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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES

SCHOOL OF CHEMISTRY

Doctor of Philosophy

by Stuart James Elliott

Nuclear magnetic resonance (NMR) experiments are time-limited by relaxation dynam-

ics. Observing non-equilibrium magnetization is restricted to timescales governed by the

longitudinal relaxation time T1. The use of long-lived states (LLS) offers a promising

means to transcend this limitation. LLS are configurations of nuclear spins that are

protected against the in pair dipole-dipole relaxation mechanism, with other sources of

relaxation significantly attenuated. In systems of spin-1/2 pairs, the LLS is called singlet

order and the decay time constant is denoted TS.

The field of LLS NMR is now flourishing, LLS lifetimes exceeding T1 by a factor

of 50 have been observed, with a lifetime TS > 1 hour observed in room-temperature

solution in one case. LLS have even been observed in the 3-spin-1/2 systems of rapidly

rotating methyl groups in solution.

The work presented in this thesis builds on previous efforts from the LLS com-

munity. Most notably, prior attempts at methyl LLS are restricted to just a single case.

Through my work, I have extended the family of molecules in which methyl LLS are

accessible, achieved with high conversion efficiencies in suitable cases. The use of mon-

odeuterated methyl groups as coherently accessible reservoirs for nuclear singlet order

has lead to the longest observed methyl LLS. The relaxation dynamics of two motion-

ally different cases are examined and geometrical models are presented to explain the

experimental results. Hyperpolarization results for these systems are also presented.

My work has lead to the investigation of more curious phenomena such as the

singlet-scalar relaxation of the second kind (S-SR2K) mechanism. In the regime of slow

quadrupolar relaxation, where T1 is significantly slower than the timescale of the nu-

clear Larmor period, this relaxation mechanism dramatically shortens singlet lifetimes.

An experimental demonstration is provided for the case of a 13C labelled, deuterated

fumarate derivative. This study differs from previous work on this subject, which exam-

ines the limit where the T1 of the third spin is on the timescale of the nuclear Larmor

frequency, rarely the case for deuterium nuclei. I provide rate expressions and numerical

simulations for the LLS decay in the S-SR2K regime of slow quadrupolar relaxation.

http://www.soton.ac.uk
http://www.southampton.ac.uk/about/departments/faculties/fnes-international.page
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Thesis Outline

The work presented in this thesis is the result of multiple research projects under-

taken whilst in candidature for a PhD at the University of Southampton. The work

is centred around long-lived nuclear spin states, which is an ongoing research effort in

the group of Prof. Malcolm H. Levitt. The two main research themes of this thesis

are hyperpolarized long-lived states in monodeuterated methyl groups, and singlet state

relaxation via scalar relaxation of the second kind. The thesis is organised as follows:

Chapter 1: Introduction

• Introduction to the basics of nuclear magnetic resonance (NMR).

• A discussion of angular momentum, spin, precession, relaxation and other topics

relevant to NMR.

• Particular attention is paid to near chemically equivalent spin systems, and the

effects on NMR spectra.

• A summary of rotations and other mathematical/quantum mechanical tools.

• A presentation of the main interactions covered by the work in this thesis.

Chapter 2: Hyperpolarization and singlet states

• A section on NMR hyperpolarization and dissolution-dynamic nuclear polarization

(D-DNP).

• An in depth coverage of singlet state NMR, including the key properties of nuclear

singlet states.

• Discussion is facilitated by quantum mechanical descriptions and useful mathe-

matical instruments.

• A small section on singlet NMR techniques, such as the use of radiofrequency pulse

sequences, is included to provide background for the reader before discussion of

the experimental results.
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given at the end of the thesis.
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Chapter 1

Introduction

1.1 NMR spectroscopy

Spectroscopy is a scientific territory concerning the interaction between energy and mat-

ter. Matter either emits or absorbs radiation and the resulting change in energy is de-

tected and interpreted. Spectroscopic techniques can ultimately provide information on

the substructure of atoms and molecules in a variety of systems. In chemistry, scientists

are involved with the reactivity and kinetics of matter, in which molecular structure and

motion play a vital role. Nuclear magnetic resonance (NMR) spectroscopy is a widely

used technique in the physical sciences and can reveal information regarding transfor-

mation and dynamics over a wide range of timescales. NMR is a powerful analytical tool

and is also able to correctly determine material structures. Structural interpretation is

often found to be in good agreement with elegant data-to-structure techniques such as

X-ray crystallography, see figure 1.1a). The non-invasive nature of magnetic resonance

is additionally highly suitable for in vivo work in hospital clinics and magnetic resonance

imaging (MRI) is at the forefront of medical healthcare diagnostics.

Magnetic resonance phenomena were first observed by Rabi in 1938 using molec-

ular beams [3]. Rabi, together with coworkers, developed a new method for measuring

nuclear magnetic moments, which was awarded the Nobel prize in physics in 1944 [4].

A short while later, Purcell, Torrey and Pound [5], with simultaneous development ef-

forts offered by Bloch and Packard [6], invented and expanded the relatively new field

of NMR in bulk matter. In 1952, Purcell and Bloch shared the Nobel prize in physics

1
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a) b)

Figure 1.1: a) Superimposed structures of ubiquitin determined by x-ray crystallog-
raphy (red) and NMR (blue). The structural determination of ubiquitin by NMR is
remarkably accurate and in this case was achieved purely by using two-dimensional
techniques, without assignments of one-dimensional spectra [1]. b) Diffusion spectrum
imaging (DSI) tractography of a rat heart. The muscle fibres of the rat heart are colour

coded with respect to helix angle [2].

for these feats. It must be noted that the effect was narrowly missed by Gorter in 1942

due to the long relaxation times of the LiCl crystals used in his experiments [7]. NMR

has come a long way in just 65 years. For example, modern day NMR magnets pro-

vide large magnetic fields (> 10 T) through the use of superconducting materials which

are cooled to ∼4 K by cryogenic substances. The improved resolution and sensitivity

granted by large magnetic fields has advanced NMR spectroscopy and surrounding sci-

entific fields, such that previously troublesome structure assignments [8] and metabolic

tracing experiments [9] are now common practices.

NMR spectroscopy concerns the behaviour of a nuclear ensemble in the presence

of a magnetic field. Particles with inherent nuclear spin are subjected to manipulation

of their quantum mechanical properties by interactions with intricately designed elec-

tromagnetic pulses. In this way, a real grasp of the microscopic world around us may

be achieved and the probing of complicated systems is made possible. A well harnessed

phenomenon in NMR, which is used for structural assignment and process monitoring,

is the loss of spin order during the relaxation times T1 and T2. After the excitation of

a particular isotopic species in a sample, or molecular tag in a human patient, informa-

tion is continuously lost until the unperturbed starting conditions are restored. Although

typically restricted to a just a few seconds, relaxation times have already served research

and clinical scientists in efforts to probe regimes of slow molecular motion such as dif-

fusion [10], which can be used to investigate the structure of muscle fibres in the heart,

see figure 1.1b). Measurements of proton T1 and T2 have allowed a preview into the

world of protein folding and unfolding [11], and conformational exchange [12]. Labelling



The basics of NMR 1.2 3

of biologically relevant materials with 13C and 15N isotopes has also become increasing

popular, as NMR not only provides clear cut information regarding molecular structure

but the longer lifetimes of these agents opens up the possibility to study exchange rates

and obtain diffusion coefficients over extended time periods [11, 13].

A relatively new form of nuclear information storage is provided by long-lived

states [14–23, 23–27] which aims to overcome the limiting nuclear relaxation time in an

alternative fashion. The pioneering work of Levitt and co-workers has unequivocally

demonstrated that, by using the symmetry properties of nuclear spin-1/2 pairs, it is

possible to extend the lifetime of spin order, and lengthen relaxation times by more

than an order of magnitude [28–35]. Previously undetectable quantum states are now

accessed via novel pulsed methods, and the slow harvesting of spin order is facilitated by

symmetry protected molecular systems. A particularly successful early case of a long-

lived bearing substance was a partially deuterated saccharide system [18] with a “hidden”

relaxation time 37 times longer than that associated with T1. An equally impressive

achievement came from Pileio and coworkers, who recorded a 9 minute lifetime for

N2O dissolved in blood. Recently, a Naphthalene derivative with a long-lived lifetime

exceeding 1 hour in a room temperature solution has been observed.

The opening couple of chapters in this thesis are intended to assist the reader in

understanding how some of the phenomena described above are possible.

1.2 The basics of NMR

1.2.1 Spin angular momentum

Atoms and molecules are known to carry two distinct forms of momentum. Angular

momentum arises when a particle executes a trajectory along a curved path, much like

the electron orbiting the nucleus. Spin is the second variety of angular momentum and

is intrinsic to the majority of nuclei in nature. However, spin is not related in any way

to the rotation of a molecule. In quantum mechanics, spin angular momentum ~I is

quantized in units of ~ (6.63× 10−34/2π Js). The allowed, quantized values of ~I are:

~I = ~
√
I(I + 1), (1.1)
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where I is the principal spin quantum number and can be any non-negative n-integer

value of n/2, i.e. 0, 1/2, 1, 3/2, etc.

The initial formalism of spin was gradually accepted by the scientific community,

and was later supported by clear-cut experimental evidence. One confounding finding

emerged from the Stern-Gerlach experiment in 1922 [36], some years before Uhlenbeck

and Goudsmit formulated the hypothesis of the spin-1/2 electron [37]. Later, in 1928,

Dirac successfully modelled a spin-1/2 electron from a theory of relativistic quantum

mechanics [38].

The spin angular momentum of a nucleus manifests itself as a discrete set of energy

levels governed by a certain group of quantization conditions: mI = -I, -I+1, ..., I -1,

I, where mI is known as the spin projection quantum number. The energy levels of a

nucleus are 2I+1 degenerate, meaning there are 2I+1 spin states of equal energy in the

absence of a magnetic field. The degeneracy is lifted in the presence of a magnetic field

~B and the 2I + 1 sublevels are consequently unveiled [39]. This is an important feature

of quantum mechanics which, in magnetic surroundings, allows NMR to function. In the

simplest case, one might consider the primary isotope of the hydrogen atom, the nucleus

of which consists of a single proton (1H) with a nuclear spin I = 1/2 [40]. Therefore,

for the hydrogen nucleus in a magnetic field, the degenerate energy levels are split into

two sublevels, with mI = ±1/2. The quantized energy difference ∆E between the two

states in the revealed energy level structure is the subject of interrogation by NMR

spectroscopy, see figure 1.2.

1.2.2 Magnetic moments

The interaction between a nuclear spin and its magnetic environment is expressed by

the magnetic moment ~µ. A scalar product between ~µ and the magnetic field vector ~B

leads to the magnetic energy Vm of such an interaction:

Vm = −~µ · ~B = − |~µ| | ~B| cos(φ), (1.2)

where φ is the angle between the nuclear magnetic moment and the magnetic field. In

NMR, the direction of the static magnetic field ~B is defined to be along the z-axis of

a right-handed Cartesian coordinate system, which has orthonormal unit vectors. The
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1H
I = 1/2 mI = -1/2

mI = 1/2

En
er

gy

Magnetic Field
B =0 B  >0

ΔE

Figure 1.2: The presence of a magnetic field lifts the energy degeneracy for a nucleus
with inherent nuclear spin. An energy level structure with splittings proportional to
the nuclear spin number I is revealed. This phenomenon is known as the Zeeman effect

and is shown for the case of I = 1/2.

orientational dependence of Vm on the magnetic moments alignment with or against ~B

is clear. When the two vectors are aligned parallel the energy achieved is lower than any

other orientational configuration. Therefore, any free magnetic moment in a magnetic

field will minimize its magnetic energy and align parallel to the magnetic field [41].

1.2.3 Microscopic magnetism

Magnetism on the microscopic scale is dictated by three major sources:

• electrical currents on the molecular length scale

• magnetic moments of electrons

• magnetic moments of nuclei

The circulation of electronic currents contribute negatively to the magnetic susceptibility

(a measure of the extent to which a material develops a magnetic moment on exposure

to a magnetic field). The presence of magnetic moments contributes positively to the

magnetic susceptibility, i.e. these properties tend to align with an external magnetic

field.

Nuclei, like electrons, simply possess an intrinsic permanent magnetism, as they do

intrinsic spin, which is not a consequence of an electrical current. The nuclear magnetic
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I

I

B

Figure 1.3: The Einstein-de Haas effect. A ferromagnetic rod is vertically magnetized
by a current passing through an encasing solenoid. The rod rotates in order to conserve
angular momentum and its motion is captured via the use of a laser and mirror. In this

figure, I represents the current in the solenoid [43].

moment is a fundamental property and is related to the spin angular momentum:

µ̂ = γÎ, (1.3)

where the “hats” indicate that these two properties are quantum mechanical operators.

γ is the gyromagnetic ratio and as a scalar may carry either sign. Hence, the magnetic

moment can either orient parallel or anti-parallel to the spin angular momentum, de-

pending on the sign of γ. A positive γ implies that the nuclear magnetic moment and

spin angular momentum point in the same direction in space. A similar relationship

was cleverly demonstrated for the orbital angular momentum of the electron by Ein-

stein and de Haas in 1915. An experiment was constructed whereby a ferromagnetic rod

suspended vertically by its long axis was subsequently magnetised along its entire length

by an aligned magnetic field emanating from a surrounding coil [42]. As a net magneti-

zation attributed to an alignment of magnetic moments corresponds to a gain in angular

momentum, the rod began to rotate in the opposite sense to fulfil the conservation laws

of angular momentum, see figure 1.3.
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1.2.4 Spin polarization vector

As shown in equation 1.2, the magnetic moment is described by using a vector represen-

tation. In the same way, the spin angular momentum of a nucleus is also represented as

a vector. The direction of the spin angular momentum vector is more commonly referred

to as spin polarization. The spin polarization vector may point in any direction in space.

From previous arguments one may assume that only two directions of spin polarization

are permitted, with and against the magnetic field. However, this perception is incorrect

and fuller quantum mechanical description is necessary [44]. In the language of quantum

mechanics, the direction of the spin polarization vector may be expressed as a superpo-

sition of well defined quantum states. The expectation value of the operator Î acting on

this state would return the classical analogue, see chapter 2 for more details [39].

The concept of the spin polarization vector may too be applied to an ensemble of

nuclei in order to describe the direction of the overall spin angular momentum vector

at thermal equilibrium. The governing state of the entire system would be written as a

superposition of quantum states summed over the entire nuclear ensemble. The expec-

tation integral of this overall state would yield a small but non-zero measurement in the

absence of a magnetic field. In this a case, the individual angular momentum vectors for

an ensemble of spins would maintain a completely isotropic geometrical distribution [41],

leading to a near zero net spin polarization or magnetization ~M :

~M =

N∑
i

~µi ≈ 0, (1.4)

for N spins in the nuclear ensemble. Suppose the nuclear ensemble is instantaneously

moved into a region of non-zero magnetic field. The lowest energy orientation for a

single spin occurs from an alignment of the magnetic moment with the magnetic field,

see equation 1.2. Therefore, a free spin will align its magnetic moment along the magnetic

field axis. Under these conditions, the expectation value of Î for the ensemble of nuclei

corresponds to a larger net spin polarization which is aligned with the static magnetic

field, see section 1.2.6 for more details.
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Figure 1.4: Precession cones of three spin-1/2 nuclei (γ>0) oriented at various angles
with respect to the static magnetic field. If the spin polarization vector is tilted away
from the axis of the static magnetic field, precessional motion sweeps out a cone of

constant angle.

1.2.5 Precession

A torque or turning force ~G acts upon a magnetic moment when situated in a magnetic

field:

~G = ~µ ∧ ~B = |~µ| | ~B| sin(φ), (1.5)

where the vector ~G is orthogonal to both vectors ~µ and ~B provided ~µ ∧ ~B 6= ~0. The

direction of ~G is determined by the “right-hand rule”. Torque is a property related to

the rate of change of angular momentum. By using equations 1.3 and 1.5 one achieves:

d~µ

dt
= γ~µ ∧ ~B. (1.6)

Hence, motion is perpendicular to both ~µ and ~B and the effect is for the spin polarization

to precess around the magnetic field in a cone, see figure 1.4. The cone angle depends on

the initial direction of the nuclear spin polarization vector in space with respect to the

static magnetic field. This type of motion is called precession. Precessional motion is

shown in figure 1.4 for nuclei with different orientations of the nuclear spin polarization

vector. This idea can also be translated to the overall spin polarization vector and is

used when considering the application of radiofrequency pulses to the nuclear ensemble.

The frequency of spin precession ~ω0 is known as the nuclear Larmor frequency

and is related to the magnetic field strength and direction via γ:

~ω0 = −γ ~B0, (1.7)
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where ~B0 is the magnetic field at the location of the nucleus. The sign of the spin pre-

cession indicates its direction. Most nuclei have a positive gyromagnetic ratio resulting

in a negative Larmor frequency, viewed as a clockwise precession when observing down

the positive magnetic field axis [42].

1.2.6 Relaxation

The majority of the research effort associated with the work in this thesis concerns the

relaxation of singlet states in NMR. As will be seen the chapters that follow, relaxation

is shown to be heavily dependent on the nuclear environment i.e. the structure and

dynamics of the spin system. In this section, a concise description of longitudinal and

transverse relaxation of the spin polarization vector is presented.

When a nuclear spin undergoes precessional motion in a magnetic field the angle

between the magnetic moment and the magnetic field is always conserved. Now consider

a molecule tumbling in an isotropic liquid inside a magnetic field. The orientation and

position of the molecule will fluctuate wildly as a function of space and time but the

nuclear spin polarization for each nucleus will retains its precessional motion. This infers

that the translational and diffusive motions of nuclei in solution has little effect on the

behaviour of nuclear spins.

However, the immediate magnetic environment for a nuclear spin plays a far more

significant role. A microscopic field, caused by the inherent magnetism of a neighbour-

ing nucleus or electron, will fluctuate vigorously due to the thermal energy transferred

to the spin ensemble from the surroundings [45]. The external magnetic field will be

perturbed slightly on the molecular-length scale by a microscopic magnetic field which

contains a variable spatial and temporal dependence. Therefore, the total magnetic field

experienced by a single spin differs from that of a neighbouring spin, on the microscopic

level.

The precession of an individual magnetic moment is affected by the rapidly fluc-

tuating magnetic field, which is the sum of the external and local fields and may point

in any direction in space. The nuclear Larmor precession of each nuclear spin contains a

time-dependent component and may be different to the nuclear Larmor frequency of its

neighbour. The “constant angle” of Larmor precession between the magnetic moment
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B

M

nmr tube

Figure 1.5: In a standard NMR sample there are around 1023 spins, represented
here by empty circles, each with a magnetic moment which may point in any direction
in space. As lower energy configurations, i.e. magnetic moment aligned with the
static magnetic field ~B0, are preferred there is a slight preference for this orientation
of magnetic moments throughout the sample. A net magnetic moment ~M therefore
exists throughout the entire sample, which is also aligned with the z-axis of the static

magnetic field.

and the magnetic field breaks down. Over a long time, the angle between the magnetic

moment and the magnetic field samples all possible orientations.

But are some orientations more preferable? The answer is yes. Equation 1.2 states

that the magnetic energy is lower when the magnetic moment points with the magnetic

field. Since the surroundings are at a finite temperature, a nuclear spin is more likely to

be thermally driven into a lower energy configuration. Hence, an entire spin ensemble is

naturally driven towards a stable state of thermal equilibrium, where the net distribution

of spin polarizations favour alignment with the magnetic field [46], see figure 1.5.

Nuclear spin populations for a spin-1/2 nucleus at thermal equilibrium obey the

Boltzmann distribution:
Nparallel

Nantiparallel
= e
− ∆E
κBT . (1.8)

where κB = 1.38×10−23 JK−1 is the Boltzmann constant, and T is the finite temperature

of the surroundings. The relative number of nuclear spins populating the parallel and

anti-parallel configurations is given as a function of the quantized splitting between

the nuclear spin states [47]. However, the polarization bias towards the preferential

orientation is only slight at room temperature, as ∆E is ∼104 times smaller than the
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Figure 1.6: A populated energy level diagram for a spin-1/2 nucleus in a magnetic
field at thermal equilibrium. The figure greatly exaggerates the population bias. Due
to the finite temperature of the local environment, the population of nuclear spins is
marginally imbalanced in favour of the energy level associated with parallel nuclear spin

alignment. Filled balls represent nuclear spins.

energy of thermal fluctuations, and is approximately 1 spin in 15,625 at 9.4 T for protons,

see figure 1.6.

1.2.7 T1 and T2

Consider a nuclear spin system at a state of thermal equilibrium in a magnetic field. The

net spin polarization has an equilibrium value Mz,equil which is aligned parallel to the

magnetic field. The majority of nuclear spins will be precessing on a cone of “constant”

angle with respect to the magnetic field, but there is no transverse magnetization at

thermal equilibrium as the distribution of nuclear spin polarizations is symmetric about

the z-axis of the magnetic field [41]. Consider a π/2 rotation of Mz,equil about the x-

axis as a result of a radiofrequency (rf) pulse, the effect being to tilt the magnetization

vector parallel with the -y-axis. Each individual nuclear spin is assumed to be equally

affected by the rf-pulse. In cases where the net nuclear magnetic moment is oriented

perpendicular to the static magnetic field the term as transverse magnetization is used.

This is a subtle but essential objective of nearly all NMR experiments because typically

the nuclear spin magnetization is detected in the plane perpendicular to the static mag-

netic field of the NMR magnet. As the nuclear contribution to the samples magnetism

is orders of magnitude smaller than the electronic contributions, observation of Mz,equil

parallel to the magnetic field is highly impractical.

Bloch formulated the first classical description of magnetization using a vector

model, which is valid for N non-interacting spin-1/2 nuclei. His description is adequate

for use here on the removal of the rf-pulse [4, 6, 48]. The behaviour of the magnetization
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Figure 1.7: Nuclear spins dephasing under a magnetic field inhomogeneity. a) At
an instantaneous time point after the rf-pulse is removed the magnetization vector is
assumed to be pointing along the -y-axis. b) Over time the dephasing of nuclear spins
spreads out the individual nuclear spin polarizations destroying all available NMR signal

in the xy-plane.

~M in the presence of a magnetic field ~B and relaxation R is given by:

d ~M(t)

dt
= γ ~M(t) ∧ ~B −R

(
~M(t)− ~M(0)

)
. (1.9)

Precession of individual magnetic moments forces the magnetization vector to precess

likewise in the xy-plane and relaxation will force the system to return to thermal equi-

librium [49]. This can occur via various mechanisms which are discussed in detail in

section 1.8. For simplicity, I will ignore the precessional motion and concentrate on the

effects of longitudinal relaxation R1. For the case of magnetization aligned with the

magnetic field Mz, equation 1.9 simplifies to:

dM(t)

dt
= −R1

(
Mz(t)−Mz,equil

)
, (1.10)

where Mz(t) is the magnetization aligned with the z-axis of the magnetic at a time t.

Equation 1.10 states that the rate of change of magnetization is proportional to the

deviation of Mz(t) from thermal equilibrium. The solution of this equations yields the

relaxation behaviour of the magnetization component parallel to the external magnetic

field. Mz(t) can be shown to relax with the characteristic time constant T1 = 1/R1:

Mz(t) = Mz,equil − (Mz,equil −Mz(0))e−t/T1 , (1.11)

as shown in appendix B. Different parts of the sample will relax with slightly different

rates due to small, local inhomogeneities in the magnetic field. Therefore, the wandering

motion of each nuclear spins precessional cone eventually causes the resulting signal to

slowly dephase, gradually losing all phase coherence with distinctive rate constant R2 =

1/T2, see figure 1.7. The transverse components of the magnetization vector therefore
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Figure 1.8: a) Molecular structure of ethanol. Methyl protons are indicated in red,
CH2 protons are indicated in blue, and the hydroxyl proton is indicated in pink. b)
1H NMR spectrum of ethanol. The J-couplings are small relative to the spectral width

and are not clearly visible at the current magnification.

evolve with the following form:

Mx(t) = Mequil sin(ω0t)e
−t/T2 , (1.12)

My(t) = −Mequil cos(ω0t)e
−t/T2 . (1.13)

Unfortunately, the vector model of magnetization is limited as internuclear couplings,

non-selective rf pulses and magnetization transfer are not accounted for. A fuller, quan-

tum mechanical description of magnetization evolution is therefore warranted, see sec-

tions 1.5 and 1.6.

1.3 Symmetry and properties of molecules

1.3.1 Chemical shift

NMR has the superior capability to distinguish between nuclear spins in differing mag-

netic environments, such as those located in distant parts of the same organic material.

The dependence of the nuclear Larmor frequency on the strength of the local magnetic

field allows for this determination. This is increasingly evident for more sensitive nuclei,

such a protons, which is useful for the assignment of large structures, such as proteins,

by NMR. It should be noted that here I am assuming that the static magnetic field is

perfectly homogeneous. The classic question given to test undergraduate chemists when

first discovering NMR is: from the structure of ethanol, figure 1.8a), how are the peaks

in the NMR spectrum, figure 1.8b), assigned?
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Ignoring the splitting of the resonances, which is attributed to an phenomenon

known as scalar (J) coupling where the nuclear Larmor frequency depends on the direc-

tion of coupled magnetic moments in the same molecule, the answer relies on differences

in microscopic magnetic fields. The differences in local magnetic field are not explained

by an external magnetic field gradient, such as in magnetic resonance imaging (MRI)

experiments [41, 50], but purely on the makeup of the molecule and how magnetic en-

vironments are averaged as the molecule tumbles isotropically in solution.

As the electrons are not separated from the nuclei of the molecule, the resonance

position of a molecular group is also dependent on the electrons. In diamagnetic ma-

terials this is an effect known as chemical shift. Consider the methyl group (CH3)

protons, which are resonant at ∼1.1 ppm. CH3 groups rotate rapidly in solution, and

so the nuclei are protected by a cloud of high electron density. This shielding effect

from the outer electrons shifts the methyl group resonance upfield, towards 0 ppm. The

hydroxyl resonance is often broad due to exchange of the proton with the solvent, and

is found downfield (>4 ppm) as the oxygen nucleus is heavily electronegative and pulls

the electron density away from the adjacent proton.

As the nuclear Larmor frequency, and to good approximation the chemical shift,

are proportional to the applied magnetic field, the ratio of these two quantities is fixed.

A field-independent expression of the chemical shift δ is expressed as:

δ =
ω0 − ωREF

0

ωREF
0

, (1.14)

where ωREF
0 is the nuclear Larmor frequency of the same isotope in a reference compound

at the same magnetic field.

1.3.2 Chemical equivalence

Some nuclei, such as those labelled blue in figure 1.8a), have nuclei which resonate at

the same nuclear Larmor frequency. Therefore, the magnetic field experienced by the

protons Ha and Hb is the same, and the CH2 protons all appear at the same resonance

frequency in the 1H NMR spectrum. These spins are defined as “chemically equivalent”.

Chemical equivalence is also a common feature for CH3 groups. In chapter 3, I will
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Figure 1.9: The equivalent protons of a) methane and b) DMSO are highlighted in
blue. In each molecule, the protons are exchanged by a symmetry operation, such as a

three-fold rotation (C3) or reflection (σv).

show how chemical inequivalence can be induced and detected between the protons of a

rotating CH2D group.

For two or more spins in the same molecule, chemical equivalence is achieved if

both of the following criteria are satisfied:

• The nuclear spins are of the same isotope,

• A molecular symmetry operation exists which exchanges the nuclear spins.

If both of these criteria cannot be satisfied, then the spins are said to be chemically

inequivalent. As an example, consider the protons in a molecule of water. The two pro-

tons are chemically equivalent. Each spin is of the same isotope and both spins sense the

electron withdrawal due to the electronegativity of the oxygen, shifting the resonance

frequency for both protons downfield simultaneously. Furthermore, a reflection opera-

tion, which runs down a line of symmetry within the molecule, exists and interchanges

the position of the two protons. Similar is true for the protons in a molecule of methane,

the CH2 protons in a molecule of ethanol, or the methyl groups in a molecule of DMSO,

see the blue protons in figure 1.9.

1.3.3 Magnetic equivalence

Another widely used category to establish equivalence between the nuclei of a molecule

is magnetic equivalence. Two nuclei are said to be magnetically equivalent if:

• The two nuclei have identical chemical shifts,
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• The two nuclei have identical scalar couplings to all other nuclei in the molecule

(or if there are no other spins present in the molecule).

If both of these criteria cannot be satisfied, then the spins are said to be chemically

inequivalent.

Again, one could consider a molecule of water, but this time the water is labelled

with an 17O nucleus (I(17O)>0) such that a J-coupling exists between the protons and

the oxygen. As discussed above, the two protons in water have identical chemical shifts.

In this case, the J-coupling is also identical and the protons of water are said to be

magnetically equivalent. Magnetic equivalence does also imply chemical equivalence,

but chemical equivalence does not necessarily imply magnetic equivalence.

In the field of singlet-state NMR, an ideal molecular candidate is often chosen if

a pair of nuclei (of the same isotope) have almost identical nuclear Larmor frequencies,

such that a small chemical shift difference exists between the pair. Magnetic equivalence

is therefore a far more restrictive condition for singlet NMR.

1.4 Types of NMR spectra

The consequences of chemical and magnetic equivalence has interesting repercussions

for the outcome of the NMR spectrum. The size of the chemical inequivalence plays a

particular role in the frequency of the signal resonances and the relative signal intensities.

For a pair of spin-1/2 nuclei (i and j) there are three types of spectra (A2, AB and AX)

which can be classified by defining a parameter which quantifies the level of chemical

inequivalence. Traditionally, the coupling regime in solution NMR is defined by the spin

system parameters Jij and Ωij
∆. Jij is the in pair scalar coupling between spins i and

j, and Ωij
∆ is the difference in chemical shift between the two spins. A new parameter

tan(θij), which is dimensionless, is constructed from these two properties:

tan(θij) =
2πJij

Ωij
∆

. (1.15)

When θij → 0 the system is weakly coupled and when θij → π/2 the system is strongly

coupled. The coherent Hamiltonian for a 2-spin-1/2 system with a scalar coupling Jij
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Figure 1.10: Energy level diagram in the Zeeman product basis for 2-spin-1/2 nuclei
in a magnetic field. The spin state of the spin-1/2 pair is represented as |ψ1ψ2〉, where
|ψi〉 can be either |α〉 or |β〉. Single quantum (-1) transitions between spin states are

shown by the direction of the arrows.

and a chemical shift difference Ωij
∆, written in the Zeeman product basis, is shown in

equation 2.46 of chapter 2. The |αβ〉 and |βα〉 subspace yields the following polynomial:

ω2
0 + πJijω0 −

(3π2J2
ij + (Ωij

∆)2)

4
= 0, (1.16)

and hence provides the eigenvalues for the states |αβ〉 and |βα〉:

|αβ〉 :
1

2
(−πJij +

√
(2πJij)2 + (Ωij

∆)2), (1.17)

|βα〉 :
1

2
(−πJij −

√
(2πJij)2 + (Ωij

∆)2). (1.18)

A second polynomial is additionally tractable in the |αα〉 and |ββ〉 subspace:

ω2
0 − πJijω0 +

π2J2
ij − (Ωij

Σ)2

4
= 0. (1.19)

The eigenvalues for states |αα〉 and |ββ〉 are:

|αα〉 :
1

2
(πJij − Ωij

Σ), (1.20)

|ββ〉 :
1

2
(πJij + Ωij

Σ). (1.21)

Ωij
Σ is the sum of chemical shift terms, and is zero if the resonance offset is assumed to be



18 Chapter 1: Introduction

placed at the mean resonance frequency of the 2-spin-1/2 nuclei. The signal frequencies

are given by the difference in eigenvalues between spin states which are connected by

single quantum (-1) transitions, see figure 1.10. The signal frequencies are shown using

the notation S(ωij), where i and j represent either the spin state or -1 coherence for spins

i and j, see below. The signal frequencies of the four single quantum (-1) transitions are

given by:

S(ωα−) = πJij −
1

2

√
(2πJij)2 + (Ωij

∆)2, (1.22)

S(ω−α) = πJij +
1

2

√
(2πJij)2 + (Ωij

∆)2, (1.23)

S(ω−β) = −πJij +
1

2

√
(2πJij)2 + (Ωij

∆)2, (1.24)

S(ωβ−) = −πJij −
1

2

√
(2πJij)2 + (Ωij

∆)2. (1.25)

The signal intensities i(Sij) in the NMR spectrum after the application of a π/2 pulse

are:

i(Sα−) =
1

2
(1 + sin(θij)), (1.26)

i(S−α) =
1

2
(1− sin(θij)), (1.27)

i(S−β) =
1

2
(1 + sin(θij)), (1.28)

i(Sβ−) =
1

2
(1− sin(θij)). (1.29)

1.4.1 A2 spectra

For an A2 spin system the chemical shift difference Ωij
∆ approaches zero. This leaves

S(ω−α) and S(ωβ−) with a 0 Hz resonance offset, whilst S(ωα−) and S(ω−β) are situated

at ±Jij Hz, respectively. Furthermore, the parameter tan(θij) tends to∞ as θij tends to

π/2. Signal intensities in the resulting spectrum for a “ideal” A2 system are as follows:

i(Sα−)→ 1, (1.30)

i(S−α)→ 0, (1.31)

i(S−β)→ 1, (1.32)

i(Sβ−)→ 0, (1.33)



Types of NMR spectra 1.4 19

with sin(π/2) = 1. It therefore follows that the transition frequencies at ±Jij have no

overall signal intensity, with the transition frequencies at zero resonance offset having

the fullest possible signal intensity.

1.4.2 AB spectra

In the case of an AB spin system the chemical shift difference Ωij
∆ is on the order of the

scalar coupling Jij . Let’s consider the case of Ωij
∆ = 2πJij , for an unspecified value of

Ωij
∆ and Jij . The ratio

2πJij

Ωij∆
= 1. The resulting NMR signals appear at the following

frequencies:

S(ωα−)→ πJij(1−
√

2), (1.34)

S(ω−α)→ πJij(1 +
√

2), (1.35)

S(ω−β)→ −πJij(1 +
√

2), (1.36)

S(ωβ−)→ −πJij(1−
√

2), (1.37)

with the signal intensities i(S−α) and i(S−β) being
√

2+1
2
√

2
, and the signal intensities

i(Sα−) and i(Sβ−) being
√

2−1
2
√

2
.

1.4.3 AX spectra

AX spectra are far more common for spin-1/2 pairs in nature, due to the environments

of the molecules in which these pairs are situated. In this example, the scalar coupling

Jij will be finite but small in comparison with the chemical shift difference Ωij
∆. The

ratio
2πJij

Ωij∆
tends to zero, with tan(θij) and θij (small angle approximation) also tending

to zero. Assignment of signal frequencies and intensities is again relatively simple. The

resonance frequencies are given by equations 1.22-1.25, and the signal intensities are all

equal.
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Figure 1.11: AX spectrum for a pair of weakly coupled spin-1/2 nuclei. Jij = 15.55 Hz

and Ωij∆ = 160 Hz. The signal intensity of each peak is labelled as i(Sij). An effect
known as “roofing” is clearly visible in the NMR spectrum of this system.

1.5 Ensembles of spins

1.5.1 Spin density operator

Consider an ensemble of identical spin-1/2 nuclei in solution. Each nucleus has a spin

polarization vector which may point in any direction in space. If one were to take a

snapshot of the ensemble at any given point in time, the spin polarization vectors would

be pointing in all possible directions in a uniform manner. In section 1.2, I discussed

that the lowest energy orientation for a spin-1/2 nucleus in a magnetic field occurs when

the intrinsic magnetism of the nucleus is aligned with the static magnetic field. This

alignment is represented quantum mechanically by the state |α〉. The opposite case,

when the magnetic moment of the spin-1/2 nucleus is aligned anti-parallel to the static

magnetic field, is represented by the state |β〉. A quantum state is represented by the

numbers I and mI as the ket |I,mI〉, using Dirac notation. The |α〉 and |β〉 states are

therefore defined as:

|α〉 = |1
2
,
1

2
〉 , (1.38)

|β〉 = |1
2
,−1

2
〉 , (1.39)
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i.e. an isolated spin-1/2 nucleus has two eigenstates, |α〉 and |β〉, of angular momentum

along the z-axis. The Zeeman eigenstates obey the following equations:

Îz |α〉 = +
1

2
|α〉 , (1.40)

Îz |β〉 = −1

2
|β〉 , (1.41)

where Îz is the z-projection angular momentum operator, see chapter 2 for more details.

A spin in state |α〉 is said to be polarized along the z-axis, with eigenvalue +1
2 . All

of the spin polarization vectors in the nuclear ensemble can easily be described by a

superposition state. The quantum state of a spin |ψ〉 can be expanded according to

linear combination of ket vectors |ψi〉:

|ψ〉 =
∑
i

ci |ψi〉 , (1.42)

where ci is a complex coefficient, and |ψ〉 is a superposition of states |ψi〉. If ci is

time dependent, then it must also be a solution of the Schrödinger equation. In the

current case, it is convenient to write the spin state for an individual nucleus |ψ〉 as a

superposition of “spin-up” |α〉 and “spin-down” |β〉 states:

|ψ〉 = cα |α〉+ cβ |β〉 , (1.43)

where the superposition coefficients cα and cβ may again be complex, and quantify the

contribution of the |α〉 and |β〉 states to the superposition state |ψ〉. The values of the

superposition coefficients are restricted via normalization:

|cα|2 + |cβ|2 = 1. (1.44)

In this way, nuclear spins are not restricted simply to the |α〉 and |β〉 states.

The total spin polarization for the entire spin-1/2 ensemble is the sum over all

nuclear magnetic moments. This calculation is exceedingly difficult considering the

ensemble will have ∼1023 spins at 1 M concentration. The “spin density operator” is

therefore used to describe the dynamics of the whole nuclear ensemble, and can report

on the overall spin state for the “entire” nuclear ensemble [41]. To find the form of

the spin density operator, I begin by constructing a superposition state for a spin-1/2
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nucleus using the superposition coefficients:

|ψ〉 =

cα
cβ

 . (1.45)

The expectation value of the operator Q̂ acting on |ψ〉 is given by:

〈Q̂〉 = 〈ψ| Q̂ |ψ〉 . (1.46)

To have a well defined value of Q̂, |ψ〉 must be an eigenvalue of Q̂, i.e. Q̂ |ψ〉 = 〈Q̂〉 |ψ〉.
The expectation value 〈Q̂〉 may be expanded to reveal complex products of the coeffi-

cients cα and cβ. A matrix is constructed by the column vector |ψ〉 and the row vector

〈ψ| which contains the complex product of these coefficients:

|ψ〉〈ψ| =

cα
cβ

 · (cα, cβ) =

 cαc
∗
α cαc

∗
β

cβc
∗
α cβc

∗
β

 . (1.47)

The expectation value of the operator Q̂ is extracted as follows:

〈Q̂〉 = Tr
[
|ψ〉〈ψ| Q̂

]
, (1.48)

where Tr represents the trace operation. Now suppose that two identical spin-1/2 nuclei

are involved. The first spin is in state |ψ1〉 and the second spin is in state |ψ2〉. The

most likely outcome of measuring Q̂ is the sum of the two expectation values:

〈Q̂〉 = 〈ψ1| Q̂ |ψ1〉+ 〈ψ2| Q̂ |ψ2〉 . (1.49)

For a large number of spins (i.e. all the spins in the ensemble) this expression can again

be rewritten:

〈Q̂〉 = 〈ψ1| Q̂ |ψ1〉+ 〈ψ2| Q̂ |ψ2〉+ ...+ 〈ψN | Q̂ |ψN 〉 , (1.50)

and as such allows equation 1.48 to be rewritten as:

〈Q̂〉 = Tr
[
(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|+ ...+ |ψN 〉〈ψN |) Q̂

]
. (1.51)
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The operator ρ̂ is defined as:

ρ̂ = N−1(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|+ ...+ |ψN 〉〈ψN |), (1.52)

where N is the number of spins in the ensemble. The above expression of ρ̂ may also be

rewritten as:

ρ̂ = |ψ〉〈ψ|, (1.53)

where the overbar indicates an average over all the spins in the ensemble. For NMR

spectroscopy, the concept of the spin density operator ρ̂ is important for the macroscopic

observation of the operator Q̂ for an entire ensemble of spins:

N−1〈Q̂macro〉 ∼= Tr
[
ρ̂Q̂
]
, (1.54)

where N−1〈Q̂macro〉 is the average contribution of each ensemble member to the final

macroscopic result. This can be considered as the “average expectation value” for the

entire spin system. This result suggests that a macroscopic observable may be extracted

from the current state the spin system as a whole, and the observable. This dramatic

simplification therefore allows the entire spin ensemble to be described by just a single

operator ρ̂.

1.5.2 Populations and coherences

For an ensemble of non-interacting spin-1/2 particles, the matrix representation for the

spin density operator ρ̂ is as follows:

ρ̂ =

 ρα ρ+

ρ− ρβ

 =

 cαc∗α cαc∗β

cβc∗α cβc
∗
β

 , (1.55)

where the diagonal components ρα and ρα are the populations of states |α〉 and |β〉,
respectively, and the off-diagonal components ρ+ and ρ− are the coherences between

states |α〉 and |β〉, respectively. The populations of states |α〉 and |β〉 are defined as:

ρα = 〈α| ρ̂ |α〉 = cαc∗α, (1.56)

ρβ = 〈β| ρ̂ |β〉 = cβc
∗
β, (1.57)
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and the coherences between states |α〉 and |β〉 are defined as:

ρ+ = 〈α| ρ̂ |β〉 = cαc∗β, (1.58)

ρ− = 〈β| ρ̂ |α〉 = cβc∗α. (1.59)

The spin density operator ρ̂ may also be expressed as:

ρ̂ = ραÎ
α + ρ+Î

+ + ρ−Î− + ρβ Î
β, (1.60)

using the shift operators Î+ and Î−, and the projection operators Îα and Îβ. As the spin

state of a nucleus is normalized, the nuclear spin populations are mutually dependent:

cαc
∗
α + cβc

∗
β = 1. (1.61)

Equation 1.61 applies to all the nuclear spins in the ensemble, and hence the average

over the nuclear spin ensemble. The sum of the populations is therefore unity:

ρα + ρβ = 1. (1.62)

Populations are real, positive and in this case range from 0 to 1. Coherences are complex

numbers. The ρ+ and ρ− coherences are complex conjugates of one and other, i.e. a

conjugate pair:

ρ+ = cαc∗β =
[
cαc∗β

]∗
= ρ−. (1.63)

1.5.3 Thermal equilibrium

The principle of the spin density operator is to specify the state of an entire spin-1/2

ensemble with only a small number of parameters. These parameters can be used to

predict the evolution of the nuclear ensemble by applying the Schrödinger equation,

see equation 1.83. Consider an ensemble of spins which has been left to make thermal

contact with its surroundings for a considerable length of time. One would say that the

system is in thermal equilibrium with its surroundings. One can make an educated guess

as to the populations of the spin density operator ρ̂ at any point in time, assuming there

are no coherences between spin states.
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Consider the Hamiltonian for an ensemble with eigenstates |n〉, and energies ωn:

Ĥ |n〉 = ωn |n〉 . (1.64)

An eigenequation of this kind has already been shown in equations 1.40 and 1.41. For

the case of a spin-1/2 nucleus, the eigenstates correspond to:

ωα =
1

2
γ ~B0, (1.65)

ωβ = −1

2
γ ~B0. (1.66)

The populations should obey the Boltzmann distribution:

ρeqn =
exp

(
− ~ωn
κBT

)
∑

N exp
(
−~ωN
κBT

) , (1.67)

where ρeqn is the relative population of the state |n〉 at thermal equilibrium, one can

define the Boltzmann factor Bf :

Bf =
~γ ~B0

κBT
. (1.68)

The exponential population factors may therefore written as:

exp

(
− ~ωα
κBT

)
= exp

(
1

2
Bf

)
, (1.69)

exp

(
− ~ωβ
κBT

)
= exp

(
−1

2
Bf

)
. (1.70)

Each exponential may be extended as a power series considering that Bf � 1.

exp

(
1

2
Bf

)
→ 1 +

1

2
Bf , (1.71)

exp

(
−1

2
Bf

)
→ 1− 1

2
Bf . (1.72)

The denominator of equation 1.67 is ∼2. The populations of the α and β states are

therefore:

p(α) =
1

2
+

1

4
Bf , (1.73)

p(β) =
1

2
− 1

4
Bf , (1.74)
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and the thermal equilibrium spin density operator may be written as:

ρequil =
1̂

2
+

1

2
Bf Îz (1.75)

This situation is known as the high temperature approximation, and means that for

nuclei with γ > 0 the |α〉 state is slightly more populated than the |β〉 state at room

temperature. This means that there is only a very small polarization vector for the

total angular momentum of the nuclear spin-1/2 ensemble in the direction of the static

magnetic field. As mentioned in section 1.2.6, this population difference corresponds

to 1 spin in 15,625 for protons at 9.4 T. Hyperpolarization techniques (as described in

chapter 2, section 2.3) can boost the population difference between the eigenstates of

spin-1/2 ensembles.

1.6 Evolution of observables

1.6.1 Introduction to Quantum Mechanics

The wavefunction acts as a bridge between the classical and quantum worlds for large

spin systems, and clearly describes the properties and evolution for a single spin, or

even a small cluster of spins, but calculations remains troublesome for large numbers or

ensembles of spins. The wavefunction ψ(t) may depend on the variables position, mo-

mentum, time, and other parameters of the spin ensemble. It is possible to reformulate

ψ(t) such that it does not depend on a particular representation. Using Dirac notation,

each state of the spin ensemble is associated a vector |ψ(t)〉 called a ket. |ψ(t)〉 describes

the state of a spin within the ensemble. An important postulate of quantum mechanics

states that |ψ(t)〉 contains all the known information about the spin state. The bra

vector 〈ψ(t)| is the counterpart of the ket, the two are related by complex conjugation:

(ci |ψi(t)〉)∗ = c∗i 〈ψi(t)| , (1.76)

where ci is a scalar. The wavefunction ψ(t) is correspondingly normalized:

〈ψ(t)|ψ(t)〉 =

∫ +∞

−∞
dτψ∗(t)ψ(t) =

∫ +∞

−∞
dτ‖ψ(t)‖2 = 1, (1.77)
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where ‖ψ(t)‖2 is the probability distribution of ψ(t). Two separate wavefunctions |ψi(t)〉
and |ψj(t)〉 with different eigenvalues are orthonormal (orthogonal and normalized) if:

〈ψi(t)|ψj(t)〉 =

∫ +∞

−∞
dτψ∗i (t)ψj(t) = δij , (1.78)

where δij is the Kronecker delta:

δij =

 1 for i = j

0 for i 6= j

 . (1.79)

An operator ÔH is Hermitian if:

〈ψi(t)| ÔH |ψj(t)〉 = (〈ψj(t)| ÔH |ψi(t)〉)†, (1.80)

i.e. ÔH = Ô†H . A Hermitian (or self-adjoint) operator ÔH has defined kets |ψ(t)〉 for

which:

ÔH |ψ(t)〉 = aH |ψ(t)〉 , (1.81)

where aH is shown to be a real number by using the Hermicity condition from equa-

tion 1.80,

〈ψi(t)|ÔH |ψj(t)〉 = a∗H 〈ψi(t)|ψj(t)〉 = 〈ψi(t)|ψj(t)〉 aH , (1.82)

demonstrating that aH = a∗H .

1.6.2 Evolution in Hilbert space

The state space spanned by the kets |ψ(t)〉 is known as a Hilbert space. The time

evolution of a state |ψ(t)〉 in Hilbert space is controlled by the equation of motion,

known as the Schrödinger equation:

d

dt
|ψ(t)〉 = −iĤ(t) |ψ(t)〉 , (1.83)

where i is the imaginary number (i =
√
−1), Ĥ is the Hamiltonian, and the “hat”

signifies that the Hamiltonian is an operator. The properties of the Hamiltonian dictate

the time evolution of the spin state |ψ(t)〉. The initially known state |ψ(t)〉 is propagated
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forward in time in the following way:

|ψ(tb)〉 = Û(tb, ta) |ψ(ta)〉 , (1.84)

where time propagator Û(tb, ta) is given by:

Û(tb, ta) = exp[−i
∫ tb

ta

dt′Ĥ(t′)]. (1.85)

Û(t, 0) is the exact solution to a time-independent Schrödinger equation:

i
d

dt
e−iĤt |ψ(0)〉 = Ĥe−iĤt |ψ(0)〉 . (1.86)

For details of time dependent Hamiltonian propagation, see appendix B. The time prop-

agator allows for the deterministic prediction, or target, of a state at some point in the

future, given a set of initial conditions:

lim
t→0

Û(t, 0) |ψ(0)〉 → |ψ(0)〉 . (1.87)

The time propagator Û(tb, ta) is also a unitary operator, i.e.:

Û(ta, ta) = 1̂, (1.88)

Û−1(tb, ta) = Û(ta, tb), (1.89)

Û(tc, ta) = Û(tc, tb)Û(tb, ta), (1.90)

where ta < tb < tc. The time evolution of an observable 〈Q(t)〉, on the other hand, is

predictable by the use of a time propagator sandwich:

〈Q(tb)〉 = Û(tb, ta)〈Q(ta)〉Û(tb, ta)
† = 〈ψ(ta)| Û(tb, ta)Q(ta)Û(tb, ta)

† |ψ(ta)〉 , (1.91)

where Û(tb, ta)
† is the Hermitian adjoint of the time propagator Û(tb, ta). The operator

Û(tb, ta) acts directly on a constantly evolving state |ψ(t)〉, and hence the expectation

value 〈Q(t)〉 evolves simultaneously.
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1.6.3 Liouville space

In Hilbert space, quantum states represented by basis kets are written using column

vectors, with the operators which act upon the quantum states written as matrices.

However, the transformation between two operators Â and B̂ takes places in a higher-

dimensional space, called Liouville space, where the operators are represented as column

vectors. This is an n2-dimensional space, where n2 is the number of elements in the

predefined operator basis. Mapping Hilbert space to Liouville space can be shown by

an example using the operator Âij , which in Hilbert space is written as a n× n matrix:

Âij =


〈1| Â |1〉 〈1| Â |2〉 · · · 〈1| Â |N〉
〈2| Â |1〉 〈2| Â |2〉 · · · 〈2| Â |N〉

...
...

...

〈N | Â |1〉 〈N | Â |2〉 · · · 〈N | Â |N〉


. (1.92)

In Liouville space, the operator is represented as a 1× n2 column vector or list:

Âij =



〈1| Â |1〉
〈1| Â |2〉

...

〈1| Â |N〉
〈2| Â |1〉

...

〈N | Â |N〉



→



Â1

Â2

...

ÂN

ÂN+1

...

ÂN2



, (1.93)

which uses the same set of indices i and j as in the Hilbert space representation of the

operator Âij . For convenience, the elements of Âij are relabelled in such a way that: Â1

= 〈1| Â |1〉 etc. It is therefore clear that there are n2 components in the Liouville space

representation of the operator Âij , and that the Liouvillian operator basis also has n2

components.
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1.6.4 Superoperators

Working with the spin density operator requires double sided multiplications, and most

notably commutation operations. A repercussion, however, is the extensive and compli-

cated expressions that ultimately describe any intricate NMR experiment, and which are

occasionally computationally demanding. The use of superoperators greatly simplifies

these efforts [51]. Superoperators are generally sparse, and block-diagonal substruc-

tures can be often used for calculations of reduced computational size. The operands in

Liouville space are operators, and these are transformed or acted upon by superopera-

tors [51]. For example, the operator Â is acted upon by a superoperator
ˆ̂
Qij and “maps”

the operator Â onto another operator B̂, in a similar manner to how the Schrödinger

equation considers quantum state to quantum state transformations in Hilbert space.

The superoperator
ˆ̂
Qij maps the operator Â onto the operator B̂ in the following way:

ˆ̂
QijÂ→ B̂. (1.94)

Operators and superoperators are distinguished by the use of a single hatˆfor operators

and a double hat ˆ̂ for superoperators. The salient point from section 1.6.3 is that a n

× n matrix representation of an operator in Hilbert space is represented as a 1 × n2

column vector in Liouville space. This principle can be used to deduce via inspection

that a superoperator in Liouville space behaves in the following way:


〈1| ˆ̂

Q |1〉 〈1| ˆ̂
Q |2〉 · · · 〈1| ˆ̂

Q |N〉
〈2| ˆ̂

Q |1〉 〈2| ˆ̂
Q |2〉 · · · 〈2| ˆ̂

Q |N2〉
...

...
...

〈N2| ˆ̂
Q |1〉 〈N2| ˆ̂

Q |2〉 · · · 〈N2| ˆ̂
Q |N2〉





Â1

Â2

...

