix containing transition probabilities between all spin states. The fluctuating
Hamiltonian is required to be symmetric for a pair of spin-1/2 nuclei because the total
energy of the system is invariant to the exchange of identical spins. A permutation-

symmetric Hamiltonian I:Iij is defined by:
P(mi,mj) ;= 1y, (2.30)
where ]_g)(m“ m;) is the permutation superoperator [162], and is defined as:
Jg(mi,mj) = P(my,mj) @ P(m;, m;)T. (2.31)

The permutation operator P(mi,mj) can be shown to commute with the symmetric

Hamiltonian f[z] Expanding equation 2.30 provides:

P(mi, mj)Hi; P(mg,mj)T = Hyj, (2.32)

and by multiplying both sides of equation 2.32 with P (m;, m;), and suitably rearranging

the result, yields the following commutivity relation:
[P(mi,mj), Hij) = 0. (2.33)

The application of P(m,-, m;) twice will recover the original form of fIij, hence simply

acting as the identity operation:

P(mi,m;) P(m;,m;) = 1. (2.34)
The above property permits a more careful examination of the matrix elements belonging
to the symmetric Hamiltonian. Consider a matrix element of H'ij which links the nuclear
singlet state [Sp) and the states of the triplet manifold |T,,), such as (Sp| ﬁij | T, )-

Deliberate insertion of the identity operation (equation 2.34) returns:

(So| P(my, mj) T P(mi, m;)Hi; P(mi,m;) P(mi, my) | T, ) - (2.35)
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By using the spin-exchange symmetry properties of the nuclear singlet and triplet states
(equations 2.28 and 2.29), and the permutation commutation relation in equation 2.32,
it may be shown that:

(So| Hij |Tiny) = — (So| Hij | Trm, ) - (2.36)

A permutation-symmetric Hamiltonian, therefore, cannot connect spin states of opposite

exchange symmetry [139, 163, 164]:

and singlet-triplet transitions are forbidden in the absence of symmetry-breaking nu-
clear spin interactions. The singlet-triplet population imbalance (and the associated
singlet polarization) is hence a conserved property of the spin system. Therefore, once
a population imbalance is established, coherent population interconversion is only pos-
sible via interactions which are themselves antisymmetric with respect to the spin ex-
change symmetry, or by uncorrelated local magnetic field fluctuations across the spin-1/2
pair. The three nuclear triplet states are connected by triplet-triplet transitions induced
by a fluctuating Hamiltonian which is exchange-symmetric, and the matrix elements

(Tyn,| Hij | T, ) may be non-zero:
<Tm1‘ E[ij ‘Tm1> 7& 07 (238)

as the three nuclear triplet states posses the same exchange-symmetry. This property
may be shown by replacing (Sp| for (T,,| in equation 2.36. The dominant relaxation
process for 2-spins-1/2 in solution is the in pair dipole-dipole interaction, and is an
exchange-symmetric interaction (see equation 1.162). Hence, the singlet state is immune

to relaxation via the in pair dipole-dipole mechanism and has the following property:
i3, 1S0) =0, (2.39)

where ﬁgD is the dipole-dipole Hamiltonian for spins ¢ and j [19, 165]. In the ab-
sence of other antisymmetric NMR, interactions the singlet-triplet population difference
is infinitely long-lived. In realistic spin systems, a mixture of exchange-symmetric and

exchange-antisymmetric NMR mechanisms are present. Singlet-triplet decoherence is



Symmetry properties of singlet order 2.8 89

small but non-zero, and the decay of singlet order is slow compared to the decay of con-

ventional magnetization, which is affected by magnetic interactions of all symmetries.

Singlet-triplet population interconversion is also governed by the key principle of
angular momentum commutation. It may therefore be shown that a Hamiltonian which
commutes with the total angular momentum operator (fz +1 j)Q, or equally I, +1 jz, 18
unable to induce singlet-triplet transitions. Equation 1.157 states that the commutation
between spherical tensor operators given by T;fn is proportional to the matrix element:
(Im/| Tlfn |lm). Consider the case of the dipole-dipole Hamiltonian, which is represented
by the spherical tensor operator Tgfn, and its commutivity with nuclear singlet order
7ii.

(150

T =o0. (2.40)

The commutator bracket is equal to zero as the matrix elements (Im/| Tg% |lm) are inde-
pendent of the magnetic quantum number m for a given angular momentum quantum
number [. Or simply put, the commutation of a spherical tensor operator with a scalar is
always zero. Therefore any nuclear spin Hamiltonian which commutes with the total an-
gular momentum operator (ICZ +1 j)2 must conserve the singlet and triplet eigenfunctions
|I,mr), as it is a requirement of commuting operators to share a common set of orthonor-
mal eigenfunctions. Furthermore, by examining the commutators of the Liouville-von
Neumann equation (1.99) it is clear that:

d e a g

P = 0 if p = Tpp, (2.41)
in the presence of exchange-symmetric interactions, and again one can see that Tég is
a conserved property of the spin system. The field of long-lived states is built upon
identifying constants of motion, i.e. states, populations etc. which do not evolve under
fluctuating NMR interactions, and hence this is a key result from this chapter. The only
other constant of the motion in this case is the total number of nuclei present in the spin
system. The states |0,0) and |1,m;) are hence disconnected and do not interconvert,
unless the nuclear spin Hamiltonian does not commute with (I} + fj)2. Under these
conditions nuclear singlet order is not a conserved property of the spin system, and

singlet-triplet relaxation is permitted.
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2.9 Properties of the coherent Hamiltonian

At high magnetic field the coherent Hamiltonian is a combination of interactions between
nuclear spins, and also interactions between spins and the magnetic field, as described
by equation 1.161. A common scenario is the Zeeman interaction fIIZJ dominating the
Hamiltonian. Other interactions, such as scalar couplings H 7, are also present but are
often significantly smaller in size. For simplicity, the presence of a time-dependent rf-
field is excluded from the Hamiltonian. The coherent Hamiltonian for a pair of scalar

coupled spin-1/2 nuclei in solution includes the following terms:
H., = H; + Hjy. (2.42)
The Zeeman Hamiltonian written in the laboratory frame L is given by:
Hy = wo(1+6;) Lz +wo(l + ;) Iz, (2.43)

where wp(1 + d;) is the chemically shifted nuclear Larmor frequency for nucleus i. The

J-coupling Hamiltonian is given by:
PAIJ == 27TJijIAZ' . jj, (244)

where J;; is the in pair scalar coupling. The scalar product of angular momentum vectors
I and I ;j in the Hamilontian H, may be expanded in terms of the ladder operators It
and I~

I I =10, + %(fjfj— +I7I). (2.45)
For the case of magnetically equivalent spins-1/2, i.e. §; = d;, the coherent Hamiltonian

has the following matrix representation in the singlet-triplet eigenbasis:

{Sol (T (To| (Tt
E e 0 0 0
Hop= T-1) ] 0 wo(l+ )+ 0 0 (2.46)
IT) 0 0 Ty 0
T1) 0 0 0 —w(l+ %g) +
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FIGURE 2.12: The energy level structure for a spin-1/2 nuclear pair as described by

the matrix representation of the coherent Hamiltonian in the singlet-triplet eigenbasis.

This schematic is correct for the case of magnetic equivalence and for v > 0, J > 0.
Taken from reference [26].

where 6% is the sum of chemical shift terms d; and ¢;. Employing a laboratory frame
analysis allows one to determine the singlet-triplet energy level structure from the ma-
trix representation of the coherent Hamiltonian, see figure 2.12. The triplet eigenstates
are separated by hwg (neglecting small chemical shift contributions), and are all addi-
tionally shifted by WJ?” The singlet state is shifted by %‘]’J and hence is separated
from the central triplet level by 27.J;;. The Zeeman term of the coherent Hamiltonian
may be simplified for the purposes of facilitating this discussion by undergoing a trans-

formation to the rotating frame. See appendix B for details regarding the rotating frame

transformation. Hy as written in the rotating frame is:
Hz = Q1 + Qj1;,, (2.47)

where €; is the offset frequency of spin 4 in the rotating frame. H, can be additionally
restructured by using a more convenient formalism involving the sum QZZ] and difference
Qg of the resonance offsets for spins ¢ and j:

X 0L O A

Hy; = %(Ijz+ljz)+7A(Ii —Ijz)- (2.48)
For the case of 2; = €);, the coherent Hamiltonian in equation 2.47 describes a magnet-
ically equivalent spin pair, as there are no additional J-couplings to external nuclei and
the exchange of labels ¢ and j leaves ﬁcoh invariant. This property can be shown by act-
ing with the permutation superoperator described in equation 2.31 on H_op. In this case

H,., commutes with (fl +1 j)2, and nuclear eigenstates of differing exchange-symmetry

are not permitted to interconvert, i.e. permutation symmetry is achieved in the case of
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magnetic equivalence. Such a situation is found for the protons in dihydrogen or water,

both of which constitute an Ay spin system.

The matrix representation of the coherent Hamiltonian is divided into separate
subspaces belonging to different projections of the spin quantum number m;. There is
a single 2 x 2 matrix of m; = 0 states, and two one-dimensional m; = |1| subspaces,
i.e. the populations belong to the states |1,£1). The coherent Hamiltonian has the

following matrix form in the singlet-triplet eigenbasis [16]:

(Sol (T41] (Tol (T
1S0) [ {So| Heon |So) 0 (So| Heon | To) 0
a5T = [T4) 0 (T41| Heon | T41) 0 0
To) | (Sol Heon |T0) 0 (To| Heon | To) 0
T 1) 0 0 0 (T_1| Heon |T1)

(2.49)

where (i| Heop |7) is a matrix element of H.p. The coherent Hamiltonian is shown
to be block diagonal upon reordering of the basis eigenstates. H,., contains a six-
dimensional subspace of zero quantum operators, constructed from the four population
operators (i| Heop |§) = ;5 |i) (j| and the two singlet-central triplet coherences (So|Tp)

and (Tp|So). More explicitly, the matrix representation of the coherent Hamiltonian

(magnetic equivalence regime) in the singlet-triplet eigenbasis is:

(Sol (T4l (Tol (T
|So) [ =25 0 0 0
yST _ |T 0 Uit 0
a5 = |Th) 5 T3 , (2.50)
To) | 0 0o T 0
ij -
T4) \ 0 0 0 -4

where Qg = (}; + §2; and is the sum of resonance offsets for spins i and j. Clearly the
difference in resonance offsets is zero, as the two spins are defined to be magnetically
equivalent. The coherent Hamiltonian in the singlet-triplet basis is strictly diagonal, and
indeed there are no terms present which connect states of different angular momentum
quantum number [. As discussed previously for a magnetically equivalent spin-1/2 pair,
the exchange symmetry of the coherent Hamiltonian does not permit mixing of the

nuclear singlet and triplet eigenstates, and the two manifolds are disconnected.
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Nuclear singlet order, defined as the population imbalance between the mean
populations of the singlet and triplet manifolds (equation 2.25), is only perturbed in the
presence of exchange-antisymmetric NMR interactions. Access to the nuclear singlet
order is therefore only possible if the coherent Hamiltonian does not posses permutation
symmetry. In the case of a magnetically equivalent spins-1/2 pair, access to the nuclear
spin order is unavailable due to the absence of off-diagonal terms in ﬁcoh. The presence
of a symmetry-breaking interactions are required to provide access to the nuclear singlet
order, and are necessary for the flow of nuclear spin populations between the nuclear
singlet and triplet states. The later point is relevant for singlet NMR experiments,
in which the population of the singlet state is slowly collected in the triplet manifold
over time. Symmetry breaking in the style of chemical inequivalence is present for a
desymmetrized spin pair, for example, in an asymmetric molecule. In practical cases, a
small chemical shift difference is often synthetically engineered between the two singlet
nuclei. Alternatively, magnetic equivalence is broken by inequivalent scalar couplings
to nuclei outside of the spin pair. In this next section, I will focus on the case of a
small chemical shift difference between the nuclei ¢ and j which leads to the coupling of

nuclear singlet and triplet states.

The eigenstates of the coherent Hamiltonian change if the chemical equivalence
of the two nuclei is broken. As the singlet and triplet states are no longer the true
eigenstates of the coherent Hamiltonian, a suitable matrix representation of the coherent
Hamiltonian is visualized using the Zeeman product basis. The matrix representation

of the coherent Hamiltonian using the Zeeman product basis is:

(aa (ap] (Bal (BB
| %g + % 0 0 0
e~ lep) | 0 Hom gy 0| (25
Bay | 0 S B G 0
185) 0 0 0 —QTE +z

where Qg = ; — Q; and is the difference between resonance offsets for spins ¢ and j.
The ladder operators It and I~ contribute to the off-diagonal elements in H zp, the
presence of which infers that the Zeeman product states are also not exact eigenstates
of the coherent Hamiltonian. The parts of the coherent Hamiltonian proportional to

fz-z + fiz contribute to the diagonal part of equation 2.51. The matrix representation
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of the coherent Hamiltonian is dependent on the level of inequivalence between spins ¢
and j. In the case of significant chemical inequivalence, the off-diagonal components are
considerably smaller than the difference in terms which they connect, i.e. 7J;; < QTQ
Under the secular approximation, the ladder operators may be omitted from the spin

Hamiltonian, and the matrix representation of Hgop, becomes diagonal. In this regime,

the Zeeman product states are approzrimate eigenstates of the ﬁcoh.

One may convert the matrix representation of the coherent Hamiltonian from the

Zeeman product basis to the singlet-triplet basis by using a conversion matrix Ops:

(Thal  (Sol (To| (T

| 1 0 0 0
Qps= 0B | 0 5 5 0| (2.52)

Ba) | 0 ;—% % 0

|B5) 0 0 0 1

Q ps converts the representation of an approximate eigenstate |P) written in the Zeeman
product basis P into the corresponding approximate eigenstate |S) written in the singlet-

triplet basis S:
|S) = Qps |P). (2.53)

Technically the conversion matrix Q ps serves as the identity operator, meaning that any

physical results are invariant of the chosen basis. An example would be the conversion

of the term I;, — I;.. Initially, I;, and sz are written in the Zeeman product basis,

using natural units, as:

A

liz = |aa) {(aal —[Ba) (Ba| + |af) (af| — [8B) (BB, (2.54)

Ij. = |aa) {aal — |af) (af| + |Ba) (Bal — |BB) (BA]. (2.55)

The difference in the fzz and T j» operators yields:
Liz — I;. = 2(JaB) (aB| — |Ba) (Bal). (2.56)
Apply the conversion matrix Q ps to both components of I, — 1 jzt

QLplaB) (aB| Qsp = %(|T0> (To| + |To) (So| + |So) (To| + |So) (Sol, (2.57)
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QLp18a) (Ba| Qsp = %(|T0> (To| — |To) (So| — [So) (To| + [So) (Sol - (2.58)

Hence, I 1z — fgz reported in the singlet-triplet basis is:
IAZ'Z — sz = ’T0> <So‘ + ’SO> <T0| . (259)

After using the conversion matrix QFS, one may formalize the coherent Hamiltonian
in the singlet-triplet basis. H,y, is again decomposed into Zeeman (equation 2.48) and

J-coupling (equation 2.45) terms:

Hyz = wo(|Ts1) (Ta]) = |T1) (T ), (2.60)

Hy = %E(mg (Tya]) = [T-1) (T-a ) + =2 (1To) (Sol) + |S0) (Tol)

: 2 X (2.61)
+§7TJ(|T+1> (Tya| + |To) (To| + [T-1) (T-1]) — §7TJ(|50> (Sol)-

The singlet-triplet basis matrix representation of the coherent Hamiltonian is therefore:

(So (T} 1] <TQ’ (T4
So) (=2 o o 0
aTo T |0 FeTE o U (2.62)
) | % 0 0
T4 \ 0 0 0 -2

ij
In the case of slight chemical inequivalence between nuclei ¢ and j, i.e. 7.J;; > QTA, the
oy
2

presence of the off-diagonal terms connects states spanning different manifolds of
exchange-symmetry and allows weakly allowed transitions between the nuclear singlet
and triplet states. These weakly allowed transitions are selectively pumped via carefully
calibrated rf-pulse sequences, and are the point of access to the nuclear singlet order

from the rapidly relaxing triplet states |1,,). The size of the chemical shift difference

dictates the parameters of the singlet NMR pulse sequences, as described at the end of

this chapter. The importance of the term Q;EJ may be mediated by external influences
such as shuttling the sample to regions of low magnetic field [14], using strong continuous
wave rf-irradiation [15, 149] or by employing chemical reactions [21, 55, 143]. Due to the
immunity of the nuclear singlet order to the exchange-symmetric in pair dipole-dipole

interaction, the interconversion between nuclear singlet and triplet states can often occur

slowly i.e. with low probability. If the long-lived nuclear spin order is accessible via a



96 Chapter 2: Hyperpolarization and singlet states

small chemical shift difference, the opportunity to encode information for times exceeding

those provided by ordinary magnetization is possible [24].

In order to finish this section, I will attend to the case of two chemically equivalent
spin-1/2 nuclei with inequivalent scalar couplings to other spins outside of the singlet
pair. This regime is relevant for accessing the nuclear singlet order at low magnetic
field [16] and in symmetric spin systems [21, 31, 160]. Consider the case of a chemically
equivalent spin-1/2 pair with an in pair scalar coupling denoted J;;. Now introduce a
third magnetic nucleus (spin k, I = 1/2) to the spin system. The scalar couplings from
the singlet spins ¢ and j to the exterior nucleus are denoted J;, and Jy, with Jy, # Jjp.

The coherent Hamiltonian ﬁéﬁﬁ is therefore written as:

A~

HIY = om gl - I + 2m Ty Ly - I + 21 T 0 - I, (2.63)

C

where the weak-coupling approximation has been used for the scalar couplings between

spins 4,7 and spin k. The matrix representation of f[éjoﬁ expressed in the following basis:
Bi/* = BY, ® BYp, (2.64)

where B]\N4 represents the kets for the group of spins IV in the eigenbasis M, is:

(Sol (T (To (T1]
. ijk
‘SO> —372FJ1] 0 mJJ 0
qST _ |T. 0 ALy T 0
Hcoh = | *1> . -7 2 + 2 b (265)
WJX wJij
To) 5 0 3 0
ijk -
IT.) \ 0 0 0 w4
where Jgk = Jir, — Jjk, and Jgk = Jir + Jji. The matrix representation of fléfjfl is pre-

sented in a subspace which contains the relevant spin dynamics, i.e. the kets corresponds
to only ngT ® |a>1} p- The |Sp) and |Tp) states (singlet-triplet basis of spins i and j) are

ijk
connected by the off-diagonal term WJ2A , and hence weakly allowed transitions are al-

lowed between the |Sp) and |Tp) states. Even in the case of chemical equivalence, the term
ﬁ breaks the symmetry of the spin system and therefore provides the access route
for polarization transfer between the two manifolds of differing exchange-symmetry. In
cases where differential out-of-pair J-couplings are present, the singlet-triplet population

imbalance may be probed for molecules with chemically equivalent spin-1/2 pairs.
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2.10 Singlet polarization

Singlet NMR remains limited by the low polarization available from experiments per-
formed at room temperature. Hyperpolarizable molecules with built-in long-lived states
offer a promising gateway to alleviate such sensitivity issues, see chapter 4 for more
details [147]. As with many hyperpolarization experiments, it is useful to quantify the
level of nuclear Zeeman polarization reached as a result of the hyperpolarization process,
see section 2.3. In the case of hyperpolarized singlet experiments, one may also desire
to know the amount of nuclear singlet order contained within the spin density operator.
At this point, it is useful to introduce the concept of singlet polarization. The singlet
polarization pg is the projection of the spin density operator p onto the operator Py (see

appendix B for more details):

Tr pTﬁ
g = # (2.66)
where P is the singlet polarization operator and is defined as:
. 3 . .. L

The singlet polarization pg is normalized to ensure that the maximum singlet-triplet
population difference is 41, i.e. the singlet state |Sp) is entirely populated whilst the
triplet manifold is fully depleted of population. In the opposite case, i.e. complete
population of the triplet states |T5,,), the singlet polarization pg is -1/3. The bounds

on the nuclear singlet polarization are therefore: —1/3 < pg < +1.

As is often the case in DNP experiments, the experimental desire is to shuttle the
maximal amount of spin population to the m; = 41 nuclear triplet states, depending on
the offset frequency of the applied microwaves. In this way, the maximum population
difference, and hence singlet polarization, is accrued between the spin-0 and spin-1
manifolds. The maximum Zeeman polarization between the m; = +1 nuclear triplet
states is established simultaneously. Estimates of the nuclear Zeeman polarization are
easily obtainable, and can be used to provide the level of nuclear singlet polarization.
Consider an ensemble of non-interacting, inequivalent spin-1/2 pairs (i and j) in the
solid-state, the eigenstates of the coherent Hamiltonian at high magnetic field are given

by the Zeeman product states. The populations of the Zeeman product states p(1;1;)
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are combinations of the populations p; and p; for each spin:

plasag) = (1+pi)(1+pj)/4, (2.68)
pleif;) = (1+pi)(l—pj)/4, (2.69)
p(Bicy) = (L—pi)(1+p;)/4, (2.70)
p(BiB;) = (1—pi)(1—pj)/4, (2.71)

where the factor of 1/4 is included to ensure that: p(a;o;)+p(aif;)+p(Bicy)+p(Bif;) =
1, i.e. the maximum polarization of the outer |a;o;) and |3;5;) states is £1. Assuming
that the spins ¢ and j are equally polarized by DNP at low temperatures: p; = p; = pz,
where py is the Zeeman polarization of an individual nucleus and is orders of magnitude
greater than the thermal equilibrium polarization. The nuclear Zeeman product state

populations may therefore be rewritten as:

plaiey) = (14 2pz +p7)/4, (2.72)
plaify) = (1-p3)/4, (2.73)
p(Biey) = (1-p3)/4, (2.74)
p(BiBj) = (1—2pz+py)/4. (2.75)

Consider the sequence of events during the dissolution-DNP process. After the mi-
crowaves are halted the solid mixture of sample, radical and glassy matrix is rapidly
dissolved by a jet of superheated solvent before being adiabatically transferred to a high
resolution NMR, magnet in ~10s. If the sample of interest contains a pair of nearly
equivalent spins-1/2 (i and j) satisfying the condition: QX < Jyj for Jij,vi; > 0, the
liquid-state eigenstates of the coherent Hamiltonian at high magnetic field may be ap-

proximated by the nuclear singlet and triplet states:

plosey) = p(Tha), (2.76)
p(aiB;) — p(So), (2.77)
p(Bicj) — p(To), (2.78)
p(BiBj) — p(T-1). (2.79)
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The singlet polarization, defined by using the singlet polarization operator Pg in equa-
tion 2.67, is the normalized population difference across the singlet Sy and triplet 75,

manifolds:
(p(Ty1) +p(To) + p(T-1))
3 .

ps = p(So) — (2.80)

Inserting expressions from equations 2.72-2.79 into equation 2.80 yields a singlet polar-
ization which is dependent on the nuclear Zeeman polarization. The singlet polarization

ps as a function of the nuclear Zeeman polarization pyz is therefore:

2
pg = _%_ (2.81)

In the case that DNP succeeds in a total population of the |T4;) states, i.e. pz==1,
the corresponding singlet polarization is -1/3. The negative sign of the singlet polariza-
tion indicates a complete depletion of population from the m; = 0 state, and hence a
population deficit for the singlet state. Strong nuclear Zeeman polarization is therefore
always accompanied by a strong singlet polarization for an ensemble of strongly coupled
spin-1/2 pairs. As shown in chapter 4, the hyperpolarized singlet order has the poten-
tial to remain observable at long times after initially being polarized, in which time the
hyperpolarized spin order available from the nuclear Zeeman polarization has decayed

to thermal equilibrium with the characteristic time constant 7T7.
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2.11 Singlet methods

In the previous section, the fundamental properties of the nuclear singlet and triplet
states for 2-spin-1/2 systems were presented. Nuclear singlet order, defined as the popu-
lation imbalance between the two manifolds of differing exchange symmetry, was shown
to be immune to relaxation from the in pair dipole-dipole coupling. Long-lived states
were consequently proposed as a means to overcome the limited signal lifetimes avail-
able from longitudinal magnetization, and extraordinary singlet lifetimes far exceeding
T have previously been observed in a range of molecular systems [29, 33, 35]. Singlet
order is a magnetically silent arrangement of spin isomers, and is undetectable in con-
ventional NMR, experiments. In order to access the long-lived spin order, alternative
pulse sequences which interconvert population between the singlet and triplet manifolds
are required. In this section, I discuss the two favoured pulse sequences for the prepa-
ration of nuclear singlet order, continuing the matrix representation formalism of the
coherent Hamiltonian from section 2.9. The singlet-triplet conversion schemes used in
this thesis are the spin-lock induced crossing (SLIC) and magnetization-to-singlet (M2S)
pulse sequences. Each pulsed method contains inherent advantages and disadvantages,

but are both efficient in creating strong population imbalances for spin-1/2 pairs.

2.11.1 Signal detection for spin-1/2 pairs

Before contemplating the pulse sequences used to observe and manipulate the nuclear
singlet order, I would like to first recognize the effects that the NMR silent property
of the nuclear singlet state has on the detection of ordinary magnetization. Consider
a single spin i (I=1/2, 7; > 0) in high magnetic field. Using Dirac notation, the
quantum state of the system is represented by the ket vector |I,my), where I is the
angular momentum quantum number and m; is the spin projection quantum number.
As discussed in chapter 1, the Zeeman effect lifts the degeneracy of the states |I, my) for
a particle in a magnetic field and reveals a substructure identified by quantum numbers
my = —I,...,+1. In this case, the values of m; are +1/2, and the eigenvalues of the I
operator are ii/2 and —h/2, respectively. In quantum mechanics, the ladder operators

raise or lower the eigenvalues of another operator by the quantity h. The raising I :“ and
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lowering fi_ operators are defined as:

LI, mr) = h/I(I +1) —my(my + 1) [I[,my + 1), (2.82)

I |1, mp) = h/I(I +1) —mr(my — 1) |I,my —1). (2.83)

The action of the operator f:r on the ket |I,mj) raises the value of m; to m; + 1,
corresponding to a state-to-state transition from |I,my) to |I,m; + 1). The transition
element (I, my + 1| I |1, my) for a lone spin-1/2 nucleus gives a coherence amplitude of
h, and hence the ladder operators for an individual spin-1/2 nucleus have the following

matrix representations:

(ol (8l (o] (Bl
ﬁw—k@(o 1)&i}hﬂ<0 0) (2.84)
B) \0 0 By \1 0

Now consider a pair of spins ¢ and j in high magnetic field. Assume that the two spins:
1. both have an angular momentum quantum number I = 1/2; 2. are heteronuclear; and
3. are chemically inequivalent (QX > 0). In this case, the eigenstates of the coherent
Hamiltonian are given by the Zeeman product state states, see equation 2.14. It can be
shown, by similar methods, that the matrix representation of the raising I Z and lowering

I; ; operators are:

(aal (af| (Ba| (BB (aal (ap| (Ba| (BB
lac) [0 1 1 0 lac) [0 0 0 0
%:mm 0 0 0 1 &szm 1 0 0 0
1Ba) [ 0 0 0 1 1Ba) | 1 0 0 0
188) \ 0 0 0 0 186) \ 0 1 1 0

(2.85)

The matrices are represented using the same ordering of the Zeeman product basis as
in equation 2.51. A typical pulse-acquire experiment probes single quantum (-1) tran-
sitions between spin states separated by the nuclear Larmor frequency. There are four
single quantum (-1) transitions for a chemically inequivalent spin-1/2 pair, as shown in
figure 1.10. The NMR signal intensity from the spins in the sample Ssupmpie is propor-

tional to the trace of the spin density operator p projected upon the lowering operator
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Tr[pl;]
Te[i (1)1

ij\"1g

(2.86)

Ssample X

where the inner product selects the relevant components of p. A (7/2)_, pulse tilts
the magnetization vector, originally aligned with static magnetic field, into the z-axis of
the rotating frame. The spin density operator p transforms as follows: 1 + I, +1 jz =
1+, +1 jz- In the Zeeman product basis, the matrix representation of the operator

fz'm + jjx is:

(aal (o] (Bal (B

laay [0 % % 0

fotbp= 1B 55 0 0 & (2.87)
Ba) | 5 O 0 5
BHYNO &0

By using equation 2.86, and the matrix representations of the operators I i and Ly +1 s

2

the signal intensity is determined to be: Ssqmpre o

Now consider a second pair of spins ¢ and j in high magnetic field, and assume the
two are magnetically equivalent (Qij = 0). In this case, the eigenstates of the coherent
Hamiltonian are given by the nuclear singlet and triplet states. An example of the energy
level structure for a pair of magnetically equivalent spins is shown in figure 2.12. For a
magnetically equivalent spin system, only single quantum triplet-triplet transitions are
relevant. No directly observable transitions occur between states with differing values of
my. In order to make a direct comparison with the case of chemically inequivalent spin
pairs the operators fZ; and Iy + 1 jz Tequire transformation into the singlet-triplet basis,

which can be achieved using the transformation matrix in equation 2.52. The resulting

operator matrix representations are as follows:

(Sol  (Thal  (Tol (T-a] (Sol  (Thal  (Tol (T-a|
(So| 0 0 0 0 (So| 0 0 0 0
I; = (Tial 0 0 ! 0 & fip+1I, = (Tl | 0 0 0 0
(To| 0 1 0 1 (To| 0 V2 0 0
(T—1] \ 0 0 1 0 (T_1] \ 0 0 V2 0
(2.88)

The matrices are represented using the same ordering of the singlet-triplet basis

as in equation 2.46. Evaluating equation 2.86 in the singlet-triplet basis also returns
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o
N

signal intensities Ssgmpre for different regimes of chemical and magnetic inequivalence,

a signal intensity: Ssqmpre A notable outcome of this result are the identical
which is hardly surprising as the signal at time ¢t = 0 does not depend on the form
of the coherent Hamiltonian. It is interesting to note that in the singlet-triplet basis
~T75% of the spin ensemble are in states corresponding to |T,,), and hence ~25% of
the total population cannot undergo observable transitions with other |7},,,) states. The
operators f; and Ijp + 1 jo have matrix representations which are dependent on the
chosen orthonormal basis, whilst the scalar Tr[ﬁf Z;] is basis independent. These results
demonstrate the robustness of detecting ordinary magnetization in regimes of magnetic
equivalence, as the calculated signal intensity is not compromised by having ~25% of

the total population residing in the unobservable spin-0 state.

