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Abstract  9 

Two-dimensional exposures of fracture networks can be represented as large planar graphs that 10 

comprise a series of branches (B) representing the fracture traces and nodes (N) representing their 11 

terminations and linkages.  The nodes and branches may link to form connected components (K), 12 

which may contain fracture-bounded regions (R) or blocks. The proportions of node types provide a 13 

basis for characterizing the topology of the network.  The average degree <d> relates the number of 14 

branches (|B|) and nodes (|N|) and Euler’s formula establishes a link between all four elements of 15 

the graph with |N| - |B| + |R| - |K| = 0.   16 

Treating a set of fractures as a graph returns the focus of description to the underlying relationships 17 

between the fractures and, hence, to the network rather that its constitutive elements.  Graph 18 

theory provides a wide range of applicable theorems and well-tested algorithms that can be used in 19 

the analysis of fault and fracture systems. We discuss a range of applications to two-dimensional 20 

fracture and fault networks, and briefly discuss application to three-dimensions.   21 
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1. Introduction to fracture networks 30 

In his famous treatise on mineral mining, Georgius Agricola (1558) showed that veins form networks.  31 

His amazing woodcuts (Fig. 1a) show these vein networks as they intersect the surface and also his 32 

three-dimensional interpretation in the sub-surface.  He proposed that veins both bifurcate and 33 

cross-cut one another (Fig. 1b), noting their relative position and inferred age rather than presenting 34 

details of their size and orientation. His was very much a topological view of fracturing, dating from 35 

some 180 years before Leonhard Euler’s (1736) work that laid the foundations of graph theory and 36 

topology. 37 

In mathematics, a graph is a structure comprising a set of nodes (or vertices), with pairs of nodes 38 

linked by branches (or edges).  Using this definition, we can represent a fracture network as a graph, 39 

whereby the fractures are the branches and the nodes are their tips and intersections (Fig. 1c). 40 

Graph theory examines the relationships between the nodes and branches that are independent of 41 

their geometry (e.g. position, length, orientation), and hence it can be used to describe the topology 42 

of a fracture network (e.g., Jing and Stephansson, 1994; 1997). We use ‘graph’ in this quite specific 43 

sense throughout the paper, and it should not be confused with other uses, such as for charts or 44 

sketching of functions. Graphs have a wide range of applications in other fields (Table 1) and many 45 

useful analogies exist when considering fracture networks.  Here, we focus on some basic ideas, 46 

mainly in two-dimensions, and then suggest some areas for future development.  For details and 47 

formal proofs of the basic theorems, the reader is referred to standard works on network topology 48 

and graph theory (e.g., West, 1996; Wilson, 1996; Bondy and Murty, 2008). 49 

In the last 450 years, and particularly in the 20th Century, there has been a progressive advance in 50 

understanding of: a) fracture geometries, with millions of fracture orientations being plotted on 51 

stereograms and rose diagrams; b) kinematics of fracture opening and shear; and eventually c) the 52 

application of fracture mechanics (e.g. Pollard and Aydin, 1988).  Yet there has been little application 53 

of topology and graph theory to understanding the relationships between fractures and their 54 

interactions, although Hancock (1985) did propose a system of using capital letters in the Latin 55 

alphabet to describe the style of a joint system that has parallels with the nodal system described 56 

below.   57 

By going back to examining the relationship between fractures, as Agricola (1558), we outline a new 58 

approach to fracture networks using graph theory, which allows us to move beyond simple 59 

description of geometric parameters (e.g. orientation and length).  In this paper, we will explore how 60 

some basic ideas of graph theory, mainly in two-dimensions, contribute to an understanding of how 61 

fractures in a network are related, distributed and inter-connected.  This approach shifts emphasis 62 

https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Topology
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to the network as a whole rather than focussing only on the components, and provides new insights 63 

into fracture-related processes, e.g. fluid flow models. 64 

2. Networks, topology and graphs 65 

A fracture network is a system of fractures developed within a rock volume (Fig. 1d), where the 66 

positions, orientations and relationships between the individual fractures are mapped in two- or 67 

three-dimensions.  The fractures may or may not intersect. Where they do so, they form intersection 68 

lines in three-dimensions that appear as points or nodes where they cut a two-dimensional surface.  69 

The fractures that develop in a single deformation event are likely to have interrelated kinematics 70 

and mechanics. Fractures may be active during different events, including earlier formed fractures 71 

commonly being reactivated during later events. Understanding fracture networks requires both an 72 

analysis of the individual fractures and of networks as a whole.  73 

 Node/branch model 74 

The node/branch model (Manzocchi, 2001; Sanderson and Nixon, 2015) divides a fracture trace into 75 

a series of branches (B), each with a node (N) at both ends (Fig. 1c).  The branches may represent 76 

fractures of any type (opening mode fractures, faults, deformation bands, stylolites, etc.).  The nodes 77 

represent the tips and intersections of fractures and are important because they indicate locations 78 

where a fracture interacts with the rock or another fracture.  This representation scheme can be 79 

applied at all scales, from micro-fractures within grains to tectonic plates (Fig. 2a).   80 

