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Abstract

Counting by weighing is widely used in industry and often more efficient than count-

ing manually which is time consuming and prone to human errors especially when

the number of items is large. Lower confidence bounds on the numbers of items in

infinitely many future bags based on the weights of the bags have been proposed re-

cently in Liu et al. (2016). These confidence bounds are constructed using the data

from one calibration experiment and for different parameters (or numbers), but have

the frequency interpretation similar to a usual confidence set for one parameter only.

In this paper, the more challenging problem of constructing two-sided confidence in-

tervals is studied. A simulation-based method for computing the critical constant is

proposed. This method is proven to give the required critical constant when the num-

ber of simulations goes to infinity, and shown to be easily implemented on an ordinary

computer to compute the critical constant accurately and quickly. The methodology

is illustrated with a real data example.

Keywords: Confidence bounds; Confidence level; Confidence set; Counting by weighing;

Statistical inference; Statistical simulation.
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1 Introduction

Our motivating problem comes from banking industry. Clients bring in bags of one-penny

coins to exchange for bank notes or one- or two-pound coins. In order to pay the clients, the

company needs to know the numbers of coins in the bags. To count the number of coins in a

bag manually is not only prone to human errors but also time consuming (and so expensive),

especially when the number is large. An efficient alternative is counting by weighing. The

bags can be weighed and the (net) weight Wi grams of a bag can be used to infer the number

ni of coins in the bag for infinitely many future bags i = 1, 2, · · ·. Counting by weighing is

a well-known practice used by banks, and also other industries to count, for example, the

numbers of plant seeds, bolts/nails, printed labels or medical tablets etc (cf. Nelson, 1983,

Guttman and Menzefricke, 1986, Yu, 1989, Mullennix, 1990, Nickerson, 1993, 2003, 2008,

Arntzen et al., 1994, Ridout and Suntheralingam, 1997, Ridout and Roberts, 1997). While

we focus on counting one-penny coins in this paper, the methodology developed can clearly

be applied to counting other items.

As in Liu et al. (2016), it is assumed throughout this paper that the weight of the coins

in a bag can be weighed accurately, and the weight of a one-penny coin U has a normal

distribution N(µ, σ2) for some µ and σ2. Due to the randomness in U , the exact number

of one-penny coins in a bag with weight Wi cannot be pin-pointed. The company is more

interested in a lower confidence bound on the exact number ni of one-penny coins in a bag

with weight Wi, which can be used as a conservative estimation of ni. This problem has been

solved in Liu et al. (2016). From the clients or neutral point of view, however, a two-sided

confidence interval for ni is more interesting and the focus of this paper.

The two-sided confidence intervals are more challenging to construct than the one-sided
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confidence bounds as the boundary of the region for which the probability needs to be

computed is no longer explicitly available. The novelty of this paper is that a simulation-

based method for computing the required critical constant is proposed, which is proved to

give the required critical constant when the number of simulations goes to infinity and can

be easily implemented on a computer using R software. Similar to the lower confidence

bounds, the two-sided confidence intervals are for infinitely many unknown parameters ni

(i = 1, 2, · · ·) based on just one calibration data set, but still have a frequentist interpretation

similar to a usual confidence interval for one unknown parameter only.

The layout of the paper is as follows. The simple situation where µ and σ2 are assumed to

be known is considered in Section 2. The more realistic situation where both µ and σ2 are

unknown parameters is studied in Section 3. An example is given in Section 4. Section 5

contains conclusions and discussion. Finally some mathematical details are provided in the

appendix

2 Known µ and σ2

Assume the values of µ and σ2 are known in this section. This simple situation helps to

motivate and understand the method developed in Section 3 for the more realistic situation

that the values of µ and σ2 are unknown. It is clear that distribution (Wi − niµ)/
√
niσ2 ∼

N(0, 1). We construct the confidence set for ni in (1) by using Neyman’s (1937) method of

inverting a family of acceptance sets for testing H0 : ni = n:

C(Wi) =
{
n : |Wi − nµ|/

√
nσ2 < c

}
(1)

where c is a suitably chosen critical constant whose determination is discussed next.
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We require that, among the infinitely many confidence sets C(Wi) for possibly different

parameters ni (i = 1, 2, · · ·), at least proportion β will contain the true ni for the pre-

specified β (close to one), that is,

lim inf
N→∞

1

N

N∑
i=1

I{ni∈C(Wi)} ≥ β (2)

where IA denotes the indicator function of set A and so 1
N

∑N
i=1 I{ni∈C(Wi)} is the proportion

among the N confidence sets C(Wi) that contain the true ni. Note that

lim
N→∞

1

N

N∑
i=1

I{ni∈C(Wi)} = lim
N→∞

1

N

N∑
i=1

P {ni ∈ C(Wi)} = lim
N→∞

1

N

N∑
i=1

(2Φ(c)− 1) = 2Φ(c)− 1 ,

where the first equality above follows from the classical strong law of large numbers (cf.

