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Abstract

This paper studies the estimation of a panel data model with latent structures where individuals

can be classified into different groups with the slope parameters being homogeneous within the

same group but heterogeneous across groups. To identify the unknown group structure of vector

parameters, we design an algorithm called Panel-CARDS. We show that it can identify the true

group structure asymptotically and estimate the model parameters consistently at the same

time. Simulations evaluate the performance and corroborate the asymptotic theory in several

practical design settings. The empirical application reveals the heterogeneous grouping effect of

income on democracy.
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1 Introduction

Conventional panel data analysis often assumes complete slope homogeneity, which is convenient

in practical work and takes full advantage of cross section averaging. However, homogeneity as-

sumptions are frequently rejected in empirical panel studies, as in Hsiao and Tahmiscioglu (1997),

Phillips and Sul (2007), Browning and Carro (2007) and Su and Chen (2013). But if complete slope

heterogeneity is permitted, estimation can be imprecise or even impractical when the time dimen-

sion is very short, thereby losing a key advantage of working with panel data. These considerations

motivate the present study and much of the recent research on panel structure modeling.
∗Correspondence should be addressed to Liangjun Su, School of Economics, Singapore Management University,

90 Stamford Road, Singapore 178903; Phone: +65 6828 0386. Email: peter.phillips@yale.edu (P.C.B. Phillips),

ljsu@smu.edu.sg (L. Su), wuyi.wang.2013@phdecons.smu.edu.sg (W. Wang).
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This paper follows earlier work by Su, Shi, and Phillips (2016, SSP hereafter) by studying

a linear panel data model with latent structures that embody unknown homogeneous elements.

It is assumed that the cross sectional units can be classified into a small number of groups with

homogeneous slopes within each group and heterogeneity across groups. There are many motivating

examples for such models in empirical work: in cross country economic growth studies, the presence

of possible convergence clubs in the data is often of interest (Phillips and Sul 2007); in financial

markets, stock returns in the same sector are commonly thought to share common characteristics

(Ke, Fan, and Wu 2015); and in economic geography, location may be a relevant factor in economic

performance, leading to spatial geographic groupings in the data (Fan, Lv, and Qi 2011; Bester

and Hansen 2016).

The inherent diffi culty in studying latent panel structure lies in the unknown nature of the

group composition. The practical econometric problem in such cases is that the number of groups is

unknown as well as individual group membership within the panel. Since the number of all possible

classifications is a Bell number, it is not feasible to try all possible combinations (Shen and Huang

2010). One way to determine the group structure is to use external variables or prior knowledge,

such as geographic location and industrial sector composition, to assist in classifying individuals

into groups (Bester and Hansen 2016). But this approach is vulnerable to misleading inference

when the number of groups or the individual identities are incorrectly specified. Moreover, in many

panel data models, there are no natural external variables to assist in classification. Accordingly,

much effort has been devoted to determining the unknown panel structure without resorting to the

use of external factors. One approach is to use finite mixture models; see Sun (2005), Kasahara

and Shimotsu (2009), and Browning and Carro (2010). Another approach adapts the K-means

algorithm to panel data models; see Lin and Ng (2012), Sarafidis and Weber (2015), Bonhomme

and Manresa (2015), and Ando and Bai (2016). In addition, machine learning methods are also

used to extract group patterns by using penalized extremum estimation. In particular, SSP (2016)

develop classifier-Lasso (C-Lasso) in which the penalty takes an additive-multiplicative form that

forces the parameters to form into different groups. Coupled with the C-Lasso method, SSP (2016)

propose BIC-type information criteria to determine the number of groups. In addition, Lu and Su

(2017) propose a direct testing procedure to identify the number of groups, and Su and Ju (2018)

and Su, Wang, and Jin (2018) extend the C-Lasso method to nonparametric panels or panels with

interactive fixed effects.

When a panel data model has a latent group structure, the problem falls within the framework

of high dimensional modeling with parameters that may lie in a low dimension subspace. This type

of regression model is now a major research area in statistics; see, for example, the monograph by

Bühlmann and van der Geer (2011). Since the work of Tibshirani (1996) and Fan and Li (2001),

much of the statistical research has concentrated on sparsity, where a large dimensional space is

simplified by zeroing out many elements to reduce dimension. Sparsity may be regarded as a special

case of homogeneity where the commonality arises from a shared zero coeffi cient value. Much effort

has been devoted to the study of homogeneity in parameters. When there is a natural variable
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to define neighborhood, the idea of fused lasso (Tibshirani et al. 2005) can be used to study

homogeneity. When there is no such natural variable, exhaustive pairwise penalties have been

proposed to address homogeneity (see Bondell and Reich (2008) and Shen and Huang (2010)).

Ke, Fan, and Wu (2015, KFW hereafter) explore homogeneity in regressions by designing a

method called CARDS (clustering algorithm in regression via data-driven segmentation). They

first estimate the parameters by OLS to obtain preliminary estimates. Then the fitted coeffi cients

are ranked from smallest to largest and ordered partition sets (groups) of regressors are constructed

based on this ranking. Penalized Least Squares regressions are run to obtain the final estimates

where the penalties are imposed on both the within group coeffi cient differences and neighboring

group coeffi cient differences. KFW (2015) show that CARDS can produce oracle estimates with

probability approaching 1 (w.p.a.1).1 They remark that CARDS can be extended to panel data

models, but their simple extension does not explore the panel data structure fully and there are

conceptual and technical complications that prevent immediate implementation.

This paper extends the CARDS method to panel structure models in a systematic way that

deals with these complications. The new method is called Panel-CARDS and it differs from CARDS

in two ways. First, Panel-CARDS imposes penalties on slope vector differences while CARDS does

so on individual slope differences. In a panel data model with p > 1 regressors, KFW’s (2015)

CARDS method treats each of the p regressors as an independent unit, constructs the penalty

term for each regressor as in the cross section framework, and then adds all p penalty terms to the

least squares objective function to form the Penalized Least Squares extremum estimation problem.

Usually, different regressors will report different classification results which the new Panel-CARDS

can avoid. Second, to use more information from the preliminary estimates, we extend the ordered

segmentation concept proposed in KFW (2015) to the segmentation net, which enables us to extract

groups more accurately. Just as CARDS for cross section data or the SSP (2016) C-Lasso for panel

data, Panel-CARDS can identify the number of groups and estimate the parameters at the same

time.

In comparison with existing methods in the literature, our methods have some distinctive char-

acteristics. First, even though Lin and Ng (2012) and Sarafidis and Weber (2015) apply the K-

means algorithm to study the panel structure model, they do not study the asymptotic properties

of the resulting classification estimates. In contrast, we will study the asymptotic properties of the

Panel-CARDS estimators. Bonhomme and Manresa (2015) and Ando and Bai (2016) adopt the

K-means algorithm to study panel data models where the time or interactive fixed effects exhibit

some group structure and study the asymptotic properties, but their models are different from the

panel structure model considered here. Second, like SSP’s (2016) C-Lasso method, our method is

a Lasso-type penalization method, and the difference lies in the differences in the penalty term.

Third, both K-means algorithm and C-Lasso methods require the specification of the number of

groups while our Panel-CARDS method does not need to do so. In fact, existing theories for either

1An oracle estimate in this context is one that one can achieve the same asymptotic effi ciency as if the exact group

structure were known.
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the K-means algorithm or C-Lasso method requires that the number of groups is fixed and the

number of individuals within each group is proportional to the cross-sectional dimension, while

our Panel-CARDS method allows the number of groups to pass to infinity at certain rate and the

number of individuals within each group can be either divergent or fixed. In either case, we require

T → ∞, as often assumed in the literature. This largely broadens the scope of potential applica-
tions of our new method. Lastly, in comparison with the CARDS method, KFW (2015) require

non-stochastic regressors and sub-Gaussian errors whereas we permit random regressors or lagged

dependent variables, and replace the sub-Gaussian requirement by some moment conditions.

It is worth mentioning that like the early theoretical results in the literature, our asymptotic

results are pointwise results. The implication is that in finite samples, the distributions of our

estimators can be quite different from the normal, as discussed in Leeb and Pöscher (2005, 2008,

2009) and Schneider and Pöscher (2009). This is a well-known challenge in the literature of model

selection no matter whether the selection is based on an information criterion or Lasso-type tech-

nique. Despite its importance, developing a thorough theory on uniform inference is beyond the

scope of this paper.

We provide an empirical application of this new panel classification procedure. It re-investigates

relationships between income and democracy, a matter that has attracted considerable interest

among political economists (c.f. Acemoglu et al. 2008). In different countries, the effect of income

on democracy might be similar or might differ. Our methods reveal a positive relationship between

the two variables in some countries (e.g., South Korea, Japan, Romania, and Spain), a negative

relationship between them in other countries (e.g., Iran and Malaysia), and little evidence of a

relationship between income and democracy in the remainder (e.g., China and Singapore). In

particular, the democracy indices for the countries in the last group have not changed much over

the last four decades despite their rapid economic growth. For this reason, estimation and inference

based on a fully homogeneous panel data model might well lead to misleading inferences about a

generic form of this relationship. Our approach allows for a panel structure of possibly homogeneous

and heterogeneous effects of income on democracy. The empirical implementation of Panel-CARDS

estimation with these data identifies four latent groupings among the 74 countries corresponding

to positive, negative, and indifferent associations between income and democracy.

The rest of the paper is organized as follows. Section 2 introduces the panel structure model

and the Panel-CARDS algorithm. Section 3 develops the properties and asymptotic theory of

Panel-CARDS. Simulation performance in finite samples is studied in Section 4. Section 5 applies

the methodology to study the effect of income on democracy. Section 6 concludes. Proofs are

given in the Appendix. The Online Supplement (Wang, Phillips, and Su 2018) provides additional

technical material, proofs, convergence properties of the computational algorithm, some additional

simulations, and further information on the empirical application.

Notation. For integer n, Rn denotes n dimensional Euclidean space. For vector α ∈ Rn, the
Lq norm of α is defined as ‖α‖q = (

∑n
j=1 |αj |q)1/q with 1 ≤ q < ∞. When q = 2, we abbreviate

‖·‖2 as ‖·‖ . Let ‖α‖∞ = max1≤j≤n |αj |. For a square matrix A of order n, its induced Lq norm
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is ‖A‖q = maxα:‖α‖q=1 ‖Aα‖q. When q = 2, we omit the subscript q. When A is symmetric,

we denote by µmax(A) and µmin(A) the largest and smallest eigenvalues of A. The symbol 1{·}
denotes the indicator function. For two real numbers a and b, a∨ b denotes max(a, b). For two real

sequences {ak} and {bk}, ak � bk means that ak/bk →∞ as k →∞.

2 Panel-CARDS

This section introduces the panel structure model and the Panel-CARDS algorithm.

2.1 Panel structure models

Following SSP (2016), we consider a panel data model with latent group structure

yit = x′itβ
0
i + µi + εit, i = 1, . . . , N, t = 1, . . . , T, (2.1)

where xit = (xit1, . . . , xitp)
′ is a p × 1 vector of regressors, µi is the individual fixed effect which

may be correlated with xit, εit is an idiosyncratic error term with zero mean, and β0
i is a p × 1

vector of slope parameters that admit a possible grouping structure of the form

β0
i =

K∑
k=1

α0
k · 1{i ∈ G0

k}. (2.2)

Here α0
l 6= α0

k for any l 6= k, and G = {G0
1, G

0
2, . . . , G

0
K} forms a partition of {1, 2, . . . , N}. Let Nk =∣∣G0

k

∣∣ denote the cardinality of G0
k, k = 1, . . . ,K. Let α ≡ (α′1, . . . ,α

′
K)′ and β ≡ (β′1, . . . ,β

′
N )′.

The true values of α and β are denoted by α0 and β0. We intend to apply a CARDS-type

approach to identify the group structure G and to estimate the group-specific regression coeffi cients
α0 simultaneously.

2.2 Construction of the Panel-CARDS

This section describes how to construct the Panel-CARDS penalty function based on preliminary

estimates of β0
i . Then we define a penalized least squares objective function.

2.2.1 Rank mapping in the panel data model

Without the latent group structure in (2.2), we can estimate the model (2.1) directly. After

concentrating out the fixed effects, we obtain the objective function

LNT (β) =
1

2NT

N∑
i=1

T∑
t=1

(ỹit − x̃′itβi)
2, (2.3)

where x̃it = xit − x̄i and ỹit = yit − ȳi with x̄i = 1
T

∑T
t=1 xit and ȳi = 1

T

∑T
t=1 yit. Solving

the optimization problem yields the OLS estimates β̃i = ( 1
T

∑T
t=1 x̃itx̃

′
it)
−1( 1

T

∑T
t=1 x̃itỹit) for i =

1, 2, . . . , N .
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Let β̃ = (β̃
′
1, β̃

′
2, . . . , β̃

′
N )′ and B̃ = (β̃1, β̃2, . . . , β̃N ), which are pN × 1 and p × N matrices,

respectively. To use CARDS, we need to have a rank mapping over the cross section dimension

according to the vector β̃. If p = 1, the problem is exactly the same as the cross sectional case in

KFW (2015). We just sort elements in β̃ in ascending order. But usually p > 1, and we face the

awkward problem of ranking N column vectors in B̃, which is not trivial. Reasonable ranking rules

should satisfy the following set of conditions: 1) Unrestricted Domain: All N ! kinds of ranking are

possible; 2) Unanimity : If all p elements in β̃i are less than the corresponding elements in β̃l, then

β̃i should rank before β̃l; 3) Independence of Irrelevant Alternatives: The ranking of β̃i and β̃l are

not affected by β̃k, where k 6= i and k 6= l. Otherwise, the ranking result might be totally changed

by the introduction of a new individual.

The three criteria connect the problem of ranking vectors with a famous impossibility theorem

in social choice theory. In that setting, we take ι = 1, 2, . . . , p as voters (each row of B̃) and the

numeric ranking as a preference order. According to Arrow’s impossibility theorem (e.g., Mas-

Colell et al. 1995, p. 796), to satisfy all the above three criteria we will inevitably end up with a

“dictator”, which means our ranking must be totally determined by a single “voter”. So we have

the following theorem.

Theorem 2.1 To satisfy the unrestricted domain, unanimity, and independence of irrelevant al-
ternatives assumptions, the ranking of N preliminary vector estimates (columns of matrix B̃) must

be totally determined by the ranking of the preliminary estimates of the coeffi cients of one regressor,

i.e., one particular row of B̃.

Now we only need to select a proper element ι∗ from {1, 2, . . . , p} as the “dictator”. Noting that
we want to obtain the heterogeneity/homogeneity information from preliminary estimates across

individuals, it is wise to choose the regressor whose slope coeffi cient estimates have larger variation

across individuals than the others. Let ι∗ denote the index of the regressor which has the largest

variation across individuals for its coeffi cient estimates. Then we can sort {β̃iι∗ , i = 1, 2, . . . , N} to
obtain the order

β̃τ(1)ι∗ ≤ β̃τ(2)ι∗ ≤ · · · ≤ β̃τ(N)ι∗ . (2.4)

To proceed, we need to define an admissible segmentation, which is an ordered partition of a set.

Definition 1. For a segmentation B = {B1, . . . , BL} of the set {1, . . . , N} with true grouping
structure G = {G0

1, G
0
2, . . . , G

0
K}, let Vkl = G0

k ∩ Bl if we have: (i) for each k, G0
k is properly

segmented by B– there exist dk and uk such that dk ≤ uk, G
0
k = ∪ukl=dkVkl, and Vkl = Bl for

dk < l < uk; (ii) for each l, there exist al and bl such that al ≤ bl, Bl = ∪blk=al
Vkl, and Vkl = G0

k

for al < k < bl, then the segmentation B is called an admissible segmentation.

Note that when p = 1, an ordered segmentation (KFW 2015) is also an admissible segmentation.

Intuitively, the admissible segmentation B should segment the individuals in a way that no true
group members of G0

k fall to disconnected Bl’s. It allows misclassification of individuals in the same

group to different segments but only at the extent that they are still in “contiguous neighbor”sets.
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Consider a simple illustrative example where N = 10 and G = {G0
1, G

0
2, G

0
3} with G0

1 = {1, 2, 3},
G0

2 = {4, 5, 6} and G0
3 = {7, 8, 9, 10}. If from (2.4) together with a tuning parameter δ we have a

segmentation comprised of B1 = {2, 3}, B2 = {1, 5}, B3 = {4, 6, 7}, B4 = {9, 10}, and B5 = {8},
then we can easily verify that the segmentation is admissible by Definition 2.2 But the segmentation

B = {B1, . . . , B5} with B1 = {2, 3}, B2 = {1, 5, 7}, B3 = {4, 6}, B4 = {9, 10} and B5 = {8} is not
admissible.

To rank vectors, we need to make sure the admissibility of a segmentation. But the last

requirement is not always ensured and it may be diffi cult to satisfy when the true group-specific

coeffi cients exhibit some patterns. To see this, suppose p = 2 in the above example and the true

group-specific coeffi cients are given by α0
1 = (1, 0.5)′, α0

2 = (1, 1)′, and α0
3 = (1, 1.5)′. If we choose

ι∗ = 1, say, then there is no chance to obtain an admissible segmentation no matter how accurate

the preliminary estimates are. On the other hand, if we will choose ι∗ = 2, then it is not hard

to obtain an admissible segmentation asymptotically provided that the preliminary estimates are

consistent. If, for the above example, p = 3 and the true group-specific parameter values are given

by

(α0
1,α

0
2,α

0
3) =


1

1

2

 ,
1

2

1

 ,
2

1

1


 , (2.5)

then it is generally impossible to obtain an admissible segmentation no matter which regressor is

chosen to construct the ranking and whether the preliminary estimates are consistent or not. The

latter case needs special attention and will be addressed in the next section.

2.2.2 Panel-CARDS objective function

Now suppose we have an admissible segmentation B = {B1, B2, . . . , BL}. As in the KFW (2015)

CARDS algorithm, we propose the following hybrid penalty

PB,λ1,λ2(β) =

L−1∑
l=1

∑
i∈Bl,j∈Bl+1

pλ1(‖βi − βj‖1)

︸ ︷︷ ︸
between-segment penalty

+
L∑
l=1

∑
i∈Bl,j∈Bl

pλ2(‖βi − βj‖1)︸ ︷︷ ︸
within-segment penalty

, (2.6)

where pλ(·) is the SCAD function of Fan and Li (2001).3 The penalty function has two parts. The
within-segment penalty drives slopes in the same segment to converge to each other when they are

2The value of δ determines the number of segments L in B. One possible ranking is: β̃2ι∗ ≤ β̃3ι∗ ≤ β̃1ι∗ ≤ · · · ≤
β̃9ι∗ ≤ β̃10ι∗ ≤ β̃8ι∗ , with β̃1ι∗ − β̃3ι∗ > δ, · · · β̃8ι∗ − β̃10ι∗ > δ and L = 5. Besides, V11 = {2, 3}, V12 = {1};
V22 = {5}, V23 = {4, 6}; V33 = {7}, V34 = {9, 10}, V35 = {8}.

3The SCAD penalty function is given by

pλ(x) =


λ|x| if |x| ≤ λ
−x

2−2aλ|x|+λ2
2(a−1) if λ < |x| ≤ aλ,

(a+1)λ2

2
if |x| > aλ

where a > 2. Following Fan and Li’s (2001) recommendation, we set a = 3.7 in our simulations and applications.
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actually in the same true group. The between-segment penalty penalizes neighboring segment pairs.