Three types of node are commonly found in two-dimensional fracture networks: I-nodes at the 81 

isolated tips of fractures; Y-nodes where one fracture meets or abuts against another; and X-nodes 82 

where two fractures cross-cut one-another.  To understand why two-dimensional exposures of 83 

fracture networks are dominated by these three node types, we need to realise that they are 84 

branch-generated rather than node-generated.  By this we mean that the fractures represent the 85 

fundamental physical element, with the nodes describing how the fractures relate to one another.  If 86 

the fractures remain isolated, their tips are I-nodes. If two fractures abut, we get Y-nodes, whereas if 87 

the fractures cross-cut one another, we get X-nodes.  The possibility of a system of fractures 88 

intersecting or crossing at nodes with more than four branches is negligible, which contrasts with 89 

many social and communication networks where people or locations (nodes) may have friendships 90 

and other interactions represented by any number of branches.  91 

An initial step in characterising a fracture network is to count the number of nodes (|N|) of each 92 

type - |I|, |Y| and |X|.   93 

|N| = |I| + |Y| + |X|      (1) 94 
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Since an I-node has 1 branch, a Y-node has 3 branches and an X-node has 4 branches, and each 95 

branch has a node at each end, if follows that the number of branches |B| is: 96 

 |B| = (|I| + 3|Y| + 4|X|)/2     (2) 97 

The proportion of each node type (P) is: 98 

PI = |I|/|N|, PY = |Y|/|N| and PX = |X|/|N|   (3) 99 

Since only three node types exist and their proportions sum to one, a simple way to characterise the 100 

topology of the network is to use a triangular plot (Fig 2e) (Manzocchi, 2002; Sanderson and Nixon, 101 

2015). 102 

 Networks as graphs 103 

In two-dimensions, a trace map or image of a fracture network (Fig. 2b) can be divided into a system 104 

of nodes and branches (Fig. 2c), whose arrangement forms a graph.   There are many different types 105 

of graph.  If the branches are simple lines, with no implied sense of direction, the graph is termed an 106 

undirected graph, whereas, if the linkage is in only one direction we have a directed graph.  A 107 

simple graph is one where nodes are connected by single undirected branches (e.g., Fig. 2d), with no 108 

loops (branches starting and ending at the same node) or multi-branches (more than one branch 109 

between a pair of nodes).   Most fracture networks are simple (undirected) graphs, although 110 

streamlines in fluid flow would be directed.  111 

Any traverse along a sequence of adjacent nodes (i.e., nodes connected by branches) is termed a 112 

walk, with a path being a walk that does not repeat a node and, hence, any branch.  A cycle is a path 113 

that begins and ends at the same node.  In addition to the nodes and branches, we can recognise 114 

two other elements - regions and components (Fig 2d).  A connected component is a cluster of 115 

connected nodes, having at least one path between all pairs of nodes (as i-iv in Fig. 2d).  A region is 116 

an area that is bounded by a cycle that does not have any other cycles embedded within it (shaded 117 

areas Fig. 2d).  In a two-dimensional fracture network, the branches represent the fracture traces 118 

and the nodes their intersections, with the regions representing the (rock) material between the 119 

fractures and not the fracture surface (or ‘face’).  In section 4.5, we will elaborate further on the 120 

relationship between two- and three-dimensional networks.  As an example of a two-dimensional 121 

graph (Fig. 2a), the tectonic plates are represented by regions in the graph, with plate boundaries as 122 

branches and triple junctions as nodes.  123 

This definition of a region differs somewhat from the term face, which is more commonly used in 124 

graph theory.  The usage of face derives from Euler’s study of polyhedra (Fig. 2b) that, when 125 

projected onto a plane, form a simple connected graph with faces that include one outer 126 
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surrounding face. The number of regions (|R|) is simply the number of faces (|F|) minus the outer 127 

face, hence, |R| = |F| - 1.  128 

We have a number of reasons for our usage of the term region.  1) In a two-dimensional fracture 129 

network a fracture is represented by a series of branches forming its trace, the nodes represent the 130 

tips or edges of the fractures and their intersections.  The regions then represent the blocks of rock 131 

between fractures.  2) For a simple connected graph, the regions are easily identified and are 132 

associated with a specific component (e.g., shaded in Fig 2d), whereas the ‘outer face’ (unshaded 133 

region in Fig. 2d) may be shared by many components.  134 

 Planar graphs 135 

Since the node/branch model has nodes at all crossing points, it is a planar graph, i.e. can be drawn 136 

on a plane with branches that only cross at a node. Many large graphs, such as flight networks and 137 