Chow and Teicher, 1978, pp.333), and the second from the definition of C(Wi) in (1). Hence

c is set to be z(β+1)/2, the (β+1)/2 quantile of the N(0, 1) distribution, in order to guarantee

the property in (2) with equality.

Since C(Wi) is a standard β level confidence set for ni for each i, even though the confidence

sets C(Wi) are for possibly different parameters ni (i = 1, 2, · · ·), the interpretation of the

property in (2) is similar to coverage frequency of a standard confidence set.

Straightforward manipulation shows that the confidence set C(Wi) in (1) is given by all the

natural numbers contained in the interval

[
2µWi + c2σ2 − cσ

√
c2σ2 + 4µWi

2µ2
,

2µWi + c2σ2 + cσ
√
c2σ2 + 4µWi

2µ2

]
. (3)

Note that a sensible point estimator of ni is Wi/µ.
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3 Unknown µ and σ2

In this section the more realistic situation, where both the values of µ and σ2 are unknown

and so need to be estimated independently of the future weights Wi, is considered. For this

the company carries out the following calibration experiment to estimate µ and σ: weigh

the jth bag known to contain mj one-penny coins and record the weight W0j, j = 1, · · · , k.

Assume k ≥ 2 in order to be able to estimate σ2. This includes the special case that each

bag contains only one one-penny coin and so W0j, j = 1, · · · , k are the weights of a random

sample of k one-penny coins. From Liu et al. (2016), the calibration data E = {(mj,W0j) :

j = 1, · · · , k} can be used to estimate µ and σ2 in the following way:

µ̂ = r(W01 + · · ·+W0k) ∼ N(µ, rσ2) with r =
1

m1 + · · ·+mk

σ̂2 =
1

ν

k∑
j=1

(
W0j −mjµ̂√

mj

)2

∼ σ2χ2
ν/ν with ν = k − 1

and µ̂ and σ̂2 are independent.

Due to independence of the weight of a future bag Wi and the calibration data E , we have

Wi − niµ̂
σ̂
√
ni + rn2

i

∼ tν

Using Neyman’s (1937) method again, we construct

C(Wi) =

{
n :

|Wi − nµ̂|
σ̂
√
n+ rn2

< c

}
, i = 1, 2, · · · (4)

as the confidence set for ni, where c is a critical constant whose determination is considered

below.

As in Section 2, we require that the proportion of all the future confidence sets C(Wi)

(i = 1, 2, · · ·) that include the true ni is no less than the pre-specified β, that is,

lim inf
N→∞

1

N

N∑
i=1

I{ni∈C(Wi)} ≥ β. (5)
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An argument similar to that in Liu et al. (2016) shows that a sufficient condition for

guaranteeing (5) is

inf
ni∈N

EWi|EI{ni∈C(Wi)} ≥ β (6)

where EWi|E denotes the conditional expectation with respect to the random variable Wi

conditioning on the calibration data E (or, equivalently, µ̂ and σ̂), and N denotes the set of

natural numbers known a priori to contain all the future ni values. It is sensible to assume

that all the future ni values are in a known range [nl, nu] even though the individual future

ni values are unknown. For example, it is sensible to assume all future ni’s must be at least

nl, nl = 5 say, since it is highly unlikely that someone would bring in less than nl 1p coins

to exchange for bank notes or £1 or £2 coins. Similarly, one can easily set a conservative

upper limit nu from the capacity of the weighing scale. Hence we assume all the future ni

values are contained in the known N = {n : nl ≤ n ≤ nu} in the rest of this paper.

Now straightforward manipulation, using the definition of C(Wi) in (4), show that

inf
ni∈N

EWi|EI{ni∈C(Wi)} = inf
ni∈N

Ψ
(√

rniZ, c
√

1 + rniX
)

(7)

where Ψ (a, b) = Φ (a+ b) − Φ (a− b), Z = (µ̂ − µ)/
√
rσ2 ∼ N(0, 1), X = σ̂/σ ∼

√
χ2
ν/ν,

and Z and X are independent. Note that the last expression in (7) depends on the random

variables Z and X (via µ̂ and σ̂), and so the condition in (6) cannot be guaranteed for all Z

and X. For example, if Z is large and X is small then the expression in (7) can be smaller

than 0.5 and so β. Hence we guarantee (6) with a large probability 1 − α with respect to

the randomness in Z and X:

PE

{
inf
ni∈N

Ψ
(√

rniZ, c
√

1 + rniX
)
≥ β

}
≥ 1− α. (8)

This in turn guarantees that

PE

{
lim inf
N→∞

1

N

N∑
i=1

I{ni∈C(Wi)} ≥ β

}
≥ 1− α. (9)
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The interpretation of this statement is that, based on one set of calibration data E , one

constructs confidence sets C(Wi) for ni for all future bags (i = 1, 2, · · ·) and claims that

at least β proportion of these confidence sets do contain the true ni. Then we are 1 − α

confident with respect to the randomness of the calibration data E that the claim is correct.

We now consider how to compute the critical constant c so that the probability in (8) is

equal to 1−α. For the one-sided case considered in Liu et al. (2016), numerical quadrature

is used to compute the probability and then a searching algorithm is used to compute the

required critical constant. The two-sided case in this paper is more challenging than the

one-sided case since the region of (Z,X) specified in the probability sign in (8) does not have

a simple expression and so the computation of the probability using numerical quadrature

is not straightforward. Hence we propose the following Monte Carlo simulation method to

find the critical constant c.

In each simulation indexed by s, first generate independent Zs ∼ N(0, 1) and Xs ∼
√
χ2
ν/ν.

Then compute c = cs such that

inf
ni∈N

Ψ
(√

rniZs, c
√

1 + rniXs

)
= β . (10)

Since the infimum in the expression above is over the finite set N , the expression on the left

hand side of the equality in (10) is easy to compute for any given c > 0. Note further that

this expression is strictly increasing in c > 0 and hence the c that solves the equation in (10)

is easy to find and denoted as cs. Repeat the simulation process S times to get c1, c2, · · · , cS.

Sort the cs’s as c[1] ≤ · · · ≤ c[S] and use c[〈(1−α)S〉] as c, where 〈a〉 denotes the integer part of

number a.

It is shown in the appendix that c[〈(1−α)S〉] → c almost surely (a.s.) as S → ∞. Hence

c[〈(1−α)S〉] can be as close to the exact critical constant c as required by using a sufficiently
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large S. An R program has been written to implement this computation and is available

from the authors. For the example given in Section 4, S = 1, 000, 000 is used. Based on our

experiments with different random seeds, the critical value c[〈(1−α)S〉] based on S = 1, 000, 000

is accurate to two decimal places at least and so more than sufficient for practical purpose.

It is noteworthy that a similar simulation method can be devised to find the critical constant

for the lower confidence bounds in Liu et al. (2016). See Section 4 for more information on

numerical results.

It is straightforward to show that the confidence set C(Wi) in (4) is given by the interval

[L(Wi), U(Wi)] where

L(Wi) =


2µ̂Wi+c

2σ̂2−cσ̂
√
c2σ̂2+4µ̂Wi+4rW 2

i

2(µ̂2−rc2σ̂2)
if µ̂2 − rc2σ̂2 6= 0

W 2
i

2µ̂Wi+c2σ̂2 otherwise

(11)

U(Wi) =


2µ̂Wi+c

2σ̂2+cσ̂
√
c2σ̂2+4µ̂Wi+4rW 2

i

2(µ̂2−rc2σ̂2)
if µ̂2 − rc2σ̂2 6= 0

W 2
i

2µ̂Wi+c2σ̂2 otherwise

(12)

Note that P{µ̂2 − rc2σ̂2 = 0} = 0 since µ̂ and σ̂2 are continuous random variables. In-

cooperating the priori information that nl ≤ ni ≤ nu, the final confidence set is given by all

the natural numbers in the interval

C(Wi) = [nl, nu] ∩ [L(Wi), U(Wi)] . (13)

4 An example

Consider the example given in Liu et al. (2016). In the calibration experiment, eleven bags of

one-penny coins of known numbers (m1, · · · ,m11) = (100, 200, · · · , 1100) have been weighed

to give the corresponding weights (grams) (W0,1, · · · ,W0,11) = (356.97, 716.67, 1060.96, 1427.10,
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1781.28, 2130.23, 2489.94, 2849.74, 3223.32, 3575.76, 3907.94). The data give µ̂ = 3.564 with

r = 1/6600 and σ̂2 = 0.101 with degrees of freedom ν = 10.

