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Journey time forecasts are required in many new dynamic traffic control and route guidance
systems. This study has concentrated on the development of journey time forecasting
models in urban networks. Two different traffic conditions (Normal and Incident) were
categorised and hence two different modelling approaches were considered.

For normal traffic conditions, requirements are typically for a forecast of journey time on
a link-by-link basis for periods of up to about one hour ahead depending on the application.
The development of short term forecasting models required initial analysis of the underlying
time dependent variability in the parameter to be forecast. This was achieved by collecting
and statistically analysing traffic data. The data was collected from Southampton using
SCOOT Urban Traffic Control system over a period of six months. Time series methods
(Box-Jenkins and Horizontal-Seasonal) were then used to develop journey time forecasting
models, on a link-by-link basis. The developed forecasting models were tested by applying
them on real data sets. The models are considered to be very useful for on-line application
under normal traffic conditions particularly for Drivers Information Systems.

The performance of time-series forecasting models deteriorates in situations of traffic
accidents or other unexpected incidents and therefore a different modelling approach is
required for incident cases. Traffic incidents in urban networks are the source of higher
journey times and may cause serious congestion. In these situations journey times may be
increased not only on the incident link, but also on the links which are the upstream links
of incident location.

A new modelling approach was considered in which an ’incident database’ was compiled
using the CONTRAMI simulation tool applied to a range of network, traffic and incident
scenarios. A set of parameters were defined and effects of these parameters on traffic
conditions were studied. Generalised statistical models were then developed to predict the
number of links which would be affected by an incident. To find the location of affected
links in the network, an algorithm was developed which constructs a backward tree from
the incident link. Finally models were developed, which when supplied with incident
severity and location in the network, forecast journey time on incident link and on the
affected links. Models were validated by applying them on a bigger network. The
application of developed models can be found in incident management strategies and in
dynamic route guidance systems.
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CHAPTER 1

“ INTRODUCTION “

The rapid rise in traffic growth in almost every city of the world is leading to
increased traffic congestion and its related problems air pollution, over utilization of
scarce petroleum resources, time consuming delay to people and goods movement,
other economic and environmental effects. A range of increasingly sophisticated
traffic management measures have been introduced in recent years which have
improved traffic efficiency and generally "kept traffic moving’, albeit at low level of
service. The SCOOT on-line Urban Traffic Control system (Hunt et al, 1981) is an
example of such measures, improving efficiency by optimally co-ordinating networks
of traffic signals in order to make the efficient use of the available road space. Such
systems are designed to cope with existing traffic patterns and use only current
values of traffic parameters upon which to base their actions and therefore by
themselves do not try to avoid the unfavourable conditions that can occur (one
exception is the new ’gating’ facility in SCOOT where congestion in one part of a

network can be used as a criterion to control traffic entering upstream).

However in urban areas where the scope for road improvements is limited, it
becomes more difficult to achieve efficient signal co-ordination. There is a growing
need of the derivation and design of intelligent measures to combat urban traffic
problems by making maximum use of available road space. Dynamic methods are
therefore required for the effective management and control of urban traffic. While
many of the existing dynamic methods are responsive to the existing patterns of
traffic, new techniques involving signal control and/or vehicle routing require a

predictive element involving short term forecasting of traffic conditions.



Requirements for short term traffic forecasting can be identified in many new

dynamic traffic management and control systems, such as :

* Traffic control systems, in which a forecast of critical traffic parameters could

trigger a ’remedial’ control strategy.

Dynamic Route Guidance systems, where the calculation of optimum routes
requires a forecast of traffic conditions on links for the time at which vehicles

will arrive on those links.

* Drivers Information Systems, where forecast of travel time for a given

journey will be required.

Parking guidance systems, where a forecast of car park occupancy is required

for efficient guidance.

In its ’simplest’ form, requirements are for a forecast of traffic conditions on a link-
by-link basis for periods of up to about 1 hour ahead depending on the application.
For traffic control, a much shorter range forecast will typically be most appropriate,
while for routing systems, the required forecast horizon depends on the journey time
from the point of routing advice to the destination. The parameter to be forecast also
depends on the application, for example, traffic control system may require forecast
of traffic demand and queue length, while route guidance systems require link

journey time/cost forecasts.

Another situation when forecast of traffic parameters would be required is during
incidents. Traffic incidents occur in a variety of forms. The net affect of an incident
is a reduction in road capacity which leads to higher than normal journey time, not
only on the link of incident link but also on the approaching links and other links in

the network. This could lead to serious congestion, rise in energy consumption,
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environmental nuisance. The prediction of the effects of traffic incidents is therefore
an important issue for better efficiency for on line Dynamic Route Guidance (DRG)

systems and other traffic control systems.

1.1 Objectives

The objectives of this study were :

1 To develop models for short term forecasting of journey time on link-by-link

basis for non-incident cases.

2 To develop model for short term forecasting of journey time under incident

conditions, on link of incident and on affected links, in urban networks.

3 Test the effectiveness of methods developed in (1) and (2), on a range of data.

1.2  Method of Approach

Improvements in understanding of urban traffic congestion and its related problems
were achieved by combining a full literature review followed by collection of traffic
data (flow, journey time etc) over a 6 month period (January-July 1991). This
provided data from 134 peak periods from congested parts of the Southampton
network (Figure 3.1). Data was obtained from the SCOOT Urban Traffic Control
system (Hunt et al, 1981) with automatic recording undertaken at the University via
a dedicated telephone line installed between the SCOOT computer in Southampton
Traffic Control Unit offices and Transportation Research Group (TRG) offices.