ÂN

ÂN+1

...

ÂN2



=



B̂1

B̂2

...

B̂N

B̂N+1

...

B̂N2



. (1.95)

The superoperator
ˆ̂
Qij is represented as a n2 × n2 matrix in Liouville space, with n4

elements. The indices i and j of
ˆ̂
Qij both extend from 1 to n2. It should be noted

that the use of the word super has no connection to other areas of physics such as
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supersymmetry but is instead employed to distinguish this higher class of mathematical

object from the state operators which are acted upon.

1.6.5 Evolution in Liouville space

For tracking the evolution of a large group of spins, the spin density operator is the

weapon of choice. The state of the entire nuclear ensemble may be represented by the

state of a single spin, which simplifies enormously the task at hand. An alternative

approach is to propagate a state wavefunction in Hilbert space, construct the operator

|ψ〉〈ψ|, and take the ensemble average |ψ〉〈ψ|. The spin density operator is propagated

forward in time in Liouville space. One of the defining properties of Liouville space, is

the representation of operators as vectors, see section 1.6.3. The spin density operator

ρ̂, previously defined in Hilbert space by using equation 1.55, has the following vector

representation in Liouville space:

ρ̂ =


ρα

ρ+

ρ−

ρβ


. (1.96)

ρ̂ has been flattened from a n × n matrix in Hilbert space into a state operator with

dimension 1× n2 in Liouville space. The time evolution of ρ̂ in Liouville space is governed

by a super-time propagator
ˆ̂
U(tb, ta), which acts on the operator vector representation

of ρ̂ in the following way:

ρ̂(tb) =
ˆ̂
U(tb, ta)ρ̂(ta) = Û(tb, ta)ρ̂(ta)Û(tb, ta)

†, (1.97)

where the super-time propagator has the following form:

ˆ̂
U(tb, ta) = exp[−i

∫ tb

ta

dt′ ˆ̂H(t′)]. (1.98)

In Liouville space,
ˆ̂
U(tb, ta) has a dimension n2 × n2, i.e. the square of the operator

basis dimension n2.
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1.6.6 Evolution with relaxation

A magnetic nucleus attached to a molecule will evolve under time dependent and inde-

pendent dynamics. Time dependent dynamics may be caused by the rotational mod-

ulation of the molecule tumbling in solution or by fluctuating interactions with other

magnetic nuclei. This phenomenon occurs for each spin and will differ slightly depending

on the location of the spins in the molecule. The rate of relaxation for each spin will

therefore have a likewise spatial dependence. Over time an effect known as relaxation

occurs, and nuclear spin order for an ensemble of spins is gradually lost. Relaxation is a

one-way process, and returns perturbed nuclear spin order towards thermal equilibrium.

The time evolution of an ensemble of spins, where the overall spin state is rep-

resented by the spin density operator ρ̂(t), is governed by the Liouville-von Neumann

equation:
d

dt
ρ̂(t) =

ˆ̂
Lρ̂(t), (1.99)

where
ˆ̂
L is the Liouvillian superoperator, and is expressed as:

ˆ̂
L = −i ˆ̂

H̃0 +
ˆ̂
Γ, (1.100)

where ∼ identifies the interaction frame of Ĥ0. The Hamiltonian Ĥ is split into a uniform,

coherent part Ĥ0 and an incoherent, fluctuating term Ĥ1 = Ĥ - Ĥ0. The coherent

Hamiltonian Ĥ0 is responsible for the spin system evolution without relaxation. The

spin density operator ρ̂ has the following time dependence on the coherent Hamiltonian

commutation superoperator
ˆ̂
H̃0:

d

dt
ρ̂(t) = −i ˆ̂

H̃0[ρ̂(t)], (1.101)

with
ˆ̂
H̃0 acting on ρ̂(t) expressed by using the commutator relations:

ˆ̂
H̃0[ρ̂(t)] = [ ˆ̃H0, ρ̂(t)] = ˆ̃H0 ⊗ ρ̂(t)− ρ̂(t)⊗ ˆ̃H0, (1.102)

i.e. the commutation superoperator generates the commutator of the two operators, with

⊗ indicating an outer-product. This is a primary example of commutation superoperator

usage, and the results of this formalism are widely used across the field of NMR [51, 52].
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The Liouville-von Neumann equation includes an additional term
ˆ̂
Γ attributed

to the incoherent relaxation of the spin ensemble towards thermal equilibrium after an

rf-perturbation of the nuclear spin populations.
ˆ̂
Γ is the relaxation superoperator, and

is written as follows:

ˆ̂
Γ = −

∫ 0

−∞
dτ

ˆ̂
H1(t+ τ)

ˆ̂
H1(t), (1.103)

where
ˆ̂
H1(t) is the time dependent, perturbing part of the nuclear spin Hamiltonian.

Equation 1.103 is derived, and only valid, in the extreme narrowing regime: 〈Ĥ2
1 〉1/2τC �

1, where 〈Ĥ2
1 〉1/2 is the root-mean-square fluctuation of the perturbing Hamiltonian Ĥ1,

and τC is the correlation time for the motions in the environment surrounding the spins,

i.e. the lattice. Inside the relaxation integral lies a double commutation superoperator,

consisting of a commutation superoperator inside a commutation superoperator, which

acts on ρ̂ to give:

ˆ̂
H1(t+ τ)

ˆ̂
H1(t)ρ̂(t) =

ˆ̂
H1(t+ τ)[

ˆ̂
H1(t)[ρ̂(t)]]. (1.104)

Using the commutator relations, the double commutation relaxation superoperator
ˆ̂
Γ

acting on the spin density operator ρ̂ may be expressed as:

ˆ̂
H1(t+ τ)[

ˆ̂
H1(t)[ρ̂(t)]] = [Ĥ1(t+ τ), [Ĥ1(t), ρ̂(t)]], (1.105)

with the continued expansion of
ˆ̂
Γ described by equation 1.102. The double commutation

relaxation superoperator is widely used in this thesis to describe perturbative relaxation

processes for an ensemble of spins diluted in a “lattice”. For longitudinal and singlet

relaxation, intermolecular interactions are ignored and Ĥ1 is associated with interactions

between the spins and the lattice.

1.7 Tools for NMR relaxation

1.7.1 Rotations

Rotations are useful tools in NMR, and allow a pictorial grasp of a few fundamental

concepts. For example, the application of a 90◦ pulse about the x-axis of a right-

handed coordinate system can easily be visualized by the rotation of the spin polarization
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vector into the −y-axis. More complex examples of when rotations are used in NMR

include the rotation of an object between frames of reference, such as the rotating frame

transformation (see appendix B). Rotations are primarily defined in terms of exponential

operators, where the exponent itself is an operator. An exponential operator is defined

through an exponential series expansion:

eQ̂ = 1 + Q̂+
Q̂2

2!
+ ... (1.106)

If operators P̂ and Q̂ commute, then the following relationship also holds:

eP̂ eQ̂ = e(P̂+Q̂). (1.107)

Complex exponentials of the angular momentum operators are rotation operators. Con-

sider an xyz Cartesian axis system, the rotation operators around these axes are given

by:

R̂x(θ) = e−iθÎx , (1.108)

R̂y(θ) = e−iθÎy , (1.109)

R̂z(θ) = e−iθÎz , (1.110)

where the subscript denotes the axis of rotation through an angle θ. In general, the

operators Îx, Îy and Îz do not commute. However, a rotation operator commutes with

the angular momentum operator about the same axis:

R̂x(θ)Îx = ÎxR̂x(θ), (1.111)

which implies the following sandwich relation:

R̂x(θ)ÎxR̂x(−θ) = Îx, (1.112)

where R̂x(−θ) is the reverse rotation through an angle θ about the x-axis, i.e. R̂x(−θ)R̂x(θ) =

1̂. Since the angular momentum operators are Hermitian, the rotation operators are uni-

tary:

R̂x(θ)† = R̂x(θ)−1 = R̂x(−θ), (1.113)
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and therefore equation 1.112 may be rewritten as:

R̂x(θ)ÎxR̂
−1
x (θ) = Îx. (1.114)

When a rotation operator is applied to the angular momentum operator about a different

axis, the sandwich relationship reads:

R̂z(θ)ÎxR̂
−1
z (θ) = Îx cos(θ) + Îy sin(θ). (1.115)

This relationship can be proved as follows. Explicitly write out R̂x(θ)ÎxR̂
−1
x (θ):

= e−iφÎz ÎxeiφÎz (1.116)

=

(
1− iθÎz −

θ2

2
Î2
z + ...

)
Îx

(
1 + iθÎz −

θ2

2
Î2
z + ...

)
(1.117)

= Îx − iθ[Îz, Îx] +−θ
2

2
[Îz, [Îz, Îx]] +

iθ3

6
[Îz, [Îz, [Îz, Îx]]] + ... (1.118)

This appears to be quite a formidable equation. Luckily, the angular momentum oper-

ators possess cyclic commutivity, i.e. [Îx, Îy] = iεxyz Îz, where εxyz = +1 if the permuta-

tion order xyz is maintained. The above equation is therefore simplified to:

R̂z(θ)ÎxR̂
−1
z (θ) = Îx + θÎy −

θ2

2
Îx −

θ3

6
Îy + ... (1.119)

A parallel series of sines and cosines is cleanly produced:

R̂z(θ)ÎxR̂
−1
z (θ) = Îx

(
1− θ2

2
+ ...

)
+ Îy

(
θ − θ3

6
+ ...

)
, (1.120)

where the cos(θ) and sin(θ) series are identified as:

cos(θ) =

(
1− θ2

2
+ ...

)
, (1.121)

sin(θ) =

(
θ − θ3

6
+ ...

)
, (1.122)

resulting in:

R̂z(θ)ÎxR̂
−1
z (θ) = Îx cos(θ) + Îy sin(θ). (1.123)
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The sandwich relation described in equation 1.123 also follows a cyclic commutation

rule, and implies a second sandwich relation:

R̂z(θ)R̂x(φ)R̂z(−θ) = e−iφ(Îx cos(θ)+Îy sin(θ)). (1.124)

1.7.2 Euler angles

The orientation of an object in three-dimensional (3D) space can be specified by three

finite, arbitrary rotations around the axes of an orthogonal coordinate system {x, y, z}.
NMR spectroscopy makes use of the Euler angle conventions, which become particu-

larly useful when discussing magnetic interactions and relaxation theory (see chapter

3). Throughout this thesis, the Euler angle convention used is zyz. This convention

indicates that the orientation of an object in 3D space is given by the product of three

general rotations with respect to a single axis frame {x, y, z}; firstly a rotation around

the z-axis, followed by a rotation around the y-axis, followed by a final rotation around

the z-axis again:

R̂(Ω) = R̂(α, β, γ) = R̂z(α)R̂y(β)R̂z(γ), (1.125)

where Ω provides a quick substitution for α, β, γ. The set of Euler angles presented in

equation 1.125 allow the transformation of an object in the {x, y, z} frame to a second

frame, with orthogonal {X,Y, Z} axes. One can consider this to be the rotation of a

frame coincident with the starting {x, y, z} axis system. The first rotation reorients the

object by an angle γ about the z-axis of the {x, y, z} axis system, taking the coincident

frame into an axis system described by the axes {x′, y′, z′}. The second rotation reorients

the object by an angle β about the y-axis of the original {x, y, z} frame. The frame

{x′, y′, z′} is rotated into the frame {x′′, y′′, z′′}. The final rotation reorients the object by

an angle α about the z-axis of the {x, y, z} frame, and hence the {x, y, z} and {X,Y, Z}
frames are now coincident. As is the convention with matrix multiplication, the right-

most operator is applied first. A second way to think of how to apply the Euler angles

is to give the object being reoriented an axis system {x, y, z} of its own, and then apply

the rotations in the opposite order, with the first rotation being R̂z(α) around the z-

axis of the {x, y, z} axis system. Apply the second rotation R̂y(β) around the new

y-axis of the objects own coordinate system y′, therefore the second rotation is R̂y′(β).

Consequently, the final rotation R̂z(γ) reorients the object about the newest z-axis of
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the objects coordinate system z′′, with the final rotation being R̂z′′(α). The two sets of

Euler angles are equivalent:

R̂z(α)R̂y(β)R̂z(γ) = R̂′′z(γ)R̂′y(β)R̂z(α). (1.126)

The Euler angle rotation matrices Ri(θ), the matrix equivalent of the rotation operator

R̂i(θ), for a rotation in 3D space (zyz convention) are expressed as follows:

Rz(γ) =


cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1

 , (1.127)

Ry(β) =


cos(β) 0 − sin(β)

0 1 0

sin(β) 0 cos(β)

 , (1.128)

Rz(α) =


cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

 . (1.129)

The rotation matrix Rz(γ) is verified by taking the unit vectors {êx, êy, êz} for the

{x, y, z} frame, which are coincident with the axis system, and performing the operation

Rz(γ)êi, where i = x, y, z. The rotated unit vector points along the appropriate axis of

the rotated frame. Rotation matrices Ry(β) and Rz(α) are verified in the same manner.

The rotation matrices Rz(γ), Ry(β) and Rz(α) lead to the following accumulative ro-

tation of an object between two axis systems, given by the Euler angle rotation matrix

R(α, β, γ):

R(α, β, γ) = (1.130) cos(α) cos(β) cos(γ)− sin(α) sin(γ) − sin(α) cos(γ)− cos(α) cos(β) sin(γ) cos(α) sin(β)

sin(α) cos(β) cos(γ) + cos(α) sin(γ) cos(α) cos(γ)− sin(α) cos(β) sin(γ) sin(α) sin(β)

− sin(β) cos(γ) sin(β) sin(γ) cos(β)

.
Often one would like to rotate a Cartesian tensor, which describes a physical quantity,

expressed in a frame {x, y, z} to a frame {X,Y, Z}. The appropriate transformation for
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Figure 1.12: The rotation operator R̂(Ω) specified by the Euler angles {α, β, γ} rotates
an object from a frame with axes {x, y, z} to a frame with axes {X,Y, Z} in which the

Z axis is defined to be parallel with the static magnetic field ~B.

a tensor A under these circumstances is:

A{X,Y, Z} = R(α, β, γ)A{x, y, z}R−1(α, β, γ), (1.131)

where R−1(α, β, γ) specifies the reverse rotation R(−α,−β,−γ). Two successive Euler

rotations, R(Ω1) and R(Ω2), are also accumulative: R(Ω1,Ω2) = R(Ω2)R(Ω1).

1.7.3 Wigner rotation matrices

The Euler angles are a useful tool for defining the relative orientations of orthogonal

axis systems, such as those defined by the laboratory frame and the molecular frame,

see figure 1.12. Using equations 1.108-1.110, the rotation operator can be rewritten

as [53]:

R̂(α, β, γ) = e−iαÎze−iβÎye−iγÎz . (1.132)

The Wigner function Dl
m′m is the rotation operator R̂(α, β, γ) in the eigenket basis of

the Hamiltonian, with matrix elements:

〈lm′| R̂(α, β, γ) |lm〉 = Dl
m′m(α, β, γ). (1.133)

The Wigner function Dl
m′m(α, β, γ) is of 2l + 1 dimension, where l is the rank of

the Wigner rotation matrix. The indices m and m′ indicate the components of the

Wigner function Dl
m′m(α, β, γ). The Wigner function is a matrix of complex num-

bers, and complex exponentials which define the reorientation of an object in 3D space.
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(Dl
m′m(α, β, γ))† is the adjoint of Dl

m′m(α, β, γ) and hence the matrix elements are re-

lated by:

〈lm′| R̂†(α, β, γ) |lm〉 = (〈lm′| R̂(α, β, γ) |lm〉)−1 = (Dl
m′m(α, β, γ))−1. (1.134)

Furthermore, as the rotation operators R̂(α, β, γ) are unitary:

(Dl
m′m(α, β, γ))−1 = Dl

m′m(−α,−β,−γ), (1.135)

the Wigner rotation matrices are also unitary:

∑
m′

= (Dl
m′n(α, β, γ))−1Dl

m′m(α, β, γ) = δmn. (1.136)

As the basis vectors are given by the angular momentum eigenfunctions Îx, Îy and Îz,

equation 1.133 becomes:

Dl
m′m(α, β, γ) = 〈lm′| e−iγÎze−iβÎye−iαÎz |lm〉 , (1.137)

= e−i(m
′α+mβ) 〈lm′| e−iβÎy |lm〉 , (1.138)

= e−i(m
′α+mβ)dlmm′(β), (1.139)

where dlm′m(β) is the reduced Wigner matrix element. For the rotations of rank-2

spherical tensors, the reduced Wigner matrix becomes large and complicated. A key

element of this matrix is d2
00:

d2
00 =

3 cos2(β)− 1

2
. (1.140)

This component vanishes at the magic angle tan−1(
√

2), and is useful property for the

technique of singlet-filtration [54–56].

1.7.4 Spherical tensors

So far during this chapter I have discussed NMR using a Cartesian operator basis, which

provides a simple way of describing nuclear spin interactions. The NMR Hamiltonian

can be written using either Cartesian operators or spherical tensor operators [57]. The

operator basis is largely a matter of choice but there will likely be situations in which a

certain operator basis is more convenient to use than another. For example, the spherical
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tensor operator basis has specific symmetry properties which prove more convenient for

3D rotations in space, such as the rank of the spherical tensor operator being an invariant

property under a rotation, compared with using a Cartesian operator basis.

In general, an NMR Hamiltonian is expressed in the following way:

Ĥlocal = −γÎ ·Alocal · K̂, (1.141)

where Alocal is a second-rank Cartesian tensor describing the interaction strength and

orientational dependence of a local interaction A. The vector operator ~K depends on

the type of spin interaction. Expanding the scalar product allows one to restructure the

Hamiltonian:

Ĥlocal =
∑
i,j

Aij ÎiK̂j , (1.142)

with −γAlocal → Aij . Collecting the vector operators Îi and K̂j simplifies the Hamilto-

nian further:

Ĥlocal =
∑
i,j

Aij T̂ij , (1.143)

with Îi ⊗ K̂j → T̂ij . T̂ is a second rank Cartesian tensor operator with nine elements

Tij that can be decomposed into:

T̂ij = δij T̂
(0)
ij + T̂

(1)
ij + T̂

(2)
ij , (1.144)

or more specifically:

Îi ⊗ K̂j = δij
Î · K̂

3
+
ÎiK̂j − ÎjK̂i

2
+

(
ÎiK̂j + ÎjK̂i

2
− δij

Î · K̂
3

)
. (1.145)

The index in brackets represents the rank of the spherical tensor operator. δij T̂
(0)
ij is

a scalar and is hence invariant under rotations. The three components of T̂
(1)
ij form a

vector, and transform between themselves under rotations. The five (6-1) components

of T̂
(2)
ij form a linear superposition under a rotation of a single component of T̂

(2)
ij .

The matrix representation of these objects is discussed in terms of the chemical shift

interaction in section 1.8.3. The number of components for each rank matches the

multiplicities of an object with angular momentum l=0, l=1 and l=2, respectively.

Therefore, we have successfully decomposed a Cartesian tensor operator into spherical
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tensors operators.

Earlier I discussed the consequences of degenerate nuclear spin energy levels in

the presence of a magnetic field. For an angular momentum quantum number I, the

spin state is 2I + 1 degenerate. Spherical tensor operators possess a similar property. A

spherical tensor operator of rank l is formally a set of 2l + 1 objects. These objects all

possess the following property: if a single object in the 2l + 1 set is arbitrarily rotated

in 3D space about any axis and any angle, the result is a linear superposition of the

same 2l + 1 objects. Therefore, to rewrite equation 1.143 in terms of spherical tensor

operators, one must use the definition of the transformation properties for a spherical

tensor operator, of rank l and component m, under a rotation defined by the axes and

angles of R̂(Ω). A component of the spherical tensor operator T̂lm must transform under

a rotation, in the axis system defining T̂lm, according to:

ˆ̂
R(α, β, γ)T̂lm = R̂(α, β, γ)T̂lmR̂

−1(α, β, γ), (1.146)

=

l∑
m′=−l

T̂lm′D
l
m′m(α, β, γ), (1.147)

where Dl
m′m(α, β, γ) is the Wigner rotation matrix for the rotation R̂(α, β, γ) and is

defined in section 1.7.3. The rotation superoperator
ˆ̂
R(α, β, γ) is constructed from the

unitary rotation operator R̂(α, β, γ) as follows:

ˆ̂
R(α, β, γ) = R̂(α, β, γ)⊗ R̂(α, β, γ)−1. (1.148)

As expected, the result of this general 3D rotation is a linear superposition of a 2l + 1

set of operators, with the value of l conserved. Spherical tensor components Alm also

have a similar rotational property:

R̂(α, β, γ)Alm =

l∑
m′=−l

Alm′D
l
m′m(α, β, γ). (1.149)

The representation of the Hamiltonian operator in NMR is usually of the form:

ĤΛ =
∑
l

l∑
m=−l

(−1)mAΛ
lm(t)T̂Λ

l−m, (1.150)
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for an interaction λ with AΛ
lm(t) and T̂Λ

l−m defined in equations 1.149 and 1.146, respec-

tively. This definition of the NMR Hamiltonian, which uses spherical tensor operators,

is exploited in chapter 3 during a discussion of intra-methyl group interactions.

A nice aftereffect of equation 1.146 is the mathematical foundation for the laws of

commutation between the components of the angular momentum Îλ and the components

of the spherical tensor operator T̂lm. Consider the infinitesimal rotation operator which

rotates an object through an infinitesimal angle α about the z-axis: R̂α = 1̂ - iαÎz,

where Îz is Hermitian. This can be demonstrated by transforming the operator Îx from

a frame with axes {x, y, z} to a frame with axes {X,Y, Z} as follows:

ÎX = R̂αÎxR̂
−1
α , (1.151)

= (1̂− iαÎz)Îx(1̂ + iαÎz), (1.152)

= Îx + iα(Îz Îx − ÎxÎz). (1.153)

By using know commutation relations, equation 1.153 becomes:

ÎX = Îx + iα[Îz, Îx] = Îx − αÎy. (1.154)

The commutation relation for angular momentum and spherical tensor operators is de-

rived by using equation 1.133:

Dl
m′m = 〈lm′| 1̂− iαÎλ |lm〉 = δm′m − iα 〈lm′| Îλ |lm〉 . (1.155)

With this rotation and equation 1.146 one finds:

(1̂− iαÎλ)T̂lm(1̂ + iαÎλ) =
∑
m′

T̂lm′D
l
m′m, (1.156)

which simplifies to:

ÎλT̂lm − T̂lmÎλ =
∑
m′

T̂lm′ 〈lm′| Îλ |lm〉 . (1.157)

For example, substituting λ for ± yields [53]:

[Î±, T̂lm] = [(l ±m+ 1)(l ∓m)]1/2T̂lm±1, (1.158)
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using the relation:

〈lm± 1|Î±|lm〉 = [(l ±m+ 1)(l ∓m)]1/2. (1.159)

In the case of λ = z:

[Îz, T̂lm] = mT̂lm. (1.160)

In chapter 2 similar properties are used to show that the scalar operator T̂
(0)
ij = T̂ ij00 is a

constant of the motion for the Liouville-von Neumann equation, see equation 1.99.

1.8 NMR interactions

In general, the nuclear spin Hamiltonian is the summation of a number of individual

Hamiltonians which each represent an interaction in NMR:

Ĥ = ĤZ + ĤDD + ĤQ + ĤCS + Ĥother + ĤRF , (1.161)

where ĤZ represents the Zeeman Hamiltonian (the Zeeman effect has previously been

discussed in section 1.2, and the Zeeman Hamiltonian is discussed in chapter 2, sec-

tion 2.9). ĤDD represents the dipole-dipole Hamiltonian defining the direct magnetic

interaction between two nuclei. ĤQ describes the quadrupole interaction for spins with

an angular momentum quantum number I >1/2. ĤCS is the chemical shift Hamiltonian

and governs the orientationally dependent interaction between a nuclear spin and the

immediate electronic environment. Other Hamiltonians include the scalar (J) coupling

Hamiltonian ĤJ , and the spin-rotation Hamiltonian ĤSR. These additional interactions,

including interactions with externally applied radiofrequency fields ĤRF , are not covered

in this thesis, and the details of which are found in references [41, 45, 47, 50, 58–61]. In

this section I will discuss the dipole-dipole, quadrupole and chemical shift Hamiltonians,

and the interaction each Hamiltonian describes.

1.8.1 Dipole-dipole interaction

Most nuclear spins are inherently magnetic, and possess an intrinsic magnetic moment.

Magnetic nuclei also generate a dipole field, see figure 1.13. A two-dimensional projection

of the dipole field can easily be observed by the traditional “bar magnet and iron filings”

experiment. The direction of the magnetic field vector (along a magnetic field loop)
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i
j

Figure 1.13: Schematic depicting the direct dipole-dipole interaction. The magnetic
field generated by spin i is experienced at the site of spin j, i.e. the local field emanating
from one magnetic nucleus influences any neighbouring nuclei, and vice versa. The
strength of the interaction depends on the distance and relative orientation of the

magnetic moments. The loops represent the magnetic field lines.

depends on the orientation of the magnetic moment. Suppose that a magnetic nucleus

i is brought into the close proximity of a second nucleus j. Here close proximity is

associated with the molecular length scale, which is on the order of Angstroms. As each

magnetic nucleus naturally generates its own dipole field, the two fields can mutually

interact through space, i.e. the first spin experiences the field from the second spin, and

vice versa. The full form of the dipole-dipole interaction between spins i and j is given

by the dipole-dipole Hamiltonian Ĥ ij
DD:

Ĥ ij
DD = bij(3(Îi · êij)(Îj · êij)− Îi · Îj), (1.162)

where bij is the dipole-dipole coupling constant between spins i and j and is expressed

as:

bij = −µ0~2γiγj
4πr3

ij

, (1.163)

where µ0 is the magnetic constant: µ0 = 4π × 10−7 H m−1, γi and γj are the gyromag-

netic ratios of spins i and j, respectively, rij is the internuclear separation between the

two spins, and êij is a unit vector parallel to the internuclear vector connecting the two

nuclei [50]. The dipole-dipole coupling constant bij determines the size of the dipole-

dipole interaction. Dipole-dipole couplings can either be homonuclear (same isotopic

type) or heteronuclear (different isotopic type). Homonuclear dipole-dipole couplings

always have a negative sign. It should be noted that bij is a constant for a fixed inter-

nuclear separation rij between spins i and j, and is a function of the third power of the

internuclear separation. bij is not orientationally dependent, i.e. it is a constant for any

relative orientation of the two magnetic nuclei. However, the dipole-dipole Hamiltonian
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ĤDD is orientationally dependent due to the scalar product of the unit vector êij with

the spin angular momentum Îi. The direction in which the unit vector êij points, relative

to a fixed frame of reference, can change due to e.g. molecular tumbling in solution. The

negative sign of the dipole-dipole Hamiltonian ĤDD indicates that the overall energy of

the interaction is minimized when both nuclei point in the same direction, i.e. along the

internuclear vector. This interaction can be extended to a cluster of magnetic nuclei,

where each spin pair has a mutual dipole-dipole interaction. The cluster dipole-dipole

Hamiltonian in this case is given by:

Ĥcluster
DD =

∑
i

i−1∑
j

Ĥ ij
DD, (1.164)

which considers all pairs of spins ij with i 6= j in the cluster. At high magnetic field, the

cluster dipole-dipole Hamiltonian containing the double summation can be simplified

depending on whether spins i and j are of the same isotopic species. This process is

known as the secular approximation:

• The secular approximation concerns the general case where a nuclear spin Hamil-

tonian is comprised of two separate sub-Hamiltonians ĤA and ĤB, where ĤA �
ĤB. Since ĤA and ĤB are assumed to be hermitian, if ĤB does not commute

with ĤA then the matrix representation of ĤB in the orthonormal eigenbasis of

ĤA will consist of finite elements at all positions. The secular approximation

etches a block-diagonal structure from this matrix, and disregards all connecting

components, generating a new matrix Ĥ ′B. The block-diagonal subspaces denote

degenerate or near-degenerate eigenvalues of ĤA. The ignored off-diagonal com-

ponents include those with amplitudes which are significantly smaller than the

difference in the connected terms.

In the case of a homonuclear spin pair (same isotopic species), the secularized

dipole-dipole Hamiltonian is written as:

Ĥ ij
DD(Θij) = dij(Θij)(3Îiz · Îjz − Îi · Îj), (1.165)

where dij is the secular dipole-dipole coupling, and is given by:

dij(Θij) = bij
3 cos2(Θij)− 1

2
, (1.166)
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where Θij is the angle between the internuclear vector connecting spins i and j, and the

static magnetic field ~B0:

cos(Θij) = êij · êz. (1.167)

The secularized dipole-dipole coupling dij(Θij) differs from the non-secularized dipole-

dipole coupling bij by its orientational dependence. In the case of a heteronuclear spin

pair (different isotopic species), the secular part of the dipole-dipole Hamiltonian is

written as:

Ĥ ij
DD(Θij) = 2dij Îiz · Îjz. (1.168)

The homonuclear secular dipole-dipole coupling is equal to zero when Θij , the angle

between the internuclear vector and the static magnetic field, satisfies:

Θij = tan−1(
√

2). (1.169)

This solution is referred to as the “magic angle” and has important consequences in

solid-state NMR. Spinning samples at frequencies in excess of ∼1 kHz at the magic

angle relative to the static magnetic field significantly improves spectral resolution as

the resonance lines are narrowed upon the removal of dipole-dipole (and other second

rank) interactions [50].

Liquid state NMR on the other hand is typically performed in isotropic solution.

This is of important consequence for the acquired NMR spectra. In isotropic liquids,

the secular parts of the intramolecular dipole-dipole coupling average to zero, to good

approximation. Consider the following integral:

∫ ∞
0

dΘijbij sin(Θij)

(
3 cos2(Θij)− 1

2

)
= 0, (1.170)

with the factor of sin(Θij) necessary to give all possible orientations equal probability.

The short range dipole-dipole couplings are completely averaged by the rotational and

translational motions of the molecules in solution. Long range dipole-dipole couplings

are not completely averaged out by the same motions, but are relatively small and

can often be neglected. The dipole-dipole Hamiltonian in an isotropic liquid therefore

becomes, too good approximation:

Ĥ ij
DD(Θij) ∼= 0. (1.171)
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Figure 1.14: The majority (∼74 %) of active NMR nuclei are quadrupolar, as
depicted by the periodic table of quadrupole nuclei. I = 1/2 isotopes are
coloured blue, I > 1/2 isotopes are coloured red. Magnetically inert nuclei are
coloured grey. The most abundant, NMR active isotope is shown for each ele-
ment. For example, a spin-1/2 isotope of nitrogen (15N) also exists and has many
important uses in magnetic resonance spectroscopy. Source: http://kuchem.kyoto-

u.ac.jp/bun/projects/microMAS/microMAS e.html.

Appendix B covers this topic in more detail. The non-secular parts of the dipole-

dipole Hamiltonian are not averaged out in solution, and this has consequences for

NMR relaxation in isotropic liquids, see appendix B.

1.8.2 Electric quadrupole interaction

As of yet, discussion of magnetic nuclei and spin angular momentum has been limited

to spins with an angular momentum quantum number I = 1/2. Quadrupolar nuclei on

the other hand, identify nuclear spins with an angular momentum quantum number I

> 1/2. Such nuclei are very common in the periodic table, see figure 1.14.

Quadrupolar nuclei possess an electric quadrupole moment. The electric quadrupole

moment arises from the non-spherical distribution of charge in the nucleus. The distri-

bution of charge for a quadrupole nucleus cannot be adequately described by the total

charge, and should be treated as a series of multipoles, known as a multipole expansion,

see figure 1.15. Details of the multipole expansion for a quadrupolar nucleus are given

in appendix B. The second-order term in the multipole series expansion yields the elec-

tric quadrupole moment. The electric quadrupole moment interacts strongly with an
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Figure 1.15: A non-spherical nuclear charge structure can be described by a series
expansion of multipoles. The zeroth-order multipole term is the total charge, the first-
order multipole term is the electric dipole moment, and the second-order multipole
term is the electric quadrupole moment. The high (red +) and low (blue -) electron
density around the nucleus creates an electric field gradient (EFG) which interacts with

the electric quadrupole moment [50].

electric field gradient (EFG) present at the nucleus due to the asymmetric distribution

of the surrounding electron density. Quadrupolar nuclei therefore have both nuclear

(magnetic moment) and electric (quadrupole moment) properties, and as a consequence

quadrupolar nuclei interact with all applied and local magnetic fields, and electric field

gradients.

The static magnetic field ~B0 acts to align the magnetic dipole moment of a nucleus

with the magnetic field, for the case of γ > 0. The electric field gradient on the other

hand depends on the immediate environment of the nucleus, through the whereabouts

of other nuclei and electrons, i.e. the geometry of the bonds attached the nucleus. The

size of the electric quadrupole interaction therefore depends on more than just the size

of the quadrupole moment, namely:

• The orientation of the molecule with respect to ~B0,

• The environment in which the quadrupolar nucleus is located.

Large quadrupolar couplings may be cancelled by symmetrical environments, and small

quadrupolar couplings may be amplified by large electric field gradients.

The electric field gradient (EFG) at a quadrupolar nucleus is classified with respect

to two properties:

1. eq the largest principal value of the EFG tensor,

2. ηQ the biaxality of the EFG tensor.
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These two properties are defined as follows:

eq = Vzz, (1.172)

ηQ =
(Vxx − Vyy)

Vzz
, (1.173)

where eq is a constant and is independent of the molecular environment. ηQ is a scalar

and has values between 0 and 1. The EFG tensor V is written as:

V =


Vxx 0 0

0 Vyy 0

0 0 Vzz

 , (1.174)

where V has a zero-trace, i.e. Vxx +Vyy +Vzz = 0, and is symmetric, i.e. Vij = Vji. The

EFG tensor in the principal axis system (PAS) frame is strictly diagonal. The diagonal

components Vii are called the principal components. The principal components corre-

spond to the principal axes of the EFG tensor. The principal axes of the EFG tensor

are defined by: Vzz ≥ Vyy ≥ Vxx. Interaction tensors, such as those for the quadrupolar

interaction, are often represented by ellipsoids. Figure 1.16 shows the ellipsoids repre-

senting the quadrupolar interaction for different values of Vzz and ηQ. The principal axes

for different values of Vzz and ηQ are also shown pictorially in figure 1.16. Figure 1.16a)

gives the case of an isotropic quadrupole tensor Vzz = 0 since the quadrupolar interac-

tion has a zero isotropic average, b) describes the case of a uniaxial quadrupole tensor

Vzz 6= 0, ηQ = 0, and c) shows the case of a biaxial tensor Vzz 6= 0, ηQ 6= 0. It should be

noted that for the quadrupolar interaction situation a) is not realistic, and is far more

present for the case of chemical shift anisotropy (CSA) interaction, see section 1.8.3. The

one case where situation a) is present in quadrupolar NMR is for a molecule of 14NH+
4 ,

which has a remarkably symmetric electron density surrounding the 14N nucleus. As

a result, the magnitude of the quadrupolar interaction is very small, and the tensor is

highly symmetric. This outcome is brought about because the electric field gradients

cancel at the centre of the 14N nucleus. Situation b) is common for deuterium nuclei

in methyl groups [62], and case c) arises for nuclei such as 17O in H2
17O, in which the

EFG tensor shows a large biaxality for the 17O nucleus (ηQ ∼ 0.8) [63].
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Figure 1.16: Ellipsoids representing the quadrupolar interaction. a) isotropic EFG
tensor: Vzz = 0. b) uniaxial EFG tensor: Vzz 6= 0, ηQ = 0. c) biaxial EFG tensor: Vzz
6= 0, ηQ 6= 0. Arrows point in the direction of the principal axes of the EFG tensor.

Adapted from reference [41].

For any arbitrary molecular orientation, with respect to the static magnetic field,

the quadrupolar Hamiltonian is expressed in the PAS frame as:

ĤQ =
ωQ
2

[
3Î2
z − Î(Î + 1) +

η

2
(Î2

+ + Î2
−)

]
. (1.175)

where the nuclear quadrupolar coupling frequency ωQ is defined as:

ωQ =
e2qQ

2I(2I − 1)~
=

2πCQ
2I(2I − 1)

, (1.176)

where CQ is referred to as the “quadrupole coupling constant”. Another convention

which is often used is ω′q. In units of hertz, this quantity is given as:

fQ =
3ωQ
2π

=
3e2qQ

2I(2I − 1)h
. (1.177)

This parameter corresponds to the distance between the outer lines in the NMR spectrum

of a quadrupolar nucleus where the biaxality of the EFG tensor is zero. Half this value



NMR interactions 1.8 51

-��� -�� � �� ���

������ ��������� (���)

Figure 1.17: A simulated example of a solid-state NMR spectrum for a spin I=1 nu-
cleus with a quadrupolar coupling constant CQ/2π = 167 kHz, and with η = 0. ωQ/2π
therefore corresponds to 83.5 kHz. The spectrum was simulated using the Hamilto-
nian in equation 1.175. The distance between the resonance lines is given by: fQ =
250.5 kHz. The distance between the peaks in the Pake doublet is given by fQ/2. The
powder averaged solid-state NMR spectrum was simulated by using the “ZCW538” ori-
entational sampling scheme available in the Mathematica-based NMR software package

SpinDynamica. An artificial Lorentzian line broadening of 1.2 kHz was also applied.

is also occasionally used, which corresponds to the distance between the peaks in a

Pake doublet, again for a quadrupolar nucleus with η = 0. A typical scenario for the

NMR Hamiltonian is the Zeeman splitting dwarfing the size of all other interactions. In

this case approximations can be made to simplify the NMR Hamiltonian. Consider the

quadrupole interaction, the Hamiltonian of which can be written as a series:

ĤQ = Ĥ
(1)
Q + Ĥ

(2)
Q + ..., (1.178)

where the number in brackets corresponds to the order of the term in the quadrupolar

Hamiltonian. The case: ĤQ = Ĥ
(1)
Q is equivalent to the secular approximation for the

quadrupolar Hamiltonian, and is sufficient for small scale quadrupolar interactions. Ĥ
(1)
Q

is written as:

Ĥ
(1)
Q =

ωQ
2

(3Î2
z − Î(Î + 1)). (1.179)

Second order terms Ĥ
(2)
Q are required when ωQ becomes large. It should also be noted

that in isotropic liquids the first order term of the quadrupolar Hamiltonian averages

to zero. The removal of this interaction does not influence the NMR peak positions but

has important consequences for the relaxation of quadrupolar spins in solution.
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1.8.3 Chemical shift interaction

The magnetic field experienced by a nucleus at two separate sites in a molecule may

differ. This has previously been demonstrated in section 1.3.1 for the case of ethanol,

see figure 1.8. The 1H NMR spectrum has peaks at known chemical shifts, and serves

a useful probe for determining the molecular structure of ethanol. The principle reason

for this phenomenon is the magnetic fields generated by the electrons circulating each

nucleus. The electrons of a molecule placed in a magnetic field behave in the following

way:

1. The static magnetic field ~B0 induces “currents” in the molecules electronic clouds,

2. The molecular currents generate a back magnetic field, the “induced” field, via

Lenz’s law.

The induced magnetic field is experienced by the nucleus at the centre of the molecular

currents. The total magnetic field experienced by a nucleus is therefore the combination

of static and induced magnetic fields, with the induced magnetic field acting to shield

or deshield the nucleus from the static magnetic field.

Note: This is a very small effect. Chemical shifts are measured on the “parts

per million” or ppm scale. However, the effect is certainly large enough as to create

observably different magnetic environments and hence deviations in nuclear Larmor

frequencies at distinct locations within a molecule.

The induced field is approximately linearly dependent on the applied field, the

chemical shift tensor δ is therefore used and takes into account the fact that the induced

magnetic field may not be parallel to the direction of the static magnetic field ~B0:
~Bx
ind

~By
ind

~Bz
ind

 =


δxx δxy δxz

δyx δyy δyz

δzx δzy δzz

×


0

0

~B0

 , (1.180)

assuming that, in this case, the static magnetic field is parallel to the z-axis of the

laboratory frame. ~Bi
ind is the ith component of the induced magnetic field, and δij

is the ijth component of the chemical shift tensor. The chemical shift tensor δ may
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be decomposed into symmetric and antisymmetric parts. The symmetric part of the

chemical shift tensor δ+ is defined as [53]:

δ+ =
1

2

(
δ + δT

)
, (1.181)

where δT is the transpose of δ. The symmetric part of the chemical shift tensor δ+ has

the following form:

δ+ =
1

2


δxx (δxy + δyx) (δxz + δzx)

(δxy + δyx) δyy (δyz + δzy)

(δxz + δzx) (δyz + δzy) δzz

 . (1.182)

The symmetric part of the chemical shift tensor δ+ can be decomposed again into

isotropic and traceless symmetric parts:

δ+ = δiso + δ+
traceless. (1.183)

The isotropic chemical shift δiso is the mean value of the principal values of the symmetric

chemical shift tensor δ+ and is defined as:

δiso =
Tr[δ+]

3
.1 =


δxx 0 0

0 δyy 0

0 0 δzz

 , (1.184)

where Tr is the trace operation and 1 is the identity matrix. The antisymmetric part of

the chemical shift tensor δ− is defined as:

δ− =
1

2

(
δ − δT

)
, (1.185)

and has the following form:

δ− =
1

2


0 (δxy + δyx) (δxz + δzx)

(δyx − δxy) 0 (δyz + δzy)

(δzx − δxz) (δzy − δyz) 0

 . (1.186)



54 Chapter 1: Introduction

The reason for this decomposition is that only the symmetric part of the chemical shift

tensor effects the lineshape of the NMR spectrum [50]. These concepts are covered in

more detail in section 1.7.4. The chemical shift Hamiltonian represents the interaction

between the nuclear magnetic moment and the magnetic field, and is expressed as:

ĤCS =
∑
i

γiÎiδ ~B0. (1.187)

This equation implies that if the magnetic field is applied along one of three directions,

the principal axes, then the induced field is parallel to the applied field, i.e. δII =

~BI
ind/

~B0 if ~B0 is applied along the Ith principal axis. The chemical shift Hamiltonian

retained after the secular approximation is [41]:

ĤCS = −γÎzδzz(θ) ~B0, (1.188)

where the zz-component of δ depends on the orientation of the molecule θ with respect to

the static magnetic field ~B0. The true Larmor frequency of a nucleus therefore includes

the presence of the induced magnetic field:

ω0(θ) = −γ ~B0(1 + δzz(θ)), (1.189)

and is shifted in frequency from the nuclear Larmor frequency of an isolated nucleus ω0

by −γδzz(θ) ~B0.

Consider the following for a molecule of cyclopentadiene. The small magnetic

fields generated by the atom’s electrons run in loops, as the first of Maxwell’s equations

states. Therefore, the direction of the magnetic field changes around the molecule, see

figure 1.18. Here, the electrons are circulating through the doughnut-like hole in the

middle of the cyclopentadiene ring and then around the sides of the ring before joining

up again. If the ring is fixed in a particular orientation with respect to the static magnetic

field, the magnetic field induced at a nuclear site will depend on the orientation of the

cyclopentadiene ring with respect to the static magnetic field, and also the location of

the spin inside the molecule. The anisotropy in magnetic field around the nucleus, known

as the chemical shift anisotropy (CSA), is defined as the largest deviation in chemical

shift from the isotropic value:

δaniso = δ+
zz − δiso. (1.190)
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δ+δ+

δ-

δ-

Figure 1.18: Schematic depiction of the chemical shift anisotropy in cyclopentadiene.
δ± denotes high (+) and low (-) electron density surrounding the ring. The magnetic
field of the electrons runs through the doughnut shaped hole in the centre of the ring
and around the molecule before joining up again. This results in an electron deficient

zone above and below the plane of the cyclopentadiene ring.

The biaxality of the CSA tensor η is defined as the difference between the other two

principal values:

η =
δyy − δxx
δaniso

. (1.191)

These principal axes are defined in a similar way to the quadrupolar interaction, but

with X and Y principal axes reversed.





Chapter 2

Hyperpolarization and singlet

states

2.1 NMR Sensitivity

Sensitivity is one of the primary concerns in the magnetic resonance community, and

limits a number of experiments from solid-state NMR to medical imaging [64]. As

previously discussed, the small population imbalance between the spin states of a nuclear

ensemble in thermal equilibrium at room temperature leads to inherently weak NMR

signals. In some cases, the readout of an NMR signal can be almost indistinguishable

from the random noise associated with the signal detection itself. In the context of

this work, the two most influential factors which determine the sensitivity level of an

NMR experiment are the initial polarization of the spin ensemble and the relaxation

phenomena which occur before detection. The two effects are interlinked, and can be

partially controlled by a favourable choice of spin system and experimental conditions.

In this chapter, I begin with a discussion regarding the concept of signal sensitivity in

NMR, and how the influence of additional experimental complexity can considerably

improve the initial spin polarization for an ensemble of nuclear spins. The reality of

longer-lived encodement for nuclear spin order is additionally addressed by selecting

substances which are sympathetic to nuclear spin relaxation. The symmetry properties

of spin-1/2 pairs in contrasting regimes of equivalence are discussed, along with the

radiofrequency pulse sequences designed to access the long-lived nuclear spin order.

57
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2.1.1 Signal summation

Sensitivity can be improved in its most basic form by repeated signal summation. When

a signal S(t) is detected in the NMR coil surrounding the sample, the pickup coil senses:

1. the perturbation of nuclear spin populations from thermal equilibrium; and 2. an

additional contribution in the form of random noise:

S(t) = Ssample(t) + Selectronics(t), (2.1)

where Ssample(t) is the signal contribution from the spins in the sample, and Selectronics(t)

is the signal contribution from noise. The coil induction is time-dependent and propor-

tional to magnetization precessing in the xy-plane. The signal S(t) is recorded until deco-

herence renders Ssample(t) undetectable against a noise level determined by Selectronics(t),

which is mainly attributed to the thermal noise of the resonant radiofrequency circuit

in the probehead, and the preamplifier of the spectrometer.

Suppose one intends to sum the NMR signals from two identical experiments.

After the first signal is detected, the spin ensemble is permitted to return to thermal

equilibrium (see section 1.2.6) before the second experiment commences. The NMR

signal detected in the second experiment should therefore be indistinguishable from

that of the first experiment. The signals sampled in each case have a decaying profile

known as a free induction decay or FID, see figure 2.1. The noise associated with each

experiment has an “irreproducible” random profile. Therefore, accumulation of NMR

signals is a surefire way of differentiating the FID from the noise. But how does this

work in practice? And how does this achieve spectra in which the dominant source of

the NMR signal comes from the sample? The sample is assumed to be well controlled in

these two experiments, the parameters of the spectrometer and probe are well defined

and are constant, and the sample is allowed sufficient time between experiments to

reach thermal equilibrium. The NMR signals associated with the spins in the sample

are assumed to generate identical signals such that:

Ssample(t1) + Ssample(t2) = 2Ssample(t1), (2.2)

where (ti) denotes the time at which the FIDs are recorded, with t2 - t1 ≥ 5T1 and

t2 > t1. The uncorrelated noise contributions to the NMR signals are random, and
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Figure 2.1: a) The free induction decay (FID) is the result of detecting the signal
Ssample(t) with the rf-coil of the NMR probe. The FID is a combination of a sinusoidal
modulation and an exponential decay. b) The noise of an NMR experiment, assuming
a noise source which is fixed in time, will oscillate randomly either side of zero intensity.
The root-mean-square amplitude is therefore the most appropriate measure of the noise

amplitude.

assuming the source of the noise remains fixed throughout time, i.e. stationary noise,

the amplitude of the noise is given by its root-mean-square:

Selectronics(ti) = 〈Selectronics(ti)
2〉1/2. (2.3)

This definition of the noise amplitude is used as the motion of the noise is random, and

wanders back and forth between positive and negative values, and hence the average

noise of an NMR experiment is zero. Using this definition:

Selectronics(t1) + Selectronics(t2) =
√

2Selectronics(t1), (2.4)
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where Selectronics(t1) ' Selectronics(t2). The ratio of the signal to the noise (signal-to-noise,

SNR) is therefore given by:

SNR =
2Ssample(t1)√
2Selectronics(t1)

=
√

2
Ssample(t1)

Selectronics(t1)
. (2.5)

Now consider a set of identical experiments which are repeated N number of times, with

sufficient time between experiments for the sample to recover to thermal equilibrium.

The signal-to-noise in this case is given by:

SNR =
√
N

Ssample(t1)

Selectronics(t1)
. (2.6)

Hence signal summation does indeed enhance the signal-to-noise ratio of an NMR ex-

periment, with the SNR improving as the square root of the number of transients. Sadly

signal summation is a slow process, and experiments can sometimes take days or weeks

to achieve a good SNR for a sample with low sensitivity or long relaxation times. Signal

averaging is also not ideal in the context of process monitoring via NMR. The summa-

tion from signals does not allow for monitoring of chemical or kinetic reactions, and an

inherently good SNR is required from the outset of the time course experiment. MRI

also suffers from similar problems due to the motion of the patient between scans.

2.1.2 Other methods

Rather fortunately, other options exist which aim to improve the signal-to-noise ratio of

an NMR experiment:

• Coil design. The design of an NMR probe can be optimized for specific nuclei

by placing the pickup coil closer to the sample. This increases the filling-factor of

the coil and improves the signal-to-noise ratio [65]. SNR can also be boosted by

increasing the homogeneity of ~B1 magnetic fields, which leads to a strong electronic

response from the coil.

• Field compensation. ~B0 homogeneity is improved by the process of shimming,

which corrects for variations in the static magnetic field. Correcting for inhomo-

geneous ~B1 fields is facilitated by rational pulse sequence design. Levitt et al.
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compensated for the poor homogeneity of rf-fields in the 1970s by developing the

“composite pulse” [66].

• Cryoprobes. The use of cryoprobes, particularly for use in protein NMR, has

become very popular in the last two decades [67]. By cooling the electronics of

the detection circuit to ∼20 K with helium gas, signal-to-noise gains of ∼10 (and

∼16-fold reductions in data acquisition times) have been reported [68].

• Pulse sequences. Polarization is efficiently transferred between heteronuclei by

familiar NMR experiments such as the insensitive nuclei enhanced by polarization

transfer (INEPT) and cross-polarization (CP), with enhancements of ∼4 and ∼10

achievable for 13C and 15N nuclei, respectively. However, pulse schemes can only

go so far in delivering signal enhancements, and are ultimately limited by the

gyromagnetic ratios of the participating nuclei.

• Sample concentration. If in doubt, throw more sample in. The signal intensity

from the sample is directly proportional to the number of spins:

~M =
Nγ2~2I(I + 1)

3κBT
~B0, (2.7)

where N is the number of spins in the sample [42]. In this way, one works with an

inherently greater SNR from the very first experiment, and fewer transients are

ultimately required per experiment. However, this may not be so easily achievable.

In solid state magic angle spinning (MAS) experiments the number of spins are

limited by the volume of the MAS rotor. In liquid state NMR experiments there

may be limited solubility of the material in the choice solvent, which can be a

problem when investigating inherently insensitive nuclei. Gas phase NMR experi-

ments are also known to be difficult due to the reduced number of spins available

for detection [69].

NMR hyperpolarization is a technique used to vastly improve the sensitivity of NMR

experiments, and comes from two main sources; electrons and spin isomers. In this thesis,

the nuclear hyperpolarization presented is achieved by borrowing the strong alignment

possessed by electron spins in a magnetic field at low temperature.
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• Unpaired electrons. Unpaired electrons are persistently used in dynamic nuclear

polarization (DNP) experiments as a source of high polarization at low tempera-

ture. Microwave irradiation is applied specifically “just off” the electron transition

frequency in an effort to transfer the high levels of electron spin polarization to

the adjacent nuclei [70]. Dissolution-DNP allows a liquid state readout of the hy-

perpolarized spin order in a separate magnet after the sample is flushed out of its

frozen environment by a jet of superheated solvent [71].

• Spin isomers. The spin isomers of hydrogen (destructive addition of spin angular

momentum, I=0) also serve as a means to improve sensitivity. The para-state is

easily populated by cooling hydrogen gas to low temperatures (∼77 K is sufficient)

and flowing the cooled gas over a paramagnetic catalyst [72, 73]. The energy level

separation between the para- and ortho-states of hydrogen (ortho-states are the

result of a constructive interference of spin angular momentum, I=1) is sufficiently

large such that the population imbalance persists upon removal of the catalyst and

equilibration of the gas to room temperature. The hyperpolarized spin order can

survive for many weeks before being transferred to a substance of interest via a

parahydrogenation reaction [74, 75].

