Large—Scale Computational Screening of
Molecular Organic Semiconductors Using

Crystal Structure Prediction

Jack Yang,"*Y Sandip De,* Josh E. Campbell,! Sean Li,* Michele Ceriotti,?

and Graeme M. Day*!

T Computational System Chemistry, School of Chemistry, University of Southampton, Highfield,
Southampton, United Kingdom, SO17 1BJ.
ISchool of Material Science and Engineering, University of New South Wales, Sydney, New South
Wales 2052, Australia
YAustralian Nuclear Science and Technology Organization, New Illawarra Rd, Lucas Heights,
New South Wales, 2234, Australia.
§National Center for Computational Design and Discovery of Novel Materials (MARVEL),

Laboratory of Computational Science and Modelling, Institute of Materials, Ecole Polytechnique

Federale de Lausanne, Lausanne, Switzerland.

E-mail: g.m.day@soton.ac.uk

Abstract

Predictive computational methods have the potential to significantly accelerate the dis-
covery of new materials with targeted properties by guiding the choice of candidate ma-
terials for synthesis. Recently, a planar pyrrole-based azaphenacene molecule (pyrido[2,3-
blpyrido[3',2":4,5]pyrrolo[3,2-g]indole, 1) was synthesized and shown to have promising prop-
erties for charge transport, which relate to stacking of molecules in its crystal structure. Build-
ing on our methods for evaluating small molecule organic semiconductors using crystal struc-
ture prediction, we have screened a set of 27 structural isomers of 1 to assess charge mobility



in their predicted crystal structures. Machine—learning techniques are used to identify struc-
tural classes across the landscapes of all molecules and we find that, despite differences in the
arrangement of hydrogen bond functionality, the predicted crystal structures of the molecules
studied here can be classified into a small number of packing types. We analyze the predicted
property landscapes of the series of molecules and discuss several metrics that can be used to
rank the molecules as promising semiconductors. The results suggest several isomers with su-
perior predicted electron mobilities to 1 and suggest two molecules in particular that represent
attractive synthetic targets.

Supporting Information Available

Details of the crystal structure classification scheme, information on convergence of the crystal
structure search and number of unique crystal structures per molecule, eigenvalue spectrum of the
SOAP Similarity Kernel, details of the electron mobility calculations, energy-structure-function
maps of all molecules, discussion of uncertainties in the electron mobility calculations.

Introduction

The discovery of functional molecular materials with targeted properties is hindered by the chal-
lenge of predicting the crystal structure that a given molecule will adopt, as well as the often com-
plex relationship between crystal structure and the relevant properties. Computational approaches
for guiding materials discovery have attracted significant attention'~ as a means of identifying
the most promising synthetic targets and, therefore, reducing experimental effort spent on mate-
rials with poor properties. The reliability and scope of methods for computer—guided material
discovery have benefited from recent theoretical advances in configurational space sampling*~”’ ,
force field® and quantum mechanical methods.®!? Developments in these areas mean that not only
wider ranges of atomic configurations can be efficiently sampled, but that their physical and chem-
ical properties can also be confidently predicted prior to laboratory synthesis and characterization.
In particular, there has been rapid development in the field of crystal structure prediction (CSP) for
organic molecules, as exemplified by the latest blind tests in this area.!' An aim of CSP methods
is to produce the full set of stable (low energy) crystal structures available to a molecule and any
given molecule usually leads to a large number of possible structures within a small energy range
from the global energy minimum. !2

A recent advance in the use of computational methods to guide the discovery of functional
materials is the mapping of simulated properties onto the crystal energy landscape produced by
CSP methods. '*!> The result, which we refer to as the energy—structure—function (ESF) map of
a molecule,'® describes the possible crystal structures, their relative stabilities and expected prop-
erties. The assessment of ESF maps of candidate molecules for a targeted function can help rule
out molecules with no (or only high energy) predicted structures with the required properties and
prioritize the synthesis of molecules with promising predicted structures. The approach has suc-
cessfully led to the discovery, crystallization and characterization of a porous organic crystal with
exceptionally high porosity and methane storage capacity. 4

ESF maps can be produced for any functional material where the relevant property is calcula-
ble from the crystal structure. For example, we proposed their use for the assessment of molecules
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as potential organic semiconductors.!®> To illustrate this, we assessed a series of aza-substituted
pentacenes where the targeted property is the electron mobility, which we calculated using Marcus
theory. !> ESF charge mobility maps have also been reported recently for racemic and enantiomer-
ically pure crystal structures of [6]helicene. '®