Let us assume that the number of coins in each future bags ni is known a priori to be between

nl = 100 and nu = 1400, and set β = 0.95 and α = 0.05. Then the critical constant in

(4) is computed by our R program (using S=1,000,000 simulations for all the computations

in this section) to be c = 3.232, which is larger than the critical constant 2.833 for the

lower confidence bounds given in Liu et al. (2016) as expected. Now for any future bag

with weight Wi, one can use the formula in (13) to compute the confidence interval C(Wi)

on ni. For example, if Wi = 4000 then C(Wi) = [1112.1, 1132.9] while the lower confidence

bound is 1118.9 and the point estimate is 1122.5; if Wi = 4600 then C(Wi) = [1279.5, 1302.2]

while the lower confidence bound is 1286.8 and the point estimate is 1290.8. These results

show that the confidence interval C(Wi) is quite tight around the point estimate. It is

clearly advantageous to use the confidence interval instead of the point estimate due to the

confidence statement (9) associated with the confidence interval. The confidence interval

provides the extra information on the plausible upper bound on ni, which is of interest to

the clients but not available from the lower confidence bound given in Liu et al. (2016).

If we treat 3.564 and 0.101 as the known values of µ and σ2, respectively, then the formula

in (3) can be used to compute the confidence interval C(Wi) on ni, ignoring the value of α.

For example, if Wi = 4000 then C(Wi) = [1116.6, 1128.3] while the lower confidence bound is

1117.5 and the point estimate is still 1122.5; if Wi = 4600 then C(Wi) = [1284.6, 1297.1] while

the lower confidence bound is 1285.6 and the point estimate is still 1290.8. The differences

between the two confidence intervals in (3) and (11) are small in this example.

To get some idea on how sensitive the critical constant c and the confidence interval C(Wi)
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in (11) are to the bounds nl and nu, we have computed c, C(400) and C(4000) for various

(nl, nu). From the results given in Table 1, one can see that both c and the confidence

intervals C(400) and C(4000) are not sensitive to the small changes in (nl, nu). Hence one

may prefer to use more conservative bounds (nl, nu), for example (nl, nu) = (50, 1500) instead

of (nl, nu) = (100, 1400), to make sure that all the future ni are in the interval [nl, nu].

Table 1: Critical constant c, C(4000) and C(400) for various (nl, nu)

(nl, nu) (100, 1400) (50, 1400) (150, 1400) (100, 1300) (100, 1500) (50, 1500)

c 3.2320 3.2287 3.2335 3.2258 3.2380 3.2351

C(4000) [1112.05, [1112.06, [1112.05, [1112.07, [1112.04, [1112.04,

1132.96] 1132.95] 1132.97] 1132.94] 1132.98] 1132.98]

C(400) [109.21, [109.21, [109.20, [109.20, [109.20, [109.20,

115.37] 115.37] 115.37] 115.37] 115.38] 115.37]

To assess the accuracy of the critical constants c given in Table 1, we have tried different

random seeds in our R program. For example, when (nl, nu) = (100, 1400), the critical

constants from different random seeds are 3.2320, 3.2317, 3.2351, 3.2350, 3.2311, 3.2347,

3.2337. This indicates that the critical constants based on one million simulations are

accurate to two decimal places at least. Of course one can always increases the number of

simulations to achieve higher accuracy, but at the cost of longer computation time. Note that

only one critical constant needs to be computed for use with infinitely many future bags,

and it takes about sixty five minutes to compute one critical constant using one million

simulations on an ordinary Window’s PC (Core(TM2) Due CPU P8400@2.26GHz).

We have also written an R program using the simulation method proposed in this paper to

compute the critical constant c for the lower confidence bounds in Liu et al. (2016). For

example, when (nl, nu) = (100, 1400), β = 0.95 and α = 0.05, the critical constant c = 2.833
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in Liu et al. (2016) is computed to be 2.8336 from our R program based on one million

simulations. This agrees with the observation above that the critical constant based on one

million simulations is accurate to at least two decimal places.

5 Conclusions

Construction of two-sided confidence intervals for infinitely many future ni’s based on the

data E collected from only one calibration experiment is considered in this paper. Two-sided

confidence intervals are more interesting, from the clients or neutral point of view at least,

than the lower confidence bounds, which are of interest mainly to the company.

A simulation-based method is proposed for the computation of the critical constant c, from

which the confidence intervals can be easily calculated. We have proved that this method

provides the accurate critical constant when the number of simulations goes to infinity

and demonstrated that this method allows c to be computed accurately and quickly on an

ordinary PC. This method can be easily adapted to compute the critical constant for the

lower confidence bounds in Liu et al. (2016). But it is not clear how the computation

method in Liu et al. (2016) can be used to compute the critical constant for the confidence

intervals in this paper.

