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Abstract

This paper considers the design of iterative learning control laws for
classes of nonlinear dynamics. In particular, a new Newton method de-
sign is developed for nonlinear discrete systems in the presence of input
constraints, where such constraints will arise in applications. The new
design is based on the use of a penalty function and an iterative method
for solving an unconstrained nonlinear optimization problem with an al-
gorithm that has monotonic and super linear convergence characteristics.
In this new algorithm the input inequality constraints are transformed
into equality form by adding auxiliary variables. A cost function is then
minimized to produce the new iterative learning control law design. Fi-
nally, a simulation based case study is given to illustrate the performance
of the new design.
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1 Introduction

Many industrial systems are required to undertake the same finite duration task
over and over again. In operation, an execution, termed a trial in this paper, is
completed over the finite trial length, the system resets to the starting location
and the next trial can begin either immediately after the resetting is complete
or after a further period of time has elapsed. Once a trial has been completed,
all data generated during this trial is available to update the control signal for
the next trial and thereby improve performance from trial-to-trial.

Iterative Learning Control (ILC) has been especially developed for such sys-
tems. Since the first work [1] it has become an established area of control
systems research and application. The survey papers [2, 3] give comprehensive
overviews of developments up to their years of publication. Major applica-
tion areas include robotics and various forms of manufacturing processes, see,
e.g., [4], and also a transfer from engineering to healthcare for robotic-assisted
upper limb stroke rehabilitation with supporting clinical trials [5, 7], where the
Newton method has also been used [8].

Let the integer k denote the trial number, yk(p) the output and uk(p) the
input signals on this trial. All signals are defined over the finite interval 0 ≤ p ≤
N−1, where N <∞ denotes the number of sampling instants along the trial and
in this paper attention is restricted to single-input single-output (SISO) systems
with an immediate generalization to the multiple-input multiple-output case. A
reference signal, denoted by yd(p), 0 ≤ p ≤ N − 1, is assumed to be available.
Given this signal, the error on trial k is ek(p) = yd(p) − yk(p) and the basic
ILC design problem is to force the sequence {ek}k≥0 to converge to zero, or to
within an acceptable tolerance, in k where convergence is in terms of the norm
on the underlying function space.

A large class of model-based ILC laws are designed using optimization, where
the gradient method, see, e.g., [9] has been used. However, gradient-based de-
signs may result in slow convergence speed and low efficiency and this perfor-
mance issue has also led to use of the conjugate gradient method. For nonlinear
plant models, a basic Newton method design does not guarantee that a matrix
critical to the whole approach is nonsingular. This problem has led, in the non-
ILC literature, to the development of modified quasi Newton methods, such as
the BFGS (Broyden, Fletcher, Goldfarb, Shanno) algorithm [10], which given
suitable development in the ILC setting, may enable a faster trial-to-trial error
convergence rate. Moreover, solving the nonlinear equations defining the entries
in the associated Hessian matrix is not required, which greatly reduces the com-
putation and improves the efficiency. Previous work in the non-ILC literature
has developed a penalty function method for a class of constrained optimization
problems together with convergence analysis, see, e.g., [11].

This paper addresses ILC design based on a modified Newton method and
the major novel contributions are:

i) the BFGS optimization algorithm is extended to ILC design for discrete
nonlinear systems,
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ii) a design algorithm with monotonic and super-linear (which is a desirable
general requirement in applications) trial-to-trial error convergence rate
where the speed of convergence is a requirement, and

iii) an extension to design in the presence of control input inequality con-
straints.

The remainder of this paper is organized as follows. Section 2 introduces a class
of discrete nonlinear systems considered and writes the ILC dynamics as a set of
discrete nonlinear algebraic equations to provide the starting point for Newton
method based design In Section 3, a design based on the BFGS algorithm is
developed. Section 4 formulates and solves the constrained ILC design problem
for constraints on the control input on each trial. The solution is based on
transforming the constrained problem to equality form by the use of a penalty
functions. In Section 5, the monotonic and super linear convergence charac-
teristics of the design are established and Section 6 gives a numerical example
to highlight the new results. Finally, the last section summarizes the results
obtained and discusses possible future research.

The notation used throughout this paper is standard. In particular, <n de-
notes the n-dimensional Euclidean space with norm ||x|| =

√
xTx. A symmetric

positive-definite matrix, say Υ, is denoted by Υ � 0 and I denotes the identity
matrix with compatible dimensions.

2 Background and problem formulation

This paper considers single-input single-input discrete nonlinear systems de-
scribed by the following state-space model in the ILC setting

xk(p+ 1) =f(xk(p), uk(p)),

yk(p) =h(xk(p)),
(1)

where the nonnegative integer subscript k denotes the trial number, p denotes
the sampling instants, 0 ≤ p ≤ N−1, N < ∞ is the number of samples along
the trial (N times the sampling period gives the trial length), xk(p) ∈ <n,
uk(p) ∈ < and yk(p) ∈ < represent the system state vector, input and output,
respectively, and f(·) and h(·) are vector valued nonlinear functions. Without
loss of generality, it is assumed that xk(0) = xd(0), i.e., an identical state initial
vector on each trial.