Because molecular crystals are held together by many weak, competing non—covalent interac-
tions and the possible crystal packing arrangements are typically close in energy, a subtle change
in molecular structure can result in completely different molecular arrangements in the low en-
ergy crystal structures available to a molecule. In turn, the strong dependence of charge mobilities
on relative molecular positions and orientations means that the mobility in the crystal structures
of closely related molecules can be very different. We previously proposed several approaches for
ranking hypothetical molecules by the likelihood that they will lead to a high mobility crystal struc-
ture.'> One option is to use the predicted mobility of the most probable (lowest energy) predicted
crystal structure of each molecule; another choice is the highest mobility among the low energy
predicted crystal structures, and a third suggestion was a landscape-averaged mobility that takes
into account the distribution of properties among the low energy structures. We believe that this is
an advance on previous computational screening methods for molecular organic photovoltaic ap-
plications, '”'® in which the important influence of crystal packing differences between molecules
on the final electronic properties has not been considered.

To further reveal the interplay between chemical substitution patterns and the resulting crys-
tal packing types for azapentacenes in an automated way, a kernel-based machine learning tech-
nique was applied in conjunction with clustering and dimensionality reduction analysis to produce
a sketch-map for the individual crystal packing landscapes for pentacene and two azapentacene
molecules.!® These methods provided valuable insight into the profound changes in the overall
crystal energy landscapes with changes in molecular substitution pattern.

In the present study, we build on these previous works '>! by demonstrating the use of CSP in
screening a large set of molecules with mixed hydrogen bond donors and acceptors as candidates
for small molecule crystalline organic semiconductors. Our study is motivated by the recent report
of (pyrido[2,3-b]pyrido[3’,2":4,5]pyrrolo[3,2-glindole)? (1, Fig. 1), a planar, extended aromatic
molecule with C5, symmetry. 1 adopts a y—type?!' crystal packing, which features columns of
w-stacked molecules, with two orientations of such columns forming a ‘cruciform’ arrangement. 2
The crystal packing in 1 is directed by hydrogen bonds between the two hydrogen bond donors
(-NH from the pyrrole rings) and acceptors (N from pyridine rings). Charge transport calculations
on this structure suggested good carrier mobility in the directions of the molecular stacks.

These results sparked our interest in this class of molecules as an opportunity to explore the
use of CSP and the generation of ESF maps in the screening of a large set of related molecules.
The question we address is: allowing for reorientation and permutation of the pyridine and pyrrole
rings, how does molecular structure affect the crystal packing landscape and what is the impact on
the charge transport properties of these molecular materials? For this study, we investigated 1 and
an additional 27 isomeric molecules (228, Fig. 1), performing CSP on each molecule and charge
mobility calculations on the low energy crystal structures. The set of molecules includes the two—
fold symmetrical (C5,,, 1-16) and the 12 asymmetric molecules (C, 17-28). We did not attempt
to exhaust the list of all possible asymmetric possibilities in this study due to the large number of
possible combinations. In the end, our goal is to identify the isomer with the the greatest potential
to produce a material with large charge carrier mobility.

To our knowledge, this is the largest set of molecules that has been subjected to CSP and prop-
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Figure 1: The known (1) and hypothetical (2-28) molecules studied. Symmetrical (C5,) isomers
(1-16) are colored in orange, to contrast with the asymmetric (C) isomers (17-28).

erty landscape exploration in a single study to—date. We further applied our recently—developed
machine-learning methods to directly compare the differences in crystal packing landscapes across
a set of chemically different molecules in a visually appealing and informative way, which can help
us to further generalize better molecular design strategies for high—mobility organic semiconduc-
tors.

Methodologies

Crystal Structure Prediction

CSP was performed with our Global Lattice Energy Explorer (GLEE) program,?? which uses a
low-discrepancy, quasi-random sampling of crystal packing variables to sample the lattice energy
surface as uniformly as possible. Molecular geometries were optimized at the B3LYP/6-311G**
level of theory using GAUSSIAN092* and kept rigid throughout all crystal structure calculations.
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Trial structures were generated and lattice energy minimized until a total of 49,000 successfully
lattice energy minimized crystal structures were produced for each molecule, all with one molecule
in the asymmetric unit: 5000 in the most commonly observed space group for organic molecules,
P2,/c, and 2000 in each of the 22 next most common space groups: P1, C2/c, P2,2,2,, P2,, Pbca,
Pna2y, P4,2,2, P2,2,2, Pc, P3,, P4, Fdd2, Pccn, Cc, P2/c, C2, P6,, Pca2,, I4,/a, P1, R3 and
Pbcn. Each of these starting structures is unique, but leads to a much smaller number of unique
crystal structures after lattice energy minimization and removal of duplicates.