An initial screening of areas for detailed data collection was first carried out
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following a "blanket" collection of sample data at all locations. This revealed that
"normal" congestion levels in Southampton were generally low and confined to a
limited number of links. (The widespread use of SCOOT and the introduction of new
road schemes in some congested areas were probably contributory factors to the low
levels of congestion). After selection of the most congested links/regions, data was
collected for three hour morning (07:00-10:00) and three hour evening (16:00-19:00)
peaks at 10 links, 10 regions and at 1 route over the 6 months period. Data was also
obtained from a London SCOOT region where, during the peak hours, congestion
was much higher than in the Southampton SCOOT network. Data was processed
using the ASTRID (Hounsell and Mcleod, 1990) database software.

The development of short term forecasting models required initial analysis of the
underlying time dependent variability in the parameter to be forecast. This was
achieved by statistically analysing the available traffic data from Southampton
SCOOT network. Two Time-series methods, Box-Jenkins ARIMA modelling (Box
et al, 1976) and Horizontal-Seasonal modelling (Thomopoulos, 1980), were then used
to develop journey time forecasting models, on a link-by-link basis. These journey
time forecasts are based on historical journey time information on the particular link

and updated to reflect the current conditions.

Though, the time series models which were developed as above, capture small day-
to-day variations and adjust the journey time forecasts according to the present day
conditions, these models can not be used successfully in situations of traffic accidents
or other unexpected events. To study the effects of incidents, an ’incident database’
was compiled using the CONTRAMI (University of Southampton, 1992) simulation
tool applied to a range of network/traffic/incident scenarios. Regression techniques
were then used to develop generalised statistical models for predicting the number
of links which would be affected by an incident. To find the location of affected links
in the network, a procedure was developed which constructs a backward tree from

the incident link.



The increase in journey time on incident link and on affected links is a function of
many parameters, such as incident severity, duration and importance of the link in
the network. A set of parameters were defined and effects of these parameters on
journey time after an incident were studied. Models were then developed, which
when supplied with incident severity and location in the network, predict the increase
in journey time on incident link and on affected links following the on-set of an

incident.

Models were evaluated by comparing the simulated and predicted results and by
statistically analysing the forecasting errors. A type of validation of the developed

models was also achieved by applying them on a bigger network (London network).

1.3  Outline of This Thesis

This thesis is divided into 7 chapters. Following this chapter, Chapter 2 is the review
of earlier work on traffic forecasting. Forecasting methods are discussed which can
be used to forecast traffic parameters, some of these methods have been used earlier
by different organisations, their performance is discussed relative to the earlier
applications. 2nd part of chapter 2 gives a review of traffic parameters, which can
be predicted and used in order to achieve the effective management and control of
urban traffic. In third part of this chapter, idea of an incident is presented, it’s affects
on journey times are discussed. Methods of incident detection are reviewed and need

for new modelling approach is discussed.

In Chapter 3, details of data collection are given. Data was collected from SCOOT
system. Details of SCOOT messages are presented and description is given how

different traffic parameters are defined and calculated in SCOOT.

In Chapter 4, a comprehensive analysis of the data is made. Sources of variability
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in the data are discussed. The principles of the statistical analysis are introduced and
the general expressions used in the analysis of journey time are specified. A possible
pattern for the variability of journey time between time of day, between days of week

and between months is investigated.

Chapter 5, presents the development and application of journey time forecasting
models, which have the ability to accommodate random variability in journey times
and update the forecasts when the new data is available. Box-Jenkins and Horizontal-
Seasonal methods are used to develop these models. The results of the application
of the developed models are presented. The models are tested on real data sets
collected from two different links and a route in Southampton SCOOT network. The

performance of the models are evaluated in terms of forecast errors analysis.

In Chapter 6, different incident scenarios are studied using traffic simulation model
CONTRAMI. A database was compiled and from this database models are developed
which predict, number and location of links which are affected by an incident,

journey time on incident link and on incident affected links.

Finally, Chapter 7 summarises the conclusions obtained in this research and presents

suggestions to continue the investigation of the subjects discussed in this thesis.



1.4 Research Time Table

Table 1.1

Research Time Table

Activities

Time (Months)

3 6 9 12 15 18 21 24 27 30 33

36

Review of literature/
associated activities

Data Collection
Data Analysis

Development of
journey time
forecasting models -
Normal conditions.
Application/Testing

Development of
journey time
forecasting models -
Incident conditions.
Application/Validation

Recommendations and
Reporting




CHAPTER 2

“ BACKGROUND “

This chapter is divided into three parts. In first part forecasting techniques are
reviewed which can be used to forecast traffic parameters in normal traffic
conditions. In the second part traffic parameters are discussed in the view to find
such parameters which can be forecasted and used in solution of traffic related

problems.

The third part is a review of the characteristics of traffic incidents in urban networks,
based on previous research studies. Types of incidents are discussed which occur
most frequently in urban networks. The review also deals with information on traffic
incidents, from data gathering to incident detection methods. The aim is to study the
characteristics of various types of incidents and the effects they make on network
performance and then to develop the predictive models to forecast the effects of

incidents in urban networks.

Traffic speeds have been generally maintained in urban areas despite the continuing
growth of traffic, mainly due to the introduction of a range of traffic management
measures. Of particular significance has been the introduction of Urban Traffic
Control (UTC) systems which have helped in running traffic by efficient linking of
traffic signals within the urban network despite the continuous growth in traffic.
However, most UTC systems are fixed time systems (i.e, they have signals linked
by off-line derived coordinated timings based on historical traffic data. A number of
fixed time UTC systems are in operation in many of cities throughout the world
(McShane et al, 1990), e.g. TRANSYT (Robertson, 1969). Such systems can control

known patterns of traffic, rather than respond to demand.