2.11.2 Singlet NMR experiments

The state of a nuclear ensemble, neatly represented by the spin density operator p,
evolves over time in accordance with the manipulations imposed on the closed system
by the spectroscoper, the internal (J-couplings, chemical shifts etc.) and external (static
magnetic field Eo) interactions present throughout the experiment, and spin relaxation
(the nuclear ensemble returning to thermal equilibrium). The spin density operator can
additionally be engineered by the design of a suitable coherent Hamiltonian to attain
a desired form of spin order. A typical singlet NMR experiment consists of three main

parts:

1. Prepare. What is the state to be prepared? The pulse sequence employed in
an NMR experiment ultimately depends on the target state of the spectroscoper.
There are likely alternative methods of preparing the same state but the method

of preparation is ultimately limited by the entities of interest.

2. Evolve. Once the state of choice has been prepared, time evolution is an advanta-
geous tool for determining the relaxation properties of particular spin orders. The
simplest examples are the inversion and saturation recovery experiments used to

investigate the longitudinal relaxation time 77.

3. Reconvert. The detection state of all NMR experiments is the same, and regard-

less of how the chosen state was prepared and consequently evolved, the detection
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---» evolve --»

. .- prepare "~ . T T T T T 7 ? reconvert ..
—{ magnetization ———>1 singlet order ————>| magnetization

user .
relaxation
controls

FIGURE 2.13: The three crucial stages of a singlet NMR experiment. Prepare: the spin
system is engaged by incoming pulses from the spectrometer which encode the original
magnetization as a more preferential form of spin order where relevant information is
consequently stored. Evolve: the newly established spin order is propagated forward in
time under the influence of coherent effects (including user defined control such as con-
tinuous wave rf-fields and pulsed field gradients) and incoherent relaxation phenomena.

Reconvert: NMR experiment detect physical observables, such as the I~ operator,
and as such reconversion to observable magnetization is required for monitoring the
evolution and relaxation of the established spin order.

state must correspond to a physical observable. In this respect, singlet pulse se-

quences are often symmetric about the evolution period.

Each basic stage is depicted graphically, and in chronological order, in figure 2.13. Impor-
tantly, the preparation stage requires the ensemble to be placed in a magnetic field EO,
which creates a small, but observable, population imbalance between nuclear spin states
once thermal equilibrium is reached. The longitudinal magnetization obtainable from
this process acts as the starting point for the preparation procedure to come [166, 167].
The preparation and detection stages of singlet NMR experiments will be the main

points of focus in this section.

2.12 Spin-lock induced crossing

The spin-lock induced crossing (SLIC) pulse sequence has been the preferred method of
accessing nuclear singlet order in this work. The approach was first developed by Rosen
and coworkers in 2013 [157], and uses the small chemical shift difference between spin-
1/2 nuclei to access to the long-lived singlet order. Other variants, such as the adiabatic
SLIC [158, 159], also exist and achieve efficient triplet-singlet population interconversion.
A schematic of the spin-lock induced crossing (SLIC) pulse sequence is illustrated in

figure 2.14.

This SLIC pulse sequence operates as follows: after the initial 90° pulse, a radiofre-

quency field is applied with a 90° phase shift. The amplitude of this field is selected
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FIGURE 2.14: The spin lock induced crossing (SLIC) pulse sequence used for accessing
the long-lived singlet order in near-equivalent pairs of spin-1/2 nuclei and measuring
its resulting decay.

so that the nutation frequency wspic/27 matches the J-coupling J;;. This establishes
a resonance which causes the spin-locked magnetization to be converted into nuclear
singlet order through the action of the chemical shift difference, with the conversion
complete in a time 7g110, neglecting relaxation and other complications [157]. The de-
pendence of 7gr1c on the chemical shift difference QZ is explored later. The preparation
stage of the SLIC pulse sequence excites the maximum obtainable nuclear singlet order,
in the case that the conversion rate is fast compared to relaxation. The nuclear singlet
order is allowed to evolve for a variable interval gy, occasionally in the presence of
a larger-amplitude “spin-locking” rf field (nutation frequency wrock/2m), which sup-
presses singlet-triplet mixing [149]. A second SLIC pulse sequence converts the nuclear
singlet order into transverse magnetization, and the induced NMR signal is detected,
see figure 2.14. The decay of the long-lived nuclear singlet order is tracked by repeating

the pulse sequence with different values of the singlet evolution interval mgy .

2.12.1 SLIC experiment for inequivalent spin-1/2 pairs

It is possible to examine the effects of a weak, transverse field applied to a spin-1/2
nuclear pair ¢ and j. In such cases, the offset frequency of the weak rf-field is assumed
to be equal to the mean resonance position of the two nuclei, i.e. (€; +€;)/2. In this

section, it is convenient to define the basis using linear combinations of the Zeeman



106 Chapter 2: Hyperpolarization and singlet states

product states:

65) = cos("2)[aB) — sin(*) |Ba) (289
IT-1) = |8B), (2.90)
or) = sin() |aB) + cos(%) Ba). (2.91)
T1) = eq), (2.92)

where 6;; is the arctangent of 27rJ,-j/Qij, see equation 1.15. Only the m;=0 states (|¢g)
and |¢r)) are connected via J;; and can become mixed. As the mixing angle 6;; — 7/2
(regime of chemical equivalence) the nuclear singlet and triplet states become eigenstates
of the coherent Hamiltonian fICOh, and equations 2.15-2.18 are returned. In order to
understand how the application of a weak, transverse field can lead to the augmentation
of nuclear singlet order, I revisit the matrix representation of the coherent Hamiltonian
H, at high magnetic field. In the case of slight chemical inequivalence between the
two nuclei ¢ and j, i.e. wJ;; > QTZ, the approximate eigenbasis for an ensemble of non-
interacting spin-1/2 pairs is the singlet-triplet basis (6;; < 7/2). A transformation into
the rotating frame simplifies the matrix representation of H ST 1, as terms on the order of
the nuclear Larmor frequency are removed. Diagonalization of H ST L, gives the eigenvalues

in equations 1.17-1.21, and the corresponding matrix representation of H cb:)h is shown in

equation 2.62.

A low amplitude spin-locking field ngmc is applied at the average resonance fre-
quency of the two nuclei (£2; +€2;)/2 creating off-diagonal terms which connect the three
I=1 nuclear triplet states, i.e. the spin-locking pulse is applied on resonance with the
triplet transitions. The I=0 nuclear singlet state remains disconnected from the triplet
manifold, as only single-quantum triplet-triplet transitions are allowed. The coherent

Hamiltonian in the presence of weak rf-irradiation H (iﬂ of 18:

) Qij R ) QU
Heonot = —=(Iip + 1) + =2 5

5 (Izz — sz) + 27TJZ'jfi . fj + ngLIC(IA'L"T + fjx), (293)

and has the following matrix representation in the singlet-triplet eigenbasis:
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(psl  (T-a|  (or] (Tl

6s) [(=F 0 922 0

R A 7“;] "":i]}%c o | o
|oT) Q;AJ wéj% ngj wg%
‘T+1> 0 0 wzsj%c ﬂ‘;“

where wé{lc is the nutation frequency of the applied SLIC pulse. The off-diagonal terms

are proportional to ngLIC and QX with:
07 =, — Q. (2.95)

The duration of the SLIC pulse is typically on the order of milliseconds to seconds. Such
pulse durations are approximately on the timescale of the spin system evolution con-
trolled by the in pair scalar coupling J;; and the chemical shift difference QZ Assuming
a small but non-zero in pair scalar coupling, and a long spin-locking time relative to
the nuclear Larmor period, allows the coherent Hamiltonian can be diagonalized for a

second time. The diagonalized matrix representation of H f;{ of 18

(Sol 1) 10) [¥41)
—3nJ;; Q9 QY
[So) (=57 25 0 ~avs
7 ST [_1) 23 LEL R 0 0
Hcoh,rf = -1 2v/2 2 SLIC - (296)
o) | 0 0 = 0
Q4
Y1) \ =35 0 0 i{ + wsLIC

In the presence of continuous wave (CW) irradiation the mixing angle §;; is replaced by
6+ (see appendix B for more details) and the mixing between the nuclear singlet and

triplet states is governed by the nutation frequency of the CW pulse wcow:

2
tan(6,¢) = w(;JW. (2.97)
QA
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Diagonalization of the coherent Hamiltonian H S:']; o¢ provides four “SLIC” eigenstates:

CO

S0 = <5 [VEsin(6) o)~ cosl)(Tia) + [T, (2.98)
V1) = GIVAITY) —sin(,)(1To) +IT-0)) — Vcos(fg) Sol],  (2:99)
) = () = [T0) (2.100)
Y1) = SIVEITo) +sin(@)(Tir) + 7)) +Vcos(,p) |So)].  (2.101)

In the limit of strong CW irradiation, i.e. wow > QZ, the angle 0,; — 7/2, and the

SLIC eigenstates are consequently simplified to:

So) = 150), (2:102)
o) = (T + 7)) = = [T} (2103)
o) = () = 70) (2.104)
) = T+ [Te)) + = ). (2.105)

which is the eigenbasis of the operator IAm +1 jz- In cases of slight chemical inequivalence
and no continuous wave irradiation, §;; — 7/2 and the same eigenstates are found under
the condition of weak spin-locking. The eigenstate |Sp) is maintained in the presence of
the spin-lock pulse, whilst the states |iy,,) become superpositions of the nuclear triplet
states |Ty,,). The states |Sp) and |t)g) are separated by J;; and do not depend on wsric,

whilst the states |1)11) are linearly dependent on wspic.

The final form of the SLIC eigenstates and coherent Hamiltonian H foﬂ ¢ showcase
the inner workings of the SLIC pulse, and a clear route for triplet-singlet population
interconversion. Suppose that the nutation frequency of the long SLIC pulse is set to

match the in pair scalar coupling J;; of the singlet spins 7 and j:
WsSLIC = 27‘(1]1']'. (2106)

In this case, it is evident that the populations |Sp)(So| and |¢)_1)(¢)_1| are connected
as the energies of the states |Sp) and |¢_;) are equal. A “level-crossing” [168-170] is

therefore created by the application of a weak spin-locking field, and the off-diagonal
ij
elements 2(2 \% facilitate a population transfer between states |Sp) and |¢)_1) in this regime.
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FIGURE 2.15: a) Simulated trajectories for the transfer of longitudinal magnetization

f,iz + I j- into transverse magnetization fm- + I ja (green), f,iy _i iy (red), and nuclear
i TR I S R e b . o
singlet order — - +21\/§'7 AR (black) using the pulse sequence described in fig-

ure 2.14 for a pair of near-equivalent spin-1/2 nuclei. Residual longitudinal magne-
tization I;, — I j» is shown by the blue trajectory. The simulation uses the following
parameters: J;; = 11.7 Hz, QZ = 13.5ppb, wsric = 2m11.7 rads™!, 7gric = 100ms,
wrock = 900Hz, /gy = 100ms and Eo = 11.7T. No relaxation is included in the
simulation. b) Simulated trajectories of population difference operators |T_1){(T_1]| -
|T1)(T 1| (blue) and [vh_1){(1p_1| - |So){So| (black) under the action of the pulse se-
quence described in figure 2.14. The simulation parameters are the same as in a).

Simulated trajectories of the nuclear singlet order and the Cartesian product operators

Iiw + fx, fiy — ij and I;, — sz for the SLIC pulse sequence are shown in figure 2.15a).

The initial 905, pulse creates coherences between the |¢g) and |T;) states, which
corresponds to a population difference across the |T1) states. Over the course of the
spin-locking duration, the |Ty1) population difference evolves into a population difference
between the states [)_1) and |Sp), see figure 2.15b). The rate of polarization transfer is
modulated by the size of the chemical shift difference QX As most J-synchronous trans-
fers are oscillatory, population interconversion between the singlet and triplet states is
predictable and controllable. The timescale for maximal polarization transfer is there-

fore:

2

o 2.107
V204 ( )

7SLIC =

2v/2m

ij o
QA

which occurs at the halfway point of the polarization oscillation period

2.12.2 SLIC experiment for equivalent spin-1/2 pairs

As considered in section 2.9, a chemically equivalent spin-1/2 pair (¢ and j) scalar coupled

to an external spin-1/2 nucleus (k) requires an alternative route of access to the nuclear
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singlet order. In this case, the coherent Hamiltonian ﬁégﬁ is given in equation 2.63. In
the presence of a weak rf-field wSLIC applied to spins ¢ and j the coherent Hamiltonian

Héf}h ¢ becomes:
HIY o= 2m il I + 2m T Lz - I + 2m il - Ine + w o (o + L), (2.108)

The matrix representation of the coherent Hamiltonian I:Iéf)]fl .¢ in a frame that diagonal-

izes the fm + 1 ke Operators is:

O I Ty N L By

|Szjk> —3mJy; _ inAjk 0 WJZAJk
i 2v2 . 2v2
ik wJy wJij wJd
ijk ij _ A g by
Hcoh of = W) 1> 2v2 2 .@SLIC 2v2 0 ) (2109)
W) k;> 0 ﬂjgk wJij TI'Jgk
e 2v2 2 2v2
ijk xJy nJY wJii
W)\ S5 0 S 3 twsic

where the off-diagonal terms are proportional to:

T = T = Tk, (2.110)
JI = Jo+ Tk, (2.111)

and the eigenvalues of the diagonalized coherent Hamiltonian H éh Lf are:

1S75) = 1S0) ® [Tk, My), (2.112)
W) = GO0 + 1T = 2= T @ [ Ma) (2113)
9 = (0T — T @ Ve My (2.114)
) = GO+ 1T+ s [T0)] @ e, M) (2.115)

where |Ij,, My, ) is the spin state of nucleus k. The matrix representation of the coherent
Hamiltonian H ih ¢ shown in equation 2.109 is given in a subspace of H Oh £ Which
contains all the relevant spin dynamics. The subspace consists of 4 states, out of a total
of 8 states, with the chosen states corresponding to the |5) state of spin k.

Consider again the case of wéjmc matched to 27J;;. A level crossing is created

.. ijk
between the states |S§ " and (¢ k| and the off-diagonal terms 2{/5 allow a population

transfer which gradually accumulates the nuclear singlet order. In contrast to the case of

two inequivalent spins-1/2, the maximum triplet-singlet conversion efficiency is achieved
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FIGURE 2.16: The magnetization-to-singlet-singlet-to-magnetization (M2SS2M) pulse
sequence used for accessing the long-lived singlet order in near-equivalent pairs of spin-
1/2 nuclei and measuring its resulting decay.

when:

gk V2
TS = Sk (2.116)
A
as the oscillatory transfer is modulated by the difference in out-of-pair scalar couplings

JiIF [21, 31, 157, 160].

2.13 Magnetization-to-singlet-singlet-to-magnetization

The small chemical shift difference between spin-1/2 nuclei allows coherent access to
the nuclear singlet order, as demonstrated by the SLIC pulse sequence in section 2.12.1.
An alternative pulse sequence which also operates effectively in the near-equivalence
regime is the magnetization-to-singlet-singlet-to-magnetization (M2SS2M) [150, 156].
The M2SS2M pulse scheme was realized by Tayler and Levitt and was originally used
as a method of accessing nuclear singlet order, before the SLIC sequence was available.
Although not quite as simple as the SLIC, the M2SS2M does have its advantages and is
presented in this thesis alongside D-DNP experiments. A comparison of the SLIC and
M2SS2M pulse sequences is given in appendix B. In this section, an evaluation of the

M2S pulse sequence is given.

The M2SS2M pulse sequence is built on two repeated blocks of J-synchronized
echo (JSE) trains that, if applied in an appropriate manner, combine to produce a more
sophisticated pulse sequence which has the ability to interconvert magnetization and

singlet order. A schematic of the M2SS2M sequence is shown in figure 2.16. The spin
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density operator description of the M2S pulse sequence (first half of the M2SS2M pulse

sequence) for a pair of near-equivalent spin-1/2 nuclei (¢ and j) works as follows:

Considering that the nuclear singlet |Sp) and triplet |T},,,) states have near iden-
tical populations at thermal equilibrium, the longitudinal spin order of the spin system
is defined as the population difference between the outer triplet m; = +1 states (|7-1)
and |Ty1)):

@iz + Iz = | T /(T | — [T1 ) (T4 (2.117)
The application of an initial 905, radiofrequency pulse tilts the longitudinal magneti-
zation I, + I j- into the xy-plane and creates transverse magnetization. The Cartesian
product operator L + fjx corresponds to triplet-triplet coherences between the outer

my = +1 triplet states |T£1) and the inner m; = 0 triplet state |Tp):
Lig + Lip = |Ta)(To| + |To) (T | + |To)(T1| + |T_1)(To| (2.118)

The JSE unit is constructed from a composite 1805 pulse sandwiched by two delay peri-
ods of 7 = 1/4J;j, see figure 2.16. Successive JSE units transform the single quantum
coherences into triplet-singlet coherences between the outer my==+1 states |T%+1) and the
singlet state |Sp), which corresponds to the operator fiy 1 jy in the Cartesian product
operator basis. Depending on whether the number of echoes n; is odd or even, the

operator I;, — I, is expressed as:
p y — 4jy p

m=odd: Ty — Ty = i(|T1)(Sol + 180) (T | + [SoTa| + [T1)(Sol),  (2.119)

~ N

m=even: Ty, — I, = i(|Te1) (So| + [So)(Ta] — [So){(Ta] — [T_1)(Sol).  (2.120)

A shortcut would be to swap the states |Tp) and |Sp). The number of echoes n; exploited
to switch the state |Tp) with |Sp) is dependent on the size of the chemical shift difference

QZ The echo number n; is defined as:

T
291']"

n, = (2.121)

and in practice must be rounded to the nearest integer. As a rule of thumb, a smaller
chemical shift difference QZ with respect to the in pair scalar coupling J;; indicates that
more echoes are required to interconvert the state |Tp) with [Sp). In the near-chemical

equivalence regime 6;; — 0 and large numbers of echoes are required to exchange |7p)
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with |Sp) in certain cases [54]. The following 905 pulse rotates the transverse magneti-
zation into I;, — sz, i.e. a zero quantum coherence between the m;=0 states. The 90
rotation leaves the singlet state unperturbed whilst interconverting the |T%1) and |Tp)

state populations:

(T +[T)) 5 jF\;§|To>, (2.122)
1S0) 28, |5,) . (2.123)

Equations 2.119 and 2.120 transform under the application of the 905 pulse in order to

represent the operator I, — sz [156]:

A

N 1
ny=odd: [z —Ij; = 7(|To><50| — [So)(To|), (2.124)

- . 1
ni=even: I[;; —1I;, —2

(176)(Sol + [S0)(Tol)- (2.125)

5

The echo number n; is often chosen to be even since a second JSE train with half the
number of pulses (n2=n;/2) is used later in the M2S sequence. In the case of n; = even,
the effect of free evolution for a time 7; = 1/4.J;; under an internal Hamiltonian governed

by the in pair scalar coupling J;; phase shifts the triplet-singlet coherences [25, 150]:

A 1
111 =even: Iiz — Ijz = 72(’T0><S()’ — |S(]><T0’), (2126)

i.e. the coherences have opposite sign. The resulting coherences may now be converted
to a population difference between the m;=0 |Sy) and |Tp) states. A second JSE train,
performed with half the number of echoes (ng=7/46;;), transforms the singlet state |Sp)

into a superposition of m;=0 states:

So) + |7o)

|SO> — \/i s

(2.127)

and converts the coherences described in equations 2.124 and 2.125 into a singlet-triplet

population difference Qgr between the m; = 0 states |So) and |Tp):
A 1
ni;=even: QST = § |SO><S0| - |T0><T0| . (2.128)

The M2S sequence is therefore capable of performing the same task as the SLIC pulse,
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FIGURE 2.17: Simulated trajectories for the transfer of longitudinal magnetization I, +

I ;= into transverse magnetization Lo+ 1 iz (green), fzy — ij (red), and nuclear singlet
S PO oy Sl Sl . . R
order — 21z ti=t ONER i (black) using the pulse sequence described in figure 2.16 for

a pair of near-equivalent spin-1/2 nuclei. Residual longitudinal magnetization I.—1 iz

is shown by the blue trajectory. The simulation uses the following parameters: J;; =

11.7Hz, QY = 13.5) ppb, n; = 3, ny = 1, 75 = 21.4ms, wrock = 500 Hz, 7gy = 100 ms

and By = 11.7T. No relaxation is included in the simulation.

and as the name suggests convert longitudinal magnetization into nuclear singlet or-
der (proportional to Qsr, see later). It should be noted that the time reversal of the
M2S sequence (applying the sequence in reverse chronological order) achieves the op-
posite transformation and converts nuclear singlet order into observable magnetization
(the initial 90§, pulse is ignored). The reverse pulse sequence is termed singlet-to-
magnetization (S2M). The S2M pulse sequence employs the same parameters as the
M2S pulse sequence. Simulated trajectories of the nuclear singlet order and the Carte-
sian product operators Lin + fx, fiy - ij and I, — sz for the M2SS2M pulse sequence
are shown in figure 2.17. The singlet-to-magnetization (S2M) pulse sequence is used
in the context of this work to draw out the hyperpolarized singlet order from a pair of

near-equivalent protons in a singly deuterated methyl group.

It is interesting to note the upper bound on the polarization transfer for the fol-
lowing transformation: magnetization — singlet order — magnetization. As previously
discussed, the form of the spin density operator at the commencement of the evolution
period gy is proportional to QST for two spins-1/2 (i and j). The singlet-central triplet

population difference QST prepared by the M2S sequence (equation 2.128) may be more
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conveniently expressed as:

S0) (Sol — |To)(To| — 1S0)(So| (1T 1) (T | + [To){To| + [T-1)(T-1]) (2.129)

1
3
 S(Ta) (Tl = 2To)(To] + [T){T 1)),

where the first term (line 1) corresponds to the nuclear singlet order, i.e. the imbalance
between the singlet and mean triplet populations [150, 151]. The second term (line 2)
represents the perturbed nuclear triplet populations, which are currently out of thermal
equilibrium due to the application of the M2S pulse sequence. Suppose now that QST is
left to evolve for a time interval which is long with respect to the longitudinal relaxation
time 77 but short with respect to the singlet relaxation time Ts. Assuming that the
nuclear triplet populations return to uniformity after a time period of ~ 5 x T3, with
minimal decay of the nuclear singlet order, the singlet-central triplet population differ-
ence corresponds to ng, see equation 2.25. The term relating to the longitudinal spin
order of the singlet pair ¢ and j becomes diminishingly small at long evolution times
Tev, and is neglected. The resulting spin density operator may therefore be written as

the sum of two orthogonal terms:

Qso — g (1S0){(So| — |To)(T0]) (2.130)

+ %(!5&(50\ — T (T | + [ To)(To| — [T-1) (T-1])-

The first term (line 1) is reconverted by the S2M pulse sequence into the operator
2/3(Iiw + fjx), i.e. 2/3 of the starting Zeeman polarization. The M2SS2M pulse se-
quence therefore has a maximum theoretical efficiency of 2/3 for the conversion scheme:
magnetization — singlet order — magnetization. The SLIC pulse sequence possesses an
identical maximum theoretical conversion efficiency. A more detailed approach to the
bounds on polarization transfer is discussed by Sgrensen [171] and Levitt [151, 172, 173].
In practice, efficiencies lower than 2/3 are observed due to the additional loss of nuclear
spin order related to the effects of relaxation during pulse sequence execution, pulse im-
perfections, B magnetic field inhomogeneities and other complications. Other terms are
also present in Qg0 (line 2), but may be destroyed via singlet filtration techniques [54—

56].






Chapter 3

Long-lived nuclear spin states in

monodeuterated methyl groups

As previously discussed, long-lived states (LLS) are configurations of nuclear spins which
are protected against relaxation in nuclear magnetic resonance (NMR) experiments [14—
27, 35, 142, 144, 149, 150, 156-158]. In systems of spin-1/2 pairs, the LLS is called singlet
order. This consists of the population imbalance between the spin-0 singlet state and
the spin-1 triplet states [14-16]. The decay time constant of singlet order is denoted 7.
Access to the nuclear singlet order is provided by a chemical shift difference between the

participating spins, or by differences in spin-spin couplings to spins outside the pair [23].

LLS have also been observed in the 3-spin-1/2 systems of rapidly rotating methyl
groups in solution [141, 155, 174]. In this case the LLS is given by the imbalance in
populations between spin states spanning different irreducible representations of the
Cs permutation group [175]. Some materials, such as ~-picoline, display quantum-
rotor induced polarization (QRIP) effects, in which a large polarization of the methyl
LLS is induced by dissolution of the material from cryogenic conditions [141, 176-178].
However, the hyperpolarized LLS only gives rise to observable NMR signals through
an incoherent cross-relaxation mechanism involving a fourth nuclear spin, which greatly

reduces the available signal enhancement [141, 155, 174].

Since methyl groups are ubiquitous in nature, the exploitation of methyl LLS
is potentially attractive. In this chapter I show that, in certain cases, it is possible to

achieve coherent access to a methyl LLS with a high conversion efficiency into observable

117
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NMR signals. The conditions are: (i) the methyl group is monodeuterated, and therefore
contains a proton pair; (ii) the local environment is chiral, and (iii) the three methyl
rotamers have sufficiently different populations, so that a small chemical shift difference
is induced between the CHyD protons after averaging over all populated states. It is
shown that the small chemical shift difference allows coherent (and therefore efficient)
access to the long-lived singlet order of a proton spin pair, using known radiofrequency

pulse techniques [150, 156-158].

In this chapter, the proton LLS in the N-CHsD group of N-CHyD-2-methylpiperid-
ine is also presented, with the observed singlet lifetimes T's found to be between 20 and 55
seconds (dependent on temperature). The ratio of the singlet relaxation time Ts to the
longitudinal relaxation time 77 was found to be remarkably constant over a wide range
of conditions, and equal to 3.1 & 0.1. The results suggest that a common underlying
mechanism is responsible for the decay of longitudinal magnetization and nuclear singlet
order. The singlet relaxation in this system is hence shown to be dominated by the
dipolar interactions between the CHsD protons and the CHsD deuteron. The measured
singlet relaxation times cannot be explained by a model in which the three hydrogen
nuclei are localised at the vertices of an equilateral triangle, and a modified geometrical
model is proposed which is consistent with the experimental data. This result shows
that it is feasible to exploit methyl LLS without relying on weak cross-relaxation effects,

in suitable cases.

3.1 Equilibrium isotope effects for CH>D groups

The three protons of a methyl (CHs) group are chemically equivalent from an NMR
standpoint due to the rapid rotational motion of the methyl rotor. This gives rise
to a single resonance in the NMR spectrum as the chemical shift of each proton is
interchanged on a timescale which is shorter than the nuclear Larmor period. In the
case of a monodeuterated methyl (CHsD) group in a chiral molecule, the two CHyD
protons are diastereotopic and have distinct chemical shifts. A visible CHsD proton
chemical shift difference is much harder to observe however, and chemical inequivalence
of CH3D protons has only been observed in a small handful of molecules, most of which

contain an N-CH3D group in a chiral environment [56, 179-184].
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FIGURE 3.1: The dominant di-equatorial chair conformation [179] of N-CH3D-2-
methylpiperidine in solution at room temperature, showing the nitrogen lone pair which
is implicated in the inequivalence of the two CH3D protons.

An appreciable diastereotopic chemical shift difference between the two protons

of a CHsD group is most easily induced by two key components:

1. A strong rotameric preference/aversion for a particular CHaD group rotamer [185],

i.e. a rotameric population asymmetry.

2. Distinct magnetic environments at each static site occupied by a CHaD group pro-

ton.

Prior studies suggest that a nitrogen lone pair neighbouring a CHsD group can
cause relatively large isotope effects on the conformational equilibria [186-188]. Based on
such evidence, Anet and Kopelevich investigated the proton NMR spectrum of N-CHsD-
2-methylpiperidine, a chiral six-membered ring containing an N-CHyD group, which
displays an observable CH2D proton chemical shift difference [56, 179, 181, 182, 184].
The chemical structure of N-CHyD-2-methylpiperidine is given in figure 3.1 and is used

extensively in CHyD-based experiments throughout this thesis.

3.1.1 Vibrational spectroscopy

Before a discussion of symmetry breaking interactions and long-lived states in CHsD
groups can take place, the theory behind the equilibrium isotope effect (EIE) requires
explanation. From a brief recapitulation of vibrational spectroscopy, all bonds have
quantized vibrational energy levels. The vibrational energy levels E,, depend on; 1. the
frequency of the bond stretch v; and 2. the reduced mass of the two bonded atoms pu.
The bond stretching frequency v is written as:

1k

Y i 1
v a7\l (3.1)
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energy (V)

bond length (r) -

FIGURE 3.2: The vibrational energy levels of an anharmonic oscillator for integer values

of n. The ZPVE (Ey) corresponds to the ground vibrational state n=0. The anharmonic

potential (black, solid line) is given by the Morse potential (equation 3.3). A harmonic
oscillator is represented by the parabolic potential (grey, dashed lines).

where k is the force constant. The reduced mass p is given by:

mi1ms
== 3.2
e (32)

where m; is the mass of atom i. In a simplified version of events, the potential energy
of a C-H bond as a function of nuclear separation is given by the Morse potential, see

figure 3.2 [189, 190]. The Morse potential V(r) is expressed as:
V(r) = De(1 — e Pm0))2, (3.3)

where D, is the dissociation energy of the molecule, 5 provides a measure of curvature
at the bottom of the well, and r( is the equilibrium bond length. The Morse potential
represents an anharmonic potential as the restoring force of the “spring” has a non-
linear response as a function of bond length r. However, anharmonic systems may be
approximated as harmonic oscillators in the vicinity of a stable equilibrium point, with
the anharmonic component acting as a small perturbation. The vibrational energy level
structure of the harmonic oscillator therefore serves as a good approximation to the

anharmonic oscillator for small vibrational displacements, at which point the restoring
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force of the potential is approximately linear. I will hence assume a harmonic potential
for the discussion of the equilibrium isotope effect (EIE) [191]. The vibrational states of
a harmonic potential are given by:

E, = hv(n+ %), (3.4)

where n > 0. The zero point vibrational energy (ZPVE) is located at the bottom of the

potential well and corresponds to the state n=0:
Eog=—. (3.5)

The ZPVE (Ep) is the ground vibrational state and is therefore susceptible to small

vibrational perturbations.