The removal of duplicate crystal structures from the final structure sets was initially performed
within individual space groups using the method described in Ref. 22. Overall clustering across all
space groups was then performed using the COMPACK method.?* A thoroughly sampled energy
landscape is characterized by most low energy local minima having been sampled multiple times.
Figures showing the number of duplicates in the low energy region of the landscape for each
molecule are shown in the supporting information, along with a table listing the number of unique
crystal structures located for each molecule. The results suggest that, within the space groups
considered here, the energy surfaces are well sampled with a low chance that low energy structures
have been missed.

All lattice energy minimizations were performed using an anisotropic atom-atom force field
energy model for intermolecular interactions with the DMACRYS software,?> with space group
symmetry constrained throughout the optimizations. Lattice energies were calculated with a re-
vised version of the W99 intermolecular atom-atom potential*® combined with a distributed mul-
tipole electrostatic model based on the molecular charge densities calculated from a distributed
multipole analysis?’ of the B3LYP/6-311G** density, with multipoles up to hexadecapole on each
atom.

The arrangement of molecules in the predicted crystal structures was classified into one of
the crystal packing types typically discussed for polyaromatic hydrocarbons?!' (such as herring-
bone, sheet, ) using the method described in Ref. 15, which uses the angles between the planes
of nearest neighbour molecules to classify the structure type (details are given in the supporting
information). Hereafter, we refer to this as the heuristic structure classification.

Charge Mobility Calculations

Electron mobility calculations were performed for all predicted crystal structures of each molecule
that are within 7 kJ/mol of that molecule’s global lattice energy minimum. This energy window
is chosen to include most experimentally observable structures, based on the distribution of calcu-
lated lattice energy differences between observed polymorphs.?® Our mobility calculations use a
hopping model and hopping rates between molecules in their crystal structure geometry calculated
from Marcus theory. Details of these calculations are given in the supporting information.

Crystal Packing Comparisons with Machine Learning

It is often useful to classify observed or predicted molecular crystals into a small number of fami-
lies of related structures; such classification is traditionally inspired by the manual inspection of the
structures?!**3% and automated based on simple heuristic rules. !> In this work we also use an en-
tirely data-driven approach. Similarities between structures from the crystal structure landscapes



of all 28 molecules were measured using the SOAP-REMatch Kernel,*"*? which assesses similar-
ity of structures based on a comparison of local atomic environments corresponding to spherical
regions with cutoff r. around each atom. Based on the kernel-induced distance, the sketch-map
dimensionality reduction technique®® was used to generate a low-dimensional projection of the
data in which the proximity between structures is represented as faithfully as possible. Details
for constructing the SOAP-REMatch Kernel and sketch-map are provided in our previous pub-
lication.'® A small difference is the choice of . = 5 A for the cut—off distance, and v = 1 as
the regularization parameter for the SOAP-REMatch Kernel, that were chosen to emphasize the
information on the packing rather than molecular geometry, which is dominant for shorter cutoff
distances. For sketch-map we used the parameters 0 = 0.12,a = A = 4, b = B = 6, that were ad-
justed following the empirical rules discussed in Ref. 34. The dimensionality reduction procedure
was complemented by a clustering using the HDBSCAN* algorithm, that identifies regions of high
density in the crystal structure space associated with the kernel metric. Clusters containing fewer
than 5% of the structures were not considered statistically robust and were tagged as outliers.

Results and Discussion

Crystal Structure Prediction
Validation - Molecule 1

We first validate our CSP methodologies on molecule 1, whose predicted energy—density land-
scape is shown in Fig. 2. The experimental crystal structure is located by the CSP search as the
global lattice energy minimum. An overlay of the predicted global minimum with the experimental
crystal structure is shown in Fig. 3, with comparison of the lattice parameters given in Table 1.
The small root—-mean—squared deviation in atomic positions from a 20-molecule cluster from the
crystal structure (RMSD5,=0.269 A, Fig. 3) and good agreement in lattice constants between the
experimental and predicted crystal structure demonstrates excellent performance of the force field
energy model. Our confidence in the calculated lattice energies is also based on successful CSP
for pentacene and an azatetracene, ' and results of benchmarking against experimentally derived
lattice energies.*

The low energy region of the crystal structure landscape for molecule 1 (Fig. 2a) is dominated
by the y—type of packing, featuring stacking of the planar molecules in columns (Fig. 2b). Hy-
drogen bonds are formed between these columns, arranging them into a ‘cruciform’ pattern in the
lowest energy structure. A few sheet-like structures are also present at low energy. Herringbone
packing, as seen in the parent [5]phenacene (picene) crystal structure,® is strongly disfavoured for
molecule 1.