The basis of the Newton method for ILC design is to replace the state-space
model (1) by a set of algebraic equations in <N and requires the introduction
of the input and output time-series vectors

uk =
[
uk(0) uk(1) · · · uk(N−1)

]T
, yk =

[
yk(1) yk(2) · · · yk(N)

]T
.

Using (1), the relationships between the input and output time-series can be
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expressed in terms of the following algebraic functions g1, g2, . . . , gN

yk(1) =h(xk(1)) = h(f(xd(0), uk(0))) = g1(xd(0), uk(0)),

yk(2) =h(xk(2)) = h(f(xk(1), uk(1))) = g2(xd(0), uk(0), uk(1)),

...

yk(N) =h(xk(N)) = h(f(xk(N−1), uk(N−1))) = gN (xd(0), uk(0), . . . , uk(N−1)).

Also, since the state initial vector on each trial is independent of k, the state-
space model (1) can be represented by an algebraic function in <N with the
structure

yk = g(uk), (2)

where

g(uk) =
[
g1(xd(0), uk(0)) g2(xd(0), uk(0), uk(1)) . . . gN (xd(0), uk(0), . . . , uk(N−1))

]T
.

The general ILC design problem is to find a control input sequence {uk} such
that

lim
k→∞

||ek|| = 0, lim
k→∞

||uk − u∞|| = 0,

where u∞ is termed the learned control and || · || denotes the norm on the un-
derlying function space. In the case considered, the ILC dynamics have now
been formulated as the nonlinear equations (2) and the problem of finding the
desired input which forces (1) to track the supplied reference signal yd is equiv-
alent to finding the solution that satisfies (2) with yk replaced by pre-specified

the reference signal yd =
[
yd(1) yd(2) · · · yd(N)

]T
.

Following the developments in, e.g., [12], the Newton-based ILC law is

uk+1 = uk + zk+1, Gk(uk)zk+1 = ek, k ≥ 1, (3)

where Gk(uk) is the gradient matrix of g(uk). This law avoids (potentially)
complex calculations to form the inverse of the nonlinear system dynamics (2).
The inverse computation has been avoided by introducing uk+1 = uk + zk+1,
where zk+1 = (Gk(uk))

−1
ek, which is computed by solving Gk(uk)zk+1 = ek. In

ILC terms, introducing Gk(uk) is equivalent to the linearization of (1) on trial
k at (uk, xk). It can be shown, using properties of the parallel-chord method
for solving nonlinear multivariable equations, see, e.g., [13], that, if convergent
a Newton-based method exhibits local quadratic convergence, i.e., for the ILC
case [12] the convergence of uk to u∞ satisfies

||uk+1 − u∞|| ≤ c||uk − u∞||2, c > 0. (4)

As a consequence the Newton-based ILC law (3) has the quadratic convergence
property, but slow convergence speed can result. Also some applications require
design in the presence of constraints to formulate a physically meaningful con-
trol law, see Section 4 for further discussion of an application area where input
constraints are particularly required.
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To address these issues, this paper develops the standard Newton method based
ILC design to obtain a new version that has the super-linear convergence prop-
erty for applications where fast trial-to-trial error convergence is required (with-
out compromising other requirements). Also the design is extended to allow
input constraints, where these are particularly relevant in ILC design since this
form of control is based on direct computation of the control input for the next
trial using previous trial data. The analysis that follows in this paper assumes
that g(·) is a twice continuously differentiable function.

3 Control Law Design

Given the assumptions made, the system (2) can be approximated by a Taylor
series expansion truncated after the first two terms and written in the form

g(uk) ≈ g(uk+1)−Gk+1(uk+1)∆uk +
1

2
=(∆uk), (5)

where ∆uk = uk+1 − uk,

Gk+1(uk+1)=


∂g1(xd(0),uk+1(0))

∂uk+1(0)
0 · · · 0

∂g1(xd(0),uk+1(0))

∂uk+1(0)

∂g2(xd(0),uk+1(0),uk+1(1))

∂uk+1(1)
· · · 0

...
...

. . .
...

∂g1(xd(0),uk+1(0))

∂uk+1(0)

∂g2(xd(0),uk+1(0),uk+1(1))

∂uk+1(1)
· · · ∂gN (xd(0),uk+1(0),...,uk+1(N−1))

∂uk+1(N−1)

 ,

=(∆uk)=


∆uT

k Hk+1,1(uk+1)∆uk

∆uT
k Hk+1,2(uk+1)∆uk

...
∆uT

k Hk+1,N (uk+1)∆uk

 , Hk+1(uk+1)=


Hk+1,1(uk+1)
Hk+1,2(uk+1)

...
Hk+1,N (uk+1)

 ,

Hk+1,j(uk+1)=



∂2gj(xd(0),uk+1(0),...,uk+1(j−1))

∂u2
k+1

(0)

∂2gj(xd(0),uk+1(0),...,uk+1(j−1))
∂uk+1(0)∂uk+1(1)

· · · ∂2gj(xd(0),uk+1(0),...,uk+1(j−1))
∂uk+1(0)∂uk+1(N−1)

∂2gj(xd(0),uk+1(0),...,uk+1(j−1))

∂uk+1(1)∂uk+1(0)

∂2gj(xd(0),uk+1(0),...,uk+1(j−1))
∂u2

k+1
(1)

· · · ∂2gj(xd(0),uk+1(0),...,uk+1(j−1))
∂uk+1(1)∂uk+1(N−1)

...
...

