
SOLVABLE SUBGROUP THEOREM FOR SIMPLICIAL

NONPOSITIVE CURVATURE

TOMASZ PRYTU LA

Abstract. Given a group G with bounded torsion that acts properly on a systolic

complex, we show that every solvable subgroup of G is finitely generated and vir-

tually abelian of rank at most 2. In particular this gives a new proof of the above

theorem for systolic groups. The main tools used in the proof are the Product

Decomposition Theorem and the Flat Torus Theorem.

1. Introduction

For a group G the Solvable Subgroup Theorem states that any solvable subgroup of

G is finitely generated and virtually abelian. This theorem holds for several classes

of groups, eg., fundamental groups of nonpositively curved Riemannian manifolds

[GW71,LY72] and more generally CAT(0) groups [BH99], translation discrete groups

of finite virtual cohomological dimension [Con00], biautomatic groups whose abelian

subgroups are finitely generated [GS91]. In this note we show this theorem for groups

acting on systolic complexes.

Theorem (Solvable Subgroup Theorem). Let G be a group acting properly on a

uniformly locally finite systolic complex and suppose that there is a bound on the

order of finite subgroups of G. Then every solvable subgroup of G is finitely generated

virtually abelian of rank at most 2.

A systolic complex is a simply connected simplicial complex that is flag and that

has no induced cycles of length 4 or 5. The latter condition is sometimes referred to as

“simplicial nonpositive curvature”. In our proof we make no use of the definition and

only use properties of groups acting on systolic complexes. For a detailed treatment

of systolic complexes we refer the reader to [JŚ06].

The most natural examples of groups satisfying assumptions of the Theorem are

systolic groups, i.e., groups acting properly and cocompactly on systolic complexes.
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For such groups the Theorem follows from their biautomaticity and the fact that their

abelian subgroups are finitely generated (see [HO17, Theorem 2.2] for a short account

of the proof).

In general, the group appearing in the Theorem does not have to be (bi-)automatic

and thus a different approach is needed. Our proof is based on the Flat Torus Theorem

and the Product Decomposition Theorem and is similar to the one in [BH99] for

CAT(0) groups. The main difference is that in our case the above two theorems

determine the structure of normalisers of abelian subgroups of G, and thus one can

proceed more directly than in the CAT(0) case.

In Section 3 we present another approach to the Theorem, via theory of translation

discrete groups. We show that G is translation discrete and then using results of

[Con00] we give an alternative proof of the Theorem. However, this approach seems

less straightforward.

2. Proof of the Theorem

Throughout this section we assume that G is as in the Theorem, and let X be a

systolic complex on which G acts properly. We need the following two lemmas. The

first one sums up the consequences of the Product Decomposition Theorem and the

Flat Torus Theorem that are needed in the proof. For the actual statements of these

theorems see [OP16, Theorem A] and [Els09a, Theorem 6.1] respectively.

Lemma 2.1. Let A be a finitely generated free abelian subgroup of G. Then:

(1) the rank of A is at most 2,

(2) if A ∼= Z2 then A has finite index in its normaliser NG(A),

(3) if A ∼= Z then any finitely generated subgroup of the normaliser NG(A) that

contains A is virtually Fn × A′, where Fn is the free group on n generators

for some n > 0 and A′ is a finite-index subgroup of A.

Proof. (1) Follows immediately from [Els09a, Theorem 6.1(1)].

(2) The proof is essentially the same as the proof of [OP16, Lemma 5.10(NM2)].

We will give a sketch here. Consider a subcomplex Min(A) ⊂ X, which consists of

all vertices of X that are moved the minimal combinatorial distance by all elements

of A. By the Flat Torus Theorem ([Els09a, Theorem 6.1(3)]) accompanied with

[Els09a, Theorem 5.4(1)] we have that Min(A) is non-empty, A–invariant and the

action of A on Min(A) is proper and cocompact. Moreover, it follows from the

definition that Min(A) is also NG(A)–invariant. The action of NG(A) on Min(A) is

proper (since it is the restriction of a proper action of G) and it is cocompact since

A ⊂ NG(A). This implies that the inclusion A ⊂ NG(A) is a quasi-isometry and thus

[NG(A) : A] is finite.
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(3) In [OP16, Proposition 5.7] the analogous claim is proven for finitely generated

subgroups of the centraliser CG(A). One easily verifies that the exact same proof

works if one replaces CG(A) by NG(A). �

The second lemma is a mild strengthening of [OP16, Proposition 5.14].

Lemma 2.2 (Ascending chain condition). For any chain

A1 ⊂ A2 ⊂ A3 ⊂ . . .

of virtually abelian subgroups of G there exists n > 0 such that Ai = Ai+1 for all

i > n. In particular, any virtually abelian subgroup of G is finitely generated.