Crystal Structure Landscape Analysis Across All Molecules

Having validated the underlying lattice energy model, we proceed to discuss how the crystal struc-
ture landscapes change across isomers with different substitution patterns. To guide this analysis,
we apply dimensionality reduction and clustering techniques to reveal the most important crystal
packing patterns in a relatively unbiased way.
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Figure 2: a) Predicted energy—density landscape for molecule 1. Each point on the landscape corre-
sponds to a distinct predicted crystal structure and the predicted global minimum (red open circle)
corresponds to the experimentally observed crystal structure (see Fig. 3). Structures on the land-
scape are colour—coded according to their packing type; packing types are shown schematically in
b), viewed down the long axis of the molecule.

In our previous work,!? the SOAP-REMatch similarity kernel for measuring structural simi-
larity was combined with the HDBSCAN* clustering method and the sketch-map dimensionality-
reduction method to produce low-dimensional projections of the individual crystal packing land-
scapes of pentacene and two azapentacenes. This single-landscape analysis was shown to pro-
vide useful information on the packing types available to individual molecules. Here, the method
is applied to the more challenging task of analyzing the crystal packing landscapes of multiple
molecules in a single sketch-map, which we refer to as multi-landscape analysis.

Due to its general nature, the SOAP kernel reports on intra-molecular correlations (essentially,
the geometry of each isomer) as well as on the inter-molecular correlations (crystal packing and
intermolecular contacts) between structures. The dual nature of the information encoded in SOAP-
REMatch similarity leads to an increased intrinsic dimensionality of the landscape (as revealed by
the decay of the eigenvalues of the kernel similarity matrix, shown in the supporting information)
compared to that observed for single landscape analysis, where all crystal structures contain the
same molecule. This higher effective dimensionality makes the choice of parameters of the ker-
nel and of the sketch-map projection less straightforward. Previously,!® we found that using the
hyperparameters which led to good lattice energy predictions from a Gaussian Process regression
also led to insightful sketch-maps, although alternative choices of the environment cutoff distance
emphasized different features in the crystal structures (close contacts vs long-range packing). The
heterogeneous nature of the multi-landscape comparison exacerbates the dependence of the ap-



Table 1: Unit cell parameters of the experimental crystal structure of molecule 1 (Cambridge
Structural Database reference code CASPUK) and global lattice energy minimum from CSP. The
predicted crystal structure was converted to the reduced unit cell for comparison.

Experimental Predicted

a(A) 9.783 9.593
b(A) 4.714 4.725
c(A) 26987 27.328
a®) 90 90
5C) 99270 100.382
v 90 90

Figure 3: Overlay of the CSP predicted global minimum crystal structure (purple) with the ex-
perimentally determined crystal structure for molecule 1. RMSD5=0.269 A. Hydrogen atoms are
hidden.

pearance of the map on the parameters of the kernel. In particular, short-range cutoffs tend to
emphasize the chemical differences between the molecules, leading to maps that contain little in-
formation on the packing motifs, whereas very large cutoffs contain too much information and do
not reveal meaningful patterns. We found by trial-and-error that a cutoff around 5 A provides the
most insightful representation. Clearly, this manual and somewhat arbitrary optimization proce-
dure makes the machine-learning analysis more biased than in the single landscape case.

The sketch-map that we obtain (Fig. 4) includes all predicted structures of the 28 molecules.
With the parameters that we chose, the map captures the fact that different molecules can generate
similar packing motifs; the 2D map features “islands” of structures that are populated by crystal
structures from several different isomers (Fig. 4c). This finding is consistent with the concept of
supramolecular synthons, according to which different molecules can adopt similar crystal packing
motifs because they contain similar structure-directing functional groups: in this case, the same set
of hydrogen bond donors and acceptors.