. . .
...

∂2gj(xd(0),uk+1(0),...,uk+1(j−1))

∂uk+1(N−1)∂uk+1(0)

∂2gj(xd(0),uk+1(0),...,uk+1(j−1))
∂uk+1(N−1)∂uk+1(1)

· · · ∂2gj(xd(0),uk+1(0),...,uk+1(j−1))
∂u2

k+1
(N−1)


,

and j = 1, 2, · · · , N . Furthermore, Gk+1(uk+1) ∈ <N×N and Hk+1(uk+1) ∈
<N×N×N are, respectively, the gradient and Hessian matrices of g(uk+1). More-
over, the derivative of the gradient matrix of (5) with respect to uk is (where for
ease of presentation the arguments of matrix-valued functions are dropped from
this point onwards and also approximation is replaced by equality in further
analysis of (5))

Gk = Gk+1 −Hk+1∆uk,

or, on setting ∆Gk = Gk+1 −Gk,

∆Gk = Hk+1∆uk. (6)
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Cases will arise where the Hessian Hk+1 cannot be accurately obtained and
instead an approximation, Θk+1, to Hk+1 is used, where the objectives are i)
to ensure that Θk ≈ Hk for each trial to obtain a fast convergence rate and ii)
the calculation direction of the iterative algorithm approximates to the Newton
direction. Also, if Θk � 0 then the calculation direction of the algorithm is the
descent direction of the function g(·) for uk over the trial number.

At this stage (6) can be rewritten as

∆Gk ≈ Θk+1∆uk, (7)

where, on introducing (and again replacing approximation by equality in further
analysis of (7)),

Θk+1 =
[

ΘT
k+1,1 ΘT

k+1,2 · · · ΘT
k+1,N

]T
, Θk+1,j ∈ <N×N ,

∆Gk =
[

∆GTk,1 ∆GTk,2 · · · ∆GTk,N
]T
, ∆Gk,j ∈ <N×1, j = 1, 2, · · · , N,

gives
∆Gk,j = Θk+1,j∆uk.

Since Θk+1,j cannot be obtained directly and is variable with k, introduce the
correction term Ek,j such that Θk+1,j = Θk,j+Ek,j and hence (7) can be written
as

∆Gk,j = (Θk,j + Ek,j)∆uk. (8)

The problem of ensuring that Θk+1,j � 0 as k increases has been the subject of
previous research, see, e.g., [16]. Moreover, the correction term Ek,j in (8) must
ensure the positive-definite property of Θk+1,j and one method is to choose Ek,j
to be of the form

Ek,j = αjµk,jµ
T
k,j + βjvk,jv

T
k,j , (9)

where αj and βj are real numbers and µk,j and vk,j are vectors to be determined.
Substituting (9) into (8) gives

(αjµk,jµ
T
k,j + βjvk,jv

T
k,j)∆uk = ∆Gk,j −Θk,j∆uk,

whose solution is non-unique for µk,j and vk,j . Setting (for column vectors of
the same dimension), (vT

k,j∆uk)vk,j = (vk,jv
T
k,j)∆uk gives

(αjµ
T
k,j∆uk)µk,j + (βjv

T
k,j∆uk)vk,j = ∆Gk,j −Θk,j∆uk.

Introduce µk,j and vk,j as

µk,j = χjΘk,j∆uk, vk,j = γj∆Gk,j ,

where the vectors of µk,j and vk,j are parallel, respectively, to Θk,j∆uk and
∆Gk,j and χj and γj are parameters to be determined. To solve this problem,
(9) can be written as

Ek,j = αjχ
2
jΘk,j∆uk(Θk,j∆uk)T + βjγ

2
j∆Gk,j(∆Gk,j)

T . (10)
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Setting

αjχ
2
j = − 1

(Θk,j∆uk)
T

∆uk
, βjγ

2
j =

1

(∆Gk,j)
T

∆uk
,

and substituting in (10) gives, after routine manipulations,

Ek,j = −Θk,j∆uk(Θk,j∆uk)
T

(Θk,j∆uk)
T

∆uk
+

∆Gk,j(∆Gk,j)
T

(∆Gk,j)
T

∆uk
.

Hence the correction formula for the Hessian matrix Θk+1,j in (7) can be written
as

Θk+1,j = Θk,j−
Θk,j∆uk(Θk,j∆uk)

T

(Θk,j∆uk)
T

∆uk
+

∆Gk,j(∆Gk,j)
T

(∆Gk,j)
T

∆uk
, j = 1, 2, · · · , N. (11)

The following theorem is based on a more general result on the positive-definite
properties of approximate Hessian matrices (see [6] for further details) to the
ILC problem considered and gives conditions for Θk+1,j � 0.