If the preliminary estimates are accurate enough, the neighboring pairs may be true neighbors or

in the same group. In both cases, the SCAD penalty function can help achieve homogeneous values

for parameters in the same group and heterogeneous values across groups. By adding the penalty

term (2.6) to the original objective function (2.3), we obtain the following Penalized Least Squares

objective function

QNT (β) = LNT (β) + PB,λ1,λ2(β). (2.7)

We call the above procedure basic Panel-CARDS. For implementation, we may apply the Local

Linear Approximation algorithm to obtain the solution. We start from the initial solution and

update it by solving the following iterative minimization problem

β̂
(s+1)

= arg min
β

{
LNT (β) +R(β̂

(s)
;β)

}
, (2.8)

where R(β̂
(s)

;β) =
∑L−1

l=1

∑
i∈Bl,j∈Bl+1 p

′
λ1

(‖β̂(s)

i − β̂
(s)

j ‖1)‖βi−βj‖1 +
∑L

l=1

∑
i∈Bl,j∈Bl p

′
λ2

(‖β̂(s)

i −

β̂
(s)

j ‖1)‖βi − βj‖1. Noting that the objective function in (2.8) is convex, we can apply a standard
convex optimization package to obtain the solution. The justification of using Local Linear Ap-

proximation to solve (2.7) is relegated to Wang, Phillips, and Su (2018). We use β̂ = β̂ (λ) to

denote the final solution.

Evidently, the performance of β̂ = β̂ (λ) depends on the choice of λ. Following SSP (2016), we

can choose λ =(δ, λ1, λ2)′ to minimize the following information criterion

IC(λ) = ln
(
σ2
NT (λ)

)
+ pK(λ)ρNT , (2.9)

where σ2
NT (λ) and K(λ) are estimates of σ2 and the number of groups associated with λ, and

ρNT = 0.5(NT )−1/2.4 In Wang, Phillips, and Su (2018), we show this Information Criterion (IC)

is effective in choosing tuning parameters.

This is a direct extension of CARDS from the cross sectional case to panel data. In this basic

Panel-CARDS, the admissible segmentation is used to construct both the within segment penalty

and the neighboring segments penalty. Compared with the number of exhaustive pairwise penalty

terms, the number of penalty terms in basic Panel-CARDS is much smaller. This tends to eliminate

penalty terms that are necessary in recovering the true grouping properties when the segmentation

is not admissible. In practice, it is desirable to maintain a balance between keeping the number of

penalty terms small and having enough penalty terms to extract the grouping structure.

In (2.5), no matter which regressor is used to construct the ordered segmentation, the original

CARDS theory cannot work. Based on the first regressor, we are able to separate group 3 from the

4Too small or too large a δ will generate too many or too few segments which are not ideal in achieving correct

identification. In practice, we find it is helpful to set the number of segments directly, which is also easy to control.

For example, when N = 100, we try L = 10, 20, and 30. The choices of λ1 and λ2 depend on the value of coeffi cients

we use in the DGP. Generally speaking, when the coeffi cients are large, the tuning parameters λ1 and λ2 are large

correspondingly.
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other two groups; and based on the second (or third) regressor, we can separate group 2 (or 3) from

the other groups. This motivates us to propose the following concept of admissible segmentation

net.

Definition 2. Let G = {G0
1, G

0
2, . . . , G

0
K} denote the true grouping structure. Given R segmenta-

tions Bι1 , . . . ,BιR , if for any G0
k, there exists a Bιr such that G0

k can be properly segmented by Bιr
as defined in Definition 2, then N ≡ {Bι1 , . . . ,BιR} is called an admissible segmentation net.

Note that the admissible segmentation does not always exist. In such cases, the admissible

segmentation net, as a collection of different partitions of different ordered sets, plays an important

role. Naturally, we want to combine information from all regressors in a proper way to derive the

true grouping property. Based on this idea, we propose an advanced version of Panel-CARDS which

can be regarded as an extension of the above basic Panel-CARDS procedure. Given an admissible

segmentation net N = {Bι1 , . . . ,BιR}, the advanced Panel-CARDS algorithm is as follows:

• For each Bιr , we construct the penalty function PBιr ,λ1,λ2(β) as introduced in (2.6).

• For the admissible segmentation net N , the total penalty is PN ,λ1,λ2(β) =
∑R

r=1 PBιr ,λ1,λ2(β).

• We choose β to minimize the following Penalized Least Squares function:

Q∗NT (β) = LNT (β) + PN ,λ1,λ2(β). (2.10)

Advanced Panel-CARDS reduces to basic Panel-CARDS in case R = 1. When R > 1,

PN ,λ1,λ2(β) contains all the penalty terms that are necessary to recover the true grouping structure.

The basic idea of an admissible segmentation net is to extract an adequate amount of information

from the preliminary estimates: not too much because we don’t use exhaustive pairwise penalties

which are challenging in computation and not accurate in statistical inference (as in KFW 2015);

and not too few, in order to handle the sparse parameters case introduced at the end of Section

2.2.1.5

There are two possible ways to choose R < p regressors, based on how the segmentations are

generated: (i) From the preliminary estimates we calculate the empirical variance of the slope

coeffi cient estimates for each regressor j (from 1 to p). That is, calculate the sample variance of

{β̃1j , . . . , β̃nj} for j from 1 to p. Then choose the R regressors with the largest R cross-sectional

heterogeneity in the slope estimates. (ii) In applications, we may choose the R regressors which

are most likely to have heterogeneous responses. For further explanations, see Section E of Wang,

Phillips, and Su (2018).

Although in the definition we need the admissible segmentation net to properly segment every

true group, we show in DGP 1 below through simulations that when this condition is mildly

violated (e.g., there exists one group which cannot be properly segmented by any segmentation),

the classification based on the basic Panel-CARDS may still perform reasonably well in finite

samples.
5 Its existence follows directly from Theorem 3 of KFW (2015).
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2.3 Hierarchical clustering

When the signal noise ratio is small or the time period T is relatively small, the preliminary

estimates might be quite different from the true parameter values. In such cases, both the basic

and advanced Panel-CARDS procedures may produce an estimated number of groups that is greater

than the true number of groups, and some estimated groups may only contain few individuals. It

is hard, if possible at all, to disentangle whether such small groups are the correct groups or are

generated because of mis-classification. However, if we have some a priori knowledge about the

grouping structure, we can use this knowledge during the Panel-CARDS implementation. Following

the idea of Park et al. (2007), we can use hierarchical clustering to combine members in small groups

into large groups. For example, if we know each group contains more than η = 2% of individuals,

then we can easily incorporate such information in the procedure. The hierarchical clustering is

used here to improve the finite sample performance and its asymptotic theory can be justified

provided such a prior information is correctly specified. The details of hierarchical clustering will

be introduced in the simulation section.

3 Asymptotic Analysis of Panel-CARDS

This section analyzes the large sample properties of the Panel-CARDS algorithm.

3.1 Assumptions

To proceed, we define some notation.

Let x̃i = (x̃i1, . . . , x̃iT )′, ỹi = (ỹi1, . . . , ỹiT )′, xi = (xi1, . . . ,xiT )′, and yi = (yi1, . . . , yiT )′. Let

maxi,t denote max1≤i≤N max1≤t≤T . Let ρj (s) = λ−1
j pλj (s) and ρ̄j (s) = ρ′j (s) = p′λj (|s|)sgn(s)

where p′λj (s) = dpλj (s) /ds for j = 1, 2. Let bNT = 1
2 min1≤k<j≤K ‖α0

k − α0
j‖1. Given {G0

k} and
segmentation {B1, . . . , BL}, we define φk = Nk/min{N3

k ,mindk≤l≤uk |Bl|2}. Note that 1/N2
k ≤

φk ≤ Nk. Let ĜK̂ = {Ĝ1, Ĝ2, . . . , ĜK̂} be an arbitrary partition of {1, . . . , N} where |Ĝk| ≥ 1

for k = 1, . . . , K̂. Define σ̂2
ĜK̂

= (NT )−1
∑K̂

k=1

∑
i∈Ĝk

∑T
t=1(ỹit − x̃′itβ̌i)2, where {β̌i} solves the

minimization problem with objective function LNT (β) and the constraint imposed by the group

structure ĜK̂ . We use (Nk, T )→∞ to signify that Nk and T pass to infinity jointly.

We make the following assumptions.

Assumption A1. (i) For each i, {(xit, yit) : t = 1, 2, . . .} is strong mixing with mixing coeffi cients
αi (·). α (·) ≡ maxi αi (·) satisfies α (τ) ≤ cαρ

τ for some cα > 0 and ρ ∈ (0, 1). {xi,yi} are
independent across i. E (εit) = 0 and E (xitεit) = 0 for each i and t.

(ii) There exist two constants c1 and c2 such that 0 < c1 ≤ min1≤k≤K µmin

(
1

TNk

∑
i∈G0k

E(x̃′ix̃i)
)

and max1≤i≤N µmax

(
1
T E(x′ixi)

)
≤ c2 <∞.

(iii) There exists a constant c3 <∞ such that maxi,t E ‖xit‖2q < c3 and maxi,t E |εit|2q < c3 for

some q > 4.
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(iv) T → ∞. For k = 1, . . . ,K, Nk either passes to infinity or stays fixed as T → ∞, and
N = O

(
T 2
)
.

Assumption A2. pλ(·) is a symmetric function and is nondecreasing and concave on [0,∞).

ρ′λ (s) exists and is continuous except for a finite number of s and ρ′λ (0+) = 1. There exists a

constant a > 0 such that ρj (s) is constant for all |s| ≥ aλ.

Assumption A3. (i) K = o(T/(lnT )2) and bNT � (lnT )
√
K/T .

(ii) The tuning parameters λ1 and λ2 satisfy the following conditions: bNT � amax{λ1, λ2},
1� λ1 � lnT

N
√
T
, and 1� λ2 � lnT

NNmin
√
T

√
max1≤k≤K φk, where Nmin = min{N1, . . . , NK}.

Assumption A4. (i) For each k = 1, . . . ,K, Φ̄k ≡ 1
NkT

∑
i∈G0k

∑T
t=1 x̃itx̃

′
it

P→ Φk > 0 as (Nk, T )→
∞ or T →∞ alone.

(ii) For each k = 1, . . . ,K, 1√
NkT

∑
i∈G0k

∑T
t=1 x̃itεit − BkNT

D→ N (0,Ψk) as (Nk, T ) → ∞ or

T →∞ alone where BkNT = 1√
NkT

∑
i∈G0k

∑T
t=1 E (x̃itεit) is either 0 or O(

√
Nk/T ) depending on

whether xit is strictly exogenous.

Assumption A5. (i) As (N,T )→∞, min1≤K̂<K minĜK̂
σ̂2
ĜK̂

P→ σ̄2 > σ2
0, where σ

2
0 ≡ lim(N,T )→∞

(NT )−1
∑K0

k=1

∑
i∈G0k

∑T
t=1 E(ỹit − x̃′itβ0

i )
2.

(ii) As (N,T )→∞, ρNT → 0 and NTρNT →∞.

Assumption A1(i) imposes conditions on {(xit, yit)} . We require {(xit, yit)} to be weakly de-
pendent (strong mixing is assumed here) but not necessarily stationary in the time dimension, and

independent but not necessarily identically distributed in the cross section dimension. The regres-

sor xit can be either strictly exogenous or sequentially exogenous. Note that A1(i) does not rule

out serial correlation among {εit, t = 1, 2, . . .} or {xitεit, t = 1, 2, . . .} . A1(ii) requires that the mini-
mum eigenvalue of 1

TNk

∑
i∈G0k

E(x̃′ix̃i) be bounded away from zero and the maximum eigenvalue of
1
T E(x′ixi) be bounded away from infinity, uniformly in k and i, respectively. A1(iii) imposes some

moment conditions on xit and εit. In comparison with conditions 1 and 3 in KFW (2015) which

require nonrandom regressors and sub-Gaussian error terms, the conditions in A1(i)—(iii) are quite

weak. A1(iv) states conditions on T, N, and Nk where we allow Nk to be fixed for some groups

and to pass to infinity for other groups, thereby providing some practical flexibility in group size.

It is possible that Nk’s are all fixed as T → ∞. In contrast, SSP (2016) require that Nk passes to

infinity at the same rate as N for each k.

Assumption A2 is identical to condition 2 in KFW (2015). Following KFW (2015), we specify

pλ(·) as the SCAD penalty function in our simulations and the application below. Assumption A3
imposes conditions on K, bNT , λ1 and λ2. A3(i) allows the number of groups to diverge with T

and the minimum difference between two group-specific coeffi cients to shrink to zero at a slow rate.

It is much weaker than the separation requirement in Bonhomme and Manresa (2015) and SSP

(2016). A3(ii) specifies the ranges of speed at which λ1 and λ2 shrink to zero. Assumption A4 is

borrowed from SSP (2016) and is used in studying the asymptotic distributional properties of the

Panel-CARDS estimators. If xit contains lagged dependent variables (e.g., yi,t−1), it is well known
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that the fixed effects within-group estimator has asymptotic bias of order O (1/T ) in homogeneous

dynamic panel data models. This implies that BkNT = O(
√
Nk/T ) in dynamic panel data models

and bias correction is required for statistical inference unless T passes to infinity faster than Nk.

See SSP (2016) for detailed discussions concerning A4. Assumption A5 is imposed to ensure the

asymptotic validity of our information criterion (2.9). Assumption A5(i) assumes that for all under-

fitted models, the mean square errors would be asymptotically greater than σ2
0, and Assumption

A5(i) is imposed to avoid both over- and under-fitted models.

3.2 Analysis of the basic Panel-CARDS

Next we define the oracle estimators of β and α. When the grouping structure in G = {G0
1, . . . , G

0
K}

is known, we can utilize the information that all coeffi cients βi within the same true group are

identical to estimate β by minimizing LNT (β) in (2.3). The resulting estimator of β is denoted

β̂
oracle

. Similarly, by using the true grouping structure, we obtain the oracle estimator α̂oracle of α

with a typical block given by

α̂oraclek =

∑
i∈G0k

x̃′ix̃i

−1 ∑
i∈G0k

x̃′iỹi for k = 1, . . . ,K. (3.1)

The following theorem reports the asymptotic properties of the basic Panel-CARDS estimator

β̂ of β.

Theorem 3.1 Suppose that Assumptions A1-A3 hold. Suppose that the preliminary estimate β̃ and
tuning parameter δ together generate a segmentation B admissible with the true grouping pattern
with probability at least 1− ε0. Then with probability at least 1− ε0 − o (K/T ), the Panel-CARDS

objective function (2.7) has a strictly local minimizer β̂ =(β̂
′
1, β̂

′
2, . . . , β̂

′
N )′ such that β̂ = β̂

oracle

and ‖β̂ − β0‖ = Op(
√
K/T ).

Theorem 3.1 parallels Theorem 6 in KFW (2015). It shows that the basic Panel-CARDS

procedure includes the oracle estimator β̂
oracle

as a strict local minimizer with high probability.

When the preliminary estimators β̃i are all consistent as in our panel setup with large T, the

segmentation B is assured to be admissible w.p.a.1 as T →∞.6 In this case, ε0 ≡ ε0T → 0 and we

have P (β̂ = β̂
oracle

)→ 1 as T →∞.
Given the Panel-CARDS estimate β̂, we can obtain the estimated groups by classifying indi-

viduals with the same coeffi cient estimate (β̂i) into the same group. We use Ĝk, k = 1, 2, . . . , K̂ to

denote the K̂ estimated groups.

Let α̂k, k = 1, 2, . . . , K̂, denote the group-specific estimated slope coeffi cients. By definition,

Ĝk =
{
i ∈ {1, 2, . . . , N} : β̂i = α̂k

}
for k = 1, 2, . . . , K̂. (3.2)

The following theorem reports the asymptotic distributional properties of α̂k.
6See Theorem 3 in KFW (2015) for a proof.
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Theorem 3.2 Suppose that the conditions in Theorem 3.1 are satisfied. Suppose that Assumption

A4 holds and ε0 ≡ ε0T → 0 as T → ∞. Then, after suitable relabeling of the indices of the true
groups, we have:

(i) P
(
K̂ = K

)
→ 1 and P

(
Ĝ1 = G0

1, . . . , ĜK = G0
K

)
→ 1 as T →∞;

(ii) for k = 1, . . . ,K,
√
NkT (α̂k −α0

k)− Φ̄−1
k BkNT

D→ N(0,Φ−1
k ΨkΦ

−1
k ) as either (Nk, T )→∞

or T →∞.

Theorem 3.2(i) indicates that w.p.a.1 we can determine the correct number of groups. Theorem

3.2(ii) reports the asymptotic distribution of the group-specific estimator. As SSP (2016) remark,

the oracle estimator α̂oraclek satisfies√
NkT

(
α̂oraclek −α0

k

)
− Φ̄−1

k BkNT
D→ N

(
0,Φ−1

k ΨkΦ
−1
k

)
as (Nk, T )→∞ or T →∞

under Assumption A4. Theorem 3.2(ii) indicates that the Panel-CARDS estimator α̂k achieves the

same limit distribution as this oracle estimator with knowledge of the exact membership of each

individual. In this sense, we say that Panel-CARDS estimators {α̂k} have the asymptotic oracle
property. Despite this fact, the success of Panel-CARDS hinges on the accuracy of preliminary

estimates. Although Panel-CARDS is robust to mildly misranking of the preliminary estimates,

poor preliminary estimates would deteriorate the performance of Panel-CARDS. Accordingly, one

should be cautious about factors that affect the accuracy of preliminary estimates such as small T ,

low signal to noise ratio and too many regressors.

Given the estimated grouping structure
{
Ĝk

}
, we can define the post Panel-CARDS estimator

of αk as

α̂Ĝk =

∑
i∈Ĝk

x̃′ix̃i

−1 ∑
i∈Ĝk

x̃′iỹi, k = 1, . . . , K̂. (3.3)

The following theorem reports the asymptotic distribution of α̂Ĝk .

Theorem 3.3 Suppose that the conditions in Theorem 3.2 are satisfied. Then, for k = 1, . . . ,K,
√
NkT (α̂Ĝk −α

0
k)− Φ̄−1

k BkNT
D→ N(0, Φ−1

k ΨkΦ
−1
k ) as (Nk, T )→∞ or T →∞.

So post Panel-CARDS estimators also share the asymptotic oracle property of the Panel-

CARDS estimators. Belloni and Chernozhukov (2013) show that the post-Lasso estimator per-

forms at least as well as a Lasso estimator in terms of rate of convergence, and it has a smaller

second-order bias and better finite sample performance than the latter. In the simulations below,

we accordingly focus on the finite sample performance of the post Panel-CARDS estimates.

It is worth mentioning that in comparison with SSP (2016) who require both Nk and T to pass

to infinity, the asymptotic theory here does not require Nk → ∞ or N =
∑K

k=1Nk → ∞. In the
special case where Nk is fixed, BkNT = O(

√
1/T ) = o (1) and no bias correction is needed for either

the Panel-CARDS estimators or the post-Lasso version.
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3.3 Analysis of the advanced Panel-CARDS

The advanced Panel-CARDS method is an extension of basic Panel-CARDS. With some minor

abuse of notation, we continue to use β̂ to denote the advanced Panel-CARDS estimator. The

following theorem reports the asymptotic properties of β̂.

Theorem 3.4 Suppose that Assumptions A1-A3 hold. Suppose that the preliminary estimate β̃, the
tuning parameter δ, and the choice of R together generate an admissible segmentation net N with

probability at least 1−ε1. Then with probability at least 1−ε1−o (K/T ), the Panel-CARDS objective

function (2.10) has a strictly local minimizer β̂ such that β̂ = β̂
oracle

and ‖β̂−β0‖ = Op(
√
K/T ).

The above theorem shows that the advanced Panel-CARDS procedure includes the oracle esti-

mator β̂
oracle

as a strict local minimizer with high probability. When the preliminary estimators

β̃i are all consistent as in our panel setup with large T, the segmentation B can be assured to
be admissible w.p.a.1 as T → ∞. In this case, ε1 ≡ ε1T → 0 and we have P

(
β̂ = β̂

oracle
)
→ 1

as T → ∞. Then analogous results as in Theorems 3.2-3.3 hold for the advanced Panel-CARDS
estimators and their post-Lasso version. For brevity, we do not state the corresponding theorems.

Because of the limitations of the basic version of Panel-CARDS, we will use Panel-CARDS to

denote the advanced version in the simulations and application below unless otherwise stated.