2.2 Polarization

A measure of the sensitivity level for an NMR experiment is achieved by considering

the Zeeman polarization for a sample in a magnetic field. The Zeeman polarization

corresponds to the amount of normalized longitudinal spin order contained within the

spin density operator. For a single spin-1/2 nucleus, the Zeeman polarization pZ may be

expressed as the projection of the spin density operator ρ̂ onto the angular momentum

operator Îz (see appendix B for more details):

pZ =
Tr[Î†z ρ̂]

Tr[Î†z Îz]
, (2.8)

where pZ is normalized to establish the maximum Zeeman polarization as ±1, i.e. the

|Tm±1〉 state is saturated with population whilst the |Tm∓1〉 state is entirely depleted of

population. The bounds on nuclear Zeeman polarization are therefore: −1 < pZ < +1.
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For an ensemble of non-interacting spin-1/2 nuclei, the eigenstates of the coherent

Hamiltonian are the nuclear Zeeman states |α〉 and |β〉. For a spin-1/2 nucleus, the

states |α〉 and |β〉 denote the alignment of the intrinsic magnetic moment parallel and

anti-parallel to the static magnetic field, respectively. The Zeeman polarization for an

ensemble of nuclear spins is defined as the normalized imbalance between the |α〉 state

population p(α) and the |β〉 state population p(β), i.e. the net population difference

(|α〉〈α| − |β〉〈β|). The Zeeman polarization pZ is given as follows:

pZ = p(α)− p(β), (2.9)

where p(α) = 1/2 + Bf/4 and p(β) = 1/2 − Bf/4, as described in equations 1.73

and 1.74. Normalization occurs with respect to the total population of the nuclear

ensemble p(α) + p(β), i.e. there is an additional constraint p(α) + p(β) = 1. At room

temperature, and in a field of 11.7 T, the thermal equilibrium Zeeman polarization for an

ensemble of protons is peq
Z = ∼4× 10−5. A strongly hyperpolarized spin system obtains

a Zeeman polarization of pZ → ±1, depending on the nature of the hyperpolarization,

and is considerably greater than peq
Z .

The population ratio p(α)/p(β) is defined as:

p(α)

p(β)
= e

(
−~ω0
κBT

)
, (2.10)

where ω0 is the nuclear Larmor frequency, κB is the Boltzmann constant and T is the

temperature, see equation 1.8. For a thermally polarized sample, the Zeeman polariza-

tion may be rewritten by using equations 1.7 and 2.10:

pZ = tanh

(
~γB0

2κBT

)
. (2.11)

Equation 2.11 states that the Zeeman polarization of a thermally equilibrated sample

is represented by a hyperbolic tangent which is a function of both magnetic field and

temperature, see appendix B for more details. The observed NMR signal from the spins

in the sample is proportional to the Zeeman polarization through:

Ssample(t) ∝ tanh
(
~γB0

2κBT

)
·Ntot · e

−t
T2 · e−iω0t, (2.12)

where N is the total number of spins in the sample. The Zeeman polarization pZ can
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Figure 2.2: Zeeman polarization pZ of a 1H nucleus described by using the hyperbolic

tangent in equation 2.11 as a function of: a) temperature ( ~B0=11.7 T); and b) magnetic
field (T = 298 K). a) A Zeeman polarization of unity is maintained until the temperature
of the spin system reaches ∼10 mK, at which point there is a sharp decline in the level
of Zeeman polarization. At just 1 K, ∼88.5% of Zeeman polarization has been lost, and
the effect is greatly exaggerated for nuclei with lower gyromagnetic ratios. b) Over the
range of magnetic fields currently produced by modern day superconducting magnet
technologies (. 1.2 GHz) the gains in Zeeman polarization at thermal equilibrium are
relatively small (∼10−5). For protons at 298 K, magnet fields exceeding 10 THz are

required in order to obtain a Zeeman polarization approaching unity.

be investigated as a function of magnetic field and temperature by using equation 2.11.

To achieve high levels of Zeeman polarization, i.e. pZ → 1, low temperatures and large

magnetic fields are required.

Temperature. The temperature profile of pZ for an ensemble of non-interacting,

spin-1/2 protons at 500 MHz is shown in figure 2.2a). A Zeeman polarization of ∼1

is achieved for temperatures below ∼10 mK. Conventional cryostats, which are often

employed in dynamic nuclear polarization (DNP) experiments, can achieve temperatures

as low as ∼1.3 K. ∼4.2 K is also used as liquid helium consumption can be considerable.

At 4.2 K, a Zeeman polarization of 0.27% is reached for the proton spin ensemble, which

is a factor of ∼71 greater than at 298 K but remains woefully short of being considered

as a hyperpolarized system.

In the majority of cases, low temperatures alone are insufficient as to achieve

considerable nuclear hyperpolarization. Therefore, more than simply low temperatures

are required to vastly improve the low levels of sensitivity which are common place in

NMR experiments, see section 2.3. However, considerably lower temperatures remain an

option. Extensive efforts have been made in the field of brute force hyperpolarization,

whereby the operation of dilution fridges achieves ∼mK temperatures and can boost

the Zeeman polarization level for an ensemble of protons to ∼80% [76]. Commercial

instruments routinely output ∼50% 13C polarization [77]. The considerable drawback

of working at ∼mK temperatures is the long equilibration time of nuclear spin orders, i.e.
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conventional relaxation times become increasingly longer as the temperature is lowered,

and are often on the order of days or weeks in the millikelvin regime [78–82].

Magnetic field. An alternative route to improved NMR sensitivity is to con-

struct NMR magnets capable of producing higher static magnetic fields. Difficulties in

accomplishing this task include the size and weight of the magnet, the use of new su-

perconducting materials, and most likely, the grand expense associated with developing

high field magnetic resonance technologies. The magnetic field profile of the Zeeman

polarization pZ at 298 K for an ensemble of protons is shown in figure 2.2b). pZ has a

linear relationship in the regime of magnetic fields produced by superconducting NMR

magnets available on today’s market ( ~B0 . 1.2 GHz). At these magnetic fields, ther-

mal fluctuations remain large in comparison to the quantized energy difference between

spin states, and low levels of Zeeman polarization pZ are observed. This being said, the

increase in resolution with magnetic field holds significant advantages in areas of solid

state NMR.

As is clearly demonstrated in figure 2.2b), increasing the magnetic field by∼100 MHz

or so only raises the Zeeman polarization to a certain extent. However, the SNR of an

NMR experiment can also be improved with the assistance of higher magnetic fields.

The NMR signal deriving from the spins in the sample Ssample(t) is related to the Zee-

man polarization and induction processes in the rf-coil, both of which are proportional

to the static magnetic field ~B0, and hence Ssample(t) scales as B2
0 [83, 84]. The random

noise contribution to the NMR signal Selectronics(t) is proportional to B
1/4
0 , and therefore

the overall SNR of an NMR experiment scales with the magnetic field as B
7/4
0 [85, 86].

2.3 Hyperpolarization

Hyperpolarization in NMR spectroscopy concerns perturbing nuclear spin populations

far from thermal equilibrium. The aim being to enhance the sensitivity of NMR experi-

ments, spectra and images through increasing the nuclear polarization of a spin ensemble

by factors of up to 104-105, compared with thermal equilibrium. Multiple hyperpolar-

ization techniques exist; ranging from hyperpolarized gas NMR using 129Xe and 3He

isotopes, spin exchange optical pumping (SEOP), parahydrogen induced polarization

(PHIP), quantum rotor induced polarization (QRIP), and dynamic nuclear polarization
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Figure 2.3: Schematic of nuclear hyperpolarization. Thermal equilibrium Zeeman po-
larization is small due to the fluctuations in room temperature which readily equilibrate
the spin populations for an ensemble of nuclei in a magnetic field. Hyperpolarization
techniques exist to drive the arrangement of nuclear spin populations away from thermal
equilibrium, with the idea of preferentially populating a single spin state and creating

an impressive population imbalance for observation.

(DNP), the latter of which is occasionally accompanied by a dissolution process to en-

able a liquid state readout. A schematic of the hyperpolarization ideology is shown in

figure 2.3. Applications of hyperpolarized NMR are also evident, noble gases are often

used to image lungs in MRI experiments [71], and hyperpolarized metabolites have been

used to monitor prostate cancer in human patients [87]. In the context of this thesis,

dynamic nuclear polarization (DNP) is discussed as one method to produce nuclear hy-

perpolarization. Later on in this thesis, DNP experiments are reviewed in conjunction

with a rapid dissolution process in order to hyperpolarize long-lived nuclear spin states.

2.3.1 Dynamic nuclear polarization

The aforementioned methods have the capability to produced non-equilibrium Zeeman

polarization, pZ → ±1. However, each method is also limited. SEOP is restricted to hy-

perpolarization of a few noble gas isotopes, and PHIP depends on the presence of double

or triple bonds in the substrate molecule. A highly feasible approach to improve the

low levels of nuclear Zeeman polarization is to borrow the already enhanced polarization

of electron spins at low temperature. The proportionality factor between the gyromag-

netic ratio of an electron and a proton is: γ1H/γe− ' −660, i.e. the gyromagnetic ratio

of an electron is significantly larger than that of a proton. This proportionality factor

becomes even greater for nuclei with lower gyromagnetic ratios, e.g. 13C, 15N, with
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Figure 2.4: Thermal equilibrium Zeeman polarization pZ as a function of temperature

( ~B0=11.7 T) for electrons (blue), protons (red), carbon-13 (orange) and nitrogen-15
(green). Electron polarization at low temperatures (.10 K) is considerably greater than
that of nuclei. Beyond ∼10 K, the electron polarization is consistently a factor of ∼660
greater than the proton polarization, and even more so for carbon-13 and nitrogen-15
nuclei. As conventional DNP apparatus is unable to achieve temperatures lower than
∼1.3 K, the level of nuclear Zeeman polarization is limited. Polarization must therefore
be borrowed from the nearby electrons, and an additional factor of γe/γn can be gained

in terms of the nuclear Zeeman polarization.

respect to that of a proton. Therefore, efficient or sustained transfer of electron spin

polarization to nuclei can result in Zeeman polarizations on the order of ∼50%, a remark-

able improvement over peq
Z at room temperature, see figure 2.4. This is the approach

taken by dynamic nuclear polarization (DNP). DNP was first predicted by Overhauser

in 1953 [88], and was met with criticism from the NMR community. However, the suc-

cessful demonstration of DNP by Carver and Slichter later that year, and Abragam in

1959, cemented DNP as a powerful NMR tool for boosting the poor sensitivity levels of

common NMR experiments. DNP is now a widely used technique in magnetic resonance,

and has far reaching applications such as the structural determination of proteins and

other materials in conjunction with magic angle spinning methodologies [89–93].

2.3.2 Elements of DNP

Before discussing the physical mechanisms of electron-nuclear polarization transfer, a

discussion of the items required for a typical DNP experiment is necessary. The main

prerequisites for the success of a DNP experiment are:
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• Unpaired electrons. Traditionally in the form of a radical system; BDPA, trityl,

ox63, TEMPO, TEMPOL and others [94], an added electron source is required

for adequate polarization transfer. The resulting DNP mechanisms and signal

enhancements are dependent on the type and concentration (∼25 mM) of radicals.

• Glassing agent. Mixtures of common laboratory solvents; H2O, D2O, glycerol

etc. form satisfactory glassy matrices for DNP upon freezing. H2O and D2O

form a suitable aqueous solution in which to dissolve the sample of interest to

sufficient concentration, and glycerol is a glass-former added to prevent crystal-

lization. The radicals becomes homogeneously embedded within the amorphous

solid when frozen.

• Microwave irradiation. Exciting electron-nuclear transitions at near-resonant

microwave frequencies exchanges spin populations between coupled electron-nuclear

systems in the solid state, and ultimately transfers polarization from electrons to

nuclei [62, 95]. Depending on the strength of the polarizing field, either a Gunn

diode (low power) or gyrotron (high power) can be used as the electron source [96–

99].

• Low temperatures. Clearly, in order to freeze the mixture of sample, radical

system and glassing agent, low temperatures are required. Near-unity electron

polarization is additionally present below ∼10 K at 6.7 T. Low temperatures are

often provided by the use of a cryostat, which will have a specially designed custom-

insert for sample insertion and microwave irradiation.

2.3.3 Overview of the DNP process

The procedure for DNP experiments is now well established, and is laid out plainly

below. A schematic overview of the DNP process is shown in figure 2.5.

1. The mixture of sample, electron source and glassy matrix, is cooled to ∼1.3 K. At

this temperature, electron spin polarization is abundant, and near unity. Nuclei

are weakly polarized and have long relaxation times at these temperatures.

2. Electron spin polarization is transferred to nearby nuclei by the application of a

continuous microwave (µW) field with a frequency close to the EPR transition. The
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Figure 2.5: Overview of the DNP process. Red spheres denote nuclei (γ > 0), blue
spheres denote unpaired electrons. Dashed white lines denote the core nuclei surround-
ing each electron. a) A mixture of sample, glassing agents and radical, is prepared
by freezing beads (10µL volume) of this concoction in liquid nitrogen. b) The frozen
DNP mixture is inserted into a sample cup (approx. 150µL volume) and placed into
the cryostat (temperature = 1.3-4.2 K). c) Approximately resonant microwave fields
are applied to the frozen material, and polarization is transferred from electrons to
nuclei via various DNP mechanisms. d) The build up of nuclear Zeeman polarization is
achieved throughout the majority of the sample by the process of spin diffusion, which

transfers polarization between dipolar coupled nuclei.

polarization transfer process is constantly fighting against the return of electron

spin populations to thermal equilibrium at ∼1.3 K.

3. Spin diffusion spreads the high nuclear polarization levels among the nuclei in the

sample bulk. The DNP process may therefore take many minutes or hours in order

to achieve the maximum experimental polarization, but is relatively fast compared

to signal summation methods.

2.4 DNP mechanisms

Multiple mechanisms have now been proposed to explain the DNP process. The pre-

dominant DNP mechanisms in the solid state are the solid-effect (SE), the cross-effect

(CE), and thermal mixing (TM). Each mechanism can be responsible for the polariza-

tion of a particular molecule or material, with polarization efficiency highly dependent

on nucleus, radical choice, radical concentration and magnetic field. In this section, the

ESR properties of the electron species are examined, followed by an exploration of the

solid-effect and cross-effect DNP mechanisms.

2.4.1 Electron spin resonance spectra

As mentioned above, the transfer of electron spin polarization from radical centres within

the sample to nuclei of interest is dependent on many factors. One such aspect is the

electron spin resonance (ESR) spectrum, which is specific to individual radical species,
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Figure 2.6: Echo-detected ESR spectra of BDPA (blue, dashed line) and TEMPO
(red, dotted line) radicals at 140 GHz and 20 K. BDPA is a narrow line radical used for
polarizing nuclei such as 13C and 15N, and has a linewidth of ∼40 MHz (full-width at
half-maximum). TEMPO is a wide line radical and is predominantly used for polarizing
protons. The linewidth of the TEMPO resonance is ∼400 MHz (full-width at half-

maximum). Adapted from reference [100].

see figure 2.6. The resonance frequency of the ESR line indicates the energy at which the

electron emits and absorbs radiation, and the lineshape of the ESR spectrum dictates

the nature of the polarization transfer to different nuclei, i.e. the DNP mechanism.

The choice of radical is therefore a vital consideration when aiming to hyperpolarize a

particular nuclear species via DNP. The effects of preferred radicals on particular DNP

mechanisms are discussed later.

At high magnetic field (>3.35 T) and low temperature (.4.2 K) the electron and

nuclear resonances are well isolated (.200 GHz separation, nuclei and magnetic field de-

pendent), i.e. the unpaired electron absorbs radiation which is γe/γn higher in frequency

than the nuclei of the sample. It should be noted that the electron (linewidth .1 GHz)

and nuclear (linewidth '30 MHz) resonances do not overlap in the solid state. The severe

difference in linewidth is related to the solid state interactions of electrons and nuclei,

and the orientations of the unpaired radical species in the frozen medium. In this case,

the linewidth of the NMR resonance for a nucleus at ∼4.2 K is governed predominantly

by dipolar interactions with electrons and other nuclei, and is hence proportional to the

concentration of nuclei within the sample.
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For the electron spins, the shape and linewidth of the ESR line is a little more

complicated as there are two effects responsible for the overall broadening of the ESR

spectrum, both of which depend on the type of radical used to paramagnetically dope

the sample. Homogeneous broadening is attributed to field-independent dipole-dipole

interactions between electrons embedded within the sample [101], and can be controlled

by optimizing the electron spin concentration. Inhomogeneous broadening is related to

the hyperfine interaction and g-anisotropy of the electron [102, 103]. In this case, the

individual electrons experience different magnetic fields throughout the sample. If the

radical electron is located on a nucleus with non-zero spin, such as 14N in TEMPO, a

hyperfine coupling exisits between the electron and the nucleus, and the resulting ESR

spectrum is split into individual components corresponding to the quantum number mI

of the nucleus. Splittings are often on the order of megahertz. The ESR spectrum

of radicals frozen into the glassy matrix is additionally a superposition spectrum of

individual electron moments at many different orientations with respect to the static

magnetic field. The electron g-tensor allows a measure of the orientational dependence

of the Zeeman interaction for electrons in the solid state, and the anisotropy of the

g-tensor (g-anisotropy) partly specifies the inhomogeneous lineshape of the ESR line.

With the above information at hand, one can now design an efficient scheme for

electron-nuclear polarization transfer, which is ultimately achieved by saturating the

ESR line of the chosen radical species at a particular frequency.

2.4.2 Solid-effect DNP

Overhauser first suggested applying microwaves to materials in order to engage specific

transitions involving simultaneous flip-flop processes of the electrons and nuclei [88]. In

1953, Carver and Slichter confirmed the SE by performing DNP experiments on lithium

metal [104]. A few years later, preliminary descriptions of the solid-effect (SE) were

provided by Jeffries [105]. Another key breakthrough was provided by Abragam and

Proctor in 1958. The pair published work suggesting that by pumping microwaves at

formally “forbidden” transition frequencies, coupled electron-nuclear population con-

version could be induced [106]. The phenomenon was subsequently demonstrated by

employing microwave irradiation at the frequencies ωe±ωn in the presence of paramag-

netic centres [107], and the solid-effect was born. Another important piece of evidence
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for solid-effect DNP was reported in 1978 by Abragam and Goldman [108], in which

the transfer of electron polarization to nuclei was found to be executed through dipolar

interactions.

The solid-effect (SE) is the perhaps the simplest DNP mechanism to explain, and

only concerns the interactions between a single electron-nuclear pair. The process is

illustrated in more detail below, but a brief synopsis is given here:

1. Microwaves off. The bath of electrons is hyperpolarized at low temperatures,

and nearly all electron spins are in the state |αe〉. Nuclei are initially poorly

polarized.

2. Microwaves on. A microwave field of frequency ωe−ωn is applied to the sample.

An electron-nuclear pair in the state |αeβn〉 undergoes a flip-flop transition. The

new coupled spin state is |βeαn〉.

3. Relaxation. The relaxation time of the electron T1e (milliseconds) is significantly

shorter than the relaxation time of the nucleus T1n (minutes) at low temperature.

The spin pair transforms into the state |αeαn〉.

4. Repolarize. Steps 2 and 3 may now be repeated several times and for other

electron-nuclear pairs, eventually leading to the hyperpolarization of small pockets

of nuclei within the sample.

The solid-effect (SE) is a 2-spin interaction, involving one nucleus and one electron, with

external influences from an applied microwave field. In order for the SE to be valid, a

narrow line radical must be implemented in the DNP process. Narrow line radicals have

ESR linewidths which are narrower than the Larmor frequency of the nucleus to be

polarized: ∆ωe < ωn. Radicals such as BDPA, trityl and ox063 display narrow ESR

lines, as these radicals are symmetric in molecular structure and do not possess strong

electron-nuclear hyperfine couplings.

The efficiency of electron-nuclear polarization transfer can be investigated as a

function of the microwave frequency, see figure 2.7. The x-axis represents the microwave

frequency and the y-axis shows the ensuing enhancement of the NMR signal or “DNP

signal”. Maximum polarization enhancements are observed when the microwave condi-

tion ωe ± ωn is satisfied. The positive sign of the condition corresponds to the negative
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Figure 2.7: Microwave swept DNP enhancement (DNP spectrum) of a narrow line
radical such as BDPA at 6.7 T and 1.4 K. A positive DNP enhancement is recorded
at a microwave frequency of ωe − ωn, and a negative DNP enhancement is observed
at ωe + ωn. The maximum enhancements have been normalized to ±1, respectively.
The flat region around ωe and the distinct peaks at ωe ± ωn indicate a well resolved

solid-effect.

lobe of the “DNP spectrum” and the negative sign corresponds to the positive lobe.

The frequency of the microwave field is therefore chosen specifically to be ωe±ωn to en-

courage the flow of polarization from the electrons to the nuclei. Microwave irradiation

applied at any other frequency results in a reduced electron-nuclear polarization transfer

efficiency. If a wide line radical is used for SE DNP, under the application of the same

microwave field, competing contributions from the condition ωe±ωn are simultaneously

satisfied, and ultimately nullify the hyperpolarization of a particular spin state.

Consider the spin state of the electrons |αe〉 at high magnetic field (>3.35 T) and

low temperature (.4.2 K). The magnetic moments of the electron bath are approxi-

mately 100% anti-aligned with the static magnetic field. The nuclei are poorly polarized

under these conditions, and the polarization bias towards the preferential orientation is

approximately 63 out of every 2000 spins for protons at 6.7 T and 4.2 K, i.e. the majority

of nuclei possess no preferential alignment with the static magnetic field. To consider

the effect of applying microwave irradiation at this frequency, one should consult a state

population diagram, see figure 2.8. At thermal equilibrium (∼4.2 K) the populations of

the coupled electron-nuclear spin states are described by the Boltzmann distribution,

see chapter 1. It should be noted that the state |αe〉 corresponds to an electron in

anti-alignment with the static magnetic field, as the electron has a gyromagnetic ratio

γe < 0. Consider the electron-nuclear pairs which are in the state |αeβn〉, and turn on

the microwave field. In this case, the frequency of the microwave irradiation is ωe − ωn.
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Figure 2.8: Schematic for solid-effect DNP at 6.7 T and ∼4.2 K. The grey arrow
denotes flip-flop transitions, and the black arrow (T1e) denotes longitudinal electron
relaxation. a) At thermal equilibrium, the electron and nuclear spin populations are
dictated by Boltzmann distribution. b) The populations are rearranged under the action
of flip-flop transitions induced by the application of a microwave field with frequency
ωe−ωn. Polarization is accrued in the ground state |αeαn〉 as the relaxation time of the
electron T1e is significantly shorter than the relaxation of the nuclei T1n. c) Microwave

irradiation condition ωe − ωn for the solid effect.

The electrons in the |αeβn〉 pairs which are subjected to the microwave irradiation expe-

rience a “flip-flop” transition with the coupled nucleus. This mechanism is only feasible

if the nuclear spin is pointing in the opposite sense to the electron spin, since the flip-

flop transition must conserve energy. The flip-flop transition induced by the microwave

irradiation converts population from the |αeβn〉 spin state to the |βeαn〉 spin state.

Electron spins are known to relax quickly in most cases, and usually far more

rapidly than the majority of nuclei. The rapid T1e processes associated with the elec-

tron spins promptly deplete the |βeαn〉 state of population as the electron spins return to

thermal equilibrium. Population is consequently transferred to the ground state |αeαn〉,
and a population difference is accrued across the states separated by ωn. At low tem-

peratures (∼4.2 K) the nuclear spin relaxation time T1n is typically very long, and is

usually on the order of minutes or hours. The nuclear population imbalance is therefore

maintained, and the sample is said to be hyperpolarized. The short T1e of the electron

is a valuable asset for DNP, as the process can now be repeated several times and for

other electron-nuclear pairs. In practice an electron can have many nuclear counterparts

during the hyperpolarization stage. Hence, a high efficiency is realized for the solid-effect

if the following condition is satisfied [109]:

NnT1e

NeT1n
� 1, (2.13)

where Nn and Ne are the number of nuclear and electron spins embedded within the
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frozen sample, respectively. The ideal conditions for the solid effect are therefore high

concentrations of nuclei with long relaxation times, comixed with a minimal amount of

electron spins which relax rapidly.

The SE directly polarizes nuclei surrounding the unpaired electron. As previously

touched upon, an additional process, known as spin diffusion, spreads the population

imbalance throughout the sample bulk [110]. For spin diffusion to be effective, the bulk

nuclei must be in dipolar contact with a polarized nucleus [111]. This is not the case

for the core nuclei immediately surrounding the unpaired electron, as the paramagnetic

centre shifts the resonance frequencies of the adjacent nuclei, in comparison to the bulk

nuclei. The spin diffusion process is therefore quenched, and the nuclear hyperpolariza-

tion is trapped within a “DNP shell” [110]. The DNP shell is limited to a finite locus

around each unpaired electron to due to distance dependent nature of the electron-

nuclear hyperfine interaction [112]. Spin diffusion instead uses bulk nuclei outside of the

DNP shell to extend the nuclear hyperpolarization to the rest of the sample. This is

profitable for the hyperpolarization of the entire sample, as the nuclei are fixed within

the lattice and may not undergo direct hyperpolarization via the solid-effect. It should

be noted that the NMR signals available from the core nuclei are “bleached” due to the

short nuclear T1n attributed to the large hyperfine interaction with the nearby unpaired

electron [113]. The enhanced NMR signal is therefore associated with the bulk nuclei

which are hyperpolarized via the spin diffusion process.

2.4.3 Cross-effect DNP

The SE was extensively studied in crystals, but to obtain higher concentrations of nuclear

spins a switch was made to frozen alcohols [114]. The ESR lines in these systems are

inhomogeneously broadened due to the anisotropy of the g-factor. Dipole-dipole inter-

actions between electrons also contribute to the ESR linewidth. This is analogous to the

situation with wide line radical systems [115, 116]. As discussed in section 2.4.1, inho-

mogeneous effects can provide a larger distribution of ESR resonances than a Gaussian

distribution. Such ESR spectra can therefore be thought of as containing individual

“spin-packets” that act independently under the effects of microwave irradiation. It

can be very difficult, but possible, to “burn a hole” in an inhomogeneously broadened
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Figure 2.9: Microwave swept DNP enhancement (DNP spectrum) of a wide line
radical such as TEMPO at 6.7 T and 1.4 K. The forbidden transitions ωe ± ωn begin
to superimpose with the allowed transition ωe. The maximum enhancement has been
normalized to ±1, respectively, with the maxima and minima separated by ωe1 − ωe2.

ESR spectrum, by saturating spin packets at certain frequencies dictated by the ap-

plied microwave field. Upon continued microwave irradiation, off-resonant spin packets

subsequently become saturated through a process known as spectral diffusion. Spectral

diffusion is a phenomenon in which the individual spin-packets of an inhomogeneously

broadened ESR line overlap as result of dipolar contact with neighbouring electrons,

allowing energy to be transferred throughout the ESR spectrum. On first glance, this

might appear to diminish the DNP effect, as the formally forbidden transitions ωe ± ωn
begin to superimpose with the allowed ωe transition and as such cannot be irradiated

separately, see figure 2.9.

In 1963 Kessenikh and Manenkov proposed a 3-spin DNP process involving simul-

taneous spin flips between two electrons and a single nucleus, which is today known as

the cross-effect (CE) [117–119]. Such transitions are allowed when the following match-

ing condition for the microwave field is met: ωe1 − ωe2 = ωn, which is possible as both

of the electrons can have different g-anisotropies. To facilitate the CE mechanism, wide

line radicals should be impregnated into the glassy DNP matrix. Wide line radicals

have ESR linewidths which are wider than the Larmor frequency of the nucleus to be

polarized: ∆ωe > ωn. Nitroxide radicals such as TEMPO and TEMPOL display wide

ESR lines, as strong electron-nuclear hyperfine couplings and large g-anisotropies are

present in these systems. Owing to the use of wide line radicals for cross-effect DNP, it

is therefore sufficient to saturate an allowed transition corresponding to either electron

spin, and hence the cross-effect is simultanesouly active for two spin packets separated
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Figure 2.10: Schematic for cross-effect DNP at 6.7 T and ∼4.2 K. The grey arrow
denotes flip-flop transitions, and the black arrow (T1e) denotes longitudinal electron
relaxation. a) Coupled energy level structure for the two-electron, one-nucleus spin
system. b) Spin populations at thermal equilibrium are determined by the Boltzmann
distribution. At lower temperatures (.10 K) electron spins are predominantly in the
|αe〉 state, whilst nuclei are poorly polarized. c) The populations are redistributed by
the three-spin cross-effect for electron-nuclear systems satisfying the condition ωe1 −
ωe2 = ωn under an applied microwave field of frequency ωe − ωn. Nuclear Zeeman
polarization is accumulated in the |αeαn〉 state as T1e relaxation is orders of magnitude

shorter than the nuclear relaxation time T1n.

by ωn. In this regime, the cross-effect becomes a more efficient method of polarization

transfer than the solid-effect.

Just as with the solid-effect, cross-effect DNP can be sufficiently described with the

use of clear energy level diagrams, see figure 2.10. Consider the same initial conditions

as in section 2.4.2, but this time note that the initial spin populations to be concerned

with are |αe1αe2βn〉 and |βe1αe2βn〉. Application of a microwave field with frequency

ωe2−ωn causes one of the electrons in the |αe1αe2βn〉 and |βe1αe2βn〉 states to experience

a “flip-flop” transition with the coupled nucleus. The flip-flop transition induced by

the microwave irradiation converts population into the |αe1βe2αn〉 and |βe1βe2αn〉 spin

states, respectively, and polarization transfer is promoted between the electron pair and

the lone nucleus. Note, the electron subjected to the flip-flop interaction must again be

aligned in the opposite sense to the nucleus, with respect to the static magnetic field

direction. The separated timescales of electron and nuclear spin relaxation processes

allow an imbalance of population across states separated by ωn, and hence an increased

nuclear Zeeman polarization is obtainable through cross-effect DNP.
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2.4.4 Thermal mixing DNP

Highly efficient cross-effect DNP can occasionally be present at low radical concentra-

tions, and is sometimes observed alongside solid-effect DNP [120–125], despite the low

orientation probabilities of finding two electrons separated by the nuclear Larmor fre-

quency. Evidently, a great deal of spin-packets within the ESR line do not satisfy the

cross-effect condition. A more involved theory of DNP, which takes into account all spin-

spin and spectral diffusion processes, was developed by Redfield [126], Provotorov [127]

and Borghini [128, 129], and is today known as thermal mixing. Thermal mixing is a

thermodynamic model that describes the polarisation transfer between many electron

and nuclear spins [130, 131], and is now recognized as an efficient DNP mechanism. Ther-

mal mixing becomes dominant at lower temperatures when the electron T1e is extended

and the spin diffusion process finishes in less than one electron T1e. The thermal mixing

mechanism is additionally active in cases of homogeneously broadened electron systems,

i.e. when the electron concentration is increased, as the microwave field uniformly satu-

rates all ESR transitions. The solid-effect and cross-effect mechanisms become ineffective

under these conditions.

2.5 Dissolution-dynamic nuclear polarization

Jan-Hendrik Ardenkjaer-Larsen and coworkers pioneered the dissolution-DNP approach

in 2004, and their first experiments showed a >10,000-fold increase in liquid state po-

larization [71]. Recently, D-DNP has been directly applicable to in vivo research. The

first in-patient study demonstrating the feasibility of hyperpolarized [1-13C]pyruvate as

a non-invasive marker of tumour metabolism was completed successfully [87]. Patients

with prostate cancer were safely injected with hyperpolarized pyruvate in order to char-

acterize rates of pyruvate-lactate conversion in localized tumours via real-time magnetic

resonance imaging [132]. D-DNP has also been used to evaluate tumour grades [133]

and to continuously monitor the treatment response of living organisms such as cancer

cells [134].
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Figure 2.11: Overview of the dissolution-DNP process. Red spheres denote nuclei
(γ > 0), blue spheres denote unpaired electrons. a) Sufficient time is allowed as to
accrue maximum hyperpolarization of nuclear spins in the solid-state. b) The microwave
field is removed and the frozen material undergoes a rapid melt by using a jet of
warm solvent which is injected into the sample space. c) The warm, hyperpolarized
liquid is rapidly transferred to an external, high-field NMR magnet under the pressure
of helium gas. The sample voyage is engineered such that low-field relaxation from
unpaired electrons is negligible. d) High-resolution NMR experiments are performed
in the liquid state before relaxation processes return the hyperpolarized nuclear spin

populations to thermal equilibrium.

2.5.1 Overview of the dissolution process

D-DNP is a batch-mode experiment, not a continuous operation, and so the largest

achievable nuclear spin polarizations are required prior to dissolution in order to obtain

the best possible results. Once the applied microwaves are removed, the nuclear hyper-

polarization generated by DNP is lost by means of spin relaxation, which is attributed

to nuclear-electron interactions. Furthermore, the cryostat is often pressurized and tem-

peratures rise to ∼3-4 K, which in turn induces faster relaxation of the nuclear spins.

The dissolution process, therefore, must be rapid in order to avoid further losses in the

nuclear Zeeman polarization. A schematic of the dissolution-DNP process is shown in

figure 2.11.

The dissolution process is a rather simple one, but is tricky to execute in practice.

Experimental conditions must be compatible with the dissolution procedure, and so most

dissolutions are performed at ∼4.2 K, which is convenient as an electron spin polarization

approaching unity is achieved in the region of .10 K. Once the desired level of Zeeman

polarization is amassed in the solid state, the frozen sample is rapidly heated with a jet

(∼4-5 mL volume) of warm solvent (∼150◦C temperature). The heated solvent is located

in a bomb placed directly above the glassy matrix, radical and sample, and is injected

into the sample cup under the pressure of helium gas. The DNP mixture melts rapidly

upon contact with the warm solvent and the helium gas pushes the hyperpolarized liquid

sample towards a separate NMR magnet, where the acquisition of a hyperpolarized NMR

signal subsequently takes place. Accelerated relaxation is a potential concern in regions

of low magnetic field along the sample path, but can mostly be negated by the use of a
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magnetic tunnel [135]. In most cases, the high population imbalance established by DNP

is maintained during the sample voyage between NMR instruments, despite the sample

temperature equilibrating with room temperature by the time the hyperpolarized media

reaches the liquid state device.

The typical result of a D-DNP experiment is a liquid state spectrum with level

of sensitivity that can only usually be reproduced with thousands of individual signal

summations. The enhancements recorded using D-DNP are typically larger than those

observed for solid-state DNP (capped at γe/γn) due to the room temperature readout

of the hyperpolarized spin order in the liquid state. Determining the level of signal

enhancement depends on factors such as the presence of microwave irradiation, the state

of the sample matter, the temperature and the number of transients used to record the

reference spectrum. More details regarding DNP enhancements are given in chapter

4. The capability to transfer hyperpolarized media to high-resolution instruments also

comes with a few advantages, namely, cheap microwave sources can be employed as

samples can be polarized at lower magnetic fields.

As previously referred to, diffusion and translation of unpaired electron species

within the dissolution solvent drives paramagnetic relaxation of the hyperpolarized nuclei

during the sample voyage between polarization and detection magnets, with relaxation

particularly prevalent at low magnetic fields [136]. This process can be countered with

a fast, adiabatic dissolution, and the use of a magnetic tunnel [135]. Paramagnetic re-

laxation is additionally offset by co-freezing beads of ascorbate alongside the substance

of interest. When the frozen beads are rapidly dissolved by the warm solvent jet, the

ascorbate molecules scavenge the radical source. Upon radical quenching, ascorbyl radi-

cals are formed which disproportionate from the bulk solution. Paramagnetic relaxation

is therefore prevented as no unpaired electron species remain within the sample. Radical

scavenging is currently the preferred option for D-DNP experiments as no fast mechan-

ical radical filtering systems are available. Radicals may also be diluted by using an

increased solvent volume, however, the sample concentration and spectral quality will

consequently suffer.

Some disadvantages of dissolution-DNP remain a problem at present. D-DNP is a

one-shot experiment, meaning that all the available polarization accrued by DNP in the

solid state must be exploited in a single dissolution. Hyperpolarized spin order cannot
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be continuously replenished by bubbling a source of high spin order into the sample

volume, unlike some parahydrogen-based hyperpolarization experiments [137, 138]. One

significant drawback of the D-DNP approach is the limited time available for signal ac-

quisition. The resulting hyperpolarized signals cannot result from a series of summed

acquisitions, as is the case for solid state DNP measurements or traditional signal sum-

mation experiments. The brief acquisition period is in essence down to the short T1

for the substances of interest, which are often small molecules. The use of conventional

relaxation times currently prevents D-DNP from producing high-performance results in

alternative fields such as 2D-NMR spectroscopy. In the next section, the concept of

longer-lived spin states, and the symmetry properties that ensure signal longevity, are

explored.
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2.6 Overview of long-lived states

The longitudinal relaxation time constant T1 was traditionally seen as the limiting fac-

tor for the lifetime of NMR signals. After rf-perturbation, the original “memory” of

the spin system is fully recoverable in a time of approximately 5 × T1 [14]. The T1

window, typically a matter of seconds, has already provided unique opportunities for

NMR spectroscopists to probe processes such as diffusion, flow, and slow molecular mo-

tion [41, 139]. Nonetheless, the common time limit for an NMR experiment is governed

by the return of longitudinal spin order towards thermal equilibrium. Hyperpolariza-

tion techniques for use in NMR spectroscopy and imaging are also hampered by the

requirement of exploiting nuclear spin order within the T1 time frame. Lengthening T1

further usually requires chemical modification, such as isotopic labelling, which can be

expensive. In this section, I will discuss an alternative form of long-lived spin order, the

lifetime of which can far exceed that of ordinary magnetization.

Long-lived states (LLS) possess the capability to store nuclear spin order for du-

rations which considerably exceed the T1 time limit, providing a suitable approach to

overcome the constraints on relaxation dynamics. The first discovery of a long-lived

nuclear spin state occurred in the laboratory of Malcolm H. Levitt at the University

of Southampton in 2004 [14]. Together with coworkers Marina Caravetta and Ole

G. Johannessen, the proton pair in a molecule of 2,3-dibromothiophene was shown

to reveal “dark” quantum states with singlet lifetimes exceeding T1 by a factor of

7. As time progressed, a growing bank of molecules bearing long-lived singlet states

emerged [20, 22, 23, 28, 30, 32, 34, 35, 54, 55, 140–148], along with the knowledge of

what creates longevity for the nuclear spin order [16, 17, 26, 56, 149–155]. A key step in

this process was the synthesis of singlet molecules with spin pairs subject to small sym-

metry breaking interactions [24], and consequently the development of rf-pulse schemes

allowing coherent access to the nuclear singlet order [21, 31, 150, 156–160].

In more recent years, the phenomena of long-lived states has been developed and

applied in an endeavour to overcome the issue of limited signal lifetimes in near chemi-

cally equivalent spin systems. Molecular systems have therefore been designed to coax

out longer-lived singlet lifetimes, with small chemical shift differences specifically synthe-

sised for this purpose. A long-lived state with a lifetime surpassing one hour in a room

temperature solution has recently been achieved for a Napthalene derivative composed
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of a sufficiently isolated 13C spin-pair [35]. A lifetime for nuclear spin order exceeding

1 hour has only even been achieved previously in a gas phase NMR experiment [161].

The Naphthalene system embodies the majority of the current knowledge in the LLS

community, and currently holds the world record for a long-lived singlet lifetime. Simi-

lar achievements have also been recorded independently by Giuseppe Pileio and Alexej

Jerschow for a proton pair in a sample of dimethyl fumarate [29, 33, 145], which has a

long-lived state lifetime of ∼10 minutes. The key fundamentals for long singlet lifetimes

in spin-1/2 pairs are:

• strong coupling regime i.e. J-stabilization, small singlet leakage, [17, 24]

• inversion symmetry, [144]

• low-γ singlet nuclei, [146]

• isotopic substitution i.e. selective deuteration∗, [22]

• no neighbouring magnetic nuclei. [28, 29, 33, 35, 145]

Other important considerations for extending nuclear singlet lifetimes are: a rigid molec-

ular structure, the removal of paramagnetic relaxation sources i.e. O2, and avoiding re-

laxation sinks i.e. nearby methyl groups. It is likely that a few of the above constraints

cannot be met for the majority of LLS candidate molecules, but singlet lifetimes out-

lasting those of longitudinal magnetization are still achieved in the majority of cases.

Furthermore, the NMR spectroscoper can also manipulate the spin system at hand in

order to prolong the lifetime of the nuclear singlet order. The techniques of field-cycling

and rf-suppression are typically used to preserve singlet lifetimes, as the symmetry prop-

erties and relaxation dynamics are favourable altered in certain circumstances.

∗In the final chapter of this thesis, discussion of a “new” singlet relaxation mecha-

nism is presented. This mechanism has been term singlet-scalar relaxation of the second

kind (S-SR2K). In this case, selective deuteration considerably shortens the nuclear sin-

glet lifetime. Singlet-SR2K could therefore be the rate limiting factor for long-lived

states in systems already exhibiting substantial singlet lifetimes.

This work presented in this thesis concentrates predominantly on the relaxation

behaviour of nuclear singlet states for coupled pairs of spin-1/2 nuclei. In this section, I
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will convey the fundamental aspects of nuclear singlet states for 2-spin-1/2 systems, and

how the properties of nuclear singlet states allows for long-lived relaxation behaviour.

2.7 Nuclear singlet and triplet states

As discussed in chapter 1, there are two eigenstates of the total angular momentum

for a single spin-1/2 nucleus. The eigenstates are denoted |α〉 and |β〉, and specify the

absolute alignment of the intrinsic magnetic moment parallel |α〉 or anti-parallel |β〉 to

the static magnetic field. For a pair of spin-1/2 nuclei, the angular momentum couples

in both a constructive and destructive manner. A composite spin system is formed with

a total angular momentum of I=0 (destructive addition) or I=1 (constructive addition).

Hence, there are four orthonormal eigenstates of the total angular momentum operator

for a pair of spin-1/2 nuclei. The nature of these four eigenstates depends highly on the

symmetry properties of the spin-pair at hand. Here I consider a pair of homonuclei (i

and j) in an A2 spin system connected via a scalar coupling Jij , i.e. the two spins-1/2

are chemically equivalent at high magnetic field.

The four eigenstates of the total angular momentum operator for a pair of spin-1/2

nuclei are constructed by using products of the |α〉 and |β〉 eigenstates, these are:

|αα〉 , |αβ〉 , |βα〉 , |ββ〉 . (2.14)

The above eigenstates are often referred to as the Zeeman product states. The multi-

plicity of the constructive and destructive combinations of angular momentum allows

one to speculate about the construction of the spin-0 and spin-1 eigenstates. The spin-1

configuration has three components of the angular momentum for a spin-1/2 pair: mI =

0, ±1. Together these components form a spin-1 manifold consisting of three eigenstates

referred to as the nuclear triplet states:

|T+1〉 = |1,+1〉 = |αα〉 , (2.15)

|T0〉 = |1, 0〉 =
1√
2

(|αβ〉+ |βα〉), (2.16)

|T−1〉 = |1,−1〉 = |ββ〉 . (2.17)
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There is just one destructive combination of angular momentum for a pair of spin-1/2

nuclei, i.e. the spin-0 eigenstate has a multiplicity of 1, and is known as the nuclear

singlet state:

|S0〉 = |0, 0〉 =
1√
2

(|αβ〉 − |βα〉). (2.18)

In general, the nuclear singlet and triplet states are declared using the bra-ket notation:

|I,mI〉. Here I will introduce the shorthand notation “S” for the nuclear singlet state,

and “T” for the three nuclear triplet states. For a spin-1/2 nuclear pair ij, the nuclear

singlet and triplet states are eigenstates of the total (Îi + Îj)
2 and z-projection Îiz + Îjz

angular momentum operators:

(Îi + Îj)
2 |I,mI〉 = I(I + 1)~2 |I,mI〉 , (2.19)

(Îiz + Îjz) |I,mI〉 = mI~ |I,mI〉 , (2.20)

where the subscripts i and j indicate the nucleus of the spin pair upon which the angular

momentum operator is acting. For the nuclear singlet state, which has a composite

nuclear spin of 0, the solutions to the eigenequations 2.19 and 2.20 are therefore:

(Îi + Îj)
2 |S0〉 = 0 |S0〉 , (2.21)

(Îiz + Îjz) |S0〉 = 0 |S0〉 , (2.22)

and the nuclear singlet state is evidenced to act as a single, magnetically silent particle.

Direct observation of the spin-0 singlet state is therefore not feasible with NMR, and

detection of singlet spin order requires passage through the triplet manifold. The nu-

clear triplet states behave as the three eigenstates of a spin-1 particle, as shown by the

eigenequations:

(Îi + Îj)
2 |TmI 〉 = 2~2 |TmI 〉 , (2.23)

(Îiz + Îjz) |TmI 〉 = mI~ |TmI 〉 , (2.24)

where mI = 0,±1. In each case, the angular momentum operators (Îi + Îj)
2 and

Îiz + Îjz commute. It is therefore possible to know the eigenvalues to each eigenequation

simultaneously, as the commuting operators share a common set of eigenfunctions. In

which case, Îiz + Îjz may be replaced with Îix + Îjx or Îiy + Îjy.
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Combining the population operators for the nuclear singlet state |S0〉〈S0|, and the

nuclear triplet states |TmI 〉〈TmI |, allows one to construct an operator for the singlet-

triplet population imbalance Q̂SO:

Q̂SO = |S0〉〈S0| − |TmI 〉〈TmI |, (2.25)

where |TmI 〉〈TmI | is the mean population operator for the triplet manifold:

|TmI 〉〈TmI | =
1

3

∑
mI

|TmI 〉〈TmI | =
(|T+1〉〈T+1|+ |T0〉〈T0|+ |T−1〉〈T−1|)

3
. (2.26)

The population difference operator Q̂SO is a property of spin-1/2 pairs known as nuclear

singlet order, and is a long-lived characteristic of singlet magnetic resonance experi-

ments [150, 151]. The imbalance between the population of the nuclear singlet state

and the mean population of the three nuclear triplet states is determined by the “ex-

pectation value” of the population difference operator Q̂SO, see section 1.5.1. At room

temperature, and in thermal equilibrium, the ratio of populations between the triplet

and singlet manifolds is 3:1.

2.8 Symmetry properties of singlet order

It is the symmetry properties of the nuclear singlet and triplet states which enables

the singlet order of spin-1/2 pairs to achieve extraordinary lifetimes, with respect the

lifetime of ordinary magnetization. Consider the permutation operator P̂ (mi,mj):

P̂ (mi,mj) |mi,mj〉 = |mj ,mi〉 . (2.27)

P̂ (mi,mj) swaps the order of the two nuclei i and j, or equivalently exchanges the labels

of two spins:

P̂ (mi,mj) |S0〉 = − |S0〉 , (2.28)

P̂ (mi,mj) |TmI 〉 = + |TmI 〉 . (2.29)

As can be seen from equations 2.15-2.18, the nuclear singlet wavefunction is antisym-

metric with respect to spin exchange whilst the nuclear triplet wavefunctions are all
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exchange-symmetric.

The exchange symmetry imposes strict transition rules for the nuclear singlet and

triplet states under a fluctuating Hamiltonian. The fluctuating Hamiltonian is essentially

a matrix containing transition probabilities between all spin states. The fluctuating

Hamiltonian is required to be symmetric for a pair of spin-1/2 nuclei because the total

energy of the system is invariant to the exchange of identical spins. A permutation-

symmetric Hamiltonian Ĥij is defined by:

ˆ̂
P (mi,mj)Ĥij = Ĥij , (2.30)

where
ˆ̂
P (mi,mj) is the permutation superoperator [162], and is defined as:

ˆ̂
P (mi,mj) = P̂ (mi,mj)⊗ P̂ (mi,mj)

†. (2.31)

The permutation operator P̂ (mi,mj) can be shown to commute with the symmetric

Hamiltonian Ĥij . Expanding equation 2.30 provides:

P̂ (mi,mj)ĤijP̂ (mi,mj)
† = Ĥij , (2.32)

and by multiplying both sides of equation 2.32 with P̂ (mi,mj), and suitably rearranging

the result, yields the following commutivity relation:

[P̂ (mi,mj), Ĥij ] = 0. (2.33)

The application of
ˆ̂
P (mi,mj) twice will recover the original form of Ĥij , hence simply

acting as the identity operation:

P̂ (mi,mj)
†P̂ (mi,mj) = 1̂. (2.34)

The above property permits a more careful examination of the matrix elements belonging

to the symmetric Hamiltonian. Consider a matrix element of Ĥij which links the nuclear

singlet state |S0〉 and the states of the triplet manifold |TmI 〉, such as 〈S0| Ĥij |TmI 〉.
Deliberate insertion of the identity operation (equation 2.34) returns:

〈S0| P̂ (mi,mj)
†P̂ (mi,mj)ĤijP̂ (mi,mj)

†P̂ (mi,mj) |TmI 〉 . (2.35)
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By using the spin-exchange symmetry properties of the nuclear singlet and triplet states

(equations 2.28 and 2.29), and the permutation commutation relation in equation 2.32,

it may be shown that:

〈S0| Ĥij |TmI 〉 = −〈S0| Ĥij |TmI 〉 . (2.36)

A permutation-symmetric Hamiltonian, therefore, cannot connect spin states of opposite

exchange symmetry [139, 163, 164]:

〈S0| Ĥij |TmI 〉 = 0, (2.37)

and singlet-triplet transitions are forbidden in the absence of symmetry-breaking nu-

clear spin interactions. The singlet-triplet population imbalance (and the associated

singlet polarization) is hence a conserved property of the spin system. Therefore, once

a population imbalance is established, coherent population interconversion is only pos-

sible via interactions which are themselves antisymmetric with respect to the spin ex-

change symmetry, or by uncorrelated local magnetic field fluctuations across the spin-1/2

pair. The three nuclear triplet states are connected by triplet-triplet transitions induced

by a fluctuating Hamiltonian which is exchange-symmetric, and the matrix elements

〈TmI | Ĥij |TmI 〉 may be non-zero:

〈TmI | Ĥij |TmI 〉 6= 0, (2.38)

as the three nuclear triplet states posses the same exchange-symmetry. This property

may be shown by replacing 〈S0| for 〈TmI | in equation 2.36. The dominant relaxation

process for 2-spins-1/2 in solution is the in pair dipole-dipole interaction, and is an

exchange-symmetric interaction (see equation 1.162). Hence, the singlet state is immune

to relaxation via the in pair dipole-dipole mechanism and has the following property:

Ĥ ij
DD |S0〉 = 0, (2.39)

where Ĥ ij
DD is the dipole-dipole Hamiltonian for spins i and j [19, 165]. In the ab-

sence of other antisymmetric NMR interactions the singlet-triplet population difference

is infinitely long-lived. In realistic spin systems, a mixture of exchange-symmetric and

exchange-antisymmetric NMR mechanisms are present. Singlet-triplet decoherence is
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small but non-zero, and the decay of singlet order is slow compared to the decay of con-

ventional magnetization, which is affected by magnetic interactions of all symmetries.