3.1.2 Equilibrium isotope effects for deuterium

The deuterium isotope effect is one of the most studied isotope effects due to its large
size [192, 193]. The percentage mass change between a proton and a deuteron is con-
siderably greater than any other isotopic substitution. The equilibrium isotope effect
(EIE) may be described by the ground vibrational state Ey of a potential minima as
approximately 99.9% of C-H(D) bonds are in the n=0 state at room temperature [194].
In a simple model, where the bonded atoms can be considered as balls on springs, only
the mass dependent properties of the system are disturbed, in this particular case, by
the isotopic labelling of a deuteron for a proton. The increased mass of a deuteron
compared to a proton adds to the overall reduced mass u of the system, i.e. the C-H(D)
bond. This in turn reduces the stretching frequency v and the ZPVE of the C-H(D)

bond, see equation 3.1.

3.1.3 Symmetry breaking interactions for CH;D groups

In order to demonstrate how the EIE develops into a significant rotameric population
asymmetry, the Newmann projections for the CHyD group of N-CHoD-2-methylpiperidine
must be considered, see figure 3.3a). The notation for the three CHyD rotamers of N-

CHsD-2-methylpiperidine is as follows:
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FIGURE 3.3: a) The three CHsD rotamers of N-CHsD-2-methylpiperidine. b) The zero

point vibration energies (ZPVEs) of the C-Hy, C-Hy and C-D bonds in each of the three

rotamers. Dashed lines represent the ZPVE in the case of no nitrogen lone pair. ¢) The
average ZPVE of each rotamer as a function of the ZPVEs for each C-H(D) bond.

e S. The deuteron is sterically interacting with the 2-position CHj group,
e F. The deuteron is free from interaction with the 2-position CHj group,

e A. The deuterium is anti to the lone pair of electrons on the nitrogen atom.

As discussed in section 3.1.2, the ZPVE of a C-D bond is lower than that of a C-H bond.
This is evident for all three rotamers in figure 3.3b). However, the ZVPE of a C-H(D)
bond is raised when the H(D) nucleus is anti to the lone pair of electrons on the nitrogen
atom. This effect is greater for a deuteron in this location as n—o™ hyperconjugation
involving the lone pair of electrons and the anti methyl C-D sigma bond is weaker for a

C-D bond, compared with the corresponding effect for a C-H bond. As the anti bond
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is weaker than the other two C-H(D) bonds, the molecule loses zero-point vibrational
stabilization when deuterium partitions the S and F bonding positions. When the
ZPVEs for the C-H(D) bonds are averaged across the three rotamers, the rotamer with
the deuteron anti to the lone pair (A) has a higher average ZPVE, compared with the
case of when a proton partitions the gauche bonds (rotamers S and F), see figure 3.3c).
This is the primary origin of the equilibrium isotope effect for a CHsD group, and
provides a sufficient description of the appreciable population asymmetry generated
between the three CHsD group rotors. A distinguishable chemical shift for each proton

is therefore also realized by considering the same example of the EIE for a CHsD group.

3.1.4 Observable CH,;D proton chemical shift differences

The EIE discussed in section 3.1.3 is responsible for the observable chemical shift differ-
ence QlAQ between the two CHsD protons (labelled 1 and 2) of N-CHsD-2-methylpiperidi-
ne. The following procedure is used to determine the size of the proton chemical shift

difference Q% for a CHyD group in a chiral molecule:

1. Calculate AG; and the relative populations P; of the rotamers S, F and A.

2. Determine the chemical shift difference QIAQ between the protons of the rotamers

S, F and A.

3. Weight the proton chemical shift differences QlAQ by the relative populations F;.

The population P; of a rotamer ¢ is defined as:

—AG;
e wpT
P, = — (3.6)

where AG; is the difference in the Gibbs free energies between C-H and C-D bonds for
the rotamer i [191], kp is the Boltzmann constant, T is the temperature, and Z is the

partition function. The partition function is defined as:

Z2=Y et (3.7)

i.e. the sum over all relative populations. The partition function normalizes the relative

populations such that the total population is equal to 1. The chemical shift difference
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between the CHaD protons of the rotamer i is denoted Q42(i). For example, if position S
is occupied by the deuteron then protons are in positions F and A, and the chemical shift
difference between the CHD protons of the rotamer S is given by: QlAz(S) = 0p — 0A,
and hence QX2(i) is allowed to be negative. The procedure described above leads to the

following expression for the proton chemical shift difference QlAQ of a CHsD group:
QR = PsQR(S) + PrQR(F) + PAQR(A). (3.8)

The proton chemical shift differences QIAQ(Z) are averaged across all populated CHyD
rotamers, which gives rise to an observable CHsD chemical shift difference Q12 in the

'H NMR spectrum.
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FIGURE 3.4: Part of the experimental 'H spectrum of N-CH,D-2-methylpiperidine

in CD3Cl; solution acquired at 11.7 T (500 MHz) and 25°C with a single transient.

a) Spectrum without deuteron decoupling; b) Spectrum with deuteron decoupling

(deuteron nutation frequency = 500Hz). The asterisk indicates a small signal from

a non-deuterated N-methyl-2-methylpiperidine impurity, shifted in frequency by a sec-
ondary isotope effect.

3.2 Experiments

3.2.1 Proton spectra

The methyl region of the proton NMR spectrum of N-CHyD-2-methylpiperidine is shown
in figure 3.4. This spectral region has a quartet-like appearance in the absence of
deuteron decoupling (figure 3.4a). The characteristic AB spectral pattern of an in-
equivalent proton pair appears when a deuteron decoupling field is used to remove the
2 Jip splittings (figure 3.4b). This spectrum is consistent with a J-coupling of ‘2JHH}
= 11.7 &+ 0.2Hz and a chemical shift difference of QlAQ = 13.5 &+ 0.4ppb between the
CH2D protons, as reported previously [179]. The existence of a small chemical shift
difference has been attributed to (i) hyperconjugation between the nitrogen lone pair
and the anti-methyl C-H(D) o-bond, which allows the zero-point vibrational energies of
the anti CH and CD bonds to influence the rotamer energies; as a result, the rotamer
with the CD bond anti to the nitrogen lone pair is less populated than the other two
rotamers in thermal equilibrium, and (ii) the chiral environment associated with the
neighbouring methyl group, which causes a significant chemical shift difference between

the two protons in each rotamer [179, 182]. In these circumstances, there remains a
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FIGURE 3.5: Chemical shift difference QlAz between the CHyD protons of N-CHyD-2-
methylpiperidine in CgDg solution at 11.7T (500 MHz) as a function of temperature.

significant chemical shift difference between the CHsD protons after averaging over all
methyl rotamers. The observed chemical shift difference decreases as the temperature
is increased, as shown in figure 3.5. This is consistent with the Boltzmann populations

of the three rotamers becoming more similar at higher temperatures.

3.2.2 Singlet NMR

The small chemical shift difference allows access to the long-lived singlet order between
the CH3D protons by using SLIC [157] pulse sequence, as shown in figure 3.6. The
pulse sequence is described in detail in section 2.12.1. The experimental parameters
were as follows: wsric/27m = 11.7Hz, wrock /27 = 300Hz, 1gr1¢ = 100ms (500 MHz)
and 7sp;c = 73ms (600 MHz). The resonance offset was placed in the centre of the
CH3yD peak at 2.18 ppm. The singlet state is a magnetically silent arrangement of
nuclear spin configurations and is unperturbed by the presence of a Tqg filter, which
employs the optimized parameters shown in appendix B to remove signals deriving from
residual magnetization. The maximum amplitude of the singlet-filtered 'H NMR signal,
relative to that induced by a single 90° pulse, was found to be 0.43, somewhat lower
than the theoretical maximum of 2/3 [173], the loss being attributed to radiofrequency
field imperfections and relaxation. A two-step phase cycle, in which the phase of the
9090 pulse and the receiver are simultaneously changed by 180° in successive transients,
removes spurious signals generated by longitudinal magnetization accrued during the

long SLIC pulses. An interval of 90s was used between successive transients.
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F1GURE 3.6: Pulse sequence used for accessing long-lived singlet order in monodeuter-

ated methyl groups and measuring its decay. The experiments used the following nu-

tation frequencies: wsric/2m = 11.7Hz and wrock /27 = 300 Hz. The duration of the

SLIC pulse was 100ms in the 500 MHz experiments and 73 ms in the 600 MHz exper-

iments. Singlet order is allowed to evolve for a time mgy. The “Tyg filter” sequence

suppresses signals that do not pass through singlet order. “MA” denotes the “magic
angle” (54.7°).

3.3 Results

A typical decay curve for singlet order is shown in figure 3.7. This shows a single
exponential decay with time constant T's = 27.0 £+ 0.6s. This is approximately three
times longer than the relaxation time for longitudinal magnetization 77 = 8.7 &+ 0.1s,

as estimated from the inversion recovery curve, also shown in figure 3.7.
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FIGURE 3.7: Experimental relaxation curves for 0.1 M N-CHsD-2-methylpiperidine in

degassed CD>Cly solvent (proton frequency = 500 MHz, temperature 25°C). Open

symbols, grey line, and right-hand axis: Decay of singlet order measured by the pulse

sequence in figure 3.6. Filled symbols, black line, and left-hand axis: Spin-lattice

relaxation measured by inversion recovery. All signal amplitudes were normalized to
the first point. The fitted curves have a single-exponential form.
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FIGURE 3.8: Longitudinal relaxation rate constants (T° 171) plotted against singlet relax-
ation rate constants (Tg') for 0.1 M N-CHyD-2-methylpiperidine over a wide range of
solvents (degassed), temperatures and magnetic fields. The experimental conditions are
as follows: (@) CgDg solution, at temperatures increasing from 25°C (rightmost point)
to 60°C (leftmost point) in 5°C increments, at a field of 14.1 T (600 MHz); (O) C¢Dg
solution, at magnetic fields increasing from 9.4 T (400 MHz, leftmost point) to 14.1T
(600 MHz, rightmost point) in 100 MHz increments, at a temperature of 25°C; (A)
CH,Cl, solution at 25°C and 11.7T (500 MHz); (®) CgDg solution at 25°C and 11.7T
(500 MHz); (m) CD35CN solution at 25°C and 11.7 T (500 MHz); (A) CD2Cl; solution at
25°C and 11.7T (500 MHz); (®) CD30D solution at 25°C and 11.7T (500 MHz); (A)
CD5Cl; solution of N-CHyD-2-(CD3)-piperidine at 25°C, 11.7 T (500 MHz). A constant
ratio Ts /Ty = 3.1 £ 0.1 is observed over a wide range of experimental conditions.

Figure 3.8 shows a plot of T3~ L against Ty ! for a variety of solvents, temperatures
and magnetic fields. The singlet relaxation time constants T increase with increasing
temperature and decreasing solvent viscosity. The fit to a straight line with zero intercept
and inverse slope (3.1)~! = 0.324 is remarkably good. The ratio of Ts to T is remarkably
consistent and given by 3.1 + 0.1 over a wide range of conditions. Measured relaxation
time constants 77 and Tg are presented for this disparate data set in table 3.1. The
data shown in figure 3.8 were all obtained for N-CHyD-2-methylpiperidine, except for a
single point which was obtained for a compound with complete deuteration of the second
methyl group, i.e. N-CHyD-2-CD3-piperidine (purple triangle). Clearly, deuteration of
the second methyl group in N-CHyD-2-methylpiperidine does not have a strong effect

on the relaxation behaviour.
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TABLE 3.1: The set of singlet relaxation times T's and longitudinal relaxation times T}

for the CHyD group of 0.1 M N-CH3D-2-methylpiperidine shown in figure 3.8.

Solvent* Temp. Magnetic Field Ts/s Ti/s Symbol
CeDg 25°C 14.1 T (600 MHz) 343 +0.7 109+02 @O
Ce¢Dsg 30°C 14.1 T (600 MHz) 382 +09 11.6+02 e
CeDg 35°C 14.1 T (600 MHz) 399+ 0.7 125+ 03 e
CsDg 40°C 14.1 T (600 MHz) 438 £08 13.3+02 e
CeDg 45°C 14.1 T (600 MHz) 46.1 £0.7 143+ 03 e
CeDe  50°C 141 T (600 MHz) 48.9+09 151403 e
Ce¢Dg 55°C 14.1 T (600 MHz) 52 +1 157+ 03 o
CeDg 60°C 14.1 T (600 MHz) 55 + 1 167+ 03 e
CsDg  25°C 9.4 T (400 MHz) 38 + 2 121+ 04 ©
Ce¢Dg 25°C 11.7 T (500 MHz) 352+ 0.7 11.3+£03 ©Oe
CD3CN  25°C 11.7 T (500 MHz) 328 £0.6 102+ 0.2 m=
CDsCly  25°C 11.7 T (500 MHz) 270+ 0.6 87+0.1 a
CD3OD  25°C 11.7 T (500 MHz) 223 +05 69+0.1
CH,Cly  25°C 11.7 T (500 MHz) 209 +08 7.3+02 a
CDyCly  25°C 11.7 T (500 MHz) 27.1+06 88+0.2 a

The longitudinal relaxation times 77 and singlet relaxation times T included in
figure 3.8 for N-CHyD-2-methylpiperidine are shown in table 3.1. The experimental

conditions were as follows:

(®) 25-60°C temperature (5°C increment), 14.1 T (600 MHz), CgDg solvent

(0) 9.4 T (400 MHz) - 14.1 T (600 MHz) magnetic field (2.35 T (100 MHz) increment),
25°C and CgDg solvent

(®) CgDg, (m) CD3CN, (a) CD2Cly and (®) MeOD solvent, 25°C and 11.7 T (500 MHz)
(a) 25°C, 11.7 T (500 MHz) and CH2Cl; solvent

(a) N-CHyD-2-(CDg)-piperidine at 25°C, 11.7 T (500 MHz) and CDyCly solvent.

*Samples were subjected to thorough degassing using multiple freeze-pump-thaw
cycles to remove the majority of dissolved molecular oxygen present in solution. The
singlet Ts and longitudinal T} lifetimes were measured via the aforementioned experi-
mental methods after each degassing cycle until no further lengthening of the relaxation
times were observed. This procedure was repeated for each individual sample and en-
sures that each sample was degassed as comprehensively as experimentally possible, at
which point the effect of paramagnetic induced singlet and longitudinal relaxation from

dissolved molecular oxygen in solution is negligible.
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3.4 Discussion

The data show that the long-lived singlet order may be accessed coherently, and with
high efficiency, for the proton pair of the monodeuterated methyl group in N-CHsD-
2-methylpiperidine. The singlet lifetime T is proportional to 77 of the same protons,
with the proportionality constant given by 3.1 4 0.1, over a wide range of experimental
conditions. In this section, an explanation for the constant ratio of T to T3 is proposed,

and the value of the proportionality constant is investigated.

3.4.1 Relaxation mechanisms

A large variety of relaxation mechanisms may contribute to the Ts and 73 relaxation
of the CH2D protons. As well as the dipole-dipole interactions between the three mag-
netic nuclei of the CHsD group, there are also chemical shift anisotropy contributions,
magnetic dipole-dipole interactions with other nuclei in the same molecule, and in-
termolecular dipole-dipole interactions. The quadrupolar relaxation of the deuterium
nuclei might also contribute to proton relaxation through mechanisms such as scalar
relaxation of the second kind [152, 195]. Furthermore, spin-rotation relaxation is known
to be significant for many rotating methyl groups [58-61], and contributes to the LLS
relaxation of v-picoline in solution [141, 155]. Singlet relaxation may also be caused by
state mixing due to a finite chemical shift difference between the participating protons,

or by asymmetric J-couplings to other magnetic nuclei (“singlet-triplet leakage”) [24].

The excellent correlation between the Ts and T values shown in figure 3.8 strongly
supports the hypothesis that the longitudinal and singlet relaxation of the CHsD proton
pair is driven by a common mechanism, with a common correlation function. This
suggests that the mechanisms that dominate the Ts and T; relaxation of the CHyD
protons are internal to the CH3D group. This conclusion is supported by the following
observations: (i) Deuteration of the 2-methyl group leads to only a small change in
the relaxation times even though the protons of the 2-methyl group approach to within
229 pm of the CHyD protons; (ii) a large change in the deuteration level of the solvent

only has a small influence on the relaxation times, see figure 3.8 and table 3.1.
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FIGURE 3.9: The longitudinal relaxation time 73 of 0.1 M N-CH3D-2-methylpiperidine
plotted as a function of temperature. Experiments were performed in degassed CgDg
solution at 14.1 T (600 MHz).

In addition, one may discount major contributions from the spin-rotation, scalar
relaxation, chemical shift anisotropy and singlet-triplet leakage mechanisms, for the

following reasons:

1. Spin-rotation. The experimental finding that Tg increases with increasing tem-
perature (figure 3.8) speaks strongly against a significant contribution from spin-
rotation, since that mechanism usually increases in strength with increasing tem-
perature [58-61]. Presumably, in the current case, the methyl rotation is too
strongly hindered to permit a significant spin-rotation relaxation contribution.
Data showing the temperature-dependence of the relaxation time constant 77 1
are presented in figure 3.9. The increase in the value of T1 with increasing temper-
ature also supports the conclusion that spin-rotation relaxation is not significant

in this case.

2. Scalar relazation of the second kind. The existence of a resolved deuteron splitting
in the proton spectrum (figure 3.4a), as well as direct measurements of deuteron
relaxation (section 3.6.2) indicate that deuteron relaxation is too slow to induce
significant scalar relaxation of the coupled protons. Furthermore, the two 2Jup
couplings are identical to a good approximation, which precludes a scalar contri-

bution to singlet relaxation [152].
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FIGURE 3.10: Experimental dependence of Tg ! on the spin-locking rf-field strength for

0.1 M N-CHyD-2-methylpiperidine in non-degassed CDyCly solvent (proton frequency

= 500 MHz, temperature 25°C). The sharp decrease in T§1 at low values of wrock 1is
due to the suppression of singlet-triplet leakage by the applied rf-field.

3. Chemical shift anisotropy. The weak dependence of Ts and 77 on magnetic field

indicates a relatively small contribution from CSA.

4. Singlet-triplet leakage. Singlet-triplet leakage induced by the small chemical shift
difference between the CHsD protons can be a significant contribution to the sin-
glet relaxation rate constant T ! [24]. However, in the current experiments, this
contribution is suppressed very effectively by the application of an on resonant
radiofrequency field during the singlet relaxation interval. Data showing the de-
pendence of Tg ! on the spin-locking rf-field amplitude, expressed as the nutation

frequency wrock, is shown in figure 3.10.

It is therefore postulated that both the singlet and longitudinal relaxation of the
proton pair in the monodeuterated methyl group of N-CHyD-2-methylpiperidine are
dominated by the 'H-'H and 'H-2D dipole-dipole interactions within the methyl group
itself, modulated by the internal rotation of the methyl group with respect to the rest
of the molecule, and by the rotation of the molecule as a whole. A relaxation model is
therefore constructed based on (i) a simplified description of the motion of the methyl
group and the molecule as a whole, and (ii) a description of the vibrationally-averaged

spin-spin interactions within the rotating methyl group.
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FIGURE 3.11: The relaxation of the CHyD protons in N-CHyD-2-methylpiperidine is
governed by the three-fold jump rate x and overall rotational correlation time 7¢.

3.4.2 Motional model

A plausible motional model for the monodeuterated methyl group in N-CHyD-2-methylpi-
peridine consists of a hindered 3-fold rotor attached to a sphere undergoing isotropic
rotational diffusion, see figure 3.11. Although the existence of a finite chemical shift
difference between the CHoD protons implies that the methyl rotamers have slightly
unequal populations, this effect is ignored in the relaxation analysis, for the sake of sim-
plicity. The thermally activated jumps between the methyl rotamers are assumed to be
described by a rate constant x, while the overall rotational diffusion of the molecule is
described by a correlation time 7¢. Both x and 7¢ are in general temperature-dependent.
It is also assumed that the correlation time 7¢ is short enough relative to the nuclear

Larmor period to invoke the extreme narrowing approximation [195].

3.4.3 Dipole-dipole interactions

The three magnetic nuclei in the CH3D group interact by the magnetic dipole-dipole
interaction. In general these dipole-dipole interactions are described by traceless second-
rank tensors, and are subjected to averaging over local molecular vibrations and libra-
tions on a timescale fast compared to the methyl 3-fold jumps or the molecular tum-
bling. Spin relaxation is caused by the motional modulation of the vibrationally-averaged

dipole-dipole interaction tensors.

In general, the vibrationally-averaged tensors differ, both in magnitude and in

orientation, from tensors derived from a naive geometrical model, for which point-like
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nuclei are located at the vertices of an equilateral triangle, with the magnitudes of
the dipole-dipole interactions in exact proportion to the product of the gyromagnetic
ratios, since the internuclear distances are all equal [196]. As discussed below, this naive

equilateral model of the CH2D group is inconsistent with the experimental results.

To maintain high generality, the relaxation theory is developed using three differ-
ent interaction tensors for the vibrationally-averaged dipole-dipole interactions, leaving
the magnitudes and orientations of the tensors as adjustable parameters. The two 'H-2D
interaction tensors are assumed to have the same principal values, by symmetry. For
the sake of simplicity, the vibrationally-averaged interaction tensors are assumed to be
axially symmetric, with the unique principal axes perpendicular to the N-C rotor axis.
The angle between the unique principal axes of the two vibrationally-averaged 'H-2D
interaction tensors is denoted 2. This angle defines the cross-correlation of the two
'H-2D interaction tensors, and is therefore important for the proton singlet relaxation.
By symmetry, the unique principal axis of the vibrationally-averaged "H-'H interaction
tensor is perpendicular to the bisector of the two 'H-2D principal axes. A point-nucleus
equilateral geometry model would lead to the angle 20 = 60°, but this value is not

assumed in the following discussion.

3.5 Relaxation theory

In this section, the relaxation superoperators for the two protons and deuteron of the
CH3D group are constructed. The relaxation superoperators are used to determine the
relaxation rate expressions for the singlet Tq ! and longitudinal T ! relaxation of the
CH2D group. Here I must praise Jean-Nicolas Dumez (CNRS, Gif-sur-Yvette) for his
efforts in underpinning the theory behind long-lived state relaxation in monodeuterated

methyl groups.

3.5.1 Coherent Hamiltonian

Consider a HoD system, comprised by the two protons and the deuterium of a singly
deuterated methyl group in solution. The two proton spins are labelled as 1 and 2, the
deuteron spin as 3. The protons have spin I = 1/2 and the deuterium has spin I = 1,

so there are 2 x 2 x 3 = 12 Hilbert states in total. The relaxation properties of this
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system may be analysed in Liouville space, which has dimension 12 x 12 = 144. In this
chapter, the aim is to calculate the relaxation rates for the longitudinal magnetization
of the protons, I + fgz, and of the deuterium, fgz, as well as the nuclear singlet order

for the proton pair, T&g.

Time-independent interactions that govern the evolution of a spin ensemble are
contained within the coherent Hamiltonian. In isotropic solution, the two protons are
separated in frequency space by a small chemical shift difference QlAZ. The coherent

Hamiltonian jflcoh is defined as follows:

N 0Lz | “ PO “ “ “ “
Heon = TA(Ilz — Io,) + 27 |Juul| L1 - L2 + 27 |Jup| (L1z - I35 + 12, - 13,), (3.9)

where |Jyp| and |Jgp| are the proton-proton and proton-deuteron scalar couplings,

respectively.

3.5.2 Fluctuating Hamiltonian

Nuclear spin relaxation is driven by fluctuations of incoherent interactions which are
time- and orientation-dependent. The fluctuating Hamiltonian Hiyye is expressed using

spherical tensors:

2 l

Huwe =Y Hppe=> A > ()41, (3.10)
A

A =0 m=—1

and is written as a sum over all spin interactions A, and ranks [ and tensor components
m. ¢ is areal constant. AlAm and Tl)‘_ ., are the spatial and spin tensors for the fluctuating

Hamiltonian ﬁﬂuc in the laboratory frame. ¢*, Al)‘T;lP and Tl{ ., are given in table 3.2.

For the CHyD system, the fluctuating interactions include; the dipole-dipole (DD)
interactions between every spin pair, and the quadrupolar interaction (Q) for the deu-
terium spin. The free rotation of the CH3D moiety can also induce the spin rotation
relaxation mechanism, which is typically present for methyl groups, but is not included
in this analysis. The chemical-shielding anisotropy (CSA) and other interactions are also
ignored. For the dipole-dipole interaction, the fluctuating Hamiltonian Hpp is expressed

as follows: )

2 3
Hpp =Y Y by » (~)"ARNTS,, (3.11)

i=1 j=i+1 m=-2
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TABLE 3.2: Tensor components of the rank-2 interaction (I = 2): the dipole-dipole

(DD) interaction for a spin pair ¢j and the quadrupolar (Q) interaction for a spin i.

The Tgm tensor components are given in the laboratory frame and the As,, tensor

components are given in the principal axis system P of the interaction A. r;; is the

internuclear distance between spin ¢ and spin j, eQ); is the quadrupole moment and eg;
is the electric field gradient for nucleus ¢, 7, ; is the biaxality of interaction .

A CA m A;‘}f T2>\m
DD -8 o 612 62 (310 — I )
+1 0 T (1/2) (Lix Lz + Li 1))

3

+2 0 (1/2) LisIjx
€200, B
Q W@f)ﬁ 0 (3/2)Y2 67V2(312 —I(I+1))
+1 0 F(1/2) (Iix iz + Liz1iv)
+2  (1/2)m (1/2) 12,

where the summation over the spin labels i and j accounts for the dipole-dipole interac-
tions internal to the CHyD group. The dipole-dipole coupling constant b;; is defined in
equation 1.163. Spins with I > 1/2 have a non-spherical charge density at the nucleus
and possess an electric quadrupole moment. Interactions occur between the electric
quadrupole moment and the electric field gradient tensor present at the nucleus. The

fluctuating Hamiltonian for the quadrupole interaction is defined as follows:

2
Ho=wq Y (-1)"A$ T3, (3.12)
m=—2
where wq is the nuclear quadrupolar coupling constant and is defined in equation 1.176.
T23m is the quadrupolar spin tensor for the fluctuating Hamiltonian of spin 3. Deuterium
carries a nuclear spin I = 1, and therefore the expression for the nuclear quadrupole
coupling constant wq simplifies to:

e2qQ
wg = 5 (3.13)

3.5.3 Spectral densities

The spectral density of an interaction A\ describes the intensity of motion at a frequency

/
w. The spectral densities Jfr‘;?n, are written:

I () = /0 dr GV (7) e, (3.14)
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with the corresponding autocorrelation functions Gi‘jb’\rln/ (1):

G (7) = (AR (D) Ay (2 — 7). (3.15)

m,m

See appendix B for more details regarding spectral densities and autocorrelation func-
tions. The spectral densities for the dipole-dipole and quadrupolar interactions (\) are
derived from a sequence of rotations from the principal axis system P of the interaction

A to a common rotor frame R, then to a molecular frame M, and finally to the laboratory

frame L:
AP
Z Z Z A2m3 Dzn3m2 Q R)ng,le(QRM (t))D?nlm(QML (), (3.16)
mi1 m2 ms
D2 m; is a component of the Wigner matrix of rank 2; Q% r is the set of Euler angles

that describes the transformation from the independent principal axis systems of the
dipole-dipole and quadrupolar interactions P to the rotor frame R fixed with respect to
the CH2D group and with its z-axis aligned with the local 3-fold symmetry axis. The
z-axis of the laboratory frame L is defined to be parallel to the static magnetic field
EO, For the dipole-dipole interaction, only the component m=0 is non-zero. For the
quadrupolar interaction of the deuterium nucleus, the biaxality of the 2H quadrupole
coupling tensor is small (axially symmetric tensor) and is neglected. Hence only the
m=0 rank-2 component of the spatial tensor A%’RP (written in the principal axis system
P of the quadrupolar interaction for the deuterium nucleus) is included when considering
transformations to the axis system of the rotor frame R, and also in consecutive frame
transformations. With these assumptions, Aé\(’)P is the only non-zero component of the
rank-2 spatial tensor A;‘;f in the principal axis systems of both the dipole-dipole and

quadrupolar interactions for the CHsD group:

AP
A5 (1) = A3 Y S " DB R) D (R () D Q1)) (3.17)
m1 mo
Using equation 3.17, the autocorrelation functions for the dipole-dipole and quadrupolar

interactions may be written as follows:

AN NP 4N P /
Gm,m’(T) = AQO AQO Z Z D0m2 gm’Q(Qj\DR) (318)

/
mi,mj mg,m2

X (D2 (2t (0) D2,y (U (7)) D2, @072.(0)) D2, 011 (7))
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Assuming that the rapid isotropic rotational diffusion of the CHyD group and the overall
reorientation of the molecule are uncorrelated, the autocorrelation functions for the

dipole-dipole and quadrupolar interactions become:

AN MNP 4N ,P . /
Goo(T) = Ay Ay Z Z ngQ(Q?DR)DSm'Q(Qf\DR) (3.19)

/ /
my,my ma,msy

XDy (Q2rar (00) Dy (Qrar (7)) (D3 Qs £ (0) Dy A Q200 2.(7)).-

An expression of the relaxation superoperator may be derived in the standard semi-
classical treatment of spin relaxation [195]. Internal motion is described with a 3-site
jump model, with jump rate x, and a spherical top is assumed for overall motion, with
correlation time 7¢. For a spherical top, the contribution of overall tumbling to the

autocorrelation function is [61]:

T

1 _
(D Qr.(0)) D2y A Qarr (7)) = =Omym) Ommve 7€, (3.20)

where the rotational correlation time 7¢ describes the rapid isotropic rotational diffusion
of the N-CHsD-2-methypiperidine molecule in solution. The frame transformation from
the principal axis system P of the dipole-dipole interaction to the axis system of the
rotor frame R corresponds to a single rotation around the symmetry axis of the methyl
group. The Euler angles create the following rotation matrix:

Danml(allgg = 07 ﬁ]gg = 07 ’71]313) = 5m2m1€—im17_ (321)

The rotation matrix for the frame transformation from the principal axis system P of
the quadrupolar interaction to the axis system of the rotor frame R is created from the
following Euler angles:
2 ) 2

DQOl(a%R = —m, ﬁl(—%R = 77T,’)/]C§,2R =0)= elmﬂdeml(fﬂ'). (3.22)
For a hindered methyl group, a three-site jump model is sufficient as to describe the in-
ternal CHsD dynamics. I hence recall the model proposed by Woessner [49]. The model
is a simple combination of an overall reorientational motion (isotropic small-step rota-
tional diffusion) with the internal rotation of the methyl group described by thermally
activated 3-fold jumps around a single molecule-fixed axis (methyl group symmetry

axis). The jumps are between equivalent or near-equivalent sites, which correspond to
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the rotamers of the CHsD group presented in section 3.1.3. The diffusion of the spin-
spin axis around the methyl group symmetry axis is assumed to have no influence on the
internuclear separation of the CHsD constituents. A rigorous derivation of the spectral
density function for a 3-fold jump model is given in reference [197] and the result is
used in the remainder of this chapter without further discussion. It should be noted
that other, more complicated expressions for the spectral density of a methyl group are
also presented in reference [49]. Therefore, for a methyl group undergoing thermally
activated jumps between three equivalent sites, the contribution of internal motion to

the correlation function is:
<D%f2m1(QRM(0))D31§m3(QRM (T))> = 5m1m2 6m’1m’2 5m2m2 6m1m’1 €_3€m2 HTy (3-23)

By combining equations 3.19, 3.20 and 3.23, the spectral densities Jz‘l’%, (w) in equa-

tion 3.14 become:

AN AP 4N P '
S (@)= Oy 5A20 Ay ZDOmz )ng,z(Qst) (3.24)

oo
% / dr e 3€ma T e*T/Tc esz’
0

with the spectral density at zero frequency, relevant in the extreme narrowing regime,

becoming:
AN . MNP 4 NP TC 2 IV
TAN0) = G AN ANy S T Bermrrg Dol @) Db ). (320
where
€0 = 0 and €41 — €42 = 1. (326)

3.5.4 Relaxation superoperators

The double commutation relaxation superoperator for the dipole-dipole and quadrupolar

interactions may be written [49, 155]:

P=-3 % e Z ™I OV T T s (3.27)

1=2 AN
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see section 1.6.6 for more details. This general expression can be used to calculate all
auto-correlation and cross-correlation terms for the dipole-dipole and quadrupole inter-
actions. Contributions to the relaxation superoperator from auto-correlation terms have
A = ) and cross-correlation terms have A # \. A secularization step is additionally per-
formed for the dipole-dipole and quadrupolar relaxation superoperators which removes
all terms modulated at the difference in 'H-?H Larmor frequencies in the laboratory

frame.