3.4 Analysis of Panel-CARDS with both individual and time fixed effects

In this subsection we consider the panel structure model with both individual and time fixed effects,

yit = x′itβi + µi + γt + εit, i = 1, . . . , N, t = 1, . . . , T,

where γt is the time fixed effect, all other variables are defined as above, and βis have the latent

group structure defined in (2.2). We study the asymptotic properties of Panel-CARDS estimators

under this model.

As before, we first concentrate out the individual fixed effects to obtain

ỹit = x̃′itβi + γ̃t + ε̃it,

where γ̃t = γt − T−1
∑T

s=1 γs and ε̃it = εit − T−1
∑T

s=1 εis. Then we get rid of γ̃t from the above

equation to obtain

ÿit = x̃′itβi −
1

N

N∑
j=1

x̃′jtβj + ε̈it,

where ÿit = ỹit − N−1
∑N

j=1 ỹjt and ε̈it = ε̃it − N−1
∑N

j=1 ε̃jt. Without knowing the latent group

structure, we have the following objective function:

L2,NT (β) =
1

2NT

N∑
i=1

T∑
t=1

ÿit − x̃′itβi +
1

N

N∑
j=1

x̃′jtβj

2

. (3.4)
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By minimizing the above objective function, we get the preliminary estimator β̃= (β̃
′
1, β̃

′
2, ..., β̃

′
N )′.

The penalized least squares objective function is constructed as

Q∗2,NT (β) = L2,NT (β) + PN ,λ1,λ2(β), (3.5)

where PN ,λ1,λ2(β) is as defined in (2.10). By solving (3.5) we obtain the Panel-CARDS estimator

β̂ = (β̂
′
1, β̂

′
2, . . . , β̂

′
N )′. Let β̂

oracle
denote the oracle estimator of β by knowing the true group

structure of βis in (2.2). Let α̂
oracle = (α̂oracle′1 , ..., α̂oracle′K )′ denote the group-specific version of

β̂
oracle

.

The following theorem reports the asymptotic properties of the Panel-CARDS estimator β̂ when

both individual and time fixed effects appear.

Theorem 3.5 Suppose that Assumptions A1-A3 hold. Suppose that the preliminary estimate β̃, the
tuning parameter δ, and the choice of R together generate an admissible segmentation net N with

probability at least 1−ε1. Then with probability at least 1−ε1−o (K/T ), the Panel-CARDS objective

function in (3.5) has a strictly local minimizer β̂ such that β̂ = β̂
oracle

and ‖β̂−β0‖ = Op(
√
K/T ).

This theorem shows that when the time fixed effects are added to our model, the Panel-CARDS

still gives the oracle estimator with high probability. For inference, one needs to know the asymp-

totic distribution of α̂oracle; see Theorem 4.3 in Lu and Su (2017).

4 Monte Carlo Simulations

In this section we conduct a small set of Monte Carlo simulations to demonstrate the finite sample

performance of Panel-CARDS. We choose experimental design settings for the Monte Carlo study

that reflect the type of challenges likely to be present in applied work.

4.1 Data generating processes

We consider four data generating processes (DGPs).

DGP 1. Both the fixed effects µi and the error terms follow the i.i.d. standard normal distribution
across time and individuals and are mutually independent of each other. Individuals are divided

into three groups with N1 : N2 : N3 = 4 : 3 : 3. The observations (yit,xit) are generated from the

panel model (2.1) where xit = (xit1, xit2)′, xit1 = 0.2µi + eit1, xit2 = 0.2µi + eit2, eit1 and eit2 are

both i.i.d. standard normal. The true coeffi cients are α0
1 = (1, 2)′, α0

2 = (1, 1)′, and α0
3 = (2, 1)′.

Note that for the first regressor, its slope coeffi cient is homogeneous across groups 1 and 2; and

similarly for the second regressor, its slope coeffi cient is homogeneous across groups 2 and 3. In

this case, we cannot construct an admissible segmentation using the rank of the estimates of one

single slope coeffi cient.

DGP 2. Here we use DGP 1 in SSP (2016). Individuals are also divided into three groups with
N1 : N2 : N3 = 4 : 3 : 3. The observations (yit,xit) are generated from the panel model (2.1) where
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xit = (xit1, xit2)′, xit1 = 0.2µi+eit1, xit2 = 0.2µi+eit2, eit1 and eit2 are both i.i.d. standard normal.

The true coeffi cients are α0
1 = (0.4, 1.6)′, α0

2 = (1, 1)′, and α0
3 = (1.6, 0.4)′.

DGP 3. In this DGP, we set the true number of groups to 8 where the first group has 30% of

individuals and each of the other seven groups has 10% of individuals. We let p = 2, and the

regressors are generated as DGP 1. The true group-specific parameters take the values([
−4

4

]
,

[
−3

3

]
,

[
−2

2

]
,

[
−1

1

]
,

[
1

−1

]
,

[
2

−2

]
,

[
3

−3

]
,

[
4

−4

])
.

DGP 4. Here we consider a dynamic panel data model where there are 3 groups with N1 : N2 :

N3 = 4 : 3 : 3. The regressors are xit = (yi,t−1, xit1, xit2)′, where (xit1, xit2) are generated as DGP

1. In generating T periods of observations for individual i, we first generate T + 100 observations

with initialization yi0 = 0, and then take the last T periods of observations. The true parameter

values are α0
1 = (0.6, 1.5,−1)′, α0

2 = (0.6, 1, 0)′, and α0
3 = (0.6, 0.5, 1)′.

In DGPs 2-4, the fixed effects and the error terms in (2.1) are generated as in DGP 1. We

will consider N = 100, 200 and T = 10, 20, 40, and 80. Since Panel-CARDS is computationally

intensive, we fix the number of replications to 200 for all scenarios in this investigation.

4.2 Implementation and evaluation

Since the performance of the basic Panel-CARDS is not robust, we only implement the advanced

Panel-CARDS in simulations. Recall that η controls the minimum percentage of observations

within each estimated group. We set η = 10%, 5%, 2%, and 0 to estimate the model and obtain the

grouping results. When η = 0, we allow the minimum number of elements in an estimated group to

be 1. The larger the value of η, the larger the number of elements for the smallest estimated group

that is allowed and the smaller the number of groups estimated. For DGPs 1-2, we consider all

candidate values of η : 10%, 5%, 2%, and 0; for DGPs 3-4, we consider η = 5%, 2%, and 0 because

η = 10% is a strong assumption when we have 8 groups in DGP 3.

The hierarchical clustering is carried out as follows.

• Let N∗ = Nη. For a Panel-CARDS classification A0 = {A1, A2, . . . , AK̂0}, if |Ak| > N∗, we

consider Ak as a properly identified group; otherwise, we treat it as misclassified. Without loss

of generality, we assume the properly identified groups are given by A = {A1, A2, . . . , AK̂},
and the misclassified members are in set J = ∪K̂0

s=K̂+1
As. For all members in the misclassified

groups, we re-run the classification.

• For each j ∈ J , we estimate its group membership by

k∗ = arg min
k∈{1,2,...,K̂0};β1,...,βK̂

1

2NT

K̂∑
l=1

∑
i∈Al

T∑
t=1

[
(ỹit − x̃′itβl)

2 + (ỹjt − x̃′jtβk)
2 · 1{k = l}

]
.
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Now we re-classify the element j to group Ak∗ for k∗ ∈ {1, . . . , K̂}. In other words, we treat
j as a new observation, and reclassify it to the group which makes the objective function the

smallest.

• We repeat the last step for the remaining elements in J . The final estimated grouping

structure is denoted by Ĝ = {Ĝ1, Ĝ2, . . . , ĜK̂}.

We use a BIC-type information criteria to choose the tuning parameters. Given the Panel-

CARDS classification results Ĝ = {Ĝ1, Ĝ2, . . . , ĜK̂}, which are obtained by using the tuning pa-
rameter vector λ, we calculate IC(λ) = ln

(
σ2
NT (λ)

)
+ pK̂/(2

√
NT ), where σ2

NT (λ) = 1
NT

∑K̂
s=1∑

i∈As
∑T

t=1(ỹit − x̃′itβ̂s (λ))2, the β̂s (λ)’s are post Panel-CARDS and hierarchical clustering esti-

mators, and here we make their dependence on λ explicit.

We report the frequency of obtaining a particular number of groups based on 200 replications

for all DGPs. Despite the importance of correct determination of the number of groups, it does

not show how similar the estimated groups are to the true groups. Following KFW (2015), we

use the Normalized Mutual Information measure to assess the similarity between the estimated

grouping structure Ĝ and the true grouping structure G. For two classifications/grouping structures
A = {A1, A2, . . .} and B = {B1, B2, . . .} on the same set {1, 2, . . . , N}, the Normalized Mutual
Information is defined as NMI(A,B) = I(A,B)/

√
H(A)H(B), where

I(A,B) =
∑
i,j

(|Ai ∩Bj |/N) ln

(
|Ai ∩Bj |/N
|Ai|/N · |Bj |/N

)
and H(A) = −

∑
i

|Ai|
N

ln

(
|Ai|
N

)
.

When A and B have the same classification, we have I(A,B) = H(A) = H(B), and NMI(A,B) = 1.

In general, the more similar two classifications are, the closer their Normalized Mutual Information

value is to 1. We report NMI(Ĝ,G) for all DGPs.

In addition, we report the correct classification ratio, root mean square error (RMSE), average

bias (Bias), and coverage probability of the two-sided nominal 95% confidence intervals when

η = 2%. We follow SSP (2016) to define these criteria. The correct classification ratio is defined as

N−1
∑K

k=1

∑
i∈Ĝk 1{β0

i = α0
m(i)}, where m(i) denotes i’s true group member. For the last 3 criteria,

we focus on the estimates of the second slope coeffi cients. Let α0
·2 ≡ (α0

1,2, . . . , α
0
K0,2)′ denote the

vector of the second regressor’s slope coeffi cient of all groups. The RMSE is defined as the weighted

average RMSEs of estimates of α0
k,2s with weights Nk/N :

∑K
k=1

Nk
N RMSE(α0

k,2). Similarly, we can

define the average bias and the coverage probability for the 95% confidence intervals.

4.3 Simulation results

We will focus on the performance of the advanced Panel-CARDS. We use R = 2 regressors to

construct the segmentation net. Given the matrix of preliminary estimates, B̃ = (β̃1, β̃2, . . . , β̃N ),

we calculate the sample variance of each row of B̃ and choose the two regressors with the largest

variances for their coeffi cient estimates to construct the segmentations.
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Figure 1 reports the classification results for DGP 1 for different combinations of N , T , and η.

It shows the Normalized Mutual Information between the estimated group structure Ĝ and the true
group structure G and suggests that as T increases, the Normalized Mutual Information between Ĝ
and G increases rapidly. When T = 80, the estimation is almost as good as the oracle for all values

of η.We also note that the performance of Panel-CARDS with η = 2% or 5% significantly improves

that with η = 0, but a further increase of η does not necessarily lead to improved performance.

Figure 2 reports the Normalized Mutual Information for DGP 2 for various combinations of N , T ,

and η. The Normalized Mutual Information patterns in Figure 2 are similar to those in Figure 1 for

DGP 1. With respect to η, we also find that a choice of η = 2% or 5% tends to outperform η = 0.

Figure 3 shows the classification results for DGP 3 where the true number of groups is reasonably

large (8 here). It demonstrates that the classification is very accurate even in this challenging

scenario as long as T ≥ 20 and η ≥ 2%. As before, the choice of η = 0 produces good classification

results only when T is suffi ciently large. Figure 4 reports the classification results for DGP 4 where

the panel is a dynamic one. Apparently, the Panel-CARDS performs very well in this situation

unless T is very small and η = 0. The general conclusions from DGPs 1—3 also hold here. For

the frequency of obtaining the estimated number of groups for all DGPs, see Section E in Wang,

Phillips, and Su (2018).

For the second slope coeffi cients {α0
k,2}Kk=1 and η = 2%, Table 1 reports the correct classification

ratio, RMSE, Bias, and 95% coverage probability of Panel-CARDS in Columns 4—7, and the RMSE,

Bias, and 95% coverage probability of the oracle ones in Columns 8—10. For DGP 4, the estimators

are bias-corrected by using the half-panel jackknife method of Dhaene and Jochmans (2015). As

expected, the Panel-CARDS may not perform well when T is small (10 or 20) in terms of correct

classification ratio or coverage probability. But the performance of Panel-CARDS improves quickly

as T increases and appears almost as good as the oracle estimate when T = 40 or 80.

5 Empirical Application: Income and Democracy

5.1 Model and data

As Acemoglu et al. (2008) remark, one of the most notable empirical regularities in modern political

economy is the positive relationship between income per capita and democracy. Existing studies

such as Barro (1999) and Acemoglu et al. (2008) establish a strong cross-country correlation

between income and democracy, but do not typically control for cross-country heterogeneity in

the slope coeffi cients. For different countries, the relationship between the two variables might be

similar or quite different. In South Korea, the degree of democracy increases when the economy is

growing steadily. Similar patterns emerge for other countries such as Spain and Romania. However,

for China the story is quite different. The democracy index composed by the Freedom House has

not changed very much over the last four decades or so for China despite the fact that China

has made remarkable economic progress over the same period. Moreover, for some countries like

South Africa and Malaysia, a negative correlation is observed between income and democracy.
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Figure 1: NMI of DGP 1 classification results using Panel-CARDS. The x-axis and y-axis mark

the η and NMI values, respectively. The left and right columns report the results for N = 100 and

N = 200, respectively.
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Figure 2: NMI of DGP 2 classification results using Panel-CARDS. (See Figure 1 for explanations.)
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Figure 3: NMI of DGP 3 classification results using Panel-CARDS. (See Figure 1 for explanations.)
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Figure 4: NMI of DGP 4 classification results using Panel-CARDS. (See Figure 1 for explanations.)
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Table 1: Correct classification of individuals and point estimation of α0
·2.

Panel-CARDS Oracle

DGP N T
% of Correct
Classification RMSE Bias Coverage RMSE Bias Coverage

1 100 10 0.714 0.425 0.016 0.582 0.080 -0.002 0.941
100 20 0.901 0.239 -0.009 0.758 0.053 0.002 0.937
100 40 0.988 0.091 0.003 0.934 0.038 0.003 0.956
100 80 1 0.027 -0.001 0.957 0.027 -0.001 0.957
200 10 0.683 0.426 -0.014 0.412 0.056 0.005 0.910
200 20 0.807 0.286 -0.054 0.557 0.040 0.002 0.936
200 40 0.963 0.088 0.005 0.906 0.027 -0.001 0.947
200 80 1.000 0.020 0.000 0.946 0.018 -0.000 0.946

2 100 10 0.738 0.440 -0.012 0.644 0.078 -0.003 0.948
100 20 0.956 0.195 -0.005 0.903 0.054 -0.002 0.955
100 40 0.997 0.053 0.000 0.962 0.036 0.000 0.965
100 80 1 0.025 -0.000 0.965 0.025 -0.000 0.965
200 10 0.712 0.444 -0.023 0.526 0.058 0.001 0.908
200 20 0.939 0.226 -0.041 0.841 0.039 -0.002 0.942
200 40 0.991 0.058 -0.006 0.939 0.025 -0.001 0.950
200 80 1 0.019 -0.001 0.954 0.019 -0.001 0.954

3 100 10 0.886 0.395 0.357 0.520 0.137 0.002 0.931
100 20 0.987 0.137 0.072 0.887 0.089 0.002 0.953
100 40 1.000 0.067 0.001 0.938 0.065 0.001 0.938
100 80 1 0.044 -0.000 0.956 0.044 -0.000 0.956
200 10 0.923 0.335 0.256 0.685 0.093 -0.005 0.943
200 20 0.995 0.110 -0.000 0.951 0.063 -0.001 0.952
200 40 1.000 0.048 -0.002 0.932 0.046 -0.002 0.932
200 80 1 0.032 0.001 0.950 0.032 0.001 0.950

4 100 10 0.809 0.417 -0.017 0.618 0.117 -0.014 0.936
100 20 0.966 0.177 -0.005 0.916 0.065 -0.003 0.953
100 40 0.999 0.053 -0.005 0.933 0.044 -0.006 0.936
100 80 1 0.030 -0.002 0.956 0.030 -0.002 0.956
200 10 0.819 0.407 -0.025 0.669 0.096 -0.013 0.939
200 20 0.949 0.186 -0.004 0.883 0.056 -0.005 0.948
200 40 0.999 0.043 -0.002 0.950 0.034 -0.002 0.957
200 80 1 0.021 -0.007 0.965 0.021 -0.007 0.965
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These observations motivate the use of more flexible panel modeling methods that permit some

individual heterogeneity and potential country groupings of the type that are admitted within the

latent panel structure model studied in this paper.

Following the lead of Acemoglu et al. (2008) and Bonhomme and Manresa (2015, BM hereafter),

we consider the following regression model with both individual and time fixed effects:

dit = βi1Ii,t−1 + βi2di,t−1 + µi + γt + εit, i = 1, . . . , N, t = 1, . . . , T, (5.1)

where dit denotes a measure of democracy for country i in period t that is normalized to take values

between 0 and 1, Iit denotes the logarithm of the real GDP per capita for country i in period t,

µi is the individual fixed effect, γt is the time fixed effect, εit is the error term, and βi1 and βi2
are the slope coeffi cients, which are assumed to be constant across countries in early studies. See

Acemoglu et al. (2008) and BM (2015) for detailed descriptions of the variables dit and Iit.

We use the publicly available data that are used in BM (2015).7 Following these authors, we

consider a balanced panel dataset where the number of countries (N) is 74 and the time index t runs

from 1 to 7. Here each time period corresponds to a five-year interval over the period 1961-2000.

For example, t = 0 refers to the 1961-1965 period.

5.2 Estimation results

First, we can estimate the model in (5.1) by minimizing the non-penalized objective function in

(3.4) and ignoring the latent group structure. Let (β̃i1, β̃i2)′ denote the estimates. Since T = 7

is relatively small, these estimates cannot be very accurate. To get an intuitive idea about these

preliminary estimates, we display their scatter plot in Figure 5. From this figure we see that these

estimates have wide dispersion over the plane from which it is hard to discern any pattern.

Next, we apply Panel-CARDS to determine the number of groups and estimate the group-

specific parameters. We assume that each group contains at least η = 5% of the countries and apply

the Information Criterion to choose the tuning parameter as in the simulations. The classification

results are displayed in Figure 6, where we use red circle, blue star, green triangle, and black plus

to denote Groups 1, 2, 3, and 4, respectively. [See Section G.2 in Wang, Phillips, and Su (2018)

for the detailed country-group table.] Interestingly, these four groups distribute in roughly four

different quadrants in the plane.

Table 2 reports the estimation results for each group-specific parameter and those for the pooled

estimates, all of which are bias-corrected by using Lu and Su’s (2017) bias correction formula and

Arellano’s (1987) country cluster-robust standard errors. The last column in Table 2 reports the

estimate of the Long Run Effect of income on democracy, β1/(1 − β2). We summarize some

important findings from Table 2. First, Panel-CARDS discovers four latent groups: Group 1 has

negative but insignificant β1 and positive β2; Group 2 has negative β1 and negative β2; Group 3

has negative β1 and positive β2; Group 4 has positive β1 and negative but insignificant β2. These

results are consistent with the scatter plot of the preliminary estimates in Figure 6 and suggest the
7All the data are directly from AJRY: http://economics.mit.edu/faculty/acemoglu/data/ajry2008.