Singlet-triplet population interconversion is also governed by the key principle of

angular momentum commutation. It may therefore be shown that a Hamiltonian which

commutes with the total angular momentum operator (Îi + Îj)
2, or equally Îiz + Îjz, is

unable to induce singlet-triplet transitions. Equation 1.157 states that the commutation

between spherical tensor operators given by T̂ ijlm is proportional to the matrix element:

〈lm′| T̂ ijlm |lm〉. Consider the case of the dipole-dipole Hamiltonian, which is represented

by the spherical tensor operator T̂ ij2m, and its commutivity with nuclear singlet order

T̂ ij00:

[T̂ ij2m, T̂
ij
00] = 0. (2.40)

The commutator bracket is equal to zero as the matrix elements 〈lm′| T̂ ij00 |lm〉 are inde-

pendent of the magnetic quantum number m for a given angular momentum quantum

number l. Or simply put, the commutation of a spherical tensor operator with a scalar is

always zero. Therefore any nuclear spin Hamiltonian which commutes with the total an-

gular momentum operator (Îi+ Îj)
2 must conserve the singlet and triplet eigenfunctions

|I,mI〉, as it is a requirement of commuting operators to share a common set of orthonor-

mal eigenfunctions. Furthermore, by examining the commutators of the Liouville-von

Neumann equation (1.99) it is clear that:

d

dt
ρ̂ = 0 if ρ̂ = T̂ ij00, (2.41)

in the presence of exchange-symmetric interactions, and again one can see that T̂ ij00 is

a conserved property of the spin system. The field of long-lived states is built upon

identifying constants of motion, i.e. states, populations etc. which do not evolve under

fluctuating NMR interactions, and hence this is a key result from this chapter. The only

other constant of the motion in this case is the total number of nuclei present in the spin

system. The states |0, 0〉 and |1,m1〉 are hence disconnected and do not interconvert,

unless the nuclear spin Hamiltonian does not commute with (Îi + Îj)
2. Under these

conditions nuclear singlet order is not a conserved property of the spin system, and

singlet-triplet relaxation is permitted.
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2.9 Properties of the coherent Hamiltonian

At high magnetic field the coherent Hamiltonian is a combination of interactions between

nuclear spins, and also interactions between spins and the magnetic field, as described

by equation 1.161. A common scenario is the Zeeman interaction ĤL
Z dominating the

Hamiltonian. Other interactions, such as scalar couplings ĤJ , are also present but are

often significantly smaller in size. For simplicity, the presence of a time-dependent rf-

field is excluded from the Hamiltonian. The coherent Hamiltonian for a pair of scalar

coupled spin-1/2 nuclei in solution includes the following terms:

Ĥcoh = ĤL
Z + ĤJ . (2.42)

The Zeeman Hamiltonian written in the laboratory frame L is given by:

ĤL
Z = ω0(1 + δi)Îiz + ω0(1 + δj)Îjz, (2.43)

where ω0(1 + δi) is the chemically shifted nuclear Larmor frequency for nucleus i. The

J-coupling Hamiltonian is given by:

ĤJ = 2πJij Îi · Îj , (2.44)

where Jij is the in pair scalar coupling. The scalar product of angular momentum vectors

Îi and Îj in the Hamilontian ĤJ may be expanded in terms of the ladder operators Î+

and Î−:

Îi · Îj = Îiz Îjz +
1

2
(Î+
i Î
−
j + Î−i Î

+
j ). (2.45)

For the case of magnetically equivalent spins-1/2, i.e. δi = δj , the coherent Hamiltonian

has the following matrix representation in the singlet-triplet eigenbasis:

ĤST =

〈S0| 〈T−1| 〈T0| 〈T+1|


|S0〉 −3πJij

2 0 0 0

|T−1〉 0 ω0(1 +
δijΣ
2 ) +

πJij
2 0 0

|T0〉 0 0
πJij

2 0

|T+1〉 0 0 0 −ω0(1 +
δijΣ
2 ) +

πJij
2

(2.46)
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Figure 2.12: The energy level structure for a spin-1/2 nuclear pair as described by
the matrix representation of the coherent Hamiltonian in the singlet-triplet eigenbasis.
This schematic is correct for the case of magnetic equivalence and for γ > 0, J > 0.

Taken from reference [26].

where δijΣ is the sum of chemical shift terms δi and δj . Employing a laboratory frame

analysis allows one to determine the singlet-triplet energy level structure from the ma-

trix representation of the coherent Hamiltonian, see figure 2.12. The triplet eigenstates

are separated by ~ω0 (neglecting small chemical shift contributions), and are all addi-

tionally shifted by
πJij

2 . The singlet state is shifted by
−3πJij

2 and hence is separated

from the central triplet level by 2πJij . The Zeeman term of the coherent Hamiltonian

may be simplified for the purposes of facilitating this discussion by undergoing a trans-

formation to the rotating frame. See appendix B for details regarding the rotating frame

transformation. ĤZ as written in the rotating frame is:

ĤZ = ΩiÎiz + Ωj Îjz, (2.47)

where Ωi is the offset frequency of spin i in the rotating frame. ĤZ can be additionally

restructured by using a more convenient formalism involving the sum Ωij
Σ and difference

Ωij
∆ of the resonance offsets for spins i and j:

ĤZ =
Ωij

Σ

2
(Îiz + Îjz) +

Ωij
∆

2
(Îiz − Îjz). (2.48)

For the case of Ωi = Ωj , the coherent Hamiltonian in equation 2.47 describes a magnet-

ically equivalent spin pair, as there are no additional J-couplings to external nuclei and

the exchange of labels i and j leaves Ĥcoh invariant. This property can be shown by act-

ing with the permutation superoperator described in equation 2.31 on Ĥcoh. In this case

Ĥcoh commutes with (Îi + Îj)
2, and nuclear eigenstates of differing exchange-symmetry

are not permitted to interconvert, i.e. permutation symmetry is achieved in the case of
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magnetic equivalence. Such a situation is found for the protons in dihydrogen or water,

both of which constitute an A2 spin system.

The matrix representation of the coherent Hamiltonian is divided into separate

subspaces belonging to different projections of the spin quantum number mI . There is

a single 2 × 2 matrix of mI = 0 states, and two one-dimensional mI = |1| subspaces,

i.e. the populations belong to the states |1,±1〉. The coherent Hamiltonian has the

following matrix form in the singlet-triplet eigenbasis [16]:

ĤST
coh =

〈S0| 〈T+1| 〈T0| 〈T−1|


|S0〉 〈S0| Ĥcoh |S0〉 0 〈S0| Ĥcoh |T0〉 0

|T+1〉 0 〈T+1| Ĥcoh |T+1〉 0 0

|T0〉 〈S0| Ĥcoh |T0〉 0 〈T0| Ĥcoh |T0〉 0

|T−1〉 0 0 0 〈T−1| Ĥcoh |T−1〉

.

(2.49)

where 〈i| Ĥcoh |j〉 is a matrix element of Ĥcoh. The coherent Hamiltonian is shown

to be block diagonal upon reordering of the basis eigenstates. Ĥcoh contains a six-

dimensional subspace of zero quantum operators, constructed from the four population

operators 〈i| Ĥcoh |j〉 = δij |i〉 〈j| and the two singlet-central triplet coherences 〈S0|T0〉
and 〈T0|S0〉. More explicitly, the matrix representation of the coherent Hamiltonian

(magnetic equivalence regime) in the singlet-triplet eigenbasis is:

ĤST
coh =

〈S0| 〈T+1| 〈T0| 〈T−1|


|S0〉 −3πJij

2 0 0 0

|T+1〉 0
ΩijΣ
2 +

πJij
2 0 0

|T0〉 0 0
πJij

2 0

|T−1〉 0 0 0 −ΩijΣ
2 +

πJij
2

, (2.50)

where Ωij
Σ = Ωi + Ωj and is the sum of resonance offsets for spins i and j. Clearly the

difference in resonance offsets is zero, as the two spins are defined to be magnetically

equivalent. The coherent Hamiltonian in the singlet-triplet basis is strictly diagonal, and

indeed there are no terms present which connect states of different angular momentum

quantum number l. As discussed previously for a magnetically equivalent spin-1/2 pair,

the exchange symmetry of the coherent Hamiltonian does not permit mixing of the

nuclear singlet and triplet eigenstates, and the two manifolds are disconnected.
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Nuclear singlet order, defined as the population imbalance between the mean

populations of the singlet and triplet manifolds (equation 2.25), is only perturbed in the

presence of exchange-antisymmetric NMR interactions. Access to the nuclear singlet

order is therefore only possible if the coherent Hamiltonian does not posses permutation

symmetry. In the case of a magnetically equivalent spins-1/2 pair, access to the nuclear

spin order is unavailable due to the absence of off-diagonal terms in Ĥcoh. The presence

of a symmetry-breaking interactions are required to provide access to the nuclear singlet

order, and are necessary for the flow of nuclear spin populations between the nuclear

singlet and triplet states. The later point is relevant for singlet NMR experiments,

in which the population of the singlet state is slowly collected in the triplet manifold

over time. Symmetry breaking in the style of chemical inequivalence is present for a

desymmetrized spin pair, for example, in an asymmetric molecule. In practical cases, a

small chemical shift difference is often synthetically engineered between the two singlet

nuclei. Alternatively, magnetic equivalence is broken by inequivalent scalar couplings

to nuclei outside of the spin pair. In this next section, I will focus on the case of a

small chemical shift difference between the nuclei i and j which leads to the coupling of

nuclear singlet and triplet states.

The eigenstates of the coherent Hamiltonian change if the chemical equivalence

of the two nuclei is broken. As the singlet and triplet states are no longer the true

eigenstates of the coherent Hamiltonian, a suitable matrix representation of the coherent

Hamiltonian is visualized using the Zeeman product basis. The matrix representation

of the coherent Hamiltonian using the Zeeman product basis is:

ĤZP
coh =

〈αα| 〈αβ| 〈βα| 〈ββ|


|αα〉 ΩijΣ

2 + πJ
2 0 0 0

|αβ〉 0
Ωij∆
2 − πJ

2 πJ 0

|βα〉 0 πJ −Ωij∆
2 − πJ

2 0

|ββ〉 0 0 0 −ΩijΣ
2 + πJ

2

. (2.51)

where Ωij
∆ = Ωi − Ωj and is the difference between resonance offsets for spins i and j.

The ladder operators Î+ and Î− contribute to the off-diagonal elements in ĤZP , the

presence of which infers that the Zeeman product states are also not exact eigenstates

of the coherent Hamiltonian. The parts of the coherent Hamiltonian proportional to

Îiz + Îiz contribute to the diagonal part of equation 2.51. The matrix representation



94 Chapter 2: Hyperpolarization and singlet states

of the coherent Hamiltonian is dependent on the level of inequivalence between spins i

and j. In the case of significant chemical inequivalence, the off-diagonal components are

considerably smaller than the difference in terms which they connect, i.e. πJij � ΩijΣ
2 .

Under the secular approximation, the ladder operators may be omitted from the spin

Hamiltonian, and the matrix representation of Ĥcoh becomes diagonal. In this regime,

the Zeeman product states are approximate eigenstates of the Ĥcoh.

One may convert the matrix representation of the coherent Hamiltonian from the

Zeeman product basis to the singlet-triplet basis by using a conversion matrix Q̂PS :

Q̂PS =

〈T+1| 〈S0| 〈T0| 〈T−1|


|αα〉 1 0 0 0

|αβ〉 0 1√
2

1√
2

0

|βα〉 0 −1√
2

1√
2

0

|ββ〉 0 0 0 1

. (2.52)

Q̂PS converts the representation of an approximate eigenstate |P 〉 written in the Zeeman

product basis P into the corresponding approximate eigenstate |S〉 written in the singlet-

triplet basis S:

|S〉 = Q̂PS |P 〉 . (2.53)

Technically the conversion matrix Q̂PS serves as the identity operator, meaning that any

physical results are invariant of the chosen basis. An example would be the conversion

of the term Îiz − Îjz. Initially, Îiz and Îjz are written in the Zeeman product basis,

using natural units, as:

Îiz = |αα〉 〈αα| − |βα〉 〈βα|+ |αβ〉 〈αβ| − |ββ〉 〈ββ| , (2.54)

Îjz = |αα〉 〈αα| − |αβ〉 〈αβ|+ |βα〉 〈βα| − |ββ〉 〈ββ| . (2.55)

The difference in the Îiz and Îjz operators yields:

Îiz − Îjz = 2(|αβ〉 〈αβ| − |βα〉 〈βα|). (2.56)

Apply the conversion matrix Q̂PS to both components of Îiz − Îjz:

Q†SP |αβ〉 〈αβ|QSP =
1

2
(|T0〉 〈T0|+ |T0〉 〈S0|+ |S0〉 〈T0|+ |S0〉 〈S0| , (2.57)
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Q̂†SP |βα〉 〈βα| Q̂SP =
1

2
(|T0〉 〈T0| − |T0〉 〈S0| − |S0〉 〈T0|+ |S0〉 〈S0| . (2.58)

Hence, Î1z − Î2z reported in the singlet-triplet basis is:

Îiz − Îjz = |T0〉 〈S0|+ |S0〉 〈T0| . (2.59)

After using the conversion matrix Q̂PS , one may formalize the coherent Hamiltonian

in the singlet-triplet basis. Ĥcoh is again decomposed into Zeeman (equation 2.48) and

J-coupling (equation 2.45) terms:

ĤZ = ω0(|T+1〉 〈T+1|)− |T−1〉 〈T−1|), (2.60)

ĤJ =
Ωij

Σ

2
(|T+1〉 〈T+1|)− |T−1〉 〈T−1|) +

Ωij
∆

2
(|T0〉 〈S0|) + |S0〉 〈T0|)

+
1

2
πJ(|T+1〉 〈T+1|+ |T0〉 〈T0|+ |T−1〉 〈T−1|)−

3

2
πJ(|S0〉 〈S0|).

(2.61)

The singlet-triplet basis matrix representation of the coherent Hamiltonian is therefore:

ĤST
coh =

〈S0| 〈T+1| 〈T0| 〈T−1|


|S0〉 −3πJij

2 0
Ωij∆
2 0

|T+1〉 0
ΩijΣ
2 +

πJij
2 0 0

|T0〉 Ωij∆
2 0

πJij
2 0

|T−1〉 0 0 0 −ΩijΣ
2 +

πJij
2

. (2.62)

In the case of slight chemical inequivalence between nuclei i and j, i.e. πJij � Ωij∆
2 , the

presence of the off-diagonal terms
Ωij∆
2 connects states spanning different manifolds of

exchange-symmetry and allows weakly allowed transitions between the nuclear singlet

and triplet states. These weakly allowed transitions are selectively pumped via carefully

calibrated rf-pulse sequences, and are the point of access to the nuclear singlet order

from the rapidly relaxing triplet states |TmI 〉. The size of the chemical shift difference

dictates the parameters of the singlet NMR pulse sequences, as described at the end of

this chapter. The importance of the term
ΩijΣ
2 may be mediated by external influences

such as shuttling the sample to regions of low magnetic field [14], using strong continuous

wave rf-irradiation [15, 149] or by employing chemical reactions [21, 55, 143]. Due to the

immunity of the nuclear singlet order to the exchange-symmetric in pair dipole-dipole

interaction, the interconversion between nuclear singlet and triplet states can often occur

slowly i.e. with low probability. If the long-lived nuclear spin order is accessible via a
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small chemical shift difference, the opportunity to encode information for times exceeding

those provided by ordinary magnetization is possible [24].

In order to finish this section, I will attend to the case of two chemically equivalent

spin-1/2 nuclei with inequivalent scalar couplings to other spins outside of the singlet

pair. This regime is relevant for accessing the nuclear singlet order at low magnetic

field [16] and in symmetric spin systems [21, 31, 160]. Consider the case of a chemically

equivalent spin-1/2 pair with an in pair scalar coupling denoted Jij . Now introduce a

third magnetic nucleus (spin k, I = 1/2) to the spin system. The scalar couplings from

the singlet spins i and j to the exterior nucleus are denoted Jik and Jik, with Jik 6= Jjk.

The coherent Hamiltonian Ĥ ijk
coh is therefore written as:

Ĥ ijk
coh = 2πJij Îi · Îj + 2πJikÎiz · Îkz + 2πJjkÎjz · Îkz, (2.63)

where the weak-coupling approximation has been used for the scalar couplings between

spins i,j and spin k. The matrix representation of Ĥ ijk
coh expressed in the following basis:

Bijk = BijST ⊗ BkZP , (2.64)

where BNM represents the kets for the group of spins N in the eigenbasis M , is:

ĤST
coh =

〈S0| 〈T−1| 〈T0| 〈T+1|


|S0〉 −3πJij

2 0
πJijk∆

2 0

|T−1〉 0 −π J
ijk
Σ
2 +

πJij
2 0 0

|T0〉 πJijk∆
2 0

πJij
2 0

|T+1〉 0 0 0 π
JijkΣ

2 +
πJij

2

, (2.65)

where J ijk∆ = Jik − Jjk, and J ijkΣ = Jik + Jjk. The matrix representation of Ĥ ijk
coh is pre-

sented in a subspace which contains the relevant spin dynamics, i.e. the kets corresponds

to only BijST ⊗ |α〉
k
ZP . The |S0〉 and |T0〉 states (singlet-triplet basis of spins i and j) are

connected by the off-diagonal term
πJijk∆

2 , and hence weakly allowed transitions are al-

lowed between the |S0〉 and |T0〉 states. Even in the case of chemical equivalence, the term

πJijk∆
2 breaks the symmetry of the spin system and therefore provides the access route

for polarization transfer between the two manifolds of differing exchange-symmetry. In

cases where differential out-of-pair J-couplings are present, the singlet-triplet population

imbalance may be probed for molecules with chemically equivalent spin-1/2 pairs.
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2.10 Singlet polarization

Singlet NMR remains limited by the low polarization available from experiments per-

formed at room temperature. Hyperpolarizable molecules with built-in long-lived states

offer a promising gateway to alleviate such sensitivity issues, see chapter 4 for more

details [147]. As with many hyperpolarization experiments, it is useful to quantify the

level of nuclear Zeeman polarization reached as a result of the hyperpolarization process,

see section 2.3. In the case of hyperpolarized singlet experiments, one may also desire

to know the amount of nuclear singlet order contained within the spin density operator.

At this point, it is useful to introduce the concept of singlet polarization. The singlet

polarization pS is the projection of the spin density operator ρ̂ onto the operator P̂S (see

appendix B for more details):

pS =
Tr[P̂ †S ρ̂]

Tr[P̂ †S P̂S]
, (2.66)

where P̂S is the singlet polarization operator and is defined as:

P̂S =
3

4
Q̂SO = −Îi · Îj =

√
3 T̂ ij00. (2.67)

The singlet polarization pS is normalized to ensure that the maximum singlet-triplet

population difference is +1, i.e. the singlet state |S0〉 is entirely populated whilst the

triplet manifold is fully depleted of population. In the opposite case, i.e. complete

population of the triplet states |TmI 〉, the singlet polarization pS is -1/3. The bounds

on the nuclear singlet polarization are therefore: −1/3 < pS < +1.

As is often the case in DNP experiments, the experimental desire is to shuttle the

maximal amount of spin population to the mI = ±1 nuclear triplet states, depending on

the offset frequency of the applied microwaves. In this way, the maximum population

difference, and hence singlet polarization, is accrued between the spin-0 and spin-1

manifolds. The maximum Zeeman polarization between the mI = ±1 nuclear triplet

states is established simultaneously. Estimates of the nuclear Zeeman polarization are

easily obtainable, and can be used to provide the level of nuclear singlet polarization.

Consider an ensemble of non-interacting, inequivalent spin-1/2 pairs (i and j) in the

solid-state, the eigenstates of the coherent Hamiltonian at high magnetic field are given

by the Zeeman product states. The populations of the Zeeman product states p(ψiψj)
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are combinations of the populations pi and pj for each spin:

p(αiαj) = (1 + pi)(1 + pj)/4, (2.68)

p(αiβj) = (1 + pi)(1− pj)/4, (2.69)

p(βiαj) = (1− pi)(1 + pj)/4, (2.70)

p(βiβj) = (1− pi)(1− pj)/4, (2.71)

where the factor of 1/4 is included to ensure that: p(αiαj)+p(αiβj)+p(βiαj)+p(βiβj) =

1, i.e. the maximum polarization of the outer |αiαj〉 and |βiβj〉 states is ±1. Assuming

that the spins i and j are equally polarized by DNP at low temperatures: pi = pj = pZ,

where pZ is the Zeeman polarization of an individual nucleus and is orders of magnitude

greater than the thermal equilibrium polarization. The nuclear Zeeman product state

populations may therefore be rewritten as:

p(αiαj) = (1 + 2pZ + p2
Z)/4, (2.72)

p(αiβj) = (1− p2
Z)/4, (2.73)

p(βiαj) = (1− p2
Z)/4, (2.74)

p(βiβj) = (1− 2pZ + p2
Z)/4. (2.75)

Consider the sequence of events during the dissolution-DNP process. After the mi-

crowaves are halted the solid mixture of sample, radical and glassy matrix is rapidly

dissolved by a jet of superheated solvent before being adiabatically transferred to a high

resolution NMR magnet in ∼10 s. If the sample of interest contains a pair of nearly

equivalent spins-1/2 (i and j) satisfying the condition: Ωij
∆ � Jij for Jij ,γi,j > 0, the

liquid-state eigenstates of the coherent Hamiltonian at high magnetic field may be ap-

proximated by the nuclear singlet and triplet states:

p(αiαj) → p(T+1), (2.76)

p(αiβj) → p(S0), (2.77)

p(βiαj) → p(T0), (2.78)

p(βiβj) → p(T−1). (2.79)
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The singlet polarization, defined by using the singlet polarization operator PS in equa-

tion 2.67, is the normalized population difference across the singlet S0 and triplet TmI

manifolds:

pS = p(S0)− (p(T+1) + p(T0) + p(T−1))

3
. (2.80)

Inserting expressions from equations 2.72-2.79 into equation 2.80 yields a singlet polar-

ization which is dependent on the nuclear Zeeman polarization. The singlet polarization

pS as a function of the nuclear Zeeman polarization pZ is therefore:

pS = −p
2
Z

3
. (2.81)

In the case that DNP succeeds in a total population of the |T±1〉 states, i.e. pZ=±1,

the corresponding singlet polarization is -1/3. The negative sign of the singlet polariza-

tion indicates a complete depletion of population from the mI = 0 state, and hence a

population deficit for the singlet state. Strong nuclear Zeeman polarization is therefore

always accompanied by a strong singlet polarization for an ensemble of strongly coupled

spin-1/2 pairs. As shown in chapter 4, the hyperpolarized singlet order has the poten-

tial to remain observable at long times after initially being polarized, in which time the

hyperpolarized spin order available from the nuclear Zeeman polarization has decayed

to thermal equilibrium with the characteristic time constant T1.
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2.11 Singlet methods

In the previous section, the fundamental properties of the nuclear singlet and triplet

states for 2-spin-1/2 systems were presented. Nuclear singlet order, defined as the popu-

lation imbalance between the two manifolds of differing exchange symmetry, was shown

to be immune to relaxation from the in pair dipole-dipole coupling. Long-lived states

were consequently proposed as a means to overcome the limited signal lifetimes avail-

able from longitudinal magnetization, and extraordinary singlet lifetimes far exceeding

T1 have previously been observed in a range of molecular systems [29, 33, 35]. Singlet

order is a magnetically silent arrangement of spin isomers, and is undetectable in con-

ventional NMR experiments. In order to access the long-lived spin order, alternative

pulse sequences which interconvert population between the singlet and triplet manifolds

are required. In this section, I discuss the two favoured pulse sequences for the prepa-

ration of nuclear singlet order, continuing the matrix representation formalism of the

coherent Hamiltonian from section 2.9. The singlet-triplet conversion schemes used in

this thesis are the spin-lock induced crossing (SLIC) and magnetization-to-singlet (M2S)

pulse sequences. Each pulsed method contains inherent advantages and disadvantages,

but are both efficient in creating strong population imbalances for spin-1/2 pairs.

2.11.1 Signal detection for spin-1/2 pairs

Before contemplating the pulse sequences used to observe and manipulate the nuclear

singlet order, I would like to first recognize the effects that the NMR silent property

of the nuclear singlet state has on the detection of ordinary magnetization. Consider

a single spin i (I=1/2, γi > 0) in high magnetic field. Using Dirac notation, the

quantum state of the system is represented by the ket vector |I,mI〉, where I is the

angular momentum quantum number and mI is the spin projection quantum number.

As discussed in chapter 1, the Zeeman effect lifts the degeneracy of the states |I,mI〉 for

a particle in a magnetic field and reveals a substructure identified by quantum numbers

mI = −I, ...,+I. In this case, the values of mI are ±1/2, and the eigenvalues of the Îiz

operator are ~/2 and −~/2, respectively. In quantum mechanics, the ladder operators

raise or lower the eigenvalues of another operator by the quantity ~. The raising Î+
i and
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lowering Î−i operators are defined as:

Î+
i |I,mI〉 = ~

√
I(I + 1)−mI(mI + 1) |I,mI + 1〉 , (2.82)

Î−i |I,mI〉 = ~
√
I(I + 1)−mI(mI − 1) |I,mI − 1〉 . (2.83)

The action of the operator Î+
i on the ket |I,mI〉 raises the value of mI to mI + 1,

corresponding to a state-to-state transition from |I,mI〉 to |I,mI + 1〉. The transition

element 〈I,mI + 1| Î+
i |I,mI〉 for a lone spin-1/2 nucleus gives a coherence amplitude of

~, and hence the ladder operators for an individual spin-1/2 nucleus have the following

matrix representations:

Î+
i =

〈α| 〈β|( )
|α〉 0 1

|β〉 0 0

& Î−i

〈α| 〈β|( )
|α〉 0 0

|β〉 1 0

. (2.84)

Now consider a pair of spins i and j in high magnetic field. Assume that the two spins:

1. both have an angular momentum quantum number I = 1/2; 2. are heteronuclear; and

3. are chemically inequivalent (Ωij
∆ � 0). In this case, the eigenstates of the coherent

Hamiltonian are given by the Zeeman product state states, see equation 2.14. It can be

shown, by similar methods, that the matrix representation of the raising Î+
ij and lowering

Î−ij operators are:

Î+
ij =

〈αα| 〈αβ| 〈βα| 〈ββ|


|αα〉 0 1 1 0

|αβ〉 0 0 0 1

|βα〉 0 0 0 1

|ββ〉 0 0 0 0

& Î−ij =

〈αα| 〈αβ| 〈βα| 〈ββ|


|αα〉 0 0 0 0

|αβ〉 1 0 0 0

|βα〉 1 0 0 0

|ββ〉 0 1 1 0

.

(2.85)

The matrices are represented using the same ordering of the Zeeman product basis as

in equation 2.51. A typical pulse-acquire experiment probes single quantum (-1) tran-

sitions between spin states separated by the nuclear Larmor frequency. There are four

single quantum (-1) transitions for a chemically inequivalent spin-1/2 pair, as shown in

figure 1.10. The NMR signal intensity from the spins in the sample Ssample is propor-

tional to the trace of the spin density operator ρ̂ projected upon the lowering operator
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Î−ij :

Ssample ∝
Tr[ρ̂Î−ij ]

Tr[Î−ij (Î
−
ij )
†]
, (2.86)

where the inner product selects the relevant components of ρ̂. A (π/2)−y pulse tilts

the magnetization vector, originally aligned with static magnetic field, into the x-axis of

the rotating frame. The spin density operator ρ̂ transforms as follows: 1̂ + Îiz + Îjz →
1̂ + Îix + Îjx. In the Zeeman product basis, the matrix representation of the operator

Îix + Îjx is:

Îix + Îjx =

〈αα| 〈αβ| 〈βα| 〈ββ|


|αα〉 0 1√

2
1√
2

0

|αβ〉 1√
2

0 0 1√
2

|βα〉 1√
2

0 0 1√
2

|ββ〉 0 1√
2

1√
2

0

. (2.87)

By using equation 2.86, and the matrix representations of the operators Î−ij and Îix+ Îjx,

the signal intensity is determined to be: Ssample ∝ ~2√
2
.

Now consider a second pair of spins i and j in high magnetic field, and assume the

two are magnetically equivalent (Ωij
∆ = 0). In this case, the eigenstates of the coherent

Hamiltonian are given by the nuclear singlet and triplet states. An example of the energy

level structure for a pair of magnetically equivalent spins is shown in figure 2.12. For a

magnetically equivalent spin system, only single quantum triplet-triplet transitions are

relevant. No directly observable transitions occur between states with differing values of

mI . In order to make a direct comparison with the case of chemically inequivalent spin

pairs the operators Î−ij and Îix + Îjx require transformation into the singlet-triplet basis,

which can be achieved using the transformation matrix in equation 2.52. The resulting

operator matrix representations are as follows:

Î−ij =

〈S0| 〈T+1| 〈T0| 〈T−1|


〈S0| 0 0 0 0

〈T+1| 0 0 1 0

〈T0| 0 1 0 1

〈T−1| 0 0 1 0

& Îix + Îjx =

〈S0| 〈T+1| 〈T0| 〈T−1|


〈S0| 0 0 0 0

〈T+1| 0 0 0 0

〈T0| 0
√

2 0 0

〈T−1| 0 0
√

2 0

.

(2.88)

The matrices are represented using the same ordering of the singlet-triplet basis

as in equation 2.46. Evaluating equation 2.86 in the singlet-triplet basis also returns
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a signal intensity: Ssample ∝ ~2√
2
. A notable outcome of this result are the identical

signal intensities Ssample for different regimes of chemical and magnetic inequivalence,

which is hardly surprising as the signal at time t = 0 does not depend on the form

of the coherent Hamiltonian. It is interesting to note that in the singlet-triplet basis

∼75% of the spin ensemble are in states corresponding to |TmI 〉, and hence ∼25% of

the total population cannot undergo observable transitions with other |TmI 〉 states. The

operators Î−ij and Îix + Îjx have matrix representations which are dependent on the

chosen orthonormal basis, whilst the scalar Tr[ρ̂Î−ij ] is basis independent. These results

demonstrate the robustness of detecting ordinary magnetization in regimes of magnetic

equivalence, as the calculated signal intensity is not compromised by having ∼25% of

the total population residing in the unobservable spin-0 state.

2.11.2 Singlet NMR experiments

The state of a nuclear ensemble, neatly represented by the spin density operator ρ̂,

evolves over time in accordance with the manipulations imposed on the closed system

by the spectroscoper, the internal (J-couplings, chemical shifts etc.) and external (static

magnetic field ~B0) interactions present throughout the experiment, and spin relaxation

(the nuclear ensemble returning to thermal equilibrium). The spin density operator can

additionally be engineered by the design of a suitable coherent Hamiltonian to attain

a desired form of spin order. A typical singlet NMR experiment consists of three main

parts:

1. Prepare. What is the state to be prepared? The pulse sequence employed in

an NMR experiment ultimately depends on the target state of the spectroscoper.

There are likely alternative methods of preparing the same state but the method

of preparation is ultimately limited by the entities of interest.

2. Evolve. Once the state of choice has been prepared, time evolution is an advanta-

geous tool for determining the relaxation properties of particular spin orders. The

simplest examples are the inversion and saturation recovery experiments used to

investigate the longitudinal relaxation time T1.

3. Reconvert. The detection state of all NMR experiments is the same, and regard-

less of how the chosen state was prepared and consequently evolved, the detection
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magnetizationsinglet order
user

controls

magnetization
relaxation

prepare reconvert
evolve

Figure 2.13: The three crucial stages of a singlet NMR experiment. Prepare: the spin
system is engaged by incoming pulses from the spectrometer which encode the original
magnetization as a more preferential form of spin order where relevant information is
consequently stored. Evolve: the newly established spin order is propagated forward in
time under the influence of coherent effects (including user defined control such as con-
tinuous wave rf-fields and pulsed field gradients) and incoherent relaxation phenomena.
Reconvert: NMR experiment detect physical observables, such as the Î− operator,
and as such reconversion to observable magnetization is required for monitoring the

evolution and relaxation of the established spin order.

state must correspond to a physical observable. In this respect, singlet pulse se-

quences are often symmetric about the evolution period.

Each basic stage is depicted graphically, and in chronological order, in figure 2.13. Impor-

tantly, the preparation stage requires the ensemble to be placed in a magnetic field ~B0,

which creates a small, but observable, population imbalance between nuclear spin states

once thermal equilibrium is reached. The longitudinal magnetization obtainable from

this process acts as the starting point for the preparation procedure to come [166, 167].

The preparation and detection stages of singlet NMR experiments will be the main

points of focus in this section.

2.12 Spin-lock induced crossing

The spin-lock induced crossing (SLIC) pulse sequence has been the preferred method of

accessing nuclear singlet order in this work. The approach was first developed by Rosen

and coworkers in 2013 [157], and uses the small chemical shift difference between spin-

1/2 nuclei to access to the long-lived singlet order. Other variants, such as the adiabatic

SLIC [158, 159], also exist and achieve efficient triplet-singlet population interconversion.

A schematic of the spin-lock induced crossing (SLIC) pulse sequence is illustrated in

figure 2.14.

This SLIC pulse sequence operates as follows: after the initial 90◦ pulse, a radiofre-

quency field is applied with a 90◦ phase shift. The amplitude of this field is selected
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rf-field
ωSLIC

9090

time τSLIC τSLICτEV
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Figure 2.14: The spin lock induced crossing (SLIC) pulse sequence used for accessing
the long-lived singlet order in near-equivalent pairs of spin-1/2 nuclei and measuring

its resulting decay.

so that the nutation frequency ωSLIC/2π matches the J-coupling Jij . This establishes

a resonance which causes the spin-locked magnetization to be converted into nuclear

singlet order through the action of the chemical shift difference, with the conversion

complete in a time τSLIC, neglecting relaxation and other complications [157]. The de-

pendence of τSLIC on the chemical shift difference Ωij
∆ is explored later. The preparation

stage of the SLIC pulse sequence excites the maximum obtainable nuclear singlet order,

in the case that the conversion rate is fast compared to relaxation. The nuclear singlet

order is allowed to evolve for a variable interval τEV, occasionally in the presence of

a larger-amplitude “spin-locking” rf field (nutation frequency ωLOCK/2π), which sup-

presses singlet-triplet mixing [149]. A second SLIC pulse sequence converts the nuclear

singlet order into transverse magnetization, and the induced NMR signal is detected,

see figure 2.14. The decay of the long-lived nuclear singlet order is tracked by repeating

the pulse sequence with different values of the singlet evolution interval τEV.

2.12.1 SLIC experiment for inequivalent spin-1/2 pairs

It is possible to examine the effects of a weak, transverse field applied to a spin-1/2

nuclear pair i and j. In such cases, the offset frequency of the weak rf-field is assumed

to be equal to the mean resonance position of the two nuclei, i.e. (Ωi + Ωj)/2. In this

section, it is convenient to define the basis using linear combinations of the Zeeman
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product states:

|φS〉 = cos(
θij
2

) |αβ〉 − sin(
θij
2

) |βα〉 , (2.89)

|T−1〉 = |ββ〉 , (2.90)

|φT 〉 = sin(
θij
2

) |αβ〉+ cos(
θij
2

) |βα〉 , (2.91)

|T+1〉 = |αα〉 , (2.92)

where θij is the arctangent of 2πJij/Ω
ij
∆, see equation 1.15. Only the mI=0 states (|φS〉

and |φT 〉) are connected via Jij and can become mixed. As the mixing angle θij → π/2

(regime of chemical equivalence) the nuclear singlet and triplet states become eigenstates

of the coherent Hamiltonian Ĥcoh, and equations 2.15-2.18 are returned. In order to

understand how the application of a weak, transverse field can lead to the augmentation

of nuclear singlet order, I revisit the matrix representation of the coherent Hamiltonian

Ĥcoh at high magnetic field. In the case of slight chemical inequivalence between the

two nuclei i and j, i.e. πJij � Ωij∆
2 , the approximate eigenbasis for an ensemble of non-

interacting spin-1/2 pairs is the singlet-triplet basis (θij . π/2). A transformation into

the rotating frame simplifies the matrix representation of ĤST
coh as terms on the order of

the nuclear Larmor frequency are removed. Diagonalization of ĤST
coh gives the eigenvalues

in equations 1.17-1.21, and the corresponding matrix representation of ĤST
coh is shown in

equation 2.62.

A low amplitude spin-locking field ωijSLIC is applied at the average resonance fre-

quency of the two nuclei (Ωi+Ωj)/2 creating off-diagonal terms which connect the three

I=1 nuclear triplet states, i.e. the spin-locking pulse is applied on resonance with the

triplet transitions. The I=0 nuclear singlet state remains disconnected from the triplet

manifold, as only single-quantum triplet-triplet transitions are allowed. The coherent

Hamiltonian in the presence of weak rf-irradiation ĤST
coh,rf is:

Ĥcoh,rf =
Ωij

Σ

2
(Îiz + Îjz) +

Ωij
∆

2
(Îiz − Îjz) + 2πJij Îi · Îj + ωijSLIC(Îix + Îjx), (2.93)

and has the following matrix representation in the singlet-triplet eigenbasis:
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ĤST
coh,rf =

〈φS | 〈T−1| 〈φT | 〈T+1|


|φS〉 −3πJij

2 0
Ωij∆
2 0

|T−1〉 0
πJij

2
ωijSLIC√

2
0

|φT 〉 Ωij∆
2

ωijSLIC√
2

πJij
2

ωijSLIC√
2

|T+1〉 0 0
ωijSLIC√

2

πJij
2

, (2.94)

where ωijSLIC is the nutation frequency of the applied SLIC pulse. The off-diagonal terms

are proportional to ωijSLIC and Ωij
∆ with:

Ωij
∆ = Ωi − Ωj . (2.95)

The duration of the SLIC pulse is typically on the order of milliseconds to seconds. Such

pulse durations are approximately on the timescale of the spin system evolution con-

trolled by the in pair scalar coupling Jij and the chemical shift difference Ωij
∆. Assuming

a small but non-zero in pair scalar coupling, and a long spin-locking time relative to

the nuclear Larmor period, allows the coherent Hamiltonian can be diagonalized for a

second time. The diagonalized matrix representation of ĤST
coh,rf is:

ĤST
coh,rf =

〈S0| |ψ−1〉 |ψ0〉 |ψ+1〉


|S0〉 −3πJij

2
Ωij∆
2
√

2
0 − Ωij∆

2
√

2

|ψ−1〉 Ωij∆
2
√

2

πJij
2 − ωSLIC 0 0

|ψ0〉 0 0
πJij

2 0

|ψ+1〉 − Ωij∆
2
√

2
0 0

πJij
2 + ωSLIC

. (2.96)

In the presence of continuous wave (CW) irradiation the mixing angle θij is replaced by

θrf (see appendix B for more details) and the mixing between the nuclear singlet and

triplet states is governed by the nutation frequency of the CW pulse ωCW:

tan(θrf ) =
2ωCW

Ωij
∆

. (2.97)
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Diagonalization of the coherent Hamiltonian ĤST
coh,rf provides four “SLIC” eigenstates:

|S0〉 =
1√
2

[
√

2 sin(θrf ) |S0〉 − cos(θrf )(|T+1〉+ |T−1〉)], (2.98)

|ψ−1〉 =
1

2
[
√

2 |T0〉 − sin(θrf )(|T+1〉+ |T−1〉)−
√

2 cos(θrf ) |S0〉], (2.99)

|ψ0〉 =
1√
2

(|T+1〉 − |T−1〉), (2.100)

|ψ+1〉 =
1

2
[
√

2 |T0〉+ sin(θrf )(|T+1〉+ |T−1〉) +
√

2 cos(θrf ) |S0〉]. (2.101)

In the limit of strong CW irradiation, i.e. ωCW � Ωij
∆, the angle θrf → π/2, and the

SLIC eigenstates are consequently simplified to:

|S0〉 = |S0〉 , (2.102)

|ψ−1〉 =
1

2
(|T−1〉+ |T+1〉)−

1√
2
|T0〉 , (2.103)

|ψ0〉 =
1√
2

(|T+1〉 − |T−1〉), (2.104)

|ψ+1〉 =
1

2
(|T−1〉+ |T+1〉) +

1√
2
|T0〉 , (2.105)

which is the eigenbasis of the operator Îix+ Îjx. In cases of slight chemical inequivalence

and no continuous wave irradiation, θij → π/2 and the same eigenstates are found under

the condition of weak spin-locking. The eigenstate |S0〉 is maintained in the presence of

the spin-lock pulse, whilst the states |ψmI 〉 become superpositions of the nuclear triplet

states |TmI 〉. The states |S0〉 and |ψ0〉 are separated by Jij and do not depend on ωSLIC,

whilst the states |ψ±1〉 are linearly dependent on ωSLIC.

The final form of the SLIC eigenstates and coherent Hamiltonian ĤST
coh,rf showcase

the inner workings of the SLIC pulse, and a clear route for triplet-singlet population

interconversion. Suppose that the nutation frequency of the long SLIC pulse is set to

match the in pair scalar coupling Jij of the singlet spins i and j:

ωSLIC = 2πJij . (2.106)

In this case, it is evident that the populations |S0〉〈S0| and |ψ−1〉〈ψ−1| are connected

as the energies of the states |S0〉 and |ψ−1〉 are equal. A “level-crossing” [168–170] is

therefore created by the application of a weak spin-locking field, and the off-diagonal

elements
Ωij∆
2
√

2
facilitate a population transfer between states |S0〉 and |ψ−1〉 in this regime.
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Figure 2.15: a) Simulated trajectories for the transfer of longitudinal magnetization

Îiz + Îjz into transverse magnetization Îix + Îjx (green), Îiy − Îjy (red), and nuclear

singlet order − 2Îiz·Îjz+Î+i ·Î
−
j +Î−i ·Î

+
j

2
√

3
(black) using the pulse sequence described in fig-

ure 2.14 for a pair of near-equivalent spin-1/2 nuclei. Residual longitudinal magne-
tization Îiz − Îjz is shown by the blue trajectory. The simulation uses the following

parameters: Jij = 11.7 Hz, Ωij∆ = 13.5 ppb, ωSLIC = 2π11.7 rads−1, τSLIC = 100 ms,

ωLOCK = 500 Hz, τEV = 100 ms and ~B0 = 11.7 T. No relaxation is included in the
simulation. b) Simulated trajectories of population difference operators |T−1〉〈T−1| -
|T+1〉〈T+1| (blue) and |ψ−1〉〈ψ−1| - |S0〉〈S0| (black) under the action of the pulse se-

quence described in figure 2.14. The simulation parameters are the same as in a).

Simulated trajectories of the nuclear singlet order and the Cartesian product operators

Îix + Îx, Îiy − Îjy and Îiz − Îjz for the SLIC pulse sequence are shown in figure 2.15a).

The initial 90◦90 pulse creates coherences between the |φ0〉 and |T±1〉 states, which

corresponds to a population difference across the |T±1〉 states. Over the course of the

spin-locking duration, the |T±1〉 population difference evolves into a population difference

between the states |ψ−1〉 and |S0〉, see figure 2.15b). The rate of polarization transfer is

modulated by the size of the chemical shift difference Ωij
∆. As most J-synchronous trans-

fers are oscillatory, population interconversion between the singlet and triplet states is

predictable and controllable. The timescale for maximal polarization transfer is there-

fore:

τSLIC =
2π√
2Ωij

∆

, (2.107)

which occurs at the halfway point of the polarization oscillation period 2
√

2π

Ωij∆
.

2.12.2 SLIC experiment for equivalent spin-1/2 pairs

As considered in section 2.9, a chemically equivalent spin-1/2 pair (i and j) scalar coupled

to an external spin-1/2 nucleus (k) requires an alternative route of access to the nuclear
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singlet order. In this case, the coherent Hamiltonian Ĥ ijk
coh is given in equation 2.63. In

the presence of a weak rf-field ωijSLIC applied to spins i and j the coherent Hamiltonian

Ĥ ijk
coh,rf becomes:

Ĥ ijk
coh,rf = 2πJij Îi · Îj + 2πJikÎiz · Îkz + 2πJjkÎjz · Îkz + ωijSLIC(Îix + Îjx). (2.108)

The matrix representation of the coherent Hamiltonian Ĥ ijk
coh,rf in a frame that diagonal-

izes the Îix + Îkx operators is:

Ĥ ijk
coh,rf =

〈
Sijk0

∣∣∣ |ψijk−1 〉 |ψijk0 〉 |ψijk+1 〉


|Sijk0 〉

−3πJij
2 −πJijk∆

2
√

2
0

πJijk∆

2
√

2

|ψijk−1 〉 −
πJijk∆

2
√

2

πJij
2 − ωSLIC

πJijkΣ

2
√

2
0

|ψijk0 〉 0
πJijkΣ

2
√

2

πJij
2

πJijkΣ

2
√

2

|ψijk+1 〉
πJijk∆

2
√

2
0

πJijkΣ

2
√

2

πJij
2 + ωSLIC

, (2.109)

where the off-diagonal terms are proportional to:

J ijk∆ = Jik − Jjk, (2.110)

J ijkΣ = Jik + Jjk, (2.111)

and the eigenvalues of the diagonalized coherent Hamiltonian Ĥ ijk
coh,rf are:

|Sijk0 〉 = |S0〉 ⊗ |Ik,MIk〉 , (2.112)

|ψijk−1 〉 = [
1

2
(|T−1〉+ |T+1〉)−

1√
2
|T0〉]⊗ |Ik,MIk〉 , (2.113)

|ψijk0 〉 = [
1√
2

(|T+1〉 − |T−1〉)]⊗ |Ik,MIk〉 , (2.114)

|ψijk+1 〉 = [
1

2
(|T−1〉+ |T+1〉) +

1√
2
|T0〉]⊗ |Ik,MIk〉 , (2.115)

where |Ik,MIk〉 is the spin state of nucleus k. The matrix representation of the coherent

Hamiltonian Ĥ ijk
coh,rf shown in equation 2.109 is given in a subspace of Ĥ ijk

coh,rf which

contains all the relevant spin dynamics. The subspace consists of 4 states, out of a total

of 8 states, with the chosen states corresponding to the |β〉 state of spin k.

Consider again the case of ωijSLIC matched to 2πJij . A level crossing is created

between the states |Sijk0 〉 and 〈ψijk−1 |, and the off-diagonal terms
πJijk∆

2
√

2
allow a population

transfer which gradually accumulates the nuclear singlet order. In contrast to the case of

two inequivalent spins-1/2, the maximum triplet-singlet conversion efficiency is achieved
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Figure 2.16: The magnetization-to-singlet-singlet-to-magnetization (M2SS2M) pulse
sequence used for accessing the long-lived singlet order in near-equivalent pairs of spin-

1/2 nuclei and measuring its resulting decay.

when:

τ ijkSLIC =

√
2

J ijk∆

, (2.116)

as the oscillatory transfer is modulated by the difference in out-of-pair scalar couplings

J ijk∆ [21, 31, 157, 160].

2.13 Magnetization-to-singlet-singlet-to-magnetization

The small chemical shift difference between spin-1/2 nuclei allows coherent access to

the nuclear singlet order, as demonstrated by the SLIC pulse sequence in section 2.12.1.

An alternative pulse sequence which also operates effectively in the near-equivalence

regime is the magnetization-to-singlet-singlet-to-magnetization (M2SS2M) [150, 156].

The M2SS2M pulse scheme was realized by Tayler and Levitt and was originally used

as a method of accessing nuclear singlet order, before the SLIC sequence was available.

Although not quite as simple as the SLIC, the M2SS2M does have its advantages and is

presented in this thesis alongside D-DNP experiments. A comparison of the SLIC and

M2SS2M pulse sequences is given in appendix B. In this section, an evaluation of the

M2S pulse sequence is given.

The M2SS2M pulse sequence is built on two repeated blocks of J-synchronized

echo (JSE) trains that, if applied in an appropriate manner, combine to produce a more

sophisticated pulse sequence which has the ability to interconvert magnetization and

singlet order. A schematic of the M2SS2M sequence is shown in figure 2.16. The spin
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density operator description of the M2S pulse sequence (first half of the M2SS2M pulse

sequence) for a pair of near-equivalent spin-1/2 nuclei (i and j) works as follows:

Considering that the nuclear singlet |S0〉 and triplet |TmI 〉 states have near iden-

tical populations at thermal equilibrium, the longitudinal spin order of the spin system

is defined as the population difference between the outer triplet mI = ±1 states (|T−1〉
and |T+1〉):

Îiz + Îjz ≡ |T+1〉〈T+1| − |T−1〉〈T−1| . (2.117)

The application of an initial 90◦90 radiofrequency pulse tilts the longitudinal magneti-

zation Îiz + Îjz into the xy-plane and creates transverse magnetization. The Cartesian

product operator Îix + Îjx corresponds to triplet-triplet coherences between the outer

mI = ±1 triplet states |T±1〉 and the inner mI = 0 triplet state |T0〉:

Îix + Îjx ≡ |T+1〉〈T0|+ |T0〉〈T+1|+ |T0〉〈T−1|+ |T−1〉〈T0| . (2.118)

The JSE unit is constructed from a composite 180◦0 pulse sandwiched by two delay peri-

ods of τJ = 1/4Jij , see figure 2.16. Successive JSE units transform the single quantum

coherences into triplet-singlet coherences between the outer mI=±1 states |T±1〉 and the

singlet state |S0〉, which corresponds to the operator Îiy − Îjy in the Cartesian product

operator basis. Depending on whether the number of echoes n1 is odd or even, the

operator Îiy − Îjy is expressed as:

n1=odd: Îiy − Îjy ≡ i(|T+1〉〈S0|+ |S0〉〈T+1|+ |S0〉〈T−1|+ |T−1〉〈S0|), (2.119)

n1=even: Îiy − Îjy ≡ i(|T+1〉〈S0|+ |S0〉〈T+1| − |S0〉〈T−1| − |T−1〉〈S0|). (2.120)

A shortcut would be to swap the states |T0〉 and |S0〉. The number of echoes n1 exploited

to switch the state |T0〉 with |S0〉 is dependent on the size of the chemical shift difference

Ωij
∆. The echo number n1 is defined as:

n1 =
π

2θij
, (2.121)

and in practice must be rounded to the nearest integer. As a rule of thumb, a smaller

chemical shift difference Ωij
∆ with respect to the in pair scalar coupling Jij indicates that

more echoes are required to interconvert the state |T0〉 with |S0〉. In the near-chemical

equivalence regime θij → 0 and large numbers of echoes are required to exchange |T0〉
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with |S0〉 in certain cases [54]. The following 90◦0 pulse rotates the transverse magneti-

zation into Îiz − Îjz, i.e. a zero quantum coherence between the mI=0 states. The 90◦0

rotation leaves the singlet state unperturbed whilst interconverting the |T±1〉 and |T0〉
state populations:

±(|T+1〉+ |T−1〉)
90◦0←−→ ∓ i√

2
|T0〉 , (2.122)

|S0〉
90◦0←−→ |S0〉 . (2.123)

Equations 2.119 and 2.120 transform under the application of the 90◦0 pulse in order to

represent the operator Îiz − Îjz [156]:

n1=odd: Îiz − Îjz ≡
1√
2

(|T0〉〈S0| − |S0〉〈T0|), (2.124)

n1=even: Îiz − Îjz ≡
1√
2

(|T0〉〈S0|+ |S0〉〈T0|). (2.125)

The echo number n1 is often chosen to be even since a second JSE train with half the

number of pulses (n2=n1/2) is used later in the M2S sequence. In the case of n1 = even,

the effect of free evolution for a time τJ = 1/4Jij under an internal Hamiltonian governed

by the in pair scalar coupling Jij phase shifts the triplet-singlet coherences [25, 150]:

n1=even: Îiz − Îjz ≡
1√
2

(|T0〉〈S0| − |S0〉〈T0|), (2.126)

i.e. the coherences have opposite sign. The resulting coherences may now be converted

to a population difference between the mI=0 |S0〉 and |T0〉 states. A second JSE train,

performed with half the number of echoes (n2=π/4θij), transforms the singlet state |S0〉
into a superposition of mI=0 states:

|S0〉 →
|S0〉+ |T0〉√

2
, (2.127)

and converts the coherences described in equations 2.124 and 2.125 into a singlet-triplet

population difference Q̂ST between the mI = 0 states |S0〉 and |T0〉:

n1=even: Q̂ST ≡
1

2
|S0〉〈S0| − |T0〉〈T0| . (2.128)

The M2S sequence is therefore capable of performing the same task as the SLIC pulse,
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Figure 2.17: Simulated trajectories for the transfer of longitudinal magnetization Îiz+

Îjz into transverse magnetization Îix + Îjx (green), Îiy − Îjy (red), and nuclear singlet

order − 2Îiz·Îjz+Î+i ·Î
−
j +Î−i ·Î

+
j

2
√

3
(black) using the pulse sequence described in figure 2.16 for

a pair of near-equivalent spin-1/2 nuclei. Residual longitudinal magnetization Îiz − Îjz
is shown by the blue trajectory. The simulation uses the following parameters: Jij =

11.7 Hz, Ωij∆ = 13.5 ppb, n1 = 3, n2 = 1, τJ = 21.4 ms, ωLOCK = 500 Hz, τEV = 100 ms

and ~B0 = 11.7 T. No relaxation is included in the simulation.

and as the name suggests convert longitudinal magnetization into nuclear singlet or-

der (proportional to QST, see later). It should be noted that the time reversal of the

M2S sequence (applying the sequence in reverse chronological order) achieves the op-

posite transformation and converts nuclear singlet order into observable magnetization

(the initial 90◦90 pulse is ignored). The reverse pulse sequence is termed singlet-to-

magnetization (S2M). The S2M pulse sequence employs the same parameters as the

M2S pulse sequence. Simulated trajectories of the nuclear singlet order and the Carte-

sian product operators Îix + Îx, Îiy − Îjy and Îiz − Îjz for the M2SS2M pulse sequence

are shown in figure 2.17. The singlet-to-magnetization (S2M) pulse sequence is used

in the context of this work to draw out the hyperpolarized singlet order from a pair of

near-equivalent protons in a singly deuterated methyl group.