This limitation led to the development of traffic responsive control systems, which
continually monitor traffic conditions in a network by some form of detection and
react to the information received by implementing appropriate signal settings. They
thus adapt themselves to traffic patterns and respond to traffic demand as they occur.
An example of such a system is SCOOT (Split Cycle Offset Optimisation Technique)
(Hunt et al, 1981), which is designed to optimize network performance usually by
minimizing overall delay on the basis of on-line traffic demand. SCOOT employs a
number of inductive vehicle detectors located on approaches to all controlled
junctions. The data collected from these detectors is processed by a central
coordinating computer, which can then alter the green split, cycle time, or offset at
any junction. SCOOT is a fully adaptive control system. It is operational in many
cities around the world. Field trials with the SCOOT system showed (Hunt et al,
1981) that it reduces the average delay at traffic signals by about 12 per cent. This
saving is in comparison with up-to-date fixed time signal plans which were derived
mainly from the TRANSYT method.

Several other real-time traffic control systems have been developed in recent years.
These include OPAC (Optimisation Policies for Adaptive Control) (Gartner, 1983)
developed in USA; UTOPIA (Urban Traffic Optimisation by Integrated Automation)
(Mauro et al, 1989), implemented in Turin (Italy); PRODYN (Henry et al, 1983)
developed by CERT in France; SCATS (Sydney Coordinated Adaptive Traffic
System) (Sims and Finlay, 1984) in Australia.

Although UTC systems have been able to provide some degree of success in
alleviating congestion in urban areas, perhaps more efficient use of road space could
be achieved if the traffic conditions can be forecasted and control actions are taken

beforehand to avoid the unfavourable conditions that can occur.

Developments in information technology and telecommunications together with

advances in computing and operations research provide several opportunities for
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alternative approaches to traffic management and control. In recent years a great deal
of effort has been invested in what is becoming known as Advanced Transport
Telemetics (ATT).

ATT systems in Europe are collectively known as Road Transport Informatics (RTT)
systems, in America as Intelligent Vehicle Highway Systems (IVHS), and in Japan
as Super Smart Vehicle Systems (SSVS). All the systems have the common objective
of using advanced computer, information and communications technologies to
improve the performance of transportation systems, and at the same time reduce the

impact of transport on the environment.

European DRIVE and PROMETHEUS (Keen et al, 1991) initiatives involve the
development and implementation of a wide range of Advanced Transport Telematics
(ATT) systems, of which Dynamic Route Guidance (DRG) and Driver Information
Systems constitute a major part. A DRG system is based on providing guidance to
drivers to their optimum route via in-car equipments, taking into account current and

forecasted traffic conditions.

IVHS program in America has the main goal to develop the state-of-the-art
vehicle/highway management, information and control systems which will effectively
combat congestion, and succeed in providing an increased level of safety, mobility,

driver convenience and environmental quality in both rural and urban areas.

The main aim of Japan’s Super Smart Vehicle System (SSVS) is to develop advanced
vehicle control systems, traffic management and driver information systems. The
concept of SSVS is based on info-mobility, which corresponds to RTI and IVHS

concept.

These technological developments also offer new opportunities for road information

provision. Of particular interest are Driver Information Systems (DIS). When making
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travel choices, drivers constantly combine various sources of information to form

perceptions and expectations of traffic conditions.

The techniques for providing drivers with improved information include (i) traffic
information broadcasting systems; (ii) pretrip electronic route planning; (iii) on board
navigation systems; and (iv) electronic route guidance systems. Information available

to drivers may conceptually fall into one of three categories (Ben-Akiva et al, 1991).

Historical information - information which describes the state of the transportation

system during previous time periods.

Current information - the most up-to-date information about current traffic

conditions.

Forecasted information - information concerning expected traffic conditions during

subsequent time periods when travel can occur.

Since drivers decisions are affected by expected network conditions, the most useful
type of information to a driver faced with travel choices would be reliable forecasted

information.

The success of the emerging traffic control and driver information systems will
largely depend on the quality of the forecasting procedures. Considering the variety
of issues regarding forecasting, the basis of this thesis is to develop appropriate
traffic forecasting models which can be incorporated into the driver information and
traffic control systems in order to achieve better efficiency and to combat growing

congestion particularly in urban areas.
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2.1 Control Actions Based On Forecasts

Traffic forecasts have been recognised as a core issue in the area of Urban Traffic
Management, such forecasts need to be produced in real-time, be accurate, and have
a sufficiently large time horizon. With such information, measures can be taken not
only to inform and warn drivers about existing congestion, but also to reduce
expected near-future congestion or even avoid it altogether. In most urban networks
traffic demand is dependent upon time. There are typically two occasions during the
"normal” working day when traffic is higher than other periods. When demand
exceeds capacity, the result is a formation of a queue of stopped (or crawling)
vehicles at bottleneck locations. Therefore, the volume of traffic momentarily drops

to zero, leaving only congestion on the facility until a clearout can be effected.

Figure 2.1 Control actions based on forecasts

Flow (on link)

L 3

____________ - — — Capacity

] ] ] ] » Time
7:00 8:00 9:00 10:00

In figure 2.1, "A" represents the point where congestion is identified from the data
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and necessary control action can be taken. Ideally, however one would like to be
able to predict congestion at time "B" so that control actions can be introduced

before congestion occurs.

Some form of network control can be imposed which limits traffic growth in a
network and overrides growth that might otherwise occur. Possible control actions

which are based on prediction of traffic parameters are :

2.1.1 Dynamic Route Guidance

As traffic flows and delays increase in a network, new routes are often sought by
drivers to minimise their journey time. A number of route guidance systems have
been developed in the past decade. They include self-contained navigation units,
radio broadcasting systems and fully automatic route guidance systems in which units
within vehicles interact with roadside equipment to give automatic guidance. The aim
is to provide guidance to drivers to their optimum route via in-car equipments, taking
into account current and forecasted traffic conditions. The recommendations are

frequently updated, e.g. every five minutes.