Theorem 1 Suppose that the matrix Θk,j satisfies Θk,j � 0 for any k ≥ 1 and
j = 1, 2 . . . , N. Then Θk+1,j � 0 if and only if ∆GTk,j∆uk > 0.

Proof 1 Using (7)
∆GTk,j∆uk = ∆uTk Θk+1,j∆uk,

and if Θk+1,j � 0 then ∆GTk,j∆uk > 0 and necessity is established.
Using (11), there exists an arbitrary vector ζj 6= 0 such that

ζTj Θk+1,jζj = ζTj Θk,jζj −
(ζTj Θk,j∆uk)

2

(Θk,j∆uk)
T

∆uk
+

(ζTj ∆Gk,j)
2

(∆Gk,j)
T

∆uk
. (12)

Since Θk,j � 0, there exists a matrix Θ
1/2
k,j such that Θk,j = Θ

1/2
k,j Θ

1/2
k,j . Applying

the Cauchy-Schwarz inequality gives

(ζTj Θk,j∆uk)2 =
(

(Θ
1/2
k,j ζj)

T (Θ
1/2
k,j ∆uk)

)2

≤
∥∥∥Θ

1/2
k,j ζj

∥∥∥2 ∥∥∥Θ
1/2
k,j ∆uk

∥∥∥2

=(Θ
1/2
k,j ζj)

T (Θ
1/2
k,j ζj)(Θ

1/2
k,j ∆uk)T (Θ

1/2
k,j ∆uk)

=(ζTj Θk,jζj)(∆u
T
k Θk,j∆uk).

(13)

The necessary and sufficient condition for (ζTj Θk,j∆uk)2 = (ζTj Θk,jζj)(∆u
T
k Θk,j∆uk)

in (13) is that there must exist a nonzero real number τk,j such that ζj =
τk,j∆uk. Hence

ζTj Θk+1,jζj =
τ2
k,j(∆u

T
k ∆Gk,j)

2

(∆Gk,j)T∆uk
> 0.
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Otherwise, if (13) is a strict inequality, (12) gives

ζTj Θk+1,jζj >ζ
T
j Θk,jζj +

(ζTj ∆Gk,j)
2

(∆Gk,j)T∆uk
−

(ζTj Θk,jζj)(∆u
T
k Θk,j∆uk)

(Θk,j∆uk)T∆uk

=
(ζTj ∆Gk,j)

2

(∆Gk,j)T∆uk
> 0.

Hence, for an arbitrary vector ζj 6= 0, ζT
j Θk+1,jζj > 0 and Θk+1,j � 0 and the

proof is complete.

Remark 1 Given Theorem 1, if Θ0,j � 0, then the matrices Θk,j , k ≥ 1,
generated by (11) will be positive-definite if ∆GTk,j∆uk > 0. Otherwise, set
Θk+1,j = Θk,j to ensure Θk+1,j � 0, i.e., the control direction is unchanged and
the latest Θk,j is used.

The structure of Θk+1 could lead to a very complicated ILC law design. As an al-

ternative, introduce Mk+1 =
[
MT
k+1,1 MT

k+1,2 · · · MT
k+1,N

]T ∈ <N×N×N
and write Θ̂k+1 = Mk+1 × Θk+1 =

N∑
j=1

Mk+1,jΘk+1,j where Mk+1,j ∈ <N×N

are adjustable weighting matrices. Then using these matrices, a candidate ILC
law for (2) is

uk+1 = uk + εkWδk,

Θ̂kδk = ek,

Θ̂k = Mk ×Θk,
Θk = [ ΘT

k,1 ΘT
k,2 · · · ΘT

k,N ]T ,

Θk+1,j = Θk,j − Θk,j∆uk(Θk,j∆uk)T

(Θk,j∆uk)T ∆uk
+

∆Gk,j(∆Gk,j)T

(∆Gk,j)T ∆uk
,

(14)

where εk ∈ < is the updating step factor, W ∈ <N×N is a relaxation matrix,
δk ∈ <N×1 is the search direction and Θ̂k ∈ <N×N is the parameter matrix to
be determined. Also εk is related to the change in the control input between two
successive trials and is therefore an important parameter in the (trial-to-trial
error) convergence analysis. Its calculation during optimization procedure is a
very important issue and is considered again in Section 4.

The matrix W is introduced to attach weights to the entries in δk and then
a new search direction can be constructed to speed up the convergence of the
correlation elements in search process. Also, if ILC convergence holds then
as k → ∞, ∆uk = uk+1 − uk → 0 and hence a singularity would occur in
computation. In such a case, sufficiently small positive numbers can be added
to the denominator terms.