It is interesting to note the upper bound on the polarization transfer for the fol-

lowing transformation: magnetization → singlet order → magnetization. As previously

discussed, the form of the spin density operator at the commencement of the evolution

period τEV is proportional to Q̂ST for two spins-1/2 (i and j). The singlet-central triplet

population difference Q̂ST prepared by the M2S sequence (equation 2.128) may be more



Magnetization-to-singlet-singlet-to-magnetization 2.13 115

conveniently expressed as:

|S0〉〈S0| − |T0〉〈T0| → |S0〉〈S0| −
1

3
(|T+1〉〈T+1|+ |T0〉〈T0|+ |T−1〉〈T−1|) (2.129)

+
1

3
(|T+1〉〈T+1| − 2 |T0〉〈T0|+ |T−1〉〈T−1|),

where the first term (line 1) corresponds to the nuclear singlet order, i.e. the imbalance

between the singlet and mean triplet populations [150, 151]. The second term (line 2)

represents the perturbed nuclear triplet populations, which are currently out of thermal

equilibrium due to the application of the M2S pulse sequence. Suppose now that Q̂ST is

left to evolve for a time interval which is long with respect to the longitudinal relaxation

time T1 but short with respect to the singlet relaxation time TS. Assuming that the

nuclear triplet populations return to uniformity after a time period of ∼ 5 × T1, with

minimal decay of the nuclear singlet order, the singlet-central triplet population differ-

ence corresponds to Q̂SO, see equation 2.25. The term relating to the longitudinal spin

order of the singlet pair i and j becomes diminishingly small at long evolution times

τEV, and is neglected. The resulting spin density operator may therefore be written as

the sum of two orthogonal terms:

Q̂SO → 2

3

(
|S0〉〈S0| − |T0〉〈T0|

)
(2.130)

+
1

3
(|S0〉〈S0| − |T+1〉〈T+1|+ |T0〉〈T0| − |T−1〉 〈T−1|).

The first term (line 1) is reconverted by the S2M pulse sequence into the operator

2/3(Îix + Îjx), i.e. 2/3 of the starting Zeeman polarization. The M2SS2M pulse se-

quence therefore has a maximum theoretical efficiency of 2/3 for the conversion scheme:

magnetization→ singlet order→ magnetization. The SLIC pulse sequence possesses an

identical maximum theoretical conversion efficiency. A more detailed approach to the

bounds on polarization transfer is discussed by Sørensen [171] and Levitt [151, 172, 173].

In practice, efficiencies lower than 2/3 are observed due to the additional loss of nuclear

spin order related to the effects of relaxation during pulse sequence execution, pulse im-

perfections, ~B1 magnetic field inhomogeneities and other complications. Other terms are

also present in Q̂SO (line 2), but may be destroyed via singlet filtration techniques [54–

56].





Chapter 3

Long-lived nuclear spin states in

monodeuterated methyl groups

As previously discussed, long-lived states (LLS) are configurations of nuclear spins which

are protected against relaxation in nuclear magnetic resonance (NMR) experiments [14–

27, 35, 142, 144, 149, 150, 156–158]. In systems of spin-1/2 pairs, the LLS is called singlet

order. This consists of the population imbalance between the spin-0 singlet state and

the spin-1 triplet states [14–16]. The decay time constant of singlet order is denoted TS .

Access to the nuclear singlet order is provided by a chemical shift difference between the

participating spins, or by differences in spin-spin couplings to spins outside the pair [23].

LLS have also been observed in the 3-spin-1/2 systems of rapidly rotating methyl

groups in solution [141, 155, 174]. In this case the LLS is given by the imbalance in

populations between spin states spanning different irreducible representations of the

C3 permutation group [175]. Some materials, such as γ-picoline, display quantum-

rotor induced polarization (QRIP) effects, in which a large polarization of the methyl

LLS is induced by dissolution of the material from cryogenic conditions [141, 176–178].

However, the hyperpolarized LLS only gives rise to observable NMR signals through

an incoherent cross-relaxation mechanism involving a fourth nuclear spin, which greatly

reduces the available signal enhancement [141, 155, 174].

Since methyl groups are ubiquitous in nature, the exploitation of methyl LLS

is potentially attractive. In this chapter I show that, in certain cases, it is possible to

achieve coherent access to a methyl LLS with a high conversion efficiency into observable

117
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NMR signals. The conditions are: (i) the methyl group is monodeuterated, and therefore

contains a proton pair; (ii) the local environment is chiral, and (iii) the three methyl

rotamers have sufficiently different populations, so that a small chemical shift difference

is induced between the CH2D protons after averaging over all populated states. It is

shown that the small chemical shift difference allows coherent (and therefore efficient)

access to the long-lived singlet order of a proton spin pair, using known radiofrequency

pulse techniques [150, 156–158].

In this chapter, the proton LLS in the N-CH2D group of N-CH2D-2-methylpiperid-

ine is also presented, with the observed singlet lifetimes TS found to be between 20 and 55

seconds (dependent on temperature). The ratio of the singlet relaxation time TS to the

longitudinal relaxation time T1 was found to be remarkably constant over a wide range

of conditions, and equal to 3.1 ± 0.1. The results suggest that a common underlying

mechanism is responsible for the decay of longitudinal magnetization and nuclear singlet

order. The singlet relaxation in this system is hence shown to be dominated by the

dipolar interactions between the CH2D protons and the CH2D deuteron. The measured

singlet relaxation times cannot be explained by a model in which the three hydrogen

nuclei are localised at the vertices of an equilateral triangle, and a modified geometrical

model is proposed which is consistent with the experimental data. This result shows

that it is feasible to exploit methyl LLS without relying on weak cross-relaxation effects,

in suitable cases.

3.1 Equilibrium isotope effects for CH2D groups

The three protons of a methyl (CH3) group are chemically equivalent from an NMR

standpoint due to the rapid rotational motion of the methyl rotor. This gives rise

to a single resonance in the NMR spectrum as the chemical shift of each proton is

interchanged on a timescale which is shorter than the nuclear Larmor period. In the

case of a monodeuterated methyl (CH2D) group in a chiral molecule, the two CH2D

protons are diastereotopic and have distinct chemical shifts. A visible CH2D proton

chemical shift difference is much harder to observe however, and chemical inequivalence

of CH2D protons has only been observed in a small handful of molecules, most of which

contain an N-CH2D group in a chiral environment [56, 179–184].



Equilibrium isotope effects for CH2D groups 3.1 119

N

CH3

CH2D

Figure 3.1: The dominant di-equatorial chair conformation [179] of N-CH2D-2-
methylpiperidine in solution at room temperature, showing the nitrogen lone pair which

is implicated in the inequivalence of the two CH2D protons.

An appreciable diastereotopic chemical shift difference between the two protons

of a CH2D group is most easily induced by two key components:

1. A strong rotameric preference/aversion for a particular CH2D group rotamer [185],

i.e. a rotameric population asymmetry.

2. Distinct magnetic environments at each static site occupied by a CH2D group pro-

ton.

Prior studies suggest that a nitrogen lone pair neighbouring a CH2D group can

cause relatively large isotope effects on the conformational equilibria [186–188]. Based on

such evidence, Anet and Kopelevich investigated the proton NMR spectrum of N-CH2D-

2-methylpiperidine, a chiral six-membered ring containing an N-CH2D group, which

displays an observable CH2D proton chemical shift difference [56, 179, 181, 182, 184].

The chemical structure of N-CH2D-2-methylpiperidine is given in figure 3.1 and is used

extensively in CH2D-based experiments throughout this thesis.

3.1.1 Vibrational spectroscopy

Before a discussion of symmetry breaking interactions and long-lived states in CH2D

groups can take place, the theory behind the equilibrium isotope effect (EIE) requires

explanation. From a brief recapitulation of vibrational spectroscopy, all bonds have

quantized vibrational energy levels. The vibrational energy levels En depend on; 1. the

frequency of the bond stretch ν; and 2. the reduced mass of the two bonded atoms µ.

The bond stretching frequency ν is written as:

ν =
1

2π

√
k

µ
(3.1)
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Figure 3.2: The vibrational energy levels of an anharmonic oscillator for integer values
of n. The ZPVE (E0) corresponds to the ground vibrational state n=0. The anharmonic
potential (black, solid line) is given by the Morse potential (equation 3.3). A harmonic

oscillator is represented by the parabolic potential (grey, dashed lines).

where k is the force constant. The reduced mass µ is given by:

µ =
m1m2

m1 +m2
, (3.2)

where mi is the mass of atom i. In a simplified version of events, the potential energy

of a C-H bond as a function of nuclear separation is given by the Morse potential, see

figure 3.2 [189, 190]. The Morse potential V (r) is expressed as:

V (r) = De(1− e−β(r−r0))2, (3.3)

where De is the dissociation energy of the molecule, β provides a measure of curvature

at the bottom of the well, and r0 is the equilibrium bond length. The Morse potential

represents an anharmonic potential as the restoring force of the “spring” has a non-

linear response as a function of bond length r. However, anharmonic systems may be

approximated as harmonic oscillators in the vicinity of a stable equilibrium point, with

the anharmonic component acting as a small perturbation. The vibrational energy level

structure of the harmonic oscillator therefore serves as a good approximation to the

anharmonic oscillator for small vibrational displacements, at which point the restoring
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force of the potential is approximately linear. I will hence assume a harmonic potential

for the discussion of the equilibrium isotope effect (EIE) [191]. The vibrational states of

a harmonic potential are given by:

En = hν(n +
1

2
), (3.4)

where n ≥ 0. The zero point vibrational energy (ZPVE) is located at the bottom of the

potential well and corresponds to the state n=0:

E0 =
hν

2
. (3.5)

The ZPVE (E0) is the ground vibrational state and is therefore susceptible to small

vibrational perturbations.

3.1.2 Equilibrium isotope effects for deuterium

The deuterium isotope effect is one of the most studied isotope effects due to its large

size [192, 193]. The percentage mass change between a proton and a deuteron is con-

siderably greater than any other isotopic substitution. The equilibrium isotope effect

(EIE) may be described by the ground vibrational state E0 of a potential minima as

approximately 99.9% of C-H(D) bonds are in the n=0 state at room temperature [194].

In a simple model, where the bonded atoms can be considered as balls on springs, only

the mass dependent properties of the system are disturbed, in this particular case, by

the isotopic labelling of a deuteron for a proton. The increased mass of a deuteron

compared to a proton adds to the overall reduced mass µ of the system, i.e. the C-H(D)

bond. This in turn reduces the stretching frequency ν and the ZPVE of the C-H(D)

bond, see equation 3.1.

3.1.3 Symmetry breaking interactions for CH2D groups

In order to demonstrate how the EIE develops into a significant rotameric population

asymmetry, the Newmann projections for the CH2D group of N-CH2D-2-methylpiperidine

must be considered, see figure 3.3a). The notation for the three CH2D rotamers of N-

CH2D-2-methylpiperidine is as follows:
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Figure 3.3: a) The three CH2D rotamers of N-CH2D-2-methylpiperidine. b) The zero
point vibration energies (ZPVEs) of the C-H1, C-H2 and C-D bonds in each of the three
rotamers. Dashed lines represent the ZPVE in the case of no nitrogen lone pair. c) The

average ZPVE of each rotamer as a function of the ZPVEs for each C-H(D) bond.

• S. The deuteron is sterically interacting with the 2-position CH3 group,

• F. The deuteron is free from interaction with the 2-position CH3 group,

• A. The deuterium is anti to the lone pair of electrons on the nitrogen atom.

As discussed in section 3.1.2, the ZPVE of a C-D bond is lower than that of a C-H bond.

This is evident for all three rotamers in figure 3.3b). However, the ZVPE of a C-H(D)

bond is raised when the H(D) nucleus is anti to the lone pair of electrons on the nitrogen

atom. This effect is greater for a deuteron in this location as n−σ∗ hyperconjugation

involving the lone pair of electrons and the anti methyl C-D sigma bond is weaker for a

C-D bond, compared with the corresponding effect for a C-H bond. As the anti bond
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is weaker than the other two C-H(D) bonds, the molecule loses zero-point vibrational

stabilization when deuterium partitions the S and F bonding positions. When the

ZPVEs for the C-H(D) bonds are averaged across the three rotamers, the rotamer with

the deuteron anti to the lone pair (A) has a higher average ZPVE, compared with the

case of when a proton partitions the gauche bonds (rotamers S and F), see figure 3.3c).

This is the primary origin of the equilibrium isotope effect for a CH2D group, and

provides a sufficient description of the appreciable population asymmetry generated

between the three CH2D group rotors. A distinguishable chemical shift for each proton

is therefore also realized by considering the same example of the EIE for a CH2D group.

3.1.4 Observable CH2D proton chemical shift differences

The EIE discussed in section 3.1.3 is responsible for the observable chemical shift differ-

ence Ω12
∆ between the two CH2D protons (labelled 1 and 2) of N-CH2D-2-methylpiperidi-

ne. The following procedure is used to determine the size of the proton chemical shift

difference Ω12
∆ for a CH2D group in a chiral molecule:

1. Calculate ∆Gi and the relative populations Pi of the rotamers S, F and A.

2. Determine the chemical shift difference Ω12
∆ between the protons of the rotamers

S, F and A.

3. Weight the proton chemical shift differences Ω12
∆ by the relative populations Pi.

The population Pi of a rotamer i is defined as:

Pi =
e
−∆Gi
κBT

Z
, (3.6)

where ∆Gi is the difference in the Gibbs free energies between C-H and C-D bonds for

the rotamer i [191], κB is the Boltzmann constant, T is the temperature, and Z is the

partition function. The partition function is defined as:

Z =
∑
i

e
−∆Gi
κBT , (3.7)

i.e. the sum over all relative populations. The partition function normalizes the relative

populations such that the total population is equal to 1. The chemical shift difference



124 Chapter 3: Long-lived nuclear spin states in monodeuterated methyl groups

between the CH2D protons of the rotamer i is denoted Ω12
∆ (i). For example, if position S

is occupied by the deuteron then protons are in positions F and A, and the chemical shift

difference between the CH2D protons of the rotamer S is given by: Ω12
∆ (S) = δF − δA,

and hence Ω12
∆ (i) is allowed to be negative. The procedure described above leads to the

following expression for the proton chemical shift difference Ω12
∆ of a CH2D group:

Ω12
∆ = PSΩ12

∆ (S) + PFΩ12
∆ (F) + PAΩ12

∆ (A). (3.8)

The proton chemical shift differences Ω12
∆ (i) are averaged across all populated CH2D

rotamers, which gives rise to an observable CH2D chemical shift difference Ω12
∆ in the

1H NMR spectrum.
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Figure 3.4: Part of the experimental 1H spectrum of N-CH2D-2-methylpiperidine
in CD2Cl2 solution acquired at 11.7 T (500 MHz) and 25◦C with a single transient.
a) Spectrum without deuteron decoupling; b) Spectrum with deuteron decoupling
(deuteron nutation frequency = 500 Hz). The asterisk indicates a small signal from
a non-deuterated N-methyl-2-methylpiperidine impurity, shifted in frequency by a sec-

ondary isotope effect.

3.2 Experiments

3.2.1 Proton spectra

The methyl region of the proton NMR spectrum of N-CH2D-2-methylpiperidine is shown

in figure 3.4. This spectral region has a quartet-like appearance in the absence of

deuteron decoupling (figure 3.4a). The characteristic AB spectral pattern of an in-

equivalent proton pair appears when a deuteron decoupling field is used to remove the

2JHD splittings (figure 3.4b). This spectrum is consistent with a J-coupling of
∣∣2JHH

∣∣
= 11.7 ± 0.2 Hz and a chemical shift difference of Ω12

∆ = 13.5 ± 0.4 ppb between the

CH2D protons, as reported previously [179]. The existence of a small chemical shift

difference has been attributed to (i) hyperconjugation between the nitrogen lone pair

and the anti -methyl C-H(D) σ-bond, which allows the zero-point vibrational energies of

the anti CH and CD bonds to influence the rotamer energies; as a result, the rotamer

with the CD bond anti to the nitrogen lone pair is less populated than the other two

rotamers in thermal equilibrium, and (ii) the chiral environment associated with the

neighbouring methyl group, which causes a significant chemical shift difference between

the two protons in each rotamer [179, 182]. In these circumstances, there remains a
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Figure 3.5: Chemical shift difference Ω12
∆ between the CH2D protons of N-CH2D-2-

methylpiperidine in C6D6 solution at 11.7 T (500 MHz) as a function of temperature.

significant chemical shift difference between the CH2D protons after averaging over all

methyl rotamers. The observed chemical shift difference decreases as the temperature

is increased, as shown in figure 3.5. This is consistent with the Boltzmann populations

of the three rotamers becoming more similar at higher temperatures.

3.2.2 Singlet NMR

The small chemical shift difference allows access to the long-lived singlet order between

the CH2D protons by using SLIC [157] pulse sequence, as shown in figure 3.6. The

pulse sequence is described in detail in section 2.12.1. The experimental parameters

were as follows: ωSLIC/2π = 11.7 Hz, ωLOCK/2π = 300 Hz, τSLIC = 100 ms (500 MHz)

and τSLIC = 73 ms (600 MHz). The resonance offset was placed in the centre of the

CH2D peak at 2.18 ppm. The singlet state is a magnetically silent arrangement of

nuclear spin configurations and is unperturbed by the presence of a T00 filter, which

employs the optimized parameters shown in appendix B to remove signals deriving from

residual magnetization. The maximum amplitude of the singlet-filtered 1H NMR signal,

relative to that induced by a single 90◦ pulse, was found to be 0.43, somewhat lower

than the theoretical maximum of 2/3 [173], the loss being attributed to radiofrequency

field imperfections and relaxation. A two-step phase cycle, in which the phase of the

9090 pulse and the receiver are simultaneously changed by 180◦ in successive transients,

removes spurious signals generated by longitudinal magnetization accrued during the

long SLIC pulses. An interval of 90 s was used between successive transients.
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Figure 3.6: Pulse sequence used for accessing long-lived singlet order in monodeuter-
ated methyl groups and measuring its decay. The experiments used the following nu-
tation frequencies: ωSLIC/2π = 11.7 Hz and ωLOCK/2π = 300 Hz. The duration of the
SLIC pulse was 100 ms in the 500 MHz experiments and 73 ms in the 600 MHz exper-
iments. Singlet order is allowed to evolve for a time τEV. The “T00 filter” sequence
suppresses signals that do not pass through singlet order. “MA” denotes the “magic

angle” (54.7◦).

3.3 Results

A typical decay curve for singlet order is shown in figure 3.7. This shows a single

exponential decay with time constant TS = 27.0 ± 0.6 s. This is approximately three

times longer than the relaxation time for longitudinal magnetization T1 = 8.7 ± 0.1 s,

as estimated from the inversion recovery curve, also shown in figure 3.7.
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Figure 3.7: Experimental relaxation curves for 0.1 M N-CH2D-2-methylpiperidine in
degassed CD2Cl2 solvent (proton frequency = 500 MHz, temperature 25◦C). Open
symbols, grey line, and right-hand axis: Decay of singlet order measured by the pulse
sequence in figure 3.6. Filled symbols, black line, and left-hand axis: Spin-lattice
relaxation measured by inversion recovery. All signal amplitudes were normalized to

the first point. The fitted curves have a single-exponential form.
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Figure 3.8: Longitudinal relaxation rate constants (T−1
1 ) plotted against singlet relax-

ation rate constants (T−1
S ) for 0.1 M N-CH2D-2-methylpiperidine over a wide range of

solvents (degassed), temperatures and magnetic fields. The experimental conditions are
as follows: ( ) C6D6 solution, at temperatures increasing from 25◦C (rightmost point)
to 60◦C (leftmost point) in 5◦C increments, at a field of 14.1 T (600 MHz); ( ) C6D6

solution, at magnetic fields increasing from 9.4 T (400 MHz, leftmost point) to 14.1 T
(600 MHz, rightmost point) in 100 MHz increments, at a temperature of 25◦C; ( )
CH2Cl2 solution at 25◦C and 11.7 T (500 MHz); ( ) C6D6 solution at 25◦C and 11.7 T
(500 MHz); ( ) CD3CN solution at 25◦C and 11.7 T (500 MHz); ( ) CD2Cl2 solution at
25◦C and 11.7 T (500 MHz); ( ) CD3OD solution at 25◦C and 11.7 T (500 MHz); ( )
CD2Cl2 solution of N-CH2D-2-(CD3)-piperidine at 25◦C, 11.7 T (500 MHz). A constant

ratio TS/T1 = 3.1± 0.1 is observed over a wide range of experimental conditions.

Figure 3.8 shows a plot of T−1
1 against T−1

S for a variety of solvents, temperatures

and magnetic fields. The singlet relaxation time constants TS increase with increasing

temperature and decreasing solvent viscosity. The fit to a straight line with zero intercept

and inverse slope (3.1)−1 = 0.324 is remarkably good. The ratio of TS to T1 is remarkably

consistent and given by 3.1± 0.1 over a wide range of conditions. Measured relaxation

time constants T1 and TS are presented for this disparate data set in table 3.1. The

data shown in figure 3.8 were all obtained for N-CH2D-2-methylpiperidine, except for a

single point which was obtained for a compound with complete deuteration of the second

methyl group, i.e. N-CH2D-2-CD3-piperidine (purple triangle). Clearly, deuteration of

the second methyl group in N-CH2D-2-methylpiperidine does not have a strong effect

on the relaxation behaviour.
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Table 3.1: The set of singlet relaxation times TS and longitudinal relaxation times T1

for the CH2D group of 0.1 M N-CH2D-2-methylpiperidine shown in figure 3.8.

Solvent∗ Temp. Magnetic Field TS/s T1/s Symbol

C6D6 25◦C 14.1 T (600 MHz) 34.3 ± 0.7 10.9 ± 0.2
C6D6 30◦C 14.1 T (600 MHz) 38.2 ± 0.9 11.6 ± 0.2
C6D6 35◦C 14.1 T (600 MHz) 39.9 ± 0.7 12.5 ± 0.3
C6D6 40◦C 14.1 T (600 MHz) 43.8 ± 0.8 13.3 ± 0.2
C6D6 45◦C 14.1 T (600 MHz) 46.1 ± 0.7 14.3 ± 0.3
C6D6 50◦C 14.1 T (600 MHz) 48.9 ± 0.9 15.1 ± 0.3
C6D6 55◦C 14.1 T (600 MHz) 52 ± 1 15.7 ± 0.3
C6D6 60◦C 14.1 T (600 MHz) 55 ± 1 16.7 ± 0.3
C6D6 25◦C 9.4 T (400 MHz) 38 ± 2 12.1 ± 0.4
C6D6 25◦C 11.7 T (500 MHz) 35.2 ± 0.7 11.3 ± 0.3
CD3CN 25◦C 11.7 T (500 MHz) 32.8 ± 0.6 10.2 ± 0.2
CD2Cl2 25◦C 11.7 T (500 MHz) 27.0 ± 0.6 8.7 ± 0.1
CD3OD 25◦C 11.7 T (500 MHz) 22.3 ± 0.5 6.9 ± 0.1
CH2Cl2 25◦C 11.7 T (500 MHz) 20.9 ± 0.8 7.3 ± 0.2
CD2Cl2 25◦C 11.7 T (500 MHz) 27.1 ± 0.6 8.8 ± 0.2

The longitudinal relaxation times T1 and singlet relaxation times TS included in

figure 3.8 for N-CH2D-2-methylpiperidine are shown in table 3.1. The experimental

conditions were as follows:

( ) 25-60◦C temperature (5◦C increment), 14.1 T (600 MHz), C6D6 solvent

( ) 9.4 T (400 MHz) - 14.1 T (600 MHz) magnetic field (2.35 T (100 MHz) increment),

25◦C and C6D6 solvent

( ) C6D6, ( ) CD3CN, ( ) CD2Cl2 and ( ) MeOD solvent, 25◦C and 11.7 T (500 MHz)

( ) 25◦C, 11.7 T (500 MHz) and CH2Cl2 solvent

( ) N-CH2D-2-(CD3)-piperidine at 25◦C, 11.7 T (500 MHz) and CD2Cl2 solvent.

∗Samples were subjected to thorough degassing using multiple freeze-pump-thaw

cycles to remove the majority of dissolved molecular oxygen present in solution. The

singlet TS and longitudinal T1 lifetimes were measured via the aforementioned experi-

mental methods after each degassing cycle until no further lengthening of the relaxation

times were observed. This procedure was repeated for each individual sample and en-

sures that each sample was degassed as comprehensively as experimentally possible, at

which point the effect of paramagnetic induced singlet and longitudinal relaxation from

dissolved molecular oxygen in solution is negligible.
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3.4 Discussion

The data show that the long-lived singlet order may be accessed coherently, and with

high efficiency, for the proton pair of the monodeuterated methyl group in N-CH2D-

2-methylpiperidine. The singlet lifetime TS is proportional to T1 of the same protons,

with the proportionality constant given by 3.1 ± 0.1, over a wide range of experimental

conditions. In this section, an explanation for the constant ratio of TS to T1 is proposed,

and the value of the proportionality constant is investigated.

3.4.1 Relaxation mechanisms

A large variety of relaxation mechanisms may contribute to the TS and T1 relaxation

of the CH2D protons. As well as the dipole-dipole interactions between the three mag-

netic nuclei of the CH2D group, there are also chemical shift anisotropy contributions,

magnetic dipole-dipole interactions with other nuclei in the same molecule, and in-

termolecular dipole-dipole interactions. The quadrupolar relaxation of the deuterium

nuclei might also contribute to proton relaxation through mechanisms such as scalar

relaxation of the second kind [152, 195]. Furthermore, spin-rotation relaxation is known

to be significant for many rotating methyl groups [58–61], and contributes to the LLS

relaxation of γ-picoline in solution [141, 155]. Singlet relaxation may also be caused by

state mixing due to a finite chemical shift difference between the participating protons,

or by asymmetric J-couplings to other magnetic nuclei (“singlet-triplet leakage”) [24].

The excellent correlation between the TS and T1 values shown in figure 3.8 strongly

supports the hypothesis that the longitudinal and singlet relaxation of the CH2D proton

pair is driven by a common mechanism, with a common correlation function. This

suggests that the mechanisms that dominate the TS and T1 relaxation of the CH2D

protons are internal to the CH2D group. This conclusion is supported by the following

observations: (i) Deuteration of the 2-methyl group leads to only a small change in

the relaxation times even though the protons of the 2-methyl group approach to within

229 pm of the CH2D protons; (ii) a large change in the deuteration level of the solvent

only has a small influence on the relaxation times, see figure 3.8 and table 3.1.
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Figure 3.9: The longitudinal relaxation time T1 of 0.1 M N-CH2D-2-methylpiperidine
plotted as a function of temperature. Experiments were performed in degassed C6D6

solution at 14.1 T (600 MHz).

In addition, one may discount major contributions from the spin-rotation, scalar

relaxation, chemical shift anisotropy and singlet-triplet leakage mechanisms, for the

following reasons:

1. Spin-rotation. The experimental finding that TS increases with increasing tem-

perature (figure 3.8) speaks strongly against a significant contribution from spin-

rotation, since that mechanism usually increases in strength with increasing tem-

perature [58–61]. Presumably, in the current case, the methyl rotation is too

strongly hindered to permit a significant spin-rotation relaxation contribution.

Data showing the temperature-dependence of the relaxation time constant T−1
1

are presented in figure 3.9. The increase in the value of T1 with increasing temper-

ature also supports the conclusion that spin-rotation relaxation is not significant

in this case.

2. Scalar relaxation of the second kind. The existence of a resolved deuteron splitting

in the proton spectrum (figure 3.4a), as well as direct measurements of deuteron

relaxation (section 3.6.2) indicate that deuteron relaxation is too slow to induce

significant scalar relaxation of the coupled protons. Furthermore, the two 2JHD

couplings are identical to a good approximation, which precludes a scalar contri-

bution to singlet relaxation [152].
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Figure 3.10: Experimental dependence of T−1
S on the spin-locking rf-field strength for

0.1 M N-CH2D-2-methylpiperidine in non-degassed CD2Cl2 solvent (proton frequency
= 500 MHz, temperature 25◦C). The sharp decrease in T−1

S at low values of ωLOCK is
due to the suppression of singlet-triplet leakage by the applied rf-field.

3. Chemical shift anisotropy. The weak dependence of TS and T1 on magnetic field

indicates a relatively small contribution from CSA.

4. Singlet-triplet leakage. Singlet-triplet leakage induced by the small chemical shift

difference between the CH2D protons can be a significant contribution to the sin-

glet relaxation rate constant T−1
S [24]. However, in the current experiments, this

contribution is suppressed very effectively by the application of an on resonant

radiofrequency field during the singlet relaxation interval. Data showing the de-

pendence of T−1
S on the spin-locking rf-field amplitude, expressed as the nutation

frequency ωLOCK, is shown in figure 3.10.

It is therefore postulated that both the singlet and longitudinal relaxation of the

proton pair in the monodeuterated methyl group of N-CH2D-2-methylpiperidine are

dominated by the 1H-1H and 1H-2D dipole-dipole interactions within the methyl group

itself, modulated by the internal rotation of the methyl group with respect to the rest

of the molecule, and by the rotation of the molecule as a whole. A relaxation model is

therefore constructed based on (i) a simplified description of the motion of the methyl

group and the molecule as a whole, and (ii) a description of the vibrationally-averaged

spin-spin interactions within the rotating methyl group.
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Figure 3.11: The relaxation of the CH2D protons in N-CH2D-2-methylpiperidine is
governed by the three-fold jump rate κ and overall rotational correlation time τC.

3.4.2 Motional model

A plausible motional model for the monodeuterated methyl group in N-CH2D-2-methylpi-

peridine consists of a hindered 3-fold rotor attached to a sphere undergoing isotropic

rotational diffusion, see figure 3.11. Although the existence of a finite chemical shift

difference between the CH2D protons implies that the methyl rotamers have slightly

unequal populations, this effect is ignored in the relaxation analysis, for the sake of sim-

plicity. The thermally activated jumps between the methyl rotamers are assumed to be

described by a rate constant κ, while the overall rotational diffusion of the molecule is

described by a correlation time τC. Both κ and τC are in general temperature-dependent.

It is also assumed that the correlation time τC is short enough relative to the nuclear

Larmor period to invoke the extreme narrowing approximation [195].

3.4.3 Dipole-dipole interactions

The three magnetic nuclei in the CH2D group interact by the magnetic dipole-dipole

interaction. In general these dipole-dipole interactions are described by traceless second-

rank tensors, and are subjected to averaging over local molecular vibrations and libra-

tions on a timescale fast compared to the methyl 3-fold jumps or the molecular tum-

bling. Spin relaxation is caused by the motional modulation of the vibrationally-averaged

dipole-dipole interaction tensors.

In general, the vibrationally-averaged tensors differ, both in magnitude and in

orientation, from tensors derived from a naive geometrical model, for which point-like



134 Chapter 3: Long-lived nuclear spin states in monodeuterated methyl groups

nuclei are located at the vertices of an equilateral triangle, with the magnitudes of

the dipole-dipole interactions in exact proportion to the product of the gyromagnetic

ratios, since the internuclear distances are all equal [196]. As discussed below, this naive

equilateral model of the CH2D group is inconsistent with the experimental results.

To maintain high generality, the relaxation theory is developed using three differ-

ent interaction tensors for the vibrationally-averaged dipole-dipole interactions, leaving

the magnitudes and orientations of the tensors as adjustable parameters. The two 1H-2D

interaction tensors are assumed to have the same principal values, by symmetry. For

the sake of simplicity, the vibrationally-averaged interaction tensors are assumed to be

axially symmetric, with the unique principal axes perpendicular to the N-C rotor axis.

The angle between the unique principal axes of the two vibrationally-averaged 1H-2D

interaction tensors is denoted 2θ. This angle defines the cross-correlation of the two

1H-2D interaction tensors, and is therefore important for the proton singlet relaxation.

By symmetry, the unique principal axis of the vibrationally-averaged 1H-1H interaction

tensor is perpendicular to the bisector of the two 1H-2D principal axes. A point-nucleus

equilateral geometry model would lead to the angle 2θ = 60◦, but this value is not

assumed in the following discussion.

3.5 Relaxation theory

In this section, the relaxation superoperators for the two protons and deuteron of the

CH2D group are constructed. The relaxation superoperators are used to determine the

relaxation rate expressions for the singlet T−1
S and longitudinal T−1

1 relaxation of the

CH2D group. Here I must praise Jean-Nicolas Dumez (CNRS, Gif-sur-Yvette) for his

efforts in underpinning the theory behind long-lived state relaxation in monodeuterated

methyl groups.

3.5.1 Coherent Hamiltonian

Consider a H2D system, comprised by the two protons and the deuterium of a singly

deuterated methyl group in solution. The two proton spins are labelled as 1 and 2, the

deuteron spin as 3. The protons have spin I = 1/2 and the deuterium has spin I = 1,

so there are 2 × 2 × 3 = 12 Hilbert states in total. The relaxation properties of this
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system may be analysed in Liouville space, which has dimension 12× 12 = 144. In this

chapter, the aim is to calculate the relaxation rates for the longitudinal magnetization

of the protons, Î1z + Î2z, and of the deuterium, Î3z, as well as the nuclear singlet order

for the proton pair, T̂ 12
00 .

Time-independent interactions that govern the evolution of a spin ensemble are

contained within the coherent Hamiltonian. In isotropic solution, the two protons are

separated in frequency space by a small chemical shift difference Ω12
∆ . The coherent

Hamiltonian Ĥcoh is defined as follows:

Ĥcoh =
Ω12

∆

2
(Î1z − Î2z) + 2π |JHH| Î1 · Î2 + 2π |JHD| (Î1z · Î3z + Î2z · Î3z), (3.9)

where |JHH| and |JHD| are the proton-proton and proton-deuteron scalar couplings,

respectively.

3.5.2 Fluctuating Hamiltonian

Nuclear spin relaxation is driven by fluctuations of incoherent interactions which are

time- and orientation-dependent. The fluctuating Hamiltonian Ĥfluc is expressed using

spherical tensors:

Ĥfluc =
∑
λ

Ĥλ
fluc =

∑
λ

cλ
2∑
l=0

l∑
m=−l

(−1)mAλlmT̂
λ
l−m, (3.10)

and is written as a sum over all spin interactions λ, and ranks l and tensor components

m. cλ is a real constant. Aλlm and T λl−m are the spatial and spin tensors for the fluctuating

Hamiltonian Ĥfluc in the laboratory frame. cλ, Aλ,Plm and T̂ λl−m are given in table 3.2.

For the CH2D system, the fluctuating interactions include; the dipole-dipole (DD)

interactions between every spin pair, and the quadrupolar interaction (Q) for the deu-

terium spin. The free rotation of the CH2D moiety can also induce the spin rotation

relaxation mechanism, which is typically present for methyl groups, but is not included

in this analysis. The chemical-shielding anisotropy (CSA) and other interactions are also

ignored. For the dipole-dipole interaction, the fluctuating Hamiltonian ĤDD is expressed

as follows:

ĤDD =
2∑
i=1

3∑
j=i+1

bij

2∑
m=−2

(−1)mADD
2m T̂

ij
2−m, (3.11)
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Table 3.2: Tensor components of the rank-2 interaction (l = 2): the dipole-dipole
(DD) interaction for a spin pair ij and the quadrupolar (Q) interaction for a spin i.
The T̂2m tensor components are given in the laboratory frame and the A2m tensor
components are given in the principal axis system P of the interaction λ. rij is the
internuclear distance between spin i and spin j, eQi is the quadrupole moment and eqi

is the electric field gradient for nucleus i, ηλ,i is the biaxality of interaction λ.

λ cλ m Aλ,P2m T̂ λ2m
DD −µ0γiγj~

4πr3
ij

0 61/2 6−1/2
(
3IizIjz − Ii · Ij

)
±1 0 ∓

(
1/2
) (
Ii±Ijz + IizIj±

)
±2 0

(
1/2
)
Ii±Ij±

Q e2qiQi
2I(2I−1)~ 0 (3/2)1/2 6−1/2

(
3I2
iz − I(I + 1)

)
±1 0 ∓

(
1/2
)

(Ii±Iiz + IizIi±)
±2 (1/2)ηi

(
1/2
)
I2
i±

where the summation over the spin labels i and j accounts for the dipole-dipole interac-

tions internal to the CH2D group. The dipole-dipole coupling constant bij is defined in

equation 1.163. Spins with I > 1/2 have a non-spherical charge density at the nucleus

and possess an electric quadrupole moment. Interactions occur between the electric

quadrupole moment and the electric field gradient tensor present at the nucleus. The

fluctuating Hamiltonian for the quadrupole interaction is defined as follows:

ĤQ = ωQ

2∑
m=−2

(−1)mAQ
2mT̂

3
2−m, (3.12)

where ωQ is the nuclear quadrupolar coupling constant and is defined in equation 1.176.

T̂ 3
2m is the quadrupolar spin tensor for the fluctuating Hamiltonian of spin 3. Deuterium

carries a nuclear spin I = 1, and therefore the expression for the nuclear quadrupole

coupling constant ωQ simplifies to:

ωQ =
e2qQ

2~
. (3.13)

3.5.3 Spectral densities

The spectral density of an interaction λ describes the intensity of motion at a frequency

ω. The spectral densities Jλ,λ
′

m,m′ are written:

Jλ,λ
′

m,m′(ω) =

∫ ∞
0

dτ Gλ,λ
′

m,m′(τ) eiωτ , (3.14)
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with the corresponding autocorrelation functions Gλ,λ
′

m,m′(τ):

Gλ,λ
′

m,m′(τ) = 〈Aλ∗lm(t)Aλ
′
lm′(t− τ)〉. (3.15)

See appendix B for more details regarding spectral densities and autocorrelation func-

tions. The spectral densities for the dipole-dipole and quadrupolar interactions (λ) are

derived from a sequence of rotations from the principal axis system P of the interaction

λ to a common rotor frame R, then to a molecular frame M , and finally to the laboratory

frame L:

Aλ2m(t) =
∑
m1

∑
m2

∑
m3

Aλ,P2m3
D2
m3m2

(Ωλ
PR)D2

m2m1
(ΩRM (t))D2

m1m(ΩML(t)), (3.16)

D2
mimj is a component of the Wigner matrix of rank 2; ΩQ

PR is the set of Euler angles

that describes the transformation from the independent principal axis systems of the

dipole-dipole and quadrupolar interactions P to the rotor frame R fixed with respect to

the CH2D group and with its z-axis aligned with the local 3-fold symmetry axis. The

z-axis of the laboratory frame L is defined to be parallel to the static magnetic field

~B0. For the dipole-dipole interaction, only the component m=0 is non-zero. For the

quadrupolar interaction of the deuterium nucleus, the biaxality of the 2H quadrupole

coupling tensor is small (axially symmetric tensor) and is neglected. Hence only the

m=0 rank-2 component of the spatial tensor AQ,P
2m (written in the principal axis system

P of the quadrupolar interaction for the deuterium nucleus) is included when considering

transformations to the axis system of the rotor frame R, and also in consecutive frame

transformations. With these assumptions, Aλ,P20 is the only non-zero component of the

rank-2 spatial tensor Aλ,P2m in the principal axis systems of both the dipole-dipole and

quadrupolar interactions for the CH2D group:

Aλ2m(t) = Aλ,P20

∑
m1

∑
m2

D2
0m2

(Ωλ
PR)D2

m2m1
(ΩRM (t))D2

m1m(ΩML(t)). (3.17)

Using equation 3.17, the autocorrelation functions for the dipole-dipole and quadrupolar

interactions may be written as follows:

Gλ,λ
′

m,m′(τ) = Aλ,P20 Aλ
′,P

20

∑
m1,m′1

∑
m2,m′2

D2∗
0m2

(Ωλ
PR)D2

0m′2
(Ωλ′

PR) (3.18)

×〈D2∗
m2m1

(ΩRM (0))D2
m′2m

′
1
(ΩRM (τ))D2∗

m1m(ΩML(0))D2
m′1m

′(ΩML(τ))〉.
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Assuming that the rapid isotropic rotational diffusion of the CH2D group and the overall

reorientation of the molecule are uncorrelated, the autocorrelation functions for the

dipole-dipole and quadrupolar interactions become:

Gλ,λ
′

m,m′(τ) = Aλ,P20 Aλ
′,P

20

∑
m1,m′1

∑
m2,m′2

D2∗
0m2

(Ωλ
PR)D2

0m′2
(Ωλ′

PR) (3.19)

×〈D2∗
m2m1

(ΩRM (0))D2
m′2m

′
1
(ΩRM (τ))〉〈D2∗

m1m(ΩML(0))D2
m′1m

′(ΩML(τ))〉.

An expression of the relaxation superoperator may be derived in the standard semi-

classical treatment of spin relaxation [195]. Internal motion is described with a 3-site

jump model, with jump rate κ, and a spherical top is assumed for overall motion, with

correlation time τC. For a spherical top, the contribution of overall tumbling to the

autocorrelation function is [61]:

〈D2∗
m1m(ΩML(0))D2

m′1m
′(ΩML(τ))〉 =

1

5
δm1m′1

δmm′e
− τ
τC , (3.20)

where the rotational correlation time τC describes the rapid isotropic rotational diffusion

of the N-CH2D-2-methypiperidine molecule in solution. The frame transformation from

the principal axis system P of the dipole-dipole interaction to the axis system of the

rotor frame R corresponds to a single rotation around the symmetry axis of the methyl

group. The Euler angles create the following rotation matrix:

D2
m2m1

(αDD
PR = 0, βDD

PR = 0, γDD
PR) = δm2m1e

−im1γ . (3.21)

The rotation matrix for the frame transformation from the principal axis system P of

the quadrupolar interaction to the axis system of the rotor frame R is created from the

following Euler angles:

D2
m2m1

(αQ
PR = −π, βQ

PR = −π, γQ
PR = 0) = eim2πd2

m2m1
(−π). (3.22)

For a hindered methyl group, a three-site jump model is sufficient as to describe the in-

ternal CH2D dynamics. I hence recall the model proposed by Woessner [49]. The model

is a simple combination of an overall reorientational motion (isotropic small-step rota-

tional diffusion) with the internal rotation of the methyl group described by thermally

activated 3-fold jumps around a single molecule-fixed axis (methyl group symmetry

axis). The jumps are between equivalent or near-equivalent sites, which correspond to
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the rotamers of the CH2D group presented in section 3.1.3. The diffusion of the spin-

spin axis around the methyl group symmetry axis is assumed to have no influence on the

internuclear separation of the CH2D constituents. A rigorous derivation of the spectral

density function for a 3-fold jump model is given in reference [197] and the result is

used in the remainder of this chapter without further discussion. It should be noted

that other, more complicated expressions for the spectral density of a methyl group are

also presented in reference [49]. Therefore, for a methyl group undergoing thermally

activated jumps between three equivalent sites, the contribution of internal motion to

the correlation function is:

〈D2∗
m2m1

(ΩRM (0))D2
m′2m

′
1
(ΩRM (τ))〉 = δm1m2δm′1m′2δm2m′2

δm1m′1
e−3εm2κτ , (3.23)

By combining equations 3.19, 3.20 and 3.23, the spectral densities Jλ,λ
′

m,m′(ω) in equa-

tion 3.14 become:

Jλ,λ
′

mm′(ω) = δmm′
1

5
Aλ,P20 Aλ

′,P
20

∑
m2

D2∗
0m2

(Ωλ
PR)D2

0m′2
(Ωλ′

PR) (3.24)

×
∫ ∞

0
dτ e−3εm2κτ e−τ/τC eiωτ ,

with the spectral density at zero frequency, relevant in the extreme narrowing regime,

becoming:

Jλ,λ
′

mm′(0) = δmm′
1

5
Aλ,P20 Aλ

′,P
20

∑
m2

τC

1 + 3εm2κτC
D2∗

0m2
(Ωλ

PR)D2
0m′2

(Ωλ′
PR). (3.25)

where

ε0 = 0 and ε±1 = ε±2 = 1. (3.26)

3.5.4 Relaxation superoperators

The double commutation relaxation superoperator for the dipole-dipole and quadrupolar

interactions may be written [49, 155]:

ˆ̂
Γ = −

∑
l=2

∑
λ,λ′

cλcλ
′ ∑
m,m′

(−1)mJλ,λ
′

m,m′(0)
ˆ̂
T λlm

ˆ̂
T λ
′

l−m′ , (3.27)
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see section 1.6.6 for more details. This general expression can be used to calculate all

auto-correlation and cross-correlation terms for the dipole-dipole and quadrupole inter-

actions. Contributions to the relaxation superoperator from auto-correlation terms have

λ = λ′ and cross-correlation terms have λ 6= λ′. A secularization step is additionally per-

formed for the dipole-dipole and quadrupolar relaxation superoperators which removes

all terms modulated at the difference in 1H-2H Larmor frequencies in the laboratory

frame.

3.5.4.1 Dipole-dipole relaxation superoperator

The dipole-dipole relaxation superoperator may be constructed by considering for the

form of the fluctuating dipole-dipole Hamiltonian in equation 3.11:

ˆ̂
ΓDD = −

2∑
i,k=1

3∑
j,l=i+1,k+1

bijbkl J
DD,DD
m,m′ (0)

∑
m,m′

(−1)m
ˆ̂
T ij2m

ˆ̂
T kl2−m′ . (3.28)

Combining equations 3.25 and 3.28, and by using the value of ADD,P
20 from table 3.2, the

dipole-dipole relaxation superoperator may be expressed as:

ˆ̂
ΓDD = −

2∑
i,k=1

3∑
j,l=i+1,k+1

6

5
bij bkl

τC

1 + 3εm2κτC

∑
m2,m′2

D2∗
0m2

(ΩDD
PR)D2

0m′2
(ΩDD

PR) (3.29)

×
∑
m

(−1)m
ˆ̂
T ij2m

ˆ̂
T kl2−m.

3.5.4.2 Quadrupole relaxation superoperator

The quadrupolar relaxation superoperator takes a similar form to the relaxation super-

operator used to describe dipole-dipole relaxation:

ˆ̂
ΓQ = −ω2

Q J
Q,Q
m,m′(0)

∑
m,m′

(−1)m
ˆ̂
T 3

2m
ˆ̂
T 3

2−m′ . (3.30)
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Combining equations 3.25 and 3.30, and by using the value of AQ,P
20 from table 3.2, the

quadrupolar relaxation superoperator may written more explicitly:

ˆ̂
ΓQ = − 3

10
ω2

Q

τC

1 + 3εm2κτC

∑
m2,m′2

D2∗
0m2

(ΩQ
PR)D2

0m′2
(ΩQ

PR) (3.31)

×
∑
m

(−1)m
ˆ̂
T 3

2m
ˆ̂
T 3

2−m.

3.5.5 Rate expressions

Using the relaxation superoperators formulated in section 3.5.4, relaxation rates may

be calculated as follows for the 1H and 2H longitudinal magnetization and for the 1H

singlet order:

T−1
1 =

(Î1z + Î2z|ˆ̂ΓDD|Î1z + Î2z)

(Î1z + Î2z|Î1z + Î2z)
, (3.32)

T−1
1D =

(Î3z|ˆ̂ΓQ|Î3z)

(Î3z|Î3z)
, (3.33)

T−1
S =

(T̂ 12
00 |

ˆ̂
ΓDD|T̂ 12

00 )

(T̂ 12
00 |T̂ 12

00 )
. (3.34)

The contribution of the dipole-dipole interaction to 2H longitudinal relaxation was found

to be negligible, and was ignored.

In the regime of isotropic extreme-narrowing, the matrix elements (T̂ij |ˆ̂Γ|T̂ij) can

be easily calculated for a superoperator with a block-diagonal matrix structure. The

singlet and longitudinal spin order of the singlet pair (spins 1 and 2) are each identified

by a single spherical tensor operator, and the relaxation rate is therefore given by a

diagonal element of
ˆ̂
Γ. For the dipole-dipole relaxation of singlet order, the singlet

relaxation rate constant T−1
S is given by:

T−1
S = −6

5

2∑
i,k=1

3∑
j,l=i+1,k+1

bijbkl
τC

1 + 3εm2κτC

∑
m2,m′2

D2∗
0m2

(ΩDD
PR)D2

0m′2
(ΩDD

PR) (3.35)

×
∑
m

(−1)m
(T̂ 12

00 |
ˆ̂
T ij2−m

ˆ̂
T kl2m|T̂ 12

00 )

(T̂ 12
00 |T̂ 12

00 )
.
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The relaxation rate expression for T−1
S can be simplified by using the following relation,

in the case that ij=kl:

(T̂ 12
00 | ˆ̂T ij,†2m

ˆ̂
T kl2m|T̂ 12

00 ) = ‖ ˆ̂
T ij2m|T̂ 12

00 )‖2, (3.36)

where (−1)m
ˆ̂
T ij2−m =

ˆ̂
T ij,†2m . In chapter 2, I demonstrated that an important property

of the nuclear singlet order was an immunity to the in pair dipole-dipole relaxation

mechanism:

ˆ̂
T ij2m|T̂ 12

00 ) = 0, (3.37)

which is valid for the case of ij=12. Inserting equation 3.36 into equation 3.35, and

accounting for the result in equation 3.37, leads to the following dipole-dipole auto-

relaxation rate expression T−1
S for the spin-1/2 protons of the CH2D group:

T−1
S = −6

5

2∑
i=1

b2ı3
τC

1 + 3εm2κτC

∑
m2,m′2

D2∗
0m2

(ΩDD
PR)D2

0m′2
(ΩDD

PR)
∑
m

‖ ˆ̂
T i32m|T̂ 12

00 )‖2
‖T̂ 12

00 ‖2
. (3.38)

Only dipole-dipole interactions of spins 1 and 2 with the deuteron (spin 3) were found

to significantly relax the nuclear singlet order.

For the dipole-dipole relaxation of longitudinal order, any terms denoting coupled

rank-1 spin order, e.g. (Î−1 Î
+
2 − Î+

1 Î
−
2 )/
√

2, may be neglected as these terms are discon-

nected from the single spin longitudinal operators, and hence the longitudinal relaxation

rate constant T−1
1 is given by the sum of single spin longitudinal operators:

T−1
1 = −6

5

2∑
i,k=1

3∑
j,l=i+1,k+1

bijbkl
τC

1 + 3εm2κτC

∑
m2,m′2

D2∗
0m2

(ΩDD
PR)D2

0m′2
(ΩDD

PR) (3.39)

×
∑
m

(−1)m
(T̂ i10 + T̂ j10|

ˆ̂
T ij2−m

ˆ̂
T kl2m|T̂ i10 + T̂ j10)

(T̂ i10 + T̂ j10|T̂ i10 + T̂ j10)
.

In chapter 1, I demonstrated that spherical tensor operators possess the following prop-

erty:

ˆ̂
T ij2m|T̂ i10 + T̂ j10) = −m|T̂ ij2m). (3.40)

and hence the rate expression for longitudinal relaxation (equation 3.39) can be simplified

by using the relation:

‖ ˆ̂
T ij2m|T̂ i10 + T̂ j10)‖2 = m2‖T̂ ij2m‖2. (3.41)
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Figure 3.12: Schematic of a point-particle model with an equilateral triangle geometry
a) perpendicular to and b) in the plane of the CH2D group. The light grey disk denotes
the plane of the CH2D group. 2θ = 60◦ and θQ = 70.5◦ for an equilateral triangle

geometry.

Inserting equation 3.41 into equation 3.39 leads to the following dipole-dipole auto-

relaxation rate expression T−1
1 for the longitudinal order of the spin-1/2 protons in the

CH2D group:

T−1
1 = −6

5

2∑
i=1

3∑
j=i+1

b2ij
τC

1 + 3εm2κτC

∑
m2,m′2

D2∗
0m2

(ΩDD
PR)D2

0m′2
(ΩDD

PR)
∑
m>0

m2 ‖T̂ ij2m‖2
‖T̂ i10 + T̂ j10‖2

.

(3.42)

The sum over m does not include terms corresponding to m = 0 as these terms do not

contribute to the auto-relaxation rate (ij = kl) of spins 1 and 2 in this case. Similar

can be shown for the quadrupolar auto-relaxation rate of spin 3.

The motional and intra-methyl interaction models described in section 3.4.2 lead

to the following expressions for the proton longitudinal and singlet relaxation rate con-

stants:

T−1
1 =

(4 + 3κτC)

24 (1 + 3κτC)

(
16ω2

HD + 9ω2
HH

)
τC , (3.43)

T−1
S =

8 sin2 2θ

1 + 3κτC
ω2

HDτC , (3.44)

where the dipolar coupling constants for the vibrationally-averaged proton-proton in-

teraction and proton-deuteron interactions are denoted ωHH and ωHD, respectively. In

practice, the relevant matrix elements were calculated analytically using the Mathema-

tica-based symbolic package SpinDynamica [198]. Figure 3.12 shows the relevant angles

for the relaxation rates given in equations 3.43, 3.44 and 3.46. The second Euler angle

βPR is equal to π/2 for the three dipole-dipole interactions. The third Euler angle γPR
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Figure 3.13: Plot of the longitudinal relaxation rate constant T−1
1 (2H) for the

deuteron of the CH2D group as a function of θQ. θQ = 70.5◦ for an equilateral triangle
geometry.

is θ for the H1D interaction and −θ for the H2D interaction. For the quadrupolar inter-

action, the dominant principal axis of the 2D electric field gradient tensor is assumed to

be along the CD bond vector, so that βPR = θQ, where θQ is the angle formed between

the 3-fold jump axis and the CD bond.