Dynamic route guidance systems need the prediction of journey times for the links
of their networks in order to give optimum route recommendations, so that the driver
can be routed round transient congestion or blockages caused by accidents or other
incidents. In this case it is not possible to provide all the necessary information
autonomously within the database held in the vehicle’s system (usually on CD-
- ROM), but a central system is required to calculate continuously-varying best routes
based on current and predicted traffic situations. Some elaborate and versatile
systems are being developed to demonstration stage in Europe’s DRIVE program:
ALI-SCOUT (V. Tomkewitsch, 1986) in Germany and similar system in Britain
AUTOGUIDE (West et al, 1991) have already been demonstrated, while the
SOCRATES, CARMINAT and TRAVEL Pilot systems are still under development.
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Japan, and the US IVHS programme are also developing these systems.

2.1.3 Variable Message Signs (VMS)

Road signs are at present the main method of obtaining route information while
travelling. Electronically controlled ’Variable Message’ signs (VMS) are being
increasingly used particularly on motorways and on major urban corridors to provide
dynamic route information to travellers. In the UK, such systems have mainly been
associated with warnings of hazards, speed restrictions and lane closures. However,
a number of other systems also incorporate traffic detection devices (usually via
buried loops), so that messages can be directly related to levels of traffic flow,

estimated journey time and so on.

2.1.3 Gating

It is usual for a small proportion of links in a network to become full during mid-
peak periods, thereby reducing the capacity of feeding links upstream. Where this
propagates beyond junctions adjacent to the critical junction, more widespread
congestion occurs and this has been defined as the start of system oversaturation
(McShane et al, 1978). To prevent this, the Transport Authorities may include the
implementation of "gating" where traffic is stored on the outskirts of the network.
Traffic flows entering the network are then regulated in an attempt to avoid

congestion.

Activity in these areas are increasing; these systems require predictions to be made
of appropriate traffic parameters (e.g. link journey time, flows). It is estimated
(Jeffery, 1987) that, on average journey times would be reduced by about 10% for
vehicles benefiting from in-vehicle route guidance systems, with smaller benefits for

non-equipped vehicles due to a general reduction in congestion.
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Forecasting can also play an important role to improve the public transport systems
and hence encouraging people to make more use of it. Computerised trip planning
systems are becoming available, though only at major terminals, and dynamic
journey time predictions, taking account of current road conditions, will become
possible via similar systems to those needed for dynamic route guidance. This also
make possible to predict the time of arrival of the next bus at a stop. Time-to-next-
bus indicators are being tested in London (COUNTDOWN project) and Southampton
(McDonald M, 1994; ROMANSE project). Since waiting time and uncertainty are
greatly disliked aspects of public transport, the prediction of time-to-next-bus could
considerably improve the perception of the services. On the whole, forecasting of
traffic parameters will play an important role in the emerging Advanced Transport

Telematics systems.

2.2 Review of Forecasting Techniques

The dynamic behaviour of traffic parameters has been the subject of interest for
many years. Different approaches for forecasting traffic parameters has been used.
Lam and Rothery (1970) used discrete time series from uniformly sampled or
aggregated values analysing vehicle speeds, while Wright (1972) proposed a time
series model for flow and concentration. Nicholson and Swann (1974) studied a
spectral technique for predicting traffic volumes. Hillegas et al (1974) postulated
stationary first-order autoregressive models for predicting *occupancies’. Ahmed and
Cook (1977) used Box-Jenkins ARIMA technique to forecast freeway traffic volume
and occupancy data. Nihan et al (1980) and Wang (1981) also used ARIMA models
to empirically estimate travel demand. Davis et al (1990) used adaptive forecasting
method to predict the freeway congestion. More recently several projects within
DRIVE I and DRIVE II programme were involved in development and application
of journey time prediction models; of these projects is the CAR-GOES project
(DRIVE 1, 1990) where journey time forecasting is discussed by relating flow and
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occupancy to journey time; however, models relating journey time to flow are
needed only if they result in better estimations and predictions of journey time than
are available from direct journey time prediction methods. Another technique which
is being used for traffic forecasting is Kalman Filtering; Whittaker (1991) used this

technique for network travel time prediction.

While the previous studies mentioned above present reasonably accurate models for
forecasting traffic parameters, relatively few studies have attempted to develop
models which can be implemented for real time application and make the best use
of large amount of traffic data which is available in real time from Urban Traffic

Control systems.

Recently, for the LISB field trial of the dynamic route guidance system ALI-SCOUT
(Von-Tomkewitsch, 1986) a special method for journey time prediction has been
developed for real time application. It is based on control strategies in traffic
engineering and uses multiple exponential smoothing with variable weighting
parameters. However, this method is also constrained by its special data collection

procedure.

Advances in computing technology provides the opportunity to develop traffic
forecasting models which can be used for real time application. From traffic engineer
point of view a wide range of forecasting methods are available which can be used
to develop traffic forecasting models. Such methods can be classified and are

discussed below.

2.2.1 Time-Series Methods

In the field of Statistics and Operation Research a number of methods for time series
analysis and forecasting have been developed which in traffic engineering can be

used for the prediction of traffic parameters. In time series models, forecasts are
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based on historical (past) data, this historical data is analyzed in order to identify a
pattern that can be used to describe it, then this pattern is extrapolated or extended
into the future in order to prepare a forecast. All the models in this field have the
same general mathematical background and the same objective function, the
minimizing of the squared differences between predicted and observed values. Many
of these techniques have been used by different organisations to generate traffic
forecasts. Possible time series forecasting techniques are discussed in the following

sections and their relevance to typical traffic data described.
2211 Exponential Smoothing
In its basic form exponential smoothing is used for non-seasonal time series showing
no trend. Given a stationary, non-seasonal time series, z, , z, , - - -, zy , it is natural
to take as an estimate of zy,,, a weighted sum of the past observations.