As in Liu et al. (2016), the two sources of randomness in the calibration data E and in

a future weights Wi have been treated differently, and the confidence intervals have the

interpretation that, with confidence level 1− α about the randomness in E , the proportion

of the confidence intervals that contain the true ni’s is at least β.

If the two sources of randomness are treated on equal footing then a standard confidence
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interval for one ni is given by (4) with c = tν,(1+β)/2, the (1 + β)/2 quantile of the tν

distribution. This confidence interval has the following coverage frequency interpretation.

Do one calibration experiment to collect E and measure the weight Wi of one future bag,

based on which the confidence set C(Wi) for this one ni is constructed; then the frequency

of a large number of confidence sets that contain the corresponding ni’s is approximately β.

Note that one calibration data set E is used only once with one future Wi to produce one

confidence set in this construction method. This is clearly different from the real situation

in which the data E from one calibration experiment is used repeatedly for inferences for

infinitely many future ni values.

Finally, several problems warrant further research, which include the optimal design of the

calibration experiment which not only produces good confidence intervals in a certain sense

but also reduces the cost and possible human errors in counting the coins manually in

the calibration experiment, and possibly non-normality of the weight of a one-penny coin.

Based on the specific calibration data E given in Section 4 at least, the confidence sets C(Wi)

contain more than one natural number (and so the counting from these confidence sets is

not “accurate”). This may be because we are unlucky in getting the E which overestimate

the unknown σ2. It is clear that if σ2 = 0 then counting by weighing is accurate. It is

interesting to study how small σ2 should be in order that the confidence sets C(Wi) contain

only one natural number with a pre-specified large chance. Furthermore, it is interesting to

investigate the possibility of generalizing the methods of this paper and Liu et al. (2016) to

deal with situations in which the bags contain two (or more) different types of coins.
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6 Appendix: Mathematical details

Note that the exact critical constant c satisfies

PE

{
inf
ni∈N

Ψ
(√

rniZ, c
√

1 + rniX
)
≥ β

}
= 1− α. (14)

To show that c[〈(1−α)S〉] → c a.s. as S → ∞, it suffices to show that, ∀ ε > 0, we have

P{|c[〈(1−α)S〉] − c| > ε i.o.} = 0, which is implied by

lim
k→∞

∞∑
S=k

(
P
{
c[〈(1−α)S〉] − c > ε

}
+ P

{
c[〈(1−α)S〉] − c < −ε

})
= 0; (15)

see, for example, Chow and Teicher (1978, pp. 41-42, Lemmas 1 and 2).

Now from the definition of c[〈(1−α)S〉] we have

P
{
c[〈(1−α)S〉] − c < −ε

}
= P

{
c[〈(1−α)S〉] < c− ε

}
= P


S∑
j=1

I{infni∈N Ψ(
√
rniZj , (c−ε)

√
1+rniXj)≥β} > 〈(1− α)S〉


= P

 1

S

S∑
j=1

(Yj − E(Yj)) >
1

S
(〈(1− α)S〉 − SE(Y1))

 (16)

where Yj = I{infni∈N Ψ(
√
rniZj , (c−ε)

√
1+rniXj)≥β}. Note that Y1, Y2, · · · are i.i.d. Bernoulli

random variables with success probability

p = E(Yj) = P
{

inf
ni∈N

Ψ
(√

rniZj, (c− ε)
√

1 + rniXj

)
≥ β

}
= (1− α)− δ

for some δ = δε > 0 since P
{

infni∈N Ψ
(√

rniZj, c
√

1 + rniXj

)
≥ β

}
= (1 − α) from (14).

Hence, for all sufficiently large S, we have (〈(1− α)S〉 − SE(Y1)) /S > δ/2 and so the

probability in (16) is no more than

P

 1

S

S∑
j=1

(Yj − E(Yj)) > δ/2


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≤ E

 S∑
j=1

(Yj − E(Yj))

4

/ (Sδ/2)4 (17)

= Sp(1− p) (3Sp(1− p)− 6p(1− p) + 1) /(Sδ/2)4 (18)

where the inequality in (17) follows directly from the Markov inequality (cf. Chow and

Teicher, 1978, pp.88), and the equality in (18) follows from direct calculation of the fourth

central moment of the binomial random variable
∑S
j=1 Yj (cf. Chow and Teicher, 1978, p.41).

From the upper bound in (18), it is clear that

lim
k→∞

∞∑
S=k

P
{
c[〈(1−α)S〉] − c < −ε

}
= 0. (19)

A similar argument shows that

lim
k→∞

∞∑
S=k

P
{
c[〈(1−α)S〉] − c > ε

}
= 0. (20)

The combination of (19-20) establishes (15) and so completes the proof.
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