3.5.4.1 Dipole-dipole relaxation superoperator

The dipole-dipole relaxation superoperator may be constructed by considering for the

form of the fluctuating dipole-dipole Hamiltonian in equation 3.11:

N 2 3 NPT
I'pp = — Z Z bijbri JEB’@PD(O) Z (=115, 13 - (3.28)
i,k=1j,l=i+1,k+1 m,m/
Combining equations 3.25 and 3.28, and by using the value of AQDOD’P from table 3.2, the
dipole-dipole relaxation superoperator may be expressed as:
2 2 3 6 TC
r _ . 2%+ DD\ 2 DD
Top = - Z Z = bij bri 7 ¥ 3emarTo Z Do 2PR) Doy (2pR) (3.29)

9
i,k=1 j,l=i+1,k+1 ma,mb

x 3 (=0T T
m

3.5.4.2 Quadrupole relaxation superoperator

The quadrupolar relaxation superoperator takes a similar form to the relaxation super-

operator used to describe dipole-dipole relaxation:

Dq = —wq Jor (0) Y (=115, 15 .. (3.30)

m,m/
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Combining equations 3.25 and 3.30, and by using the value of A%P from table 3.2, the

quadrupolar relaxation superoperator may written more explicitly:

N - 3 2 TC 9 Q 9 Q
Lq = ~5%4 T 3e,mmrg 2 Doml L) D Q) (3.31)
m2,my

x ) ()M, TE .

3.5.5 Rate expressions

Using the relaxation superoperators formulated in section 3.5.4, relaxation rates may
be calculated as follows for the 'H and ?H longitudinal magnetization and for the 'H

singlet order:
(flz + f2z|f1DD|f1z + f2z)
(Ilz + IQZ‘I].Z + IZz)

T = : (3.32)

L UslTolfs:)
Tl = Al (3.33)
(I3Z‘I3z)

A2 g2
Tgl — ( 00A|12D]?l200)‘ (334)
(Tog | Tog )
The contribution of the dipole-dipole interaction to 2H longitudinal relaxation was found

to be negligible, and was ignored.

In the regime of isotropic extreme-narrowing, the matrix elements (ﬂj\f]ﬁj) can
be easily calculated for a superoperator with a block-diagonal matrix structure. The
singlet and longitudinal spin order of the singlet pair (spins 1 and 2) are each identified
by a single spherical tensor operator, and the relaxation rate is therefore given by a
diagonal element of f For the dipole-dipole relaxation of singlet order, the singlet

relaxation rate constant Tg Lis given by:

3

2
6 T
-1 _ - C 2% DD\ 12 DD
Is" = > > bibu [ — > . D& (QPR)DS,,(QPR) (3.35)
m

i,k=17,l=i+1,k+1 2,mf

To6 | T Tl T56)

m
DT
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The relaxation rate expression for Tg ! can be simplified by using the following relation,

in the case that ij=kl:

(TR TR 1742y = | T |78 )12, (3.36)

where (—1)"@’5{ m = TQZZJ In chapter 2, I demonstrated that an important property
of the nuclear singlet order was an immunity to the in pair dipole-dipole relaxation

mechanism:

T59,1T55) = 0, (3.37)

which is valid for the case of ¢j=12. Inserting equation 3.36 into equation 3.35, and
accounting for the result in equation 3.37, leads to the following dipole-dipole auto-
relaxation rate expression Tg ! for the spin-1 /2 protons of the CHaD group:
r1_ 6 - B2 S b3, DDy 3~ Mmool HTS o)lI? (3.38)
S 5 &P 14 3e,m10 —|—3em2/<cTc ol ||T12||2 -
=1 m2’m2 m
Only dipole-dipole interactions of spins 1 and 2 with the deuteron (spin 3) were found

to significantly relax the nuclear singlet order.

For the dipole-dipole relaxation of longitudinal order, any terms denoting coupled
rank-1 spin order, e.g. (fff;r - ffrf{)/\/i, may be neglected as these terms are discon-
nected from the single spin longitudinal operators, and hence the longitudinal relaxation

rate constant 7T 'is given by the sum of single spin longitudinal operators:

_ 6 TC
Tl T= = Z Z szbkl T 9, o Z D0m2 Q I}){)ng’(gllgg) (339)
o . 1+ 3em,k7C 2
i,k=1j,l=i+1,k+1 ma,mb
X Z m (Tho + leo‘Tij TH T, + T1o)
m (T5o + Tfoleo +T}o)

In chapter 1, I demonstrated that spherical tensor operators possess the following prop-
erty:
Tyl Tho +T1y) = —m|T5,). (3.40)

and hence the rate expression for longitudinal relaxation (equation 3.39) can be simplified
by using the relation:

1T T + i) 1 = m? || 157, 1% (3.41)
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FIGURE 3.12: Schematic of a point-particle model with an equilateral triangle geometry

a) perpendicular to and b) in the plane of the CHyD group. The light grey disk denotes

the plane of the CHyD group. 20 = 60° and g = 70.5° for an equilateral triangle
geometry.

Inserting equation 3.41 into equation 3.39 leads to the following dipole-dipole auto-
relaxation rate expression 77 ! for the longitudinal order of the spin-1 /2 protons in the

CH2D group:

CD

TU 2
5 Z Z bZJ 1_|_3€ Z D0m2 (QFD’%) Z mQ%

i=1 j=it+1 m2,m2 m>0 HTllO + T1]0||2
(3.42)

The sum over m does not include terms corresponding to m = 0 as these terms do not
contribute to the auto-relaxation rate (ij = kl) of spins 1 and 2 in this case. Similar

can be shown for the quadrupolar auto-relaxation rate of spin 3.

The motional and intra-methyl interaction models described in section 3.4.2 lead
to the following expressions for the proton longitudinal and singlet relaxation rate con-

stants:

_ (4+ 3kr7C)
i e (16w + 9y ) 7o (3.43)

-2
75! = mwgm, (3.44)
where the dipolar coupling constants for the vibrationally-averaged proton-proton in-
teraction and proton-deuteron interactions are denoted wypg and wygp, respectively. In
practice, the relevant matrix elements were calculated analytically using the Mathema-
tica-based symbolic package SpinDynamica [198]. Figure 3.12 shows the relevant angles
for the relaxation rates given in equations 3.43, 3.44 and 3.46. The second Euler angle

Bpr is equal to m/2 for the three dipole-dipole interactions. The third Euler angle ypr
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FIGURE 3.13: Plot of the longitudinal relaxation rate constant T, *(*H) for the
deuteron of the CHyD group as a function of fg. g = 70.5° for an equilateral triangle
geometry.

is @ for the H1D interaction and —6 for the HsD interaction. For the quadrupolar inter-
action, the dominant principal axis of the 2D electric field gradient tensor is assumed to
be along the CD bond vector, so that Bpr = 0, where ¢ is the angle formed between
the 3-fold jump axis and the CD bond.

The following expressions apply to the relaxation of the '3C nuclei in the CHy
groups on the six-membered ring (with N = 1 or 2), and for the 2H relaxation of the

deuteron in the monodeuterated methyl group:
77 1(**C) = Nwggro, (3.45)

3 (32 + 33k7c + 9kre (4cos(20Q) + 3 cos(49Q)))
64 (1 + 3r7c)

T '(H) = wyTC (3.46)

where N is the number of attached protons, wcy is the dipole-dipole coupling constant
for the interaction between the proton and carbon nuclei, and wgq is the quadrupole
coupling frequency of the deuteron. Figure 3.13 shows a plot of 17 1(2H) as a function

of . For a tetragonal geometry of the CHzD group:

_ 3+ KkTC)
Ty — _BHATO) o 3.47
i CH) 2 (1 + 3rrc) Q¢ (3.47)

These equations assume rigid-body rotational diffusion of the whole molecule (including

the ring) and 3-fold jumps of the methyl group, with 3C-'H dipolar and quadrupolar
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FIGURE 3.14: Plot of the relaxation rate ratio 75 ' /7, for the protons of the CHyD
group as a function of 20. 26 = 60° for an equilateral triangle geometry.

relaxation dominating the 3C and 2D relaxation, respectively. For the simple case
of point nuclei (ignoring vibrational averaging), the coupling constants are defined as

follows:

wor = — (po/4m) y(MH)y(BC) gy, (3.48)
2
wo = 62(%@, (3.49)

where rgc is the internuclear distance, @) is the electric quadrupolar moment of the
deuterium nucleus, and eq is the electrical field gradient at the deuterium nucleus [199].

This relaxation model leads to the following expression for the ratio of Tg to Ti:

T
?‘j = (4 + 3/%70)

160.112{]3 + 9w12{H

. 3.50
192w12{D sin? 26 ( )

Figure 3.14 shows a plot of Ty YT as a function of 20. In general the ratio Ts/Ty
depends on the jump rate s and rotational correlation time 7¢, and is expected to
depend on temperature, solvent, and other factors. However, in the “slow-jump regime”
k7o < 1, the ratio of T to 17 becomes independent of x and 7, and only depends on
interaction parameters within the CHoD group:

Ts _ 16wip + 9%y 3wy
Ty~ 48wipsin?20  16w?p sin®20

(3.51)
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TABLE 3.3: '3C longitudinal relaxation times 7} for the ring '3C nuclei of 0.1 M N-
CHyD-2-methylpiperidine in degassed CDyCly solution at 11.7 T (500 MHz) and 25°C.

Site  T1(3C)/s

2 102£03
3 6.3 £0.5
4 6.2 + 0.2
5 6.5 £ 0.3
6 6.9+ 04

The fact that the 'H-'H dipolar couplings are about 6 times stronger than the 'H-
2D dipolar couplings (at equal distances) has been invoked in the last approximation.
The observed direct proportionality of Ts to 17 is consistent with the validity of the

slow-jump regime over the explored range of experimental conditions.

3.6 Supporting relaxation data

The T} values for the ring '3C sites and the CHyD deuteron are reported for the case
of 0.1 M N-CHyD-2-methylpiperidine in degassed CD2Cly solution at 11.7T (500 MHz)
and 25°C.

3.6.1 Carbon-13 NMR

The measured 3C T} values for N-CHyD-2-methylpiperidine are shown in table 3.3 with
the 3C numbering scheme shown in figure 3.15. The ring CHs sites have similar 3C
relaxation time constants 17 of 6.5 + 0.3s, with the ring CH site displaying a longer
13C relaxation time constant of 10.2 + 0.3s. These relaxation times were measured by

inversion recovery with 0.5kHz 'H decoupling.

3.6.2 Deuterium NMR

Under the same conditions, the 2H spin-lattice relaxation time constant, given by 71 (?H),

for the CH3D deuteron was measured by inversion recovery to be 0.75 £ 0.01s.
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FIGURE 3.15: Structure of N-CH;D-2-methylpiperidine, showing the numbering of '*C
sites on the piperidine ring.

3.7 Relaxation analysis

The 13C and 2H relaxation data allow an estimate of the rotational correlation time
7c and the 3-fold jump rate x. The following analysis refers to the data obtained on
0.1 M N-CHyD-2-methylpiperidine in degassed CD2Cly solution, at 11.7T (500 MHz)
and 25°C.

3.7.1 Rotational correlation time

The overall rotational correlation time 7¢ was estimated by analysing the experimental
T1(*3C) relaxation time constants for *C nuclei in the CHy groups on the six-membered
ring, using equation 3.45 which applies for extreme-narrowing isotropic rotational tum-
bling, dominated by the 13C-'H dipolar relaxation mechanism [49]. By assuming an
internuclear 3C-'H distance of 108.9 pm, which corresponds to a dipole coupling con-
stant of wep/2m = —23.4kHz, the following estimate of the rotational correlation time

is obtained: 7¢ = 3.8 £ 0.6 ps.

3.7.2 Thermally activated jump rate

The 3-fold jump rate constant x may be estimated from the 2D 7} relaxation time con-
stant, by using equation 3.46. The deuteron quadrupole coupling constant wq/27m =
83.5kHz has been estimated by solid-state NMR, [200, 201]. The unique principal axis

of the deuteron quadrupole coupling tensor is assumed to be along the C-D bond, at an
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angle of 70.5° with respect to the 3-fold jump axis. From comparing the experimental
relaxation time Ty (*H) = 0.754:0.01 s with equation 3.46, which was derived for the case
of a hindered 3-fold rotor attached to a molecule undergoing isotropic rotational diffu-
sion, and assuming that the quadrupolar mechanism dominates the deuteron relaxation,

an estimate of the upper limit on the 3-fold jump rate is obtained: & < 3.2 x 1010571,

3.8 Geometrical models

The product of the rotational correlation time and the 3-fold jump rate constant is
therefore given by k7¢ < 0.12, which supports the validity of the slow-jump regime and
hence equation 3.51. Now consider the case where the three hydrogen nuclei of the CHyD
group are considered to be points, located at the vertices of an equilateral triangle. In this
case 20 = 60°, the internuclear distances are all equal, and the dipolar couplings are in
the ratio of the gyromagnetic ratios wyn/wap = v(*H)/v(®*D) = 6.51. This “equilateral
triangle model” predicts the following relaxation time ratio: (T s/ T1) A = 10.6. However,

the observed value is quite different: (Ts/73) , = 3.1+0.1.

obs

How can this discrepancy be explained? One approach would be to call into
question the intra-methyl relaxation model: However, as discussed above, the evidence
for the dominance of intra-CH,D interactions in the 'H and 2D relaxation is very strong.
An alternative approach is to maintain the local intra-methyl relaxation model, but to
modify the relative magnitudes and geometries of the dipole-dipole interactions within
the rotating CHD group, to take into account differential vibrational averaging on a

faster timescale than the molecular rotation or 3-fold jumps.

A detailed analysis of the effect of rapid vibrational motions on the dipolar inter-
action tensors in the CHsD group would be a major project. For the sake of simplicity
a naive picture is employed, in which the nuclei are still regarded as localized points,
but with the 2D nucleus displaced from its original position, in order to account for
differential vibrational averaging of the 2D and 'H interactions. In order to maintain
symmetry, we consider a model in which the 2D nucleus is moved in the CH;D plane
along the line bisecting the 'H-'H vector (figure 3.16a). This adjustment changes the
internuclear distances as well as the angle §. The dependence of the theoretical relax-

ation rate ratio T's/T} on the deuterium displacement is shown in figure 3.16b). There is
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FIGURE 3.16: a) Adjustment of the effective geometry of the CH3D group to account
for the observed relaxation rate ratio Ts /Ty = 3.1. The three nuclei are initially at the
vertices of an equilateral triangle of side length 179.6 pm (black circles). The deuterium
nucleus is displaced towards the original centre of the triangle (open circle) by a distance
Ar. (b) Dependence of the relaxation rate ratio Ts/T; on the displacement Ar. The
open circle shows the displacement needed for consistency with the observed rate ratio
Ts/Ty = 3.1. The black circle shows the predicted rate ratio from an equilateral
triangle geometry. The calculations assume a rotational correlation time 7¢ = 3.8 ps
and a thermally activated jump rate constant x = 1.7 x 1010571,

a strong sensitivity to the deuterium displacement, with the observed ratio Ts/T7 = 3.1
being consistent with a displacement of 38.7 pm towards the original centre of the equi-
lateral triangle. This represents a contraction in both 'H-2D distances by about 18%,
and a change in the angle 20 from 60° to 75.1°. A sketch of the adjusted geometry is
shown in figure 3.16a).

This degree of geometrical distortion is probably unrealistic. It is more likely that
differential vibrational averaging of the 'H-'H and 'H-?D dipolar interactions is respon-
sible for the observed Tg/T} ratio. Vibrational motion out of the CHyD plane is likely to
be particularly effective. For example, the larger vibrational amplitudes of the 'H nuclei
relative to the more massive ?D nucleus would reduce the 'H-'H dipolar interaction
more than the "H-?D dipolar interactions. This effect would lead to a correction in the
right direction. A more sophisticated analysis of vibrational effects on the interaction

parameters has not been attempted.

It is also possible to estimate the contribution of the chemical shift anisotropy
mechanism to the proton singlet and longitudinal relaxation rates. Using the expres-
sions given in reference [24], and the reported values of the 'H CSA (UH = —5ppm),

provides estimates of T3 '(CSA) = 0.69 + 0.09 x 1073s7! and 77 '(CSA) = 0.24 +



150 Chapter 3: Long-lived nuclear spin states in monodeuterated methyl groups

0.03 x 1073s7!. Clearly the chemical shift anisotropy mechanism does not signifi-
cantly contribute to the CHsD group singlet and longitudinal relaxation of N-CHyD-2-
methylpiperidine.

3.9 Rapidly rotating CH,D groups

In the previous section it was demonstrated that the finite value of QIAQ in N-CHyD-2-
methylpiperidine allows access to the CHaD nuclear singlet order [56]. A relatively low
relaxation time ratio Ts /77 ~ 3.1 was observed in this case. This was attributed to slow
rotational jumps of the CHyD moiety between three rotational conformers, which was
supported indirectly by the *C and 2H relaxation data, combined with a non-equilateral
effective geometry for the two protons and the deuteron [56]. A much larger ratio of
Ts to T is expected in the case of rapid CHyD rotation [183]. However, it has been
unclear whether rapid CH3D rotation is compatible with a sufficiently large chemical

shift difference AJ, required for access to the nuclear singlet order.

Chemical inequivalence between CHsD protons has only been described so far in
three chemical compounds [179, 180, 182]. Of these, the one expected to provide rapid
CH2D rotation is (a-deuterio-o-chlorotoluene)chromium tricarbonyl (I), see figure 3.17.
In this section, I show that rapid CH3D rotation is not a priori incompatible with a
finite chemical shift difference, and that long-lived nuclear singlet order is accessed in
this rapidly-rotating CH3D system, and displays a relatively large relaxation time ratio,

Ts/Ty ~ 11.3.

3.9.1 Experiments
3.9.1.1 Proton spectra

The relevant portion of the proton NMR spectrum of I, in the presence of deuteron
decoupling (nutation frequency = 500 Hz), is shown in figure 3.17. The two central
peaks of the AB spectral pattern are unresolved, and the weak outer components are
only just visible, indicating a very small value of the chemical shift difference relative to
the J-coupling. A small chemical shift difference between the CHoD protons is observed

in this compound, and is attributed to a significant interaction between the orbitals of the
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FIGURE 3.17: Part of the experimental 'H spectrum of (a-deuterio-o-
chlorotoluene)chromium tricarbonyl (I) in CgDg solution acquired at 11.7T (500 MHz)
with 16 transients, in the presence of deuteron decoupling (500 Hz nutation frequency).
Blue line: experimental proton spectrum; Black line: simulation (|Jgu| = 14.7 Hz,
Q12 = 8.0 ppb), using Lorentzian line broadening (half-width at half-height = 1.5 Hz);
Grey line: simulation (|Juu| = 14.7Hz, QX2 = 8.0 ppb), using Lorentzian line broaden-
ing (half-width at half-height = 0.3 Hz). The intensity of the grey spectrum has been
artificially reduced. The inner splitting of the grey spectrum is 0.6 Hz. The aster-
isk indicates a small signal from a non-deuterated impurity, shifted in frequency by
a secondary isotope effect. The small outer components of the AB spectral pattern
are indicated by arrows. Inset: structure of I, indicating the out-of-plane chromium
complex.

chromium centre and those of the CHyD carbon, combined with the chiral environment
provided by the ortho-Cl substituent [180]. The spectrum may be simulated by using the
following parameters: |Jup| = 14.7 £ 0.3 Hz, Ad = 8.0 £ 0.4 ppb. These are consistent
with the literature [180].

3.9.1.2 Singlet NMR

The small chemical shift difference allows access to the long-lived singlet order of the
CH3D protons, by using radiofrequency pulse techniques which operate in the near-
equivalence regime [150, 156-158]. In the current study, the SLIC (Spin-Lock Induced
Crossing) method was used [157], as shown in figure 3.6. The parameters of the SLIC
pulse sequence were chosen to maximise triplet-singlet population conversion: wsric /27
= 14.7Hz, wrock /27 = 0Hz and 7s11c = 170 ms. An interval of 360 s was used between
successive transients. The maximum amplitude of the singlet-filtered 'H NMR signal,

relative to that induced by a single 90° pulse, was found to be 0.28. The loss relative
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FIGURE 3.18: Experimental relaxation curves for the CH3D protons in 0.1M I in
degassed CgDg solvent (proton frequency = 500 MHz, temperature = 25°C). Open
symbols, grey line, and right-hand axis: Decay of long-lived nuclear singlet order mea-
sured using the pulse sequence in figure 3.6. Filled symbols, black line, and left-hand
axis: Spin-lattice relaxation measured by inversion recovery. All signal amplitudes were
normalized to the first point. The fitted curves have a single-exponential form.

to the theoretical maximum of 2/3 [173] is not yet fully understood but is attributed to

radiofrequency field imperfections and relaxation.

3.9.2 Results

A decay curve for CHsD proton singlet order is shown in figure 3.18. This shows a
single exponential decay with time constant T = 126 4+ 6s. This is more than eleven
times longer than the relaxation time for the longitudinal magnetization of the CHyD
protons, 77 = 11.2+ 0.6 s, as estimated from the inversion recovery curve, also shown in
figure 3.18. Without degassing, Ts = 21.9 £ 0.8 s and 77 = 5.1 £+ 0.3s. Measurements
of Tg and T7 values for the CHyD protons in I at several temperatures between 25°C
and 55°C are shown in table 3.4. The ratio T's /T remains reasonably constant over this

temperature range. Temperature is therefore an implicit parameter of T} and Ts.

TABLE 3.4: Relaxation times for the CHyD protons in 0.1 M I in degassed CgDg solution
at 11.7T (500 MHz), for a range of temperatures.

Temperature/°C  T1/s Ts/s Ts/Ty

25 11.2 4+ 0.6 126 =6 11.3 + 0.8
35 126 0.4 131+ 10 10.4 £ 0.9
45 141 £ 05 141 £6 10.0 £+ 0.6

55 156 £0.7 144£7 93 +£0.6
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3.9.3 Discussion

The observed relaxation time ratio Tg/77 ~ 11.3 is much larger than that found for
the case of N-CHyD-2-methylpiperidine, where a ratio of 3.1 was observed [56]. This
may be attributed to much faster rotational diffusion of the CHsD group in I around the
approximate 3-fold axis. This is physically reasonable since the site adjacent to the CHyD
group in I is a sp2-hybridized carbon, while the adjacent site in the N-CHyD piperidine
derivative is a sp3-hybridized nitrogen, whose lone pair engages in a hyperconjugation
interaction with the deuterated methyl group [179]. Neutron spectroscopy of methyl
rotors show that sp? hybridization of the neighbouring atom is almost always associated
with strong hindering of the methyl rotation, and therefore a small or absent tunnelling
splitting [202]. It is therefore plausible that the CHsD group has much greater rotational
freedom in I, as compared to the N-CHyD piperidine derivative studied in sections 3.2-

3.8.

The torsional potential energy function for a methyl group adjacent to a sp? carbon
is known to contain periodic components with both 6-fold and 3-fold symmetry [203].
The 3-site jump model for proton singlet relaxation developed in section 3.4.2 is therefore
not appropriate to the case of compound I. In the discussion below, a model in which the
CH3D rotor performs free rotational diffusion is used, with correlation time g, while the
overall rotational diffusion of the molecule in solution is described by a correlation time
7c. A model of this kind was used to treat methyl long-lived states and quantum-rotor-
induced polarization in v-picoline [141, 155]. As in section 3.4.3, the linear relationship
of T's and T (table 3.4) indicates a common correlation time for these processes, and it is
assumed that the proton relaxation in the CHyD group is dominated by the local dipolar
interactions between the protons and the deuteron. These local dipolar interactions are
averaged on a fast timescale by rapid vibrational or librational motion, so it is not
possible in general to assume that the nuclei can be treated as point dipoles at the

vertices of an equilateral triangle [56].
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3.9.4 Spectral densities for rapidly rotating CH,D groups

For a freely diffusing methyl group, the contribution of internal motion to the correlation

function is [61, 155]:
2
<D72r:<2m1(QRM(0))D12n’2m’1(QRM(T))> = 6m1m25m’1m 5m2m’26m1m TR, (3.52)

The spectral densities for the dipole-dipole and quadrupolar interactions therefore be-
come:

Ty (@) = G ASOPAQOPZDOW #) D R) (3.53)

mm
m2

S —’mQL / .
X dre 2R e T/7C T,
0

with the spectral density at zero frequency, relevant in the extreme narrowing regime,

becoming:

/ ’ TcTR /
T (0) = S AQOPAQOPZ— D 2 ) Dir(QFR).  (3.54)

mm = m27'c + TR

In extreme narrowing, the isotropic rotational diffusion model leads to the following

expressions for the 77 and Tg relaxation rate constants for the CHsD protons:

_ +7¢)
T1:L<162 92) 3.55
! 6 (TR + 47¢) “Hp i | 70, (3.55)
87R sin2 26
-1 R 2
= winTC. 3.56
S (TR+47-C) HD/C ( )

The CHsD deuteron relaxation is assumed to be dominated by the electric quadrupole

mechanism, with a rate constant given by:

1 int 0
T CH) = (2 (1 4+ 3cos20)? + DRI 0
162 (TR + 470) (3.57)
67r sin?260 , '
————)wgTC,
(r+7c) ¢

where a tetrahedral effective geometry is assumed. These are similar to the expressions
given in section 3.5.5 (equations 1-4 of reference [56]) for the 3-site jump model of CHyD

relaxation.
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3.9.5 Relaxation analysis

13C and 2D relaxation times were measured in degassed CgDg solution at 11.7 T (500 MHz)
and 25°C. The 2D T of the CHyD group was 1.240.1 s. The C T} values for the CH

sites of the o-chlorotoluene moiety were 5.3 + 0.4 s.

The experimentally determined T; relaxation times for the aromatic ring *C
sites were found to be consistent with a rigid-body rotational diffusion model, and by
comparing with equation 3.45 lead to the following estimate of the overall rotational
correlation time at 25°C: 7¢ = 9.0 + 0.6 ps. From comparing the experimental T}
relaxation time constant of the CHyD deuteron with equation 3.57, an estimate of the
correlation time for free rotational diffusion of the CH2D methyl rotor is obtained:
TR = 2.840.3 ps. In this case the product 7¢ 7y 1'> 1. This confirms that the CHyD group
in I undergoes local rotational diffusion which is more rapid than the overall rotational
tumbling of the molecule. This is different from the case of N-CHyD-2-methylpiperidine,
where the 3-fold jumps of the CHsD group are slow relative to the overall molecular

tumbling, see section 3.7.2 [56].

The rotational diffusion model leads to the following expression for the relaxation

time ratio Tg/Th:

T, 16w + 9w
5 _ 1_|_T£ w (3.58)
T TR/ 48wip sin” 20
3 2
~ (14 8) P (3.59)
TR/ 16wipp sin® 26

using the approximation \wHD|2 < |wHH|2. The simplest model of intra-CHsD interac-
tions assumes that the proton and deuteron nuclei are fixed as points on the vertices of
an equilateral triangle. Since all internuclear distances are equal, the angle between the
unique principal axes of the two HD dipolar coupling tensors is given by 260 = 7/3. The
estimated correlation times 7¢ = 9.0 + 0.6 ps and 7 = 2.8 £+ 0.3 ps lead to a predicted

relaxation time ratio Ts /Ty = 47+4. This is far larger than the observed ratio of ~11.3.

In the case of N-CHsD-2-methylpiperidine, a good agreement with the observed
relaxation time ratio was obtained by adjusting the effective geometry of the CHyD
group to take differential vibrational averaging into account, see section 3.8. Moving the

effective position of the deuteron by 38.7 pm towards the centre of the CHsD triangle
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generated good agreement with experiment [56]. In the current case, the same adjust-
ment of effective geometry leads to a predicted relaxation time ratio Ts/T7 = 14.1+0.4.
This is in better agreement with the experimental result T's/T7 ~ 11.3, although a
significant discrepancy remains. The remaining discrepancy could be associated with
deviations from the free rotational diffusion model, in the direction of a discrete jump
model. Additional relaxation mechanisms could also be involved, such as interactions
with neighbouring nuclei and spin-rotation interactions. This is plausible since small
additional contributions can have a large proportionate effect on the small value of T L

This issue has not been investigated further.

3.10 Conclusions

It is possible to populate the long-lived nuclear singlet order in the proton pairs of mon-
odeuterated methyl groups, under suitable conditions. This requires non-uniformity
in the rotamer populations as well as a local chiral environment in order to induce a
small isotropic chemical shift difference between the CHsD protons. Both conditions are
fulfilled for the CH3D group in N-CHyD-2-methylpiperidine, where a hyperconjugation
effect involving the nitrogen lone pair perturbs the vibrational energies and hence the ro-
tamer populations, while the neighbouring methyl group provides a chiral environment;
and (a-deuterio-o-chlorotoluene)chromium tricarbonyl, where the small chemical shift
difference observed is associated with the asymmetry of the complex coupled with the
selective C-H(D) bond weakening induced by the Cr(CO)s moiety [33, 34]. Coordina-
tion of metals to arenes is known to result in a dramatic withdrawal of electron density
from the arene [204] and produce a significant interaction between the orbitals of the
chromium centre and those of the CHyD carbon. The chiral environment is provided by

the ortho-Cl substituent [180].