The clustering analysis confirms this finding; five high-dimensional HDBSCAN*-detected
clusters are found across the landscapes (Fig. 4a), each comprising several different isomers.
By comparing with Fig. 4b, where the structures are coloured by the heuristic structure classifi-
cation based on the interplanar angles between molecules (Fig. 2b), it is clear that 7 is the most
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Figure 4: Sketch-map representations of the low—energy crystal structure landscapes for all 28
molecules investigated in the present study. Distances between molecules are computed using
the metric associated with a SOAP-REMatch kernel with cutoff radius r. = 5A and v = 1.
Axes are not shown because only relative distances, and not absolute positions, are meaningful
in a sketch-map. Each crystal structure on the sketch-map is color—coded according to: (a) the
clusters detected by HDBSCAN* method, that correspond to groups of structurally homogeneous
configurations in the metric space associated with the kernel; outliers that could not be associated
to a clear cluster are colored in gray; (b) crystal packing type according to conventional packing
motifs, identified based on simple heuristic rules; (c) isomer number (see Fig. 1); (d) calculated
lattice energies and (e) predicted electron mobilities (in cm?/Vs).

common crystal packing adopted by the full set of molecules. This dominant cluster is also iden-
tified by the HDBSCAN* method, with good registry between the automatic clustering (cluster
3, dark blue in Fig. 4a) and heuristic classification (yellow cluster in Fig. 4b). The fact that
automatically-detected structural motifs, as well as heuristic packing classes, comprise crystals
formed by different molecules and also by molecules with different point-group symmetry suggest
that both from the point of view of local environments (as detected by the SOAP-REMatch) and
from the point of view of the stacking, there is no obvious relation between molecular symmetry
and preferred packing.

Sheet—like crystal packing is less favored by most of the molecules. This packing type corre-
sponds closely with cluster 1 from the clustering analysis (red cluster in Fig. 4a) and is mainly
concentrated in the top/right-hand—side of the sketch-maps, which dominates the crystal pack-
ing landscapes for molecules 5, 12 and 16. The crystal packing similarities among these three
molecules could be largely attributed to the similarities in their molecular structures — within the
molecule, hydrogen bond donors and acceptors are located close to each other on the convex side



of the molecule. The herringbone packing motif is so infrequent across the crystal structure land-
scapes that it is not classed as a cluster by the HDBSCAN* approach.

While more work is needed to automate the definition of an effective representation of multi-
landscape maps, the possibility of representing simultaneously the crystal landscapes of multiple
molecules in a way that highlights the presence of common structural features is already very useful
as a guide to the interpretation of the interplay between molecular structure and supramolecular
packing.

The crystal structures with the lowest (most negative) lattice energies mostly occupy the right—
hand—side of the sketch-map (Fig. 4d), a significant portion of which correlate to crystals formed
by symmetric molecules. The trends in lattice energies between molecules show how the arrange-
ment of functional groups can alter the overall strength of intermolecular interactions. However,
in property—driven material design, it is the physical/chemical properties, in this case, charge mo-
bilities, rather than the lattice energies, that are of most interest. Fig. 4e reveals that, among all the
low lattice energy crystal structures considered, a small number stand out with particularly high
electron mobility; these crystal structures belong to molecule 5 and are located in the same region
of the sketch-map as the lowest energy crystal structures. This coincidence of high mobility with
energetic stability is promising for the experimental realization of these crystal structures.

Assessing Molecules using ESF Maps

Our primary motivation for this study is to assess whether any of the hypothetical molecular crys-
tals of 2-28 offer improved properties in comparison to the reported molecule 1. For organic
semiconductors, we judge the fitness of a molecule by the calculated carrier mobility. CSP is key
to this assessment by providing putative crystal structures of each isomer and the validation on 1
demonstrates that the structure prediction methods used here are reliable for this type of molecule.

An important aspect of the molecular assessment is that CSP provides a complete landscape
of possible crystal structures for each molecule, which allows us to examine the charge carrier
mobilities for all structures on these landscapes. We focus our analysis on the low energy region
of the landscapes and have calculated mobilities for crystal structures within 7 kJ/mol of the global
minimum crystal structure for each molecule; most known polymorph pairs are separated by 7
kJ/mol or less,?®37 so we take this as the experimentally accessible energy range on the CSP energy
landscapes. There is a small risk that experimentally realizable crystal structures exist above this
energy cutoff, but we are limited by the computational expense of the transfer integral calculations.
More efficient methods for the electron mobility calculations, such as machine learning explored in
Ref. 19 or utilizing the relationship to wavefunction overlap,*® will allow higher energy structures
to be included in future studies.

Having an ensemble of possible crystal structures for each molecule provides a wealth of infor-
mation, but complicates the process of ranking the molecules according to the predicted properties
because each molecule is associated with a range of possible properties, depending on which struc-
ture it adopts when crystallized. In our previous work, we considered five quantities for ranking
a small set of polyaromatic !> molecules with potentially good electrical performance in their re-
spective crystalline forms:

e )\ _, the electron reorganization energy, which is only weakly affected by crystal packing;
we treat this as a molecular property, which we calculate for the isolated molecule. A large
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Table 2: Summary of charge transport parameters for molecules 1-28. A _ is the calculated electron
reorganisation energy. f gy is the predicted electron mobility for the global lattice energy mini-
mum crystal structure. i, 1S the maximum predicted electron mobility among the low energy
predicted crystal structures. A F is the lattice energy gap from the predicted global minimum to the
crystal structure with the highest electron mobility. (u) is the ensemble-averaged electron mobility
across all crystals with calculated mobilities (see text). A bar chart is included in every column to
ease visualization of the variations of each parameter.”