Znety = CoZn t CiZng + Gy, + - - - 2.1)
where the {c;} are weights.
In order that the weights sum to one, we take

. = a(l-a) 1=0,1,--) 2.2)
where
0<ax<l1

The prediction equation can be written as

Zoy = oazy + (l-o)zpy, 2.3)

If we set z,,, = z, , then equation (2.3) can be used recursively to compute
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forecasts.

Choice of Smoothing Constant

The smoothing constant o determines the extent to which past observations influence
the forecast. A small « results in a slow response to changes in the level; a large o
results in a rapid response, which, however will also make the forecast respond to
irregular movements in the time series. The smoothing constant is frequently
determined by simulation. Forecasts are generated for various a’s (usually over the
range 0.05 to 0.30) and are then compared to the actual observations z; , z, , - - -,

zy. For each a, one-step ahead forecast errors:

en(l) =z - z,(1) 2.4)

and the sum of the squared one-step ahead forecast errors:

SSE(ar) = Zé? (1) (2.5
are calculated. The smoothing constant, which minimises the sum of the squared
forecast errors, is then used as smoothing constant in the derivation of future

forecasts.

The notation e, ,(1) expresses the fact that it is the one-step ahead forecast error of
the forecast that is calculated from the past data up to and including time t-1. In
general e(l) = z,,, - z(1) is the l-step ahead forecast error corresponding to the l-step
ahead forecast made at time t. The main reason for the widespread use of simple

exponential smoothing comes from the updating equation :

z,(1) = oz, +(1-0)z,,(1) 2.6)

Since this make the calculation of new forecasts computationally very convenient,
only the previous forecast and the most recent observation have to be stored when

updating the forecast. Another reason exponential smoothing techniques have
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received broad attention is that they are fully automatic. Once a computer program
has been written and a smoothing constant « has been chosen, forecasts for any time

series can be derived without manual intervention of the forecaster.

University of Southampton (1987) in " Traffic incidents and Route Guidance in a
SCOOT network" considered this method and conclude that the method is only useful
in off-peak traffic forecasting when traffic demand is stationary. A stationary demand
situation is one in which, although demand fluctuates from one time period to the

next, the average value remains steady over a reasonably long period of time.

2.2.1.2 Holt-Winters Forecasting Method

Exponential smoothing may easily be generalized to deal with time series containing
trend and seasonal variation. The resulting procedure is usually referred to as the
Holt-Winters procedure. Trend and seasonal terms are introduced which are also
updated by exponential smoothing. Suppose the observations are monthly. Let m,
denote the estimated current mean in month t, r, denote the estimated trend term in
month t (i.e. the expected increase or decrease per month in the current mean), and
s, denote the estimated seasonal factor appropriate to month t. Then as each new
observation becomes available, all three terms are updated. If the seasonal variation

is multiplicative, the updating equations are:

m = az/s,;; + (l-a) ((m,; + 1) 2.7
s, = B z/m, + (1-B)s, (2.8)
r, =y (m-my) + (I-y)r,, 2.9)

where z, is the latest observation and «, 8, v are constants such that:
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0< o,8,y<1

The forecasts from time t are then generated by the equation

Zgp = (M, + hr)s, 4y (2.10)
(h=1,2,---,12)

If the seasonal variation is additive, the updating equations are:

m, = a (z-8.) + (1-@) (m,, + 1,,) 2.11)
s, = B (zrm) + (1-B)s,;, (2.12)
r, = v (m-my) + (I-y)r, (2.13)

A graph of the data should be examined to see if an additive or multiplicative
seasonal effect is the more appropriate. Starting values for m,, r,, and s, may be

estimated in a fairly crude way from the first two years data, by taking:

m, = Xz/12 2.14)
r; = (mean of 2nd year - mean of 1st year)/12 (2.15)

S1, 83, - - -, Sy, to be the average seasonal effects in the first two years when the

different months are compared with the yearly means.

This method has been used by many researchers to forecast traffic parameters.
Richards A J (1991) used the method to forecast delay on link-by-link basis using
Southampton SCOOT data. The method has also been used in (DRIVE CARGOES
Project, 1990) where it was used for journey time prediction. The results from both

the studies show that method is good when the historic data has relatively less noise,
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however when historic data has higher level of noise or when the current days data
is very different from historic data, the model can give very inaccurate forecasts.
Another disadvantage associated with Holt-Winter method is the selection of suitable

values for parameters «, 8 and v, often these are calculated from historic data.

2.2.2 Adaptive Forecasting

Statistical techniques for modelling time-series data are of course well established;
however another forecasting technique which gained popularity in engineering
applications particularly in control is adaptive forecasting, in this technique the
parameters of time-series model are continually being modified to correct for past
errors in prediction. One such technique is Kalman filtering, which has been used
in traffic forecasting, e.g. (Okutani and Stephanides, 1984), (Willsky, 1980) and
(Whittaker, 1991).

2.2.2.1 Kalman Filtering

The Kalman-Filter technique has been developed as an instrument in control
engineering. It deals with two distributions. The knowledge of observed values is
used in a recursive process to predict a distribution of expected values, individual

factors control the (long term) updating and the short term prediction.

In this technique, the problem of short term traffic forecasting can be considered

with the help of the following basic assumptions.

* Traffic parameters in an urban network have similar profiles in following days
of the same class (week days, weekend).
* Changes in daily profiles may be of three types:

- Changes due to specific events in a particular day. In this case,
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normally, modifications are of short duration (eg incident on a link).
- Trends in the profile, such to modify continuously the profile, on a
day-by-day basis.
- Casual and totally unpredictable changes of small amplitudes.
* Parameter values, to be significant, have to be averaged on suitable time

intervals, of the order of few minutes.