In the N-CHoD-2-methylpiperidine system, the ratio of the singlet relaxation time
Ts to the longitudinal relaxation time 77 was found to be 3.1 & 0.1 over a wide range
of conditions, with the longest observed value of Ts approaching 1 minute at elevated
temperature. The observation of a constant ratio of T's to 77 supports a relaxation model
in which dipolar interactions between the CHsD protons and deuteron dominate the
singlet relaxation. However, a naive model in which the 'H and 2D nuclei of the CH;D

group are viewed as point-like magnetic dipoles fixed at the vertices of an equilateral
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triangle predicts a much larger ratio of Tg to T7. The effects of a geometric distortion
in which the 2D nucleus is displaced towards the centre of the triangle was explored and
it was found that a displacement of 38.7 pm was needed to explain the experimental
data. This adjustment should not be viewed as a realistic structural proposal, but as a
crude attempt to represent the differential effects of vibrational averaging and nuclear

wavefunction delocalization within a simplistic point-nucleus geometric model.

The observed relaxation time ratio of Tg/77 ~ 3.1 is probably too small for
most feasible applications. However, it should be noted that equation 3.51 permits
a much larger ratio of Ts/T; in the case of fast 3-fold jumps, i.e. k7¢ 2 1. This
does not occur in N-CHyD-2-methylpiperidine, where the rotational barrier appears
to be relatively large but does arise in other compounds displaying inequivalence of
the CH2D proton pair, such as in (a-deuterio-o-chlorotoluene)chromium tricarbonyl,
where a free rotor rotational diffusion model was used in the relaxation analysis of the
singlet relaxation time constant Tg. Rapid CHsD rotation was found to extend the
proton singlet relaxation time of monodeuterated methyl groups, and in the case of (-
deuterio-o-chlorotoluene)chromium tricarbonyl the time constant T's was more than 10
times longer than 77, and was consistently longer than 2 minutes. Furthermore, at least
in this case, a sufficient differential was maintained between rotamer populations while
still having a sufficiently low rotational barrier as to permit rapid CHsD rotation. As
a result, the chemical shift difference between the CHyD protons was not completely
quenched, and the nuclear singlet state remained experimentally accessible, as well as
being long-lived. These results are encouraging for the future applications of long-lived

singlet states in monodeuterated methyl groups.

Attempts to observe long-lived singlet states in other chiral CHsD systems, such
as derivatives of 3-2D-lactic acid, and also N-CHyD-3-methylpiperidine (similar to the
substance used above, but with a more remote CHs group) were unsuccessful. Access
to the CH2D singlet state in both of these cases presumably failed because the chemical
inequivalence of the CHyD protons is too small to exploit. Apart from unusual circum-
stances [180], hyperconjugation between a lone pair on a neighbouring atom (such as
N) and the methyl C-H(D) bonds seems to be a requirement for obtaining a sufficient
chemical shift difference of a few ppb or more. At the time of writing this thesis ex-
periments have not been attempted on other chiral compounds containing a X-CHoD

moiety, where X is an atom other than N possessing a lone pair, such as P, O or S.
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It should be noted that many interesting chiral molecules do contain a tetrahedral N-
methyl group of suitable type. Examples include the psychoactive agents lysergic acid,
codeine, morphine, cocaine, heroin, and methamphetamine. It is not yet known whether
the methyl-monodeuterated versions of these systems possess an accessible long-lived

singlet state.



Chapter 4

Direct hyperpolarization and
coherent readout of long-lived

proton singlet order

Conventional nuclear magnetic resonance (NMR) experiments are limited by low sen-
sitivity and weak signals. Hyperpolarization techniques such as dissolution-DNP (dy-
namic nuclear polarization) [71] enhance solution-state NMR signals by orders of magni-
tude [71, 205-207]. The large NMR signal enhancements have a range of important ap-
plications including ligand-binding, drug transport and metabolic tracing [87, 116, 208
210], and wide-ranging implications such as the characterization of cancer in human

patients [87].

However, the range of applications for hyperpolarized NMR is strongly restricted
by the finite lifetime of the enhanced magnetization, which is usually limited to the
characteristic relaxation time 77. This limitation is especially severe for protons, which
tend to have short values of 77, due to their relatively strong nuclear magnetism. Most
applications of D-DNP have involved weakly magnetic isotopes such as '3C, even though
the ubiquitous protons give stronger NMR signals. This is because the short spin-lattice
relaxation times of protons usually lead to a large loss in polarization during the transfer

from the polarizer to the point of use.
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FIGURE 4.1: The significant NMR signal enhancements afforded by DNP may be
harnessed by two approaches. (1) DNP leads to hyperpolarized nuclear magnetization,
which decays with the relatively large rate constant T, '. (2) In the case of spin-1/2
pairs, DNP also gives rise to hyperpolarized singlet order, which may be converted into
observable magnetization by a coherent radiofrequency pulse sequence. Although the
degree of singlet hyperpolarization is less than that of magnetization, the decay rate
constant T ! is much smaller than T ! The hyperpolarized signals may be larger at
long times, when the singlet route is taken.

The use of LLS offers a promising means to transcend the limitation of hyper-
polarized magnetization decaying rapidly in solution [14-16, 20, 21, 23, 28, 29, 31—
33, 140, 142, 143, 146, 183, 208]. LLS are protected against intra-molecular dipole-dipole
relaxation and other symmetric decay mechanisms, and typically have extended lifetimes
Tg > 11, see figure 4.1. The combination of LLLS phenomena with hyperpolarization tech-
niques is particularly promising, and applications of nuclear singlet order to hyperpolar-

ized NMR experiments have been proposed [21, 28, 32, 34, 71, 87, 143, 145, 146, 208].

In this chapter, it is shown that this limitation may be overcome by (1) exploiting
near-equivalent proton pairs; (2) direct hyperpolarization of long-lived proton singlet
states in those proton pairs by using D-DNP, and (3) coherent and efficient conversion

of the hyperpolarized proton singlet order into observable magnetization.

4.1 Introduction

Consider the protons (i and j) in the N-CHsD group of N-CHyD-2-methylpiperidine.
If the chemical shift difference between the members of the spin pair is sufficiently
small, the spins are termed near-equivalent [24]. The condition for near-equivalence is
s

<< ‘27&]1-]- , where QX is the chemical shift difference between the spins ¢ and




Introduction 4.1 161

Jj, and J;; is the scalar coupling between the members of the spin pair. When this
condition is satisfied, the energy eigenstates are approximately equal to the nuclear
singlet and triplet states, and the nuclear singlet order is stable at high magnetic field
without intervention. If the near-equivalence condition is not met, on the other hand,
the nuclear singlet order must be maintained by applying an on resonant radiofrequency

field [149], or by shuttling the sample to a region of sufficiently low magnetic field [16].

DNP generates a high nuclear Zeeman polarization pyz, which may be associated
with a very low nuclear spin temperature, on the order of milliKelvin. If the spin
temperature is assumed to be uniform, a nuclear singlet polarization pg is also generated,
given by [25]:

1

ps = —gp%' (4.1)

A derivation of equation 4.1 is shown in section 2.10. The direct generation of hyper-
polarized singlet order by DNP was first demonstrated for the case of [1,2-13Cy]pyruvic
acid [25]. However, in that case, the large chemical shift difference between the 3C sites
caused rapid singlet decay in high magnetic field, and no significant advantage could be
demonstrated over conventional Zeeman polarization. The direct generation of nuclear
singlet order by DNP was also demonstrated in magnetically-equivalent systems [55, 143]
but in these systems chemical reactions or inefficient cross-relaxation processes are re-

quired to generate weakly observable NMR signals [55, 143].

In this section it is demonstrated that the use of near-equivalent proton pairs allows
the long lifetime of hyperpolarized singlet order to be exploited in high magnetic field,
while still providing an efficient, coherent route for conversion of the nuclear singlet order
into enhanced NMR signals. Under these circumstances, the “singlet route” ((2), lower
part of figure 4.1) may provide stronger, longer-lasting, hyperpolarized NMR signals
than the “Zeeman route” ((1), upper part of figure 4.1).

As a proof of concept, the CHsD protons of N-CHsD-2-methylpiperidine were
chosen as the near-equivalent spin pair for these experiments. The CHsD protons
have a 14 ppb chemical shift difference due to the chiral environment generated by the
nearby methyl substituent, see figure 3.4 [56, 179, 184]. The structure of N-CHyD-2-
methylpiperidine is shown in figure 3.1. Coherent readout of the long-lived spin order is
achieved, after hyperpolarization with D-DNP, by applying a singlet-to-magnetisation
(S2M) pulse sequence [150, 156]. The bulk of the nuclear singlet order is converted to
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magnetization, obviating the need for chemical reactions or weak cross-relaxation pro-
cesses [55, 141, 143, 147, 155]. This procedure allows strongly enhanced proton NMR
signals to be observed more than one minute after dissolution, by which time the hyper-
polarized magnetization has completely disappeared, i.e. enhanced proton NMR signals

are observed even when the hyperpolarized magnetization has completely vanished.

4.2 D-DNP methods

Solutions of 0.375 M N-CHyD-2-methylpiperidine in the glass-forming mixture D2O:gl-
ycerol-dg (50:50 v/v) were doped with 25 mM TEMPOL (II). The solution was soni-
cated for 2minutes. Ten frozen pellets of IT (10 uL volume per pellet) were inserted
into a home-built polarizer. The sample polarized in a magnetic field of 6.7 T and at
a temperature of ~4.2 K for ~48 minutes by applying frequency-modulated microwave
irradiation at 188.3 GHz frequency and 100 mW power [211, 212]. The microwave mod-
ulation frequency and amplitude were 10 kHz and 50 MHz, respectively. The polarized
pellets were dissolved with 5mL CD3CN solvent (degassed via bubbling with nitrogen
gas for 5minutes) preheated to 410K at a pressure of 10bar. The liquid sample was
transferred in 10.7s to a 11.7 T (500 MHz) NMR magnet by pushing with helium gas at
6 bar through a PTFE tube (1.5 mm inner diameter) running inside a magnetic tunnel

(0.91T, 5m length) [135]. 1s was taken for sample injection and bubble dissipation.

4.3 Solid-state polarization

Zeeman polarization pSZOIid was accumulated in the solid-state for a sample of II in a
magnetic field of 6.7T and at a temperature of ~4.2K under the action of negative
dynamic nuclear polarization (DNP) [212]. A Zeeman polarization of pi*iid = —59 +5%
was achieved in ~48 minutes, see figure. 4.2a). The solid state enhancement esz‘)“d was
approximately -3604+20 compared to a spectrum recorded with the microwaves off, see

figure 4.2b). The thermal equilibrium spectrum was acquired after a 1 hour equilibration

period at ~4.2 K.
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FIGURE 4.2: a) Build up of Zeeman polarization pi*!' in the solid state for a sample of

IT in a magnetic field of 6.7 T and at a temperature of ~4.2 K. A Zeeman polarization

of pSZOHd = —59 + 5% was reached after ~48 minutes. b) Solid state hyperpolarized

(red) and thermal equilibrium (blue) spectra. The enhancement in the solid state is
solid ~ 360 4 20.
€z

4.4 Singlet order vs. magnetization

The enhanced NMR signals from the hyperpolarized magnetization and the nuclear
singlet order are compared by using the procedure sketched in figure 4.3a). A sample of
IT has been prepared as described in section 4.2. The hyperpolarized sample is dissolved
in deuterated acetonitrile solvent preheated to 410 K (pressure ~10 bar) and transferred
into a 11.7T NMR magnet through a ~0.9T “magnetic tunnel” in transport time of
~10s [135]. After a variable high field waiting time Ty, a 7/2 pulse is applied and the
NMR signal is acquired (blue). Note that the single pulse and signal acquisition leaves
any DNP-generated singlet order unperturbed, to a good approximation. The nuclear
singlet order is read out by applying a Ty filter sequence, followed by a S2M pulse
sequence, with a combined duration of ~2s [55, 56, 150, 156]. The Ty filter quenches
all NMR signals not originating from the nuclear singlet order, and the S2M pulse
sequence converts hyperpolarized singlet order into transverse magnetization, leading to
a second NMR signal (red). The Ty filter is described in more detail in appendix B and
references [54-56]. The time-reversal of the S2M sequence (M2S) is described in more
detail in section 2.13. The parameters of the S2M pulse sequence were as follows: 7
= 21.4ms, n; = 3 and ng = 1. The sample is allowed to rest in the 11.7T magnet for
an additional 300s in order to achieve thermal equilibrium, and a third NMR signal is

acquired using a 7/2 pulse (black). Fourier transformation of this signal provides the
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FIGURE 4.3: a) Timing sequence for acquiring spectra from the hyperpolarized mag-
netization, the hyperpolarized singlet order, and in thermal equilibrium, from the same
sample. (b-d) Spectra obtained from a sample of IT dissolved in degassed CD3CN solu-
tion, hyperpolarized in the negative sense by DNP, and with a waiting interval myrp =
15s after arrival in the high field magnet. b) Spectrum from hyperpolarized magneti-
zation showing negatively enhanced signals; ¢) Spectrum from the nuclear singlet order
converted into magnetization by the S2M sequence, showing a strongly enhanced CHsD
signal; d) Thermal equilibrium spectrum. (e-g) Similar spectra obtained on a second
hyperpolarized sample of II dissolved in degassed CD3CN solution, using a waiting
interval Typ = 35s after arrival in the high field magnet.

thermal equilibrium spectrum.

Figures 4.3(b-d) show the spectra obtained with a delay of Tyr = 15s. Relevant
spectral ranges are shaded in grey and the integrals across these ranges are given above
the spectra. All integrals are normalized to the intensity of the fully protonated methyl
group at 1.09 ppm in the thermal equilibrium spectrum. The signal originating from
the CH3D group is at 2.20 ppm, and is partially obscured by a water impurity signal at
2.24ppm. The acetonitrile solvent resonance is at 1.98 ppm. The spectrum generated
by the initial 7/2 pulse is shown in figure 4.3b), and displays enhancements of -75
and -26 for the CHoD and CHj spectral regions, respectively. These signals originate



Water impurity 4.5 165

TABLE 4.1: Chemical shift of the water impurity for different volumes of co-mixed

N-CH;3D-2-methylpiperidine, glass-forming D2O:glycerol-dg (50:50 v/v) and TEMPOL

(IT) dissolved in 0.5 mL degassed CD3CN solvent at 11.7 T (500 MHz) and 25°C. Chem-
ical shifts were referenced with respect to the CD3CN solvent peak.

Volume/uLl  Chemical shift/ppm

2 2.217
5 2.297
10 2.389

from the hyperpolarized magnetization, with the negative sign reflecting the sense of
the DNP. The signal obtained from the directly hyperpolarized singlet order is shown
in figure 4.3¢c), and clearly exceeds the signal from the hyperpolarized magnetization,
displaying an enhancement of +154. Only the CH,D signal appears in figure 4.3c¢), since
the Thp sequence suppresses signals which do not pass through the nuclear singlet order

of the CHsD protons.

The advantage of using hyperpolarized singlet order over hyperpolarized magneti-
zation is even more pronounced at longer high field waiting times 7r. Spectra obtained
with 7qp = 35s are displayed in figures 4.3(e-g) and show only weak traces of signals
from the hyperpolarized magnetization. The signal obtained from hyperpolarized sin-
glet order at Tqyp = 35, on the other hand, still gives an enhancement of more than 50

relative to thermal equilibrium.

4.5 Water impurity

The resonance position of the impurity, thought to originate from residual water [213],
was found to be dependent on the volume of II dissolved in degassed CD3CN solvent, see
table 4.1. At higher concentrations of II, the water impurity was shifted sufficiently far
downfield such that the CHyD resonance was unobscured in the proton NMR. spectrum.
For example, at a 10 uL. volume of IT the CHsD peak was observed at 2.389 ppm. For
volumes of IT <2 ul, such as those achieved after dissolution, the CHsD peak was
obscured by a more intense water resonance. The resonance shift of the water impurity
as a function of the volume of I1 is approximately linear, but is not currently understood.
A plausible mechanism would be an exchange interaction between the -OH protons of the
TEMPOL radical with those of the residual protonated water belonging to the glassy

matrix. Such an exchange interaction could simultaneously lead to a downfield peak
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FIGURE 4.4: The procedure for monitoring the decay of the hyperpolarized singlet
order. Hyperpolarized N-CHyD-2-methylpiperidine is collected after dissolution at low
magnetic field (<3mT) in a flask preloaded with 2mL degassed CD3CN solvent. The
solution is pipetted (at low magnetic field) into 5 separate 0.5 mL NMR tubes. The
first tube is inserted into the 11.7 T magnet, a Tj filter sequence is applied to select out
NMR signals passing through the nuclear singlet order [150, 156], and the S2M pulse
sequence converts the hyperpolarized proton singlet order into observable magnetization
for detection [55, 56]. Within the following 20s the sample is ejected and the next NMR
tube is injected; this procedure is repeated for all five NMR tubes. The curved arrow
after each signal acquisition represents the ejection of the NMR tube.

shift for the water resonance and broader NMR lines. It is not yet known whether there

are any previous reports of similar phenomena in the literature.

4.6 Decay of hyperpolarized singlet order

The hyperpolarized Ty is estimated by using the procedure sketched in figure 4.4. A
hyperpolarized sample of II is flushed out of the cryostat using hot acetonitrile solvent
and collected in a flask preloaded with 2mL degassed acetonitrile solution in the stray
field of a 11.7T NMR magnet (<3mT). The solution is divided into aliquots in the
ambient magnetic field of the lab bench. The first 0.5 mL aliquot is loaded into an NMR
tube and inserted into the 11.7T NMR magnet. NMR signals are obtained from the
hyperpolarized singlet order by applying a Ty filter sequence followed by a S2M pulse
sequence [150, 156]. The tube is then ejected and a second tube is inserted that had
been filled in the meantime. The delay between the measurements on the two tubes is

20s. This process is repeated for a total of five tubes.

The signal enhancement factors in a Zeeman hyperpolarization experiment and a
singlet hyperpolarization experiment are denoted by ez and eg, respectively. These are
given by the spectral integrals of the CHsD peak relative to thermal equilibrium, i.e.
ez = I7/I.q and es = Ig/Ioq, where Iy and Ig are the integrals for the direct Zeeman and
singlet hyperpolarization experiments, respectively. In practice, the intensity Ioq of the

thermal-equilibrium CHsD peak was estimated by multiplying the CH3z peak intensity



Decay of hyperpolarized singlet order 4.6 167

150
120 |
5
e 90 |
(O]
2
S 60|
L
C
L 30
0
0 30 60 90 120

Time (s)

F1cURE 4.5: Filled circles: Experimental values of the signal enhancement factor in
a singlet NMR experiment es(t), as a function of the elapsed time ¢ after dissolution.
Solid line: Exponential decay curve given by es(t) = eg(0) exp{—t/Ts}, with initial
enhancement eg(0) = 680 and time constant T = 19.0 s. Dashed blue line: Magnitude
of the signal enhancement in a Zeeman polarization experiment, as inferred from the
data: |ez(t)| = |ez(0)| exp{—t/T1}, with €z(0) = —14750 and T} = 5.9 s.
by 2/3, in order to avoid complications caused by the overlap of the CHaD peak with a

water impurity peak.

The experimental signal enhancement factors eg(t) are shown by the filled symbols
in figure 4.5. The time coordinate ¢ of each point is given by the total elapsed time since
dissolution, including the transport of the sample out of the polarizer, the waiting time
in low magnetic field (different for each aliquot), the insertion into the high field magnet
and any waiting time for stabilization before application of the pulse sequence shown
in figure 4.4. The data fit well to a mono-exponential decay with a time constant

Ts = 19 + 3, and an initial enhancement eg(0) = 680 £ 126.

A direct comparison with the signal enhancement from Zeeman polarization is not
straightforward, since the Zeeman polarization decays rapidly and the spectral analysis
is complicated by the peak overlap. The dashed blue curve in figure 4.5 shows an
indirect estimate of ez(¢) which was inferred as follows: (i) The Zeeman polarization
level was estimated by comparing the DNP-enhanced solid-state NMR signal at ~1.3 K
with a thermal equilibrium signal measured at ~4.2 K (both signals were measured in
the polarizer). This comparison gave the following estimate of the Zeeman polarization

level in the solid state, prior to dissolution: piid = —59 & 5 %; (ii) It was assumed that
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FIGURE 4.6: Pulse sequence for estimating the longitudinal relaxation time of the
obscured CHyD resonance.

the Zeeman polarization is substantially preserved throughout the dissolution process, so
that pz(0) =~ pi*id, where pz(0) is the Zeeman polarization immediately after dissolution;
(iii) The thermal equilibrium Zeeman polarization for protons in a magnetic field of
11.7T and a temperature of ~300K is governed by the Boltzmann distribution, and is
given by py! = hyB®/2kpT = 39.8 x 107, see section 2.2 for more details. Combining
these results gives the following best estimate for the initial signal enhancement factor in
the Zeeman-polarized experiment: ez(0) = pz(0)/p,' = —14750. The dashed blue line
in figure 4.5 shows the curve |ez(t)| = |ez(0)| exp{—t/T1}, where T1 = 5.9 s as estimated
by separate saturation-recovery experiments. Figure 4.5 therefore shows that the singlet-
polarization experiment yields larger signals than the Zeeman-polarized experiment, for

elapsed times of greater than 30s after dissolution.

4.7 Singlet-filtered saturation-recovery experiments

The pulse sequence for measuring the 'H T of the CHyD peak obscured by the suspected
water impurity is shown in figure 4.6. The scheme commences with a “saturation comb”
(905 - delay)ioo which crushes all observable magnetization. The delay between 905
pulses was 5ms. After an evolution period 7gy, ordinary magnetization is accrued
and converted into nuclear singlet order by the M2S (magnetization to singlet) pulse
sequence [150, 156]. The Ty filter destroys all signals not originating from the proton
singlet order [55, 56], solely selecting the CH3D singlet signal, which is subsequently
back-converted into observable magnetization by the S2M pulse sequence. NMR spectra
were acquired as a function of 7gy and the CHoD T7 of 5.9 & 0.7 s was determined from

the integrals of the resulting signal resonances.
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4.8 Estimate of S2M efficiency

In the current study, the combination of a Ty filter and the S2M (singlet-to-magnetizatio-
n) pulse sequence are used to retrieve the nuclear singlet order generated directly from
DNP. In order to determine the efficiency of the S2M sequence ngon the Zeeman mag-
netization of a thermally polarized sample was converted to nuclear singlet order, and
subsequently reconverted, by using the M2SS2M (magnetization-to-singlet singlet-to-
magnetization) pulse sequence, see section 2.13 for more details. The M2S pulse sequence
converts the hyperpolarized transverse magnetization into hyperpolarized singlet order,
any remaining magnetization is quenched by using a Ty filter, and lastly the nuclear
singlet order is back-converted to magnetization using the S2M pulse sequence. The
signal was recorded and compared to a separate signal which was acquired following
an excitation with a 903 pulse. The ratio of the two signals was found to be 0.4. The
efficiency of the S2M pulse sequence is therefore: ngon = 0.41/2 = 0.63 + 0.02, which is
close to the theoretical maximum of 1/2/3 [173]. The experiment was carried out on a
sample of 5 yL IT in 0.5 mL CD3CN solvent.

4.9 Discussion

4.9.1 Singlet polarization levels

The singlet polarization pg in the solution state, immediately after dissolution, may be

deduced from the signal enhancement factor eg(0) through the equation:

|ps(0)] = es(0)-—=- (4.2)

where p7! is the thermal equilibrium Zeeman polarization in high magnetic field, and
nsoM is the conversion factor for nuclear singlet order into Zeeman order using the S2M
pulse sequence. The triplet-singlet-triplet conversion was found to have an experimen-
tal efficiency of nsam = 0.63 £ 0.02 for N-CHyD-2-methylpiperidine under the relevant
experimental conditions, see section 4.8. From the thermal equilibrium Zeeman polar-
ization p;' = 39.8 x 1075 and the enhancement factor es(0) = 6804126 (see above), the
following estimate for the initial singlet polarization, immediately after dissolution, was

determined to be: |pg(0)| = 4.3 & 0.8%.
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It is instructive to compare this figure with that deduced from the DNP-induced
Zeeman polarization by using equation 4.1. As described above, the best estimate of
the Zeeman polarization level in the solid state is pSZOIid = —59 + 5%. Application
of equation 4.1 gives the following estimate of the DNP-induced singlet polarization:

s = —12+2%.

The best estimate of the singlet polarization, as deduced from the solid-state
Zeeman polarization, is therefore ~3 times larger than the best estimate of the same
quantity measured in solution after dissolution. There are many possible reasons for
this discrepancy, including the following: (i) The nuclear singlet state is an approximate
eigenstate, and thermalization between the Zeeman and singlet reservoirs is incomplete
at the time of dissolution, limiting the applicability of equation 4.1; (ii) The violation
of the high-temperature approximation (section 1.5.3) may introduce spin order that is
manifest neither as magnetization nor as nuclear singlet order; (iii) The concept of a
uniform spin temperature under DNP may not be valid; (iv) The estimate of Zeeman
polarization is associated with multiple sources of uncertainty, including the bleaching
effects of radicals on the solid-state NMR signals [113] and the temperature-dependence
of the detection electronics; (v) The spin dynamics during the dissolution process are
not well understood, and as such a loss in the level of the nuclear singlet order during
the dissolution process may not be ruled out; (vi) Any possible dependence of relaxation
times on magnetic field was not accounted for. Given these major sources of uncertainty,
the highly qualitative agreement between the estimates of the DNP-induced singlet order

from the solid-state and solution-state NMR, measurements is satisfactory.

4.9.2 Singlet lifetime

The lifetime of the hyperpolarized singlet order was found to be ~3.1 times longer than
that belonging to longitudinal magnetization, in agreement with the previous study in
chapter 3. In prior experiments, the chemical inequivalence at high magnetic field was
suppressed by an on resonant spin-locking field, which is assumed to be equivalent to
storing the hyperpolarized singlet order in a <3 mT magnetic field. The reported singlet
lifetime of 0.2 M N-CHsD-2-methylpiperidine in degassed CD3CN solvent at 11.7T and

25°C is: Ty = 32.81+0.65s, see section 3.3 [56]. Discrepancies between the reported singlet
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lifetimes are attributed to the presence of paramagnetic oxygen and radicals dissolved

in solution.

4.10 Conclusions

Proton singlet order may be generated directly from a sample polarized strongly by
dynamic nuclear polarization. In near-equivalent systems, the directly-generated singlet
order is stable in high magnetic field without further intervention, and may be converted
into observable magnetization by known techniques. It has been shown that such signals
may be stronger than those associated with the nuclear Zeeman polarization, since the
hyperpolarized singlet order decays more slowly than magnetization. This procedure
does not require a chemical reaction to break the symmetry and does not exploit in-
efficient cross-relaxation phenomena. The study described here also shows that much
remains to be done in understanding the behaviour of nuclear spins during the DNP

and dissolution processes.






Chapter 5

Singlet-scalar relaxation of the
second kind in the regime of slow

quadrupolar relaxation

In this chapter, an important relaxation mechanism for the nuclear singlet order, which
involves a difference between the scalar couplings of the spins-1/2 to a third nucleus
which has an independent decay mechanism, such as nuclear quadrupolar relaxation, is
presented. This new relaxation mechanism is a variant of the scalar relaxation of the
second kind (SR2K) mechanism. Unlike the corresponding mechanism for longitudinal
nuclear relaxation, which requires very rapid third-spin relaxation, the singlet-SR2K

mechanism is significant for slow third-spin relaxation.

In the following sections, theoretical singlet-SR2K rate expressions are provided
for the case of a spin-1/2 pair scalar coupled to a third nucleus exhibiting an intrinsic
relaxation mechanism. It is shown that the singlet-SR2K mechanism may be suppressed
by applying on resonant radiofrequency irradiation to the singlet spins or to the third
nucleus. These phenomena are demonstrated experimentally for the '3C singlet pair
in the 4-spin system of a 3C,2H-labelled fumarate diester. The singlet relaxation time
constants T were found to increase with increasing *C and 2H spin-locking rf-field am-
plitudes, and the longest observed value of Ty approached 30 seconds. The experimental

data are compared with the theoretical rate expressions.
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5.1 Introduction

7

Pairs of spin-1/2 nuclei can form magnetically “silent” configurations which decay with
extended lifetimes [14-20, 22-27, 56, 142, 144, 149, 150, 156158, 183]. The relaxation
time constant for the long-lived state (LLS) is denoted T's and often transcends the tra-
ditional limit of signal observation for the nuclear magnetization, set by the conventional
longitudinal relaxation time 77, by a large factor [21, 28, 29, 33, 34, 143, 144, 146, 208].
There is great potential in the pairing of LLS phenomena with hyperpolarization method-
ology. Dissolution-dynamic nuclear polarization (D-DNP) in particular is a hyperpolar-
ization technique which affords significant NMR signal enhancements compared to ther-
mal equilibrium [71]. This promising combination has far-reaching applications, such
as studies of hyperpolarized transport and MRI in which the behaviour of cancerous
tissue may be characterized [87]. The current scope of hyperpolarized experiments is
restricted by T7. The LLS relaxation time T, which is often much longer than 77,

offers an encouraging means to overcome the limited observation window provided by

hyperpolarized magnetization.

For spin-1/2 pairs in the near-equivalence regime, the singlet order is known to
be sheltered from the motional modulation of the in-pair dipole-dipole interaction in so-
lution [14-16, 26]. However, many other relaxation mechanisms remain active and can
drive efficient singlet relaxation, attenuating the value of Tg. These may be summarized
as follows:

1. Out-of-pair dipole-dipole interactions. Nuclei in close proximity to the spin-pair
can shorten singlet lifetimes via dipole-dipole couplings [24]. The strength of the dipole-
dipole coupling is dependent on the internuclear distance and participating nuclear iso-
topes [22]. Intermolecular dipole-dipole interactions with other molecules in solution
and solvent molecules are also present but are often weaker in magnitude [56, 153].

2. Chemical shift anisotropy. Motional modulation of CSA tensors in solution
can provide strong singlet relaxation [24, 145]. As the relaxation rate is sensitive to
the difference in chemical shielding tensors at the two nuclear sites involved, molecu-
lar agents exhibiting singlet states are typically designed to only partially violate local
symmetry [24]. A locally centrosymmetric naphthalene derivative with a singlet lifetime
beyond 1 hour at room temperature was based on this principle [35].