the World-Wide Web, are non-planar because they have branches (flights, hyperlinks) between 138 

nodes (airports, webpages) that cannot be drawn on a plane without crossing.  Planar graphs, and 139 

hence two-dimensional fracture networks, have some special properties that allow us to develop a 140 

range of relationships and metrics.  In this section, we outline some techniques that we have found 141 

useful, but it must be emphasised that they just represent some initial steps into a wide range of 142 

potential applications and developments.   143 

For example, in a connected planar graph, the maximum (|B|max) and minimum (|B|min) number of 144 

branches is given by (e.g. Wilson 1996): 145 

 |B|max = 3|N| - 6   (or |B|max ≈ 3|N|, as |N|  )   (4) 146 

|B|min = |N| - 1       (5) 147 

Thus we would expect to find between 1 and 3 times as many branches as nodes in a connected 148 

fracture network. 149 

 Degree of a node 150 

A basic metric for a node is its degree, which is the number of adjacent branches.  An I-node has d = 151 

1, a Y-node has d = 3, and an X-node has d = 4.  Natural fracture networks are dominated by low 152 

degree nodes (d ≤ 4), with only very occasional exceptions.  Since all nodes have an associated 153 

degree, we can summarise these by the distribution of degree and associated metrics.  The average 154 

degree <d> for a fracture network would lie between <d> = 1 (a network with only isolated fractures 155 

and I-nodes) and <d> = 4 (a network comprising a mesh of cross-cutting lines of infinite length, with 156 

all intersections represented by X-nodes).  Figure 2e shows how <d> relates to the topology of the 157 
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network as expressed by the proportions of different nodes.  <d> is a property that can be 158 

determined for any graph, i.e., not just one with I-, Y- and X-nodes.   159 

Since each branch has 2 nodes, it follows that the average degree <d> is: 160 

  <d> = 2|B|/|N|       (6) 161 

This equation allows us to relate the number of branches and nodes, through what is widely referred 162 

to as the handshaking lemma. A handshake represents a relationship (branch) between two people 163 

(nodes), hence, for a finite group, the average number of handshakes per person is given by 164 

equation (6).  In mathematics a lemma is a proof that is not important in its own right, but leads to 165 

other important proofs.  166 

The handshaking lemma (equation 6) allows us to relate |N| and |B| through <d>, but there is a 167 

more fundamental relationship between them and the number of regions (|R|) and components 168 

(|K|).  This relationship was discovered by Euler (1758) from his study of polyhedra, which may be 169 

represented as connected planar graphs, with the regions and the outer area of each graph 170 

representing a face, F (Fig. 2b).  Euler’s formula states that: 171 

|N| - |B| + |F| = 2      (7) 172 

Substituting |F| = |R| + 1 gives: 173 

|N| - |B| + |R| = 1      (8) 174 

where the right hand side (= 1) represents the number of components |K|, thus the generalisation 175 

of Euler’s formula to multicomponent networks may be written as: 176 

|N| - |B| + |R| - |K| = 0     (9) 177 

Since each node, branch and region belongs to only one component (Fig. 2d), we can sum the values 178 

of each component to get metrics for the entire graph.  This is another reason for using |R| rather 179 

that |F| in equation (9), which is a key to the analysis of large, multi-component, natural fracture 180 

networks. 181 

 Large planar graphs (LPGs) 182 

Most fracture networks are made up of components of very large size, and many continue well 183 

beyond the region of investigation.  For example, an exposed rock surface is just part of a larger rock 184 

volume and has many fractures that continue beyond its limits. They form Large Planar Graphs 185 

(LPGs) that may consist of any number of connected components of differing size (Fig. 3).  So a key 186 

issue is how we might relate nodes, branches, regions and components in a sample of such a graph, 187 

i.e., a map or image of part of a fracture network. 188 
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Figure 3a shows a very simple version of an LPG, with only 3 components, two of which continue out 189 

of the sample circle.  Using only information from within the circle, what can we deduce about the 190 

graph?  Node counting gives |I| = 10, |Y| = 10, |X| = 1 and, hence, |N| = 21 (equation 1), |B| = 22 191 

(equation 2) and <d> = 2.10 (equation 6).  Note that there are 24 branches in Fig 3a, of which |BC|= 192 

20 are entirely within the circle, with four more continuing out of the circle to produce |E| = 4.  193 

Effectively the branches that continue out of the circle count as ½ or: 194 

 |B| = |BC| + |E|/2      (10) 195 

There is one component (A) completely within the circle and up to 2 extending beyond.  We do not 196 

know if B and C are connected outside the circle, but this uncertainty sets a lower and upper bound 197 

to |K|, for which we may calculate corresponding values for |R| using Euler’s formula (equation 9).   198 