From these basic assumptions, a suitable dynamic stochastic model for the parameter

can be outlined, as follows:

Ti,k = Ti,k-l + wiy (2.16)

(t-T)x = at-T)1p + Vig 2.17)

where
t., is the parameter value on interval i of day k.
T,y is the "ideal profile" at the same time.
a is a suitable coefficient.

v,w are white noises.

Equation (2.16) states that the "ideal profile" behaves, on a day-by-day basis.
Equation (2.17) states that, during day k, short time variation may arise. Moreover
these variations (t-T) behave, within day k, as a linear, first order, stable process.
Equations (2.16) and (2.17) are the simplest mathematical formulation of the
previous assumptions. Equations (2.16) and (2.17) are very useful in the prediction
problem. Indeed they allow for the separation of "short time, non repetitive" events
(as described by (t-T) from the trend in the daily profile represented by T). The best
estimates for t and T are to be used for the prediction within day k, while only T
will then be used as the starting point for day k+1. This method is also called

adaptive-forecasting, because it relies on a continuous comparison of past predictions
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and realisations in order to adapt its forecasts to observed forecasting errors. In this
way forecasting errors will be damped out, instead of being amplified by subsequent

applications of the model.

The Kalman Filtering, defined above, has been used to predict journey time on link-
by-link basis (DRIVE CARGOES Project, 1990). Also in Whittaker (1991) an
outline is given of a dynamic state space model with its associated Kalman filter for
very short-term prediction of traffic on a highway network. However, literature on
the successful use of the Kalman filter for traffic forecasting is rather sparse,
furthermore due to its strong data requirements, the technique is not easy to

implement.

2.2.3 Neural Networks

Neural networks is a large, growing subject (Clark et al, 1993). They differ from the
statistical methods conventionally used to analyze data, since relationships between
inputs and outputs are not pre-defined. In essence, such system deduce the strength
to be attached to different relationships. The networks ’learn’ by exposing to
examples. The main features of neural networks are ’input data’ entering at various
nodes along the bottom layer and is converted into ’output data’ 4along the top layer
via a weighting and thresh holding function at other nodes in an intermediate or
hidden layer. There are many different ways of defining and training a neural
network (Beale and Jackson, 1990). One problem with neural networks is that they
can be trained to exhibit many interesting behavioural properties, it can often be very
difficult to interpret why the training was successful. The fact that convergence has
occurred means that pattern exist, but it may be impossible to isolate them. This
means neural networks are often treated as a ’black box’ and incorporated into
software accordingly. Although this can be very successful, it complicates the

question of system verification and validation and can also cause difficulties in
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providing sufficient explanation to the end user.

(Kirby et al 1993), used neural networks to predict traffic flows and compared the
results with three other methods, these were : linear regression, time series ARIMA
and Transfer functions. They concluded that regression techniques were not very
good; that ARIMA methods provided results equivalent to those obtained using
neural networks; and that the use of transfer functions could show an additional

improvement, but at a cost of greater complexity in fitting method.

2.2.4 LISB Method : (the method used in the Berlin LISB field trial)

For the LISB (Von-Tomkewitsch, 1987) field trial in Berlin vehicles collect the
actual travel times from the links in the road network and send these data first to the
beacons and then to the central computer, the travel time prediction consists of three

stages:

- development of travel time standard profiles for each link in the network.

- continuation of standard profiles after a day of operation by incorporating the
gathered travel time data of that day.

- prediction of travel times on the basis of the travel time standard profiles and
current day travel time by using multiple exponential smoothing with variable

weighting parameters.
Considering the problems associated with above forecasting techniques, and the less

than good forecasting results for on-line application, there is a need to consider new

modelling approach where better results could be obtained.
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2.3 Review Of Traffic Parameters

The choice of a traffic parameter to be forecast depends on the application for which
this forecast is going to be used. The initial stage of this study involved a literature
review of the characteristics of the traffic parameters. A description of these

parameters is given in the following section.

2.3.1 Flow

The average number of vehicles passing a given point on the road in the same
direction per unit of time is called flow. Volume and rate of flow are two measures
that quantify the amount of traffic passing a point on a lane or roadway during a

designated time interval. These terms are defined as follows:

i. Volume : The total number of vehicles that pass over a given point or
section of a lane or roadway during a given time interval; volume may be

expressed in terms of annual, daily, hourly or subhourly periods.

ii. Rate Of Flow : The equivalent hourly rate at which vehicles pass over a
given point or section of a lane or roadway during a given time interval less

than one hour, usually 5 minutes or 15 minutes.

The values of traffic flow required in traffic engineering are a key point in many
control and planning strategies. The usage of the average, or mean, value is
generally accepted as a standard. It is possible to estimate average hourly flow in a
specific weekday, in a particular month of the year by the application of factors
available in the Traffic Appraisal Manual (DTp, 1981a, p 591). Nevertheless, the
existence of variability in traffic flow throughout each hour, day, week and month
is widely recognised. Therefore, forecasting of traffic flows on 5-minute or 15-

minute basis can be of great interest in many traffic control applications.
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2.3.2 Capacity

Capacity is the maximum number of vehicles that can pass a point on a lane or
roadway during a given period of time under prevailing roadway and traffic

conditions. So capacity is a particular rate of flow "the maximum rate”.

2.3.3 Delay

The difference between the actual and desired travel times is delay. Two widely used

measure of delay are :

i. Aggregate Delay

The total delay to all vehicles on an intersection approach during some time
period. This is usually measured in vehicle hours/hour. Aggregate delay is an
indicator of the magnitude of oversaturation and is generally useful as a

control parameter.

ii. Average Delay

The average delay is delay per vehicle on an intersection approach during
some time period, this is usually measured in seconds/vehicle. Average delay
is a good indicator of the magnitude of saturation. It is well correlated to
other characteristics of intersections such as volume, queue length and

characteristics of signal operations.