Molecule A_ /eV uen /em? (V)™1  pimax /ecm? (Vs) 1 AE /kImol—T () /cm? (Vs)~ 1
1 0200 N 0240 1 1788 N 4751 I 0496 MW
2 0258 N 0233 1 0548 M 2964 N 0246 1
3 0210 NN 0563 W 2.119 . 5207 I 0359 N
4 0222 . 1.523 . 1.523 . 0.000 1.523 .
5 0201 . 2706 NN 4277 IS 402 S 1283 NN
6 0248 NN 0.001 | 1359 4494 I 0.092 |1
7 0205 . 0.006 | 0.006 | 0.000 0.006 |
8 0222 NN 0.005 | 0.005 | 0.000 0.005 |
9 0226 N 0.004 | 1.600 NN 6509 NN 0249 1
10 0303 NN 0002 | 0.002 | 0.000 0.002 |
11 0242 0.003 | 0.883 N 4082 N 0.157 1
12 0291 0.131 1 1.046 3.931 I 0283 N
13 0260 0.100 1 0427 W 5612 I 0.092 1
14 034 NN 0301 N 0301 N 0.000 0253 1
15 0253 . 1356 1356 0.000 0568 W
16 033 N 0001 | 0404 W 3.951 N 0.072 |
17 0211 . 0470 M 2.545 NN 6938 NN 0750
18 0212 . 0.008 | 1462 NN 6917 NN 0247 1
19 0214 N 1.028 N 2,088 N 4939 I 0904 N
20 0224 NN 029 N 0303 N 4045 I 0300 N
21 0227 R 0757 W 0757 W 0.000 0501 W
22 0250 I 0.002 | 0219 1 6856 NI 0006 |
23 0262 I 0.001 | 1.019 6759 NN 0044 |
24 0224 N 0.005 | 1.524 NN 5745 N 0544 M
25 0215 . 0.102 1 0961 N 6737 HEEEEEEE 0149 1
26 0275 I 0.002 | 0534 M 6921 NN 0077 |
27 0293 0.002 | 0.002 | 0.000 0.002 |
28 0281 1.068 N 1.068 N 0.000 0337 N

¢ The electron mobilities for structures with low mobilities are underestimated due to numerical instabilities in the calculation of the transfer
integrals, t. A possible correction is discussed in the supporting information. This does not affect the results for the best ranking molecules.

A_ has a detrimental effect on the charge mobility due to the exponential decay of charge
transfer rate with respect to A_. Thus, ignoring the effects of crystal packing, molecules with
low A_ are favoured.

® Ly 1S the calculated electron mobility for the predicted global lattice energy minimum
crystal structure for a given molecule, which is the most likely structure to crytallize experi-
mentally.

® [imax 1S the largest electron mobility for all crystal structures within 7 kJ/mol of the global
minimum in lattice energy for a given molecule. This describes the best ;o that can be
achieved for a given molecule.

e AF is the energy difference to the global minimum at which iy, is observed. A large AE
means that ., for that molecule is less likely to be achieved, since lower energy structures
are more likely to be observed.

e (1) is a Boltzmann-like averaged electron mobility over the landscape of possible crystal
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structures for a given molecule, which we calculate as:

_ S iexp (AEi/B)
S0 exp (~AE /)

where 1; is the electron mobility in the i—th structure and A FEj is its lattice energy difference
with respect to the predicted global minimum for that molecule. 5 = 2.70 kJ/mol is a decay
constant fitted to the probability of observing a pair of polymorphs with an energy difference
of AE;.? This quantity provides a measure of the collective likelihood that a given molecule
will crystallize into a structure with a large carrier mobility.

(h) &)

The values of these five quantities for all 28 molecules investigated here are summarized in Table
2 and a selection of the CSP landscapes and ESF maps are shown in Fig. 5 (the rest are given in
the supporting information).
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Figure 5: Predicted ESF maps for molecules 5 (a, e), 19 (b, f), 17 (c, g) and 15 (d, h), whose
landscape-averaged electron mobilities, (1), are among the highest of the molecules studied. The
landscape for molecule 4, which has the largest (1), is not shown because there is only one structure
in the low energy region. Extended landscapes, up to 30 kJ/mol, are shown in the supporting in-
formation. (a-d) show the landscapes with structures color coded according to their corresponding
crystal packing types. (e-h) show the ESF maps, where the size and color of each point represents
the magnitude of the calculated electron mobility. Mobilities were not calculated for structures
that are more than 7 kJ/mol above the respective predicted global minimum, so these structures are
represented with grey crosses.