Remark 2 The ILC law (14) requires the computation of the difference be-
tween two gradient matrices ∆Gk,j = Gk+1,j(uk+1)−Gk,j(uk). Should difficul-
ties arise in this computation one possible approach is to replace ∆Gk,j in the
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last entry by an approximate representation. Suppose, e.g., that the Lipschitz
assumptions

‖Gk+1(uk+1)−Gk(uk)‖ ≤ k∇g ‖uk+1 − uk‖ , k∇g ≥ 0,

‖g(uk+1)− g(uk)‖ ≤ kg ‖uk+1 − uk‖ , kg ≥ 0

hold. Then there may exist k∇ ≥ 0 such that ‖∆Gk‖ = ‖Gk(uk+1)−Gk(uk)‖ =
k∇ ‖g(uk+1)− g(uk)‖, where k∇ is a trial dependent variable. Additionally, the
ILC law (14) only uses ∆Gk, where ∆Gk,j = θj(g(uk+1)− g(uk)) = θj((yd −
yk) − (yd − yk+1)) = −θj∆ek, where θj is a candidate scalar that satisfies
|θj | = k∇ without loss of generality. Hence in this case the approximation
is directly in terms of the trial error and potentially difficult computations in
constructing the Hessian matrix are avoided. However, this method requires the
choice of, in particular, k∇, which is non-trivial in general. The remainder of
this paper assumes the direct computation of the difference between the two gra-
dient matrices is sufficiently accurate, but this area is an obvious candidate for
future research.

Remark 3 In analysis, no loss of generality arises from selecting W as the
identity matrix. (The choice of a non-identity matrix for W in an application
is left as a topic for further research.)

4 Constrained optimization

In some practical applications, it will be necessary to impose constraints on some
variables, such as the maximum control effort that can be allowed to prevent
damage to, e.g., the actuators and other system components. Hence constrained
design is required. The design of constrained ILC laws has been the subject of
previous research and in this paper the focus is on input constraints. In previous
work, e.g., [14], vector inequality constraints of the form

Λuk+1 ≤ B, (15)

where Λ = [I − I]T ∈ <2N×N , B ∈ <2N×1 have been considered. This paper
develops new results for such constraints for an ILC law of the form (14) and
design is by minimizing the cost function

min Jk+1(εk) = ‖ek+1‖2 + γε2
k, (16)

where γ > 0 is an adjustable parameter and the inclusion of the εk term in the
cost function is to prevent excessive change in the control input from one trial
to the next.

On setting Φ(uk+1) = Λuk+1 − B, the corresponding rows in (15) can be
written as

Φj(uk+1) = α̃Tj uk+1 − β̃j ≤ 0,
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where α̃Tj and β̃j , respectively, are the jth rows of Λ and B. Moreover, the
inequality constraint can be transformed into an equality condition by intro-
ducing the auxiliary variable vector ηk+1 ∈ <N , where ηk+1,j denotes the jth
entry of ηk+1 on trial k + 1. Hence the problem to be solved is{

min Jk+1(εk) = ‖ek+1‖2 + γε2
k,

Φj(uk+1) + η2
k+1,j = 0.

(17)

Other forms of constrained design can arise in applications and those that are
applicable or required in each case should be applied. In ILC for robotic-assisted
upper limb stroke rehabilitation, the control input [5, 7] is the stimulation ap-
plied on each trial to the muscles involved, e.g., triceps for a reaching motion.
Moreover, the stimulation is at higher frequency and this, in turn, increases
the risk of muscle fatigue and hence the session must end, which can also be
demotivating for the patient and in any case approval for clinical tests will set a
maximum level of stimulation that can be applied. This is one applications ori-
ented reason for considering input constraints. (See also the further discussion
of this area in the conclusions section of this paper).

The generalized augmented Lagrange performance function based on the
penalty function and multiplier method for (17) is

J̃k+1(εk, ηk+1, λk, σ) = ‖ek+1‖2 + γε2
k −

N∑
j=1

λk,j(Φj(uk+1) + η2
k+1,j)

+

N∑
j=1

σ

2
(Φj(uk+1) + η2

k+1,j)
2,

where λk denotes the Lagrange multiplier and λk,j denotes the jth entry of λk
on trial k, σ > 0 is the penalty factor and the updating algorithm for λk is
λk+1,j = λk,j − σΦj(uk). To eliminate ηk+1,j from J̃k+1(uk+1, ηk+1, λk, σ), the
first order partial derivative with respect to ηk+1,j is computed and set equal to
zero for a minimum, resulting in

ηk+1,j

(
−λk,j + σ

(
Φj(uk+1) + η2

k+1,j

))
= 0.

Suppose also that λk,j − σΦj(uk+1) > 0 and η2
k+1,j =

λk,j

σ − Φj(uk+1), then

−λk,j
(
Φj(uk+1) + η2

k+1,j

)
+
σ

2

(
Φj(uk+1) + η2

k+1,j

)2
= −

λ2
k,j

σ
+
λ2
k,j

2σ
=

1

2σ
(−λ2

k,j),

(18)
otherwise, if λk,j − σΦj(uk+1) ≤ 0 then η2

k+1,j = 0. Hence

−λk,j(Φj(uk+1) + η2
k+1,j) +

σ

2
(Φj(uk+1) + η2

k+1,j)
2 =− λk,jΦj(uk+1) +

σ

2
(Φj(uk+1))2

=
1

2σ

(
(σΦj(uk+1)− λk,j)2 − λ2

k,j

)
,

(19)
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and on combining (18) and (19)

− λk,j(Φj(uk+1) + η2
k+1,j) +

σ

2
(Φj(uk+1) + η2

k+1,j)
2

=
1

2σ

{
min [0, (σΦj(uk+1)− λk,j)]2 − λ2

k,j

}
.