Delay can be used as an indication of the existence of congestion or a measure of the
degree of congestion in a system. It is seen that when flow reaches about 90% of the
ultimate capacity, the delay rises steeply. Theoretically the delay increases to infinity

as the flow tends to the ultimate capacity; but in practise the level of flow rarely
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remains at a high value for a long period. Delay however is a complex variable that

is affected by many variables.

The forecasting of delay can be useful in signal control applications, however for
information systems delay may not be the best parameter to forecast as for general

public it is not always easy to understand the exact meaning of delay.

2.3.4 Journey Time

Journey time is defined as the time taken to travel from one point to another in free
flow conditions plus any delay (e.g. due to traffic signals, by other vehicles on the

road etc) incurred during the journey.

2.34.1 Distribution of Journey Time

A number of studies have been carried out to examine the distribution of journey
time and identify those factors affecting it’s variability. Smeed and Jeffcoate (1971)
and May, Bonsall and Marler (1989) showed that the distribution of journey time is
‘normal’. However, other studies such as those carried out by Mogridge and Fry
(1984) have reported a positively skewed distribution of travel time. Mogridge and
Fry (1984) concluded that the distribution of journey time is ’log normal’.

The previous studies (Smeed and Jeffcoate, 1971) also showed a positive relationship
between the mean and standard deviation of journey times. May et al (1989) also
reported a significant relationship between the mean and standard deviation of

journey time, with standard deviation increasing with increasing mean journey time.
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Although Smeed and Jeffcoate (1971) reported that journeys were significantly longer
on Mondays, May et al (1989) found no general trend in the day to day values of

standard deviation or any relationship with weather condition.

2.3.5 Queue Length

Queue length is the number of vehicles in, or the length in metres of, a given queue.
This is an intersection measure of utility in both characterizing conditions and on line
control. It is indicative of the magnitude of saturation. Queue length is well
correlated with other intersection measures, such as delay and input. It is the most

frequently used control parameter with delay.

Queue length may be the intersection measure that most directly affects drivers
behaviour under saturated conditions because it is most readily observable. Various
detection systems and techniques for estimating queue length have been developed
in recent years. In some systems, queue length is used as a congestion indicator.
Several control schemes with the queue as a control parameter have been developed

and some of them are applied.

Delay is currently the most widely used parameter in existing control schemes
because minimum delay relates to minimum operating cost. However once saturation
occurs, optimization of flow, based on a delay parameter may be less valid because
delay may not be a primary problem. The primary task of the control scheme may
then be prevention of contamination of other intersections. Queue parameters are also
more easily observed and measured than delay parameters. Thus, a measure

expressed in terms of queue appears to be the most promising.

2.3.6 Degree Of Saturation

" The ratio of the average flow to the maximum flow which can be passed through
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the intersection from the particular approach is called degree of saturation ".

Serious congestion is likely to occur as the degree of saturation approaches 100%
and it is desirable that stop lines be no more than 90% saturated. The degree of
saturation is affected by the choice of signal cycle time and the percent of the cycle

time that signals are effectively green on any one approach. It is given by:

x = qc/gs (2.18)
where
x = degree of saturation

q = flow ; average number of vehicles/sec

g = green time
s = saturation flow

c = cycle time

McShane et al (1978), in their review of traffic control in oversaturated street

networks adopt the following definitions:

i. Congested Operations

"The entire range of operations which may be experienced when traffic

demand approaches or exceeds, or both, the capacity of the signal."

ii. Saturated Operations

"The range of congestion wherein queues form but their adverse affects on the
traffic in terms of delay and/or stops are local. Local affects in this context
means that traffic performance is only affected at the intersection at which the
queue occurs and that no other intersections performance is affected by this

queue. Saturated operations have been sub-categorized further into:
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a: Stable Saturation

When a queue formed but not growing and delay effects are local.

b: Unstable Saturation

When a queue exists and is growing and delay effects are still local.
Unstable saturation is a transient state whose duration may be quite
short depending on such factors as rate of queue formation and distance

to next upstream intersection.

iii. Oversaturated Operations
A situation where a queue exists and that have grown to the point where the

upstream intersections performance is adversely affected.

2.3.7 Density

Density is the number of vehicles per unit length of roadway or lane. Density is not
sufficient in itself, because the presence of high density does not necessarily

guarantee the presence of queues sufficiently long as to cause oversaturation.

This measure may be useful in conjunction with queues or velocity measures. Such
combined measures must be calibrated for individual links to permit their use as
descriptors and predictors. If possible a more general type of measure is desirable.
Direct measurement of density in the field is difficult, it can be computed, however,

from the average travel speed and rate of flow, which are more easily measured.

density = flow/space mean speed (2.19)
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2.3.8 Congestion

Congestion is a qualitative term, used by the general public as well as traffic
engineers, which refers to what can quantitatively be defined as vehicular density.
The results of an oversupply of vehicles is the formation of a queue of stopped (or
crawling) vehicles at bottleneck locations (a breakdown of the operation) such that
volumes momentarily drop to zero, leaving only congestion on the facility until a
clearout can be effected. Basically, congestion will be a direct result of the nature
of the "supply and demand” on a facility. If it is possible on a given system, for
more vehicles to enter than the facility can handle, congestion will result whenever

the demand exceeds capacity.