The following expressions apply to the relaxation of the 13C nuclei in the CHN

groups on the six-membered ring (with N = 1 or 2), and for the 2H relaxation of the

deuteron in the monodeuterated methyl group:

T−1
1 (13C) = Nω2

CHτC, (3.45)

T−1
1 (2H) =

3
(

32 + 33κτC + 9κτC

(
4 cos(2θQ) + 3 cos(4θQ)

))
64 (1 + 3κτC)

ω2
QτC. (3.46)

where N is the number of attached protons, ωCH is the dipole-dipole coupling constant

for the interaction between the proton and carbon nuclei, and ωQ is the quadrupole

coupling frequency of the deuteron. Figure 3.13 shows a plot of T−1
1 (2H) as a function

of θQ. For a tetragonal geometry of the CH2D group:

T−1
1 (2H) =

(3 + κτC)

2 (1 + 3κτC)
ω2

QτC. (3.47)

These equations assume rigid-body rotational diffusion of the whole molecule (including

the ring) and 3-fold jumps of the methyl group, with 13C-1H dipolar and quadrupolar
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Figure 3.14: Plot of the relaxation rate ratio T−1
S /T−1

! for the protons of the CH2D
group as a function of 2θ. 2θ = 60◦ for an equilateral triangle geometry.

relaxation dominating the 13C and 2D relaxation, respectively. For the simple case

of point nuclei (ignoring vibrational averaging), the coupling constants are defined as

follows:

ωCH = −
(
µ0/4π

)
γ(1H)γ(13C)~r−3

CH, (3.48)

ωQ =
e2qQ

2~
, (3.49)

where rHC is the internuclear distance, Q is the electric quadrupolar moment of the

deuterium nucleus, and eq is the electrical field gradient at the deuterium nucleus [199].

This relaxation model leads to the following expression for the ratio of TS to T1:

TS
T1

= (4 + 3κτC)
16ω2

HD + 9ω2
HH

192ω2
HD sin2 2θ

. (3.50)

Figure 3.14 shows a plot of T−1
S /T−1

1 as a function of 2θ. In general the ratio TS/T1

depends on the jump rate κ and rotational correlation time τC, and is expected to

depend on temperature, solvent, and other factors. However, in the “slow-jump regime”

κτC � 1, the ratio of TS to T1 becomes independent of κ and τC, and only depends on

interaction parameters within the CH2D group:

TS
T1
' 16ω2

HD + 9ω2
HH

48ω2
HD sin2 2θ

' 3ω2
HH

16ω2
HD sin2 2θ

. (3.51)
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Table 3.3: 13C longitudinal relaxation times T1 for the ring 13C nuclei of 0.1 M N-
CH2D-2-methylpiperidine in degassed CD2Cl2 solution at 11.7 T (500 MHz) and 25◦C.

Site T1(13C)/s

2 10.2 ± 0.3
3 6.3 ± 0.5
4 6.2 ± 0.2
5 6.5 ± 0.3
6 6.9 ± 0.4

The fact that the 1H-1H dipolar couplings are about 6 times stronger than the 1H-

2D dipolar couplings (at equal distances) has been invoked in the last approximation.

The observed direct proportionality of TS to T1 is consistent with the validity of the

slow-jump regime over the explored range of experimental conditions.

3.6 Supporting relaxation data

The T1 values for the ring 13C sites and the CH2D deuteron are reported for the case

of 0.1 M N-CH2D-2-methylpiperidine in degassed CD2Cl2 solution at 11.7 T (500 MHz)

and 25◦C.

3.6.1 Carbon-13 NMR

The measured 13C T1 values for N-CH2D-2-methylpiperidine are shown in table 3.3 with

the 13C numbering scheme shown in figure 3.15. The ring CH2 sites have similar 13C

relaxation time constants T1 of 6.5 ± 0.3 s, with the ring CH site displaying a longer

13C relaxation time constant of 10.2 ± 0.3 s. These relaxation times were measured by

inversion recovery with 0.5 kHz 1H decoupling.

3.6.2 Deuterium NMR

Under the same conditions, the 2H spin-lattice relaxation time constant, given by T1(2H),

for the CH2D deuteron was measured by inversion recovery to be 0.75± 0.01 s.
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Figure 3.15: Structure of N-CH2D-2-methylpiperidine, showing the numbering of 13C
sites on the piperidine ring.

3.7 Relaxation analysis

The 13C and 2H relaxation data allow an estimate of the rotational correlation time

τC and the 3-fold jump rate κ. The following analysis refers to the data obtained on

0.1 M N-CH2D-2-methylpiperidine in degassed CD2Cl2 solution, at 11.7 T (500 MHz)

and 25◦C.

3.7.1 Rotational correlation time

The overall rotational correlation time τC was estimated by analysing the experimental

T1(13C) relaxation time constants for 13C nuclei in the CHN groups on the six-membered

ring, using equation 3.45 which applies for extreme-narrowing isotropic rotational tum-

bling, dominated by the 13C-1H dipolar relaxation mechanism [49]. By assuming an

internuclear 13C-1H distance of 108.9 pm, which corresponds to a dipole coupling con-

stant of ωCH/2π = −23.4 kHz, the following estimate of the rotational correlation time

is obtained: τC = 3.8± 0.6 ps.

3.7.2 Thermally activated jump rate

The 3-fold jump rate constant κ may be estimated from the 2D T1 relaxation time con-

stant, by using equation 3.46. The deuteron quadrupole coupling constant ωQ/2π =

83.5 kHz has been estimated by solid-state NMR [200, 201]. The unique principal axis

of the deuteron quadrupole coupling tensor is assumed to be along the C-D bond, at an
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angle of 70.5◦ with respect to the 3-fold jump axis. From comparing the experimental

relaxation time T1(2H) = 0.75±0.01 s with equation 3.46, which was derived for the case

of a hindered 3-fold rotor attached to a molecule undergoing isotropic rotational diffu-

sion, and assuming that the quadrupolar mechanism dominates the deuteron relaxation,

an estimate of the upper limit on the 3-fold jump rate is obtained: κ . 3.2× 1010 s−1.

3.8 Geometrical models

The product of the rotational correlation time and the 3-fold jump rate constant is

therefore given by κτC . 0.12, which supports the validity of the slow-jump regime and

hence equation 3.51. Now consider the case where the three hydrogen nuclei of the CH2D

group are considered to be points, located at the vertices of an equilateral triangle. In this

case 2θ = 60◦, the internuclear distances are all equal, and the dipolar couplings are in

the ratio of the gyromagnetic ratios ωHH/ωHD = γ(1H)/γ(2D) = 6.51. This “equilateral

triangle model” predicts the following relaxation time ratio:
(
TS/T1

)
4 = 10.6. However,

the observed value is quite different:
(
TS/T1

)
obs

= 3.1± 0.1.

How can this discrepancy be explained? One approach would be to call into

question the intra-methyl relaxation model: However, as discussed above, the evidence

for the dominance of intra-CH2D interactions in the 1H and 2D relaxation is very strong.

An alternative approach is to maintain the local intra-methyl relaxation model, but to

modify the relative magnitudes and geometries of the dipole-dipole interactions within

the rotating CH2D group, to take into account differential vibrational averaging on a

faster timescale than the molecular rotation or 3-fold jumps.

A detailed analysis of the effect of rapid vibrational motions on the dipolar inter-

action tensors in the CH2D group would be a major project. For the sake of simplicity

a naive picture is employed, in which the nuclei are still regarded as localized points,

but with the 2D nucleus displaced from its original position, in order to account for

differential vibrational averaging of the 2D and 1H interactions. In order to maintain

symmetry, we consider a model in which the 2D nucleus is moved in the CH2D plane

along the line bisecting the 1H-1H vector (figure 3.16a). This adjustment changes the

internuclear distances as well as the angle θ. The dependence of the theoretical relax-

ation rate ratio TS/T1 on the deuterium displacement is shown in figure 3.16b). There is
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Figure 3.16: a) Adjustment of the effective geometry of the CH2D group to account
for the observed relaxation rate ratio TS/T1 = 3.1. The three nuclei are initially at the
vertices of an equilateral triangle of side length 179.6 pm (black circles). The deuterium
nucleus is displaced towards the original centre of the triangle (open circle) by a distance
∆r. (b) Dependence of the relaxation rate ratio TS/T1 on the displacement ∆r. The
open circle shows the displacement needed for consistency with the observed rate ratio
TS/T1 = 3.1. The black circle shows the predicted rate ratio from an equilateral
triangle geometry. The calculations assume a rotational correlation time τC = 3.8 ps

and a thermally activated jump rate constant κ = 1.7 × 1010 s−1.

a strong sensitivity to the deuterium displacement, with the observed ratio TS/T1 = 3.1

being consistent with a displacement of 38.7 pm towards the original centre of the equi-

lateral triangle. This represents a contraction in both 1H-2D distances by about 18%,

and a change in the angle 2θ from 60◦ to 75.1◦. A sketch of the adjusted geometry is

shown in figure 3.16a).

This degree of geometrical distortion is probably unrealistic. It is more likely that

differential vibrational averaging of the 1H-1H and 1H-2D dipolar interactions is respon-

sible for the observed TS/T1 ratio. Vibrational motion out of the CH2D plane is likely to

be particularly effective. For example, the larger vibrational amplitudes of the 1H nuclei

relative to the more massive 2D nucleus would reduce the 1H-1H dipolar interaction

more than the 1H-2D dipolar interactions. This effect would lead to a correction in the

right direction. A more sophisticated analysis of vibrational effects on the interaction

parameters has not been attempted.

It is also possible to estimate the contribution of the chemical shift anisotropy

mechanism to the proton singlet and longitudinal relaxation rates. Using the expres-

sions given in reference [24], and the reported values of the 1H CSA (σH = −5 ppm),

provides estimates of T−1
S (CSA) = 0.69 ± 0.09 × 10−3 s−1 and T−1

1 (CSA) = 0.24 ±
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0.03 × 10−3 s−1. Clearly the chemical shift anisotropy mechanism does not signifi-

cantly contribute to the CH2D group singlet and longitudinal relaxation of N-CH2D-2-

methylpiperidine.

3.9 Rapidly rotating CH2D groups

In the previous section it was demonstrated that the finite value of Ω12
∆ in N-CH2D-2-

methylpiperidine allows access to the CH2D nuclear singlet order [56]. A relatively low

relaxation time ratio TS/T1 ' 3.1 was observed in this case. This was attributed to slow

rotational jumps of the CH2D moiety between three rotational conformers, which was

supported indirectly by the 13C and 2H relaxation data, combined with a non-equilateral

effective geometry for the two protons and the deuteron [56]. A much larger ratio of

TS to T1 is expected in the case of rapid CH2D rotation [183]. However, it has been

unclear whether rapid CH2D rotation is compatible with a sufficiently large chemical

shift difference ∆δ, required for access to the nuclear singlet order.

Chemical inequivalence between CH2D protons has only been described so far in

three chemical compounds [179, 180, 182]. Of these, the one expected to provide rapid

CH2D rotation is (α-deuterio-o-chlorotoluene)chromium tricarbonyl (I), see figure 3.17.

In this section, I show that rapid CH2D rotation is not a priori incompatible with a

finite chemical shift difference, and that long-lived nuclear singlet order is accessed in

this rapidly-rotating CH2D system, and displays a relatively large relaxation time ratio,

TS/T1 ' 11.3.

3.9.1 Experiments

3.9.1.1 Proton spectra

The relevant portion of the proton NMR spectrum of I, in the presence of deuteron

decoupling (nutation frequency = 500 Hz), is shown in figure 3.17. The two central

peaks of the AB spectral pattern are unresolved, and the weak outer components are

only just visible, indicating a very small value of the chemical shift difference relative to

the J-coupling. A small chemical shift difference between the CH2D protons is observed

in this compound, and is attributed to a significant interaction between the orbitals of the
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Figure 3.17: Part of the experimental 1H spectrum of (α-deuterio-o-
chlorotoluene)chromium tricarbonyl (I) in C6D6 solution acquired at 11.7 T (500 MHz)
with 16 transients, in the presence of deuteron decoupling (500 Hz nutation frequency).
Blue line: experimental proton spectrum; Black line: simulation (|JHH| = 14.7 Hz,
Ω12

∆ = 8.0 ppb), using Lorentzian line broadening (half-width at half-height = 1.5 Hz);
Grey line: simulation (|JHH| = 14.7 Hz, Ω12

∆ = 8.0 ppb), using Lorentzian line broaden-
ing (half-width at half-height = 0.3 Hz). The intensity of the grey spectrum has been
artificially reduced. The inner splitting of the grey spectrum is 0.6 Hz. The aster-
isk indicates a small signal from a non-deuterated impurity, shifted in frequency by
a secondary isotope effect. The small outer components of the AB spectral pattern
are indicated by arrows. Inset: structure of I, indicating the out-of-plane chromium

complex.

chromium centre and those of the CH2D carbon, combined with the chiral environment

provided by the ortho-Cl substituent [180]. The spectrum may be simulated by using the

following parameters: |JHH| = 14.7 ± 0.3 Hz, ∆δ = 8.0 ± 0.4 ppb. These are consistent

with the literature [180].

3.9.1.2 Singlet NMR

The small chemical shift difference allows access to the long-lived singlet order of the

CH2D protons, by using radiofrequency pulse techniques which operate in the near-

equivalence regime [150, 156–158]. In the current study, the SLIC (Spin-Lock Induced

Crossing) method was used [157], as shown in figure 3.6. The parameters of the SLIC

pulse sequence were chosen to maximise triplet-singlet population conversion: ωSLIC/2π

= 14.7 Hz, ωLOCK/2π = 0 Hz and τSLIC = 170 ms. An interval of 360 s was used between

successive transients. The maximum amplitude of the singlet-filtered 1H NMR signal,

relative to that induced by a single 90◦ pulse, was found to be 0.28. The loss relative
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Figure 3.18: Experimental relaxation curves for the CH2D protons in 0.1 M I in
degassed C6D6 solvent (proton frequency = 500 MHz, temperature = 25◦C). Open
symbols, grey line, and right-hand axis: Decay of long-lived nuclear singlet order mea-
sured using the pulse sequence in figure 3.6. Filled symbols, black line, and left-hand
axis: Spin-lattice relaxation measured by inversion recovery. All signal amplitudes were

normalized to the first point. The fitted curves have a single-exponential form.

to the theoretical maximum of 2/3 [173] is not yet fully understood but is attributed to

radiofrequency field imperfections and relaxation.

3.9.2 Results

A decay curve for CH2D proton singlet order is shown in figure 3.18. This shows a

single exponential decay with time constant TS = 126 ± 6 s. This is more than eleven

times longer than the relaxation time for the longitudinal magnetization of the CH2D

protons, T1 = 11.2± 0.6 s, as estimated from the inversion recovery curve, also shown in

figure 3.18. Without degassing, TS = 21.9 ± 0.8 s and T1 = 5.1 ± 0.3 s. Measurements

of TS and T1 values for the CH2D protons in I at several temperatures between 25◦C

and 55◦C are shown in table 3.4. The ratio TS/T1 remains reasonably constant over this

temperature range. Temperature is therefore an implicit parameter of T1 and TS.

Table 3.4: Relaxation times for the CH2D protons in 0.1 M I in degassed C6D6 solution
at 11.7 T (500 MHz), for a range of temperatures.

Temperature/◦C T1/ s TS/ s TS/T1

25 11.2 ± 0.6 126 ± 6 11.3 ± 0.8
35 12.6 ± 0.4 131± 10 10.4 ± 0.9
45 14.1 ± 0.5 141 ± 6 10.0 ± 0.6
55 15.6 ± 0.7 144 ± 7 9.3 ± 0.6



Rapidly rotating CH2D groups 3.9 153

3.9.3 Discussion

The observed relaxation time ratio TS/T1 ' 11.3 is much larger than that found for

the case of N-CH2D-2-methylpiperidine, where a ratio of 3.1 was observed [56]. This

may be attributed to much faster rotational diffusion of the CH2D group in I around the

approximate 3-fold axis. This is physically reasonable since the site adjacent to the CH2D

group in I is a sp2-hybridized carbon, while the adjacent site in the N-CH2D piperidine

derivative is a sp3-hybridized nitrogen, whose lone pair engages in a hyperconjugation

interaction with the deuterated methyl group [179]. Neutron spectroscopy of methyl

rotors show that sp3 hybridization of the neighbouring atom is almost always associated

with strong hindering of the methyl rotation, and therefore a small or absent tunnelling

splitting [202]. It is therefore plausible that the CH2D group has much greater rotational

freedom in I, as compared to the N-CH2D piperidine derivative studied in sections 3.2-

3.8.

The torsional potential energy function for a methyl group adjacent to a sp2 carbon

is known to contain periodic components with both 6-fold and 3-fold symmetry [203].

The 3-site jump model for proton singlet relaxation developed in section 3.4.2 is therefore

not appropriate to the case of compound I. In the discussion below, a model in which the

CH2D rotor performs free rotational diffusion is used, with correlation time τR, while the

overall rotational diffusion of the molecule in solution is described by a correlation time

τC. A model of this kind was used to treat methyl long-lived states and quantum-rotor-

induced polarization in γ-picoline [141, 155]. As in section 3.4.3, the linear relationship

of TS and T1 (table 3.4) indicates a common correlation time for these processes, and it is

assumed that the proton relaxation in the CH2D group is dominated by the local dipolar

interactions between the protons and the deuteron. These local dipolar interactions are

averaged on a fast timescale by rapid vibrational or librational motion, so it is not

possible in general to assume that the nuclei can be treated as point dipoles at the

vertices of an equilateral triangle [56].
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3.9.4 Spectral densities for rapidly rotating CH2D groups

For a freely diffusing methyl group, the contribution of internal motion to the correlation

function is [61, 155]:

〈D2∗
m2m1

(ΩRM (0))D2
m′2m

′
1
(ΩRM (τ))〉 = δm1m2δm′1m′2δm2m′2

δm1m′1
e
−m2

2
τ
τR , (3.52)

The spectral densities for the dipole-dipole and quadrupolar interactions therefore be-

come:

Jλ,λ
′

mm′(ω) = δmm′
1

5
Aλ,P20 Aλ

′,P
20

∑
m2

D2∗
0m2

(Ωλ
PR)D2

0m′2
(Ωλ′

PR) (3.53)

×
∫ ∞

0
dτ e

−m2
2
τ
τR e−τ/τC eiωτ ,

with the spectral density at zero frequency, relevant in the extreme narrowing regime,

becoming:

Jλ,λ
′

mm′(0) = δmm′
1

5
Aλ,P20 Aλ

′,P
20

∑
m2

τCτR

m2
2τC + τR

D2∗
0m2

(Ωλ
PR)D2

0m′2
(Ωλ′

PR). (3.54)

In extreme narrowing, the isotropic rotational diffusion model leads to the following

expressions for the T1 and TS relaxation rate constants for the CH2D protons:

T−1
1 =

(τR + τC)

6 (τR + 4τC)

(
16ω2

HD + 9ω2
HH

)
τC, (3.55)

T−1
S =

8τR sin2 2θ

(τR + 4τC)
ω2

HDτC. (3.56)

The CH2D deuteron relaxation is assumed to be dominated by the electric quadrupole

mechanism, with a rate constant given by:

T−1
1 (2H) =

3

16
(
1

2
(1 + 3 cos 2θ)2 +

6τR sin4 θ

(τR + 4τC)

+
6τR sin2 2θ

(τR + τC)
)ω2
QτC,

(3.57)

where a tetrahedral effective geometry is assumed. These are similar to the expressions

given in section 3.5.5 (equations 1-4 of reference [56]) for the 3-site jump model of CH2D

relaxation.
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3.9.5 Relaxation analysis

13C and 2D relaxation times were measured in degassed C6D6 solution at 11.7 T (500 MHz)

and 25◦C. The 2D T1 of the CH2D group was 1.2± 0.1 s. The 13C T1 values for the CH

sites of the o-chlorotoluene moiety were 5.3± 0.4 s.

The experimentally determined T1 relaxation times for the aromatic ring 13C

sites were found to be consistent with a rigid-body rotational diffusion model, and by

comparing with equation 3.45 lead to the following estimate of the overall rotational

correlation time at 25◦C: τC = 9.0 ± 0.6 ps. From comparing the experimental T1

relaxation time constant of the CH2D deuteron with equation 3.57, an estimate of the

correlation time for free rotational diffusion of the CH2D methyl rotor is obtained:

τR = 2.8±0.3 ps. In this case the product τCτ
−1
R > 1. This confirms that the CH2D group

in I undergoes local rotational diffusion which is more rapid than the overall rotational

tumbling of the molecule. This is different from the case of N-CH2D-2-methylpiperidine,

where the 3-fold jumps of the CH2D group are slow relative to the overall molecular

tumbling, see section 3.7.2 [56].

The rotational diffusion model leads to the following expression for the relaxation

time ratio TS/T1:

TS
T1

=

(
1 +

τC

τR

)
16ω2

HD + 9ω2
HH

48ω2
HD sin2 2θ

(3.58)

'
(

1 +
τC

τR

)
3ω2

HH

16ω2
HD sin2 2θ

. (3.59)

using the approximation |ωHD|2 � |ωHH|2. The simplest model of intra-CH2D interac-

tions assumes that the proton and deuteron nuclei are fixed as points on the vertices of

an equilateral triangle. Since all internuclear distances are equal, the angle between the

unique principal axes of the two HD dipolar coupling tensors is given by 2θ = π/3. The

estimated correlation times τC = 9.0 ± 0.6 ps and τR = 2.8 ± 0.3 ps lead to a predicted

relaxation time ratio TS/T1 = 47±4. This is far larger than the observed ratio of ∼11.3.

In the case of N-CH2D-2-methylpiperidine, a good agreement with the observed

relaxation time ratio was obtained by adjusting the effective geometry of the CH2D

group to take differential vibrational averaging into account, see section 3.8. Moving the

effective position of the deuteron by 38.7 pm towards the centre of the CH2D triangle



156 Chapter 3: Long-lived nuclear spin states in monodeuterated methyl groups

generated good agreement with experiment [56]. In the current case, the same adjust-

ment of effective geometry leads to a predicted relaxation time ratio TS/T1 = 14.1±0.4.

This is in better agreement with the experimental result TS/T1 ' 11.3, although a

significant discrepancy remains. The remaining discrepancy could be associated with

deviations from the free rotational diffusion model, in the direction of a discrete jump

model. Additional relaxation mechanisms could also be involved, such as interactions

with neighbouring nuclei and spin-rotation interactions. This is plausible since small

additional contributions can have a large proportionate effect on the small value of T−1
S .

This issue has not been investigated further.

3.10 Conclusions

It is possible to populate the long-lived nuclear singlet order in the proton pairs of mon-

odeuterated methyl groups, under suitable conditions. This requires non-uniformity

in the rotamer populations as well as a local chiral environment in order to induce a

small isotropic chemical shift difference between the CH2D protons. Both conditions are

fulfilled for the CH2D group in N-CH2D-2-methylpiperidine, where a hyperconjugation

effect involving the nitrogen lone pair perturbs the vibrational energies and hence the ro-

tamer populations, while the neighbouring methyl group provides a chiral environment;

and (α-deuterio-o-chlorotoluene)chromium tricarbonyl, where the small chemical shift

difference observed is associated with the asymmetry of the complex coupled with the

selective C-H(D) bond weakening induced by the Cr(CO)3 moiety [33, 34]. Coordina-

tion of metals to arenes is known to result in a dramatic withdrawal of electron density

from the arene [204] and produce a significant interaction between the orbitals of the

chromium centre and those of the CH2D carbon. The chiral environment is provided by

the ortho-Cl substituent [180].

In the N-CH2D-2-methylpiperidine system, the ratio of the singlet relaxation time

TS to the longitudinal relaxation time T1 was found to be 3.1 ± 0.1 over a wide range

of conditions, with the longest observed value of TS approaching 1 minute at elevated

temperature. The observation of a constant ratio of TS to T1 supports a relaxation model

in which dipolar interactions between the CH2D protons and deuteron dominate the

singlet relaxation. However, a naive model in which the 1H and 2D nuclei of the CH2D

group are viewed as point-like magnetic dipoles fixed at the vertices of an equilateral
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triangle predicts a much larger ratio of TS to T1. The effects of a geometric distortion

in which the 2D nucleus is displaced towards the centre of the triangle was explored and

it was found that a displacement of 38.7 pm was needed to explain the experimental

data. This adjustment should not be viewed as a realistic structural proposal, but as a

crude attempt to represent the differential effects of vibrational averaging and nuclear

wavefunction delocalization within a simplistic point-nucleus geometric model.

The observed relaxation time ratio of TS/T1 ' 3.1 is probably too small for

most feasible applications. However, it should be noted that equation 3.51 permits

a much larger ratio of TS/T1 in the case of fast 3-fold jumps, i.e. κτC & 1. This

does not occur in N-CH2D-2-methylpiperidine, where the rotational barrier appears

to be relatively large but does arise in other compounds displaying inequivalence of

the CH2D proton pair, such as in (α-deuterio-o-chlorotoluene)chromium tricarbonyl,

where a free rotor rotational diffusion model was used in the relaxation analysis of the

singlet relaxation time constant TS. Rapid CH2D rotation was found to extend the

proton singlet relaxation time of monodeuterated methyl groups, and in the case of (α-

deuterio-o-chlorotoluene)chromium tricarbonyl the time constant TS was more than 10

times longer than T1, and was consistently longer than 2 minutes. Furthermore, at least

in this case, a sufficient differential was maintained between rotamer populations while

still having a sufficiently low rotational barrier as to permit rapid CH2D rotation. As

a result, the chemical shift difference between the CH2D protons was not completely

quenched, and the nuclear singlet state remained experimentally accessible, as well as

being long-lived. These results are encouraging for the future applications of long-lived

singlet states in monodeuterated methyl groups.

Attempts to observe long-lived singlet states in other chiral CH2D systems, such

as derivatives of 3-2D-lactic acid, and also N-CH2D-3-methylpiperidine (similar to the

substance used above, but with a more remote CH3 group) were unsuccessful. Access

to the CH2D singlet state in both of these cases presumably failed because the chemical

inequivalence of the CH2D protons is too small to exploit. Apart from unusual circum-

stances [180], hyperconjugation between a lone pair on a neighbouring atom (such as

N) and the methyl C-H(D) bonds seems to be a requirement for obtaining a sufficient

chemical shift difference of a few ppb or more. At the time of writing this thesis ex-

periments have not been attempted on other chiral compounds containing a X-CH2D

moiety, where X is an atom other than N possessing a lone pair, such as P, O or S.
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It should be noted that many interesting chiral molecules do contain a tetrahedral N-

methyl group of suitable type. Examples include the psychoactive agents lysergic acid,

codeine, morphine, cocaine, heroin, and methamphetamine. It is not yet known whether

the methyl-monodeuterated versions of these systems possess an accessible long-lived

singlet state.



Chapter 4

Direct hyperpolarization and

coherent readout of long-lived

proton singlet order

Conventional nuclear magnetic resonance (NMR) experiments are limited by low sen-

sitivity and weak signals. Hyperpolarization techniques such as dissolution-DNP (dy-

namic nuclear polarization) [71] enhance solution-state NMR signals by orders of magni-

tude [71, 205–207]. The large NMR signal enhancements have a range of important ap-

plications including ligand-binding, drug transport and metabolic tracing [87, 116, 208–

210], and wide-ranging implications such as the characterization of cancer in human

patients [87].

However, the range of applications for hyperpolarized NMR is strongly restricted

by the finite lifetime of the enhanced magnetization, which is usually limited to the

characteristic relaxation time T1. This limitation is especially severe for protons, which

tend to have short values of T1, due to their relatively strong nuclear magnetism. Most

applications of D-DNP have involved weakly magnetic isotopes such as 13C, even though

the ubiquitous protons give stronger NMR signals. This is because the short spin-lattice

relaxation times of protons usually lead to a large loss in polarization during the transfer

from the polarizer to the point of use.

159
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Figure 4.1: The significant NMR signal enhancements afforded by DNP may be
harnessed by two approaches. 1○ DNP leads to hyperpolarized nuclear magnetization,
which decays with the relatively large rate constant T−1

1 . 2○ In the case of spin-1/2
pairs, DNP also gives rise to hyperpolarized singlet order, which may be converted into
observable magnetization by a coherent radiofrequency pulse sequence. Although the
degree of singlet hyperpolarization is less than that of magnetization, the decay rate
constant T−1

S is much smaller than T−1
1 . The hyperpolarized signals may be larger at

long times, when the singlet route is taken.

The use of LLS offers a promising means to transcend the limitation of hyper-

polarized magnetization decaying rapidly in solution [14–16, 20, 21, 23, 28, 29, 31–

33, 140, 142, 143, 146, 183, 208]. LLS are protected against intra-molecular dipole-dipole

relaxation and other symmetric decay mechanisms, and typically have extended lifetimes

TS > T1, see figure 4.1. The combination of LLS phenomena with hyperpolarization tech-

niques is particularly promising, and applications of nuclear singlet order to hyperpolar-

ized NMR experiments have been proposed [21, 28, 32, 34, 71, 87, 143, 145, 146, 208].

In this chapter, it is shown that this limitation may be overcome by (1) exploiting

near-equivalent proton pairs; (2) direct hyperpolarization of long-lived proton singlet

states in those proton pairs by using D-DNP, and (3) coherent and efficient conversion

of the hyperpolarized proton singlet order into observable magnetization.

4.1 Introduction

Consider the protons (i and j) in the N-CH2D group of N-CH2D-2-methylpiperidine.

If the chemical shift difference between the members of the spin pair is sufficiently

small, the spins are termed near-equivalent [24]. The condition for near-equivalence is∣∣∣Ωij
∆

∣∣∣ << ∣∣2πJij∣∣, where Ωij
∆ is the chemical shift difference between the spins i and
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j, and Jij is the scalar coupling between the members of the spin pair. When this

condition is satisfied, the energy eigenstates are approximately equal to the nuclear

singlet and triplet states, and the nuclear singlet order is stable at high magnetic field

without intervention. If the near-equivalence condition is not met, on the other hand,

the nuclear singlet order must be maintained by applying an on resonant radiofrequency

field [149], or by shuttling the sample to a region of sufficiently low magnetic field [16].

DNP generates a high nuclear Zeeman polarization pZ, which may be associated

with a very low nuclear spin temperature, on the order of milliKelvin. If the spin

temperature is assumed to be uniform, a nuclear singlet polarization pS is also generated,

given by [25]:

pS = −1

3
p2

Z. (4.1)

A derivation of equation 4.1 is shown in section 2.10. The direct generation of hyper-

polarized singlet order by DNP was first demonstrated for the case of [1,2-13C2]pyruvic

acid [25]. However, in that case, the large chemical shift difference between the 13C sites

caused rapid singlet decay in high magnetic field, and no significant advantage could be

demonstrated over conventional Zeeman polarization. The direct generation of nuclear

singlet order by DNP was also demonstrated in magnetically-equivalent systems [55, 143]

but in these systems chemical reactions or inefficient cross-relaxation processes are re-

quired to generate weakly observable NMR signals [55, 143].

In this section it is demonstrated that the use of near-equivalent proton pairs allows

the long lifetime of hyperpolarized singlet order to be exploited in high magnetic field,

while still providing an efficient, coherent route for conversion of the nuclear singlet order

into enhanced NMR signals. Under these circumstances, the “singlet route” ( 2○, lower

part of figure 4.1) may provide stronger, longer-lasting, hyperpolarized NMR signals

than the “Zeeman route” ( 1○, upper part of figure 4.1).

As a proof of concept, the CH2D protons of N-CH2D-2-methylpiperidine were

chosen as the near-equivalent spin pair for these experiments. The CH2D protons

have a 14 ppb chemical shift difference due to the chiral environment generated by the

nearby methyl substituent, see figure 3.4 [56, 179, 184]. The structure of N-CH2D-2-

methylpiperidine is shown in figure 3.1. Coherent readout of the long-lived spin order is

achieved, after hyperpolarization with D-DNP, by applying a singlet-to-magnetisation

(S2M) pulse sequence [150, 156]. The bulk of the nuclear singlet order is converted to
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magnetization, obviating the need for chemical reactions or weak cross-relaxation pro-

cesses [55, 141, 143, 147, 155]. This procedure allows strongly enhanced proton NMR

signals to be observed more than one minute after dissolution, by which time the hyper-

polarized magnetization has completely disappeared, i.e. enhanced proton NMR signals

are observed even when the hyperpolarized magnetization has completely vanished.

4.2 D-DNP methods

Solutions of 0.375 M N-CH2D-2-methylpiperidine in the glass-forming mixture D2O:gl-

ycerol-d8 (50:50 v/v) were doped with 25 mM TEMPOL (II). The solution was soni-

cated for 2 minutes. Ten frozen pellets of II (10µL volume per pellet) were inserted

into a home-built polarizer. The sample polarized in a magnetic field of 6.7 T and at

a temperature of ∼4.2 K for ∼48 minutes by applying frequency-modulated microwave

irradiation at 188.3 GHz frequency and 100 mW power [211, 212]. The microwave mod-

ulation frequency and amplitude were 10 kHz and 50 MHz, respectively. The polarized

pellets were dissolved with 5 mL CD3CN solvent (degassed via bubbling with nitrogen

gas for 5 minutes) preheated to 410 K at a pressure of 10 bar. The liquid sample was

transferred in 10.7 s to a 11.7 T (500 MHz) NMR magnet by pushing with helium gas at

6 bar through a PTFE tube (1.5 mm inner diameter) running inside a magnetic tunnel

(0.91 T, 5 m length) [135]. 1 s was taken for sample injection and bubble dissipation.

4.3 Solid-state polarization

Zeeman polarization psolid
Z was accumulated in the solid-state for a sample of II in a

magnetic field of 6.7 T and at a temperature of ∼4.2 K under the action of negative

dynamic nuclear polarization (DNP) [212]. A Zeeman polarization of psolid
Z = −59± 5 %

was achieved in ∼48 minutes, see figure. 4.2a). The solid state enhancement εsolid
Z was

approximately -360±20 compared to a spectrum recorded with the microwaves off, see

figure 4.2b). The thermal equilibrium spectrum was acquired after a 1 hour equilibration

period at ∼4.2 K.
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Figure 4.2: a) Build up of Zeeman polarization psolid
Z in the solid state for a sample of

II in a magnetic field of 6.7 T and at a temperature of ∼4.2 K. A Zeeman polarization
of psolid

Z = −59 ± 5 % was reached after ∼48 minutes. b) Solid state hyperpolarized
(red) and thermal equilibrium (blue) spectra. The enhancement in the solid state is

εsolid
Z ' −360± 20.

4.4 Singlet order vs. magnetization

The enhanced NMR signals from the hyperpolarized magnetization and the nuclear

singlet order are compared by using the procedure sketched in figure 4.3a). A sample of

II has been prepared as described in section 4.2. The hyperpolarized sample is dissolved

in deuterated acetonitrile solvent preheated to 410 K (pressure ∼10 bar) and transferred

into a 11.7 T NMR magnet through a ∼0.9 T “magnetic tunnel” in transport time of

∼10 s [135]. After a variable high field waiting time τHF, a π/2 pulse is applied and the

NMR signal is acquired (blue). Note that the single pulse and signal acquisition leaves

any DNP-generated singlet order unperturbed, to a good approximation. The nuclear

singlet order is read out by applying a T00 filter sequence, followed by a S2M pulse

sequence, with a combined duration of ∼2 s [55, 56, 150, 156]. The T00 filter quenches

all NMR signals not originating from the nuclear singlet order, and the S2M pulse

sequence converts hyperpolarized singlet order into transverse magnetization, leading to

a second NMR signal (red). The T00 filter is described in more detail in appendix B and

references [54–56]. The time-reversal of the S2M sequence (M2S) is described in more

detail in section 2.13. The parameters of the S2M pulse sequence were as follows: τJ

= 21.4 ms, n1 = 3 and n2 = 1. The sample is allowed to rest in the 11.7 T magnet for

an additional 300 s in order to achieve thermal equilibrium, and a third NMR signal is

acquired using a π/2 pulse (black). Fourier transformation of this signal provides the
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Figure 4.3: a) Timing sequence for acquiring spectra from the hyperpolarized mag-
netization, the hyperpolarized singlet order, and in thermal equilibrium, from the same
sample. (b-d) Spectra obtained from a sample of II dissolved in degassed CD3CN solu-
tion, hyperpolarized in the negative sense by DNP, and with a waiting interval τHF =
15 s after arrival in the high field magnet. b) Spectrum from hyperpolarized magneti-
zation showing negatively enhanced signals; c) Spectrum from the nuclear singlet order
converted into magnetization by the S2M sequence, showing a strongly enhanced CH2D
signal; d) Thermal equilibrium spectrum. (e-g) Similar spectra obtained on a second
hyperpolarized sample of II dissolved in degassed CD3CN solution, using a waiting

interval τHF = 35 s after arrival in the high field magnet.

thermal equilibrium spectrum.

Figures 4.3(b-d) show the spectra obtained with a delay of τHF = 15 s. Relevant

spectral ranges are shaded in grey and the integrals across these ranges are given above

the spectra. All integrals are normalized to the intensity of the fully protonated methyl

group at 1.09 ppm in the thermal equilibrium spectrum. The signal originating from

the CH2D group is at 2.20 ppm, and is partially obscured by a water impurity signal at

2.24 ppm. The acetonitrile solvent resonance is at 1.98 ppm. The spectrum generated

by the initial π/2 pulse is shown in figure 4.3b), and displays enhancements of -75

and -26 for the CH2D and CH3 spectral regions, respectively. These signals originate
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Table 4.1: Chemical shift of the water impurity for different volumes of co-mixed
N-CH2D-2-methylpiperidine, glass-forming D2O:glycerol-d8 (50:50 v/v) and TEMPOL
(II) dissolved in 0.5 mL degassed CD3CN solvent at 11.7 T (500 MHz) and 25◦C. Chem-

ical shifts were referenced with respect to the CD3CN solvent peak.

Volume/µL Chemical shift/ppm

2 2.217
5 2.297
10 2.389

from the hyperpolarized magnetization, with the negative sign reflecting the sense of

the DNP. The signal obtained from the directly hyperpolarized singlet order is shown

in figure 4.3c), and clearly exceeds the signal from the hyperpolarized magnetization,

displaying an enhancement of +154. Only the CH2D signal appears in figure 4.3c), since

the T00 sequence suppresses signals which do not pass through the nuclear singlet order

of the CH2D protons.

The advantage of using hyperpolarized singlet order over hyperpolarized magneti-

zation is even more pronounced at longer high field waiting times τHF. Spectra obtained

with τHF = 35 s are displayed in figures 4.3(e-g) and show only weak traces of signals

from the hyperpolarized magnetization. The signal obtained from hyperpolarized sin-

glet order at τHF = 35 s, on the other hand, still gives an enhancement of more than 50

relative to thermal equilibrium.

4.5 Water impurity

The resonance position of the impurity, thought to originate from residual water [213],

was found to be dependent on the volume of II dissolved in degassed CD3CN solvent, see

table 4.1. At higher concentrations of II, the water impurity was shifted sufficiently far

downfield such that the CH2D resonance was unobscured in the proton NMR spectrum.

For example, at a 10µL volume of II the CH2D peak was observed at 2.389 ppm. For

volumes of II <2µL, such as those achieved after dissolution, the CH2D peak was

obscured by a more intense water resonance. The resonance shift of the water impurity

as a function of the volume of II is approximately linear, but is not currently understood.

A plausible mechanism would be an exchange interaction between the -OH protons of the

TEMPOL radical with those of the residual protonated water belonging to the glassy

matrix. Such an exchange interaction could simultaneously lead to a downfield peak
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Figure 4.4: The procedure for monitoring the decay of the hyperpolarized singlet
order. Hyperpolarized N-CH2D-2-methylpiperidine is collected after dissolution at low
magnetic field (≤3 mT) in a flask preloaded with 2 mL degassed CD3CN solvent. The
solution is pipetted (at low magnetic field) into 5 separate 0.5 mL NMR tubes. The
first tube is inserted into the 11.7 T magnet, a T00 filter sequence is applied to select out
NMR signals passing through the nuclear singlet order [150, 156], and the S2M pulse
sequence converts the hyperpolarized proton singlet order into observable magnetization
for detection [55, 56]. Within the following 20 s the sample is ejected and the next NMR
tube is injected; this procedure is repeated for all five NMR tubes. The curved arrow

after each signal acquisition represents the ejection of the NMR tube.

shift for the water resonance and broader NMR lines. It is not yet known whether there

are any previous reports of similar phenomena in the literature.

4.6 Decay of hyperpolarized singlet order

The hyperpolarized TS is estimated by using the procedure sketched in figure 4.4. A

hyperpolarized sample of II is flushed out of the cryostat using hot acetonitrile solvent

and collected in a flask preloaded with 2 mL degassed acetonitrile solution in the stray

field of a 11.7 T NMR magnet (≤3 mT). The solution is divided into aliquots in the

ambient magnetic field of the lab bench. The first 0.5 mL aliquot is loaded into an NMR

tube and inserted into the 11.7 T NMR magnet. NMR signals are obtained from the

hyperpolarized singlet order by applying a T00 filter sequence followed by a S2M pulse

sequence [150, 156]. The tube is then ejected and a second tube is inserted that had

been filled in the meantime. The delay between the measurements on the two tubes is

20 s. This process is repeated for a total of five tubes.

The signal enhancement factors in a Zeeman hyperpolarization experiment and a

singlet hyperpolarization experiment are denoted by εZ and εS, respectively. These are

given by the spectral integrals of the CH2D peak relative to thermal equilibrium, i.e.

εZ = IZ/Ieq and εS = IS/Ieq, where IZ and IS are the integrals for the direct Zeeman and

singlet hyperpolarization experiments, respectively. In practice, the intensity Ieq of the

thermal-equilibrium CH2D peak was estimated by multiplying the CH3 peak intensity
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Figure 4.5: Filled circles: Experimental values of the signal enhancement factor in
a singlet NMR experiment εS(t), as a function of the elapsed time t after dissolution.
Solid line: Exponential decay curve given by εS(t) = εS(0) exp{−t/TS}, with initial
enhancement εS(0) = 680 and time constant TS = 19.0 s. Dashed blue line: Magnitude
of the signal enhancement in a Zeeman polarization experiment, as inferred from the

data:
∣∣εZ(t)

∣∣ =
∣∣εZ(0)

∣∣ exp{−t/T1}, with εZ(0) = −14 750 and T1 = 5.9 s.

by 2/3, in order to avoid complications caused by the overlap of the CH2D peak with a

water impurity peak.

The experimental signal enhancement factors εS(t) are shown by the filled symbols

in figure 4.5. The time coordinate t of each point is given by the total elapsed time since

dissolution, including the transport of the sample out of the polarizer, the waiting time

in low magnetic field (different for each aliquot), the insertion into the high field magnet

and any waiting time for stabilization before application of the pulse sequence shown

in figure 4.4. The data fit well to a mono-exponential decay with a time constant

TS = 19± 3 s, and an initial enhancement εS(0) = 680± 126.

A direct comparison with the signal enhancement from Zeeman polarization is not

straightforward, since the Zeeman polarization decays rapidly and the spectral analysis

is complicated by the peak overlap. The dashed blue curve in figure 4.5 shows an

indirect estimate of εZ(t) which was inferred as follows: (i) The Zeeman polarization

level was estimated by comparing the DNP-enhanced solid-state NMR signal at ∼1.3 K

with a thermal equilibrium signal measured at ∼4.2 K (both signals were measured in

the polarizer). This comparison gave the following estimate of the Zeeman polarization

level in the solid state, prior to dissolution: psolid
Z = −59± 5 %; (ii) It was assumed that
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Figure 4.6: Pulse sequence for estimating the longitudinal relaxation time of the
obscured CH2D resonance.

the Zeeman polarization is substantially preserved throughout the dissolution process, so

that pZ(0) ' psolid
Z , where pZ(0) is the Zeeman polarization immediately after dissolution;

(iii) The thermal equilibrium Zeeman polarization for protons in a magnetic field of

11.7 T and a temperature of ∼300 K is governed by the Boltzmann distribution, and is

given by peq
Z = ~γB0/2kBT = 39.8 × 10−6, see section 2.2 for more details. Combining

these results gives the following best estimate for the initial signal enhancement factor in

the Zeeman-polarized experiment: εZ(0) = pZ(0)/peq
Z = −14 750. The dashed blue line

in figure 4.5 shows the curve |εZ(t)| = |εZ(0)| exp{−t/T1}, where T1 = 5.9 s as estimated

by separate saturation-recovery experiments. Figure 4.5 therefore shows that the singlet-

polarization experiment yields larger signals than the Zeeman-polarized experiment, for

elapsed times of greater than 30 s after dissolution.

4.7 Singlet-filtered saturation-recovery experiments

The pulse sequence for measuring the 1H T1 of the CH2D peak obscured by the suspected

water impurity is shown in figure 4.6. The scheme commences with a “saturation comb”

(90◦0 - delay)100 which crushes all observable magnetization. The delay between 90◦0

pulses was 5 ms. After an evolution period τEV, ordinary magnetization is accrued

and converted into nuclear singlet order by the M2S (magnetization to singlet) pulse

sequence [150, 156]. The T00 filter destroys all signals not originating from the proton

singlet order [55, 56], solely selecting the CH2D singlet signal, which is subsequently

back-converted into observable magnetization by the S2M pulse sequence. NMR spectra

were acquired as a function of τEV and the CH2D T1 of 5.9 ± 0.7 s was determined from

the integrals of the resulting signal resonances.



Estimate of S2M efficiency 4.8 169

4.8 Estimate of S2M efficiency

In the current study, the combination of a T00 filter and the S2M (singlet-to-magnetizatio-

n) pulse sequence are used to retrieve the nuclear singlet order generated directly from

DNP. In order to determine the efficiency of the S2M sequence ηS2M the Zeeman mag-

netization of a thermally polarized sample was converted to nuclear singlet order, and

subsequently reconverted, by using the M2SS2M (magnetization-to-singlet singlet-to-

magnetization) pulse sequence, see section 2.13 for more details. The M2S pulse sequence

converts the hyperpolarized transverse magnetization into hyperpolarized singlet order,

any remaining magnetization is quenched by using a T00 filter, and lastly the nuclear

singlet order is back-converted to magnetization using the S2M pulse sequence. The

signal was recorded and compared to a separate signal which was acquired following

an excitation with a 90◦0 pulse. The ratio of the two signals was found to be 0.4. The

efficiency of the S2M pulse sequence is therefore: ηS2M = 0.41/2 = 0.63± 0.02, which is

close to the theoretical maximum of
√

2/3 [173]. The experiment was carried out on a

sample of 5µL II in 0.5 mL CD3CN solvent.

4.9 Discussion

4.9.1 Singlet polarization levels

The singlet polarization pS in the solution state, immediately after dissolution, may be

deduced from the signal enhancement factor εS(0) through the equation:

∣∣pS(0)
∣∣ = εS(0)

∣∣peq
Z

∣∣
ηS2M

, (4.2)

where peq
Z is the thermal equilibrium Zeeman polarization in high magnetic field, and

ηS2M is the conversion factor for nuclear singlet order into Zeeman order using the S2M

pulse sequence. The triplet-singlet-triplet conversion was found to have an experimen-

tal efficiency of ηS2M = 0.63 ± 0.02 for N-CH2D-2-methylpiperidine under the relevant

experimental conditions, see section 4.8. From the thermal equilibrium Zeeman polar-

ization peq
Z = 39.8×10−6 and the enhancement factor εS(0) = 680±126 (see above), the

following estimate for the initial singlet polarization, immediately after dissolution, was

determined to be:
∣∣pS(0)

∣∣ = 4.3± 0.8%.
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It is instructive to compare this figure with that deduced from the DNP-induced

Zeeman polarization by using equation 4.1. As described above, the best estimate of

the Zeeman polarization level in the solid state is psolid
Z = −59 ± 5 %. Application

of equation 4.1 gives the following estimate of the DNP-induced singlet polarization:

pS = −12± 2 %.

The best estimate of the singlet polarization, as deduced from the solid-state

Zeeman polarization, is therefore ∼3 times larger than the best estimate of the same

quantity measured in solution after dissolution. There are many possible reasons for

this discrepancy, including the following: (i) The nuclear singlet state is an approximate

eigenstate, and thermalization between the Zeeman and singlet reservoirs is incomplete

at the time of dissolution, limiting the applicability of equation 4.1; (ii) The violation

of the high-temperature approximation (section 1.5.3) may introduce spin order that is

manifest neither as magnetization nor as nuclear singlet order; (iii) The concept of a

uniform spin temperature under DNP may not be valid; (iv) The estimate of Zeeman

polarization is associated with multiple sources of uncertainty, including the bleaching

effects of radicals on the solid-state NMR signals [113] and the temperature-dependence

of the detection electronics; (v) The spin dynamics during the dissolution process are

not well understood, and as such a loss in the level of the nuclear singlet order during

the dissolution process may not be ruled out; (vi) Any possible dependence of relaxation

times on magnetic field was not accounted for. Given these major sources of uncertainty,

the highly qualitative agreement between the estimates of the DNP-induced singlet order

from the solid-state and solution-state NMR measurements is satisfactory.

4.9.2 Singlet lifetime

The lifetime of the hyperpolarized singlet order was found to be ∼3.1 times longer than

that belonging to longitudinal magnetization, in agreement with the previous study in

chapter 3. In prior experiments, the chemical inequivalence at high magnetic field was

suppressed by an on resonant spin-locking field, which is assumed to be equivalent to

storing the hyperpolarized singlet order in a ≤3 mT magnetic field. The reported singlet

lifetime of 0.2 M N-CH2D-2-methylpiperidine in degassed CD3CN solvent at 11.7 T and

25◦C is: TS = 32.8±0.6 s, see section 3.3 [56]. Discrepancies between the reported singlet
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lifetimes are attributed to the presence of paramagnetic oxygen and radicals dissolved

in solution.

4.10 Conclusions

Proton singlet order may be generated directly from a sample polarized strongly by

dynamic nuclear polarization. In near-equivalent systems, the directly-generated singlet

order is stable in high magnetic field without further intervention, and may be converted

into observable magnetization by known techniques. It has been shown that such signals

may be stronger than those associated with the nuclear Zeeman polarization, since the

hyperpolarized singlet order decays more slowly than magnetization. This procedure

does not require a chemical reaction to break the symmetry and does not exploit in-

efficient cross-relaxation phenomena. The study described here also shows that much

remains to be done in understanding the behaviour of nuclear spins during the DNP

and dissolution processes.





Chapter 5

Singlet-scalar relaxation of the

second kind in the regime of slow

quadrupolar relaxation

In this chapter, an important relaxation mechanism for the nuclear singlet order, which

involves a difference between the scalar couplings of the spins-1/2 to a third nucleus

which has an independent decay mechanism, such as nuclear quadrupolar relaxation, is

presented. This new relaxation mechanism is a variant of the scalar relaxation of the

second kind (SR2K) mechanism. Unlike the corresponding mechanism for longitudinal

nuclear relaxation, which requires very rapid third-spin relaxation, the singlet-SR2K

mechanism is significant for slow third-spin relaxation.

In the following sections, theoretical singlet-SR2K rate expressions are provided

for the case of a spin-1/2 pair scalar coupled to a third nucleus exhibiting an intrinsic

relaxation mechanism. It is shown that the singlet-SR2K mechanism may be suppressed

by applying on resonant radiofrequency irradiation to the singlet spins or to the third

nucleus. These phenomena are demonstrated experimentally for the 13C singlet pair

in the 4-spin system of a 13C,2H-labelled fumarate diester. The singlet relaxation time

constants TS were found to increase with increasing 13C and 2H spin-locking rf-field am-

plitudes, and the longest observed value of TS approached 30 seconds. The experimental

data are compared with the theoretical rate expressions.
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5.1 Introduction

Pairs of spin-1/2 nuclei can form magnetically “silent” configurations which decay with

extended lifetimes [14–20, 22–27, 56, 142, 144, 149, 150, 156–158, 183]. The relaxation

time constant for the long-lived state (LLS) is denoted TS and often transcends the tra-

ditional limit of signal observation for the nuclear magnetization, set by the conventional

longitudinal relaxation time T1, by a large factor [21, 28, 29, 33, 34, 143, 144, 146, 208].