3. Coherent leakage terms. Differences in chemical shift, and differences in scalar
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couplings to out-of-pair nuclei, are known to cause singlet relaxation in solution [17, 24].
Advantageously, singlet-triplet leakages are suppressed by on resonant radiofrequency
irradiation which simultaneously extends singlet lifetimes [56, 149]. In other instances,
field cycling is required to remove large chemical shift differences which would otherwise
dominate singlet relaxation [20].

4. Other interactions. Mechanisms including spin rotation, observed for the 3-spin
systems of rapidly rotating methyl groups in solution [60, 141, 155], and relaxation via
molecular oxygen, and other paramagnetic impurities dissolved in solution, can addi-

tionally relax the singlet state [145, 214].

Scalar relaxation of the second kind (SR2K) has long been established as a mech-
anism of 7 relaxation [195, 215]. A nucleus i, scalar coupled to a quadrupolar spin @ of
near identical nuclear Larmor frequency (wj =~ w(? ), relaxes via the SR2K mechanism if
the quadrupolar longitudinal relaxation rate T1_1 is on the order of w{. The cases of *C
nuclei scalar coupled to "Br/%'Br and *N nuclei have been studied in detail [216-220].
Prior work on singlet-SR2K (S-SR2K) examines the limit where the T} of the external
quadrupolar nucleus is on the timescale of the nuclear Larmor frequency [152], and does
not predict the behaviour of the S-SR2K mechanism in the presence of radiofrequency
fields applied to the spin-1/2 pair or the external quadrupolar nucleus. In this chapter,
the S-SR2K mechanism in the slow quadrupolar relaxation regime is examined. The con-
ditions for an efficient S-SR2K mechanism in the regime of slow quadrupolar relaxation
are: (i) the quadrupolar nucleus external to the spin-pair has a longitudinal relaxation

rate approximately the same order of magnitude as the in-pair scalar coupling, and (ii)

there is a finite difference between the two out-of-pair scalar couplings.

5.2 Theory

At this point I must thank Giuseppe Pileio (University of Southampton) for his assistance

in developing the theory of singlet-scalar relaxation of the second kind.

5.2.1 Model 3-spin-1/2 system

In this section, a general discussion of the S-SR2K mechanism in the limit of slow

third-spin relaxation is presented for the case of a spin-1/2 pair coupled to a single
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FIGURE 5.1: Model 3-spin-1/2 system and scalar coupling constant pattern. J;; is

the scalar coupling between spins ¢ and j, shown in black. J;, and Jj; are the scalar

couplings between spins ¢ and k and j and k, respectively. The third spin k is shown
in grey.

external nucleus. The spin system under consideration consists of 3-spin-1/2 nuclei
whose coupling scheme is shown in figure 5.1. The spins labelled as ¢ and j are the two
spins involved in the singlet pair. For simplicity, the singlet spins are considered to have
an identical chemical shift frequency, i.e. QZ = 0. The mutual scalar coupling constant
between spins ¢ and j is indicated here as J;;. The singlet pair is also coupled to a third,
external spin k via a scalar mechanism with J;; and Jj, coupling constants. In order
to isolate the phenomenon of singlet relaxation induced by a scalar mechanism of the
second kind, there are no additional relaxation mechanisms acting directly on spins ¢
and j. Spin k has a relaxation mechanism of its own, i.e. the longitudinal and transverse
relaxation of the magnetization for spin k, described by the characteristic decay rates

ng) and Rék), respectively.

5.2.2 Spin dynamics

5.2.2.1 Hamiltonians

The coherent Hamiltonian Heop, for the 3-spin-1/2 system is conveniently written as:
Heon = Hin + Hou (5.1)

with the coherent Hamiltonian for the in pair scalar coupling expressed as:

I:Iin = 2711]1‘]' jz . fj, (52)
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and with the coherent Hamiltonian for the out of pair scalar couplings written as:

A~

Ho=n (Jg’“ + Jg’“) [l +7 (JEJ’“ — Aﬂ’“) Iz I, (5.3)

The terms Jg and JzAJ are expressed as:

Jgk = Jix + Jjk, (5.4)
JIF = = I (5.5)

The coherent Hamiltonian f[coh is chosen to be time dependent since the use of ap-
plied radiofrequency fields will be exploited to influence the relaxation behaviour, see

section 5.2.7.

5.2.2.2 Phenomenological relaxation superoperator

In the case of a 3-spin-1/2 system, as discussed in section 5.2.1, the relaxation super-
operator is determined by the fluctuations of microscopic incoherent spin interactions
acting on a single spin only (the external third nucleus, k). The incoherent part of the
Liouvillian superoperator can easily be built in a phenomenological way by assuming
that all terms involving longitudinal magnetization on spin k (i.e. terms containing the
spin operator I k») relax with the rate ng), and all terms involving transverse magneti-
sation on spin k (i.e. terms involving the spin operators I or I ky) relax with the rate

Rék). Therefore, a phenomenological relaxation superoperator f‘gh may be constructed,

with matrix elements built as:

_ng) for: Qr = Qs = sz

A A A ~R® for: ), = Aszfm,f
O fth0) =] T =@ = el L (5.6)

0 for: Qr = Qs 7£ sz7jky>jk'z
0 for: Qr # Qs
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5.2.2.3 Liouvillian

The dynamics of the model 3-spin-1/2 system presented in section 5.2.1 are described

by the Liouville-von Neumann equation:
—p(t) = L(t)p(1), (5.7)

where the Liouvillian superoperator L represents the superposition of coherent and in-

coherent influences on the spin system, and is written as:
L = —iHy, +IPh, (5.8)

where .ﬁlcoh is the commutation superoperator of the coherent Hamiltonian fICOh and
fph is the phenomenological relaxation superoperator for spin k, see section 1.6.6 for
more details. The Liouvillian superoperator i has a set of N? eigenvalue/eigenoperator
pairs {Ag, Qq} where N indicates the dimension of the Hilbert space, i.e. the number of

spin states. These pairs can be found by solving the following eigenequation:
LQq = AQy. (5.9)

Because the Liouvillian superoperator L is, in general, non-Hermitian, its eigenvalues
may be complex, i.e.:

Ay = =Xy + iy, (5.10)

where \; and w, are both real. All eigenoperators with w, # 0 correspond to coherences
which decay at a rate A, and oscillate at a frequency w,. All eigenoperators with real
eigenvalues, i.e. eigenvalues for which w, = 0, correspond to the populations of particular
spin state configurations which decay at a rate \;. The Liouvillian always has at least
one trivial eigenvalue equal to zero (Ag = 0) which represents the sum of populations

for all states and is an invariant in a closed system.

5.2.3 Singlet order

The four eigenfunctions of the coherent Hamiltonian, i.e. the nuclear singlet and triplet

states, for a system containing a pair of mutually coupled and magnetically equivalent
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spin-1/2 nuclei are discussed rigorously in section 2.7. In such systems, the Liouvillian
superoperator i has another non-trivial zero eigenvalue if the relaxation superoperator
contains only incoherent dipole-dipole interactions. The associated eigenoperator is the
nuclear singlet order, and is represented by the population difference operator Qso
discussed in section 2.10. In this case, it is convenient to represent the nuclear singlet

order of spins ¢ and j as:
. y IO
Qso = _g(lz' I+ I 1 + 21;.1;), (5.11)

see section 2.10 for more details. In this chapter, it is claimed that the eigenvalue
associated with the nuclear singlet order of spins ¢ and j is different from zero when the
spin-1/2 pair is coupled to a third nucleus that has a relaxation mechanism of its own.
It is also proposed that this term becomes significant when the relaxation decay rate for
the longitudinal order of the third nucleus is slow compared to the inverse of the scalar
coupling between the 2-spin-1/2 nuclei in the singlet pair. In the following sections, I will
discuss the details of this phenomenon using a simplified 3-spin-1/2 model system. The
strategy adopted includes the following steps: i) derive the Liouvillian for the system;
ii) write down its explicit matrix representation in a suitable operator basis; and iii)
find the corresponding eigenvalues by using second order perturbation theory for finite

matrices.

5.2.4 Basis functions

A convenient operator basis for the problem at hand is formulated as follows: i) define

the following set of operators for the k-th spin:
B, — {ik,sz,f,j,f,;} , (5.12)

and; ii) build the operator basis for the whole spin system by taking the direct product

of B with the basis operators for spins ¢ and j:

B=B;®B; ®B{, (5.13)
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with the operator basis of spin £ tilted such that:

(g) By = R@ B ) (g) , (5.14)

R,
{Akylka:ai[yz — pzy —ilpy _Ikz}a (5.15)
where Ry(g) is a rotation superoperator that rotates the spin operators for spin k£ by

the angle 7/2 about the y-axis. The convenience of rotating the spin operators for spin

k will become clear below, see section 5.2.7.

The operator basis in equation 5.13 is conveniently reordered according to the
coherence orders of spins ¢ and j. Through such a basis reconstruction, 24 operators
of coherence order zero for spins ¢ and j are identified. These represent all populations
and zero quantum coherences for this sub-set of spins, thus including the nuclear sin-
glet order. Because spin operators with different coherence orders do not interact, the
discussion that follows is therefore limited to the zero quantum subspace spanned by
these 24 spin operators. The set of zero quantum operators that span this subspace is

indicated as Bzg.

5.2.5 Second order perturbation treatment of Liouvillian eigenvalues

With regards to spins ¢ and j, consider the zero quantum operator block in the matrix
representation of the Liouvillian superoperator i expressed in the operator basis Bzg.
Analytical diagonalization would yield the decay rates for the nuclear singlet order and
all other population operators and coherences which are zero order with respect to spins
i and j. However, analytical diagonalization is not trivial and it is better to proceed
with a second order perturbation treatment. A second order perturbation treatment
of the Liouvillian eigenvalues requires identification and isolation of the perturbed part
of the Liouvillian superoperator i In order to do so, the Liouvillian superoperator in
equation 5.8 is rewritten as:
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FIGURE 5.2: a) Matrix plot of Lo in the zero quantum subspace Bzg; b) matrix plot
of Ly in the zero quantum sub-basis B z0; and ¢) matrix plot of L; in the eigenbasis of

Lo.

with the unperturbed and perturbed parts of the Liouvillian superoperator, Ly and I:l,

respectively, expressed as:

A :h
o+

~ ~

Hout:

Hip, (5.17)

(5.18)

where I:Im and I:Lmt are the commutation superoperators of the Hamiltonians I;Tm and
I;Tout, respectively. The matrix plots of jlo and L in the zero quantum subspace Bzq
are shown in figure 5.2(a-b).

The matrix representation of Lo in the zero quantum sub-basis Bz, whose generic

BZQ

element will be indicated here as [io] , can be analytically diagonalized to yield a

TS
set of unperturbed, first order eigenvalue/eigenoperator pairs {Aél),le)}. The set of

eigenoperators is indicated as BIZ)Q. The first ten eigenoperators of interest in the set

BQQ are shown:

i I.+1 .. I+t A a a
B, = m,%’\@[u[jz’%’_%,_zﬁlizljzlkz,
® Qo ©

(5.19)

©

@
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The following eigenvalue/eigenoperator pairs are of special interest:
{A(® @} - {0 \/>I’LZI]Z}7 (520)
1 ., . ..

{Ag@,@gé { UL I (5.21)
—I

AL —{ g k2L 5.22
1

g9 - { NG -2

(AR QW ) = —R(k),j'“—c” : (5.24)

These eigenvalue/eigenoperator pairs correspond to the two components of the nuclear

singlet order, see equation 5.11, and the longitudinal and transverse relaxation rates of
spin k. The zero value found for the decay rates simply indicates that the singlet-scalar
relaxation of the second kind mechanism does not affect the nuclear singlet order to
first order approximation. The decay rates of the spin operators ka, fky and Iy, are
shown for comparison. It is worth noting that the eigenoperator Q(C% corresponds to the
longitudinal order of spins ¢ and j and is unaffected by the singlet-SR2K mechanism,

i.e. has a zero eigenvalue (A(C% =0).

5.2.6 Decay rates for singlet-scalar relaxation of the second kind

In order to find the second order contributions to the eigenvalues corresponding to the
two eigenoperators Q @ and Q @ it is first necessary rewrite the perturbation L1 in
the eigenbasis of Lo (B ZQ) obtaining L17 see figure 5.2c). Lg is diagonal in its own
eigenbasis. One can immediately observe that the eigenoperator (4), representing the
flip-flop part of the nuclear singlet order, is only connected to eigenoperators @ and
. These three terms form an independent sub-block that contains all the relevant

spin dynamics. The explicit form of this zero order sub-block is:

® @

Ik i3k
@ o 5% 23
i
@ Z;\?i —le — Z'Jij 0 ) (5'25)
zJXk
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where the following shorthand notation has been introduced in order to simplify the

resulting matrix elements:

Jij = 2nJy, (5.26)
I = ongilk. (5.27)

The application of the second order perturbation equation for finite matrices to

- Bzqg - Bzo
2) 2 15 [%} PJ
rq qr
%:FF@ —) —m———Ea (5.28)
R

aq

equation 5.25:

rr

yields the following eigenvalue/eigenoperator pair:

k Y
1((rP)2 +3%) 2

(ﬁ§+ﬁ@). (5.29)

2 A@y _
M@Q@%-

Note also that the eigenoperators ﬁfizsz have no connections with any other spin
operators in figure 5.2¢) and therefore A(Q% is identically null at any higher order. Only
the flip-flop part of the nuclear singlet order is affected by the scalar coupling relaxation
mechanism of the second kind, and the approximated second order decay rate is given by
A%. The nuclear singlet order term involving the V2Ii, I j» spin operator is unaffected

by this mechanism and therefore the experimentally measured singlet decay rate has a

characteristic biexponential shape, as shown in figure 5.3.

Equation 5.29 relates to the case in which the exterior spin & is a spin-1/2 nucleus,
and can be generalized to a generic spin I through multiplication with a factor of 41(I +

1)/3 in order to obtain:

11+ RPEL)? 1
k’ 9
3((R{M)2+92) 2

2 2 Al al A
{QﬁQgﬁ: Iz +I71) 3. (5.30)
The validity of equation 5.30 has been tested by repeating the procedure described
above for the cases of I = 1 and I = 3/2. It should be noted that the decay rate for
the nuclear singlet order in equation 5.30 has the form of a Lorentzian spectral density

function J(J;;) sampled at 27.J;;, where the overall rotational correlation time is Tl(k).
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FIGURE 5.3: Simulated biexponential decay of the nuclear singlet order for spins ¢ and

7 in the case that the singlet-SR2K mechanism is the sole relaxation source. In this

case, the decay of the nuclear singlet order plateaus at a value of 1/3, as the term in-

volving the \/ifuf ;= spin operator is unaffected by the singlet-SR2K mechanism. The

simulation includes the scalar coupling network shown in figure 5.1 and phenomeno-

logical relaxation on the third spin k. The parameters used in the simulation were as
follows: J;; = T1Hz, J¥* = 26Hz, and R") = 5.952571.

Equation 5.30 is therefore rewritten as:

(A2 o®) = {M(Jgk)QJ(sz) L4 f.—f.+)} , (5.31)

@@ 3 '2
where the Lorentzian spectral density function [J(J;;) is expressed as:

R

TJij) = —5———
(ng))2 +J22j

(5.32)

5.2.7 Suppression of singlet-scalar relaxation via an applied rf-field

Equation 5.25 displays another interesting feature regarding the singlet-SR2K mecha-
nism under investigation. The mixing of the nuclear singlet order term represented by
(4) with the spin operators @ and is due to the out-of-diagonal terms ¢J Zk /22,
see figure 5.2¢). It may therefore be possible to minimise the relaxation contribution
from singlet-SR2K by applying an on resonant radiofrequency field acting on spin k only

(or alternatively on spins 7 and j only).
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To demonstrate this prediction, a radiofrequency field with an amplitude corre-
sponding to the frequency wrock is added to the coherent Hamiltonian ﬁcoh in equa-

tion 5.1. This term has the following form, in the rotating frame:

Hew = wLock lka- (5.33)
The rotating frame Liouvillian for the 3-spin-1/2 system becomes:

Lew = Loow + L, (5.34)

with the new, unperturbed radiofrequency field containing portion of the Liouvillian

superoperator L rewritten as:
Locw = Lo + Hew, (5.35)

where Hew is the commutation superoperator of the radiofrequency Hamiltonian Hew.
In this case, the term Jg ¥ contained within the Hamiltonian ﬁout was found to have no
affect on the outcome of applying second order perturbation theory to the Liouvillian

superoperator f/cw, and may therefore be ignored for simplicity.

The matrix representation of the new Liouvillian superoperator Iio’cw in the zero
quantum subspace Bz has all terms proportional to wy,ock on the diagonal as a result
of the 7/2 rotation about the y-axis of the spin operators for spin k used in building
the basis B and, by consequence, the basis Bzg. However, the unperturbed Liouvillian
i07cw, which includes fph, is not mormal, i.e. it does not commute with its Hermitian
adjoint, due to complex off-diagonal elements outside of the zero quantum subspace.

Non-normal matrices, such as the matrix representation of Lo cw in the basis Bz, i.e.

2 Bzq
[LO,CW} , are not necessarily diagonalizable. Indeed, it was not possible to find all

A Bzq
eigenvalues and eigenoperators of [Lo,cw] .

The matrix io,cw in the basis Bz can be made normal, a requirement of second
order perturbation theory, by using the approximation |wrock| > |R§k) - ng)| /4 or
the case of ng) = Rék) , i.e. the off-diagonal terms are ignored. This is a reasonable
approximation since: 1) R(lk) o~ Rék) in the limit of isotropic extreme narrowing, and as

such the value of the off-diagonal elements are small compared to the difference between
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the values of the diagonal terms; and 2) relaxation of the third spin k is slow, i.e. Tl(k) and
T 2(k) are on the order of ~100 ms, and hence applying a continuous wave (CW) decoupling
field with a nutation frequency =100 Hz should be sufficient as to actively decouple the
singlet-SR2K mechanism. Assuming, for example, that |wrock| > |ng) - ng)| /4, and
applying the second order perturbation equation for finite matrices (section 5.2.6) yields
the eigenvalue corresponding to the eigenoperator (4):

A0 (R + ROR + By +405 + oo OR'?

@ow  9[(r™ 4 B2 4 42 + 200 lRY + REN2 + 4(32 — w2 r)]
(5.36)

which reduces to equation 5.29 (A%) in the case that wrock = 0 and ng) = Rék). As
above, equation 5.36 can be generalized to a generic third spin of angular momentum

quantum number I:

W@ AT DEY - BORD + B 4402 + wfoao] 9L
a e

: .
@.ew  3[(RM 4 RI)2 4+ 4(32 + w2 oo )RS + BRI + 432 — w20p0)]
(5.37)

In the case of ng) = Rék), a condition that holds in the fast motion limit (FML),

equation 5.37 simplifies further to:

A FML _ 11+ )RPIRP)? + 3% + ool (IL)? (5.38)
@ow [(R{)2 + (33 — wrock)? H(ng))Q + (Jij + wrLock)?]
The rate A2 FML for 1 =1 /2 is plotted against ng) (the longitudinal relaxation rate

@),cw

constant of spin k) in figure 5.4 for the parameter set in table 5.1 and a range of
nutation frequencies wrock/2m. The rate A%FML is maximized when R&k) = 21J;;.
A perturbation is only caused if the values of th’e off-diagonal terms are larger than the
difference in the values of the diagonal terms. In the present case, this difference is on
the order of —ng) + 4J;;. This means that the singlet-SR2K mechanism is relevant
when the relaxation rate of the third nucleus k (the inverse of its T7) is of the order of
Jij or, more precisely, when [J7"| > |iJ;; — ng)\. The S-SR2K mechanism is therefore
effectively suppressed in the case that wrock > 2mJ;;, and is accelerated in the case

that wpock ~ 27J;;. A similar result is also predicted if an on resonant radiofrequency

field is applied to spins ¢ and j.
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FIGURE 5.4: A plot of the decay rate Af)’FML in equation 5.36 versus ng) using the

parameters reported in table 5.1 and a range of nutation frequencies wrock/(27). The

simulations used the following nutation frequencies: black curve: wpock/27 = 0Hz;

grey curve: wrock/2m = 100Hz; dark blue curve: wpock/2m = 140Hz; blue curve:
wrock /27 = 225 Hz; purple curve: wiock /27 = 500 Hz.

5.2.8 The case of 2-spin-1/2 nuclei coupled to a spin-1 nucleus

In the following sections, I am interested in the specific case of a single >C pair coupled
to a deuterium spin (I = 1) via a scalar coupling mechanism. In such a system, the
deuterium has a strong relaxation mechanism of its own provided by its quadrupolar
moment. According to the Redfield relaxation theory and assuming, for simplicity,
that the fast motional limit applies, the quadrupolar contribution to the longitudinal
relaxation rate of spin k is given by [49]:

1
R = 7521~ DRI +3)wh(3 + e (5.39)

For the case of I = 1, equation 5.40 simplifies to:
k) _ L o 2 4
Ry" = §WQ(3 +ng)Tc, (5.40)

with the nuclear quadrupole coupling constant expressed as:

e*qQ

- cae 41
YO T 911 — I (541)
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FIGURE 5.5: Molecular structure, labelling scheme and scalar coupling constant pattern
of ITI. Black circles denote '2C nuclei, grey circles denote ?H nuclei. R' = CD3;CD,CDj3
and R? = CD,CD3.

where @ is the electric quadrupolar moment of the deuterium nucleus, eq is the electrical
field gradient at the deuterium nucleus, 7 is the biaxality for the quadrupolar inter-
action of the deuterium nucleus, and 7¢ is the overall rotational correlation time [199].
This value of the relaxation rate can be used in equation 5.36 with I = 1 to obtain the
contribution of the scalar coupling to the nuclear singlet order decay rate when a singlet

pair interacts with a single, slowly relaxing quadrupolar spin.

5.3 Experiments

5.3.1 Fumarate

The molecular structure of the sample used in this study is shown in figure 5.5. The
material is a diester of 1-(ethyl-ds) 4-(propyl-d;)(E)-but-2-enedioate-2,3-'3Cy-dy (IIT)
which contains a central 4-spin system comprising of two 3C nuclei and two 2H nuclei
over a trans double bond. The 2-spin-1/2,2-spin-1 system displays a local centre of
inversion, midway between the two '3C nuclei. The asymmetric ester groups R' and R?
are not important in the context of the work and are deuterated in order to reduce the
relaxation contribution from dipole-dipole couplings. The complex 4-spin system of the
deuterated fumarate diester in solution is a suitable spin system for the observation of
singlet-SR2K. It is a difficult task to find a 3-spin system in which the chemical shift
difference of the spin-1/2 pair does not dominate singlet relaxation via singlet-triplet

mixing [24].
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FIGURE 5.6: Part of the experimental '*C spectrum of III in CDCl3 solution ac-

quired at 11.7T and 25°C with 64 transients. a) Black curve: experimental carbon-13

spectrum; b) blue curve: simulated carbon-13 spectrum. Small signals from synthetic
impurities are observed beyond 133.5 ppm.

5.3.2 Carbon-13 spectrum

The relevant portion of the experimental 13C NMR spectrum of III is shown in figure 5.6.
The experimental '3C spectrum was fitted using the MatLab-based NMR software pack-
age Spinach [221]. Simulated scalar couplings (and differences) for III in CDCl3 at 25°C
are given in table 5.1. The molecular labelling scheme and scalar coupling constant pat-
tern of I1I are shown in figure 5.5. The spin system in is the near-equivalence regime as

the difference in scalar couplings |J1o — Ji3| = Ji?’l is less than half Jo3.

TABLE 5.1: Spin system parameters for III in CDCl3 at 25°C. Labels 2 and 3 indi-

cate 3C nuclei, labels 1 and 4 indicate 2H nuclei. Scalar couplings (and differences)

were obtained by fitting the experimental *C spectrum with the MatLab-based NMR
software package Spinach. J33! is defined as: |J12 — Ji3].

Parameter  Value/27w

Ja3 71.5 £ 0.9Hz
Jia = J34 25.9 + 0.3 Hz
Ji1s = Jog -0.5 £ 0.1Hz
J331 26.4 & 0.3Hz
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F1GURE 5.7: Pulse sequence for preparing long-lived nuclear singlet order in ITI and
monitoring its decay. The experiments used the following parameters: wspic/27 =
T1Hz and 7s11c/27 = 27ms. The “Tgo filter” selects out signals that do not pass
through the nuclear singlet order. “MA” denotes the “magic angle” (54.7°). The
grey boxes denote larger-amplitude “spin-locking” rf-fields, with nutation frequencies
wg(’)DCK, which are active during the singlet evolution delay 7gyv. The superscripts C and
D denote the '3*C and ?H spin-locking rf-fields, respectively. An interval of 150s was
used between successive transients when 3C or 2H spin-locking rf-fields were applied.

5.3.3 Singlet NMR

Symmetry-breaking interactions, such as small differences in chemical shift between the
participating spins, or differential scalar couplings to other magnetic nuclei outside of
the singlet pair are required for coherent access to the nuclear singlet order [23]. In
this case, the differential out-of-pair scalar couplings allow coherent access to the 13C
nuclear singlet order, by using known radiofrequency pulse techniques which operate
in the near-equivalence regime [150, 156-158]. Warren and coworkers were the first
to demonstrate such access to nuclear singlet states via out-of-pair scalar couplings in
AA’XX’ spin systems [23, 31, 160]. In the current study, the spin-lock induced crossing
(SLIC) method [157] was used, as shown in figure 5.7. The SLIC pulse sequence has
been described extensively in section 2.12.1. A sequence of radiofrequency pulses and
pulsed field gradients (known as a “Tgq filter”) destroys NMR signals that do not pass
through the nuclear singlet order [54-56]. The parameters of the “Tgq filter” are found
in appendix B. The parameters of the SLIC pulse were chosen to maximise triplet-singlet
population conversion: wsric/27 = 71Hz and 7gr1¢c = 27ms, i.e. the conversion was
complete in a time: 7gpc ~ 271/ 2,]231. A WALTZ-16 decoupling sequence (deuteron

nutation frequency = 300 Hz) was applied on the 2H channel during the '3C observation
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FIGURE 5.8: a) Experimental relaxation curve for the 13C nuclear singlet order of 0.2 M

IIT in degassed CDCl;3 solvent (magnetic field 11.7 T, temperature 25°C). Filled, black

symbols: decay of the 3C nuclear singlet order measured by the pulse sequence in

figure 5.7; blue curve: single exponential fit of the experimental data. All experimental

signal amplitudes were normalized to the first point. b) Logarithmic decay curve for

the 'C nuclear singlet order under the same conditions.

in order to collapse the NMR spectrum into a single peak [222]. The lock level was
held whilst the ?H decoupling was active. Nutation frequencies wEOCK and wpgc were
calibrated relative to a high power 90° pulse of known duration by using the “pulse”
algorithm inside the Bruker TopSpin 3.2 software package. Pulse calibrations were
performed on the 2H channel of our Bruker Avance III spectrometer, which is equipped
with a 5mm TBO probe. All calculated nutation frequencies were verified against
nutation frequency experiments, and no non-linearity was found in our 2H amplifier. The
maximum amplitude of the singlet-filtered '*C NMR signal, relative to that induced by
a single 90° pulse, was found to be 0.17. The loss relative to the theoretical maximum of

1/3 (AA’XX’ spin systems) is not yet fully understood but is attributed to radiofrequency

field imperfections and relaxation.

5.4 Results

5.4.1 Carbon-13 NMR

A biexponential decay curve for the C nuclear singlet order of III is shown in fig-
ure 5.8a). A single exponential fit of the initial decay (first 4 data points) provides a
relaxation time: Ts = 0.9 £ 0.2s. A logarithmic decay curve for the '*C nuclear sin-
glet order is displayed in figure 5.8b). The two linear regions are clearly visible and

are indicative of a biexponential decay. The *C longitudinal relaxation time T (*3C)
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FIGURE 5.9: Experimental dependence of T ! on a) 1*C and b) 2H spin-locking rf-field
amplitudes for 0.2 M III in degassed CDCl3 solvent (magnetic field 11.7 T, temperature
25°C). Black circles: experimental data points; black curve: theoretical dependence
of Tg' on '3C and 2H spin-locking rf-field amplitudes. The black curve reaches a

maximum at wg(’)DCK /27 = Jo3 = 71 Hz but is not shown for clarity.
was estimated experimentally by using the inversion recovery pulse sequence. Under
the same conditions, the resulting relaxation curve shows a single exponential recovery
with a longitudinal 3C relaxation time: T7(*3C) = 14.0 & 0.5s. The singlet relaxation
time is therefore ~16 times smaller than that of longitudinal magnetization. See ap-
pendix B for further details regarding '3C inversion recovery experiments, data fitting

and uncertainty estimations.

5.4.2 Deuterium NMR

The longitudinal 2H relaxation time T} (2H) was estimated experimentally by using the
inversion recovery pulse sequence. For the case of degassed CDClI3 solution at 11.7T
and 25°C, the experimental relaxation curve shows a single exponential recovery with a

longitudinal ?H relaxation time for ITI given by: T} (*H) = 168 & 7ms.