(20)

Substituting (20) into the generalized augmented Lagrange performance func-
tion J̃k+1(εk, ηk+1, λk, σ) gives

J̃k+1(εk, λk, σ) = ‖ek+1‖2+γε2
k+

1

2σ

N∑
j=1

{
[min{0, (σΦj(uk+1)− λk,j)}]2 − λ2

k,j

}
.

(21)
The updating step factor εk in (14) can be determined by minimizing the per-
formance function (21). Hence substitute (14) into (21) and set

∂J̃k+1(εk, λk, σ)

∂εk
= 0.

Also it is immediate on subtracting yd (the reference signal) from both sides
of (5) that

yk − yd ≈ yk+1 − yd −Gk+1(uk+1)∆uk +
1

2
=(∆uk)

and introducing

G̃k = Gk+1−
1

2
∆uTkHk+1 = Gk+Hk+1∆uk−

1

2
∆uTkHk+1 ≈ Gk+Θk+1∆uk−

1

2
∆uTk Θk+1,

gives
ek+1 = ek − G̃k(uk+1 − uk),

where ek = yd − yk. Moreover, using uk+1 = uk + εkWδk gives

ek+1 =
(
I − G̃kεkW Θ̂−1

k

)
ek. (22)

The following two cases arise from the analysis above.

Case 1: If λk,j − σΦj(uk+1) > 0, then

∂J̃k+1(εk, λk, σ)

∂εk
=− 2eTk (I − G̃kεkW Θ̂−1

k )(G̃kW Θ̂−1
k )ek + 2γεk = 0,

or

ε∗k =

eTk

(
G̃kW Θ̂−1

k +
(
G̃kW Θ̂−1

k

)T)
ek

2

(
γ +

∥∥∥G̃kW Θ̂−1
k ek

∥∥∥2
) . (23)
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Case 2: If λk,j − σΦj(uk+1) ≤ 0, then

∂J̃k+1(εk, λk, σ)

∂εk
=− 2eTk

(
I − G̃kεkW Θ̂−1

k

)(
G̃kW Θ̂−1

k

)
ek + 2γεk

+ εkσ

N∑
j=1

∥∥∥α̃T
j W Θ̂−1

k ek

∥∥∥2

+ σ

N∑
j=1

α̃Tj W Θ̂−1
k ek(α̃Tj uk)

−
N∑
j=1

α̃Tj W Θ̂−1
k ekσβ̃j + λk,j = 0,

or

ε∗k =

eTkNkek +
N∑
j=1

α̃Tj Wδkσβ̃j + λk,j)−
N∑
j=1

σα̃Tj Wδk(α̃Tj uk)

2

(
γ +

∥∥∥G̃kWΘ−1
k ek

∥∥∥2
)

+
N∑
j=1

σ
∥∥α̃Tj Wδk

∥∥2
, (24)

where Nk = G̃kW Θ̂−1
k +(G̃kW Θ̂−1

k )T . Further routine manipulations give

ε∗k =
eTkNkek + (σB + λk)TΛWδk − σ(Λuk)TΛWδk

2

(
γ +

∥∥∥G̃kW Θ̂−1
k ek

∥∥∥2
)

+ σ(ΛWδk)T (ΛWδk)

. (25)

Substituting the optimal updating step factor ε∗k from (23) or (25) into (14)
gives the ILC law

uk+1 = uk + ε∗kWδk. (26)

5 Convergence analysis

This section analyzes monotonic trial -to-trial error norm reduction for the sys-
tem obtained by applying the ILC law developed in the previous section. In
applications terms, the requirement is to ensure that the tracking accuracy is
improved after each trial is complete. This requirement can be stated in terms
of the Euclidean norm as the requirement that the tracking error decreases
monotonically for each trial, i.e.

‖ek+1‖ < ‖ek‖, ∀k > 0. (27)

To obtain a condition for this property, consider the system resulting from
application of (26) to (2) and hence

ek+1 =
(
I − G̃kε∗kW Θ̂−1

k

)
ek. (28)

Then the following result establishes how the updating step factor εk affects
trial-to-trial error convergence.

12



Theorem 2 Consider a discrete nonlinear system described by (1) in the pres-
ence of input constraints defined by (15). Suppose also that the ILC law of the
form (26) computed using (14) and (21) is applied. Then the resulting controlled
system has monotonic trial-to-trial error convergence, i.e, (27) is satisfied, if

λk,j − σΦj(uk+1) > 0, (29)

holds. If this condition is not satisfied, monotonic trial-to-trial error convergence
occurs if both the Lagrange multiplier λk,j and the penalty factor σ satisfy the
following constraint

α̃Tj uk − β̃j −
λk,j
σ

= 0, ∀k > 0, j = 1, 2, . . . N.