22



1

­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2 2.5 3

2

­1.5

­1

­0.5

0

0.5

1

1.5

2

2.5

ARG

BDIBEN

BFA

BOL

BRA

CAF CHL

CHN

CMR

COG

COL

CYP

DMA

DZA ECU

EGY ESP

FIN
GAB

GHA

GIN

GRC
GT M

GUY

HND

IDN

IND

IRN

ISR

JAM

JOR

JPN

KEN
KOR

LKA

LUX

MAR

MDG

MEX

MLI MRT

MWI

MYS

NER

NGA

NIC
NPL

PAN
PER

PHL

PRT
PRY

ROM

RWA

SGP

SLE

SLV
SWE

SYR T CD

T GO

T HA

T T O

T UN

T UR

T WN
T ZA

UGA

URY

VEN

ZAF

ZARZMB

Figure 5: Scatter plot of preliminary estimates. See Table 10 in the online supplement for full

names of these 3-letter country codes.
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Figure 6: Scatter plot of classification results by using Panel-CARDS. As in Figure 5, the location

of the scatter points indicate the value of preliminary estimates of β1 and β2. The red circle,

blue star, green triangle, and black plus correspond to Group 1, Group 2, Group 3, and Group 4,

respectively.
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Table 2: Regression results for groups 1—4 and the pooled one.
β1 β2 LRE

estimates s.e. t-stat estimates s.e. t-stat
Group 1 0.024 0.024 1.005 0.364 0.081 4.481 0.038
Group 2 -0.243 0.045 -5.427 -0.282 0.079 -3.552 -0.189
Group 3 -0.525 0.054 -9.646 0.468 0.069 6.812 -0.986
Group 4 0.380 0.093 4.071 -0.149 0.132 -1.127 0.331

Pooled FE model 0.021 0.022 0.988 0.282 0.057 4.937 0.030
Note: LRE is the abbreviation for the long run effect, which is defined as β1/(1− β2).

effect of income on the level of democracy is not necessarily positive. Second, if we ignore the slope

heterogeneity and pool all countries together to estimate a homogeneous panel, the last row of

Table 2 indicates a small positive but insignificant effect of income on democracy. Of course, such

a regression output cannot explain the observed disparate country-specific income and democracy

relationships discussed at the beginning of this section. Third, the estimates of the Long Run Effect

for the four groups are 0.038, -0.189, -0.986, and 0.331, which imply that a 10% increase in income

per capita is associated with increases of 0.004, -0.019, -0.099, and 0.033 in democracy, respectively.

This evidence suggests that income level may have a negative impact on democracy for countries

in Group 3, a finding that is at substantial variance with the positive effect from the pooled fixed

effect specification that ignores heterogeneity.

6 Conclusion

Panel data offer empirical investigators the opportunity to study individual unit behavior over time

which provides the appealing prospect of increased precision in estimation due to cross section av-

eraging. But this advantage hinges on the validity of homogeneous responses in the individual

units to system covariates and the predetermined variables. Assessing the validity of such ho-

mogeneous response conditions is an important feature of successful panel data research. When

homogeneity is absent and further information is lacking, empirical research is inevitably reliant

on econometric methodology to assist in discovering any latent structures in the data which may

lead to homogeneous sub-classes wherein cross section averaging will be valid and effective.

This paper combines with other recent work in providing such methodology for the discovery

and estimation of latent structures in panel data. Our approach extends to a systematic panel

framework some recent research on the CARDS method proposed by KFW (2015). The Panel-

CARDS procedure developed here is data-driven and enables identification and estimation of latent

group structures compatible with oracle estimation without the use of auxiliary variates to achieve

empirical classification. In comparison with the CARDS method, we consider the slope parameters

of each individual unit as a whole rather than as a special case of a cross section model. Together

with the use of a new concept of controlled classification of multidimensional quantities called the

segmentation net, this framework provides a robust approach to group selection. If prior information
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about the minimum number of elements in each group does happen to be available, the method

also allows for hierarchical clustering to improve estimation accuracy.

We apply the new Panel-CARDS methodology to revisit a longstanding example of panel data

research in economics —the international relationship between income and democracy. The meth-

ods identify four latent groups of countries which demonstrate distinctive association effects, each

relating income to democracy in a different way, some positive and some negative. The applica-

tion demonstrates that it is possible to take advantage of increased precision in estimation from

cross section averaging by identifying those subgroups of a panel in which homogeneous responses

are validated by the data while at the same time accommodating heterogeneous responses across

groups.
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This supplement is composed of seven parts. Section A contains the proofs of the main results
in the paper. Section B proves a technical lemma that is used in the proofs of the main results.
Sections C and D justify the convergence of the Local Linear Approximation algorithm and the
asymptotic validity of the information criterion, respectively. Section E gives more explanations on
the construction of the Panel-CARDS objective function. Sections F and G report some additional
results on the simulations and application, respectively.

A Proofs of the Main Results

This section provides the proofs of the main results in the above paper. We will need to refer
to Lemma B.1 that is stated and proved in the next section. Throughout we use M to denote a
generic positive constant that may vary across lines.

The proof of Theorem 3.1 makes use of the following lemma.

Lemma A.1 Suppose that Assumption A1 holds. Then for each k = 1, . . . ,K,

(i) P
(
µmin

(
1

TNk

∑
i∈G0k

x̃′ix̃i
)
≤ c1/2

)
= o

(
T−1

)
,

(ii) P
(∥∥∥ 1

TNk

∑
i∈G0k

x̃′iεi

∥∥∥ ≥ M ln(NkT )√
NkT

+ M [ln(T )]2

T

)
= o

(
T−1

)
for some M > 0,

(iii) P
(
max1≤i≤N µmax

(
1
T x̃′ix̃i

)
≥ 2c2

)
= o

(
T−1

)
.

Proof of Lemma A.1. (i) First, using 1
T

∑T
t=1 x̃itx̃

′
it = 1

T

∑T
t=1 xitx

′
it − x̄ix̄

′
i we employ the

decomposition

1

TNk

∑
i∈G0k

x̃′ix̃i =
1

TNk

∑
i∈G0k

T∑
t=1

E
(
x̃itx̃

′
it

)
+

1

TNk

∑
i∈G0k

T∑
t=1

[
x̃itx̃

′
it − E

(
x̃itx̃

′
it

)]

=
1

TNk

∑
i∈G0k

T∑
t=1

E
(
x̃itx̃

′
it

)
+

1

TNk

∑
i∈G0k

T∑
t=1

[
xitx

′
it − E

(
xitx

′
it

)]
− 1

Nk

∑
i∈G0k

[
x̄ix̄
′
i − E(x̄i)E(x̄′i)

]
+

1

Nk

∑
i∈G0k

Cov(x̄i, x̄i).

1



It follows that

µmin

 1

TNk

∑
i∈G0k

x̃′ix̃i

 ≥ µmin

 1

TNk

∑
i∈G0k

T∑
t=1

E
(
x̃itx̃

′
it

)−
∥∥∥∥∥∥ 1

TNk

∑
i∈G0k

T∑
t=1

[
xitx

′
it − E

(
xitx

′
it

)]∥∥∥∥∥∥
−

∥∥∥∥∥∥ 1

Nk

∑
i∈G0k

[
x̄ix̄
′
i − E(x̄i)E(x̄′i)

]∥∥∥∥∥∥ .
By Lemma B.1(i) of the supplementary document Appendix B, we have

P

∥∥∥∥∥∥ 1

TNk

∑
i∈G0k

T∑
t=1

[
xitx

′
it − E

(
xitx

′
it

)]∥∥∥∥∥∥ ≥ c1/4

 = o
(

(NkT )−1
)
.

Using Lemma B.1(ii), the fact that max1≤i≤N ‖E(x̄i)‖ ≤M for some M <∞, and the representa-
tion x̄ix̄

′
i − E(x̄i)E(x̄′i) = x̄i [x̄i − E(x̄i)]

′ + [x̄i − E(x̄i)]E(x̄′i), we can readily show that

P

∥∥∥∥∥∥ 1

Nk

∑
i∈G0k

[
x̄ix̄
′
i − E(x̄i)E(x̄′i)

]∥∥∥∥∥∥ ≥ c1/4

 = o
(
T−1

)
.

It follows that with probability 1− o
(
T−1

)
we have µmin

(
1

TNk

∑
i∈G0k

x̃′ix̃i
)
≥ c1 − c1/4− c1/4 ≥

c1/2. That is, P
(
µmin

(
1

TNk

∑
i∈G0k

x̃′ix̃i
)
≤ c1/2

)
= o

(
T−1

)
.

(ii) We make the following decomposition

1

TNk

∑
i∈G0k

x̃′iεi =
1

TNk

∑
i∈G0k

T∑
t=1

(xit − x̄i) εit

=
1

TNk

∑
i∈G0k

T∑
t=1

xitεit −
1

TNk

∑
i∈G0k

T∑
t=1

µiεit −
1

Nk

∑
i∈G0k

(x̄i − µi) ε̄i,

where ε̄i = 1
T

∑T
t=1 εit. By Lemma B.1(i), there exists large M > 0 such that

P

∥∥∥∥∥∥ 1

TNk

∑
i∈G0k

T∑
t=1

xitεit

∥∥∥∥∥∥ ≥ M ln (NkT )

2
√
NkT

 = o
(

(NkT )−1
)
, and

P

∥∥∥∥∥∥ 1

TNk

∑
i∈G0k

T∑
t=1

µiεit

∥∥∥∥∥∥ ≥ M ln (NkT )

2
√
NkT

 = o
(

(NkT )−1
)
.

By Lemma B.1(ii), P
(

maxi∈G0k
‖x̄i − µi‖ ≥

√
M ln(T )√

T

)
= o

(
T−1

)
and P

(
maxi∈G0k

|ε̄i| ≥
√
M ln(T )√

T

)
= o

(
T−1

)
for some M > 0. It follows that

P

∥∥∥∥∥∥ 1

Nk

∑
i∈G0k

(x̄i − µi) ε̄i

∥∥∥∥∥∥ ≥ M [ln (T )]2

T

 = o
(
T−1

)
.
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Consequently,

P

∥∥∥∥∥∥ 1

TNk

∑
i∈G0k

x̃′iεi

∥∥∥∥∥∥ ≥ M ln (NkT )√
NkT

+
M [ln (T )]2

T


≤ P

∥∥∥∥∥∥ 1

TNk

∑
i∈G0k

T∑
t=1

xitεit

∥∥∥∥∥∥ ≥ M ln (NkT )

2
√
NkT

+ P

∥∥∥∥∥∥ 1

TNk

∑
i∈G0k

T∑
t=1

µiεit

∥∥∥∥∥∥ ≥ M ln (NkT )

2
√
NkT


+ P

∥∥∥∥∥∥ 1

Nk

∑
i∈G0k

(x̄i − µi) ε̄i

∥∥∥∥∥∥ ≥ M [ln (T )]2

T


= o

(
T−1

)
.

(iii) In view of the fact 1
T x̃′ix̃i = 1

T

∑T
t=1 E (xitx

′
it) + 1

T

∑T
t=1 [xitx

′
it − E (xitx

′
it)]− x̄ix̄

′
i, we have

µmax

(
1

T
x̃′ix̃i

)
≤ µmax

(
1

T

T∑
t=1

E
(
xitx

′
it

))
+

∥∥∥∥∥ 1

T

T∑
t=1

[
xitx

′
it − E

(
xitx

′
it

)]∥∥∥∥∥ .
As in the proof of (i), we can readily argue that with probability 1−o

(
T−1

)
we have µmax

(
1
T x̃′ix̃i

)
≤

c2 + c2 = 2c2. This concludes the proof of the lemma. �
Proof of Theorem 3.1. To prove the theorem, we follow KFW (2015) and prove that with a high

probability the Panel-CARDS has a strictly local minimizer given by the oracle estimator β̂
oracle

.

Recall that β̂
oracle

is obtained with knowledge of the true grouping structure.
First, we introduce the restricted parameter space

MG = {β ∈ RNp : βi = βj for any i, j ∈ G0
k, 1 ≤ k ≤ K}. (A.1)

Note that β = (β′1,. . .,β
′
N )′ and the set

{
G0
k

}K
k=1

denotes the true grouping structure. So MG is
connected with the parameter space of the oracle estimator. We define two mappings:

S : MG → RKp and S∗ : RNp → RKp, (A.2)

where S(β) is a Kp × 1 vector whose k-th block (the length of a block is p) is the common slope
vector (αk) of group k, and S∗(β) is a Kp × 1 vector whose k-th block (the length of a block is
p) is given by 1

Nk

∑
i∈G0k

βi, the mean value of slope vectors in group k. Apparently, S and S
∗

are the same when the domain of S∗ is also restricted to be MG . In addition, α0 = S(β0) and

α̂oracle = S(β̂
oracle

).

The objective function is QNT (β) = LNT (β) + PNT (β), where LNT (β) = 1
2NT

N∑
i=1

T∑
t=1

(ỹit −

x̃′itβi)
2 and PNT (β) = PB,λ1,λ2(β). For any α ∈ RKp, define

LGNT (α) = LNT (S−1(α)), P GNT (α) = PNT (S−1(α)), and

QGNT (α) = LGNT (α) + P GNT (α). (A.3)

We need to show that β̂
oracle

is a strictly local minimizer of QNT with probability at least 1− ε0−
o (K/T ). Let E1 denote the event that the segmentation B is admissible with the true parameter β0.
By the conditions in the theorem, P (Ec1) ≤ ε0 where, for any event E , Ec denotes its complement.
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Next, we prove that

P

(
‖β̂oracle − β0‖ ≤M

√
K (lnT )2 /T

)
≥ 1− o(K/T ) for some M > 0. (A.4)

Define the event E0 =
{
µmin

(
1

TNk

∑
i∈G0k

x̃′ix̃i
)
> c1/2

}
.Using α̂oraclek −α0

k = (
∑

i∈G0k
1
T x̃′ix̃i)

−1
∑

i∈G0k
1
T x̃′iεi and by Lemma A.1, we have uniformly in k

P
{√

Nk

∥∥∥α̂oraclek −α0
k

∥∥∥ ≥M lnT/
√
T
}

= P

√Nk

∥∥∥∥∥∥
 1

TNk

∑
i∈G0k

x̃′ix̃i

−1

1

TNk

∑
i∈G0k

x̃′iεi

∥∥∥∥∥∥ ≥M lnT/
√
T


≤ P

√Nk

∥∥∥∥∥∥
 1

TNk

∑
i∈G0k

x̃′ix̃i

−1

1

TNk

∑
i∈G0k

x̃′iεi

∥∥∥∥∥∥ ≥M lnT/
√
T , E0

+ P (Ec0)

≤ P

√Nk

∥∥∥∥∥∥
 1

TNk

∑
i∈G0k

x̃′ix̃i

−1∥∥∥∥∥∥
∥∥∥∥∥∥ 1

TNk

∑
i∈G0k

x̃′iεi

∥∥∥∥∥∥ ≥M lnT/
√
T , E0

+ o
(
T−1

)

≤ P

∥∥∥∥∥∥ 1

TNk

∑
i∈G0k

x̃′iεi

∥∥∥∥∥∥ ≥
(c1

2

)
M lnT/

√
NkT

+ o
(
T−1

)
= o

(
T−1

)
,

where P (A,B) denotes P (A ∩B). With this, we can readily show that

P

(∥∥∥β̂oracle − β0
∥∥∥2
≥M2K (lnT )2 /T

)
= P

(
K∑
k=1

Nk

∥∥∥α̂oraclek −α0
k

∥∥∥2
≥M2K (lnT )2 /T

)

≤
K∑
k=1

P

(
Nk

∥∥∥α̂oraclek −α0
k

∥∥∥2
≥M2 (lnT )2 /T

)
= o (K/T ) .

Thus (A.4) follows.
Now we consider a small neighborhood of β0

W0
NT ≡

{
β ∈ RNp : ‖β − β0‖ < M lnT

√
K/T

}
. (A.5)

By (A.4), there exists a set E2 with P (Ec2) ≤ o(K/T ) and ‖β̂oracle − β0‖ ≤ M lnT
√
K/T over E2.

For an element β ∈ W0
NT and β

∗ = S−1 ◦ S∗(β). We want to show

(i) Over the set E1 ∩ E2,

QNT (β∗) ≥ QNT (β̂
oracle

) (A.6)

and the inequality is strict when β∗ 6= β̂
oracle

.

(ii) There is a set E3 (to be defined) with P (Ec3) ≤ o(T−1). Over the set E1 ∩E2 ∩E3, there exists

a set WNT which contains β̂
oracle

such that

QNT (β) ≥ QNT (β∗) (A.7)

for any β ∈WNT , and the inequality is strict when β 6= β∗.
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If both (i) and (ii) hold, then we have QNT (β) ≥ QNT (β̂
oracle

) for any β ∈ WNT and β̂
oracle

is a
strict local minimizer of QNT over the set E1 ∩ E2 ∩ E3. We prove these two claims in Propositions
A.2 and A.3 below. �

Proposition A.2 Suppose that the conditions in Theorem 3.1 hold. Then QNT (β∗) ≥ QNT (β̂
oracle

)

on the set E1 ∩ E2 and the inequality is strict when β∗ 6= β̂
oracle

.

Proof of Proposition A.2. We demonstrate that

P GNT (S∗(β)) = Constant for any β ∈ W0
NT . (A.8)

Recall that Vkl = G0
k ∩ Bl for k = 1, 2, . . . ,K and l = 1, 2, . . . , L. For any β ∈ W0

NT , denote

α = S∗(β). Define n(1)
km =

∑L−1
l=1 (|Vkl||Vm(l+1)|+ |Vml||Vk(l+1)|),8 which is the number of between-

segment penalty terms imposed on segments k and m. Similarly, define n(2)
km = 2

∑L
l=1 |Vkl||Vml| as

the number of within-segment penalty terms. Then

P GNT (α) = λ1

∑
1≤k<m≤K

n
(1)
kmρ1(‖αk −αm‖1) + λ2

∑
1≤k<m≤K

n
(2)
kmρ2(‖αk −αm‖1), (A.9)

where ρj (t) = λ−1
j pλj (t) for j = 1, 2. In view of the fact that

min
1≤k<m≤K

‖αk −αm‖1 = min
1≤k<m≤K

‖
(
αk −α0

k

)
+
(
α0
k −α0

m

)
− (αm −α0

m)‖1

≥ min
1≤k<m≤K

∥∥α0
k −α0

m

∥∥
1
− 2 max

1≤k≤K

∥∥αk −α0
k

∥∥
1

≥ 2bNT − 2p‖β − β0‖∞ ≥ 2bNT − 2pM lnT
√
K/T > bNT > amax{λ1, λ2}

by Assumption A3, P GNT (α) in (A.9) is constant on W0
NT by Assumption A2.

Since LGNT (α) is convex with respect to α and α̂oracle minimizes LGNT (α), we have

LGNT (S∗ (β)) ≥ LGNT
(
α̂oracle

)
for any α =S∗ (β) and the above inequality is strict whenever S∗ (β) 6= α̂oracle, or equivalently,

β∗ 6= S−1(α̂oracle) = β̂
oracle

. The conclusion then follows by observing that on E1 ∩ E2,

QNT (β∗) = QNT (S−1 ◦ S∗(β)) = QGNT (S∗(β)) = LGNT (S∗(β)) + P GNT (S∗(β))

= LGNT (S∗(β)) + Constant

and, similarly, QNT (β̂
oracle

) = LGNT (α̂oracle) + P GNT (S∗(α̂oracle)) = LGNT (α̂oracle) + Constant. �

Proposition A.3 Suppose that the conditions in Theorem 3.1 hold. Then there exists a set WNT

which contains β̂
oracle

such that QNT (β) ≥ QNT (β∗) on the set E1 ∩E2 ∩E3 for any β ∈WNT , and

the inequality is strict when β 6= β∗.

8Since the ordered segmentation is admissible, we note here that many of the V ’
kls are empty with cardinality 0.
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Proof of Proposition A.3. We construct a subset of W0
NT defined by

WNT =W0
NT ∩ {β : ‖β − β̂oracle‖ ≤ tNT }, (A.10)

where tNT is a positive sequence such that
tNT

NNmin
� λ2 and tNT � λ1. Recall that β∗ = S−1◦S∗(β),

which implies ‖β−β∗‖ ≤ ‖β−β′‖ for any β′ ∈MG . In particular, we have ‖β− β∗‖ ≤ ‖β−β̂
oracle‖.

Consequently, it suffi ces to prove the proposition by showing (A.7) holds for any β such that
‖β − β∗‖ ≤ tNT , and the inequality is strict when β 6= β∗.