5.4.3 Suppression of singlet-scalar relaxation via applied rf-fields

The experimental singlet relaxation rate constants Tg 1 as a function of spin-locking
ri-field amplitude, expressed as the nutation frequencies wEOCK /2m and wPyag /2, are
shown in figures 5.9(a-b), respectively. The measured singlet relaxation times Tg in-
cluded in figures 5.9(a-b) for a range of *C and 2H spin-locking rf-field amplitudes are
given in table 5.2. The theoretical singlet relaxation rate constants Tg 1as a function of

13C and 2H spin-locking rf-field amplitudes are also shown in figures 5.9(a-b).
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TABLE 5.2: The set of experimental singlet relaxation times Tg for 0.2 M ITI in degassed
CDCl3 solvent (magnetic field 11.7 T, temperature 25°C) measured as a function of **C
and 2H spin-locking rf-field amplitudes, as shown in figures 5.9(a-b).

whock/Hz  wiock/Hz  Ts/s

0 0 0.9 +£0.2
25 0 0.18 £ 0.04
50 0 0.14 + 0.03
75 0 0.07 = 0.02
100 0 5.2+04
200 0 9.6 £0.6
400 0 141+ 1.8
600 0 16.0 £ 1.5
800 0 18.7 £ 2.3
1000 0 230+ 1.6
0 25 0.7 £ 0.2

0 50 0.12 £ 0.03
0 75 0.08 +£ 0.02
0 100 0.9 +£0.2

0 200 5.3 £04

0 300 79+ 04

0 400 8.9+ 0.4

0 500 9.6 £ 0.3

0 600 10.8 £ 0.4
0 640 11.7 £ 04

In both cases, the experimental singlet relaxation rate constants Tg ! increase
dramatically, and reach a maximum, as wEOCK and wEOCK /2w approach Jy3 = 71Hz.
The theoretical dependence of Tg 1 on 13C and 2H spin-locking rf-field amplitudes also
predicts a maximum at: wSOCK /27 = wI]?OCK /27 = Jaz, but has a considerably larger
value. The profile of the experimental and theoretical singlet relaxation curves are in
reasonable agreement, although this discrepancy remains. It is therefore reasonable to
assume that the approximations introduced in section 5.2.7 may not hold in the case
of wrock =~ 2mJag, or that higher-order correctional terms are necessary in order to
account for this discrepancy. These results demonstrate that the model developed in
section 5.2.7, and hence equation 5.38, are only valid in the regime of sufficiently large
CW nutation frequencies, i.e. wrock > 2mw.Jog. It is also plausible that the additional
contributions of other interactions to the '3C singlet relaxation can have a large pro-
portionate effect on the value of Tg ! These issues have not been investigated further.
Beyond ~150 Hz spin-locking rf-field amplitude, in the regime of sufficiently large CW
nutation frequencies, the experimental singlet relaxation rate constants Tg L decrease

with increasing spin-locking rf-field amplitude during the singlet evolution period Tgv.
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FIGURE 5.10: Experimental relaxation curves of '3C nuclear singlet order for 0.2 M
IIT in degassed CDCl3 solvent (magnetic field 11.7 T, temperature 25°C). The decay
of 3C nuclear singlet order was measured by the pulse sequence in figure 5.7 in the
presence of '3C and 2H spin-locking rf-fields during the singlet evolution delay Tgy.
The following nutation frequencies were used for experiments: a: wSOCK /2w = 100 Hz;
b: WPy /2™ = 100 Hz; ¢: winek/2m = 600 Hz; d: wPoo/2m = 640 Hz; 1 winoy/2m
= 1kHz; f: wioei/2m = 1kHz and wPyo /27 = 640 Hz. The singlet relaxation times
are: a: Tg = 5.2 £ 0.4s;b: Ts =09 £ 0.2s;¢c: Ts =16 + 2s; d: Ts = 11.7 £ 0.4s; e:
Ts = 23 4+ 2s; f: Ts = 26 £+ 3s. All the fitted curves have a single-exponential form,
except b) which shows a biexponential decay. All signal amplitudes were normalized to
the first point.

It is likely that as the singlet-SR2K mechanism is gradually removed via coherent rf-
irradiation an additional relaxation mechanism (which is not affected by the on resonant
decoupling field) becomes increasingly dominant, and the curve plateaus. Singlet relax-
ation is effectively suppressed as wEOCK approaches 1 kHz nutation frequency and wIl?OCK

approaches 640 Hz nutation frequency.
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Decay curves for the '3C nuclear singlet order in the presence of spin-locking
fields with nutation frequencies wg(’)DCK are shown in figure 5.10. Figure 5.10a) shows
the decay of ¥C nuclear singlet order with a coherent CW field of wEOCK = 100 Hz
nutation frequency applied during the singlet evolution delay mgy. The singlet decay is
single exponential and has a relaxation time: Tg = 5.2 + 0.4s. Conversely, the case of
wEOCK = 100 Hz nutation frequency is shown in figure 5.10b). In this case, the decay
of 13C nuclear singlet order is biexponential and has a singlet lifetime: Tg = 0.9 =+
0.2s, which is equal to the singlet relaxation time determined at wEOCK = wEOCK =
0 Hz nutation frequency. Figures 5.10c) and 5.10d) compare the decay of ¥C nuclear
singlet order in the presence of spin-locking rf-fields with nutation frequencies: wSOCK
= 600 Hz and wI]?OCK = 640 Hz, respectively. The respective singlet relaxation times Tg
=16 + 2s and T5 = 11.7 + 0.4s imply that CW irradiation applied to the C nuclei
is approximately twice as effective in suppressing the singlet-SR2K mechanism than
the case of CW irradiation applied to the deuterium nuclei, in agreement with theory
(see figure 5.9). This phenomena is mirrored by the theoretical curves of the singlet
relaxation rate constant Tg ! see figure 5.9. The curve in figure 5.10e) shows the decay
of 13C nuclear singlet order in the presence of a CW rf-field with an amplitude: wEOCK
= 1kHz. The singlet relaxation curve is fitted with a single exponential decay, and has
a singlet relaxation time: T§ = 23 £ 2s. Figure 5.10f) shows the decay of '*C nuclear
singlet order in the presence of simultaneous CW rf-fields with nutation frequencies:
wEOCK = 1kHz and ""I?OCK = 640 Hz. In this case, the singlet relaxation time was found
to be: Tg = 26 £3s. Ty is extended by a factor of 30, compared to the case of wEOCK =
wEOCK = 0 Hz, and the ratio of Tg to T} is ~2. The combination of simultaneous CW
irradiation on both ¥C and ?H nuclei is very effective at suppressing the singlet-SR2K
mechanism. Clearly the application of spin-locking rf-fields during the singlet evolution

delay mgyv has a strong effect on the relaxation behaviour.

5.5 Discussion

In this section, the experimental data are compared with the theoretical expressions
derived in section 5.2.6. In the absence of CW irradiation, the singlet lifetime was
found to be approximately 0.9 s for the fumarate diester system, approximately 16 times

shorter than the longitudinal relaxation time T7. However, Tg was found to be long-lived
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in cases where strong '3C (and 2H) spin-locking rf-fields were applied during the singlet
evolution delay mgy. The largest observed ratio of the singlet relaxation time to the

longitudinal relaxation time was approximately 2.

By using equation 5.29, which applies for extreme-narrowing isotropic rotational
tumbling, the estimate of the longitudinal relaxation time for the 2H nucleus, and
the spin system parameters obtained from fitting the experimental C NMR spec-
trum, the following estimate of the singlet-SR2K relaxation rate constant is obtained:
Tg 1(S2RK) = 1.06+0.07s~!. The longitudinal relaxation rate of the deuterium nucleus
ng) was doubled to account for the presence of the second deuteron. A monoexponential
fitting of the initial decay for the '3C nuclear singlet order (figure 5.8, blue curve) pro-
vides a singlet relaxation rate constant: Tg 1 = 1.140.257!. The initial decay rate of the
13C nuclear singlet order is in excellent agreement with the theoretically predicted value.
It is therefore confirmed that the singlet-SR2K mechanism is the dominant relaxation

source for the '3C nuclear singlet order in III.

Equation 5.38 predicts the singlet relaxation rate constant Tg Lin the presence of
an on resonant radiofrequency field applied continuously to either the carbon-13 or deu-
terium nuclei throughout the singlet evolution delay mgy. By using equation 5.36, which
also applies for extreme-narrowing isotropic rotational tumbling, the estimate of the lon-
gitudinal relaxation time for the 2H nucleus, and the spin system parameters obtained
from fitting the experimental '3C NMR spectrum, the following estimate of the singlet
relaxation rate constant in the presence of CW irradiation focussed on the deuterium
spins with a 640 Hz nutation frequency is obtained: Tg '(CW) = (13.6£0.7) x 1073571
The estimated singlet decay rate is not in good agreement with the experimentally deter-
mined rate: Tg 1= (85+3) x 10~%s~!. A similar discrepancy is observed for TS (CW)
in the case of a spin-locking rf-field applied to the '3C spins with a nutation frequency of
1kHz. The discrepancy is likely to be attributed to other relaxation mechanisms which
are present and accelerate the singlet relaxation, such as *C-2H dipole-dipole couplings
between the carbon-13 nuclei and the adjacent deuterons. It is also possible that the
small, long range '3C-2H couplings to the deuterated ester groups could contribute to
singlet relaxation via the singlet-SR2K mechanism. Relaxation effects of this kind may
have already appeared in the literature, and could be the limiting factor of the singlet

lifetimes achieved for the systems presented in the following references [28, 35, 145].



Conclusions 5.6 197

5.6 Conclusions

Since fumarates are a ubiquitous cellular substance, the extension of singlet lifetimes
through chemical substitution is an important consideration. However, exchanging the
adjacent protons for deuterons has been shown to introduce the singlet-scalar relaxation
of the second kind (S-SR2K) mechanism, which drastically shortens the singlet lifetime.
In this chapter, it has been successfully demonstrated that singlet-SR2K can signifi-
cantly shorten the singlet relaxation time Ty of deuterated spin systems, under suitable
conditions. This requires a difference in the scalar couplings from the singlet nuclei to
an exterior quadrupolar nucleus, and the in pair scalar coupling to be comparable to
the longitudinal relaxation rate of the quadrupolar spin. These conditions are satisfied
for a 4-spin deuterated fumarate diester. In the current case, Tg is approximately 16
times shorter than 77. The short value of Ty supports a relaxation model in which the
dominant singlet interaction is S-SR2K. It is shown that the singlet-SR2K mechanism
is steadily quenched by the application of 1*C (and 2H) spin-locking rf-fields, in the case
that the amplitude of the suppression field is considerably greater than the in pair scalar
coupling. The maximum value of the singlet relaxation time was found to be: Ty = 26

+ 3s, a factor of ~2 greater than 7.

It should be noted that other interesting molecules may also exhibit singlet-SR2K.
Systems comprising of HoC=CD-CO2R substructures, such as styrene-d;, are of suitable
type. However, the S-SR2K mechanism may only be isolated through implementing field
cycling experiments as the large proton chemical shift difference introduces relaxation
contributions from singlet-triplet leakage. It is also not yet known whether the proton
singlet state of HoC=CX-COsR systems, where X is a quadrupolar nucleus relaxing
on the timescale of the proton nuclear Larmor frequency, such as Br or Cl, display
observable singlet-SR2K. Investigations into this effect are feasible on molecular systems
such as bromoacrylates and bromothiophenes but would require detailed computational
modelling or molecular dynamics, and also a measurement of the quadrupolar X-atom

T;.






Chapter 6

An outlook for hyperpolarized
singlet NMR

6.1 Conclusions of this work

The previous three chapters of this thesis contain some of the findings which my col-
leagues and I have contributed to the field of hyperpolarized singlet state NMR. The
demonstrated effects are, to the best of our knowledge, all novel and show that previously
cemented techniques may still be used to generate new knowledge of hyperpolarized sin-
glet NMR. The work was divided into three sections: long-lived states in CHyD groups,
direct generation and coherent readout of hyperpolarized singlet order, and singlet-scalar
relaxation of the second kind. Experimental results from chapters 3, 4 and 5 were ex-
amined theoretically with analytical expressions for singlet relaxation or polarization,
with the theory outlined in chapters 1 and 2 intended to facilitate the discussion of the
experimental findings. A summary of the essential results of each chapter is given in the

bullet points below.

Long-lived nuclear spin states in monodeuterated methyl groups

This thesis was intended to focus on the two limiting factors of nuclear magnetic reso-
nance experiments: (1) short signal lifetimes; and (2) low signal sensitivity. The issue
of (1) was addressed, in part, by the use of long-lived nuclear spin states [14, 15]. Long-
lived spin states commonly exhibit relaxation times which outstrip those corresponding

to ordinary magnetization [16, 20, 26, 55, 144, 146, 150, 151, 156]. The non-magnetic
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nature of the nuclear singlet state preserves the spin order for a pair of coupled spins
against symmetric NMR relaxation mechanisms. A singlet relaxation time exceeding
1 hour in room temperature solution has been observed [35], and a Tg/T} ratio greater

than 50 has also been realized for a pair of strongly coupled protons [29, 33].

Chapter 3: Summary

e Singlet order is accessible in monodeuterated methyl groups.

e Experimental demonstrations were provided for N-CHyD-2-methylpiperidine and

(a-deuterio-o-chlorotoluene)chromium tricarbonyl.

e Singlet pulse sequences access the nuclear singlet order even when chemical shift

differences are unresolved.

e The ratio of Ty to T; was found to be constant over a wide range of temperatures,

solvents, and magnetic fields.
e The longest observed value of Tg approaches 2 1/2 minutes.

e A modified model of the CHyD geometry was proposed to explain the observed

relaxation time ratio.

Direct hyperpolarization and coherent readout of long-lived proton singlet order

The poor signal-to-noise levels (2), ultimately a limiting factor for observing NMR sig-
nals at long times after the encodement of nuclear spin order, was partially overcome
by dissolution-dynamic nuclear polarization techniques [71]. DNP, and other hyperpo-
larization methods, drastically improve the initial Zeeman polarization for a sample in
a magnetic field by increasing the net alignment of nuclear spins. Coupled with dissolu-
tion apparatus, the sample may be dissolved and rapdily transferred to a high resolution

NMR magnet where more intricate spin manipulations may be performed.

Chapter 4: Summary

e Singlet order may be polarized directly by DNP.

e The effect is demonstrated on the inequivalent protons of a CHyD group in a chiral

molecule.
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e In near-equivalent systems, the singlet order is long-lived in high magnetic field.

e Observable hyperpolarized signals may be generated coherently from the singlet

order with high conversion efficiency.

e At long times, >1 minute after dissolution, singlet polarization has advantages

over Zeeman polarization.

Singlet scalar relaxation of the second kind in the regime of slow quadrupolar relazation
Over the past decade, it has been established that singlet lifetimes often exceed the lon-
gitudinal relaxation time 7 by an order of magnitude [28, 144-146, 150, 156]. However,
singlet lifetimes are not infinite and are intrinsically limited to some extent. In some
cases, this may be attributed to dipole-dipole relaxation with remote protons, and hence
deuteration is the favoured approach for attenuating this particular relaxation contribu-
tion. After an exhaustive study of all the singlet relaxation mechanisms which have been
observed in a variety of candidate systems [24, 152, 153], another possibility remains. A
variant of the scalar relaxation of the second kind mechanism, which involves a differ-
ence between the scalar couplings of the nuclear spins-1/2 to a third nucleus which has
an independent relaxation mechanism, such as nuclear quadrupolar relaxation, has been
experimentally observed for the first time. This new found relaxation mechanism could
presently be the limiting step in the quest to extend singlet relaxation times to an even

greater extent.

Chapter 5: Summary
e Singlet-scalar relaxation of the second kind has been identified as an important
relaxation mechanism.

e The singlet SR2K mechanism is significant in the regime of slow quadrupolar

relaxation.

e Relaxation rate expressions describing the behaviour of the S-SR2K mechanism

were presented.

e An experimental demonstration was provided for a 2C,?H-labelled fumarate di-

ester.
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e The S-SR2K mechanism may be suppressed by applying on resonant radiofre-
quency fields.

6.2 Future endeavours and perspectives

I hope that the discoveries presented in this thesis have been interesting for the reader
and have shown the story of my time as a PhD student over the last few years. Inter-
esting possibilities for singlet NMR remain to be investigated, and I believe that the
lifetime of nuclear singlet order can be extended still further. As previous discussed,
a doubly labelled *Cy-naphthalene derivative currently holds the world record for the
longest singlet lifetime [35]. The results presented in chapter 5 of this thesis demon-
strate that additional, previously unconsidered relaxation mechanisms may set the limit
for singlet lifetimes, even in systems already display remarkable lifetimes [29, 33, 35].
The S-SR2K mechanism exists in systems where the singlet spins are scalar coupled to
a slowly relaxing quadrupolar nucleus. Modulations of the scalar couplings between a
13C spin pair and the neighbouring deuterons were shown to be the strongest singlet
relaxation mechanism in a deuterated fumarate diester. Continuous wave irradiation
is one route to suppressing the S-SR2K mechanism, but CW fields are not suitable for
in vivo studies [223]. Whether the spectroscoper likes it or not, simply removing the
surrounding protons via deuteration may not be the most effective route to lengthening
singlet lifetimes. Entire deuteration of a molecular system may therefore not be entirely
sufficient, and instead all magnetic nuclei surrounding the singlet pair should be evac-
uated, and replaced with magnetically silent isotopes (ignoring the small percentages
of magnetic nuclei which are present at natural abundance). The advanced knowledge
of singlet order decay will aid the design and construction of singlet pairs in molecu-
lar candidates with fewer and less effective relaxation mechanisms. A long-lived spin
state in a pair of 1’ N nuclei with a lifetime exceeding that of naphthalene has yet to be
demonstrated, but a simple argument of the gyromagnetic ratios infers that the lifetime

could be quite spectacular, and possibly exceed 4 hours in solution at room temperature.

The long lifetimes of hyperpolarized singlet order present an excellent opportunity
to study biologically relevant processes in vivo using magnetic resonance imaging [224].
Delays between the hyperpolarizing device and point of use (possibly a human patient)

will potentially be minimized by the exceptional lifetime of singlet spin order, even in



Future endeavours and perspectives 6.2 203

the presence of paramagnetic radicals. One potential avenue of long-lived states is the
tracking of endogenous metabolites, or even exogenous substances which are injected
into a human patient and dissolved in the bloodstream, over considerable timescales
to monitor molecular transport to a site of interest. Experiments of this kind could
potentially be used to validate drug delivery methods, and monitor cellular necrosis and
the response of cancerous tissue to treatment [64, 133]. An alternative, and potentially
more promising route, at least initially, could be to develop contrast agents using the
extended lifetimes of singlet states [159]. Work of this kind has already been presented by
the group of Bodenhausen in the context of drug screening, where a change in the ratio of
Ts/T) provided ample constrast for the detection of ligand-binding and dissociation [206,
208, 225]. A major breakthrough would be the regular synthesis and demonstration of
singlet molecules which are sensitive to their environmental conditions. The lifetime of
the nuclear singlet order could hence be controlled as a function of pH, temperature and
the presence uv light, even stretching or compressing the surroundings could have an

impact on singlet lifetimes [226].

The dissolution-dynamic nuclear polarization experiments presented in chapter 4
have potentially intriguing implications for the future conduction of hyperpolarized sin-
glet experiments. The results shown in this thesis demonstrate that, for strongly-coupled
spin-1/2 pairs, the nuclear singlet order permits larger hyperpolarized signals to be ob-
served at longer times after dissolution, compared with those of ordinary magnetization.
Whilst the phenomenon is currently specific to systems which display near-magnetic-
equivalence, such systems are relatively common, and are found, for example, in the
side chains and glycine residues of peptides [156], and in sugars [227], and might also
be exploited in the context of “singlet tagging” [148]. Another exciting development in
the field of DNP is the “bullet” setup pioneered by Meier [228]. In contrast to classical
D-DNP experiments [71], the hyperpolarized medium is transported as a solid and is
ejected from the hyperpolarizer at speeds exceeding 100 ms~! towards the point of use.
The method has the potential to preserve the high levels of nuclear alignment through-
out the short transfer period which, if used in conjunction with the direct generation of
nuclear singlet order, would lead to impressive obtainable levels of singlet polarization
in the liquid state. Translation of this methodology to clinical MRI would represent a
major step forward in the application of DNP to medical diagnostics, and would provide

an opportunity to showcase the advantages of using hyperpolarized long-lived states.






Appendix A

Syntheses

A.1 N-(CH;D)-2-methylpiperidine

CH,0, DCOOD
(j\ 8500, 4 h (j\
N 72% N
CH,D

FIGURE A.1: Synthetic route to 2-methyl-1-(methyl-d)piperidine.

To 2-methylpiperidine (844 mg, 1 mL, 8.51 mmol) was added formaldehyde (37 wt.% in
H0, 767 mg, 2.07 mL, 25.53 mmol, 3 equiv.) followed by careful addition of formic acid-
d2 (95% in D20, 1.72 g, 1.41 mL, 34.04 mmol, 4 equiv.), and the reaction heated at 85°C
(using a water bath) for 3h. The reaction was cooled to room temperature, water (2 mL)
added and the acidic aqueous reaction was extracted with pet. ether. The aqueous layer
was basified to pH 12 using 6 M NaOH and extracted with Et2O (x5). The combined
Et2O extractions were dried (MgSO,4) and concentrated on a rotary evaporator with
no vacuum (bath temp = 40°C) to give a pale yellow oil. Purification by Kugelrohr
distillation (oven temperature 150°C - 160°C) to gave the title compound as a clear oil

(696 mg, 6.09 mmol, 72%).

Sample preparation. Solutions were prepared in Wilmad low pressure/vacuum
NMR tubes with a 5mm OD. 6.2 uL of (N-CH3D)-2-methylpiperidine was dissolved in

0.5 mL of choice solvent at a concentration of 0.1 M. Samples were subjected to thorough
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degassing using 6 standard freeze-pump-thaw cycles to remove the majority of dissolved

molecular oxygen.

A.1.1 1-(methyl-d)-2-(methyl-d;)piperidine

(i) sec-BuLi, Et,0, TMEDA,
Boc,0, sulfamic -78°C

acid (5 mol o/o) (ll) dimethylsulfate—ds, EtZO,
O B () Sty
—_——
96% 74%

Y \ e
Boc Boc

(i) NaOH, H,0, rt
4M HCl/Dioxane, (ily CH,0, DCOOD,
00C to rt 800C (\/L
—_— —_—
OO OO
97% o ﬂ @ CDs3 85% l':,] CD,
Cl 2
CH.,D

FIGURE A.2: Synthetic route to 1-(methyl-d)-2-(methyl-ds)piperidine.

tert-Butyl piperidine-1-carbozylate:

Boc anhydride (6.78 g, 31.0mmol) and sulfamic acid (150 mg, 1.5 mmol, 5mol%) were
mixed together neat and warmed to 28°C - 30°C to melt the (Boc)2O. Piperidine (3.2 mL,
2.77g. 32.0 mmol) was added and the resulting mixture was stirred at room temperature
for 15 minutes. The reaction was diluted with Et2O, washed with HyO (x 2) and brine
(x 2) and dried (MgSO4). Removal of the solvents in vacuo (no heat) gave the title

product as a pale yellow oil (5.51 g, 29.8 mmol, 96%).

tert-Butyl 2-(methyl-d3)piperidine-1-carbozylate:

A solution of tert-butyl piperidine-1-carboxylate (2.5g, 13.51 mmol) in EtoO (30 mL)
was cooled to -78°C and treated with TMEDA (2.63mL, 17.56 mmol) dropwise over 10
minutes. sec-BuLi (1.4 M in cyclohexane, 12.5 mL, 17.56 mmol) was added dropwise over
20 minutes. The pale yellow mixture was stirred for 5h at -78°C. and then treated with
a solution of dimethyl sulfate-dg (3.20 g, 24.32 mmol) in Et20 (12mL). The mixture was
warmed to room temperature and stirred for 12h. The reaction was concentrated in
vacuo to give a crude colourless oil which was purified by column chromatography on
silica gel eluting with 2% - 5% Et2O: pet. ether. This afforded the title product as a
clear oil (2.03 g, 10.0 mmol, 74%).
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2-(methyl-ds )piperidin-1-ium chloride:

To tert-butyl 2-(methyl-ds)piperidine-1-carboxylate (1.0 g, 5.0 mmol) at 0°C was added
4M HCI in dioxane (4mL, 16 mmol) and the reaction stirred at room temperature
for 30 minutes. Et2O (20mL) was added producing a white solid. The reaction was
concentrated in vacuo and EtoO (20mL) added, the resultant white solid was filtered
and washed with EtoO (2 x 10mL) and dried in vacuo to give the desired white salt

(0.67g, 4.84 mmol, 97%) which was used directly in the next reaction.

1-(methyl-d)-2- (methyl-ds )piperidine:

2-(methyl-ds)piperidin-1-ium chloride (0.63 g, 4.55 mmol) was dissolved in a solution of
sodium hydroxide (182mg, 4.55mmol) in HoO (2mL) and stirred for 10 minutes at
room temperature. To this mixture was added formaldehyde (37 wt.% in HyO, 410 mg,
1.10 mL, 13.65 mmol, 3 equiv.) resulting in a cloudy white solution. Formic acid-da (95%
in D20, 0.86 mL, 22.75 mmol, 5 equiv.) was carefully added and the reaction heated at
85°C (using a water bath) for 4h. The reaction was cooled to room temperature, water
(2mL) added and the acidic aqueous reaction was extracted with pet. ether. The aque-
ous layer was basified to pH 12 using 6 M NaOH and extracted with EtoO (x5). The
combined EtoO extractions were dried (MgSO4) and concentrated on a rotary evapo-
rator with no vacuum (bath temp = 40°C) to give the title compound as a clear oil

(455 mg, 3.89 mmol, 85%).

Sample preparation. Solutions were prepared in Wilmad low pressure/vacuum
NMR tubes with a 5mm OD. 6.2 uL. of (N-CH2D)-2-methylpiperidine was dissolved
in 0.5mL of CD>Cls solvent at a concentration of 0.1 M. Samples were subjected to
thorough degassing using 6 standard freeze-pump-thaw cycles to remove the majority of

dissolved molecular oxygen.

A.2 (a-deuterio-o-chlorotoluene)chromium tricarbonyl

Reduction of 2-chlorobenzyl bromide utilising sodium borodeuteride in DMSO-dg as
a source of nucleophilic deuteride afforded 1-chloro-2-(methyl-d)benzene (1). Reflux-
ing Cr(CO)g and chlorobenzene 1 in a mixture of dibutyl ether and THF (9:1) for 36 h
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Cr(CO)s,
NaBD, DMSO-ds  SM2D  dibutyl ether: THF (9:1), ~ CH2P

rt, 4 hrs ©/C| reflux 36 hrs @/CI
72% o, o
s 3%  (cojcr<

1 2

CH,Br

FIGURE A.3: Synthetic route to tricarbonyl (1-chloro-2-(methyl-d)benzene)-chromium

(0) (2)

provided tricarbonyl (1-chloro-2-(methyl-d)benzene)-chromium (0) (2) as a yellow solid.

A.2.1 1-Chloro-2-(methyl-d)benzene (1)

CH,D
Cr°

FIGURE A.4: Chemical structure of 1-chloro-2-(methyl-d)benzene (1)

To 2-chlorobenzyl bromide (2.00g, 9.73 mmol) in DMSO-ds (6 mL) at 0°C was added
sodium borodeuteride (0.82g, 19.46 mmol) portion-wise. The reaction formed a white
solid that was stirred for 4h at room temperature. The reaction was quenched with
methanol (0.75mL), EtoO was added and the organic layer washed with HoO (x3),
brine and then dried (MgSOy4). The solvent was removed in vacuo at room temperature.
The resultant oil was purified by Kugelrohr distillation to give the title compound as a

colourless oil (0.89g, 6.98 mmol, 72%). Boiling point: 157-159°C.

IH NMR (400 MHz, CDCl3): § = 7.36 (dd, J = 7.1 Hz, 1.7Hz, 1H), 7.27 - 7.12 (m, 3H),
2.41 - 2.37 (t, Jyp = 7.1 Hz, 2H).

13C NMR (101 MHz, CDCl3): 6 = 135.97, 134.35, 130.92, 129.03, 127.06, 126.53, 19.73
(t, Jop = 19.8 Hz).

GC-MS (EI) m/z (100%) 126.8 C;HgDCI*", 91.9 C;HgDT".
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A.2.2 Tricarbonyl (1-chloro-2-(methyl-d)benzene)-chromium (0) (2)

CH,D

|
(€O)sCr P

r

FIGURE A.5: Chemical structure of tricarbonyl (1-chloro-2-(methyl-d)benzene)-
chromium (0) (2)

1-Chloro-2-(methyl-d)benzene (1, 0.38g, 3.0mmol) and chromium (0) hexacarbonyl
(0.33g, 1.5mmol) in dibutyl ether/THF (9:1, 7.5mL) was heated at reflux for 36h.
The reaction was allowed to cool, EtoO was added and the solution passed through a
short column of alumina, eluting with Et2O. The solvent was removed in vacuo and
the crude yellow solid recrystallized from Et2O/pentane and the yellow crystals washed
with cold pentane. The title compound was obtained as a yellow crystalline solid (0.28 g,

1.06 mmol, 35%). Melting point: 100-102°C.

'H NMR (400 MHz, C¢Dg): 6 = 4.75 (br d, J = 6.2 Hz, 1H), 4.30 (br d, J = 6.0 Hz, 1H),
4.18 (br t, J = 6.1Hz, 1H), 4.07 (br t, J = 6.1Hz, 1H), 1.71 (br s, 2H).

13C NMR (101 MHz, CgDg): § = 112.04, 106.27, 93.87, 93.29, 91.01, 90.42, 18.98 (4,
Jop = 19.9Hz).

GC-MS (EI) m/z (100%) 126.8 C;yHgDCI".

Sample preparation. Solutions were prepared in Wilmad low pressure/vacuum
NMR tubes with a 5mm OD. 12.58mg of I was dissolved in 0.5mL of CgDg at a
concentration of 0.1 M. Samples were subjected to thorough degassing using 4 standard

freeze-pump-thaw cycles to remove the majority of dissolved molecular oxygen.
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Q nPrOH-d,, EtOH-d,, Q
H,SO,, rt, 16h D.CD.CO
HO OoH et O(CD,),CDg
1 489/‘0 2
o) o)
PPhy, D,0, THF, O D
reflux, 16h
’ 0(CD,),CD
45% DSCDQCO /u%( ( 2)2 3
° D O
3

FIGURE A.6: Synthetic route to ethyl-ds (propyl-d7) fumarate-2,3-3Ca-ds.