Proof 2 Assume that (29) holds. Then on setting γ > 0 as required by (16),
the following inequality holds

‖ek+1‖2 < ‖ek+1‖2 + γε∗k
2. (30)

Also using (28), (30) can be rewritten as

‖ek+1‖2 < ‖ek‖2+ε∗k
2

(
γ +

∥∥∥G̃kW Θ̂−1
k ek

∥∥∥2
)
−eTk ε∗k

(
G̃kW Θ̂−1

k +
(
G̃kW Θ̂−1

k

)T)
ek

and substituting (23) gives

‖ek+1‖2 < ‖ek‖2 −

[
eTk

(
G̃kW Θ̂−1

k +
(
G̃kW Θ̂−1

k

)T)
ek

]2

4

(
γ +

∥∥∥G̃kW Θ̂−1
k ek

∥∥∥2
) < ‖ek‖2. (31)

Moreover, this last inequality immediately ensures that (27) holds and hence
monotonic trial-to-trial error convergence occurs. Otherwise, if λk,j−σΦj(uk+1) ≤
0,

‖ek+1‖2 < ‖ek+1‖2 + γε∗k
2 +

N∑
j=1

1

2σ

[
(σΦj(uk+1)− λk,j)2

]
,

and hence

‖ek+1‖2 < ‖ek‖2 + ε∗k
2

γ +
∥∥∥G̃kW Θ̂−1

k ek

∥∥∥2

+
σ

2

N∑
j=1

∥∥∥α̃Tj W Θ̂−1
k ek

∥∥∥2


− ε∗k

eTkNkek +

N∑
j=1

α̃Tj Wδk(σβ̃j + λk,j)−
N∑
j=1

σα̃Tj Wδk(α̃Tj uk)


+
σ

2

N∑
j=1

[(
α̃Tj uk − β̃j −

λk,j
σ

)2
]

13



and substituting from (24) gives

‖ek+1‖2 < ‖ek‖2 +
σ

2

N∑
j=1

[(
α̃Tj uk − β̃j −

λk,j
σ

)2
]

−

[
eTkNkek +

N∑
j=1

α̃Tj W Θ̂−1
k ek

(
σβ̃j + λk,j

)
−

N∑
j=1

σα̃Tj W Θ̂−1
k ek(α̃Tj uk)

]2

4

(
γ +

∥∥∥G̃kW Θ̂−1
k ek

∥∥∥2
)

+ 2
N∑
j=1

σ
∥∥∥α̃Tj W Θ̂−1

k ek

∥∥∥2
.

This last inequality implies that in both cases, i.e., α̃Tj uk − β̃j −
λk,j

σ = 0 and

α̃Tj uk − β̃j − λk,j

σ 6= 0, monotonic trial-to-trial convergence property defined
by (27) is satisfied if the sum of the last two terms on the right-hand side of this
inequality is negative. This completes the proof.

Remark 4 Other parameters in the ILC law can also be optimized, e.g., the
matrix W , but in this paper the interest is trial-to-trial error convergence and
these other cases are left as areas for possible future research.

Theorem 2 establishes that the developed ILC law considered has monotonic
trial-to-trial error convergence. The analysis given next shows that this ILC law
also exhibits super-linear trial-to-trial convergence, i.e., if the sequence of trial

control inputs converges to the learned control u∞ then lim
k→∞

‖uk+n+1−u∞‖
‖uk−u∞‖ =

0, n ≥ 0. Hence this modified Newton method based ILC law can be considered
as a special case of the BFGS algorithm and therefore it inherits the proper-
ties of this last algorithm, including the super-linear convergence property. In
particular, suppose that the inputs uk are generated by (14) and the following
conditions hold:

1) the input sequence of uk does not terminate, but remains in a closed and
bounded, convex set where the function g(uk) is twice continuously differ-
entiable and g(uk) has a unique stationary point u∞;

2) the sequence of Hessian matrices {H∞,j(u∞), j = 1, 2, . . . , N} are positive-
definite and {Hk,j(uk), j = 1, 2, . . . , N} is Lipschitz continuous in a neigh-
borhood of u∞, i.e., ∀uk ∈ Υ(u∞, δ);

3) the matrix sequence {Θk,j} is bounded in norm;

4) the condition
∣∣∣∣∆uTk (∆Gk,j −Θk,j∆uk)

∣∣∣∣ ≥ r ‖∆uk‖ ‖∆Gk,j −Θk,j∆uk‖
holds for each trial, where the constant r ∈ (0, 1).

Then lim
k→∞

uk = u∞ and

lim
k→∞

‖uk+n+1 − u∞‖
‖uk − u∞‖

= 0.
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Hence the control input sequence {uk} converges to u∞ at an (n+1)-step super-
linear convergence rate, for a detailed treatment (in the non ILC case) see [17].
Moreover, it is important to emphasize that super-linear convergence means
that the new ILC law can deliver faster trial-to-trial error convergence rate over
an alternative that can only achieve the monotonic property.

In summary, the ILC law developed in this paper can be implemented as
follows:

Step 1. For the given application, select the initial state xk(0), the initial input
u0, reference trajectory yd, the number of samples along a trial N , the
penalty factor σ and the initial Lagrange multiplier λ0.

Step 2. Specify the maximum output tracking error ξmax and a maximum num-
ber of trials to be completed kmax.