The molecular property A_ can be used to rank molecules as potential organic semiconductors
without the use of CSP to provide structure predictions or any other form of structural hypothesis.
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There is a wide range of values for the reorganization energy, from 0.200 (mol. 1) to 0.341 eV
(mol. 14). Thus, this measure predicts molecule 1 to be the best molecule among the entire set,
followed closely by § and 7, whose A_ are only 1 and 5 meV higher than that of 1, respectively.

The drawback of assessing molecules without considering crystal packing is clear from the
weak relationship between pgy and A_; for example, 7, which has one of the lowest values of
A_, has a very low predicted electron mobility in its global minimum energy predicted crystal
structure. In contrast, some of the isomers with high A_ achieve good electron mobilities in their
lowest energy crystal structures; for example, molecule 15 has pgy, 5.6 times greater than that
of molecule 1, despite a 53 meV higher \_. Thus, we find that, over this range of reorganization
energies, strong electronic coupling due to favourable crystal packing can make up for a moderately
high A\_ while, conversely, a molecule with a promising, low A_ can lead to poor properties if it
adopts an unfavourable crystal packing.

Figure 6: Crystal packing of the predicted global minimum energy crystal structure for molecule
4. Hydrogen atoms are hidden.

Molecule 4 ranks second among the whole set in terms of 1)/, adopting a similar y—type
packing as 1 (Fig. 6). 4 is also exceptional because there are no other predicted crystal structures
within the 7 kJ/mol lattice energy window of the global minimum. Such large energy gaps between
structures are unusual on CSP landscapes and this gives a high confidence that the predicted, high
e structure would be observed if this molecule was synthesized. The energy differences between
predicted structures are much smaller for many of the other molecules, meaning that the absolute
ranking, and hence i)y, 1S sensitive to uncertainties due to limitations of the force field model, as
well as the neglect of lattice dynamical contributions to relative free energies?® and the influence of
thermal expansion®** which, combined, can contribute a few kJ/mol to lattice energy differences.

Molecule 5 (s = 2.706 cm?/Vs) has the highest predicted electron mobility among the global
lattice energy minimum crystal structures of all 28 isomers, eclipsing the calculated mobility of the
observed (and global minimum predicted) crystal structure of 1 (1, = 0.240 cm?/Vs). The extended
hydrogen—bonded flat ribbon structure in the predicted global minimum structure for 5§ (Fig. 7a)
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Figure 7: Crystal packing of the the predicted global minimum (a,b) and the structure with the
maximum electron mobility (c, d) for 5, viewed normal to and along the molecular sheets. Hydro-
gen atoms are hidden and hydrogen bonds are shown as dashed blue lines in (a) and (c).

promotes m—stacking along the out—of—plane direction. 5 is the only molecule for which the low
energy part of the CSP landscape is dominated by sheet-like crystal packing (Fig. 5) and is also the
molecule with the largest i,,,x, Which is found in a higher energy structure (Fig. 7b) with similar
hydrogen—bonded ribbons as the predicted global minimum.

The fimax results show that the global energy minimum crystal structure rarely gives the best
electron mobility and structures with the highest electron mobilities are predicted at elevated lattice
energies for many of the screened molecules (Table 2, Fig. 5). This is consistent with our previous
investigations, !> where dimers within crystal structures with significant co—facial overlap (giving
rise to largest ¢ and p) are often energetically penalized by relatively large exchange—repulsion
interactions.

Finally, we compare (1), which gives a probabilistic assessment of the molecules, taking into
account all of their low energy predicted crystal structures. By this measure, molecules 5 and 4
are most promising, although their order is reversed compared to previous measures (i and
taar); molecule 4 has the largest (u) across the whole set. This originates from the high gy, for
4 and the large energy gap between the global minimum and the second most stable structure on
the predicted lattice energy landscape, leading to (1) = fimax = ftgm- Molecule 5 is slightly less
favourable according to (1) because, despite very high pigps and finay, the landscape for 5 also
contains many low energy crystal structures with low predicted electron mobilities (Fig. 5).