We now analyze how QNT (β) responds to the change of β ∈WNT . We make the following
decomposition

QNT (β)−QNT (β∗) = [LNT (β)− LNT (β∗)] + [PNT (β)− PNT (β∗)] ≡ I1 + I2, say. (A.11)

The basic idea is to demonstrate that upon moving from β to α = S∗(β), the decrease in the
penalty term I2 dominates the increase in the least squares function I1 with high probability. By
the Cauchy-Schwarz inequality, ‖βi − βj‖22 ≤ ‖βi − βj‖21 ≤ p‖βi − βj‖22. For I2 we have

I2 = PNT (β)− PNT (β∗)

=

L−1∑
l=1

∑
i∈Bl,j∈Bl+1

pλ1(‖βi − βj‖1) +

L∑
l=1

∑
i∈Bl,j∈Bl

pλ2(‖βi − βj‖1)

−
L−1∑
l=1

∑
i∈Bl,j∈Bl+1

pλ1(‖β∗i − β∗j‖1)−
L∑
l=1

∑
i∈Bl,j∈Bl

pλ2(‖β∗i − β∗j‖1)

= λ1

L−1∑
l=1

∑
i∈Bl,j∈Bl+1,i

G∼j

ρ1(‖βi − βj‖1) + λ2

L∑
l=1

∑
i∈Bl,j∈Bl,i

G∼j

ρ2(‖βi − βj‖1)

≥ λ1

L−1∑
l=1

∑
i∈Bl,j∈Bl+1,i

G∼j

ρ′1

(
2
√
ptNT√
Nmin

)
‖βi − βj‖1 + λ2

L∑
l=1

∑
i∈Bl,j∈Bl,i

G∼j

ρ′2

(
2
√
ptNT√
Nmin

)
‖βi − βj‖1, (A.12)

where i G∼ j means i and j are in the same true group in which case β∗i = β∗j , the third equality
follows from the proof of (A.8), and the last inequality follow from the concavity of ρ1(·) and ρ2(·)
and for i, j in the same true group, ‖βi − βj‖1 ≤ 2

√
p‖β − β∗‖/

√
Nmin ≤ 2

√
ptNT /

√
Nmin.

For I1, we apply a Taylor development, giving

I1 = LNT (β)− LNT (β∗)

=
1

2NT

N∑
i=1

T∑
t=1

(ỹit − x̃′itβi)
2 − 1

2NT

K∑
k=1

∑
i∈G0k

T∑
t=1

(ỹit − x̃′itβ
∗
k)

2

=
1

2NT

K∑
k=1

∑
i∈G0k

(ỹi − x̃iβi)
′(ỹi − x̃iβi)−

1

2NT

K∑
k=1

∑
i∈G0k

(ỹi − x̃iβ
∗
k)
′(ỹi − x̃iβ

∗
k)

= − 1

NT

K∑
k=1

∑
i∈G0k

(ỹi − x̃iβ̆k(i))
′x̃i(βi − β∗k)

= − 1

NT

K∑
k=1

uk∑
l=dk

∑
i∈Vkl

(ỹi − x̃iβ̆k(i))
′x̃i(βi − β∗k), (A.13)
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where β̆k(i) denotes the intermediate value that lies between βi and β
∗
k elementwise. Let zi =

x̃′i(ỹi − x̃iβ̆k(i)). Noting that β
∗
k = 1

Nk

∑
i′∈G0k

βi′ = 1
Nk

uk∑
l′=dk

∑
i′∈Vkl′ βi′ , we have

I1 = − 1

NT

K∑
k=1

uk∑
l=dk

∑
i∈Vkl

z′i(βi − β∗k) = − 1

NT

K∑
k=1

uk∑
l=dk

∑
i∈Vkl

z′i
1

Nk

uk∑
l′=dk

∑
i′∈Vkl′

(βi − βi′)

= − 1

2NT

K∑
k=1

1

Nk

uk∑
l=dk

uk∑
l′=dk

∑
i∈Vkl

∑
i′∈Vkl′

(zi − zi′)
′(βi − βi′)

= − 1

2NT

K∑
k=1

1

Nk

uk∑
l=dk

∑
i∈Vkl

∑
i′∈Vkl

(zi − zi′)
′(βi − βi′)

− 1

NT

K∑
k=1

1

Nk

∑
dk≤l<l′≤uk

∑
i∈Vkl

∑
i′∈Vkl′

(zi − zi′)
′(βi − βi′)

= : I11 + I12. (A.14)

We will evaluate I11 and I12 in turn. First we transform I11 for comparison,

I11 = − 1

2NT

K∑
k=1

1

Nk

uk∑
l=dk

∑
i∈Vkl

∑
i′∈Vkl

(zi − zi′)
′(βi − βi′)

= − 1

2NT

L∑
l=1

bl∑
k=al

∑
i∈Vkl

∑
i′∈Vkl

1

Nk
(zi − zi′)

′(βi − βi′)

= − 1

NT

L∑
l=1

∑
i,i′∈Bl,i

G∼i′

θii′(z)′(βi − βi′), (A.15)

where z = (z′1,. . ., z
′
N)′, θii′(z) = 1

2Nk
(zi − zi′), and as before i

G∼ i′ means that i and i′ belong to
the same true group. Now we change I12 to a form that can be easily compared with I2. By the
property of the partition B, we can write

βi − βi′ =
1∏l′−1

h=l+1 |Vkh|

∑
{(il,il+1,...,il′ ): il=i,il′=i′;ih∈Vkh,h=l+1,...,l′−1}

l′−1∑
h=l

(βih − βih+1),

where the second summation is a telescopic summation by construction with common value βi−βi′ ,
the first summation is over all possible paths from all sets Vkh between Vkl and Vkl′ , and the total
number of different paths is given by

∏l′−1
h=l+1 |Vkh|. For notation consistency, when l = l′ − 1, we

7



define
∏l′−1
h=l+1 |Vkh| = 1. Plugging the expression into I12, we have

I12 = − 1

NT

K∑
k=1

1

Nk

∑
dk≤l<l′≤uk

∑
i∈Vkl

∑
i′∈Vkl′

(zi − zi′)
′(βi − βi′)

= − 1

NT

K∑
k=1

1

Nk

∑
dk≤l<l′≤uk

∑
{(il,il+1,...,il′ ):ih∈Vkh,h=l,...,l′}

z′il − z′il′∏l′−1
h=l+1 |Vkh|

l′−1∑
h=l

(βih − βih+1)

= − 1

NT

K∑
k=1

1

Nk

∑
dk≤l<l′≤uk

Sll′,k,

where

Sll′,k =

l′−1∑
h=l

∑
{(il,il+1,...,il′ ):ij∈Vkj ,j=l,...,l′}

z′il − z′il′∏l′−1
j=l+1 |Vkj |

(βih − βih+1).

To simplify the last expression, we discuss four cases: (a) l = h = l′ − 1, (b) l = h < l′ − 1, (c)
l < h < l′ − 1, and (d) l < h = l′ − 1, and write

Sll′,k = Sll′,k (a) + Sll′,k (b) + Sll′,k (c) + Sll′,k (d) ,

where, for example, Sll′,k (a) denotes the summation in Sll′,k for which h is restricted to satisfy the
conditions in (a). In case (a), we have

Sll′,k (a) =

l′−1∑
h=l

∑
{(il,il+1,...,il′ ):ij∈Vkj ,j=l,...,l′}

z′il − z′il′∏l′−1
j=l+1 |Vkj |

(βih − βih+1)1
{
l = h = l′ − 1

}
=

∑
ih∈Vkh,ih+1∈Vk,h+1

(
zil − zih+1

)′
(βih − βih+1)

=
∑
i∈Vkh

∑
i′∈Vk,h+1

(zi − zi′)
′(βi − βi′).

In case (b),

Sll′,k (b) =

l′−1∑
h=l

∑
{(il,il+1,...,il′ ):ij∈Vkj ,j=l,...,l′}

z′il − z′il′∏l′−1
j=l+1 |Vkj |

(βih − βih+1)1
{
l = h < l′ − 1

}
=

∑
ih∈Vkh

∑
ih+1∈Vk,h+1

∑
il′∈Vkl′

z′ih − z′il′
|Vk,h+1|

(βih − βih+1)

=
∑

ih∈Vkh

∑
ih+1∈Vk,h+1

|Vkl′ |
|Vk,h+1|

(
z′ih − z̄′kl′

)
(βih − βih+1)

=
∑
i∈Vkh

∑
i′∈Vk,h+1

|Vkl′ |
|Vk,l+1|

(zi − z̄kl′)
′(βi − βi′),
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where z̄kl′ = 1
|Vkl′ |

∑
j∈Vkl′ zj . Similarly, in case (d) we have

Sll′,k (d) =

l′−1∑
h=l

∑
{(il,il+1,...,il′ ):ij∈Vkj ,j=l,...,l′}

z′il − z′il′∏l′−1
j=l+1 |Vkj |

(βih − βih+1)1
{
l < h = l′ − 1

}
=

∑
i∈Vkh

∑
i′∈Vk,h+1

|Vkl|
|Vk,l′−1|

(z̄kl − zi′)
′(βi − βi′).

In case (c)

Sll′,k (c) =

l′−1∑
h=l

∑
{(il,il+1,...,il′ ):ij∈Vkj ,j=l,...,l′}

z′il − z′il′∏l′−1
j=l+1 |Vkj |

(βih − βih+1)1
{
l < h < l′ − 1

}

=

l′−2∑
h=l+1

∑
{(il,il+1,...,il′ ):ij∈Vkj ,j=l,...,l′}

z′il − z′il′∏l′−1
j=l+1 |Vkj |

(βih − βih+1)

=

l′−2∑
h=l+1

∑
ih∈Vkh,ih+1∈Vk,h+1

∑
il∈Vkl,il′∈Vkl′

z′il − z′il′
|Vkh||Vk,h+1|

(βih − βih+1)

=
l′−2∑
h=l+1

∑
ih∈Vkh,ih+1∈Vk,h+1

|Vkl||Vkl′ |
|Vkh||Vk,h+1|

(z̄kl − z̄kl′)
′(βih − βih+1).

It follows that

Sll′,k =
l′−1∑
h=l

∑
{(il,il+1,...,il′ ):ij∈Vkj ,j=l,...,l′}

z′il − z′il′∏l′−1
j=l+1 |Vkj |

(βih−βih+1) =
l′−1∑
h=l

∑
i∈Vkh

∑
i′∈Vk(h+1)

ω′ii′,ll′,h(z)(βi−βi′),

where

ωii′,ll′,h(z) =



zi − zi′ , l = h = l′ − 1
|Vkl′ |
|Vk(l+1)|

(zi − z̄kl′), l = h < l′ − 1
|Vkl||Vkl′ |
|Vkh||Vk(h+1)|

(z̄kl − z̄kl′), l < h < l′ − 1
|Vkl|

|Vk(l′−1)|
(z̄kl − zi′), l < h = l′ − 1

. (A.16)

Then

I12 = − 1

NT

K∑
k=1

1

Nk

∑
dk≤l<l′≤uk

l′−1∑
h=l

∑
i∈Vkh

∑
i′∈Vk(h+1)

ω′ii′,ll′,h(z)(βi − βi′)

= − 1

NT

L−1∑
h=1

bh∑
k=ah

∑
i∈Vkh,i′∈Vk(h+1)

 1

Nk

h∑
l=dk

uk∑
l′=h+1

ω′ii′,ll′,h(z)

 (βi − βi′)

= − 1

NT

L−1∑
h=1

∑
i∈Bh,i′∈Bh+1,i

G∼i′

τ ′ii′(z)(βi − βi′), (A.17)
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where τ ii′(z) = 1
Nk

∑h
l=dk

∑uk
l′=h+1ωii′,ll′,h(z). Let G1

kh =
⋃
l≤h Vkl and G

2
kh =

⋃
l>h Vkl. Then by

(A.16)

τ ii′(z) =
1

Nk

h∑
l=dk

uk∑
l′=h+1

ωii′,ll′,h(z)

=
1

Nk

h−1∑
l=dk

uk∑
l′=h+2

|Vkl||Vkl′ |
|Vkh||Vk(h+1)|

(z̄kl − z̄kl′) +
1

Nk

h−1∑
l=dk

|Vkl|
|Vkh|

(z̄kl − zi′)

+
1

Nk

uk∑
l′=h+2

|Vkl′ |
|Vk(h+1)|

(zi − z̄kl′) +
1

Nk
(zi − zi′)

=
1

Nk

h−1∑
l=dk

|Vkl|(
∑uk

l′=h+1 |Vkl′ |)
|Vkh||Vk(h+1)|

z̄kl +
1

Nk

∑uk
l′=h+1 |Vkl′ |
|Vk(h+1)|

zi

− 1

Nk

uk∑
l′=h+2

(
∑h

l=dk
|Vkl|)|Vkl′ |

|Vkh||Vk(h+1)|
z̄kl′ −

1

Nk

∑h
l=dk
|Vkl|

|Vkh|
zi′

=
1

|Vkh||Vk(h+1)|

 |G2
kh|
Nk

∑
j∈G1

k(h−1)

zj −
|G1

kh|
Nk

∑
j∈G2

k(h+1)

zj


+

(
|G2

kh|
Nk|Vk(h+1)|

zi −
|G1

kh|
Nk|Vkh|

zi′

)
. (A.18)

By (A.14), (A.15) and (A.17), we have

|I1| ≤ |I11|+ |I12|

≤ 1

NT

L∑
l=1

∑
i,j∈Bl,i

G∼j

‖θij(z)‖1‖βi − βj‖1 +
1

NT

L−1∑
l=1

∑
i∈Bl,j∈Bl+1,i

G∼j

‖τ ij(z)‖1‖βi − βj‖1.(A.19)

By (A.11), (A.13) and (A.19), we have

QNT (β)−QNT (β∗) ≥
L∑
l=1

∑
i,j∈Bl,i

G∼j

[
λ2ρ
′
2

(
2
√
ptNT√
Nmin

)
− 1

NT
‖θij(z)‖1

]
‖βi − βj‖1

+

L−1∑
l=1

∑
i∈Bl,j∈Bl+1,i

G∼j

[
λ1ρ
′
1

(
2
√
ptNT√
Nmin

)
− 1

NT
‖τ ij(z)‖1

]
‖βi − βj‖1.

≡ J11 + J12 (A.20)

Now we only need to find a high probability event E3 over which the right hand side of (A.20)
is nonnegative, and P (E3) should be at least 1− o(T−1). Noting that

zi = x̃′i(ỹi − x̃iβ̆k(i)) = x̃′i(ε̃i + x̃iβ
0
k)− x̃iβ̆k(i))

= x̃′iε̃i − x̃′ix̃i(β
∗
k − β0

k)− x̃′ix̃i(β̆k(i) − β∗k), (A.21)
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we have

θij(z) =
1

2Nk

(
x̃′iε̃i − x̃′j ε̃j

)
− 1

2Nk

(
x̃′ix̃i − x̃′jx̃j

)
(β∗k − β0

k)

− 1

2Nk

[
x̃′ix̃i(β̆k(i) − β∗k)− x̃′jx̃j(β̆k(j) − β∗k)

]
≡ θij,1 − θij,2 − θij,3, say.

Note that θij,1 = 1
2Nk

∑T
t=1 (x̃itεit − x̃jtεjt) = 1

2Nk

∑T
t=1 (xitεit − xjtεjt) + 1

2Nk
(x̄iε̄i − x̄j ε̄j) . By

Lemma B.1, we can readily show that

P

(
max

1≤k≤K
max
i,j∈G0k

1

T
‖θij,1‖1 ≥

M lnT

Nmin

√
T

)
= o

(
T−1

)
for some M > 0.

For θij,2, we have by Lemma A.1(iii), with probability 1− o
(
T−1

)
max

1≤k≤K
max
i,j∈G0k

1

T
‖θij,2‖1 ≤ max

1≤k≤K
max
i,j∈G0k

√
p

2TNk

∥∥(x̃′ix̃i − x̃′jx̃j
)

(β∗k − β0
k)
∥∥

≤ max
1≤k≤K

√
p

Nk
max

1≤i≤N
µmax

(
x̃′ix̃i/T

)
max

1≤k≤K

∥∥β∗k − β0
k

∥∥ ≤ 2c2
√
p

Nmin
tNT .

Similarly, max1≤k≤K maxi,j∈G0k
1
T ‖θij,3‖1 ≤

2c2
√
p

Nmin
tNT with probability 1− o

(
T−1

)
. It follows that

with probability 1− o
(
T−1

)
we have

1

NT
max

1≤k≤K
max
i,j∈G0k

‖θij(z)‖1 ≤ 1

NT
max

1≤k≤K
max
i,j∈G0k

‖θij,1 − θij,2 − θij,3‖1

≤ M lnT

NNmin

√
T

+
4c2
√
p

NNmin
tNT ≤

M

NNmin

(
lnT√
T

+ tNT

)
.

Define

E31 =

{
1

NT
max

1≤k≤K
max
i,j∈G0k

‖θij(z)‖1 ≤
M

NNmin

(
lnT√
T

+ tNT

)}
. (A.22)

By choosing suffi ciently small tNT , we have 1
NNmin

(
lnT√
T

+ tNT

)
� λ2. It follows that J11 > 0 over

the event E1 ∩ E2 ∩ E31 with P (E1 ∩ E2 ∩ E32) = 1− o
(
T−1

)
.

Next, we consider J12. By the linearity of τ ii′(·) and (A.21), we can write

τ ii′(z) = τ ii′(X̃
′ε)− τ ii′(X̃(1))− τ ii′(X̃(2)),

where X̃ denotes an NT ×Np block diagonal matrix with the ith diagonal block given by x̃i, X̃(1)

is Np×1 vector with typical block x̃′ix̃i(β
∗
k−β0

k) for i ∈ G0
k, and X̃(2) is Np×1 vector with typical

block x̃′ix̃i(β̆k(i) − β∗k) for i ∈ G0
k. By (A.18),

τ ii′(X̃
′ε) =

1

|Vkh||Vk(h+1)|

 |G2
kh|
Nk

∑
j∈G1

k(h−1)

x̃′jεj −
|G1

kh|
Nk

∑
j∈G2

k(h+1)

x̃′jεj


+

(
|G2

kh|
Nk|Vk(h+1)|

x̃′iεi −
|G1

kh|
Nk|Vkh|

x̃′i′εi′

)
.
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By Lemma B.1, we can readily show that with probability 1− o
(
T−1

)
we have

1

T

∥∥∥∥∥∥∥
∑

j∈G1
k(h−1)

x̃′jεj

∥∥∥∥∥∥∥
1

≤
M lnT

√∣∣∣G1
k(h−1)

∣∣∣
T 1/2

and
1

T

∥∥∥∥∥∥∥
∑

j∈G2
k(h+1)

x̃′jεj

∥∥∥∥∥∥∥
1

≤
M lnT

√∣∣∣G2
k(h+1)

∣∣∣
T 1/2

It follows that with probability 1− o
(
T−1

)
,

1

NT
max

1≤k≤K
max
i,j∈G0k

∥∥∥τ ii′(X̃′ε)∥∥∥
1
≤ M lnT

NT 1/2
max
k,h

Skh,

where (Skh)2 = 4
|Vkh|2|Vk(h+1)|2

|G2kh|2|G1k(h−1)|+|G
1
kh|2|G2k(h+1)|

N2
k

+
4|G2kh|2

N2
k |Vk(h+1)|2

+
4|G1kh|2
N2
k |Vkh|2

. Below we use the

fact that

|G1
k(h−1)| <

∣∣G1
kh

∣∣ ≤ Nk, |G2
k(h+1)| <

∣∣G2
kh

∣∣ ≤ Nk, and
∣∣G1

kh

∣∣+
∣∣G2

kh

∣∣ = Nk.

We consider four subcases: (1) h > dk, h+1 < uk, (2) h > dk, h+1 = uk, (3) h = dk, h+1 < uk,

and (4) h = dk, h+ 1 = uk. In subcase (1), we have |Vkh| = |Bh| , |Vk(h+1)| = |Bh+1| , and

(Skh)2 ≤ 4Nk

|Bh|2|Bh+1|2
+

4

|Bh+1|2
+

4

|Bh|2
.