There is great potential in the pairing of LLS phenomena with hyperpolarization method-

ology. Dissolution-dynamic nuclear polarization (D-DNP) in particular is a hyperpolar-

ization technique which affords significant NMR signal enhancements compared to ther-

mal equilibrium [71]. This promising combination has far-reaching applications, such

as studies of hyperpolarized transport and MRI in which the behaviour of cancerous

tissue may be characterized [87]. The current scope of hyperpolarized experiments is

restricted by T1. The LLS relaxation time TS , which is often much longer than T1,

offers an encouraging means to overcome the limited observation window provided by

hyperpolarized magnetization.

For spin-1/2 pairs in the near-equivalence regime, the singlet order is known to

be sheltered from the motional modulation of the in-pair dipole-dipole interaction in so-

lution [14–16, 26]. However, many other relaxation mechanisms remain active and can

drive efficient singlet relaxation, attenuating the value of TS. These may be summarized

as follows:

1. Out-of-pair dipole-dipole interactions. Nuclei in close proximity to the spin-pair

can shorten singlet lifetimes via dipole-dipole couplings [24]. The strength of the dipole-

dipole coupling is dependent on the internuclear distance and participating nuclear iso-

topes [22]. Intermolecular dipole-dipole interactions with other molecules in solution

and solvent molecules are also present but are often weaker in magnitude [56, 153].

2. Chemical shift anisotropy. Motional modulation of CSA tensors in solution

can provide strong singlet relaxation [24, 145]. As the relaxation rate is sensitive to

the difference in chemical shielding tensors at the two nuclear sites involved, molecu-

lar agents exhibiting singlet states are typically designed to only partially violate local

symmetry [24]. A locally centrosymmetric naphthalene derivative with a singlet lifetime

beyond 1 hour at room temperature was based on this principle [35].

3. Coherent leakage terms. Differences in chemical shift, and differences in scalar
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couplings to out-of-pair nuclei, are known to cause singlet relaxation in solution [17, 24].

Advantageously, singlet-triplet leakages are suppressed by on resonant radiofrequency

irradiation which simultaneously extends singlet lifetimes [56, 149]. In other instances,

field cycling is required to remove large chemical shift differences which would otherwise

dominate singlet relaxation [20].

4. Other interactions. Mechanisms including spin rotation, observed for the 3-spin

systems of rapidly rotating methyl groups in solution [60, 141, 155], and relaxation via

molecular oxygen, and other paramagnetic impurities dissolved in solution, can addi-

tionally relax the singlet state [145, 214].

Scalar relaxation of the second kind (SR2K) has long been established as a mech-

anism of T1 relaxation [195, 215]. A nucleus i, scalar coupled to a quadrupolar spin Q of

near identical nuclear Larmor frequency (ωi0 ' ωQ0 ), relaxes via the SR2K mechanism if

the quadrupolar longitudinal relaxation rate T−1
1 is on the order of ωi0. The cases of 13C

nuclei scalar coupled to 79Br/81Br and 14N nuclei have been studied in detail [216–220].

Prior work on singlet-SR2K (S-SR2K) examines the limit where the T1 of the external

quadrupolar nucleus is on the timescale of the nuclear Larmor frequency [152], and does

not predict the behaviour of the S-SR2K mechanism in the presence of radiofrequency

fields applied to the spin-1/2 pair or the external quadrupolar nucleus. In this chapter,

the S-SR2K mechanism in the slow quadrupolar relaxation regime is examined. The con-

ditions for an efficient S-SR2K mechanism in the regime of slow quadrupolar relaxation

are: (i) the quadrupolar nucleus external to the spin-pair has a longitudinal relaxation

rate approximately the same order of magnitude as the in-pair scalar coupling, and (ii)

there is a finite difference between the two out-of-pair scalar couplings.

5.2 Theory

At this point I must thank Giuseppe Pileio (University of Southampton) for his assistance

in developing the theory of singlet-scalar relaxation of the second kind.

5.2.1 Model 3-spin-1/2 system

In this section, a general discussion of the S-SR2K mechanism in the limit of slow

third-spin relaxation is presented for the case of a spin-1/2 pair coupled to a single
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Jjk

Jik

Jij

k

ji

Figure 5.1: Model 3-spin-1/2 system and scalar coupling constant pattern. Jij is
the scalar coupling between spins i and j, shown in black. Jik and Jjk are the scalar
couplings between spins i and k and j and k, respectively. The third spin k is shown

in grey.

external nucleus. The spin system under consideration consists of 3-spin-1/2 nuclei

whose coupling scheme is shown in figure 5.1. The spins labelled as i and j are the two

spins involved in the singlet pair. For simplicity, the singlet spins are considered to have

an identical chemical shift frequency, i.e. Ωij
∆ = 0. The mutual scalar coupling constant

between spins i and j is indicated here as Jij . The singlet pair is also coupled to a third,

external spin k via a scalar mechanism with Jik and Jjk coupling constants. In order

to isolate the phenomenon of singlet relaxation induced by a scalar mechanism of the

second kind, there are no additional relaxation mechanisms acting directly on spins i

and j. Spin k has a relaxation mechanism of its own, i.e. the longitudinal and transverse

relaxation of the magnetization for spin k, described by the characteristic decay rates

R
(k)
1 and R

(k)
2 , respectively.

5.2.2 Spin dynamics

5.2.2.1 Hamiltonians

The coherent Hamiltonian Ĥcoh for the 3-spin-1/2 system is conveniently written as:

Ĥcoh = Ĥin + Ĥout (5.1)

with the coherent Hamiltonian for the in pair scalar coupling expressed as:

Ĥin = 2πJij Îi · Îj , (5.2)
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and with the coherent Hamiltonian for the out of pair scalar couplings written as:

Ĥout = π
(
J ijkΣ + J ijk∆

)
Îiz Îkz + π

(
J ijkΣ − J ijk∆

)
Îjz Îkz. (5.3)

The terms J ijkΣ and J ijk∆ are expressed as:

J ijkΣ = Jik + Jjk, (5.4)

J ijk∆ = Jik − Jjk. (5.5)

The coherent Hamiltonian Ĥcoh is chosen to be time dependent since the use of ap-

plied radiofrequency fields will be exploited to influence the relaxation behaviour, see

section 5.2.7.

5.2.2.2 Phenomenological relaxation superoperator

In the case of a 3-spin-1/2 system, as discussed in section 5.2.1, the relaxation super-

operator is determined by the fluctuations of microscopic incoherent spin interactions

acting on a single spin only (the external third nucleus, k). The incoherent part of the

Liouvillian superoperator can easily be built in a phenomenological way by assuming

that all terms involving longitudinal magnetization on spin k (i.e. terms containing the

spin operator Îkz) relax with the rate R
(k)
1 , and all terms involving transverse magneti-

sation on spin k (i.e. terms involving the spin operators Îkx or Îky) relax with the rate

R
(k)
2 . Therefore, a phenomenological relaxation superoperator

ˆ̂
Γph
k may be constructed,

with matrix elements built as:

(Q̂r|ˆ̂Γph
k |Q̂s) =



−R(k)
1 for : Q̂r = Q̂s = Îkz

−R(k)
2 for : Q̂r = Q̂s = Îkx, Îky

0 for : Q̂r = Q̂s 6= Îkx, Îky, Îkz

0 for : Q̂r 6= Q̂s


. (5.6)
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5.2.2.3 Liouvillian

The dynamics of the model 3-spin-1/2 system presented in section 5.2.1 are described

by the Liouville-von Neumann equation:

d

dt
ρ̂(t) =

ˆ̂
L(t)ρ̂(t), (5.7)

where the Liouvillian superoperator
ˆ̂
L represents the superposition of coherent and in-

coherent influences on the spin system, and is written as:

ˆ̂
L = −i ˆ̂

Hcoh +
ˆ̂
Γph, (5.8)

where
ˆ̂
Hcoh is the commutation superoperator of the coherent Hamiltonian Ĥcoh and

ˆ̂
Γph is the phenomenological relaxation superoperator for spin k, see section 1.6.6 for

more details. The Liouvillian superoperator
ˆ̂
L has a set of N2 eigenvalue/eigenoperator

pairs {Λq, Q̂q} where N indicates the dimension of the Hilbert space, i.e. the number of

spin states. These pairs can be found by solving the following eigenequation:

ˆ̂
LQ̂q = ΛqQ̂q. (5.9)

Because the Liouvillian superoperator
ˆ̂
L is, in general, non-Hermitian, its eigenvalues

may be complex, i.e.:

Λq = −λq + iωq, (5.10)

where λq and ωq are both real. All eigenoperators with ωq 6= 0 correspond to coherences

which decay at a rate λq and oscillate at a frequency ωq. All eigenoperators with real

eigenvalues, i.e. eigenvalues for which ωq = 0, correspond to the populations of particular

spin state configurations which decay at a rate λq. The Liouvillian always has at least

one trivial eigenvalue equal to zero (Λ0 = 0) which represents the sum of populations

for all states and is an invariant in a closed system.

5.2.3 Singlet order

The four eigenfunctions of the coherent Hamiltonian, i.e. the nuclear singlet and triplet

states, for a system containing a pair of mutually coupled and magnetically equivalent
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spin-1/2 nuclei are discussed rigorously in section 2.7. In such systems, the Liouvillian

superoperator
ˆ̂
L has another non-trivial zero eigenvalue if the relaxation superoperator

contains only incoherent dipole-dipole interactions. The associated eigenoperator is the

nuclear singlet order, and is represented by the population difference operator Q̂SO

discussed in section 2.10. In this case, it is convenient to represent the nuclear singlet

order of spins i and j as:

Q̂SO = −2

3
(Î+
i Î
−
j + Î−i Î

+
j + 2Îiz Îjz), (5.11)

see section 2.10 for more details. In this chapter, it is claimed that the eigenvalue

associated with the nuclear singlet order of spins i and j is different from zero when the

spin-1/2 pair is coupled to a third nucleus that has a relaxation mechanism of its own.

It is also proposed that this term becomes significant when the relaxation decay rate for

the longitudinal order of the third nucleus is slow compared to the inverse of the scalar

coupling between the 2-spin-1/2 nuclei in the singlet pair. In the following sections, I will

discuss the details of this phenomenon using a simplified 3-spin-1/2 model system. The

strategy adopted includes the following steps: i) derive the Liouvillian for the system;

ii) write down its explicit matrix representation in a suitable operator basis; and iii)

find the corresponding eigenvalues by using second order perturbation theory for finite

matrices.

5.2.4 Basis functions

A convenient operator basis for the problem at hand is formulated as follows: i) define

the following set of operators for the k-th spin:

Bk =
{

1̂k, Îkz, Î
+
k , Î

−
k

}
, (5.12)

and; ii) build the operator basis for the whole spin system by taking the direct product

of Bk with the basis operators for spins i and j:

B = Bi ⊗ Bj ⊗ BTk , (5.13)
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with the operator basis of spin k tilted such that:

BTk =
ˆ̂
Ry

(
π

2

)
Bk = R̂y

(
π

2

)
Bk R̂

†
y

(
π

2

)
, (5.14)

=
{

1̂k, Îkx, iÎyz − Îkz,−iÎky − Îkz
}
, (5.15)

where
ˆ̂
Ry
(
π
2

)
is a rotation superoperator that rotates the spin operators for spin k by

the angle π/2 about the y-axis. The convenience of rotating the spin operators for spin

k will become clear below, see section 5.2.7.

The operator basis in equation 5.13 is conveniently reordered according to the

coherence orders of spins i and j. Through such a basis reconstruction, 24 operators

of coherence order zero for spins i and j are identified. These represent all populations

and zero quantum coherences for this sub-set of spins, thus including the nuclear sin-

glet order. Because spin operators with different coherence orders do not interact, the

discussion that follows is therefore limited to the zero quantum subspace spanned by

these 24 spin operators. The set of zero quantum operators that span this subspace is

indicated as BZQ.

5.2.5 Second order perturbation treatment of Liouvillian eigenvalues

With regards to spins i and j, consider the zero quantum operator block in the matrix

representation of the Liouvillian superoperator
ˆ̂
L expressed in the operator basis BZQ.

Analytical diagonalization would yield the decay rates for the nuclear singlet order and

all other population operators and coherences which are zero order with respect to spins

i and j. However, analytical diagonalization is not trivial and it is better to proceed

with a second order perturbation treatment. A second order perturbation treatment

of the Liouvillian eigenvalues requires identification and isolation of the perturbed part

of the Liouvillian superoperator
ˆ̂
L. In order to do so, the Liouvillian superoperator in

equation 5.8 is rewritten as:

ˆ̂
L =

ˆ̂
L0 +

ˆ̂
L1 (5.16)
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Figure 5.2: a) Matrix plot of
ˆ̂
L0 in the zero quantum subspace BZQ; b) matrix plot

of
ˆ̂
L1 in the zero quantum sub-basis BZQ; and c) matrix plot of

ˆ̂
L1 in the eigenbasis of

ˆ̂
L0.

with the unperturbed and perturbed parts of the Liouvillian superoperator,
ˆ̂
L0 and

ˆ̂
L1,

respectively, expressed as:

ˆ̂
L0 =

ˆ̂
Γph
k +

ˆ̂
Hin, (5.17)

ˆ̂
L1 =

ˆ̂
Hout, (5.18)

where
ˆ̂
Hin and

ˆ̂
Hout are the commutation superoperators of the Hamiltonians Ĥin and

Ĥout, respectively. The matrix plots of
ˆ̂
L0 and

ˆ̂
L1 in the zero quantum subspace BZQ

are shown in figure 5.2(a-b).

The matrix representation of
ˆ̂
L0 in the zero quantum sub-basis BZQ, whose generic

element will be indicated here as

[
ˆ̂
L0

]BZQ

rs

, can be analytically diagonalized to yield a

set of unperturbed, first order eigenvalue/eigenoperator pairs {Λ(1)
q , Q̂

(1)
q }. The set of

eigenoperators is indicated as BDZQ. The first ten eigenoperators of interest in the set

BDZQ are shown:

BDZQ =


1̂

2
√

2
1

,
Îiz + Îjz

2
2

,
√

2Îiz Îjz
3

,
Î−i Î

+
j + Î+

i Î
−
j

2
4

,− Îkz√
2

5

,−2
√

2Îiz Îjz Îkz
6

,

−Î−i Î+
j Îkz − Î+

i Î
−
j Îkz

7

,−Îiz Îkz − Îjz Îkz
8

,
iÎky√

2
9

,
Îkx√

2

10

 .

(5.19)
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The following eigenvalue/eigenoperator pairs are of special interest:

{Λ(1)

3
, Q̂

(1)

3
} =

{
0,
√

2Îiz Îjz

}
, (5.20)

{Λ(1)

4
, Q̂

(1)

4
} =

{
0,

1

2
(Î+
i Î
−
j + Î−i Î

+
j )

}
, (5.21)

{Λ(1)

5
, Q̂

(1)

5
} =

{
−R(k)

1 ,
−Îkz√

2

}
, (5.22)

{Λ(1)

9
, Q̂

(1)

9
} =

{
−R(k)

2 ,
iÎky

2
√

2

}
, (5.23)

{Λ(1)

10
, Q̂

(1)

10
} =

{
−R(k)

2 ,
Îkx

2
√

2

}
. (5.24)

These eigenvalue/eigenoperator pairs correspond to the two components of the nuclear

singlet order, see equation 5.11, and the longitudinal and transverse relaxation rates of

spin k. The zero value found for the decay rates simply indicates that the singlet-scalar

relaxation of the second kind mechanism does not affect the nuclear singlet order to

first order approximation. The decay rates of the spin operators Îkx, Îky and Îkz are

shown for comparison. It is worth noting that the eigenoperator Q̂
(1)

2
corresponds to the

longitudinal order of spins i and j and is unaffected by the singlet-SR2K mechanism,

i.e. has a zero eigenvalue (Λ
(1)

2
= 0).

5.2.6 Decay rates for singlet-scalar relaxation of the second kind

In order to find the second order contributions to the eigenvalues corresponding to the

two eigenoperators Q̂
(2)

3
and Q̂

(2)

4
it is first necessary rewrite the perturbation

ˆ̂
L1 in

the eigenbasis of
ˆ̂
L0 (BDZQ) obtaining

ˆ̂
LT1 , see figure 5.2c).

ˆ̂
L0 is diagonal in its own

eigenbasis. One can immediately observe that the eigenoperator 4 , representing the

flip-flop part of the nuclear singlet order, is only connected to eigenoperators 17 and

20 . These three terms form an independent sub-block that contains all the relevant

spin dynamics. The explicit form of this zero order sub-block is:



4 17 20

4 0
iJijk∆

2
√

2

iJijk∆

2
√

2

17
iJijk∆

2
√

2
−Rk1 − iJij 0

20
iJijk∆

2
√

2
0 −Rk1 + iJij

, (5.25)
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where the following shorthand notation has been introduced in order to simplify the

resulting matrix elements:

Jij = 2πJij , (5.26)

Jijk∆ = 2πJ ijk∆ . (5.27)

The application of the second order perturbation equation for finite matrices to

equation 5.25:

Λ(2)
q = −

[
ˆ̂
L0

]BZQ

qq

−
∑
r 6=q

[
ˆ̂
LT1

]BZQ

rq

[
ˆ̂
LT1

]BZQ

qr[
ˆ̂
L0

]BZQ

qq

−
[

ˆ̂
L0

]BZQ

rr

, (5.28)

yields the following eigenvalue/eigenoperator pair:

{Λ(2)

4
, Q̂

(2)

4
} =

 R
(k)
1 (Jijk∆ )2

4
(

(R
(k)
1 )2 + J2

ij

) , 1

2
(Î+
i Î
−
j + Î−i Î

+
j )

 . (5.29)

Note also that the eigenoperators
√

2Îiz Îjz have no connections with any other spin

operators in figure 5.2c) and therefore Λ
(1)

3
is identically null at any higher order. Only

the flip-flop part of the nuclear singlet order is affected by the scalar coupling relaxation

mechanism of the second kind, and the approximated second order decay rate is given by

Λ
(2)

4
. The nuclear singlet order term involving the

√
2Îiz Îjz spin operator is unaffected

by this mechanism and therefore the experimentally measured singlet decay rate has a

characteristic biexponential shape, as shown in figure 5.3.

Equation 5.29 relates to the case in which the exterior spin k is a spin-1/2 nucleus,

and can be generalized to a generic spin I through multiplication with a factor of 4I(I+

1)/3 in order to obtain:

{Λ(2)

4
, Q

(2)

4
} =

I(I + 1)R
(k)
1 (Jijk∆ )2

3
(

(R
(k)
1 )2 + J2

ij

) ,
1

2
(Î+
i Î
−
j + Î−i Î

+
j )

 . (5.30)

The validity of equation 5.30 has been tested by repeating the procedure described

above for the cases of I = 1 and I = 3/2. It should be noted that the decay rate for

the nuclear singlet order in equation 5.30 has the form of a Lorentzian spectral density

function J (Jij) sampled at 2πJij , where the overall rotational correlation time is T
(k)
1 .
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Figure 5.3: Simulated biexponential decay of the nuclear singlet order for spins i and
j in the case that the singlet-SR2K mechanism is the sole relaxation source. In this
case, the decay of the nuclear singlet order plateaus at a value of 1/3, as the term in-
volving the

√
2Îiz Îjz spin operator is unaffected by the singlet-SR2K mechanism. The

simulation includes the scalar coupling network shown in figure 5.1 and phenomeno-
logical relaxation on the third spin k. The parameters used in the simulation were as

follows: Jij = 71 Hz, J ijk∆ = 26 Hz, and R
(k)
1 = 5.952 s−1.

Equation 5.30 is therefore rewritten as:

{Λ(2)

4
, Q

(2)

4
} =

{
I(I + 1)

3
(Jijk∆ )2J (Jij),

1

2
(Î+
i Î
−
j + Î−i Î

+
j )

}
, (5.31)

where the Lorentzian spectral density function J (Jij) is expressed as:

J (Jij) =
R

(k)
1

(R
(k)
1 )2 + J2

ij

. (5.32)

5.2.7 Suppression of singlet-scalar relaxation via an applied rf-field

Equation 5.25 displays another interesting feature regarding the singlet-SR2K mecha-

nism under investigation. The mixing of the nuclear singlet order term represented by

4 with the spin operators 17 and 20 is due to the out-of-diagonal terms iJijk∆ /2
√

2,

see figure 5.2c). It may therefore be possible to minimise the relaxation contribution

from singlet-SR2K by applying an on resonant radiofrequency field acting on spin k only

(or alternatively on spins i and j only).



Theory 5.2 185

To demonstrate this prediction, a radiofrequency field with an amplitude corre-

sponding to the frequency ωLOCK is added to the coherent Hamiltonian Ĥcoh in equa-

tion 5.1. This term has the following form, in the rotating frame:

ĤCW = ωLOCKÎkx. (5.33)

The rotating frame Liouvillian for the 3-spin-1/2 system becomes:

ˆ̂
LCW =

ˆ̂
L0,CW +

ˆ̂
L1, (5.34)

with the new, unperturbed radiofrequency field containing portion of the Liouvillian

superoperator
ˆ̂
L rewritten as:

ˆ̂
L0,CW =

ˆ̂
L0 +

ˆ̂
HCW, (5.35)

where
ˆ̂
HCW is the commutation superoperator of the radiofrequency Hamiltonian ĤCW.

In this case, the term J ijkΣ contained within the Hamiltonian Ĥout was found to have no

affect on the outcome of applying second order perturbation theory to the Liouvillian

superoperator
ˆ̂
LCW, and may therefore be ignored for simplicity.

The matrix representation of the new Liouvillian superoperator
ˆ̂
L0,CW in the zero

quantum subspace BZQ has all terms proportional to ωLOCK on the diagonal as a result

of the π/2 rotation about the y-axis of the spin operators for spin k used in building

the basis B and, by consequence, the basis BZQ. However, the unperturbed Liouvillian

ˆ̂
L0,CW, which includes

ˆ̂
Γph, is not normal, i.e. it does not commute with its Hermitian

adjoint, due to complex off-diagonal elements outside of the zero quantum subspace.

Non-normal matrices, such as the matrix representation of
ˆ̂
L0,CW in the basis BZQ, i.e.[

ˆ̂
L0,CW

]BZQ

, are not necessarily diagonalizable. Indeed, it was not possible to find all

eigenvalues and eigenoperators of

[
ˆ̂
L0,CW

]BZQ

.

The matrix
ˆ̂
L0,CW in the basis BZQ can be made normal, a requirement of second

order perturbation theory, by using the approximation |ωLOCK| � |R(k)
1 − R(k)

2 |/4 or

the case of R
(k)
1 = R

(k)
2 , i.e. the off-diagonal terms are ignored. This is a reasonable

approximation since: 1) R
(k)
1 ' R(k)

2 in the limit of isotropic extreme narrowing, and as

such the value of the off-diagonal elements are small compared to the difference between
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the values of the diagonal terms; and 2) relaxation of the third spin k is slow, i.e. T
(k)
1 and

T
(k)
2 are on the order of∼100 ms, and hence applying a continuous wave (CW) decoupling

field with a nutation frequency &100 Hz should be sufficient as to actively decouple the

singlet-SR2K mechanism. Assuming, for example, that |ωLOCK| � |R(k)
1 −R(k)

2 |/4, and

applying the second order perturbation equation for finite matrices (section 5.2.6) yields

the eigenvalue corresponding to the eigenoperator 4 :

Λ
(2)

4 ,CW
=

(R
(k)
1 +R

(k)
2 )[(R

(k)
1 +R

(k)
2 )2 + 4(J2

ij + ω2
LOCK)](Jijk∆ )2

2[(R
(k)
1 +R

(k)
2 )2 + 4(J2

ij + ω2
LOCK)][(R

(k)
1 +R

(k)
2 )2 + 4(J2

ij − ω2
LOCK)]

,

(5.36)

which reduces to equation 5.29 (Λ
(2)

4
) in the case that ωLOCK = 0 and R

(k)
1 = R

(k)
2 . As

above, equation 5.36 can be generalized to a generic third spin of angular momentum

quantum number I:

Λ
(2)

4 ,CW
=

2I(I + 1)(R
(k)
1 +R

(k)
2 )[(R

(k)
1 +R

(k)
2 )2 + 4(J2

ij + ω2
LOCK)](Jijk∆ )2

3[(R
(k)
1 +R

(k)
2 )2 + 4(J2

ij + ω2
LOCK)][(R

(k)
1 +R

(k)
2 )2 + 4(J2

ij − ω2
LOCK)]

.

(5.37)

In the case of R
(k)
1 = R

(k)
2 , a condition that holds in the fast motion limit (FML),

equation 5.37 simplifies further to:

Λ
(2),FML

4 ,CW
=

I(I + 1)R
(k)
1 [(R

(k)
1 )2 + J2

ij + ω2
LOCK](Jijk∆ )2

3[(R
(k)
1 )2 + (Jij − ωLOCK)2][(R

(k)
1 )2 + (Jij + ωLOCK)2]

. (5.38)

The rate Λ
(2),FML

4 ,CW
for I = 1/2 is plotted against R

(k)
1 (the longitudinal relaxation rate

constant of spin k) in figure 5.4 for the parameter set in table 5.1 and a range of

nutation frequencies ωLOCK/2π. The rate Λ
(2),FML

4 ,CW
is maximized when R

(k)
1 = 2πJij .

A perturbation is only caused if the values of the off-diagonal terms are larger than the

difference in the values of the diagonal terms. In the present case, this difference is on

the order of −R(k)
1 + iJij . This means that the singlet-SR2K mechanism is relevant

when the relaxation rate of the third nucleus k (the inverse of its T1) is of the order of

Jij or, more precisely, when |Jijk∆ | ≥ |iJij − R
(k)
1 |. The S-SR2K mechanism is therefore

effectively suppressed in the case that ωLOCK � 2πJij , and is accelerated in the case

that ωLOCK ' 2πJij . A similar result is also predicted if an on resonant radiofrequency

field is applied to spins i and j.
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Figure 5.4: A plot of the decay rate Λ
(2),FML
4 in equation 5.36 versus R

(k)
1 using the

parameters reported in table 5.1 and a range of nutation frequencies ωLOCK/(2π). The
simulations used the following nutation frequencies: black curve: ωLOCK/2π = 0 Hz;
grey curve: ωLOCK/2π = 100 Hz; dark blue curve: ωLOCK/2π = 140 Hz; blue curve:

ωLOCK/2π = 225 Hz; purple curve: ωLOCK/2π = 500 Hz.

5.2.8 The case of 2-spin-1/2 nuclei coupled to a spin-1 nucleus

In the following sections, I am interested in the specific case of a single 13C pair coupled

to a deuterium spin (I = 1) via a scalar coupling mechanism. In such a system, the

deuterium has a strong relaxation mechanism of its own provided by its quadrupolar

moment. According to the Redfield relaxation theory and assuming, for simplicity,

that the fast motional limit applies, the quadrupolar contribution to the longitudinal

relaxation rate of spin k is given by [49]:

R
(k)
1 =

1

10
(2I − 1)(2I + 3)ω2

Q(3 + η2
Q)τC. (5.39)

For the case of I = 1, equation 5.40 simplifies to:

R
(k)
1 =

1

2
ω2
Q(3 + η2

Q)τC, (5.40)

with the nuclear quadrupole coupling constant expressed as:

ωQ =
e2qQ

2I(2I − 1)~
, (5.41)
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Figure 5.5: Molecular structure, labelling scheme and scalar coupling constant pattern
of III. Black circles denote 13C nuclei, grey circles denote 2H nuclei. R1 = CD2CD2CD3

and R2 = CD2CD3.

where Q is the electric quadrupolar moment of the deuterium nucleus, eq is the electrical

field gradient at the deuterium nucleus, ηQ is the biaxality for the quadrupolar inter-

action of the deuterium nucleus, and τC is the overall rotational correlation time [199].

This value of the relaxation rate can be used in equation 5.36 with I = 1 to obtain the

contribution of the scalar coupling to the nuclear singlet order decay rate when a singlet

pair interacts with a single, slowly relaxing quadrupolar spin.

5.3 Experiments

5.3.1 Fumarate

The molecular structure of the sample used in this study is shown in figure 5.5. The

material is a diester of 1-(ethyl-d5) 4-(propyl-d7)(E)-but-2-enedioate-2,3-13C2-d2 (III)

which contains a central 4-spin system comprising of two 13C nuclei and two 2H nuclei

over a trans double bond. The 2-spin-1/2,2-spin-1 system displays a local centre of

inversion, midway between the two 13C nuclei. The asymmetric ester groups R1 and R2

are not important in the context of the work and are deuterated in order to reduce the

relaxation contribution from dipole-dipole couplings. The complex 4-spin system of the

deuterated fumarate diester in solution is a suitable spin system for the observation of

singlet-SR2K. It is a difficult task to find a 3-spin system in which the chemical shift

difference of the spin-1/2 pair does not dominate singlet relaxation via singlet-triplet

mixing [24].
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135.0 134.5 134.0 133.5 133.0 132.5 132.0
C Chemical Shift/ppm13

a)

b)

Figure 5.6: Part of the experimental 13C spectrum of III in CDCl3 solution ac-
quired at 11.7 T and 25◦C with 64 transients. a) Black curve: experimental carbon-13
spectrum; b) blue curve: simulated carbon-13 spectrum. Small signals from synthetic

impurities are observed beyond 133.5 ppm.

5.3.2 Carbon-13 spectrum

The relevant portion of the experimental 13C NMR spectrum of III is shown in figure 5.6.

The experimental 13C spectrum was fitted using the MatLab-based NMR software pack-

age Spinach [221]. Simulated scalar couplings (and differences) for III in CDCl3 at 25◦C

are given in table 5.1. The molecular labelling scheme and scalar coupling constant pat-

tern of III are shown in figure 5.5. The spin system in is the near-equivalence regime as

the difference in scalar couplings |J12 − J13| = J231
∆ is less than half J23.

Table 5.1: Spin system parameters for III in CDCl3 at 25◦C. Labels 2 and 3 indi-
cate 13C nuclei, labels 1 and 4 indicate 2H nuclei. Scalar couplings (and differences)
were obtained by fitting the experimental 13C spectrum with the MatLab-based NMR

software package Spinach. J231
∆ is defined as: |J12 − J13|.

Parameter Value/2π
J23 71.5 ± 0.9 Hz
J12 = J34 25.9 ± 0.3 Hz
J13 = J24 -0.5 ± 0.1 Hz
J231

∆ 26.4 ± 0.3 Hz
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13C
ωSLIC
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G2 G3

9090 90MA 90180

9090

T00 Filter
time τSLIC τSLICτEV

ωSLIC
ωLOCK

2H
ωDECωLOCK

C

D

Figure 5.7: Pulse sequence for preparing long-lived nuclear singlet order in III and
monitoring its decay. The experiments used the following parameters: ωSLIC/2π =
71 Hz and τSLIC/2π = 27 ms. The “T00 filter” selects out signals that do not pass
through the nuclear singlet order. “MA” denotes the “magic angle” (54.7◦). The
grey boxes denote larger-amplitude “spin-locking” rf-fields, with nutation frequencies
ωC,D

LOCK, which are active during the singlet evolution delay τEV. The superscripts C and
D denote the 13C and 2H spin-locking rf-fields, respectively. An interval of 150 s was
used between successive transients when 13C or 2H spin-locking rf-fields were applied.

5.3.3 Singlet NMR

Symmetry-breaking interactions, such as small differences in chemical shift between the

participating spins, or differential scalar couplings to other magnetic nuclei outside of

the singlet pair are required for coherent access to the nuclear singlet order [23]. In

this case, the differential out-of-pair scalar couplings allow coherent access to the 13C

nuclear singlet order, by using known radiofrequency pulse techniques which operate

in the near-equivalence regime [150, 156–158]. Warren and coworkers were the first

to demonstrate such access to nuclear singlet states via out-of-pair scalar couplings in

AA’XX’ spin systems [23, 31, 160]. In the current study, the spin-lock induced crossing

(SLIC) method [157] was used, as shown in figure 5.7. The SLIC pulse sequence has

been described extensively in section 2.12.1. A sequence of radiofrequency pulses and

pulsed field gradients (known as a “T00 filter”) destroys NMR signals that do not pass

through the nuclear singlet order [54–56]. The parameters of the “T00 filter” are found

in appendix B. The parameters of the SLIC pulse were chosen to maximise triplet-singlet

population conversion: ωSLIC/2π = 71 Hz and τSLIC = 27 ms, i.e. the conversion was

complete in a time: τSLIC ' 2−1/2J231
∆ . A WALTZ-16 decoupling sequence (deuteron

nutation frequency = 300 Hz) was applied on the 2H channel during the 13C observation
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Figure 5.8: a) Experimental relaxation curve for the 13C nuclear singlet order of 0.2 M
III in degassed CDCl3 solvent (magnetic field 11.7 T, temperature 25◦C). Filled, black
symbols: decay of the 13C nuclear singlet order measured by the pulse sequence in
figure 5.7; blue curve: single exponential fit of the experimental data. All experimental
signal amplitudes were normalized to the first point. b) Logarithmic decay curve for

the 13C nuclear singlet order under the same conditions.

in order to collapse the NMR spectrum into a single peak [222]. The lock level was

held whilst the 2H decoupling was active. Nutation frequencies ωD
LOCK and ωDEC were

calibrated relative to a high power 90◦ pulse of known duration by using the “pulse”

algorithm inside the Bruker TopSpin 3.2 software package. Pulse calibrations were

performed on the 2H channel of our Bruker Avance III spectrometer, which is equipped

with a 5 mm TBO probe. All calculated nutation frequencies were verified against

nutation frequency experiments, and no non-linearity was found in our 2H amplifier. The

maximum amplitude of the singlet-filtered 13C NMR signal, relative to that induced by

a single 90◦ pulse, was found to be 0.17. The loss relative to the theoretical maximum of

1/3 (AA′XX′ spin systems) is not yet fully understood but is attributed to radiofrequency

field imperfections and relaxation.

5.4 Results

5.4.1 Carbon-13 NMR

A biexponential decay curve for the 13C nuclear singlet order of III is shown in fig-

ure 5.8a). A single exponential fit of the initial decay (first 4 data points) provides a

relaxation time: TS = 0.9 ± 0.2 s. A logarithmic decay curve for the 13C nuclear sin-

glet order is displayed in figure 5.8b). The two linear regions are clearly visible and

are indicative of a biexponential decay. The 13C longitudinal relaxation time T1(13C)
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Figure 5.9: Experimental dependence of T−1
S on a) 13C and b) 2H spin-locking rf-field

amplitudes for 0.2 M III in degassed CDCl3 solvent (magnetic field 11.7 T, temperature
25◦C). Black circles: experimental data points; black curve: theoretical dependence
of T−1

S on 13C and 2H spin-locking rf-field amplitudes. The black curve reaches a

maximum at ωC,D
LOCK/2π = J23 = 71 Hz but is not shown for clarity.

was estimated experimentally by using the inversion recovery pulse sequence. Under

the same conditions, the resulting relaxation curve shows a single exponential recovery

with a longitudinal 13C relaxation time: T1(13C) = 14.0 ± 0.5 s. The singlet relaxation

time is therefore ∼16 times smaller than that of longitudinal magnetization. See ap-

pendix B for further details regarding 13C inversion recovery experiments, data fitting

and uncertainty estimations.

5.4.2 Deuterium NMR

The longitudinal 2H relaxation time T1(2H) was estimated experimentally by using the

inversion recovery pulse sequence. For the case of degassed CDCl3 solution at 11.7 T

and 25◦C, the experimental relaxation curve shows a single exponential recovery with a

longitudinal 2H relaxation time for III given by: T1(2H) = 168± 7 ms.

5.4.3 Suppression of singlet-scalar relaxation via applied rf-fields

The experimental singlet relaxation rate constants T−1
S as a function of spin-locking

rf-field amplitude, expressed as the nutation frequencies ωC
LOCK/2π and ωD

LOCK/2π, are

shown in figures 5.9(a-b), respectively. The measured singlet relaxation times TS in-

cluded in figures 5.9(a-b) for a range of 13C and 2H spin-locking rf-field amplitudes are

given in table 5.2. The theoretical singlet relaxation rate constants T−1
S as a function of

13C and 2H spin-locking rf-field amplitudes are also shown in figures 5.9(a-b).
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Table 5.2: The set of experimental singlet relaxation times TS for 0.2 M III in degassed
CDCl3 solvent (magnetic field 11.7 T, temperature 25◦C) measured as a function of 13C

and 2H spin-locking rf-field amplitudes, as shown in figures 5.9(a-b).

ωC
LOCK/Hz ωD

LOCK/Hz TS/s

0 0 0.9 ± 0.2
25 0 0.18 ± 0.04
50 0 0.14 ± 0.03
75 0 0.07 ± 0.02
100 0 5.2 ± 0.4
200 0 9.6 ± 0.6
400 0 14.1 ± 1.8
600 0 16.0 ± 1.5
800 0 18.7 ± 2.3
1000 0 23.0 ± 1.6
0 25 0.7 ± 0.2
0 50 0.12 ± 0.03
0 75 0.08 ± 0.02
0 100 0.9 ± 0.2
0 200 5.3 ± 0.4
0 300 7.9 ± 0.4
0 400 8.9 ± 0.4
0 500 9.6 ± 0.3
0 600 10.8 ± 0.4
0 640 11.7 ± 0.4

In both cases, the experimental singlet relaxation rate constants T−1
S increase

dramatically, and reach a maximum, as ωC
LOCK and ωD

LOCK/2π approach J23 = 71 Hz.

The theoretical dependence of T−1
S on 13C and 2H spin-locking rf-field amplitudes also

predicts a maximum at: ωC
LOCK/2π = ωD

LOCK/2π = J23, but has a considerably larger

value. The profile of the experimental and theoretical singlet relaxation curves are in

reasonable agreement, although this discrepancy remains. It is therefore reasonable to

assume that the approximations introduced in section 5.2.7 may not hold in the case

of ωLOCK ' 2πJ23, or that higher-order correctional terms are necessary in order to

account for this discrepancy. These results demonstrate that the model developed in

section 5.2.7, and hence equation 5.38, are only valid in the regime of sufficiently large

CW nutation frequencies, i.e. ωLOCK � 2πJ23. It is also plausible that the additional

contributions of other interactions to the 13C singlet relaxation can have a large pro-

portionate effect on the value of T−1
S . These issues have not been investigated further.

Beyond ∼150 Hz spin-locking rf-field amplitude, in the regime of sufficiently large CW

nutation frequencies, the experimental singlet relaxation rate constants T−1
S decrease

with increasing spin-locking rf-field amplitude during the singlet evolution period τEV.
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Figure 5.10: Experimental relaxation curves of 13C nuclear singlet order for 0.2 M
III in degassed CDCl3 solvent (magnetic field 11.7 T, temperature 25◦C). The decay
of 13C nuclear singlet order was measured by the pulse sequence in figure 5.7 in the
presence of 13C and 2H spin-locking rf-fields during the singlet evolution delay τEV.
The following nutation frequencies were used for experiments: a: ωC

LOCK/2π = 100 Hz;
b: ωD

LOCK/2π = 100 Hz; c: ωC
LOCK/2π = 600 Hz; d: ωD

LOCK/2π = 640 Hz; e: ωC
LOCK/2π

= 1 kHz; f: ωC
LOCK/2π = 1 kHz and ωD

LOCK/2π = 640 Hz. The singlet relaxation times
are: a: TS = 5.2 ± 0.4 s; b: TS = 0.9 ± 0.2 s; c: TS = 16 ± 2 s; d: TS = 11.7 ± 0.4 s; e:
TS = 23 ± 2 s; f: TS = 26 ± 3 s. All the fitted curves have a single-exponential form,
except b) which shows a biexponential decay. All signal amplitudes were normalized to

the first point.

It is likely that as the singlet-SR2K mechanism is gradually removed via coherent rf-

irradiation an additional relaxation mechanism (which is not affected by the on resonant

decoupling field) becomes increasingly dominant, and the curve plateaus. Singlet relax-

ation is effectively suppressed as ωC
LOCK approaches 1 kHz nutation frequency and ωD

LOCK

approaches 640 Hz nutation frequency.
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Decay curves for the 13C nuclear singlet order in the presence of spin-locking

fields with nutation frequencies ωC,D
LOCK are shown in figure 5.10. Figure 5.10a) shows

the decay of 13C nuclear singlet order with a coherent CW field of ωC
LOCK = 100 Hz

nutation frequency applied during the singlet evolution delay τEV. The singlet decay is

single exponential and has a relaxation time: TS = 5.2 ± 0.4 s. Conversely, the case of

ωD
LOCK = 100 Hz nutation frequency is shown in figure 5.10b). In this case, the decay

of 13C nuclear singlet order is biexponential and has a singlet lifetime: TS = 0.9 ±
0.2 s, which is equal to the singlet relaxation time determined at ωC

LOCK = ωD
LOCK =

0 Hz nutation frequency. Figures 5.10c) and 5.10d) compare the decay of 13C nuclear

singlet order in the presence of spin-locking rf-fields with nutation frequencies: ωC
LOCK

= 600 Hz and ωD
LOCK = 640 Hz, respectively. The respective singlet relaxation times TS

= 16 ± 2 s and TS = 11.7 ± 0.4 s imply that CW irradiation applied to the 13C nuclei

is approximately twice as effective in suppressing the singlet-SR2K mechanism than

the case of CW irradiation applied to the deuterium nuclei, in agreement with theory

(see figure 5.9). This phenomena is mirrored by the theoretical curves of the singlet

relaxation rate constant T−1
S , see figure 5.9. The curve in figure 5.10e) shows the decay

of 13C nuclear singlet order in the presence of a CW rf-field with an amplitude: ωC
LOCK

= 1 kHz. The singlet relaxation curve is fitted with a single exponential decay, and has

a singlet relaxation time: TS = 23 ± 2 s. Figure 5.10f) shows the decay of 13C nuclear

singlet order in the presence of simultaneous CW rf-fields with nutation frequencies:

ωC
LOCK = 1 kHz and ωD

LOCK = 640 Hz. In this case, the singlet relaxation time was found

to be: TS = 26± 3 s. TS is extended by a factor of 30, compared to the case of ωC
LOCK =

ωD
LOCK = 0 Hz, and the ratio of TS to T1 is ∼2. The combination of simultaneous CW

irradiation on both 13C and 2H nuclei is very effective at suppressing the singlet-SR2K

mechanism. Clearly the application of spin-locking rf-fields during the singlet evolution

delay τEV has a strong effect on the relaxation behaviour.

5.5 Discussion

In this section, the experimental data are compared with the theoretical expressions

derived in section 5.2.6. In the absence of CW irradiation, the singlet lifetime was

found to be approximately 0.9 s for the fumarate diester system, approximately 16 times

shorter than the longitudinal relaxation time T1. However, TS was found to be long-lived
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quadrupolar relaxation

in cases where strong 13C (and 2H) spin-locking rf-fields were applied during the singlet

evolution delay τEV. The largest observed ratio of the singlet relaxation time to the

longitudinal relaxation time was approximately 2.

By using equation 5.29, which applies for extreme-narrowing isotropic rotational

tumbling, the estimate of the longitudinal relaxation time for the 2H nucleus, and

the spin system parameters obtained from fitting the experimental 13C NMR spec-

trum, the following estimate of the singlet-SR2K relaxation rate constant is obtained:

T−1
S (S2RK) = 1.06±0.07 s−1. The longitudinal relaxation rate of the deuterium nucleus

R
(k)
1 was doubled to account for the presence of the second deuteron. A monoexponential

fitting of the initial decay for the 13C nuclear singlet order (figure 5.8, blue curve) pro-

vides a singlet relaxation rate constant: T−1
S = 1.1±0.2 s−1. The initial decay rate of the

13C nuclear singlet order is in excellent agreement with the theoretically predicted value.

It is therefore confirmed that the singlet-SR2K mechanism is the dominant relaxation

source for the 13C nuclear singlet order in III.

Equation 5.38 predicts the singlet relaxation rate constant T−1
S in the presence of

an on resonant radiofrequency field applied continuously to either the carbon-13 or deu-

terium nuclei throughout the singlet evolution delay τEV. By using equation 5.36, which

also applies for extreme-narrowing isotropic rotational tumbling, the estimate of the lon-

gitudinal relaxation time for the 2H nucleus, and the spin system parameters obtained

from fitting the experimental 13C NMR spectrum, the following estimate of the singlet

relaxation rate constant in the presence of CW irradiation focussed on the deuterium

spins with a 640 Hz nutation frequency is obtained: T−1
S (CW) = (13.6±0.7)×10−3 s−1.

The estimated singlet decay rate is not in good agreement with the experimentally deter-

mined rate: T−1
S = (85± 3)× 10−3 s−1. A similar discrepancy is observed for T−1

S (CW)

in the case of a spin-locking rf-field applied to the 13C spins with a nutation frequency of

1 kHz. The discrepancy is likely to be attributed to other relaxation mechanisms which

are present and accelerate the singlet relaxation, such as 13C-2H dipole-dipole couplings

between the carbon-13 nuclei and the adjacent deuterons. It is also possible that the

small, long range 13C-2H couplings to the deuterated ester groups could contribute to

singlet relaxation via the singlet-SR2K mechanism. Relaxation effects of this kind may

have already appeared in the literature, and could be the limiting factor of the singlet

lifetimes achieved for the systems presented in the following references [28, 35, 145].



Conclusions 5.6 197

5.6 Conclusions

Since fumarates are a ubiquitous cellular substance, the extension of singlet lifetimes

through chemical substitution is an important consideration. However, exchanging the

adjacent protons for deuterons has been shown to introduce the singlet-scalar relaxation

of the second kind (S-SR2K) mechanism, which drastically shortens the singlet lifetime.

In this chapter, it has been successfully demonstrated that singlet-SR2K can signifi-

cantly shorten the singlet relaxation time TS of deuterated spin systems, under suitable

conditions. This requires a difference in the scalar couplings from the singlet nuclei to

an exterior quadrupolar nucleus, and the in pair scalar coupling to be comparable to

the longitudinal relaxation rate of the quadrupolar spin. These conditions are satisfied

for a 4-spin deuterated fumarate diester. In the current case, TS is approximately 16

times shorter than T1. The short value of TS supports a relaxation model in which the

dominant singlet interaction is S-SR2K. It is shown that the singlet-SR2K mechanism

is steadily quenched by the application of 13C (and 2H) spin-locking rf-fields, in the case

that the amplitude of the suppression field is considerably greater than the in pair scalar

coupling. The maximum value of the singlet relaxation time was found to be: TS = 26

± 3 s, a factor of ∼2 greater than T1.

It should be noted that other interesting molecules may also exhibit singlet-SR2K.

Systems comprising of H2C=CD-CO2R substructures, such as styrene-d1, are of suitable

type. However, the S-SR2K mechanism may only be isolated through implementing field

cycling experiments as the large proton chemical shift difference introduces relaxation

contributions from singlet-triplet leakage. It is also not yet known whether the proton

singlet state of H2C=CX-CO2R systems, where X is a quadrupolar nucleus relaxing

on the timescale of the proton nuclear Larmor frequency, such as Br or Cl, display

observable singlet-SR2K. Investigations into this effect are feasible on molecular systems

such as bromoacrylates and bromothiophenes but would require detailed computational

modelling or molecular dynamics, and also a measurement of the quadrupolar X-atom

T1.





Chapter 6

An outlook for hyperpolarized

singlet NMR

6.1 Conclusions of this work

The previous three chapters of this thesis contain some of the findings which my col-

leagues and I have contributed to the field of hyperpolarized singlet state NMR. The

demonstrated effects are, to the best of our knowledge, all novel and show that previously

cemented techniques may still be used to generate new knowledge of hyperpolarized sin-

glet NMR. The work was divided into three sections: long-lived states in CH2D groups,

direct generation and coherent readout of hyperpolarized singlet order, and singlet-scalar

relaxation of the second kind. Experimental results from chapters 3, 4 and 5 were ex-

amined theoretically with analytical expressions for singlet relaxation or polarization,

with the theory outlined in chapters 1 and 2 intended to facilitate the discussion of the

experimental findings. A summary of the essential results of each chapter is given in the

bullet points below.

Long-lived nuclear spin states in monodeuterated methyl groups

This thesis was intended to focus on the two limiting factors of nuclear magnetic reso-

nance experiments: (1) short signal lifetimes; and (2) low signal sensitivity. The issue

of (1) was addressed, in part, by the use of long-lived nuclear spin states [14, 15]. Long-

lived spin states commonly exhibit relaxation times which outstrip those corresponding

to ordinary magnetization [16, 20, 26, 55, 144, 146, 150, 151, 156]. The non-magnetic

199
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nature of the nuclear singlet state preserves the spin order for a pair of coupled spins

against symmetric NMR relaxation mechanisms. A singlet relaxation time exceeding

1 hour in room temperature solution has been observed [35], and a TS/T1 ratio greater

than 50 has also been realized for a pair of strongly coupled protons [29, 33].

Chapter 3: Summary

• Singlet order is accessible in monodeuterated methyl groups.

• Experimental demonstrations were provided for N-CH2D-2-methylpiperidine and

(α-deuterio-o-chlorotoluene)chromium tricarbonyl.

• Singlet pulse sequences access the nuclear singlet order even when chemical shift

differences are unresolved.

• The ratio of TS to T1 was found to be constant over a wide range of temperatures,

solvents, and magnetic fields.

• The longest observed value of TS approaches 2 1/2 minutes.

• A modified model of the CH2D geometry was proposed to explain the observed

relaxation time ratio.

Direct hyperpolarization and coherent readout of long-lived proton singlet order

The poor signal-to-noise levels (2), ultimately a limiting factor for observing NMR sig-

nals at long times after the encodement of nuclear spin order, was partially overcome

by dissolution-dynamic nuclear polarization techniques [71]. DNP, and other hyperpo-

larization methods, drastically improve the initial Zeeman polarization for a sample in

a magnetic field by increasing the net alignment of nuclear spins. Coupled with dissolu-

tion apparatus, the sample may be dissolved and rapdily transferred to a high resolution

NMR magnet where more intricate spin manipulations may be performed.

Chapter 4: Summary

• Singlet order may be polarized directly by DNP.

• The effect is demonstrated on the inequivalent protons of a CH2D group in a chiral

molecule.
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• In near-equivalent systems, the singlet order is long-lived in high magnetic field.

• Observable hyperpolarized signals may be generated coherently from the singlet

order with high conversion efficiency.

• At long times, >1 minute after dissolution, singlet polarization has advantages

over Zeeman polarization.

Singlet scalar relaxation of the second kind in the regime of slow quadrupolar relaxation

Over the past decade, it has been established that singlet lifetimes often exceed the lon-

gitudinal relaxation time T1 by an order of magnitude [28, 144–146, 150, 156]. However,

singlet lifetimes are not infinite and are intrinsically limited to some extent. In some

cases, this may be attributed to dipole-dipole relaxation with remote protons, and hence

deuteration is the favoured approach for attenuating this particular relaxation contribu-

tion. After an exhaustive study of all the singlet relaxation mechanisms which have been

observed in a variety of candidate systems [24, 152, 153], another possibility remains. A

variant of the scalar relaxation of the second kind mechanism, which involves a differ-

ence between the scalar couplings of the nuclear spins-1/2 to a third nucleus which has

an independent relaxation mechanism, such as nuclear quadrupolar relaxation, has been

experimentally observed for the first time. This new found relaxation mechanism could

presently be the limiting step in the quest to extend singlet relaxation times to an even

greater extent.

Chapter 5: Summary

• Singlet-scalar relaxation of the second kind has been identified as an important

relaxation mechanism.

• The singlet SR2K mechanism is significant in the regime of slow quadrupolar

relaxation.

• Relaxation rate expressions describing the behaviour of the S-SR2K mechanism

were presented.

• An experimental demonstration was provided for a 13C,2H-labelled fumarate di-

ester.
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• The S-SR2K mechanism may be suppressed by applying on resonant radiofre-

quency fields.

6.2 Future endeavours and perspectives

I hope that the discoveries presented in this thesis have been interesting for the reader

and have shown the story of my time as a PhD student over the last few years. Inter-

esting possibilities for singlet NMR remain to be investigated, and I believe that the

lifetime of nuclear singlet order can be extended still further. As previous discussed,

a doubly labelled 13C2-naphthalene derivative currently holds the world record for the

longest singlet lifetime [35]. The results presented in chapter 5 of this thesis demon-

strate that additional, previously unconsidered relaxation mechanisms may set the limit

for singlet lifetimes, even in systems already display remarkable lifetimes [29, 33, 35].