Step 3. Given yk and uk, use (21) to compute ε∗k and hence given W and γ,
the control input for the next trial.

Step 4. If the tracking error performance on trial k + 1 is less than ξmax the
ILC law has achieved the performance specification. If not, return to Step
3 and repeat. If the trial number is kmax, the procedure ends.

Due to possible inherent NP-hardness of the problem, there is no theoretical way
to ensure convergence to a global minimum in this problem. Furthermore, in
some cases the desired performance specification on the tracking error cannot be
achieved even when the number of possible trials tends to infinity. However, the
numerical experiments carried out so far may imply that this new approach is
competitive (in terms of the convergence rate) among others that admit gradient
evaluation.

6 Simulation case study

To demonstrate the properties and performance of the new ILC law developed
in this paper, a simulation case study is given. This study is based on an avail-
able model of a Continuous Stirred Tank Reactor (CSTR) where the reaction
temperature needs to be controlled. The model of the dynamics under some
reaction conditions and the reaction mechanism is based on that given in [15].
Applying the Euler discretization method with sampling time T = 1 minute (the
chemical reaction is a slowly varying dynamic process) to the governing differ-
ential equation results in the following nonlinear discrete model as the basis for
this study.

x1
k(p+ 1) =

(
0.2− 7.2 · 1010e

−104

x2
k
(p)

)
x1
k(p) + 0.8,

x2
k(p+ 1) =

(
−0.8− e−7

)
x2
k(p) +

(
1.44 · 1012e

−104

x2
k
(p)

)
x1
k(p) +

(
1− e−7

)
uk(p) + 280,

yk(p) =x2
k(p).
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It is assumed that this CSTR system needs to execute the same reaction task
over 0 ≤ p ≤ 720 minutes and the reference trajectory is specified as

yd(p) =


0.2p+ 423, 0 ≤ p ≤ 250,
1
7p+ 3061

7 , 250 ≤ p ≤ 320,
483, 320 ≤ p ≤ 600,

− 19
60p+ 673, 600 ≤ p ≤ 720,

see Fig.1, which is a piecewise function modeling four stages of the material
temperature control in the reaction process. Also x1

k(0) = 1, x2
k(0) = 423, the

initial control input is u0(p) = 293, 0 ≤ p ≤ 720, the penalty factor σ = 0.1,
the initial Lagrange multiplier λ0 = [ 20 20 · · · 20 ]T . The control input
constraint is defined by B = [ 378, 378, · · · 378, 273, 273, · · · 273 ]T

and Λ = [I,−I]T . Moreover, to evaluate tracking performance from trial-to-
trial, the convergence performance index is the root mean square (RMS) along
the trial, i.e.,

RMS(k) =

√√√√ 1

721

721∑
p=0

e2
k(p), k = 0, 1, · · · , 30.

Setting the maximum tracking RMS error ξmax = 5.1 · 10−3, the maximum
number of trials kmax = 30, W = I, γ = 0.0636, the CSTR system temperature
output tracking curve and RMS error curve generated with the ILC law (14)
applied are shown, respectively, in Figs. 1 and 2. To compare the trial-to-trial
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Figure 1: The desired temperature output and tracking curve

error convergence speed and accuracy of the new ILC law, the Newton-type ILC
algorithm used in [8] was applied to this example, giving

uk+1 = uk +G−1
k ek, G

−1
k = (1− e−7)−1.
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Figure 2: The RMS error curve along the trial axis
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Figure 3: The optimized updating step factor ε∗k along the trial axis

The results obtained with this law are also shown in Fig. 2 and confirm that
the new ILC law outperforms the basic Newton-type ILC law. These plots also
confirm that the tracking error is monotonically convergent from trial-to-trial
even under the input constraint. Fig. 3 shows that the optimized learning factor
εk gradually approaches zero. Fig. 4 shows the control inputs for both designs
and Fig. 5 the cost function for the constrained design.
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Figure 5: The cost function variation from trial-to-trial for the constrained
design

7 Conclusions

This paper has developed a new ILC law for discrete nonlinear systems, includ-
ing the case of input constraints, based on a modified Newton method. The
new design is based on the use of a penalty function and an iterative method
for solving an unconstrained nonlinear optimization problem with an algorithm
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that has monotonic and super linear convergence characteristics, where the in-
put inequality constraints are transformed into equality form by adding auxiliary
variables. The super-linear convergence property means that the convergence
speed increases rapidly once the input is close enough to the learned control.
This explains why this design can converge faster than alternatives, as sup-
ported by the example in the previous section where the alternative is standard
Newton based ILC. This example also confirms better convergence speed over
standard the Newton ILC design due to the super-convergence property.

Topics for future research include a detailed investigation into the optimiza-
tion of the other parameters in the final control law, i.e., the relaxation matrix
W and the search direction δk. Also further research is required to extend the
constrained design to include other forms of constraints on variables, e.g. the
state and output vectors. The extension to multiple-input multiple-output sys-
tems, including constraints, should also be investigated. Moreover, refinements
of the BFGS algorithm reported in the literature should also be considered for
use in ILC design.
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