In subcase (2), we have |Vkh| = |Bh| , |G2
kh| =

∣∣Vk(h+1)

∣∣ , and
(Skh)2 ≤ 4Nk

|Bh|2|Vk(h+1)|2
+

4

N2
k

+
4

|Bh|2
.

In subcase (3) we have |G1
kh| = |Vkh| , |Vk(h+1)| = |Bh+1| , and

(Skh)2 ≤ 4Nk

|Vkh|2|Bh+1|2
+

4

|Bh+1|2
+

4

N2
k

.

In subcase (4), we have |G1
kh| = |Vkh| , |G2

kh| =
∣∣Vk(h+1)

∣∣, and
(Skh)2 ≤ 8

N2
k

.

In sum, (Skh)2 ≤ 12Nk
min{N3

k , mindk≤l≤uk |Bl|
2} =: 12φk. It follows that with probability 1− o

(
T−1

)
1

NT
max

1≤k≤K
max
i,j∈G0k

∥∥∥τ ii′(X̃′ε)∥∥∥
1
≤ M lnT

NT 1/2

√
φk.

By the same token, we can show that with probability 1− o
(
T−1

)
1

NT
max

1≤k≤K
max
i,j∈G0k

∥∥∥τ ii′(X̃(s))
∥∥∥

1
≤
M
√
φk

N
max

1≤k≤K

∥∥β∗k − β0
k

∥∥ ≤ M
√
φk

N
tNT for s = 1, 2.
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Then with probability 1− o
(
T−1

)
we have

1

NT
max

1≤k≤K
max
i,j∈G0k

‖τ ij(z)‖1 =
1

NT
max

1≤k≤K
max
i,j∈G0k

∥∥∥τ ii′(X̃′ε)− τ ii′(X̃(1))− τ ii′(X̃(2))
∥∥∥

1

≤ M

N

(
lnT

T 1/2
+ tNT

)√
max

1≤k≤K
φk.

Define

E32 =

{
1

NT
max

1≤k≤K
max
i,j∈G0k

‖τ ij(z)‖1 ≤
M

N

(
lnT

T 1/2
+ tNT

)√
max

1≤k≤K
φk

}
. (A.23)

By choosing suffi ciently small tNT (e.g., tNT = M lnT/T 1/2), we have 1
N

(
lnT
T 1/2

+ tNT

)√
φk �

λ1. By the conditions on λ1, λ2, and φk, we have J12 > 0 on the event E1 ∩ E2 ∩ E32 with
P (E1 ∩ E2 ∩ E32) = 1− o

(
T−1

)
.

In sum, over the event E1 ∩ E2 ∩ E3 with E3 = E31 ∩ E32, we have QNT (β) ≥ QNT (β∗) for any
β ∈ WNT and the strict inequality holds for β 6= β∗. �

Proof of Theorem 3.2. (i) By Theorem 3.1, P (β̂ = β̂
oracle

) → 1 provided ε0 ≡ ε0T → 0 as
T → ∞. It follows that P (K̂ = K) → 1 and P (Ĝ1 = G0

1, . . . , ĜK = G0
K |K̂ = K) → 1 as T → ∞,

perhaps after suitable relabeling among the G0
k’s. In addition,

P
(
Ĝ1 = G0

1, . . . , ĜK = G0
K

)
= P

(
Ĝ1 = G0

1, . . . , ĜK = G0
K |K̂ = K

)
P
(
K̂ = K

)
→ 1 as T →∞.

(ii) Let C be any Borel-measurable set in Rp. By (i),

P
(√

NkT (α̂k −α0
k) ∈ C

)
= P

(√
NkT (α̂k −α0

k) ∈ C|β̂ = β̂
oracle

)
P
(
β̂ = β̂

oracle
)

+P
(√

NkT (α̂k −α0
k) ∈ C|β̂ 6= β̂

oracle
)
P
(
β̂ 6= β̂

oracle
)

= P
(√

NkT (α̂oraclek −α0
k) ∈ C

)
{1− o (1)}+ o (1)

→ P
(√

NkT (α̂oraclek −α0
k) ∈ C

)
as T →∞.

That is,
√
NkT (α̂k − α0

k) shares the same asymptotic distribution as
√
NkT (α̂oraclek − α0

k). As in
the proof of Theorem 3.1, we have

√
NkT (α̂oraclek −α0

k) =

 1

TNk

∑
i∈G0k

x̃′ix̃i

−1

1

TNk

∑
i∈G0k

x̃′iεi.

By Assumption A4, (i) Φ̄k ≡ 1
NkT

∑
i∈G0k

∑T
t=1 x̃itx̃

′
it

P→ Φk > 0 and 1√
NkT

∑
i∈G0k

∑T
t=1 x̃itεit −

BkNT
D→ N (0,Ψk) as (Nk, T ) → ∞ or T → ∞ alone. It follows that

√
NkT (α̂oraclek − α0

k) −
Φ̄−1
k BkNT

D→ N(0,Φ−1
k ΨkΦ

−1
k ) and the conclusion in Theorem 3.2(ii) follows. �

Proof of Theorem 3.3. Let C be defined as in the proof of Theorem 3.2(ii). In view of the fact
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that α̂Ĝk becomes α̂
oracle
k conditional on Ĝk = G0

k, we have by Theorem 3.2(i)

P
(√

NkT (α̂Ĝk −α
0
k) ∈ C

)
= P

(√
NkT (α̂Ĝk −α

0
k) ∈ C|Ĝk = G0

k

)
P
(
Ĝk = G0

k

)
+P

(√
NkT (α̂Ĝk −α

0
k) ∈ C|Ĝk 6= G0

k

)
P
(
Ĝk 6= G0

k

)
= P

(√
NkT (α̂oraclek −α0

k) ∈ C
)
{1− o (1)}+ o (1)

→ P
(√

NkT (α̂oraclek −α0
k) ∈ C

)
.

That is,
√
NkT (α̂Ĝk −α

0
k) is asymptotically equivalent to

√
NkT (α̂oraclek −α0

k) and the conclusion
in Theorem 3.3 follows. �
Proof of Theorem 3.4. The proof is built on and similar to that of Theorem 3.1 and we only
sketch the main difference. The penalty term PB,λ1,λ2(β) now becomes

PN ,λ1,λ2(β) =
R∑
r=1

PBιr ,λ1,λ2(β),

which involves the addition of R penalty terms. As assumed, {Bι1 , . . . ,BιR} together forms an
admissible segmentation net N . For the first group G0

1, there exists a Bιr ∈ N such that G0
1 is

properly segmented by Bιr . To make the notation easier to follow, we rename B = Bιr for the
moment. Recall that G0

1 = ∪u1l=d1V1l, where V1l = G0
1 ∩ Bl, and Bl ∈ B. Without loss of generality

and possibly with some renaming of notation, we can assume Bu1\G0
1 6= ∅ and Bu1 ∩ G0

2 6= ∅.
Here‘\’is the relative complement operator. Next we find the B ∈ N that properly segments G0

2.
Similarly we can write G0

2 = ∪u2l=d2V2l. And so on. Finally, for each G0
k we have G

0
k = ∪ukl=dkVkl. The

redefined segmentation B∗ = {V1d1 , . . . , V1u1 , . . . , VKdK , . . . , VKuK} is an admissible segmentation
according to the definition. Now we decompose PN ,λ1,λ2(β) as

PN ,λ1,λ2(β) = PB∗,λ1,λ2(β) + Pwithin(β) + Pbetween(β),

where PB∗,λ1,λ2(β) is defined according to the new admissible segmentation B∗, Pwithin(β) con-
tains all other penalty terms between members belonging to the same true group, and Pbetween(β)

contains all other penalty terms for members belonging to different true groups.
Next we specify the events.

1. Let E1 be the event that the segmentation net is admissible with the true parameters β0

so that we could generate the B∗ described above. According to the assumption, we have
P (Ec1) ≤ ε1.

2. Let E2 =
{
‖β̂oracle − β0‖ ≤M lnT

√
K/T

}
. According to the proof in Theorem 3.1, we have

P (Ec2) = o(K/T ). Furthermore, over the event E1 ∩ E2, we have property (i) in Theorem
3.1. Note that here PB∗,λ1,λ2(β) plays a similar role to that of PB,λ1,λ2(β) in Theorem 3.1;
Pwithin(β) and Pbetween(β) are zero and a constant, respectively, conditional on E1 ∩ E2.

3. Let E3 be as defined in Theorem 3.1 such that P (Ec3) = o
(
T−1

)
. Combining the proof of

Theorem 3.1 and arguments in the last point, we obtain a similar evaluation as property (ii)
in Theorem 3.1.
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Thus, just as in the proof of Theorem 3.1, we can show that, over the event E1 ∩E2 ∩E3, β̂
oracle

is the unique optimization solution of QNT . In addition, P (E1 ∩ E2 ∩ E3) ≥ 1− ε1 − o (K/T ). �
Proof of Theorem 3.5. First, we consider the case with only one ordered segmentation B, i.e.,
R = 1 and the penalized objective function is Q2,NT (β) = L2,NT (β) + PB,λ1,λ2(β). We show that
with obvious modifications both Propositions A.2 and A.3 continue to hold here. By replacing

QNT with Q2,NT , we note that the Proposition A.2 still holds because α̂
oracle = S(β̂

oracle
) is the

unique solution to the minimization problem with the convex objective function

LG2,NT (α) ≡ 1

2NT

K∑
k=1

∑
i∈G0k

T∑
t=1

ÿit − x̃′itαk +
1

N

K∑
`=1

∑
j∈Gk

x̃′jtα`

2

.

In Proposition A.3, the analysis of I2 is still the same. Now we consider I1 in this new setup. We
denote ÿi ≡ (ÿi1, . . . , ÿiT )′, x̄t,β ≡ 1

N

∑N
j=1 x̃′jtβj , x̄β ≡ (x̄1,β, . . . , x̄T,β)′, z̄β = 1

N

∑N
i=1(ÿi−x̃iβi) =

− 1
N

∑N
i=1 x̃iβi = −x̄β, and similarly for x̄t,β∗ , x̄β∗ , and z̄β∗ . Then

I1 = L2,NT (β)− L2,NT (β∗)

=
1

2NT

N∑
i=1

T∑
t=1

ÿit − x̃′itβi +
1

N

N∑
j=1

x̃′jtβj

2

− 1

2NT

K∑
k=1

∑
i∈G0k

T∑
t=1

ÿit − x̃′itβ
∗
k +

1

N

K∑
`=1

∑
j∈Gk

x̃′jtβ
∗
`

2

=
1

2NT

K∑
k=1

∑
i∈G0k

(ÿi − x̃iβi)
′(ÿi − x̃iβi)−

1

2NT

K∑
k=1

∑
i∈G0k

(ÿi − x̃iβ
∗
k)
′(ÿi − x̃iβ

∗
k)

+
1

T
(z̄′βx̄β − z̄′β∗ x̄β∗) +

1

2T
(x̄′βx̄β − x̄′β∗ x̄β∗)

= − 1

NT

K∑
k=1

∑
i∈G0k

(ỹi − x̃iβ̆k(i))
′x̃i(βi − β∗k)−

1

2T

T∑
t=1

(x̄t,β + x̄t,β∗)
1

N

K∑
k=1

∑
i∈G0k

x̃′it(βi − β∗k)

= − 1

NT

K∑
k=1

uk∑
l=dk

∑
i∈Vkl

(ỹi − x̃iβ̆k(i) +
1

2
(x̄β + x̄β∗))

′x̃i(βi − β∗k).

Note here we can write I1 as in equation (A.13). It can be similarly evaluated and thus Proposition
A.3 also holds in the presence of the time fixed effects. By combining Propositions A.2 and A.3,
together with Lu and Su’s (2017) Theorem 4.1, we can readily prove the case with only one ordered
segmentation B. For the general case, the proof follows from that of Theorem 3.4. �

B A Technical Lemma

This section states and proves a technical lemma that is used in the proofs in the last section.

Lemma B.1 Let ξit denote a dξ×1 random vector with mean 0 and E ‖ξit‖q <∞ for some q > 4.

Suppose that {ξit, i = 1, . . . , N, t = 1, . . . , T} are independent across i and are strong mixing in

15



the time index. Let G0
1, . . . , G

0
K be defined as in the main text with Nk =

∣∣G0
k

∣∣ for k = 1, . . . ,K.

Let αi (·) denote the mixing coeffi cients of {ξit, t = 1, 2, . . .} . Suppose that αi (τ) ≤ α (τ) for all

i = 1, . . . , N where α (τ) ≤ cαρ
τ for some cα > 0 and ρ ∈ (0, 1). Then as T → ∞ and for some

suffi ciently large positive constant M and any positive constant c we have

(i) P
(∥∥∥ 1

NkT

∑
i∈G0k

∑T
t=1 ξit

∥∥∥ ≥ M ln(NkT )

(NkT )1/2

)
= o

(
(NkT )−1

)
for k = 1, . . . ,K,

(ii) P
(

max1≤i≤Nk

∥∥∥ 1
T

∑T
t=1 ξit

∥∥∥ ≥ M ln(T )

T 1/2

)
= o

(
T−1

)
provided q > 8 and Nk = O

(
T 2
)
,

(iii) P
(

max1≤i≤N

∥∥∥ 1
T

∑T
t=1 ξit

∥∥∥ ≥ c) = o
(
T−1

)
provided N = O

(
T 2
)
.

Proof. (i) Let aNkT = M ln(NkT )/
√
NkT and ηNkT = (NkT )ϑ for ϑ = 2

q . Let ιξ be an arbitrary
dξ × 1 nonrandom vector with ‖ιξ‖ = 1. Let 1it = 1

{
‖ξit‖ ≤ ηNkT

}
and 1̄it = 1− 1it. Define

ξ1it = ι′ξ [ξit1it − E (ξit1it)] , ξ2it = ι′ξξit1̄it, and ξ3it = ι′ξE (ξit1̄it) .

Apparently ξ1it + ξ2it − ξ3it = ι′ξξit as E(ξit) = 0. We prove the lemma by showing that

(i1) NkT · P

∣∣∣∣∣∣ 1

NkT

∑
i∈G0k

T∑
t=1

ξ1it

∣∣∣∣∣∣ ≥ aNkT
 = o (1) ,

(i2) NkT · P

∣∣∣∣∣∣ 1

NkT

∑
i∈G0k

T∑
t=1

ξ2it

∣∣∣∣∣∣ ≥ aNkT
 = o (1) , and (i3)

∣∣∣∣∣∣ 1

NkT

∑
i∈G0k

T∑
t=1

ξ3it

∣∣∣∣∣∣ = o (aNkT ) .

First, we prove (i3). By the Hölder and Markov inequalities∣∣∣∣∣∣ 1

NkT

∑
i∈G0k

T∑
t=1

ξ3it

∣∣∣∣∣∣ ≤ max
1≤i≤Nk

max
1≤t≤T

‖E (ξit1̄it)‖

≤ max
1≤i≤Nk

max
1≤t≤T

{
E ‖ξit‖q/2

}2/q {
P
(
‖ξit‖ > ηNkT

)}(q−2)/q

≤ c1q max
1≤i≤Nk

max
1≤t≤T

{
P
(
‖ξit‖ > ηNkT

)}(q−2)/q

≤ c1q max
1≤i≤Nk

max
1≤t≤T

{
η−qNkTE (‖ξit‖q)

}(q−2)/q

= c1qc2qη
−(q−2)
NkT

= O
(

(NkT )−ϑ(q−2)
)

= o(aNkT ),

where c1q ≡ maxi∈G0k
max1≤t≤T

{
E ‖ξit‖q/2

}2/q
and c2q ≡ maxi∈G0k

max1≤t≤T {E (‖ξit‖q)}
(q−2)/q .

Next, we prove (i2). Noting that
∥∥∥ 1
NkT

∑
i∈G0k

∑T
t=1 ξ2it

∥∥∥ ≥ aNkT implies thatmax1≤i≤Nk max1≤t≤T

‖ξit‖ > ηNkT , by the Boole and Markov inequalities, the dominated convergence theorem, and the
stated conditions, we have

P

∥∥∥∥∥∥ 1

NkT

∑
i∈G0k

T∑
t=1

ξ2it

∥∥∥∥∥∥ ≥ aNkT
 ≤ P

[
max
i∈G0k

max
1≤t≤T

‖ξit‖ > ηNkT

]

≤ NkT

ηqNkT
max
i∈G0k

max
1≤t≤T

E
[
‖ξit‖q 1

{
‖ξit‖ > ηNkT

}]
= o

(
(NkT )1−qϑ

)
= o

(
(NkT )−1

)
.
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To prove (i1), we need to rewrite the expression Q1NT ≡ 1
NkT

∑
i∈G0k

∑T
t=1 ξ1it. Without loss of

generality, we assume that we can split the time interval [1, T ] into 2rNkT blocks with each block

of length lNkT = T/ (2rNkT ) � (NkT )
1
2
−ϑ where aT � bT means that aT /bT is bounded away from

both 0 and infinity as T →∞. Then

T∑
t=1

ξ1it =

rNkT∑
s=1

Bi,2s−1 +

rNkT∑
s=1

Bi,2s,

where Bi,s = 1
NkT

∑slNkT
t=(s−1)lNkT+1 ξ1it for s = 1, . . . , 2rNkT . It follows that

P

∣∣∣∣∣∣ 1

NkT

∑
i∈G0k

T∑
t=1

ξ1it

∣∣∣∣∣∣ ≥ aNkT


≤ P

∣∣∣∣∣∣
∑
i∈G0k

rNkT∑
s=1

Bi,2s−1

∣∣∣∣∣∣ ≥ aNkT /2
+ P

∣∣∣∣∣∣
∑
i∈G0k

rNkT∑
s=1

Bi,2s

∣∣∣∣∣∣ ≥ aNkT /2
 .

Below we show that the first term can be bounded by o((NkT )−1). The second term can be studied
by using analogous arguments. Note that

max
i∈G0k

max
1≤s≤rNkT

|Bi,2s−1| =
1

NkT
max
i∈G0k

max
1≤s≤rNkT

∣∣∣∣∣∣
(2s−1)lNkT∑

t=(2s−2)lNkT+1

ι′ξ [ξit1it − E (ξit1it)]

∣∣∣∣∣∣
≤

2lNkT ηNkT
NkT

≡ CξNkT .

By the Davydov inequality, we can readily show that

∑
i∈G0k

rNkT∑
s=1

E
[
(Bi,2s−1)2

]
=

1

N2
kT

2

∑
i∈G0k

rNkT∑
s=1

E


 (2s−1)lNkT∑
t=(2s−2)lNkT+1

ι′ξ [ξit1it − E (ξit1it)]

2
 ≤ C1

NkT

for some C1 <∞. By Bradley’s lemma (e.g., Lemma 1.2 in Bosq 1998), we can construct a sequence
of random variables B∗i,1, B

∗
i,3, . . . such that (1) B

∗
i,1, B

∗
i,3, .. are independent, (2) B

∗
i,2s−1 has the

same distribution as Bi,2s−1, and (3) for any C2 ∈ (0, CξNkT ],

P
{∣∣B∗i,2s−1 −Bi,2s−1

∣∣ > C2

}
≤ 18(CξNkT /C2)1/2α (lNkT ) . (B.1)

Then we have

P

∣∣∣∣∣∣
∑
i∈G0k

rNkT∑
s=1

Bi,2s−1

∣∣∣∣∣∣ ≥ aNkT /2


≤ P

∣∣∣∣∣∣
∑
i∈G0k

rNkT∑
s=1

B∗i,2s−1

∣∣∣∣∣∣ ≥ aNkT /4
+ P

∣∣∣∣∣∣
∑
i∈G0k

rNkT∑
s=1

(
B∗i,2s−1 −Bi,2s−1

)∣∣∣∣∣∣ ≥ aNkT /4


≡ I + II, say.
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In view of the fact that exp (x) ≤ 1 + x+ x2 for |x| ≤ 1/2, 1 + x ≤ exp (x) for any x ≥ 0, and
E [Bi,2s−1] = 0, we have for λNkT ≡ C−1

ξNkT
/2,

E [exp (±λNkTBi,2s−1)] ≤ 1 + λ2
NkT

E
[
(Bi,2s−1)2

]
≤ exp

(
λ2
NkT

E
[
(Bi,2s−1)2

])
.