The S-SR2K mechanism exists in systems where the singlet spins are scalar coupled to

a slowly relaxing quadrupolar nucleus. Modulations of the scalar couplings between a

13C spin pair and the neighbouring deuterons were shown to be the strongest singlet

relaxation mechanism in a deuterated fumarate diester. Continuous wave irradiation

is one route to suppressing the S-SR2K mechanism, but CW fields are not suitable for

in vivo studies [223]. Whether the spectroscoper likes it or not, simply removing the

surrounding protons via deuteration may not be the most effective route to lengthening

singlet lifetimes. Entire deuteration of a molecular system may therefore not be entirely

sufficient, and instead all magnetic nuclei surrounding the singlet pair should be evac-

uated, and replaced with magnetically silent isotopes (ignoring the small percentages

of magnetic nuclei which are present at natural abundance). The advanced knowledge

of singlet order decay will aid the design and construction of singlet pairs in molecu-

lar candidates with fewer and less effective relaxation mechanisms. A long-lived spin

state in a pair of 15N nuclei with a lifetime exceeding that of naphthalene has yet to be

demonstrated, but a simple argument of the gyromagnetic ratios infers that the lifetime

could be quite spectacular, and possibly exceed 4 hours in solution at room temperature.

The long lifetimes of hyperpolarized singlet order present an excellent opportunity

to study biologically relevant processes in vivo using magnetic resonance imaging [224].

Delays between the hyperpolarizing device and point of use (possibly a human patient)

will potentially be minimized by the exceptional lifetime of singlet spin order, even in
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the presence of paramagnetic radicals. One potential avenue of long-lived states is the

tracking of endogenous metabolites, or even exogenous substances which are injected

into a human patient and dissolved in the bloodstream, over considerable timescales

to monitor molecular transport to a site of interest. Experiments of this kind could

potentially be used to validate drug delivery methods, and monitor cellular necrosis and

the response of cancerous tissue to treatment [64, 133]. An alternative, and potentially

more promising route, at least initially, could be to develop contrast agents using the

extended lifetimes of singlet states [159]. Work of this kind has already been presented by

the group of Bodenhausen in the context of drug screening, where a change in the ratio of

TS/T1 provided ample constrast for the detection of ligand-binding and dissociation [206,

208, 225]. A major breakthrough would be the regular synthesis and demonstration of

singlet molecules which are sensitive to their environmental conditions. The lifetime of

the nuclear singlet order could hence be controlled as a function of pH, temperature and

the presence uv light, even stretching or compressing the surroundings could have an

impact on singlet lifetimes [226].

The dissolution-dynamic nuclear polarization experiments presented in chapter 4

have potentially intriguing implications for the future conduction of hyperpolarized sin-

glet experiments. The results shown in this thesis demonstrate that, for strongly-coupled

spin-1/2 pairs, the nuclear singlet order permits larger hyperpolarized signals to be ob-

served at longer times after dissolution, compared with those of ordinary magnetization.

Whilst the phenomenon is currently specific to systems which display near-magnetic-

equivalence, such systems are relatively common, and are found, for example, in the

side chains and glycine residues of peptides [156], and in sugars [227], and might also

be exploited in the context of “singlet tagging” [148]. Another exciting development in

the field of DNP is the “bullet” setup pioneered by Meier [228]. In contrast to classical

D-DNP experiments [71], the hyperpolarized medium is transported as a solid and is

ejected from the hyperpolarizer at speeds exceeding 100 ms−1 towards the point of use.

The method has the potential to preserve the high levels of nuclear alignment through-

out the short transfer period which, if used in conjunction with the direct generation of

nuclear singlet order, would lead to impressive obtainable levels of singlet polarization

in the liquid state. Translation of this methodology to clinical MRI would represent a

major step forward in the application of DNP to medical diagnostics, and would provide

an opportunity to showcase the advantages of using hyperpolarized long-lived states.





Appendix A

Syntheses

A.1 N-(CH2D)-2-methylpiperidine

Figure A.1: Synthetic route to 2-methyl-1-(methyl-d)piperidine.

To 2-methylpiperidine (844 mg, 1 mL, 8.51 mmol) was added formaldehyde (37 wt.% in

H2O, 767 mg, 2.07 mL, 25.53 mmol, 3 equiv.) followed by careful addition of formic acid-

d2 (95% in D2O, 1.72 g, 1.41 mL, 34.04 mmol, 4 equiv.), and the reaction heated at 85◦C

(using a water bath) for 3 h. The reaction was cooled to room temperature, water (2 mL)

added and the acidic aqueous reaction was extracted with pet. ether. The aqueous layer

was basified to pH 12 using 6 M NaOH and extracted with Et2O (x5). The combined

Et2O extractions were dried (MgSO4) and concentrated on a rotary evaporator with

no vacuum (bath temp = 40◦C) to give a pale yellow oil. Purification by Kugelrohr

distillation (oven temperature 150◦C - 160◦C) to gave the title compound as a clear oil

(696 mg, 6.09 mmol, 72%).

Sample preparation. Solutions were prepared in Wilmad low pressure/vacuum

NMR tubes with a 5 mm OD. 6.2µL of (N-CH2D)-2-methylpiperidine was dissolved in

0.5 mL of choice solvent at a concentration of 0.1 M. Samples were subjected to thorough

205



206 Appendix A: Syntheses

degassing using 6 standard freeze-pump-thaw cycles to remove the majority of dissolved

molecular oxygen.

A.1.1 1-(methyl-d)-2-(methyl-d3)piperidine

Figure A.2: Synthetic route to 1-(methyl-d)-2-(methyl-d3)piperidine.

tert-Butyl piperidine-1-carboxylate:

Boc anhydride (6.78 g, 31.0 mmol) and sulfamic acid (150 mg, 1.5 mmol, 5 mol%) were

mixed together neat and warmed to 28◦C - 30◦C to melt the (Boc)2O. Piperidine (3.2 mL,

2.77 g. 32.0 mmol) was added and the resulting mixture was stirred at room temperature

for 15 minutes. The reaction was diluted with Et2O, washed with H2O (x 2) and brine

(x 2) and dried (MgSO4). Removal of the solvents in vacuo (no heat) gave the title

product as a pale yellow oil (5.51 g, 29.8 mmol, 96%).

tert-Butyl 2-(methyl-d3)piperidine-1-carboxylate:

A solution of tert-butyl piperidine-1-carboxylate (2.5 g, 13.51 mmol) in Et2O (30 mL)

was cooled to -78◦C and treated with TMEDA (2.63 mL, 17.56 mmol) dropwise over 10

minutes. sec-BuLi (1.4 M in cyclohexane, 12.5 mL, 17.56 mmol) was added dropwise over

20 minutes. The pale yellow mixture was stirred for 5 h at -78◦C. and then treated with

a solution of dimethyl sulfate-d6 (3.20 g, 24.32 mmol) in Et2O (12 mL). The mixture was

warmed to room temperature and stirred for 12 h. The reaction was concentrated in

vacuo to give a crude colourless oil which was purified by column chromatography on

silica gel eluting with 2% - 5% Et2O: pet. ether. This afforded the title product as a

clear oil (2.03 g, 10.0 mmol, 74%).
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2-(methyl-d3)piperidin-1-ium chloride:

To tert-butyl 2-(methyl-d3)piperidine-1-carboxylate (1.0 g, 5.0 mmol) at 0◦C was added

4 M HCl in dioxane (4 mL, 16 mmol) and the reaction stirred at room temperature

for 30 minutes. Et2O (20 mL) was added producing a white solid. The reaction was

concentrated in vacuo and Et2O (20 mL) added, the resultant white solid was filtered

and washed with Et2O (2 x 10 mL) and dried in vacuo to give the desired white salt

(0.67 g, 4.84 mmol, 97%) which was used directly in the next reaction.

1-(methyl-d)-2-(methyl-d3)piperidine:

2-(methyl-d3)piperidin-1-ium chloride (0.63 g, 4.55 mmol) was dissolved in a solution of

sodium hydroxide (182 mg, 4.55 mmol) in H2O (2 mL) and stirred for 10 minutes at

room temperature. To this mixture was added formaldehyde (37 wt.% in H2O, 410 mg,

1.10 mL, 13.65 mmol, 3 equiv.) resulting in a cloudy white solution. Formic acid-d2 (95%

in D2O, 0.86 mL, 22.75 mmol, 5 equiv.) was carefully added and the reaction heated at

85◦C (using a water bath) for 4 h. The reaction was cooled to room temperature, water

(2 mL) added and the acidic aqueous reaction was extracted with pet. ether. The aque-

ous layer was basified to pH 12 using 6 M NaOH and extracted with Et2O (x5). The

combined Et2O extractions were dried (MgSO4) and concentrated on a rotary evapo-

rator with no vacuum (bath temp = 40◦C) to give the title compound as a clear oil

(455 mg, 3.89 mmol, 85%).

Sample preparation. Solutions were prepared in Wilmad low pressure/vacuum

NMR tubes with a 5 mm OD. 6.2µL of (N-CH2D)-2-methylpiperidine was dissolved

in 0.5 mL of CD2Cl2 solvent at a concentration of 0.1 M. Samples were subjected to

thorough degassing using 6 standard freeze-pump-thaw cycles to remove the majority of

dissolved molecular oxygen.

A.2 (α-deuterio-o-chlorotoluene)chromium tricarbonyl

Reduction of 2-chlorobenzyl bromide utilising sodium borodeuteride in DMSO-d6 as

a source of nucleophilic deuteride afforded 1-chloro-2-(methyl-d)benzene (1). Reflux-

ing Cr(CO)6 and chlorobenzene 1 in a mixture of dibutyl ether and THF (9:1) for 36 h
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CH2Br
Cl

CH2D
Cl

CH2D
Cl

(CO)3Cr
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Cr(CO)6, 
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1 2

Figure A.3: Synthetic route to tricarbonyl (1-chloro-2-(methyl-d)benzene)-chromium
(0) (2)

provided tricarbonyl (1-chloro-2-(methyl-d)benzene)-chromium (0) (2) as a yellow solid.

A.2.1 1-Chloro-2-(methyl-d)benzene (1)

CH2D
Cl

Figure A.4: Chemical structure of 1-chloro-2-(methyl-d)benzene (1)

To 2-chlorobenzyl bromide (2.00 g, 9.73 mmol) in DMSO-d6 (6 mL) at 0◦C was added

sodium borodeuteride (0.82 g, 19.46 mmol) portion-wise. The reaction formed a white

solid that was stirred for 4 h at room temperature. The reaction was quenched with

methanol (0.75 mL), Et2O was added and the organic layer washed with H2O (x3),

brine and then dried (MgSO4). The solvent was removed in vacuo at room temperature.

The resultant oil was purified by Kugelrohr distillation to give the title compound as a

colourless oil (0.89 g, 6.98 mmol, 72%). Boiling point: 157-159◦C.

1H NMR (400 MHz, CDCl3): δ = 7.36 (dd, J = 7.1 Hz, 1.7 Hz, 1H), 7.27 - 7.12 (m, 3H),

2.41 - 2.37 (t, JHD = 7.1 Hz, 2H).

13C NMR (101 MHz, CDCl3): δ = 135.97, 134.35, 130.92, 129.03, 127.06, 126.53, 19.73

(t, JCD = 19.8 Hz).

GC-MS (EI) m/z (100%) 126.8 C7H6DCl+
•
, 91.9 C7H6D+• .
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A.2.2 Tricarbonyl (1-chloro-2-(methyl-d)benzene)-chromium (0) (2)

CH2D
Cl

(CO)3Cr

Figure A.5: Chemical structure of tricarbonyl (1-chloro-2-(methyl-d)benzene)-
chromium (0) (2)

1-Chloro-2-(methyl-d)benzene (1, 0.38 g, 3.0 mmol) and chromium (0) hexacarbonyl

(0.33 g, 1.5 mmol) in dibutyl ether/THF (9:1, 7.5 mL) was heated at reflux for 36 h.

The reaction was allowed to cool, Et2O was added and the solution passed through a

short column of alumina, eluting with Et2O. The solvent was removed in vacuo and

the crude yellow solid recrystallized from Et2O/pentane and the yellow crystals washed

with cold pentane. The title compound was obtained as a yellow crystalline solid (0.28 g,

1.06 mmol, 35%). Melting point: 100-102◦C.

1H NMR (400 MHz, C6D6): δ = 4.75 (br d, J = 6.2 Hz, 1H), 4.30 (br d, J = 6.0 Hz, 1H),

4.18 (br t, J = 6.1 Hz, 1H), 4.07 (br t, J = 6.1 Hz, 1H), 1.71 (br s, 2H).

13C NMR (101 MHz, C6D6): δ = 112.04, 106.27, 93.87, 93.29, 91.01, 90.42, 18.98 (t,

JCD = 19.9 Hz).

GC-MS (EI) m/z (100%) 126.8 C7H6DCl+
•
.

Sample preparation. Solutions were prepared in Wilmad low pressure/vacuum

NMR tubes with a 5 mm OD. 12.58 mg of I was dissolved in 0.5 mL of C6D6 at a

concentration of 0.1 M. Samples were subjected to thorough degassing using 4 standard

freeze-pump-thaw cycles to remove the majority of dissolved molecular oxygen.
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Figure A.6: Synthetic route to ethyl-d5 (propyl-d7) fumarate-2,3-13C2-d2.

A.3 Ethyl-d 5 (propyl-d 7) fumarate-2,3-13C2-d 2

Ethyl-d5 (propyl-d7) fumarate-2,3-13C2-d2 3 was synthesised from commercially avail-

able acetylene-2,3-13C2 dicarboxylic acid (1) in two steps (figure A.6). Thus, treatment

of acetylene-2,3-13C2 dicarboxylic acid (1) with nPrOH-d7, EtOH-d5 and H2SO4 at

room temperature for 16 h afforded the mixed ester 2 in 48% yield. This ester 2 was

used directly in a reduction reaction with PPh3 and D2O in THF to afford 3 in 49%

yield (24% overall yield from 1), the other major product isolated from this reaction

was ethyl-d5 (propyl-d7) maleate-2,3-13C2-d2 (35%).

Experimental

General experimental details:

All air/moisture sensitive reactions were carried out under an inert atmosphere (N2 or

Ar), using oven or flame-dried glassware. THF (from Na/benzophenone) was distilled

before use. All other solvents and reagents were used as received from standard chemical

suppliers unless otherwise stated. TLC was performed on aluminium plates pre-coated

with silica gel 60 with an F254 indicator; visualized under UV light (254 nm) and/or

by staining with KMnO4. Flash column chromatography was performed with Merck

Kieselgel 60 silica gel. 1H and 13C NMR spectra were recorded in CDCl3 solutions

using Bruker DPX400, Bruker AVII-400 or AVIIIHD-400 (400 and 100 MHz respectively)

spectrometers. Chemical shifts are reported in δ units using CHCl3 (δ 7.27 ppm 1H, δ

77.0 ppm 13C) as an internal standard. Coupling constants (J ) are reported in Hz. For

13C labelled compounds, only the signals corresponding to the labels are reported in

the 13C NMR data. MS were recorded using positive ion electrospray ionization (ESI+)

obtained using a Micromass platform mass analyzer with an electrospray ion source.
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1-(Ethyl-d5) 4-(propyl-d7)- but-2-ynedioate-2,3-13C2 dicarboxylate (2):

To a suspension of acetylene-2,3-13C2 dicarboxylic acid (1) (400 mg, 3.45 mmol) in

1-propanol-1,1,2,2,3,3,3-d7 (0.78 mL, 10.35 mmol, 3.0 equiv.) and ethanol-1,1,2,2,2-d5

(0.61 mL, 10.35 mmol, 3.0 equiv.) was added conc. H2SO4 (551µL, 10.35 mmol, 3.0

equiv.). The reaction was allowed to stir at room temperature for 16 h and then di-

luted with Et2O and H2O. The aqueous layer was re-extracted with Et2O (3 × 10 mL)

and the combined organic layers washed with sat. aq. NaHCO3, brine and dried

(Na2SO4) and concentrated in vacuo. The residue purified by chromatography on silica

gel (Et2O:hexane 1:99) to afford the title compound 1-(ethyl-d5) 4-(propyl-d7)-but-2-

ynedioate-2,3-13C2 dicarboxylate (2) as a colourless oil (327 mg, 1.65 mmol, 48%). Data

for labelled but-2-ynedioate: 13C NMR (100 MHz, CDCl3) δ 76.6; MS (ESI+) m/z 221.0

[M + Na]+.

Ethyl-d5 (propyl-d7) fumarate-2,3-13C2-d2 (3):

To 1-(ethyl-d5) 4-(propyl-d7)-but-2-ynedioate-2,3-13C2 dicarboxylate (2) (230 mg, 1.16 -

mmol) was dissolved in anhydrous THF (3.0 mL) at 0◦C was added D2O (21µL, 1.16 mm-

ol). Triphenylphosphine (305 mg, 1.16 mmol) in anhydrous THF (3.0 mL) was then

added dropwise and the reaction stirred at room temperature for 30 mins followed by

heating at reflux for 16 h. The reaction was allowed to cool, concentrated in vacuo

and the residue purified by chromatography on silica gel (Et2O:hexane 1:99 to 1:24) to

afford the title compound ethyl-d5 (propyl-d7) fumarate-2,3-13C2-d2 (3) as a colourless

oil (115 mg, 0.57 mmol, 49%). Data for unlabelled fumarate: 1H NMR (400 MHz, CDCl3)

δ 6.86 (s, 2H), 4.26 (q, J = 7.1 Hz, 2H), 4.16 (t, J = 6.7 Hz, 2H), 1.76 - 1.64 (m, 2H),

1.32 (t, J = 7.1 Hz, 3H), 0.97 (t, J = 7.3 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 165.1,

165.0, 133.6, 133.6, 66.9, 62.3, 21.9, 14.1, 10.3; MS (ESI+) m/z 187.3 [M + H]+. Data

for labelled fumarate: 13C NMR (100 MHz, CDCl3) δ 133.6 - 133.0 (m, 2C); MS (ESI+)

m/z 241.3 [M + K]+.

Sample preparation. Solutions were prepared in Wilmad low pressure/vacuum

NMR tubes with a 5 mm OD. 21 mg of ethyl-d5 (propyl-d7) fumarate-2,3-13C2-d2 was

dissolved in 0.5 mL of CDCl3 solvent at a concentration of 0.207 M. Samples were sub-

jected to thorough degassing using 6 standard freeze-pump-thaw cycles to remove the

majority of dissolved molecular oxygen.
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Mathematical tools

B.1 Longitudinal relaxation

During the discussion of longitudinal relaxation in chapter 1, the solution to the following

Bloch equation was reported:

dMz(t)

dt
= −R1

(
Mz(t)−Mz,equil

)
. (B.1)

In this section I will provide the derivation of this result. The negative sign in the above

expression denotes the decay of non-equilibrium z-magnetization reapproaching thermal

equilibrium after rf-perturbation. The timescale on which this process takes place is

governed by the longitudinal relaxation rate constant R1. At a time t = 0 the initial

z-magnetization is given by Mz(0). The motion of z-magnetization returning to thermal

equilibrium is revealed by rearranging and integrating equation B.1:

∫
1

Mz(t)−Mz,equil
dMz(t) = −

∫
R1dt. (B.2)

The left and right hand sides of equation B.2 are integrated with respect to the variables

Mz and t, respectively:

ln|Mz(t)−Mz,equil| = −R1t+ c, (B.3)

213
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where c is the constant of integration. Mz,equil and R1 are also constants. At a time

t = 0 equation B.3 can be used to find the value of c:

c = ln|Mz(0)−Mz,equil|, (B.4)

which may be resubsituted back into equation B.3:

ln|Mz(t)−Mz,equil| = −R1t+ ln|Mz(0)−Mz,equil|. (B.5)

By eye one can inspect that:

−R1t = ln|Mz(t)−Mz,equil

Mz(0)−Mz,equil
|, (B.6)

and by taking the exponential of both sides of equation B.6:

e−R1t =
Mz(t)−Mz,equil

Mz(0)−Mz,equil
, (B.7)

and finally rearranging equation B.7:

~Mz(t) = Mz,equil + (Mz(0)−Mz,equil)e
−R1t, (B.8)

one arrives at the result presented in chapter 1. Equation B.8 states that the rate of

change of z-magnetization is larger if the initial z-magnetization Mz(0) is further way

from thermal equilibrium initially, and that the time taken to reach thermal equilibrium

after rf-perturbation is shorter if the relaxation rate constant R1 is larger.

B.2 Propagation of a time dependent Hamiltonian

In the case of a time dependent Hamiltonian, there is no explicit expression for the

time propagator. A solution is therefore approximated by dividing the total time into

infinitesimal time steps ∆t, and propagating over each infinitesimal time step:

lim
∆t→0

Ûi(tb, ta) = e−iĤ(tb)∆te−iĤ(tb−∆t)∆te−iĤ(tb−2∆t)∆t... e−iĤ(ta)∆t, (B.9)
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i.e. the limit of a time-ordered product of Hamiltonian operators. The Dyson time

ordering superoperator
ˆ̂
T is used to achieve this solution, and allows the infinitesimal

time-propagator Ûi(tb, ta) in equation B.9 to be expressed as:

Ûi(tb, ta) =
ˆ̂
Texp[−i

∫ tb

ta

dt′Ĥ(t′)]. (B.10)

The Dyson time ordering superoperator applied to a set of Hamiltonians Ĥ(ti) at dif-

ferent times ti orders the Hamiltonians such that:

ˆ̂
T (Ĥ(tb), Ĥ(ta)) = Ĥ(tb)Ĥ(ta), (B.11)

for tb > ta.

B.3 Tensor transformations

Consider a 3×3 tensor
[
Cλmm′

]P
in the principle axis frame P of the interaction λ. In

the frame P , the tensor is strictly diagonal:

[
Cλmm′

]P
=


Cλxx 0 0

0 Cλyy 0

0 0 Cλzz

 , (B.12)

and has principal components: Cλxx, Cλyy, C
λ
zz. Define the z-axis of the static magnetic

field to be parallel with the z-axis of the laboratory frame L. The relative orientation

of the interaction tensor Cλmm′ in the frame P with respect to the laboratory frame L is

specified by the set of Euler angles: Ωλ
PL = {αλPL, βλPL, γλPL}. The matrix representation

of the tensor in the laboratory frame L is as follows:

[
Cλmm′

]L
= D(Ωλ

PL)
[
Cλmm′

]P
D(Ωλ

PL)−1. (B.13)

As is often the case in NMR, an intermediate frame, usually the molecular frame M ,

is required to manage the relative frame transformations from the principle axis frame

P of interaction λ to the laboratory frame L. The interaction tensor Cλmm′ has a fixed

orientation with respect to the molecular axis system M , in which the molecule is also

oriented with respect to the static magnetic field. The relative orientation of frame P
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with respect to frame M is specified by using the Euler angles Ωλ
PM , and the relative

orientation of frame M with respect to frame L is specified by using the Euler angles

Ωλ
ML. Therefore, D(Ωλ

PL) is written by “chaining” Wigner rotation matrices:

D(Ωλ
PL) = D(Ωλ

PM )D(Ωλ
ML). (B.14)

Consider the a single term in the rotation matrix R(Ωλ
PL), such as Rzx(Ωλ

PL), which is

interpreted by using rotation operators as follows:

R̂zx(Ωλ
PL) = R̂zx(Ωλ

PM )R̂xx(Ωλ
ML) + R̂zy(Ω

λ
PM )R̂yx(Ωλ

ML) + R̂zz(Ω
λ
PM )R̂zx(Ωλ

ML),

(B.15)

where each component is specified by the rotation matrix given in equation 1.130.

Chaining Wigner rotation matrices makes consecutive rotations over multiple interac-

tion frames between the axis systems P and L considerably easier. Additional reference

frames, such as a rotor axis system R, are often required in solid-state NMR and in the

relaxation analysis of rotating methyl groups in solution. The rotor frame R rotates

about a fixed axis with respect to the molecular frame M . The chain of Wigner rotation

matrices in equation B.14 becomes:

D(Ωλ
PL) = D(Ωλ

PR)D(Ωλ
RM )D(Ωλ

ML). (B.16)

where D(Ωλ
PR) defines the relative orientation of the principle axis system with respect

to the rotor frame for an interaction λ, and D(Ωλ
RM ) defines the relative orientation

of the rotor frame with respect to the molecular frame. For further information, see

reference [229].

B.4 Motional averaging

Complicated nuclear spin Hamiltonians may be simplified to a “motionally averaged”

Hamiltonian, due to the rapid tumbling of molecules in isotropic liquids (and gases). If a

molecule undergoes fast reorientation the interactions associated with the molecule will

fluctuate in time. If the interactions fluctuate sufficiently fast a “motionally averaged”

interaction strength may be used. The situation is made even simpler as some interac-

tions may have zero time-averages, and can be neglected. Unless molecular motion is
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slow a “motionally averaged” Hamiltonian is usually a good approximation to the full

nuclear spin Hamiltonian.

The motionally averaged Hamiltonian depends on the type of motion averaging

the interaction strengths. Rotations of a molecule in solution inherently suggest a change

in the overall molecular orientation. Rotations are detectable by NMR because these

motions alter the nuclear spin Hamiltonian, such as the coupling magnitudes for the

anisotropic dipole-dipole and chemical shift anisotropy interactions. In general, three

angles are required to define a rotation in space, these will be substituted by Θ, which

is assumed to be time-dependent.

The time-dependent, secular Hamiltonian expressed as Ĥ0(Θ(t)) may be written

as the time-average secular Hamiltonian by taking into account motional averaging:

Ĥ
0
(Θ) = τ−1

∫ τ

0
dt Ĥ0(Θ(t)). (B.17)

For large values of τ the ergodic hypothesis may be invoked as the molecule is likely to

have sampled all molecular orientations. An integral over time is therefore considered

as an integral over molecular orientation:

Ĥ
0
(Θ) =

∫
dΘP (Θ)Ĥ0(Θ), (B.18)

where P (Θ) is the probability density of a molecule having a particular molecular ori-

entation. In isotropic liquids (and gases) all orientations are equally likely, and the

probability density is the same for all orientations. In cases of anisotropic media, such

as liquid crystals, all orientations are not equally probable as molecular orientations

aligned with the liquid crystal director are most preferable. The isotropic motionally

averaged secular Hamiltonian is therefore written as:

Ĥ
0
iso(Θ) = N−1

∫
dΘĤ0(Θ), (B.19)

where N is a normalization constant, chosen so that the total probability is 1:

N =

∫
dΘ. (B.20)



218 Appendix B: Mathematical tools

B.5 Multipole expansion

Consider a charge qi at position ~ri defined by: ρ(~r) = qiδ(~r − ~ri). One can define an

electronic potential such that: E(~r) = −∇φ(~r), where:

φ(~r) =
1

4πε0

∫
V
dV

ρ(~r)

|~r − ~ri|
. (B.21)

In the case where ~ri � ~r, the multipole expansion of 1
~r+~ri

is valid:

1

~r + ~ri
=

N∑
n=0

1

n!
(~ri · ~∇r)n

1

r
. (B.22)

Therefore, the electric potential φ(~r) becomes:

φ(~r) =
1

4πε0

∫
V
dV ρ(~r)

[
1

r
+
~ri · ~r
r3

+
3(~ri · ~r)2 − r2

i r
2

2r5
+ ...

]
. (B.23)

Thus, expanding equation B.23 via a Taylor series, the multipole expansion is complete:

φ(~r) =
1

4πε0

Q
r

+
pi · ri
r3

+
1

2

∑
ij

rirj
r5

Qij

 , (B.24)

where Qij (third term in the multipole expansion) represents the quadrupole moment.

Qij is defined as:

Qij =

∫
V
dV (3ri · rj − rirjδij)ρ~r. (B.25)

This parameter is used to describe the effective shape of an ellipsoid representing a

nuclear charge distribution.

B.6 Rotating frame transformation

In order to treat the presence of radiofrequency pulses the necessary evil of transforming

between laboratory and rotating frames is required. As the resonant component of

an rf-field rotates at a constant frequency in the rotating frame the spin Hamiltonian

appears to be time-independent if one views the spins from a frame which “rotates

with the rf-field”, i.e. the on resonant component of the rf-field appears to be static in
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the rotating frame. This mathematical trick greatly simplifies many problems within

magnetic resonance.

Consider a laboratory reference frame with axes denoted: { ex, ey, ez }. The

rotating frame has axes: { e′x, e′y, e′z }. The two frames are related by:

e′x = ex cos(φ(t)) + ey sin(φ(t)), (B.26)

e′y = ey cos(φ(t))− ey sin(φ(t)), (B.27)

e′z = ez, (B.28)

where φ(t) is a time-dependent angle given by:

φ(t) = ωrest+ ϕ(t), (B.29)

where ωres is the resonant part of the rf-field, and ϕ(t) is a constant phase factor. Con-

sider a spin in a magnetic field with an eigenstate |ψ〉 precessing at a Larmor frequency

ωres about the z-axis of the laboratory frame. For simplicity, assume that the spin polar-

ization vector is oriented in the xy-plane. The eigenstate |ψ〉 evolves with the following

form:

|ψ′〉 = R̂z(φ(t)) |ψ〉 . (B.30)

In the rotating frame, the angle between the spin polarization vector and the ex and ey

axes is fixed, and hence the eigenstate would not appear to evolve:

|ψ̃〉 = |ψ〉 . (B.31)

The “tilde” denotes the view from the rotating frame. The relationship between an

eigenstate in the laboratory and rotating frame is therefore:

|ψ̃′〉 = R̂z(−φ(t)) |ψ′〉 . (B.32)

The equation of motion for eigenstates as viewed from the rotating frame derives from

the Schrödinger equation:

− i ˆ̃H |ψ̃′〉 =
d

dt
|ψ̃′〉 . (B.33)
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Using equation B.32 and the chain rule of differentiation, the right hand side of equa-

tion B.33 becomes:

d

dt

[
R̂z(−φ(t)) |ψ′〉

]
=

d

dt
R̂z(−φ(t)) · |ψ′〉+ R̂z(−φ(t)) · d

dt
|ψ′〉 . (B.34)

By substituting for the rotation operator R̂z(−φ(t)) (see chapter 1, section 1.7.1) and

solving for its time derivative:

d

dt
eiφ(t)Îz |ψ′〉 = iωresÎzR̂z(−φ(t)) |ψ′〉 , (B.35)

and using the relation: d
dtφ(t) = ωres

d
dtφ(t), equation B.33 becomes:

− i ˆ̃H |ψ̃′〉 = iωresÎzR̂z(−φ(t)) |ψ′〉 − iR̂z(−φ(t))Ĥ |ψ′〉 . (B.36)

The rotating frame spin Hamiltonian is therefore written as:

ˆ̃H |ψ̃′〉 = R̂z(−φ(t))ĤR̂z(φ(t)) |ψ̃′〉 − ωresÎz |ψ̃′〉 . (B.37)

The rotating frame Hamiltonian contains two terms. The first is a rotation of the

laboratory frame Hamiltonian about the z-axis through the time dependent angle φ(t).

This term implies that static spin operators move backwards in the rotating frame. The

second term is a non-linear motion correction to the spin dynamics and arises simply

because the frame is rotating.

B.7 Projection superoperators

As discussed in chapter 1, a quantum state |ψ〉 may be expanded as a linear combination

of ket vectors |ψi〉:
|ψ〉 =

∑
i

ci |ψi〉 , (B.38)

where ci = 〈ψi|ψ〉, which ensures the relation:

∑
i

|ψi〉〈ψi| = 1. (B.39)
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The projection superoperator ascertains the amount of an operator N̂ within another

operator M̂ , such as the level of singlet order Q̂SO within the spin density operator ρ̂.

The projection superoperator ˆ̂pMN is defined as:

ˆ̂pMN =
Tr[M̂ †N̂ ]

Tr[M̂ †M̂ ]
, (B.40)

and the application of the projection superoperator to an operator N̂ is:

ˆ̂pMN N̂ =
Tr[M̂ †N̂ ]

Tr[M̂ †M̂ ]
M̂ = αMM̂. (B.41)

The coefficient αM is the measure of the operator N̂ within the operator M̂ . The

maximum value of αM = 1 as ˆ̂pMN is normalized by Tr[M̂ †M̂ ].

B.8 Zeeman polarization as a hyperbolic tangent function

In chapter 2 the Zeeman polarization pZ was expressed by using the following tangent

function:

pZ = tanh

(
~γB0

2κBT

)
. (B.42)

In this section, I will give the shortcuts to this expression of pZ . Lets begin with the

definition of the Zeeman polarization:

pZ =
p(α)− p(β)

p(α) + p(β)
, (B.43)

where p(α) is the |α〉 state population and p(β) is the |β〉 state population. The ratio

between the populations of the |α〉 and |β〉 states is defined by the Boltzmann distribu-

tion:
p(α)

p(β)
= e

(
~γB0
κBT

)
, (B.44)

where ω0 is the nuclear Larmor frequency, κB is the Boltzmann constant (1.38×10−23 JK-

−1) and T is the temperature. The ratio of nuclear spin populations allows the Zeeman

polarization to be expressed as follows:

pZ =
p(β)e

(
−~ω0
κBT

)
− p(β)

p(β)e

(
−~ω0
κBT

)
+ p(β)

=
e

(
−~ω0
κBT

)
− 1

e

(
−~ω0
κBT

)
+ 1

, (B.45)
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upon cancelling p(β). Now include a multiplicative constant of exp {~ω0/2κBT}, and

rearrange the resulting expression accordingly:

pZ =
e

(
−~ω0
κBT

)
− 1

e

(
−~ω0
κBT

)
+ 1

· e
(

~ω0
2κBT

)
e

(
~ω0

2κBT

) =
e

(
−~ω0
2κBT

)
− e

(
~ω0

2κBT

)
e

(
−~ω0
2κBT

)
+ e

(
~ω0

2κBT

) . (B.46)

The Zeeman polarization pZ is clearly a hyperbolic tangent function and can readily be

expressed in the following form:

pZ = tanh

(
~γB0

2κBT

)
. (B.47)

Expressing pZ in this manner allows the temperature and magnetic field dependencies

of pZ to be examined more explicitly.

B.9 Singlet order and rf-fields

In chapter 2, I briefly outlined the effects of applying a continuous wave (CW) field to a

nuclear spin pair i and j during the evolution period τEV between encoding the nuclear

singlet order and the subsequent reconversion to observable magnetization. In this sec-

tion, I provide more details regarding this phenomenon. Details regarding the evolution

of the nuclear singlet order (and the singlet-central triplet population imbalance) are

found in references [16, 149, 150].

As is often the case for measurements of singlet relaxation time constants, the finite

chemical shift difference which exists between the coupled spins of interest acts to atten-

uate the lifetime of the nuclear singlet order. This mechanism is termed “singlet-triplet

leakage” and is discussed further in chapter 3. The singlet-triplet leakage mechanism is

coherent and may therefore be removed (to good approximation) by the presence of an

on resonant radiofrequency field. Consider the case of continuous wave (CW) irradia-

tion with a pulse amplitude ωCW applied at the average resonance frequency of the two

singlet nuclei. Assume that ωCW satisfies the following condition:

ωCW � Ωij
∆, (B.48)
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ΩΔ

2ωCW

ωeff

ij

θrf

Figure B.1: The effective magnetic field axis (grey, dashed arrow) in the limit of

strong continuous wave rf-irradiation, i.e. ωCW � Ωij∆. θrf indicates the angle of the

effective magnetic field with respect to the static magnetic field ~B0 and ωeff denotes
the amplitude of the effective magnetic field.

in which case the coherent Hamiltonian in the presence of CW irradiation Ĥcoh,CW is

expressed in the rotating frame as:

Ĥcoh,CW =
Ωij

Σ

2
(Îiz + Îjz) +

Ωij
∆

2
(Îiz − Îjz) + 2πJij Îi · Îj + ωCW(Îix + Îjx). (B.49)

The Zeeman term Îiz − Îjz does not commute with the term from the coherent CW

irradiation Î1x + Î2x but may be neglected in the case that equation B.48 is fulfilled.

The coherent Hamiltonian Ĥcoh,CW therefore simplifies to:

Ĥcoh,CW = 2πJij Îi · Îj + ωCW(Îix + Îjx), (B.50)

and remains an exchange-symmetric Hamiltonian with respect to the permutation of

nuclear spins i and j. Q̂SO is therefore a conserved property of Ĥcoh,CW, see chapter 2

for more details. The singlet spin-1/2 nuclei experience an effective magnetic field due to

the existence of the CW radiofrequency field, which is typically provided by the rf-coils

of the probehead and is applied in a perpendicular direction to the static magnetic field,

see figure B.1. The angle of the effective magnet field tilt (experienced by both spins i

and j) is given by a tangent function of ωCW and Ωij
∆:

tan(θrf ) =
2ωCW

Ωij
∆

, (B.51)
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with the effective magnetic field amplitude, defined to be co-axial with the z-axis of the

effective magnetic field frame, expressed as:

ωeff =

(Ωij
∆

2

)2

+ ω2
CW

1
2

. (B.52)

The transformation from the rotating frame to the effective magnetic field frame for the

Cartesian operators which constitute the coherent Hamiltonian Ĥcoh,CW is given by:


Î ′ix + Î ′jx

Î ′iy + Î ′jy

Î ′iz + Î ′jz

 =


cos θrf 0 − sin θrf

0 1 0

sin θrf 0 cos θrf

×

Îix + Îjx

Îiy + Îjy

Îiz + Îjz

 , (B.53)

where the primed (′) operators are specified in the effective magnetic field frame. For

sufficient suppression of the coherent singlet-triplet leakage mechanism, the applied CW

field must have a nutation frequency which substantially exceeds the chemical shift

difference, i.e. ωCW � Ωij
∆. In the limit of strong CW irradiation θrf → π/2, and the

trigonometric elements of the transformation matrix simplify as follows; sin θrf → 1 and

cos θrf → 0.

The transformation matrix enabling the nuclear singlet order to be expressed in

the effective magnetic field frame is:

Q̂CS =

|1̂〉
〈

ΣI ′x,y
∣∣∣ 〈

I ′iz + I ′jz

∣∣∣ 〈
I ′iz · I ′jz

∣∣∣


|S0〉 1

4 0 −1
2 −1

|T−1〉 1
4 −1

2
1
2 0

|T0〉 1
4 0 −1

2 1

|T+1〉 1
4

1
2

1
2 0

(B.54)

where ΣI ′x,y = Î ′ix · Î ′jx + Î ′iy · Î ′jy. This transformation is equivalent to the following

relabelling of the Cartesian operators Î ′iz ↔ Îix and Î ′ix ↔ Îiz (identical transformations

are present for spin j) which results in the following transformation matrix:
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Q̂CS =

|1̂〉
〈
ΣIz,y

∣∣ 〈
Iix + Ijx

∣∣ 〈
Iix · Ijx

∣∣


|S0〉 1

4 0 −1
2 −1

|T−1〉 1
4 −1

2
1
2 0

|T0〉 1
4 0 −1

2 1

|T+1〉 1
4

1
2

1
2 0

(B.55)

The transformation to the effective magnetic field frame described in equation B.55

demonstrates that the population of the nuclear singlet state expressed in the Cartesian

product operator basis of the effective magnetic field frame remains as [75, 150, 151]:

|S0〉 〈S0| =
1
4
− Îi · Îj =

1
4
− (Îix · Îjx + Îiy · Îjy + Îiz · Îjz). (B.56)

The nuclear singlet order (Q̂SO) additionally remains invariant to an effective magnetic

field frame transformation, with Q̂SO expressed in the effective magnetic field frame as:

Q̂SO =
−1

2
√

3

(
Î+
i · Î−j + Î−i · Î+

j + 2Îiz · Îjz
)
. (B.57)

B.10 SLIC vs. M2SS2M

The SLIC and M2SS2M pulse sequences are discussed in depth at the end of chapter 2.

The advantages and disadvantages of each sequence are detailed in table B.1.

Table B.1: Comparison for the properties of the SLIC and M2SS2M pulse sequences
used to interconvert longitudinal magnetization and the nuclear singlet order.

Property SLIC M2SS2M

generation of Q̂SO immediate during n2 JSE train

max Q̂SO efficiency 2/3 2/3
power requirements ∼10µW ∼10 W
sequence duration ∼100 ms ∼100 ms
offset dependence selective broadband

Each pulse sequence operates effectively in the near-equivalence regime and dis-

plays obvious strengths and weaknesses. For example, the SLIC sequence consists of

a single pulse dictated by two parameters which are easily optimized [156]. However,

sufficiently low nutation frequencies are difficult to generate for the weak spin-locking
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pulses below an intrinsic limit set by the amplifier of the spectrometer. The M2SS2M

sequence (also simple to optimize and governed by two parameters) is comprised of echo

trains positioned back-to-back. If large numbers of JSE trains are required to retrieve

the nuclear singlet order, the hard (short) pulses which are readily synthesised by the

spectrometer can occasionally trigger sample heating. On the other hand, the M2SS2M

pulse sequence is used effectively in cases where the one-dimensional spectra of the singlet

isotope is severely crowded, as the M2S portion of the pulse sequence efficiently selects

the key singlet resonance. Furthermore, the SLIC pulse sequence is able to use experi-

mental parameters which are exactly matched to the spin system parameters, whereas

for the M2SS2M sequence the number of JSE trains n1 must be rounded to an integer,

limiting the experimental transfer efficiency. Finally, the π inversion pulses belonging

to the M2SS2M pulse sequence are sensitive to inhomogeneous ~B0 fields. Composite π

pulses are instead used to improve the off-resonance performance of the singlet-triplet

interconversion.

B.11 Optimized T00 filter parameters

The T00 filter is implemented to suppress all signals not originating from the singlet

state. NMR signals passing through spherical tensors of rank 1 or 2 are destroyed.

Details of the T00 filter are also given in references [55, 56].

Table B.2: Optimized parameters of the T00 filter.

PFG Shape Strength Duration

G1 SINE.100 5.0 Gcm−1 4.4 ms
G2 SINE.100 -5.0 Gcm−1 2.4 ms
G3 SINE.100 -7.5 Gcm−1 2.0 ms

B.12 Autocorrelation functions

Molecules dissolved in solution do not behave as static objects, and are continuously

undergoing molecular vibrations and librations. Other motions attributed to the reori-

entation of molecular groups or the molecule as a whole include; rotations, translations

and diffusion. In turn, the molecular frame (imprinted on the molecular geometry) is not
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time-independent and undergoes the same motional dynamics. The molecular frame is

therefore seen to tumble in synchrony with the molecule with respect to the laboratory

frame [49].

From the thorough treatment of nuclear spin relaxation discussed in chapter 3, it

has been shown that: 1. frame transformations R → M and M → L are uncorrelated

in the case that the isotropic rotational diffusion of the internal group and the overall

reorientation of the molecule in solution posses suitably different timescales; and 2.

molecular reorientations (frame A → frame B) across an interval τ are quantifiable by

an autocorrelation function Gλ,λ
′

m,m′(τ) such that:

〈D2∗
m2m1

(Ωλ
AB(0))D2

m′2m
′
1
(Ωλ

AB(0))〉 ×Gλ,λ′m,m′(τ) = 〈D2∗
m2m1

(Ωλ
AB(0))D2

m′2m
′
1
(Ωλ

AB(τ))〉,
(B.58)

with:

〈Dl∗
m2m1

(Ωλ
AB(0))Dl

m′2m
′
1
(Ωλ

AB(τ))〉 =
1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
sin(β) dγdβdα (B.59)

×Dl∗
m2m1

(Ωλ
AB(0))Dl

m′2m
′
1
(Ωλ

AB(τ)),

=
(−1)m2+m1

2l + 1
δll′δm2m′2

δm1m′1
, (B.60)

where the factor of 1/8π2 is the uniform probability density of initial orientations spec-

ified by the solid angle Ωλ
AB(0), and is required for normalization. The autocorrelation

function quantifies how rapidly the local magnetic field fluctuates, i.e. how correlated is

the field with itself at a later time τ . Fluctuations could be due to the reorientational

motions of a small molecule in isotropic solution, or other molecular processes. The

autocorrelation function depends on the size of the time-step τ between measurements

of the local magnetic field orientation with respect to a reference frame, which is fixed

with respect to the molecule. The autocorrelation function Gλ,λ
′

m,m′(τ) is written as:

Gλ,λ
′

m,m′(τ) = 〈Aλ∗lm(t)Aλ
′
lm′(t− τ)〉, (B.61)

where Aλlm are the spatial tensors of the fluctuating Hamiltonian for the interaction λ,

see table 3.2. At a time τ = 0, the autocorrelation function is:

Gλ,λ
′

m,m′(0) = 〈Aλ∗lm(0)Aλ
′
lm′(0)〉, (B.62)
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where Gλ,λ
′

m,m′(0) denotes the root-mean-square amplitude of the fluctuating field, aver-

aged over either the spin ensemble or time, both of which are equivalent. The autocor-

relation function is therefore constrained by the boundary conditions: Gλ,λ
′

m,m′(0) = 1 and

Gλ,λ
′

m,m′(∞) = 0, i.e. at short times there is a high degree of correlation, and long times

the local magnetic field is completely uncorrelated with itself. For molecular reorienta-

tion due to overall tumbling of the spin system in solution, the autocorrelation function

is assumed to be continuous, mono-exponentially decaying function:

Gλ,λ
′

m,m′(τ) = Gλ,λ
′

m,m′(0)e−τ/τC , (B.63)

which is quantified by a correlation time τC related to the stochastic variations of the

magnetic field orientation. τC can be interpreted as the average time for a molecular

axis to reorient by 1 radian.

B.13 Spectral densities

The autocorrelation function Gλ,λ
′

m,m′(τ) has the corresponding spectral density:

Jλ,λ
′

m,m′(ω) =

∫ ∞
0

dτ Gλ,λ
′

m,m′(τ) eiωτ =
τC

1 + (mω0τC)2
. (B.64)

The integral over time translates the autocorrelation function into a spectral density

which is sampled at integer values of the nuclear Larmor frequency. The spectral den-

sity selects the frequencies of molecular tumbling in solution which are resonant with

the nuclear transition frequencies, and therefore provides the probabilities of finding

stochastic motions which fluctuate at the chosen resonant frequencies. This is consis-

tent with the notion of noise fluctuating at multiples of the nuclear Larmor frequency

and driving nuclear spin relaxation in solution state NMR experiments. The maximum

value of Jλ,λ
′

m,m′(ω) is found at τC = 1/ω0, see figure B.2. The case of ω0τC � 1 is de-

scribed as the regime of isotropic extreme narrowing, where the motional tumbling of

the molecule in solution is considerably faster than the nuclear Larmor period. This

results in a “flat” spectral density where Gλ,λ
′

m,m′(τ)→ τC and all transitions are sampled

uniformly. For molecules with moieties that posses uncorrelated motional timescales,

more elaborate spectral densities are required, as discussed in chapter 3.
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Figure B.2: The spectral density function Jλ,λ
′

m,m′(ω) in equation B.64 is plotted for
different values of the integer m = 1, 2 and 4. Inset: longitudinal relaxation rate
constant R1 as a function of τC . The maximum value of R1 is realised at τC = 1/ω0.

B.14 Liouville bracket

The orthogonality condition for a N2 × N2 matrix constructed from N2 orthogonal

basis operators is represented as follows:

(Âi|Âj) =

 Tr[Â†i Âi] for i = j

0 for i 6= j

 . (B.65)

where (...|...) is termed the Liouville Bracket, defined as [51]:

(Â|B̂) = Tr[Â†B̂] =
N∑

i,j=1

Â†jiB̂ij =
N2∑
ij=1

Â∗ijB̂ij . (B.66)

The sum
∑N

i,j=1 is valid for the operator matrix representations, whilst the sum
∑N2

ij=1

is valid for the supervectors which belong to operators Â and B̂. An operator Â may be

expanded in the operator basis of B̂:

Â =
N2∑
i=1

αiB̂i, (B.67)

where the coefficients αi are given by:

αi =
(B̂i|Â)

(B̂i|B̂i)
=

Tr[B̂†i Â]

Tr[B̂†i B̂i]
, (B.68)
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and in a suitable, orthonormal basis (B̂i|B̂i) = 1, which allows the superoperator matrix

representation of the superoperator
ˆ̂
Q:

ˆ̂
Qij = (B̂i| ˆ̂Q|B̂j) = Tr[B̂†i Q̂B̂j ]. (B.69)

B.15 13C inversion recovery experiments

13C longitudinal relaxation times T1(13C) were estimated experimentally by using the

inversion recovery pulse sequence. The 13C 90◦ pulse length was determined from a

nutation frequency experiment to be 10µs at 41 W pulse power and 25◦C sample tem-

perature. Experiments used a delay of 70 s after each data point was recorded. The

incremented delays (in seconds) between π and π/2 pulses were as follows: 0.1, 0.2,

0.5, 1, 2, 5, 8 ,12, 16, 20, 25, 30, 40, 50, 60, 75. The resulting recoveries were fit to a

monoexponential function of the following form:

y(t) = A−Be−t/T1 , (B.70)

where A and B were left as adjustable free parameters to guarantee the best fit of the ex-

perimental data, and T1 is the longitudinal relaxation time. Uncertainties were estimated

from the fit quality of the data by using the Mathemtica routine “ParameterTable”.
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[49] J. Kowalewski and L. Mäler, Nuclear Spin Relaxation in Liquids: Theory, Experi-

ments, and Applications, CRC Press, Boca Raton, 2006.



236 REFERENCES

[50] M. Duer, Solid-State NMR Spectroscopy: Principles and Applications, Blackwell

Sciences, Oxford, UK, 2002.

[51] J. Jeener, Adv. Magn. Opt. Reson., 1982, 10, 1–51.

[52] A. Holevo, Rep. Math. Phys., 1977, 12, 251–271.

[53] D. Brink and G. Satchler, Angular Momentum, Clarendon Press, Oxford, 1993.

[54] M. C. D. Tayler and M. H. Levitt, J. Am. Chem. Soc., 2013, 135, 2120–2123.

[55] D. Mammoli, B. Vuichoud, A. Bornet, J. Milani, J.-N. Dumez, S. Jannin and

G. Bodenhausen, J. Phys. Chem. B, 2015, 119, 4048–4052.

[56] S. J. Elliott, L. J. Brown, J.-N. Dumez and M. H. Levitt, Phys. Chem. Chem.

Phys., 2016, 18, 17965–17972.

[57] J. D. van Beek, M. Carravetta, G. C. Antonioli and M. H. Levitt, J. Chem. Phys.,

2005, 122, 244510.

[58] A. S. Dubin and S. I. Chan, J. Chem. Phys., 1967, 46, 4533–4535.

[59] T. Burke and S. I. Chan, J. Magn. Reson. (1969), 1970, 2, 120–140.

[60] T. E. Bull, J. Chem. Phys., 1976, 65, 4802–4815.

[61] G. B. Matson, J. Chem. Phys., 1977, 67, 5152–5161.

[62] A. Jhajharia, E. M. M. Weber, J. G. Kempf, D. Abergel, G. Bodenhausen and

D. Kurzbach, J. Chem. Phys., 2017, 146, 041101.

[63] L. Olsen, O. Christiansen, L. Hemmingsen, S. P. A. Sauer and K. V. Mikkelsen,

J. Chem. Phys., 2002, 116, 1424–1434.

[64] K. M. Brindle, S. E. Bohndiek, F. A. Gallagher and M. I. Kettunen, Magn. Reson.

Med., 2011, 66, 505–519.

[65] D. M. Hoang, E. B. Voura, C. Zhang, L. Fakri-Bouchet and Y. Z. Wadghiri, Magn.

Reson. Med., 2014, 71, 1932–1943.

[66] M. Levitt and R. Freeman, J. Magn. Reson., 1979, 33, 473–476.

[67] H. Kovacs, D. Moskau and M. Spraul, Prog. Nucl. Magn. Reson. Spectrosc., 2005,

46, 131–155.



REFERENCES 237

[68] D. J. Russell, C. E. Hadden, G. E. Martin, A. A. Gibson, A. P. Zens and J. L.

Carolan, J. Nat. Prod., 2000, 63, 1047–1049.

[69] C. Suarez, Chem. Educ., 1998, 3, 1–18.

[70] J. H. Lee, Y. Okuno and S. Cavagnero, J. Magn. Reson., 2014, 241, 18–31.

[71] J.-H. Ardenkjær-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M. H.

Lerche, R. Servin, M. Thaning and K. Golman, Proc. Natl. Acad. Sci. U.S.A.,

2003, 100, 10158–10163.

[72] C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc., 1987, 109, 5541–5542.

[73] R. A. Green, R. W. Adams, S. B. Duckett, R. E. Mewis, D. C. Williamson and

G. G. R. Green, Prog. Nucl. Magn. Reson. Spectrosc., 2012, 67, 1–48.

[74] M. G. Pravica and D. P. Weitekamp, Chem. Phys. Lett., 1988, 145, 255–258.

[75] J. Eills, G. Stevanato, C. Bengs, S. Glöggler, S. J. Elliott, J. Alonso-Valdesueiro,
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