In cases where E-nodes are linked within the sample area, as in the joint network in Figure 3b, we 199 

know the number of components |K| and can use Euler’s formula (equation 9) to find the number of 200 

regions |R|.  From Figure 3c, |K| = 1, |N| = 21 and |B| = 26 + |E|/2 = 31.5, and, using equations 9, 201 

the number of regions |R| = 31.5 – 21 + 1 = 11.5. This value for |R| includes the complete-regions, 202 

within a closed circuit of branches and nodes, as well as ‘half’-regions which leave the sample area.  203 

 Spatially referenced (Eulerian) graphs 204 

So far, the properties of LPGs have been considered as independent of the spatial position of the 205 

nodes and branches. A trace map or image of a fracture system can be considered as a specific 206 

drawing of a graph.  Thus, the topology of the graph is combined with the geometry through spatial 207 

referencing.  We can consider two levels: 208 

(1) By locating nodes in their correct spatial positions, the branches formed by straight lines 209 

between these nodes will provide a minimum length and average orientation of the fracture 210 

traces. 211 

(2) Digitising each branch as a polyline more accurately represents its length and shape.  This 212 

approach allows extraction of more complex branch features, such as sinuosity or 213 

orientation variance.  The extra nodes in the polyline may be discarded in the topological 214 

analysis of the graph.  215 

The degree to which (2) is a significant advance on (1) depends on the details of the fracture 216 

geometry, resolution of the imaging and aims of the project.  A study of caves in a karst system by 217 

Collon et al. (2017) provides a practical discussion of many of these issues.  For many applications, it 218 

may be both adequate and efficient to spatially register only the nodes to capture the main features 219 

of a fracture network.  220 
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Detailed images of fracture systems are easily and rapidly acquired from aerial photography (e.g., 221 

Nixon et al., 2011; Bemis et al., 2014), UAV images (Vasuki et al., 2014), satellite images (e.g., Zeeb et 222 

al., 2013), sonar bathymetry (e.g., Nixon et al., 2012; Sanderson et al., 2017), Lidar (e.g., Rotevatn et 223 

al., 2009), etc.  In addition, trace maps made in the field are routinely digitised (e.g. Dimmen et al., 224 

2017), with GIS packages allowing a range of input methods and analysis techniques (e.g., Healy et 225 

al., 2017).  A comprehensive account of how a GIS may be used to extract useful topological data is 226 

given by Nyberg et al. (in press).  Indeed, the extraction of topology, as outlined in section 2, is 227 

usually much simpler than that of geometry, e.g., determining lengths and orientations of lines, 228 

construction of rose diagrams and stereograms (see also Procter and Sanderson 2017).  229 

 230 

3. Characterisation of networks 231 

 Topological classification of networks 232 

Topology describes the relationship between fractures and, as such, adds information for the 233 

characterisation of a network.  For most fracture networks, the nodes are either I, Y or X, and the 234 

proportion of each provides a basis for describing the topology (Sanderson and Nixon 2015).  From 235 

Fig. 2e, isolated and poorly-connected networks plot towards the I vertex of the triangle, whereas 236 

well-connected mesh-like networks plot closer to the Y-X side, with polygonal and cross-joint 237 

systems being dominated by Y-nodes and cross-cutting systems by X-nodes.  Graph metrics, such as 238 

<d> can be plotted on the same triangular diagram by combining equations (1), (2) and (6).  On the 239 

rare occasions where other node types are present, the graph metrics still provide information on 240 

the topology, and can be estimated even with limited access to the network as a whole.   241 

 Workflows in network characterisation 242 

Several recent studies have incorporated aspects of topology in the analysis of fault networks (Nixon 243 

et al., 2011, 2012; Duffy et al., 2017) and joint systems (Watkins et al., 2015a, b).   Procter and 244 

Sanderson (2017) propose a workflow for analysis of fracture networks that is based on node 245 

counting within a circle of known area.  They also recommend digitising and rectification in GIS to 246 

produce a spatial graph suitable for extraction of other topological and geometrical data (Fig. 4a, b). 247 

Where the sample area is a circle, the fracture intensity (I) can be determined from the edge 248 

intersections (|E|) as described by Mauldon et al. (2001), with the resulting fracture intensity (P10) 249 

being in good agreement with that obtained from two-dimensional trace mapping (P21): 250 

P10 = P21 = (|E| / 2 π r) . π/2 = |E| / (4 r)    (11) 251 
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Procter and Sanderson (2017) argue that determination of fracture intensity is ~ 10 times faster than 252 

by traditional field mapping, thus greatly improving the efficiency of fracture studies.   253 

 Ages, sets and types of fractures 254 

The abutting relationship at Y-nodes provides key evidence for the relative age of faults and joints 255 

(Hancock, 1985; Sanderson, 2015).  For example, Fig. 4c shows a network dominated by Y-nodes, 256 

with three of the red fractures (later) abutting against two of the blue fractures (earlier) (Fig. 4d). 257 