Then by the Markov inequality, we have

I = P

∣∣∣∣∣∣
∑
i∈G0k

rNkT∑
s=1

B∗i,2s−1

∣∣∣∣∣∣ ≥ aNkT /4


≤ exp

(
−λNkTaNkT

4

)
E

exp

λNkT ∑
i∈G0k

rNkT∑
s=1

B∗i,2s−1

+ exp

−λNkT ∑
i∈G0k

rNkT∑
s=1

B∗i,2s−1


= exp

(
−λNkTaNkT

4

)
×
{∏

i∈G0k

∏rNkT
s=1 E

[
exp

(
λNkTB

∗
i,2s−1

)]
+
∏
i∈G0k

∏rNkT
s=1 E

[
exp

(
−λNkTB∗i,2s−1

)]}
≤ 2 exp

(
−λNkTaNkT

4

)∏
i∈G0k

∏rNkT
s=1 exp

(
λ2
NkT

E
[
(Bi,2s−1)2

])
= 2 exp

−λNkTaNkT
4

+ λ2
NkT

∑
i∈G0k

rNkT∑
s=1

E
[
(Bi,2s−1)2

]
� exp (−M ln (NkT )) = o

(
(NkT )−1

)
,

where the last line follows because λ2
NkT

/(NkT ) =
(

NkT
4lNkT ηNkT

)2
/(NkT ) = NkT

16l2NkT
η2NkT

� l−2
NkT

(NkT )1−2ϑ

� 1 and

λNkTaNkT =
NkT

4lNkT ηNkT

M ln (NkT )

(NkT )1/2
=
M (NkT )

1
2
−ϑ ln (NkT )

4lNkT
�M ln (NkT ) .

In addition, by (B.1) and the fact
aNkT

4NkrNkT
≤ CξNkT

II = P

∣∣∣∣∣∣
∑
i∈G0k

rNkT∑
s=1

(
B∗i,2s−1 −Bi,2s−1

)∣∣∣∣∣∣ ≥ aNkT
4


≤

∑
i∈G0k

rNkT∑
s=1

P

(∣∣B∗i,2s−1 −Bi,2s−1

∣∣ ≥ aNkT
4NkrNkT

)
≤
∑
i∈G0k

rNkT∑
s=1

18

 CξNkT
aNkT

4NkrNkT

1/2

α (lNkT )

= 36NkrNkT

(
CξNkTNkrNkT

aNkT

)1/2

α (lNkT ) ≤ (NkT )−L for suffi ciently large T,

where L can be chosen arbitrarily large as α (lNkT ) decays to zero at the exponential rate and

lNkT � (NkT )
1−2ϑ
2 diverges to ∞ at a polynomial rate.

This completes the proof of (i).
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(ii) The proof is similar to that of (i) and is therefore sketched. Let aT = M lnT/
√
T and ηT =

T ϑ̄ for ϑ̄ = 4
q . Let ιξ be an arbitrary dξ×1 nonrandom vector with ‖ιξ‖ = 1. Let 1it = 1 {‖ξit‖ ≤ ηT }

and 1̄it = 1 − 1it. Define ξ̄1it = ι′ξ [ξit1it − E (ξit1it)] , ξ̄2it = ι′ξξit1̄it, and ξ̄3it = ι′ξE (ξit1̄it) .

Apparently ξ̄1it + ξ̄2it − ξ̄3it = ι′ξξit as E(ξit) = 0. We prove the lemma by showing that

(ii1) T · P
(

max
i∈G0k

∣∣∣∣∣ 1

T

T∑
t=1

ξ̄1it

∣∣∣∣∣ ≥ aT
)

= o (1) ,

(ii2) T · P
(

max
i∈G0k

∣∣∣∣∣ 1

T

T∑
t=1

ξ̄2it

∣∣∣∣∣ ≥ aT
)

= o (1) , and (ii3) max
i∈G0k

∣∣∣∣∣ 1

T

T∑
t=1

ξ̄3it

∣∣∣∣∣ = o (aT ) .

Following the proof of (i3) and using the Hölder and Markov inequalities, we can readily show
that

max
i∈G0k

∣∣∣∣∣ 1

T

T∑
t=1

ξ̄3it

∣∣∣∣∣ ≤ max
i∈G0k

max
1≤t≤T

‖E (ξit1̄it)‖ ≤ c1qc2qη
−(q−2)
T = O

(
T−ϑ̄(q−2)

)
= o(aT ).

Similarly, following the proof of (i2) and using the Boole and Markov inequalities, the dominated
convergence theorem, and the stated conditions, we have

P

(
max
i∈G0k

∣∣∣∣∣ 1

T

T∑
t=1

ξ̄2it

∣∣∣∣∣ ≥ aNkT
)
≤ P

[
max
i∈G0k

max
1≤t≤T

‖ξit‖ > ηNkT

]

≤ NkT

ηqT
max
i∈G0k

max
1≤t≤T

E
[
‖ξit‖q 1

{
‖ξit‖ > ηNkT

}]
= o

(
NkT

1−qϑ̄
)

= o
(
T−1

)
where we use the fact that Nk = O

(
T 2
)
.

For (ii1), we assume that we can split the time interval [1, T ] into 2rT blocks with each block
of length lT = T/ (2rT ) � T

1
2
−ϑ̄. Then

∑T
t=1 ξ̄1it =

∑rT
s=1 B̄i,2s−1 +

∑rT
s=1 B̄i,2s, where B̄i,s =

1
T

∑slT
t=(s−1)lT+1 ξ̄1it for s = 1, . . . , 2rT . It follows that

P

(
max
i∈G0k

∣∣∣∣∣ 1

T

T∑
t=1

ξ̄1it

∣∣∣∣∣ ≥ aT
)
≤ P

(
max
i∈G0k

∣∣∣∣∣
rT∑
s=1

B̄i,2s−1

∣∣∣∣∣ ≥ aT /2
)

+ P

(
max
i∈G0k

∣∣∣∣∣
rT∑
s=1

B̄i,2s

∣∣∣∣∣ ≥ aT /2
)
.

Below we show that the first term can be bounded by o
(
T−1

)
. The second term can be studied by

using analogous arguments. Note that

max
i∈G0k

max
1≤s≤rNkT

∣∣B̄i,2s−1

∣∣ =
1

T
max
i∈G0k

max
1≤s≤rT

∣∣∣∣∣∣
2slT∑

t=(2s−1)lT+1

ι′ξ [ξit1it − E (ξit1it)]

∣∣∣∣∣∣ ≤ 2lT ηT
T

≡ C̄ξT .

By the Davydov inequality, we can readily show that

rT∑
s=1

E
[
(Bi,2s−1)2

]
=

1

T 2

rT∑
s=1

E

 2slT∑
t=(2s−1)lT+1

ι′ξ [ξit1it − E (ξit1it)]

2 ≤ C̄1

T
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for some C̄1 < ∞. By Bradley’s lemma, we can construct a sequence of random variables B̄∗i,1,
B̄∗i,3, . . . such that (1) B̄

∗
i,1, B̄

∗
i,3, .. are independent, (2) B̄

∗
i,2s−1 has the same distribution as B̄i,2s−1,

and (3) for any C̄2 ∈ (0, C̄ξT ],

P
{∣∣B∗i,2s−1 −Bi,2s−1

∣∣ > C̄2

}
≤ 18(C̄ξT /C̄2)1/2α (lT ) . (B.2a)

Then we have

P

(
max
i∈G0k

∣∣∣∣∣
rT∑
s=1

Bi,2s−1

∣∣∣∣∣ ≥ aT /2
)

≤ P

(
max
i∈G0k

∣∣∣∣∣
rT∑
s=1

B∗i,2s−1

∣∣∣∣∣ ≥ aT /4
)

+ P

(
max
i∈G0k

∣∣∣∣∣
rT∑
s=1

(
B∗i,2s−1 −Bi,2s−1

)∣∣∣∣∣ ≥ aT /4
)

≡ III + IV, say.

Noting that E
[
exp

(
±λ̄T B̄i,2s−1

)]
≤ 1 + λ̄

2
TE
[(
B̄i,2s−1

)2] ≤ exp
(
λ̄

2
TE
[(
B̄i,2s−1

)2]) for λ̄T ≡
C̄−1
ξT /2 and by the Markov inequality, we have

III ≤
∑
i∈G0k

P

(∣∣∣∣∣
rT∑
s=1

B̄∗i,2s−1

∣∣∣∣∣ ≥ aT /4
)
≤ 2

∑
i∈G0k

exp

(
− λ̄TaT

4
+ λ̄

2
T

rT∑
s=1

E
[(
B̄i,2s−1

)2])
� exp (−M lnT ) = o

(
T−1

)
for large M,

where the last line follows because λ̄2
T /T =

(
T

4lT ηT

)2
/T = T

16l2T η
2
T
� l−2

T T 1−2ϑ � 1 and λ̄TaT =

T
4lT ηT

M lnT
T 1/2

= MT
1
2−ϑ lnT
4lT

�M lnT.

In addition, by (B.2a) and the fact aT
4rT
≤ C̄ξT ,

IV = P

(
max
i∈G0k

∣∣∣∣∣
rT∑
s=1

(
B∗i,2s−1 −Bi,2s−1

)∣∣∣∣∣ ≥ aT
4

)

≤
∑
i∈G0k

rT∑
s=1

P

(∣∣B∗i,2s−1 −Bi,2s−1

∣∣ ≥ aT
4rT

)
≤
∑
i∈G0k

rT∑
s=1
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(
C̄ξT
aT
4rT

)1/2

α (lT )

= 36NkrT

(
C̄ξT rT
aT

)1/2

α (lT ) ≤ T−L for suffi ciently large T,

where L can be chosen arbitrarily large. This completes the proof of (ii).

(iii) The proof is similar to (ii) and is again only sketched here. Let aT = c and ηT = T ϑ̄ for
ϑ̄ = 4

q . Let ξ̄1it, ξ̄2it, ξ̄3it, B̄i,s, B̄
∗
i,s, and C̄ξT be as defined in the proof of (ii). We prove the lemma

by showing that

(iii1) T · P
(

max
1≤i≤N

∣∣∣∣∣ 1

T

T∑
t=1

ξ̄1it

∣∣∣∣∣ ≥ aT
)

= o (1) ,

(iii2) T · P
(

max
1≤i≤N

∣∣∣∣∣ 1

T

T∑
t=1

ξ̄2it

∣∣∣∣∣ ≥ aT
)

= o (1) , and (iii3) max
1≤i≤N

∣∣∣∣∣ 1

T

T∑
t=1

ξ̄3it

∣∣∣∣∣ = o (1) .
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The proofs of (iii2) and (iii3) are similar to those of (ii2) and (ii3) and omitted. For (iii1), we
now assume that we can split the time interval [1, T ] into 2rT blocks with each block of length
lT = T/ (2rT ) � T 1−ϑ̄−ε where ε is an arbitrarily small positive number such that 1 − ϑ̄ − ε > 0

(which is possible because ϑ̄ = 4
q < 1 under our assumption). Then

∑T
t=1 ξ̄1it =

∑rT
s=1 B̄i,2s−1 +∑rT

s=1 B̄i,2s,where B̄i,s = 1
T

∑slT
t=(s−1)lT+1 ξ̄1it for s = 1, . . . , 2rT . Noting that E

[
exp

(
±λ̄T B̄i,2s−1

)]
≤

1 + λ̄
2
TE
[(
B̄i,2s−1

)2] ≤ exp
(
λ̄

2
TE
[(
B̄i,2s−1

)2]) for λ̄T ≡ C̄−1
ξT /2 and by the Markov inequality, we

have

P

(
max

1≤i≤N

∣∣∣∣∣
rT∑
s=1

B∗i,2s−1

∣∣∣∣∣ ≥ aT /4
)

≤
N∑
i=1

P

(∣∣∣∣∣
rT∑
s=1

B̄∗i,2s−1

∣∣∣∣∣ ≥ aT /4
)
≤ 2

N∑
i=1

exp

(
− λ̄TaT

4
+ λ̄

2
T

rT∑
s=1

E
[(
B̄i,2s−1

)2])
� exp (−cT ε + lnN) = o

(
T−1

)
for any c > 0 and ε > 0,

where the last line follows because λ̄2
T /T =

(
T

4lT ηT

)2
/T = T

16l2T η
2
T

= O(l2TT
1−2ϑ) = O

(
T−1+2ε

)
=

o (1) for ε < 0.5 and λ̄TaT = T
4lT ηT

c = cT ε. In addition, as in the proof of (ii1), we can show that
by Bradley’s lemma, for suffi ciently large T,

P

(
max

1≤i≤N

∣∣∣∣∣
rT∑
s=1

(
B∗i,2s−1 −Bi,2s−1

)∣∣∣∣∣ ≥ aT /4
)
≤

N∑
i=1

rT∑
s=1

18

(
C̄ξT
aT
4rT

)1/2

α (lT )

= 36NrT

(
C̄ξT rT
aT

)1/2

α (lT ) ≤ T−L,

where L can be chosen arbitrarily large. The rest of the proof follows the corresponding part in
the proof of (ii1).

C The Convergence of the Local Linear Approximation Algorithm

The section justifies the convergence of Local Linear Approximation algorithm used to obtain the
numerical solution.

Theorem C.1 Suppose that Assumptions A1—A3 hold. Assume that the initial estimate β̂
initial

along with the tuning parameter δ generates a segmentation B admissible with the true grouping
pattern with probability at least 1 − ε0. Assume that ‖β̂

initial − β0‖∞ ≤ min(λ1,λ2). Then with

probability at least 1 − ε0 − o (K/T ), the Local Linear Approximation algorithm yields β̂
oracle

, the

oracle estimate, as the stable solution.

Proof. We first prove the first iteration yields β̂
oracle

with high probability, and then show

β̂
oracle

is a stable solution. As in the proof of Theorem 3.1, let E1 denote the segmentation B that
is admissible with the true parameter β0, let E2 be as defined immediately below (A.5), and let
E3 = E31 ∩ E32, where E31 and E32 are defined in (A.22) and (A.23), respectively. On the event

E1 ∩ E2 ∩ E3, we show that Local Linear Approximation gives β̂
oracle

as a stable solution.
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Let vij = p′λ1(‖β̂
initial

i − β̂initialj ‖1) and wij = p′λ2(‖β̂
initial

i − β̂initialj ‖1). In the first iteration, we
minimize

QinitialNT (β) =
1

2NT

N∑
i=1

T∑
t=1

(ỹit−x̃′itβi)
2+λ1

L−1∑
l=1

∑
i∈Bl,j∈Bl+1

vij‖βi−βj‖1+λ2

L∑
l=1

∑
i∈Bl,j∈Bl

wij‖βi−βj‖1,

which is a convex function. Remember β∗ = S−1 ◦S∗(β), which is defined in the proof of Theorem
3.1. We will show that

QinitialNT (β) ≥ QinitialNT (β∗) ≥ QinitialNT (β̂
oracle

) (C.1)

for any β ∈ W0
NT , where W0

NT is defined in (A.5).

First, we show the second inequality in (C.1). For i and j in different groups, ‖β0
i −β0

j‖ > 2bNT .

By Assumption A3(ii) and ‖β̂initial−β0‖∞ ≤ λ1, we have ‖β̂
initial

i −β̂initialj ‖1 ≥ 2bNT−2pλ1 > aλ1.
It follows that vij = 0. Similarly, we can show that for i and j in different groups, wij = 0. For i and
j in the same group, βi = βj for β ∈MG , where MG is defined in (A.1). So QinitialNT (β∗) is reduced

to LNT (β∗) = 1
2NT

∑N
i=1

∑T
t=1(ỹit− x̃′itβ

∗
i )

2, which is convex and takes the unique minimum value

when β∗ = β̂
oracle

. Thus the second inequality in (C.1) is proved.
Next, we prove the first inequality in (C.1). By Lagrange mean value theorem and the fact that

QinitialNT (β∗) = LNT (β∗), we have

QinitialNT (β)−QinitialNT (β∗) = − 1

NT

N∑
i=1

T∑
t=1

(ỹit − x̃′itβ
m
i )x̃′it(βi − β∗i )

+λ1

L−1∑
l=1

∑
i∈Bl,j∈Bl+1

vij‖βi − βj‖1 + λ2

L∑
l=1

∑
i∈Bl,j∈Bl

wij‖βi − βj‖1

≡ I1 + I2 + I3.

We only need to show that I2 + I3 > |I1| with probability 1− o(K/T ). But this proof is similar to

the proof of (A.7). Thus we have shown the first iteration will give β̂
oracle

as the unique solution
with probability at least 1− ε0 − o(K/T ).

Now we show the solution β̂
oracle

is stable, i.e., the second iteration still gives β̂
oracle

. Note that

β̂
oracle

also satisfies our requirements on the β̂
initial

over E1. By the proof for the first iteration, we

see that β̂
oracle

is the unique solution to the optimization of QinitialNT (β) with β̂
initial

= β̂
oracle

.

D Asymptotic Validity of the Information Criterion

Theorem D.1 Suppose Assumptions A1—A3 and A5 hold. Then there exists a tuning parameter

vector λ = (δ, λ1, λ2)′ that satisfies all the requirements of Theorem 3.1. In addition, the informa-

tion criterion in (2.9) will select a tuning parameter vector that yields the oracle estimator β̂
oracle

with probability approaching 1.
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Proof. For a tuning parameters vector λ that satisfies all the requirements of Theorem 3.1 and
the corresponding Panel-CARDS estimator β̂(λ) and mean square error σ̂2

Ĝ(λ)
, we have

σ̂2
NT (λ) = 2LNT (β̂(λ))[1{Ĝ (λ) = G}+ 1{Ĝ (λ) 6= G}]

= 2LNT (β̂(λ))1{Ĝ (λ) = G}+ oP (1)
P→ σ2

0 as (N,T )→∞.

Then IC(λ) = ln(σ̂2
NT (λ)) + pK · ρNT → ln(σ2

0) by Assumption A5(ii). For any other λ∗ which
yields K̂∗ = K̂(λ∗) with 1 ≤ K̂∗ < K, by Assumption A5(i) we have

IC(λ∗) = ln(σ̂2
ĜK̂∗

) + pK̂∗ · ρNT ≥ min
1≤K∗<K

min
ĜK∗

σ̂2
ĜK∗

+ pK∗ · ρNT

→ σ̄2 > σ2
0 as (N,T )→∞.

Now, we consider any other λ∗ which yields K̂∗ = K̂(λ∗) > K. Without loss of generality, we
assume that Ĝ(λ∗) is a refinement of the true group structure G. Following the analysis of Lemma
S1.14 in SSP (2016), we have NT [ln(σ̂2

G)− ln(σ̂2
ĜK̂∗

)] = OP (1). Then by Assumption A5(ii)

P (K̂∗ > K) = P ( IC(λ∗) < IC(λ))

= P (NT [ln(σ̂2
G)− ln(σ̂2

ĜK̂∗
)] > (K̂∗ −K)NTρNT )

→ 0 as (N,T )→∞.

In summary, our information criterion will select a tuning parameter vector λ that satisfies all the
requirements of Theorem 3.1 and yields the oracle estimator w.p.a.1.

E Additional Explanations on the Construction of Panel-CARDS

In this section, we give more explanations on the setting up of the segmentation net, the choice of
R and other tuning parameters.

The admissible segmentation net notion is introduced to address some special cases that the
admissible segmentation proposed in CARDS cannot handle. Consider the example in the paper,
there are three groups and the group-specific parameter vectors are

α1 =

 1

1

2

 , α2 =

 1

2

1

 , and α3 =

 2

1

1

 .