A.3 Ethyl-ds (propyl-d;) fumarate-2,3-Cs-d;

Ethyl-ds (propyl-d7) fumarate-2,3-13Co-ds 3 was synthesised from commercially avail-
able acetylene-2,3-13Cy dicarboxylic acid (1) in two steps (figure A.6). Thus, treatment
of acetylene-2,3-13Cy dicarboxylic acid (1) with "PrOH-d7, EtOH-ds and HySOy4 at
room temperature for 16 h afforded the mixed ester 2 in 48% yield. This ester 2 was
used directly in a reduction reaction with PPhs and DO in THF to afford 3 in 49%
yield (24% overall yield from 1), the other major product isolated from this reaction

was ethyl-ds (propyl-d;) maleate-2,3-13Co-do (35%).
Experimental

General experimental details:

All air/moisture sensitive reactions were carried out under an inert atmosphere (N3 or
Ar), using oven or flame-dried glassware. THF (from Na/benzophenone) was distilled
before use. All other solvents and reagents were used as received from standard chemical
suppliers unless otherwise stated. TLC was performed on aluminium plates pre-coated
with silica gel 60 with an F254 indicator; visualized under UV light (254nm) and/or
by staining with KMnOy. Flash column chromatography was performed with Merck
Kieselgel 60 silica gel. 'H and '3C NMR. spectra were recorded in CDCl3 solutions
using Bruker DPX400, Bruker AVII-400 or AVIITHD-400 (400 and 100 MHz respectively)
spectrometers. Chemical shifts are reported in ¢ units using CHCl3 (§ 7.27ppm 'H, §
77.0ppm 13C) as an internal standard. Coupling constants (J) are reported in Hz. For
13C labelled compounds, only the signals corresponding to the labels are reported in
the ¥C NMR data. MS were recorded using positive ion electrospray ionization (ESI+)

obtained using a Micromass platform mass analyzer with an electrospray ion source.
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1-(Ethyl-ds) 4-(propyl-d; )- but-2-ynedioate-2,3-3 Cy dicarboxylate (2):

To a suspension of acetylene-2,3-13Cy dicarboxylic acid (1) (400mg, 3.45mmol) in
1-propanol-1,1,2,2,3,3,3-d7 (0.78 mL, 10.35mmol, 3.0equiv.) and ethanol-1,1,2,2,2-d5
(0.61 mL, 10.35mmol, 3.0equiv.) was added conc. H3SO4 (551 pL, 10.35 mmol, 3.0
equiv.). The reaction was allowed to stir at room temperature for 16h and then di-
luted with Et2O and H2O. The aqueous layer was re-extracted with Et2O (3 x 10mL)
and the combined organic layers washed with sat. aq. NaHCOgs, brine and dried
(NagSOy4) and concentrated in vacuo. The residue purified by chromatography on silica
gel (Et2O:hexane 1:99) to afford the title compound 1-(ethyl-ds) 4-(propyl-d7)-but-2-
ynedioate-2,3-13Cy dicarboxylate (2) as a colourless oil (327 mg, 1.65 mmol, 48%). Data
for labelled but-2-ynedioate: 13C NMR, (100 MHz, CDCl3) § 76.6; MS (ESI+) m/z 221.0
M + Na]+.

Ethyl-ds (propyl-d;) fumarate-2,3-'3 Cy-dy (3):

To 1-(ethyl-ds) 4-(propyl-d7)-but-2-ynedioate-2,3-13Cy dicarboxylate (2) (230 mg, 1.16-
mmol) was dissolved in anhydrous THF (3.0 mL) at 0°C was added D2O (21 pL, 1.16 mm-
ol). Triphenylphosphine (305mg, 1.16 mmol) in anhydrous THF (3.0mL) was then
added dropwise and the reaction stirred at room temperature for 30 mins followed by
heating at reflux for 16h. The reaction was allowed to cool, concentrated in vacuo
and the residue purified by chromatography on silica gel (Et2O:hexane 1:99 to 1:24) to
afford the title compound ethyl-ds (propyl-d;) fumarate-2,3-13Cy-ds (3) as a colourless
oil (115mg, 0.57 mmol, 49%). Data for unlabelled fumarate: 'H NMR (400 MHz, CDCl3)
5 6.86 (s, 2H), 4.26 (q, J = 7.1Hz, 2H), 4.16 (t, J = 6.7Hz, 2H), 1.76 - 1.64 (m, 2H),
1.32 (t, J = 7.1Hz, 3H), 0.97 (t, J = 7.3 Hz, 3H); '3C NMR (100 MHz, CDCl3) § 165.1,
165.0, 133.6, 133.6, 66.9, 62.3, 21.9, 14.1, 10.3; MS (ESI+) m/z 187.3 [M + H|+. Data
for labelled fumarate: *C NMR, (100 MHz, CDCl3) § 133.6 - 133.0 (m, 2C); MS (ESI+)
m/z 241.3 [M + K]+.

Sample preparation. Solutions were prepared in Wilmad low pressure/vacuum
NMR tubes with a 5mm OD. 21 mg of ethyl-ds (propyl-d;) fumarate-2,3-13Cy-dy was
dissolved in 0.5 mL of CDCI;3 solvent at a concentration of 0.207 M. Samples were sub-
jected to thorough degassing using 6 standard freeze-pump-thaw cycles to remove the

majority of dissolved molecular oxygen.






Appendix B

Mathematical tools

B.1 Longitudinal relaxation

During the discussion of longitudinal relaxation in chapter 1, the solution to the following

Bloch equation was reported:

dM.,(t)
dt

= —Rl (Mz(t) - Mz,equil) . (Bl)

In this section I will provide the derivation of this result. The negative sign in the above
expression denotes the decay of non-equilibrium z-magnetization reapproaching thermal
equilibrium after rf-perturbation. The timescale on which this process takes place is
governed by the longitudinal relaxation rate constant R;. At a time ¢ = 0 the initial
z-magnetization is given by M, (0). The motion of z-magnetization returning to thermal

equilibrium is revealed by rearranging and integrating equation B.1:

/Mz(t) _1Mz,equil dMZ(t) - _/Rldt' (B'2)

The left and right hand sides of equation B.2 are integrated with respect to the variables

M, and t, respectively:

1n|MZ(t) - Mz,equil‘ = _th +c, (B3)

213
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where ¢ is the constant of integration. M, .qui and R; are also constants. At a time

t = 0 equation B.3 can be used to find the value of ¢:

c= ln|MZ(O) - Mz,equil’7 (B4)

which may be resubsituted back into equation B.3:

In|M.(t) — M, cquit| = —Rit + In|M.(0) — M, cquil- (B.5)

By eye one can inspect that:

Mz(t) - Mz equil

— Rit=1In : , B.6
! ‘Mz(o) - Mz,equil ’ ( )

and by taking the exponential of both sides of equation B.6:
67R1t _ Mz (t) _ Mz,equil ’ (B?)

Mz (0) - Mz,equil
and finally rearranging equation B.7:

Mz(t) = Mz,equil + (MZ(O) - Mz,equil)e_tha (BS)

one arrives at the result presented in chapter 1. Equation B.8 states that the rate of
change of z-magnetization is larger if the initial z-magnetization M,(0) is further way
from thermal equilibrium initially, and that the time taken to reach thermal equilibrium

after rf-perturbation is shorter if the relaxation rate constant R; is larger.

B.2 Propagation of a time dependent Hamiltonian

In the case of a time dependent Hamiltonian, there is no explicit expression for the
time propagator. A solution is therefore approximated by dividing the total time into

infinitesimal time steps At, and propagating over each infinitesimal time step:

AI%I_I:O ﬁi(tb,ta) _ e—if[(tb)Ate—iﬁ(tb—At)Ate—ifI(tb—2At)At'“ e—iﬁ(ta)At’ (B.9)
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i.e. the limit of a time-ordered product of Hamiltonian operators. The Dyson time
ordering superoperator T is used to achieve this solution, and allows the infinitesimal

time-propagator Ui(tb, tqa) in equation B.9 to be expressed as:

Uy(ty, ta) = Tewp|—i /t " dt' H(t). (B.10)

The Dyson time ordering superoperator applied to a set of Hamiltonians H(t;) at dif-

ferent times ¢; orders the Hamiltonians such that:

A A~

T(H(t), H(ta)) = H(ty) H(ta). (B.11)

for tp > t,.

B.3 Tensor transformations

P
Consider a 3x3 tensor [Cﬁ‘nm,} in the principle axis frame P of the interaction A. In

the frame P, the tensor is strictly diagonal:

cy, 0 0
P
A — A
[Cmm/] =l 0 C), 0 |, (B.12)
0 0 C)

C),, C2 . Define the z-axis of the static magnetic

and has principal components: C? wyr C2s

T
field to be parallel with the z-axis of the laboratory frame L. The relative orientation
of the interaction tensor C’T))‘lm, in the frame P with respect to the laboratory frame L is
specified by the set of Euler angles: Q%; = {ap;, 837,75} The matrix representation
of the tensor in the laboratory frame L is as follows:

(] = D@y [Chn] DB (B.13)
As is often the case in NMR, an intermediate frame, usually the molecular frame M,
is required to manage the relative frame transformations from the principle axis frame
P of interaction A to the laboratory frame L. The interaction tensor Cg\lm, has a fixed
orientation with respect to the molecular axis system M, in which the molecule is also

oriented with respect to the static magnetic field. The relative orientation of frame P
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with respect to frame M is specified by using the Euler angles Qj\j > and the relative
orientation of frame M with respect to frame L is specified by using the Euler angles

Q). Therefore, D(Q};) is written by “chaining” Wigner rotation matrices:
D(Qi\DL) = D(Q?M)D(Q%u)' (B.14)

Consider the a single term in the rotation matrix R(Q}; ), such as R, (%, ), which is

interpreted by using rotation operators as follows:

Reo(@b1) = Reo(@par) Rea(Qr1) + Ry (W) Rur( Q1) + Res( @) Ren( ),

(B.15)
where each component is specified by the rotation matrix given in equation 1.130.
Chaining Wigner rotation matrices makes consecutive rotations over multiple interac-
tion frames between the axis systems P and L considerably easier. Additional reference
frames, such as a rotor axis system R, are often required in solid-state NMR and in the
relaxation analysis of rotating methyl groups in solution. The rotor frame R rotates
about a fixed axis with respect to the molecular frame M. The chain of Wigner rotation

matrices in equation B.14 becomes:
D(Qpr) = D) D(Qrar) D(Qy1). (B.16)

where D(Qj\g ) defines the relative orientation of the principle axis system with respect
to the rotor frame for an interaction A, and D(Q3%,,) defines the relative orientation
of the rotor frame with respect to the molecular frame. For further information, see

reference [229).

B.4 Motional averaging

Complicated nuclear spin Hamiltonians may be simplified to a “motionally averaged”
Hamiltonian, due to the rapid tumbling of molecules in isotropic liquids (and gases). If a
molecule undergoes fast reorientation the interactions associated with the molecule will
fluctuate in time. If the interactions fluctuate sufficiently fast a “motionally averaged”
interaction strength may be used. The situation is made even simpler as some interac-

tions may have zero time-averages, and can be neglected. Unless molecular motion is
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slow a “motionally averaged” Hamiltonian is usually a good approximation to the full

nuclear spin Hamiltonian.

The motionally averaged Hamiltonian depends on the type of motion averaging
the interaction strengths. Rotations of a molecule in solution inherently suggest a change
in the overall molecular orientation. Rotations are detectable by NMR because these
motions alter the nuclear spin Hamiltonian, such as the coupling magnitudes for the
anisotropic dipole-dipole and chemical shift anisotropy interactions. In general, three
angles are required to define a rotation in space, these will be substituted by ©, which

is assumed to be time-dependent.

The time-dependent, secular Hamiltonian expressed as H°(O(t)) may be written

as the time-average secular Hamiltonian by taking into account motional averaging:

~

H(©) =711 /T dt HO(O(1)). (B.17)
0

For large values of 7 the ergodic hypothesis may be invoked as the molecule is likely to
have sampled all molecular orientations. An integral over time is therefore considered
as an integral over molecular orientation:

H(0) = / dOP(0)H%(0), (B.18)
where P(0) is the probability density of a molecule having a particular molecular ori-
entation. In isotropic liquids (and gases) all orientations are equally likely, and the
probability density is the same for all orientations. In cases of anisotropic media, such
as liquid crystals, all orientations are not equally probable as molecular orientations
aligned with the liquid crystal director are most preferable. The isotropic motionally

averaged secular Hamiltonian is therefore written as:
0)=N"! / dOH"(0), (B.19)
where N is a normalization constant, chosen so that the total probability is 1:

N = / do. (B.20)
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B.5 Multipole expansion

Consider a charge ¢; at position 7; defined by: p(7) = ¢;6(7 — 7;). One can define an
electronic potential such that: E(7) = —V¢(7), where:

1 p(7)
= dv . B.21
o) = o | v (B.21)
In the case where 7; > 7, the multipole expansion of %ﬂ is valid:
N
1 1 - 1
= —(r; -V, )" =. B.22
i DGR D (B.22)
n=0
Therefore, the electric potential ¢(7) becomes:
. 1 |1 e 32— r2r?
= dv — ! er| B.23
o) = o [ Vol |7+ o T (B.23)

Thus, expanding equation B.23 via a Taylor series, the multipole expansion is complete:

dmey | T

1L |Q  pirri | 1miry
i) T3 t3 > T;Qij ; (B.24)
]

where );; (third term in the multipole expansion) represents the quadrupole moment.

Q;j is defined as:
Qij = / dV (3r; - rj — rirj0ij) pr. (B.25)
1%

This parameter is used to describe the effective shape of an ellipsoid representing a

nuclear charge distribution.

B.6 Rotating frame transformation

In order to treat the presence of radiofrequency pulses the necessary evil of transforming
between laboratory and rotating frames is required. As the resonant component of
an rf-field rotates at a constant frequency in the rotating frame the spin Hamiltonian
appears to be time-independent if one views the spins from a frame which “rotates

with the rf-field”, i.e. the on resonant component of the rf-field appears to be static in
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the rotating frame. This mathematical trick greatly simplifies many problems within

magnetic resonance.

Consider a laboratory reference frame with axes denoted: { e, ey, e, }. The

rotating frame has axes: { €/, e/, €, }. The two frames are related by:

Y Tz

e, = ezcos(g(t)) + eysin(P(t)), (B.26)
e, = eycos(p(t)) —eysin(¢(t)), (B.27)
e, = e, (B.28)

where ¢(t) is a time-dependent angle given by:
O(t) = wrest + (1), (B.29)

where wyes is the resonant part of the rf-field, and ¢(t) is a constant phase factor. Con-
sider a spin in a magnetic field with an eigenstate 1) precessing at a Larmor frequency
wres about the z-axis of the laboratory frame. For simplicity, assume that the spin polar-
ization vector is oriented in the xy-plane. The eigenstate |1)) evolves with the following

form:

[4') = R(6(1)) [4) (B.30)

In the rotating frame, the angle between the spin polarization vector and the e, and e,

axes is fixed, and hence the eigenstate would not appear to evolve:

) =) (B.31)

The “tilde” denotes the view from the rotating frame. The relationship between an

eigenstate in the laboratory and rotating frame is therefore:
[9') = Ro(=o(1)) [¢') - (B.32)

The equation of motion for eigenstates as viewed from the rotating frame derives from

the Schrodinger equation:

. d -~
—iH ) = 9. (B.33)
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Using equation B.32 and the chain rule of differentiation, the right hand side of equa-

tion B.33 becomes:

d - d

R.(—o(t) [v')| = @ﬁ?z(ﬂﬁ(t)) )+ Ra(=6(1) - o [W) - (B.34)

&A‘g‘

t

By substituting for the rotation operator R.(—(t)) (see chapter 1, section 1.7.1) and

solving for its time derivative:

%ew“’f? [0) = iwres > Ba (— (1)) [) , (B.35)

and using the relation: %gb(t) = wreS%qb(t), equation B.33 becomes:
— il [§') = iwres R (=0(0)) [¢) — iR=(—0 () H [') (B.36)

The rotating frame spin Hamiltonian is therefore written as:

H ') = Ro(=¢() HR($(1)) [0) — wres L [¢) - (B.37)
The rotating frame Hamiltonian contains two terms. The first is a rotation of the
laboratory frame Hamiltonian about the z-axis through the time dependent angle ¢(t).
This term implies that static spin operators move backwards in the rotating frame. The
second term is a non-linear motion correction to the spin dynamics and arises simply

because the frame is rotating.

B.7 Projection superoperators

As discussed in chapter 1, a quantum state |1)) may be expanded as a linear combination

of ket vectors |1);):

) = ZCi Vi) (B.38)

where ¢; = (1;|1), which ensures the relation:

Z i) (hs| = 1. (B.39)
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The projection superoperator ascertains the amount of an operator N within another
operator M , such as the level of singlet order QSQ within the spin density operator p.

The projection superoperator ﬁM n is defined as:

A Tr[M'N]
D = A, ~.» B4O
PYN = (B.40)
and the application of the projection superoperator to an operator N is:
i = DN (B.41)
p = — — = . .
M T M

The coefficient «p; is the measure of the operator N within the operator M. The

maximum value of apy = 1 as ﬁ MmN is normalized by Tr[M TN .

B.8 Zeeman polarization as a hyperbolic tangent function

In chapter 2 the Zeeman polarization pz was expressed by using the following tangent

function:

(B.42)

In this section, I will give the shortcuts to this expression of p;. Lets begin with the

definition of the Zeeman polarization:

(B.43)

where p(«) is the |a) state population and p(3) is the |3) state population. The ratio
between the populations of the |a) and |3) states is defined by the Boltzmann distribu-

tion:

kBT

p(B) ’

where wy is the nuclear Larmor frequency, p is the Boltzmann constant (1.38x 10723 JK-

ple) _ (55#) (B.44)

~1) and T is the temperature. The ratio of nuclear spin populations allows the Zeeman

polarization to be expressed as follows:

= (B.45)
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upon cancelling p(3). Now include a multiplicative constant of exp {fwy/2kpT}, and

rearrange the resulting expression accordingly:

—hwq hwq
e nBT _1 e QRBT

Pz = —F7, o = T he wo \
e(NfBIQ> +1 e(QZBOT) 6(2:3%) —|—e(ZZBOT)

(B.46)

The Zeeman polarization pyz is clearly a hyperbolic tangent function and can readily be

expressed in the following form:

Iy B
pz = tanh <2ZB;> . (B.47)

Expressing pz in this manner allows the temperature and magnetic field dependencies

of pz to be examined more explicitly.

B.9 Singlet order and rf-fields

In chapter 2, I briefly outlined the effects of applying a continuous wave (CW) field to a
nuclear spin pair ¢ and j during the evolution period Tgy between encoding the nuclear
singlet order and the subsequent reconversion to observable magnetization. In this sec-
tion, I provide more details regarding this phenomenon. Details regarding the evolution
of the nuclear singlet order (and the singlet-central triplet population imbalance) are

found in references [16, 149, 150].

As is often the case for measurements of singlet relaxation time constants, the finite
chemical shift difference which exists between the coupled spins of interest acts to atten-
uate the lifetime of the nuclear singlet order. This mechanism is termed “singlet-triplet
leakage” and is discussed further in chapter 3. The singlet-triplet leakage mechanism is
coherent and may therefore be removed (to good approximation) by the presence of an
on resonant radiofrequency field. Consider the case of continuous wave (CW) irradia-
tion with a pulse amplitude wcew applied at the average resonance frequency of the two

singlet nuclei. Assume that wcow satisfies the following condition:

wew > 04 (B.48)
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"
‘e

FIGURE B.1: The effective magnetic field axis (grey, dashed arrow) in the limit of
strong continuous wave rf-irradiation, i.e. wew > Q7. 6,5 indicates the angle of the

effective magnetic field with respect to the static magnetic field éo and weg denotes
the amplitude of the effective magnetic field.

in which case the coherent Hamiltonian in the presence of CW irradiation .FAICOh,CW is
expressed in the rotating frame as:
ij ij

: 0y S L VY

Heoncw = T(Ii + 1) + 5 (1;z — sz) + 277Jijfi : fg + wow (Lis + fjx)- (B.49)

The Zeeman term fw — sz does not commute with the term from the coherent CW
irradiation flx + jgx but may be neglected in the case that equation B.48 is fulfilled.

The coherent Hamiltonian ﬁcoh,CW therefore simplifies to:

Heonow = 21Jii1; - I + wow (Lix + L), (B.50)

and remains an exchange-symmetric Hamiltonian with respect to the permutation of
nuclear spins ¢ and j. QSO is therefore a conserved property of ﬁcohpw, see chapter 2
for more details. The singlet spin-1/2 nuclei experience an effective magnetic field due to
the existence of the CW radiofrequency field, which is typically provided by the rf-coils
of the probehead and is applied in a perpendicular direction to the static magnetic field,
see figure B.1. The angle of the effective magnet field tilt (experienced by both spins 4

and j7) is given by a tangent function of wcw and QZ:

2Wew
ij
QA

tan(6,¢) = , (B.51)
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with the effective magnetic field amplitude, defined to be co-axial with the z-axis of the

effective magnetic field frame, expressed as:

Weff — <2A> + w%w . (B52)

The transformation from the rotating frame to the effective magnetic field frame for the

Cartesian operators which constitute the coherent Hamiltonian f{coh,CW is given by:

IAZ’I + fj’x cosfpy 0 —sinf,s Iiw + ij
jl{y + _f]/y = 0 1 0 X fiy + _ij ) (B.53)
fz’z + f]’Z sinf,y 0 cosb,s Iin + Ajz

where the primed (") operators are specified in the effective magnetic field frame. For
sufficient suppression of the coherent singlet-triplet leakage mechanism, the applied CW
field must have a nutation frequency which substantially exceeds the chemical shift
difference, i.e. wow > QZA] In the limit of strong CW irradiation 6, — 7/2, and the
trigonometric elements of the transformation matrix simplify as follows; sin 6,y — 1 and

cos O,y — 0.

The transformation matrix enabling the nuclear singlet order to be expressed in

the effective magnetic field frame is:

B (sn,| (L] (n-n,
1S0) [ % 0 —3 -1
Qcs = 1T-0) 1 -3 3 0 (B.54)
To) | 1 0 ~3 1
T1) \ g 3 3 0

where %15 = I;, - I;, + I - I;,. This transformation is equivalent to the following
relabelling of the Cartesian operators fz’z > IAH and fz’m > IAZZ (identical transformations

are present for spin j) which results in the following transformation matrix:
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1) (SLyl Lo+ La| (Lo Lja|
1S0) [ 4 0 —1 —1
Qcs = T2) | 4 -3 3 0 (B.55)
To) | 3 0 —3 1
T51) \ g 3 3 0

The transformation to the effective magnetic field frame described in equation B.55
demonstrates that the population of the nuclear singlet state expressed in the Cartesian

product operator basis of the effective magnetic field frame remains as [75, 150, 151]:

[EnN

1S0) (So|l = = = I; - I;

4 3= g~ Wi dja 4 Liy - Ly + Lz - L) (B.56)

The nuclear singlet order (ng) additionally remains invariant to an effective magnetic
field frame transformation, with Qgo expressed in the effective magnetic field frame as:

. e
Qsozz—ﬁ<li I 2l ). (B.57)

B.10 SLIC vs. M2SS2M

The SLIC and M2SS2M pulse sequences are discussed in depth at the end of chapter 2.

The advantages and disadvantages of each sequence are detailed in table B.1.

TABLE B.1: Comparison for the properties of the SLIC and M2SS2M pulse sequences
used to interconvert longitudinal magnetization and the nuclear singlet order.

Property SLIC M2SS2M
generation of Qso immediate during ns JSE train
max Qgo efficiency | 2/3 2/3

power requirements | ~10 uW ~10 W

sequence duration ~100 ms ~100 ms

offset dependence selective broadband

Each pulse sequence operates effectively in the near-equivalence regime and dis-
plays obvious strengths and weaknesses. For example, the SLIC sequence consists of
a single pulse dictated by two parameters which are easily optimized [156]. However,

sufficiently low nutation frequencies are difficult to generate for the weak spin-locking
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pulses below an intrinsic limit set by the amplifier of the spectrometer. The M2SS2M
sequence (also simple to optimize and governed by two parameters) is comprised of echo
trains positioned back-to-back. If large numbers of JSE trains are required to retrieve
the nuclear singlet order, the hard (short) pulses which are readily synthesised by the
spectrometer can occasionally trigger sample heating. On the other hand, the M2SS2M
pulse sequence is used effectively in cases where the one-dimensional spectra of the singlet
isotope is severely crowded, as the M2S portion of the pulse sequence efficiently selects
the key singlet resonance. Furthermore, the SLIC pulse sequence is able to use experi-
mental parameters which are exactly matched to the spin system parameters, whereas
for the M2SS2M sequence the number of JSE trains n; must be rounded to an integer,
limiting the experimental transfer efficiency. Finally, the 7 inversion pulses belonging
to the M2SS2M pulse sequence are sensitive to inhomogeneous EO fields. Composite m
pulses are instead used to improve the off-resonance performance of the singlet-triplet

interconversion.

B.11 Optimized Ty, filter parameters

The Tgyo filter is implemented to suppress all signals not originating from the singlet
state. NMR signals passing through spherical tensors of rank 1 or 2 are destroyed.

Details of the Ty filter are also given in references [55, 56].

TABLE B.2: Optimized parameters of the Ty filter.
PFG Shape Strength Duration
Gl SINE.100 5.0 Gem™! 4.4 ms
G2  SINE.100 -5.0 Gem™! 2.4 ms
G3 SINE.100 -7.5 Gem™' 2.0 ms

B.12 Autocorrelation functions

Molecules dissolved in solution do not behave as static objects, and are continuously
undergoing molecular vibrations and librations. Other motions attributed to the reori-
entation of molecular groups or the molecule as a whole include; rotations, translations

and diffusion. In turn, the molecular frame (imprinted on the molecular geometry) is not
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time-independent and undergoes the same motional dynamics. The molecular frame is
therefore seen to tumble in synchrony with the molecule with respect to the laboratory

frame [49].

From the thorough treatment of nuclear spin relaxation discussed in chapter 3, it
has been shown that: 1. frame transformations R — M and M — L are uncorrelated
in the case that the isotropic rotational diffusion of the internal group and the overall
reorientation of the molecule in solution posses suitably different timescales; and 2.
molecular reorientations (frame A — frame B) across an interval 7 are quantifiable by

: : AN ,
an autocorrelation function G, ,(7) such that:

(D2 (5 (0) D2, (@ (0)) X G (1) = (D2 (5 (0)) D2,y (R (1)),
(B.58)

with:

(D (QA5(0)DL, (D p(1) = Y / i / %sin(ﬂ)d dBda  (B.59)
momi\"*AB mhpm/\**AB - ]2 0 0 0 Y .

X D’i;klzml(QﬁB (0))D£n'2m'1(ﬂj}4B (7-))7
(_1)m2+m1

T_’_l(sll’émzméémlm’ﬂ (BGO)

where the factor of 1/872 is the uniform probability density of initial orientations spec-
ified by the solid angle 2 5(0), and is required for normalization. The autocorrelation
function quantifies how rapidly the local magnetic field fluctuates, i.e. how correlated is
the field with itself at a later time 7. Fluctuations could be due to the reorientational
motions of a small molecule in isotropic solution, or other molecular processes. The
autocorrelation function depends on the size of the time-step 7 between measurements
of the local magnetic field orientation with respect to a reference frame, which is fixed

with respect to the molecule. The autocorrelation function G;\,;’\T:L,(T) is written as:
AN A A\
Gm,m’ (T) = <Al’r:<z (t)Alm’ (t - T)>7 (B61)

where Af\m are the spatial tensors of the fluctuating Hamiltonian for the interaction A,

see table 3.2. At a time 7 = 0, the autocorrelation function is:

G (0) = (AN (0) A, (0)), (B.62)
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where G;\r;,)‘;n, (0) denotes the root-mean-square amplitude of the fluctuating field, aver-
aged over either the spin ensemble or time, both of which are equivalent. The autocor-
relation function is therefore constrained by the boundary conditions: Gf‘r;’);;, (0) =1 and
ngbj\;l,(oo) = 0, i.e. at short times there is a high degree of correlation, and long times
the local magnetic field is completely uncorrelated with itself. For molecular reorienta-
tion due to overall tumbling of the spin system in solution, the autocorrelation function
is assumed to be continuous, mono-exponentially decaying function:

G (1) = GMY L (0)e e, (B.63)

m,m/’ m,m/’

which is quantified by a correlation time 7o related to the stochastic variations of the
magnetic field orientation. 7¢ can be interpreted as the average time for a molecular

axis to reorient by 1 radian.

B.13 Spectral densities

The autocorrelation function Gi‘r;)‘;n,(r) has the corresponding spectral density:

[o.¢]
I (wy= [ dra (r)em = — 9 B.64
) = [ ar @ e = e (5.64)

The integral over time translates the autocorrelation function into a spectral density
which is sampled at integer values of the nuclear Larmor frequency. The spectral den-
sity selects the frequencies of molecular tumbling in solution which are resonant with
the nuclear transition frequencies, and therefore provides the probabilities of finding
stochastic motions which fluctuate at the chosen resonant frequencies. This is consis-
tent with the notion of noise fluctuating at multiples of the nuclear Larmor frequency
and driving nuclear spin relaxation in solution state NMR experiments. The maximum
value of J:;L”i;,(w) is found at 7¢ = 1/wyq, see figure B.2. The case of wyte < 1 is de-
scribed as the regime of isotropic extreme narrowing, where the motional tumbling of
the molecule in solution is considerably faster than the nuclear Larmor period. This
results in a “flat” spectral density where G:;;’);;Z,(T) — 7¢ and all transitions are sampled

uniformly. For molecules with moieties that posses uncorrelated motional timescales,

more elaborate spectral densities are required, as discussed in chapter 3.
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0.0 0.5 1.0 1.5 2.0 25 3.0
w/ wy

FIGURE B.2: The spectral density functlon Jm oy ( ) in equation B.64 is plotted for
different values of the integer m = 1, 2 and 4. Inset: longitudinal relaxation rate
constant Ry as a function of 7¢. The maximum value of R; is realised at ¢ = 1/wy.

B.14 Liouville bracket

The orthogonality condition for a N? x N? matrix constructed from N? orthogonal

basis operators is represented as follows:

o Tr[fljfll] fori=j
(Aild;) = . (B.65)
0 for i # j

where (...|...) is termed the Liouville Bracket, defined as [51]:

N2
(A|B) = Tr[ATB] Z AL Bi; =" A5 By (B.66)
3,j=1 1j=1

The sum Z _, is valid for the operator matrix representations, whilst the sum ZU 1
is valid for the supervectors which belong to operators A and B. An operator A may be

expanded in the operator basis of B:

N2
A=Y "B, (B.67)
=1

where the coefficients «; are given by:

o = Bild) Gl (B.68)
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and in a suitable, orthonormal basis (B;|B;) = 1, which allows the superoperator matrix

representation of the superoperator Q:

éij = (BZ‘CQNB]) = TI‘[BTQB]] (B69)

B.15 !3C inversion recovery experiments

13C longitudinal relaxation times 77 ('3C) were estimated experimentally by using the
inversion recovery pulse sequence. The C 90° pulse length was determined from a
nutation frequency experiment to be 10 us at 41 W pulse power and 25°C sample tem-
perature. Experiments used a delay of 70s after each data point was recorded. The
incremented delays (in seconds) between 7w and 7/2 pulses were as follows: 0.1, 0.2,
0.5, 1, 2, 5, 8 ,12, 16, 20, 25, 30, 40, 50, 60, 75. The resulting recoveries were fit to a

monoexponential function of the following form:
y(t) = A— Be t/T1, (B.70)

where A and B were left as adjustable free parameters to guarantee the best fit of the ex-
perimental data, and 77 is the longitudinal relaxation time. Uncertainties were estimated

from the fit quality of the data by using the Mathemtica routine “ParameterTable”.
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