The remaining green fractures all abut against either the red or blue fractures (Fig. 4e), indicating 258 

that they are the latest to form.  The type and relative age of fractures are not directly related to 259 

their geometry and, together with the orientation (geometry) are key components in the definition 260 

of different fracture sets.  Procter and Sanderson (2017) use the abutting relationships to establish a 261 

fairly consistent order of development of the joint sets (as Fig. 4d, e). They also showed that a small 262 

proportion of the Y-nodes indicated the repeated development of cross-joints between more closely 263 

spaced, earlier joints (c.f. Bai et al., 2002) at different stages in the development of the network.  264 

Many structures involve combinations of different fracture types, as in the shear zone in Fig. 5a.  The 265 

proportions of node types in fault networks (e.g. Fig. 5b) and associated graph metrics have been 266 

shown to vary systematically during the evolution of multi-phase rifts (Duffy et al., 2017) and with 267 

the resolution of mapping of conjugate fault arrays (Nixon et al., 2012). 268 

 Regions and compartments 269 

In section 2.4, we discussed how the number of regions |R| in a network can be determined using 270 

Euler’s formula. If the area occupied by the network is known, then the average block area can be 271 

calculated.   In the example in Fig. 3c, the average block area is estimated to be 0.04 m2 (Fig. 3d), 272 

which agrees closely with the observed sizes of complete block (Fig. 3c).  Similar calculations on fault 273 

networks (Fig. 5c) can be used to estimate fault-bound compartments in hydrocarbon reservoirs 274 

(Nixon et al., 2017). 275 

This type of estimate is important, particularly in petroleum industry where there has been much 276 

work on the identification and assessment of reservoir compartments (e.g., Bouvier et al., 1989; 277 

Smalley and Hale, 1996; Manzocchi et al., 2010; Go et al., 2012).  It can also be applied to determine 278 

the block size in the evaluation of fluid exchange between matrix and fractures in fractured 279 

reservoirs. 280 

 281 
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4. Recent and future developments 282 

In this section, we discuss some recent developments on networks that are based on graph theory, 283 

and indicate potential future applications. 284 

 Weighted graphs 285 

A weighted graph is a graph in which values (weights) are attached to the branches and/or nodes.  A 286 

simple example is in a SatNav system, where data are stored as lists of nodes (locations) and 287 

branches (roads).  If distances, traffic conditions, etc. are values associated with each branch, then 288 

routes may be calculated and algorithms exist to extract shortest and quickest paths. 289 

A branch is specified by a pair of nodes, but additional information could be added, such as the type 290 

of fracture (e.g., fault, opening-mode fracture, deformation band, etc.). It may also be helpful to 291 

attach labels to identify connected or isolated branch types (Sanderson and Nixon 2015) and length 292 

or orientation of fractures, although some can be estimated from the associated nodes.  We can also 293 

attach fracture attributes to each branch: width (thickness, aperture), displacement or separation 294 

(throw, heave) of a fault (Fig. 5d), permeability, or an age or set identifier. Some quantities may be 295 

estimated, such as conductance or sinuosity. For active faults, we could also store information about 296 

slip-rates, earthquake events, magnitudes and recurrence times.   297 

A node will usually be identified by a name or number, together with a location (x, y coordinates) if 298 

we are describing a spatial graph.  For some applications it is useful to store the node type or degree, 299 

although these may be estimated from the associated branches. For example, in Fig. 5d regions of 300 

high average degree correspond to areas of interacting conjugate faults and resultant damage.  In 301 

some cases, it may be useful to assign further information concerning the type of intersection, e.g. 302 

where flow is concentrated at nodes, especially for faults (e.g. Peacock et al., 2017)). 303 

A simple, but effective, use of weights is to display their distribution on the network, either by 304 

extracting different fracture types and/or displaying the distribution of attribute values across the 305 

network.  A simple example is shown in Figure 5a, where a pull-apart array (i) is separated into fault 306 

components (ii) and en echelon veins (iii), with the thickness of the veins being related to the pull-307 

aparts developed between the faults.  Qualitative information such as separation and vein thickness 308 

could be represented, and contoured, if appropriate, to show spatial variation (e.g. Procter, et al., 309 

2017). It is also possible to extract and manipulate the attributes, which leads to applications ranging 310 

from the length weighting of orientation data to displacement and length weighting of fault sets 311 

(e.g., Nixon et al., 2011). 312 
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 Databases and graph processing algorithms 313 

In computer science, the graph structure can be used to represent many different types of data and 314 

to solve a wide range of combinatorial problems (e.g., Gibbons, 1988; Kocay and Kreher, 2017).   315 