Proof. First note that if there were a strictly ascending chain of virtually abelian

subgroups of G then there would be a strictly ascending chain of finitely generated

virtually abelian subgroups. Thus we can assume that every Ai is finitely generated,

and therefore by Lemma 2.1(1) it is virtually Zni where ni 6 2. Without loss of

generality we can assume that every Ai is virtually Zn for a fixed n 6 2. We consider

the three possibilities for n. If n = 0 then all Ai’s are finite and the claim is implied

by the assumption that the order of finite subgroups of G is bounded.

For n = 2 the statement follows from the proof of [OP16, Lemma 5.10(NM1)].

We remark that in [OP16, Lemma 5.10(NM1)] the action of G on X is assumed to

be cocompact, however, this is not needed in the proof and it can be overcome by

referring directly to [Els09a, Theorem 6.1], rather than to [OP16, Theorem 5.12].

It remains to prove the case where n = 1. Let a ∈ A1 be an infinite order element.

We will show that the index [Ai : 〈a〉] is uniformly bounded. Since each Ai is virtually

Z, by [JPL06, Proposition 4] it contains a maximal normal finite subgroup Ni such

that Ai/Ni is either infinite cyclic or infinite dihedral. In either case, the group Ai/Ni

contains an infinite order element bi such that [Ai/Ni : 〈bi〉] 6 2. Since a is of infinite

order, it injects into the quotient Ai/Ni and thus a = bkii for some ki ∈ Z.

In Proposition 3.1 we show that G is translation discrete. It is straightforward

to check that for such groups, for a fixed a ∈ G there is only finitely many k ∈ Z
such that a = bk for some b ∈ G. Thus there exists K ∈ N such that for all i we

have |ki| 6 K. Consequently, we have [〈bi〉 : 〈a〉] 6 K and hence [Ai/Ni : 〈a〉] 6 2K.

Finally, since the order of finite subgroups of G is bounded by some M > 0, we obtain

that [Ai : 〈a〉] 6 2K|Ni| 6 2KM . �

For a group H let [H,H] denote the commutator subgroup of H. Put H(1) = [H,H]

and define recursivelyH(n) = [H(n−1), H(n−1)]. Recall thatH is solvable ifH(n) = {e}
for some n > 1. The smallest number n with this property is called the solvability

rank of H. We are ready now to prove the Theorem.
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Proof of the Theorem. In the light of Lemma 2.2 it suffices to consider finitely gener-

ated solvable subgroups of G. Let H be such a subgroup. We proceed by induction

on the solvability rank of H. If H(1) = {e} then H is abelian and the claim follows by

Lemma 2.1(1). Now assume that H(1) is finitely generated virtually abelian of rank

at most 2. Let A ⊂ H(1) be a free abelian subgroup of finite index. We consider the

three possible cases for the rank of A:

(1) rk(A) = 0. This means that H(1) is finite and thus by [BH99, Lemma II.7.9]

the group H contains an abelian subgroup of finite index. The claim follows

from Lemma 2.1(1).

(2) rk(A) = 1. Define A′ ⊂ H(1) to be the intersection of all cyclic subgroups

of H(1) of index [H(1) : A] (there are only finitely many such subgroups and

thus the index [H(1) : A′] is finite). By construction A′ is a characteristic

subgroup of H(1) and hence a normal subgroup of H, and therefore we have

H ⊂ NG(A′). Since H is finitely generated, by Lemma 2.1(3) we conclude

that H is virtually Fn×A′′ where A′′ is a finite-index subgroup of A′. Because

H is solvable we necessarily have n 6 1 for otherwise H would contain a non-

abelian free group. This finishes the proof since for n 6 1 the product Fn×A′′

is isomorphic to either Z or Z2.

(3) rk(A) = 2. Proceeding as in the previous case we can find a finite-index sub-

group A′ ⊂ A which is characteristic in H(1) and thus normal in H. Therefore

H ⊂ NG(A′) and since by Lemma 2.1(2) the index [NG(A′) : A′] is finite, it

follows that the index [H : A′] is finite as well. �

We conclude this section with a generalisation of the Theorem to the case of elemen-

tary amenable subgroups. The class of elementary amenable groups is obtained from

finite groups and Z by taking extensions, increasing unions, subgroups and quotients.

In particular, it contains all solvable groups. We refer the reader to [Hil91,HL92] for

a detailed definition.

Proposition 2.3. Let H be an elementary amenable subgroup of G. Then H is

virtually solvable, and thus finitely generated virtually abelian of rank at most 2.

Proof. We would like to apply [HL92, Theorem on page 238] which requires the

Hirsch length h(H) of H to be finite. This is the case by the following argument.