No matter which regressor/slope coeffi cient is used to construct the ordered segmentation, the
original basic CARDS theory cannot work here. For example, if the classification is based on the
order statistics of the estimates of the first slope coeffi cient, we can separate group 3 from groups
1 and 2 but cannot separate members in group 1 from those in group 2 because these two groups
share the same value (1) for the first slope coeffi cient. This motivates us to propose the admissible
segmentation net. Based on the first regressor, we are able to separate group 3 from the other
two groups; and based on the second (third) regressor, we can separate group 2 (3) from the other
groups. The use of admissible segmentation net has been justified through the theoretical analysis
and reinforced through Monte Carlo simulations.

23



Unfortunately, there is no perfect way to choose R. We can think of two extreme cases easily
by choosing R = 1 or p. But as the above discussion suggests, the choice of R = 1 may fail to
separate one group from the others. On the other hand, the use of R = p is typically unnecessary
for large p and it slows down the estimation procedure. Based on our experience, a choice of
R = 2 typically works very well in both simulations and applications. So in the paper, we offer
two practical guidelines to choose the R < p regressors, based on which the segmentations are
generated. Like all other Lasso-type methods, the choice of tuning parameters like λ1 and λ2 rests
on the magnitude of the slope coeffi cients. In practice, we recommend choosing them to minimize
the proposed information criterion in (2.9).

F Additional Results on the Simulations

In this section, we include some additional results on the simulations.

F.1 More results for DGPs 1-4

We first report more simulation results for DGPs 1—4 in the paper. Tables 3—6 report the frequency
of choosing different numbers of groups for DGPs 1—4. These tables suggest that when we set the
tuning parameter η to be 10%, the Panel-CARDS procedure performs well even when T is very
small relative to N, and we can correctly determine the number of groups with a large probability.
When η decreases, the Panel-CARDS tends to estimate slightly more groups than the correct
number of groups for small values of T ; but its performance quickly improves as T increases.

F.2 DGPs with dependent regressors or errors

Now, we consider two new DGPs with dependent regressors or errors to check the robustness of
the Panel-CARDS.

DGP 5 is the same as DGP 1 in the main text except that here xit,j = 0.5xi,t−1,j + 0.2µi + eit,j ,
j = 1, 2 and εit = 0.2εi,t−1 + eit, where eit, eit,1, and eit,2 are drawn from i.i.d. standard normal
distribution. DGP 6 is the same as DGP 4 in the main text except that xit,j = 0.5xi,t−1,j + 0.2µi +

eit,j , j = 1, 2, where eit,1 and eit,2 are drawn from i.i.d. standard normal distribution. To generate
the T periods of observations for individual i in DGP 5 (resp. DGP 6), we first generate T + 100

observations with initialization ei0 = eit,1 = eit,2 = 0 (resp. eit,1 = eit,2 = 0), and then throw away
the first 100 observations. The tuning parameter η takes value 0, 2%, and 5%. Apparently, we
have serial dependence in both the regressors and error terms in DGP 5 and in the regressors in
DGP 6. [We do not allow for serially correlated errors in DGP 6 to avoid endogeneity.] As before,
the number of replications is 200.

Tables 7—8 report the classification results for DGPs 5—6. Comparing the results in these two
tables with those in Tables 3 and 6, we find that the presence of dependent regressors and errors
have some negative impact on the determination of the correct number of groups when T is small
(e.g., T = 10), but the negative effect becomes ameliorated as T increases.

Table 9 reports the estimation results for the estimates of the second element in the group-
specific vectors ({α0

k,2}Kk=1) and η = 2% for DGPs 5—6. It reports the correct classification ratio,
RMSE, Bias, and 95% coverage probability of Panel-CARDS in Columns 4—7, and the RMSE, Bias,
and 95% coverage probability of the oracle ones in Columns 8—10. They show similar patterns as

24



Table 3: Frequency of obtaining the estimated number of groups in DGP 1 based on Panel-CARDS.
The true number of groups 3 is marked in bold.

η N T 1 2 3 4 5 6 7 8+
0.10 100 10 0.000 0.060 0.825 0.110 0.005 0.000 0.000 0.000

100 20 0.000 0.000 0.995 0.005 0.000 0.000 0.000 0.000
100 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
100 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 10 0.000 0.055 0.845 0.095 0.005 0.000 0.000 0.000
200 20 0.000 0.000 0.985 0.015 0.000 0.000 0.000 0.000
200 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

0.05 100 10 0.000 0.000 0.505 0.380 0.105 0.010 0.000 0.000
100 20 0.000 0.000 0.990 0.010 0.000 0.000 0.000 0.000
100 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
100 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 10 0.000 0.000 0.455 0.360 0.160 0.025 0.000 0.000
200 20 0.000 0.020 0.935 0.020 0.025 0.000 0.000 0.000
200 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

0.02 100 10 0.000 0.000 0.375 0.265 0.240 0.065 0.045 0.010
100 20 0.000 0.000 0.935 0.065 0.000 0.000 0.000 0.000
100 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
100 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 10 0.000 0.040 0.350 0.165 0.130 0.120 0.070 0.125
200 20 0.000 0.000 0.955 0.015 0.010 0.005 0.000 0.015
200 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

0 100 10 0.000 0.000 0.000 0.000 0.015 0.045 0.045 0.895
100 20 0.000 0.000 0.080 0.250 0.230 0.130 0.115 0.195
100 40 0.000 0.000 0.705 0.270 0.020 0.005 0.000 0.000
100 80 0.000 0.000 0.985 0.015 0.000 0.000 0.000 0.000
200 10 0.000 0.000 0.015 0.010 0.020 0.010 0.070 0.875
200 20 0.000 0.025 0.050 0.060 0.135 0.175 0.135 0.420
200 40 0.000 0.005 0.690 0.235 0.060 0.005 0.005 0.000
200 80 0.000 0.000 0.995 0.005 0.000 0.000 0.000 0.000
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Table 4: Frequency of obtaining the estimated number of groups in DGP 2 based on Panel-CARDS.
The true number of groups 3 is marked in bold.

η N T 1 2 3 4 5 6 7 8+
0.10 100 10 0.000 0.060 0.780 0.160 0.000 0.000 0.000 0.000

100 20 0.000 0.005 0.885 0.075 0.035 0.000 0.000 0.000
100 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
100 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 10 0.000 0.250 0.520 0.205 0.025 0.000 0.000 0.000
200 20 0.000 0.150 0.535 0.295 0.005 0.015 0.000 0.000
200 40 0.000 0.005 0.965 0.030 0.000 0.000 0.000 0.000
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

0.05 100 10 0.000 0.025 0.390 0.450 0.110 0.020 0.005 0.000
100 20 0.000 0.025 0.845 0.075 0.030 0.010 0.015 0.000
100 40 0.000 0.000 0.985 0.015 0.000 0.000 0.000 0.000
100 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 10 0.000 0.075 0.545 0.185 0.130 0.055 0.010 0.000
200 20 0.000 0.150 0.425 0.135 0.130 0.075 0.035 0.050
200 40 0.000 0.000 0.825 0.070 0.040 0.060 0.005 0.000
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

0.02 100 10 0.000 0.005 0.340 0.375 0.195 0.080 0.005 0.000
100 20 0.000 0.015 0.775 0.195 0.010 0.005 0.000 0.000
100 40 0.000 0.000 0.990 0.010 0.000 0.000 0.000 0.000
100 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 10 0.000 0.050 0.235 0.355 0.155 0.095 0.065 0.045
200 20 0.000 0.140 0.435 0.160 0.030 0.075 0.080 0.080
200 40 0.000 0.000 0.885 0.065 0.020 0.005 0.015 0.010
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

0 100 10 0.000 0.000 0.000 0.000 0.015 0.010 0.065 0.910
100 20 0.000 0.020 0.080 0.095 0.165 0.165 0.140 0.335
100 40 0.000 0.000 0.500 0.345 0.105 0.020 0.030 0.000
100 80 0.000 0.000 0.990 0.010 0.000 0.000 0.000 0.000
200 10 0.000 0.000 0.000 0.000 0.000 0.005 0.010 0.985
200 20 0.000 0.000 0.065 0.050 0.070 0.040 0.120 0.655
200 40 0.000 0.000 0.325 0.305 0.125 0.090 0.070 0.085
200 80 0.000 0.000 0.995 0.005 0.000 0.000 0.000 0.000

26



Table 5: Frequency of obtaining the estimated number of groups in DGP 3 based on Panel-CARDS.
The true number of groups 8 is marked in bold.

η N T 6 7 8 9 10 11 12 13+
0.05 100 10 0.735 0.165 0.090 0.005 0.000 0.000 0.000 0.005

100 20 0.000 0.000 0.930 0.070 0.000 0.000 0.000 0.000
100 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
100 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 10 0.095 0.310 0.565 0.030 0.000 0.000 0.000 0.000
200 20 0.000 0.000 0.995 0.005 0.000 0.000 0.000 0.000
200 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

0.02 100 10 0.000 0.000 0.360 0.285 0.250 0.055 0.045 0.005
100 20 0.000 0.000 0.925 0.075 0.000 0.000 0.000 0.000
100 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
100 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 10 0.000 0.000 0.650 0.300 0.040 0.010 0.000 0.000
200 20 0.000 0.000 0.995 0.005 0.000 0.000 0.000 0.000
200 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

0 100 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
100 20 0.000 0.000 0.005 0.030 0.045 0.065 0.145 0.710
100 40 0.000 0.000 0.520 0.280 0.165 0.035 0.000 0.000
100 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
200 20 0.000 0.000 0.005 0.025 0.070 0.175 0.185 0.540
200 40 0.000 0.000 0.690 0.265 0.020 0.025 0.000 0.000
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Table 6: Frequency of obtaining the estimated number of groups in DGP 4 based on Panel-CARDS.
The true number of groups 3 is marked in bold.

η N T 1 2 3 4 5 6 7 8+
0.05 100 10 0.000 0.000 0.835 0.155 0.010 0.000 0.000 0.000

100 20 0.000 0.000 0.985 0.015 0.000 0.000 0.000 0.000
100 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
100 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 10 0.000 0.000 0.815 0.145 0.035 0.005 0.000 0.000
200 20 0.000 0.000 0.935 0.055 0.010 0.000 0.000 0.000
200 40 0.000 0.000 0.985 0.015 0.000 0.000 0.000 0.000
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

0.02 100 10 0.000 0.000 0.485 0.350 0.120 0.030 0.015 0.000
100 20 0.000 0.000 0.935 0.030 0.025 0.010 0.000 0.000
100 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
100 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 10 0.000 0.000 0.550 0.295 0.080 0.065 0.010 0.000
200 20 0.000 0.000 0.875 0.075 0.020 0.025 0.005 0.000
200 40 0.000 0.000 0.995 0.005 0.000 0.000 0.000 0.000
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

0 100 10 0.000 0.000 0.000 0.010 0.005 0.005 0.010 0.970
100 20 0.000 0.050 0.070 0.185 0.210 0.285 0.130 0.070
100 40 0.000 0.005 0.930 0.060 0.005 0.000 0.000 0.000
100 80 0.000 0.000 0.995 0.005 0.000 0.000 0.000 0.000
200 10 0.000 0.000 0.000 0.000 0.000 0.005 0.010 0.985
200 20 0.000 0.010 0.040 0.120 0.100 0.150 0.090 0.490
200 40 0.000 0.005 0.815 0.140 0.035 0.000 0.000 0.005
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
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Table 7: Frequency of obtaining the estimated number of groups in DGP 5 based on Panel-CARDS.
The true number of groups 3 is marked in bold.

η N T 1 2 3 4 5 6 7 8+
0.05 100 10 0.000 0.000 0.420 0.355 0.145 0.080 0.000 0.000

100 20 0.000 0.000 0.925 0.075 0.000 0.000 0.000 0.000
100 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
100 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 10 0.000 0.025 0.390 0.320 0.195 0.060 0.010 0.000
200 20 0.000 0.010 0.885 0.040 0.065 0.000 0.000 0.000
200 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

0.02 100 10 0.000 0.000 0.235 0.300 0.300 0.145 0.020 0.000
100 20 0.000 0.000 0.900 0.075 0.025 0.000 0.000 0.000
100 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
100 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 10 0.000 0.000 0.270 0.145 0.160 0.120 0.085 0.220
200 20 0.000 0.000 0.945 0.020 0.015 0.005 0.000 0.015
200 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

0 100 10 0.000 0.000 0.000 0.000 0.000 0.020 0.045 0.935
100 20 0.000 0.000 0.120 0.115 0.225 0.245 0.120 0.175
100 40 0.000 0.000 0.655 0.250 0.095 0.000 0.000 0.000
100 80 0.000 0.000 0.975 0.025 0.000 0.000 0.000 0.000
200 10 0.000 0.000 0.000 0.005 0.000 0.005 0.035 0.955
200 20 0.000 0.000 0.025 0.035 0.095 0.115 0.155 0.575
200 40 0.000 0.000 0.650 0.250 0.080 0.010 0.005 0.005
200 80 0.000 0.000 0.990 0.010 0.000 0.000 0.000 0.000

those in DGPs 1 and 4. In particular, as T increases, the performance of Panel-CARDS approaches
the oracle estimators fast. This indicates that the Panel-CARDS is robust to DGPs with dependent
regressors or error terms.

G Additional Results on the Application

In this section we include some additional information on the application.

G.1 Country code and name

For the 74 countries used in the application section, Table 10 reports the country code and country
name dictionary.
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Table 8: Frequency of obtaining the estimated number of groups in DGP 6 based on Panel-CARDS.
The true number of groups 3 is marked in bold.

η N T 1 2 3 4 5 6 7 8+
0.05 100 10 0.000 0.000 0.800 0.180 0.020 0.000 0.000 0.000

100 20 0.000 0.000 0.995 0.005 0.000 0.000 0.000 0.000
100 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
100 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 10 0.000 0.000 0.865 0.105 0.010 0.010 0.010 0.000
200 20 0.000 0.000 0.940 0.055 0.005 0.000 0.000 0.000
200 40 0.000 0.000 0.995 0.005 0.000 0.000 0.000 0.000
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

0.02 100 10 0.000 0.000 0.510 0.285 0.190 0.015 0.000 0.000
100 20 0.000 0.000 0.930 0.030 0.020 0.000 0.020 0.000
100 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
100 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 10 0.000 0.000 0.315 0.440 0.185 0.035 0.020 0.005
200 20 0.000 0.000 0.925 0.000 0.040 0.005 0.030 0.000
200 40 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

0 100 10 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.975
100 20 0.000 0.015 0.170 0.240 0.215 0.205 0.045 0.110
100 40 0.000 0.000 0.935 0.065 0.000 0.000 0.000 0.000
100 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
200 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
200 20 0.000 0.020 0.035 0.050 0.160 0.195 0.070 0.470
200 40 0.000 0.000 0.855 0.145 0.000 0.000 0.000 0.000
200 80 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Table 9: Correct classification of individuals and point estimation of α0
·2.

Panel-CARDS Oracle

DGP N T
% of Correct
Classification RMSE Bias Coverage RMSE Bias Coverage

5 100 10 0.710 0.455 -0.002 0.573 0.078 0.003 0.947
100 20 0.946 0.200 0.005 0.837 0.056 0.004 0.953
100 40 0.998 0.042 0.000 0.935 0.036 0.000 0.956
100 80 1 0.026 0.000 0.948 0.026 0.000 0.948
200 10 0.625 0.457 0.015 0.421 0.056 0.001 0.935
200 20 0.917 0.208 0.006 0.809 0.038 -0.000 0.952
200 40 0.983 0.039 0.002 0.931 0.025 0.002 0.944
200 80 1 0.019 0.000 0.947 0.019 0.000 0.947

6 100 10 0.813 0.413 -0.016 0.720 0.097 0.007 0.956
100 20 0.973 0.150 0.009 0.895 0.059 0.008 0.942
100 40 0.999 0.039 0.006 0.951 0.037 0.006 0.953
100 80 1 0.026 0.003 0.937 0.026 0.003 0.937
200 10 0.792 0.401 -0.031 0.668 0.079 0.006 0.953
200 20 0.964 0.156 0.004 0.890 0.045 -0.007 0.946
200 40 0.998 0.039 0.003 0.953 0.028 0.004 0.956
200 80 1 0.019 0.003 0.951 0.019 0.003 0.951
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Table 11: Classification results of countries/regions. By applying the Panel-CARDS, we get 4
groups.

Group 1: “Insignificant β1 and positive β2”group (|Ĝ1| = 26)
Burundi Bolivia Chile Cyprus Dominica
Spain Finland Honduras Iran Jordan
Korea, Rep. Mauritania Malawi Niger Nicaragua
Nepal Panama Philippines Portugal Romania
Rwanda Chad Togo Taiwan Tanzania
Uruguay

Group 2: “negative β1 and negative β2”group (|Ĝ2| = 17)
Argentina China Congo, Rep. Algeria Gabon
Guatemala Indonesia Japan Luxembourg Mexico
Nigeria Singapore El Salvador Trinidad and Tobago Tunisia
Turkey Uganda

Group 3: “negative β1 and positive β2”group (|Ĝ3| = 22)
Benin Burkina Faso Central African Republic Cameroon Colombia
Egypt, Arab Rep. Guinea Guyana India Israel
Jamaica Kenya Sri Lanka Morocco Madagascar
Mali Malaysia Paraguay Sierra Leone Sweden
Syrian Arab Republic South Africa

Group 4: “positive β1 and insignificant β2”group (|Ĝ3| = 9)
Brazil Ecuador Ghana Greece Peru
Thailand Venezuela, RB Congo, Dem. Rep. Zambia

Table 10: Dictionary for country codes and names.
Code Name Code Name Code Name Code Name

ARG Argentina GAB Gabon MDG Madagascar SLV El Salvador

BDI Burundi GHA Ghana MEX Mexico SWE Sweden

BEN Benin GIN Guinea MLI Mali SYR Syrian Arab Rep.

BFA Burkina Faso GRC Greece MRT Mauritania TCD Chad

BOL Bolivia GTM Guatemala MWI Malawi TGO Togo

BRA Brazil GUY Guyana MYS Malaysia THA Thailand

CAF Central African Rep. HND Honduras NER Niger TTO Trinidad and Tobago

CHL Chile IDN Indonesia NGA Nigeria TUN Tunisia

CHN China IND India NIC Nicaragua TUR Turkey

CMR Cameroon IRN Iran NPL Nepal TWN Taiwan

COG Congo, Rep. ISR Israel PAN Panama TZA Tanzania

COL Colombia JAM Jamaica PER Peru UGA Uganda

CYP Cyprus JOR Jordan PHL Philippines URY Uruguay

DMA Dominica JPN Japan PRT Portugal VEN Venezuela, RB

DZA Algeria KEN Kenya PRY Paraguay ZAF South Africa

ECU Ecuador KOR Korea, Rep. ROM Romania ZAR Congo, Dem. Rep.

EGY Egypt LKA Sri Lanka RWA Rwanda ZMB Zambia

ESP Spain LUX Luxembourg SGP Singapore

FIN Finland MAR Morocco SLE Sierra Leone

G.2 Countries within each estimated group

Table 11 reports the countries within each of the four estimated groups. It suggests that each group
contains a fairly large number of countries.

30



1

­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2 2.5 3

2

­1.5

­1

­0.5

0

0.5

1

1.5

2

2.5

Figure 7: Scatter plot of classification results by Lu and Su (2017). The points indicate the value

of the preliminary estimates of β1 and β2. The red circle, blue star, and green triangle correspond

to Groups 1, 2, and 3, respectively.

G.3 Comparison with the results in Lu and Su (2017)

Lu and Su (2017) also study the estimation of the model in (5.1) by using SSP’s (2016) C-Lasso
method. So it is worthwhile to compare their results with ours.

Interestingly, Lu and Su (2017) identify three groups while our Panel-CARDS finds four groups.
Figure 7 displays the Lu and Su’s (2017) classification results based on the C-Lasso method. A
close comparison of regression outputs with those in Lu and Su (2017) suggests that our Groups 2
and 3 have similar estimates of β1 and β2 as those for their Groups 2 and Group 3, respectively.
The major difference lies between our Groups 1 and 4 and their Group 1. Despite this, we find
the Normalized Mutual Information between the two sets of estimated group structures is 0.4241,
which indicates that they overlap with each other surprisingly well.9
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