They include routines to search for connected components and paths between nodes, such as the 316 

shortest path.  An important step in utilising these algorithms is to realise that they are built around 317 

lists of nodes and branches (section 2.1).  The interpretation of fracture networks has traditionally 318 

involved the mapping of fracture traces and the measurement of fracture orientation.  Orientation 319 

data are usually plotted on stereograms and rose diagrams and, hence, divorced from their absolute 320 

and relative positions.  Digitising of field maps creates polylines that preserve the spatial position of 321 

the data, but are often not tied (or snapped) to the nodes or intersections, hence their relationships 322 

are poorly determined.  The solution is simple in a GIS: start by generating the nodes, then draw the 323 

traces as lines snapped to these nodes.  It is then possible to attach additional data (e.g., fault 324 

throws, vein thicknesses, mineral concentrations) directly to the branches and nodes.  Thus, the 325 

graph serves as a relational database.  Automatically taking data from imagery and generating a 326 

graph is a much harder problem, although a range of software tools are available, including several 327 

integrated into GIS packages.  Other problems that could make explicit use of graph structures 328 

include: evaluation of connectivity and cluster size distribution; displacement, slip-rate and seismic 329 

hazard analysis on fault networks; thickness and grade evaluation in mineral veins.   330 

 DFNs and geomechanics  331 

The graph has a system of branches that are tied to nodes and, hence, provides a robust basis for 332 

generating computational networks and meshes in a range of numerical models in geomechanics.   333 

The branches define a Discrete Fracture Network (DFN) with the nodes ensuring no gaps between 334 

fractures. The regions define discrete elements, with branches defining contacts between these 335 

elements, the basis for Distinct Element Models (e.g., Zhang and Sanderson 2002; Jing and 336 

Stephansson 2007).  The network also forms a mesh, suitable as a basis for Finite Element Models 337 

(FEM), with further meshing possible within regions and by subdivision of the branches (e.g., 338 

Edelsbrunner 2001).  The graph is also the basic structure required for network flow calculations, 339 

with the branches having specific conductance and nodes providing the basis for the pressure 340 

distribution (e.g., Zimmerman and Bodvarsson, 1996).  341 

 Connectivity, percolation and permeability 342 

Metrics derived from graph theory and topology have particular relevance to the assessment of 343 

connectivity in fracture networks (Manzocchi, 2002; Sanderson and Nixon, 2015).  Counting nodes 344 

and branches allow the calculation of metrics that help describe to what degree a network is 345 
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connected, such as average degree, connections per branch and connections per line.  In addition, 346 

graph processing algorithms allow us to extract the largest connected component, the size of which 347 

ultimately determines if a cluster spans the sample area and, hence, if the system has reached a 348 

percolation threshold.  Some advances have been made in assessing connectivity by linking metrics 349 

to known and simulated models (e.g., Manzocchi, 2002). This is a difficult problem as the value of 350 

the metrics are known to depend on the network topology (Sævik and Nixon, 2018; Sanderson and 351 

Nixon, in prep.). 352 

Network connectivity is particularly important when estimating the effective permeability of 353 

fractured rock masses, an important parameter when simulating fluid flow. Discrete fracture 354 

network models or conceptual models, based on measured geometric data from boreholes or 355 

outcrop analogues, are often used to estimate the effective permeability and can then be calculated 356 

using analytical methods (e.g., Oda, 1985; Mourzenko et al., 2011) or numerical upscaling (e.g., 357 

Karimi-Fard et al., 2006). One problem with this approach is that the random placement of fractures 358 

of specified geometry does not preserve the graph properties of the natural network (e.g., 359 

connectivity). Better results can be achieved through analytical upscaling whereby a functional 360 

relationship between fracture parameters and the effective permeability is used. Sævik and Nixon, 361 

(2018) have used topological measures of connectivity to produce improved permeability estimates. 362 

The network may also evolve over time, as in Fig. 4, with changing and superposed stress fields 363 

leading to fracture propagation (e.g. Olsen et al. 2009; Duffy et al 2017).  In addition, important 364 

aspects of an existing network may change, for example by opening and closure of fractures (e.g. 365 

Zhang and Sanderson, 1998; 2002), with fluid flow leading to dissolution or cementation (e.g. Alzayer 366 

et al., JSG, 2015; Hooker et al., JSG, 2017; Laubach et al. 2018). 367 

 Three-dimensional networks and associated topology 368 

Traditionally much of the data for fracture networks has been from surfaces (maps, imaged surfaces, 369 

etc.) and is essentially two-dimensional.  Note that surface mapping and use of Lidar allows us to 370 

extract three-dimensional information, but we are still essentially sampling a surface. Seismic 371 

volumes of faults and CT scanning of smaller fractures allow increasing access to three-dimensional 372 

data, so how can we extend the graphs and topology to three-dimensions?  It is obvious that 373 

fractures (branches) then become planes, tips and intersections (nodes) become lines, and rock 374 

blocks (regions) become polyhedra. Whilst a full three-dimensional analysis of fracture networks 375 

remains a major challenge for future research, some simple steps can be made that we illustrate in 376 