By [Hil91, Lemma 2] we have h(H) 6 cdQH, where the latter denotes the rational

cohomological dimension of H. The group H acts properly on a finite dimensional

systolic complex X, which is contractible by [JŚ06, Theorem 4.1(1)]. It is a standard

fact that in this case we have cdQH 6 dimX (see [Pet07, Lemma 3.3] for a proof).
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Now by [HL92, Theorem on page 238] there is a short exact sequence

0→ N → H → H/N → 0

such that N is locally finite and H/N is virtually solvable. Since the order of finite

subgroups of H is bounded, the group N must be finite. This implies that H is itself

virtually solvable. �

3. Translation discreteness of systolic groups

We begin by recalling the definition of translation discrete groups. A semimetric

on a group G is a function d : G×G→ R+ which is symmetric, satisfies the triangle

inequality and for any g, h1, h2 ∈ G we have d(h1, h2) = d(gh1, gh2). The associated

seminorm of an element g is given by ‖g‖ = d(e, g). The translation number of g is

defined as

τ(g) = lim inf
n→∞

‖gn‖
n

.

We say that semimetric d on G is translation discrete if the set of translation

numbers of infinite order elements of G is bounded away from 0. A group G is

translation discrete if it admits a translation discrete semimetric.

Proposition 3.1. Let G be as in the Theorem. Then G is translation discrete.

Proof. Let X be a systolic complex on which G acts properly and let d denote the

edge-path metric on the 1–skeleton of X. Note that since G acts simplicially on X, it

acts by isometries with respect to the above metric on X(1). Pick a vertex x0 ∈ X and

define a semimetric d̃ on G by setting d̃(g1, g2) = d(g1x0, g2x0). Then the associated

seminorm is given by ‖g‖ = d(x0, gx0).

Now suppose h is an infinite order element of G. We first consider the special case

where h has an invariant geodesic line γ ⊂ X. In this case h acts on γ as a translation

by some natural number m > 1, and therefore for any vertex x ∈ γ, for any n > 0

we have d(x, hnx) = nm. Pick a vertex x ∈ γ and let K = d(x0, x). By the triangle

inequality we obtain

d(x0, h
nx0) > d(x, hnx)− d(x0, x)− d(hnx0, h

nx) = d(x, hnx)− 2K = nm− 2K.

Now we can estimate the translation number of h. We have

‖hn‖
n

=
d(x0, h

nx0)

n
>
nm− 2K

n
= m− 2K

n

and thus

τ(h) = lim inf
n→∞

‖hn‖
n
> lim inf

n→∞

(
m− 2K

n

)
= m > 1. (3.1)

This finishes the proof of the special case.

5



T. PRYTU LA

For arbitrary h, by [Els09b, Theorem 1.1] there is a natural number k > 1 such

that hk has an invariant geodesic line in X. It follows from arguments in [Els09b,

Section 3.3] that k 6 dimX. Since by [Con00, Theorem 4.5(3)] we have τ(hk) = kτ(h),

by applying (3.1) to hk we get that

τ(h) =
τ(hk)

k
>

1

dimX
. �

For translation discrete groups we have the following version of the Solvable Sub-

group Theorem.

Theorem 3.2. [Con00, Theorem 3.4] A solvable subgroup of finite virtual cohomo-

logical dimension in a translation discrete group is virtually Zn.

We will now sketch how our Theorem can be derived from Theorem 3.2.

Alternative proof of the Theorem. By Lemma 2.2 it is enough to consider finitely gen-

erated solvable subgroups of G. Suppose H is such a subgroup. Again by Lemma 2.2

we obtain that all abelian subgroups of H are finitely generated. Then a theorem

of Maltsev [Seg83, Theorem 2 on page 25] implies that H is polycyclic, and thus

virtually torsion-free.

It remains to show that H has finite virtual cohomological dimension. The group

H acts properly on a systolic complex X and thus any torsion-free subgroup of H acts

freely on X. Since the complex X is contractible [JŚ06, Theorem 4.1(1)], we have

vcdH 6 dimX <∞. Now the claim follows from Theorem 3.2 and Lemma 2.1(1). �

Remark 3.3. We would like to point out that the two presented approaches are closely

related. Namely, one of the key notions used in the proofs of the Flat Torus Theorem

and the Product Decomposition Theorem is the translation length of an infinite order

element, which is an “unstable” analogue of the translation number. This concept is

implicitly used in the proof of Proposition 3.1.

Remark 3.4. In the light of Proposition 2.3 one could ask whether every amenable

subgroup of G is virtually abelian. In fact, a much stronger statement could be possi-

bly true. Namely, the Tits alternative asserts that any finitely generated subgroup of

G is either virtually abelian or it contains a non-abelian free group. Since amenable

(and in particular solvable) groups do not contain free groups, the Theorem would

immediately follow from the Tits alternative.

References
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