The difference in ranking of the molecules between the single-crystal structure measures ({imax
and pcar) and the landscape-averaged approach ({u)) provides an interesting dilemma: structure
prediction is more certain for 4 because there is only one low-energy predicted crystal structure,
so we would be more confident in obtaining this structure with its high predicted p.. Molecule §,
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on the other hand, has a greater potential because of higher x. in some of its predicted structures.
However, a risk in targeting 5 for synthesis is the crowded energy landscape that also includes
low-mobility structures and the possibility that one of these less promising crystal structures is
adopted instead of the predicted global minimum or the structure with fi,,,.. The choice of which to
target synthetically, or whether to synthesize both candidate molecules, depends on the associated
synthetic difficulty, which we do not attempt to judge in the present work.

Remarks on Computational Cost

Within the broad context of computational screening of functional materials, the accuracies of the
underlying computational methods are not the only scientific challenge but also the associated cost
in terms of computational time required, which has a direct impact on the feasible size of chemical
search space that can be comfortably explored.

In this work, the total cost of CSP for all 28 molecules was approximately 31.7 kilo CPU hours
(corresponding to just under a week on 200 dedicated CPUs), whereas the cost of computing the
charge transfer integrals for the 8786 molecular dimers needed for electron mobility calculations
using DFT was approximately 43.9 kilo CPU hours. The computational cost associated with struc-
ture and property predictions is similar and the high cost of running DFT calculations for property
prediction is immediately apparent. Ongoing efforts to accelerate these types of property calcula-
tions, using methods such as machine-learning of structure-property relationships, ! are required
to further advance the field.

Conclusions

Crystal structure prediction has sometimes been seen as computationally demanding and slow,
which would be unsuitable for screening purposes within a suitable time scale for material discov-
ery. With advances in sampling methods, making use of efficient, accurate atom-atom force fields
and utilizing parallel, high performance computing, this is no longer true for rigid molecules of
the size studied here. In this work, we demonstrate the combination of CSP with charge mobility
predictions to screen 28 isomeric molecules as potential organic semiconductors. These molecules
were hypothesized as structural variants of the recently synthesized 1. We further combined a
recently developed machine—learning method to construct, for the first time, a multi—landscape
sketch-map to directly compare the crystal packing landscapes of a set of related molecules to
reveal common structural classes among the landscapes and to correlate these classes with crystal
properties.

Ongoing challenges still remain to make the most of the methods presented here in the process
of the discovery of new materials. Some of the most pressing are (i) the selection of a diverse set of
molecular candidates — in this work, the set of molecules has been constructed manually, based on
chemical intuition — (ii) acceleration of the crystal structure prediction and property prediction cal-
culations which, in this work, contribute almost equally to the overall computational cost, and (iii)
the determination of a data-driven procedure to determine the best parameters for the sketch-map
projection and the kernel construction to further automate the structural analysis across multiple
crystal structure landscapes, revealing the relation between molecular structure, crystal packing
and materials properties.
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The variation of electron mobility within the crystal structure landscape of a given molecule,
and between landscapes of related molecules, demonstrates the important influence of crystal pack-
ing on this property: improved intermolecular coupling can more than make up for a moderate
increase in the molecular reorganization energy. Within the molecules included in our study, we
find that the most commonly favored crystal packing across all molecules investigated here is the
packing motif, which is predicted to be favored for molecules with different point-group symmetry
and functional group substitution patterns. Furthermore, sketch-map and cluster analysis suggests
that crystal structures from different molecules that favor the —type packing exhibit a high degree
of structural similarity, which can be attributed to the abilities of these molecules to form similar
short-ranged hydrogen-bond patterns.

With regards to the screening of electron mobilities, we find that a number of the hypothetical
molecules are predicted to give higher electron mobilities than molecule 1. Molecules 4 and 5 are
most promising among the 28 molecules that we considered. Molecule 5 has the second lowest
reorganization energy and a crystal energy landscape that is dominated by sheet-like crystal pack-
ings, leading to very high electron mobility in some its predicted crystal structures, including its
global lattice energy minimum and a higher energy crystal structure that gives the highest electron
mobility across all 28 crystal structure landscapes. Molecule 4 is attractive because of high elec-
tron mobility in the global minimum energy crystal structure and a large energy gap to the next
hypothetical crystal structure; the global energy minimum is highly likely to be observed in this
case.

The study represents an important advance in the use of CSP for guiding materials discovery,
demonstrating the ability to screen a moderately large set of molecules on a timescale that is shorter
than what would be required for synthesis and testing of the set of candidates. We hope that this
work stimulates more widespread use of these computational methods, as well as encouraging the
synthesis and characterization of some of the promising hypothetical molecules that have been
identified.
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