Figure 6.   377 
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Figure 6a shows a very simple network with three fractures within a cube that produce traces on the 378 

surfaces.  The upper surface (Fig. 6b) represents a trace map, the other two faces (6c, d) can be 379 

thought of as cross-sections (cliff profiles, seismic sections, etc.).  The three faces of the cube will 380 

generally produce somewhat different graphs, with different two-dimensional network topologies 381 

(Fig. 6e).  Here we examine three simple steps towards a more three-dimensional analysis. 382 

1) We could simply average the results from different sections through the three-dimensional 383 

volume.  The degree to which the sections provide information about the three-dimensional 384 

volume is a common problem in stereology (e.g. Underwood 1970).  Combining the node 385 

counts from the three sections produces an average shown by the filled circle in Fig. 6e. 386 

2) Where observation is restricted to a single surface, we can improve our estimate of the 387 

three-dimensional topology by recognising that the probability of a plane or line intersecting 388 

the surface depends on its dip (δ) or plunge (α), respectively.  Terzaghi (1965) proposed a 389 

correction or weight (1/sin(δ) or 1/sin(α)) which is widely used in fracture studies.  Note that 390 

where δ or α are 90° these correction factors are 1, as occurs for bedding planes with 391 

orthogonal fracture sets. 392 

3) At the level of individual blocks (polyhedra), we can develop the approach of Euler (Fig. 2b), 393 

but this approach awaits further investigation. 394 

The effect of (1) and (2) is to provide a more representative measure of network topology, but many 395 

sampling issues exist (see e.g. Priest 1993), and the methods are not easily applied to analysis of 396 

regions and components.  Clearly, much future work needs to be done to develop the analysis of 397 

three-dimensional networks. 398 

 399 

5. Conclusions 400 

By stepping back, both in time and philosophy, we argue that the future development of fracture 401 

network analysis can be strongly influenced by graph theory that started way back in 1736 with 402 

Euler.   Fracture networks of all types and scales can be characterised in terms of their topology 403 

rather than their geometry.  In two-dimensions, a fracture network can be seen as a system of 404 

branches and nodes.  These elements form a planar graph, since all crossings of fractures are nodes.  405 

Simple application of graph theory allows us to generalise the node/branch model, which opens up a 406 

range of approaches, many of which have been developed in other disciplines.  We start to see 407 

parallels with the analysis of other types of network (Table 1), e.g. urban street networks share many 408 

of the features of fault networks, being dominated by low degree (X and Y) nodes. 409 
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This approach to networks both enriches and extends the scope of more traditional geometrical 410 

techniques.  Key developments include: 411 

1) Fracture networks can be treated as large planar graphs (LPG) that comprise a series of 412 

nodes (N), linked by branches (B), which bound regions (R), to form connected components 413 

(K).  These quantities can thus be counted and used to characterize the network in terms 414 

other than that of the geometry of the component fractures. 415 

2) Almost all nodes in fracture networks have degree 1 (I-nodes), 3 (Y-nodes) or 4 (X-nodes), 416 

so that the proportions of these node types provide a basis for characterizing the topology 417 

of the network. 418 

3) The average degree <d> relates the number of branches (|B|) and nodes (|N|) through the 419 

relationship |B| = ½<d>|N| (the handshaking lemma).  Thus, counting nodes can be used to 420 

determine the number of branches, which simplifies network analysis.  421 

4) Euler’s formula establishes a link between all four elements of the graph with |N| - |B| + 422 

|R| - |K| = 0. 423 

5) Since it is not often possible to observe or sample the entire fracture network, we need to 424 

consider how best to sample an LPG to extract information on elements such as block size, 425 

and number and size of components. 426 

Treating fracture networks as a graph opens up a wide range of applicable theorems, which we have 427 

only just begun to utilize.  Graph theory is widely used in computer science where graphs provide a 428 

key data structure and are used to solve a wide range of combinatorial problems.  Thus, many 429 

efficient algorithms already exist to aid the analysis of fault and fracture systems, but, to date, little 430 

use has been made of them.  431 

 432 
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Figure Captions 559 

 560 

Figure 1 (a) Examples of networks of mineral veins at earth’s surface, from Agricola (1556). (b) 561 

Interpretation of these examples using node / branch model;  562 

 (c)  Node/branch model (after Sanderson and Nixon 2015) where a fracture trace (A-B) is 563 

divided into branches, with a node at each end.  The nodes represent fracture tips (green 564 

circles), abutting fractures (red triangles) or cross-cutting intersections (blue squares).   565 

 (d) Schematic diagram of a three-dimensional fracture network showing fracture faces 566 

(hatched), tips and intersections (lines), and vertices (yellow circle).  These intersect the 567 

surfaces of the cube to produce fracture traces (B – branches), with the tips and 568 

intersection lines producing points or nodes (annotated as Fig. 1c). 569 

Figure 2 (a) Equal-area stereographic projection (whole sphere) of Earth, showing plate boundaries 570 

(lines), triple junctions (triangles) and tectonic plates (Af - African, An -Antarctic, Au - 571 

Australian, Ar – Arabian, EA – Eurasian, Ca – Carribean, Co - Cocos, JF – Juan de Fuca, In – 572 

Indian, N – Nazca, NA – North American, P – Pacific, Ph – Philippine,  SA – South American, 573 

Sc - Scotia). 574 

 (b) Trace map of fracture network with four connected components (i – iv). (c) Node 575 

branch model of (b), notation as in Fig 1(c). (d) Graph representation of (b) showing the 576 

nodes (dots), branches (lines), regions (shaded) and components ((i – iv).   577 

 (e) Triangular plot of proportions of I, Y and X nodes, showing average degree (<d>) and 578 

examples of two-dimensional fracture networks plotting in different parts of the triangle. 579 

 580 

Figure 3 (a) A simple graph with three components (A, B, C) as sampled within a circle. Dots are 581 

nodes, lines are branches, and stars are edge (E) nodes.  Two regions (shaded) are 582 

associated with component B. 583 

 (b) Joint network exposed on a limestone bedding surface. (c) Interpretation as graph 584 

using notation in Fig. 3(a), with circles indicating regions within map area and semicircles 585 

indicating regions that extend beyond the edge of the photograph. (d) represents the 586 

average block area (0.04 m2) and is drawn at same scale as in (b) and (c). 587 
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Figure 4 (a) Field photograph of a joint network that is normal to a bedding surface, with 2 m 588 

diameter circle and north shown on bedding. (b) Rectified image of the joint network 589 

(after Procter and Sanderson, 2017). 590 

 (c) Bedding surface with traces of joints, normal to bedding. (d) Later joints (red) abutting 591 

earliest joints (blue) with example in circles. (e) Latest joints (green) abutting both earlier 592 

sets. 593 

Figure 5  (a) Shear zone in limestone, with en echelon faults (ii) and vein clusters (iii) combining to 594 

produce linked shear zone (i). 595 

 (b) Part of fault network comprising conjugate sets of strike-slip faults cutting folded Upper 596 

Carboniferous strata mapped on a bathymetric image from offshore, Hartland, north 597 

Devon, UK (after Nixon et al., 2012). Nodes identified as in Figure 1c.. 598 

 (c) Interpretation of seismic volume, from Milne Point, Alaska, showing compartments 599 

(after Nixon et al., 2015). 600 

(d) Part of strike-slip fault network from Westward Ho!, North Devon, UK (Nixon et al, 601 

2011).   Width of lines indicate fault displacement and colours indicate average degree 602 

(<d>) of nodes, with high values corresponding to interconnected conjugate faults and 603 

associated damage. 604 

Figure 6 (a) Isometric projection of three intersecting fractures within a cube, with tip lines (green) 605 

and intersection lines (dashed).  Nodes (as in Fig. 1c) and branches (lines) are shown on 606 

top and front surfaces of cube.  (b) Upper surface of (a) showing simple graph, with plunge 607 

of lines (α) and fracture dip (δ). (c) and (d) Similar plots for 2 sides of cube. (e) Triangular 608 

plot of proportions of nodes on surfaces (b), (c) and (d), with average from aggregated 609 

data on each surface (filled circle). 610 

 611 

  612 
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 613 

Tables 614 

 615 

Table 1   616 

Examples of graphs from range of disciplines.  Most form planar graphs, with non-planar graphs 617 

indicated by (np) in Region column since concept does not apply. 618 

 619 

This paper NODE  

(point) 

BRANCH 

(line) 

REGION 

(area) 

COMPONENT 

Graph 
theory 

vertex, node edge (link) face (region) connected component 

Fractures 
Tip, 
intersection, 
cut-off 

fracture trace (with 
fracture type where 
necessary) 

block component, cluster 

Plate 
tectonics 

triple junction plate boundary plate planet 

Micro-
structure 

dislocation loop/line slip-patch grain 

Chemistry atom bond (np) molecule, lattice 

Geography 

location (e.g., 
city, house) 

border, road, etc. 
country, 
county, block 

City, country 

junction river 
catchment 
area 

island, continent 

airport flight (np) airline? 

Computing 

device (e.g., 
computer, 
server, printer) 

cable, wire 

wifi 
(np) Local Area Network 

web page hyperlink Intranet? World Wide Web 

Sociology person 
friendship, 
handshake, etc. 

(np) 
isolated community or 
group (e.g., Facebook) 

Business 
person, unit, 
committee, etc. 

reporting route (np) organisation 

 620 
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