2.4 Traffic Incidents

The time-series forecasting methods discussed in section 2.2 can be applied to
individual links under normal traffic conditions where day-to-day patterns of journey
time do not change dramatically. However, a different modelling approach is
required to predict the journey time after an incident occurs on an urban road.
Traffic incidents occur in a variety of forms and contribute to increase congestion
and hence journey time by reducing the capacity of road networks for various periods
of time and at various levels of severity. The disruptions which they create depend

on the type of incident (University of Southampton, 1987).
2.4.1 Types of Incidents
A commonly adopted definition of a traffic incident is *an unusual occurrence which

reduces the capacity of the road on which it occurs’ (Collings J F, 1981). Incidents

occur in a variety of forms and can be classified into two main categories:
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24.1.1 Predictable Incidents

Incidents due to planned events are predictable incidents, such as roadworks, traffic
signal maintenance, special events. Authorities may advise drivers of their
occurrence, or of diversions. Also, where such *incidents’ are prolonged, drivers will

learn of their effects and adjust their travel habits accordingly.

24.1.2 Unpredictable Incidents

The second main category of incidents which may be termed ’unpredictable’ are
those due to accidents, traffic signal failures, vehicle breakdowns, illegal
parking/stopping, abnormal weather conditions, other emergencies. As may be
expected, it is these events which cause most difficulties to traffic authorities and

road users due to the uncertain nature of the incident and its effects.

24.1.3 Other Classification

A recent review of incidents in London area (Holmes and Leonard, 1992) was based
on a traffic database maintained by the London Metropolitan police for a 6-month
period in 1991. The database, covering the London area bordered by the M25
peripheral motorway, recorded approximately 4000 incidents causing traffic

congestion. The incidents are classified into the three following causes:

- Network effects:

Traffic signal failure, roadworks, burst water mains, other works.
- Vehicle effects:

Traffic accidents, heavy vehicle breakdowns, light vehicle breakdowns,

diesel fuel spillage.
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- Other causes:

Special events, weather, hazards, security, unclassified.

The results of the database analysis on the type of incident shows that most numerous
of the specific incidents are traffic accidents (28%), roadworks (22%), vehicle
breakdowns (11 %), traffic signal faults (8 %), security alerts (6 %), hazards (6%) and
unclassified categories. It was anticipated that the severity of congestion caused by
an incident increases according to the level of the network traffic, with the greatest
impact during the morning and evening peak periods. The duration of incidents were
also analyzed. For the incidents of known duration and as a percentage of all
incidents, 25% lasted less than one hour, 31% between one to four hours, 11%
between four to twelve hours, with 6% of incidents lasting over 12 hours. The
database indicated that for incidents causing congestion lasting up to four hours,
traffic accidents are the main cause. The longer term incidents, that is over four
hours, are dominated by roadworks. The review provided useful information on the
various degrees of traffic congestion and typical duration for an urban network and

will be directly applicable to the computer simulation work.

2.4.2 Effects of Incidents

For both the categories of incident defined above, the net effect is a reduction in road
capacity, which lasts for varying lengths of time. The result is an excess of traffic
demand over reduced capacity which leads to higher than normal journey time, not
only on the link of incident but also on the approaching links and other links in the

network.
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2.4.3 Incident Detection Methods

Incident detection is an essential element of adaptive network control in Advanced
Transportation Management Systems (Stephanedes et al,1992). Successful detection
and dynamic prediction are necessary for assessing on-line traffic data at the highest
level of intelligence and guiding the network control strategies to an optimal solution.
Traffic management, control and guidance can be facilitated by detecting incidents

and predicting traffic behaviour in the network.

2.4.3.1 Information Gathering

Incident information can be obtained by several means including Police department,
motoring organisations, meteorological offices, emergency services, Urban Traffic
Control Systems (UTC). The general public can also be a useful source of
information, particularly in the case of unpredictable incidents which the public is
often the first one to be aware of, this initial information from general public can
then be pass on to the local police division via the telephone network. Predictable
events are usually passed on by those responsible either to the local police or to a
designated department at police headquarters. There has also been an increase in the
use of CCTV monitors in police control centres covering key areas, such as Urban

Traffic Control networks.

2.4.3.2 Control systems and road sensors in urban areas

Information from UTC systems and road sensors is a major source of traffic data.
Incidents can be detected from this information. On-line incident detection methods
are also being developed within UTC systems. A number of such techniques have
been developed in UK (Collings J F, 1983 and Hall M D et al, 1984) and overseas
(Levin et al, 1979 and Shibata et al, 1984) based on the processing of detector

information on vehicle occupancy and speed (e.g. high occupancy and low speed

34



would be indicative of congestion which could be caused by a traffic incident if such

conditions were not expected.

24.3.3 Automatic Incident Detection

The use of vehicle detectors allows incidents to be detected automatically provided
a suitable detection algorithm can be devised. Automatic Incident Detection (AID)
techniques allow a faster knowledge of incident occurrences on the network for
vehicles equipped with an information transmission system such as radio or a route

guidance system and for traffic responsive control system.

At present most Automatic Incident Detection algorithms are designed to operate
with limited traffic data, typically traffic volume and occupancy, simple functions are
used to compare raw volume and occupancy measurements against preselected
thresholds. Within the most widely known algorithms those following the California
logic (Payne et al, 1976) rely on the principle that an incident is likely to
significantly increase occupancy upstream while reducing the occupancy downstream.
A typical algorithm includes a test to ensure that exceeding a threshold is not due to

random fluctuations in the data.

Algorithms employing statistical forecasting of traffic behaviour consider a time
series model to provide short term forecasts of traffic behaviour. The simplest
models consider the occupancy mean and standard deviation over the most recent few
minutes (Dudek C L, 1974) or are based on double exponential smoothing (Cook et
al, 1974). Significant deviation between observations and values forecast by the

algorithms are attributed to incidents.

The McMaster algorithm (Persaud et al, 1990) is based on a two-dimensional
analysis of the traffic data and proposes separating the flow-occupancy diagram into

four areas corresponding to different states of traffic conditions. Incidents are

35



detected after observing specific changes of the traffic state in a short time period.
The HIOCC algorithm (Collings et al, 1981) is based on one-second occupancy data.
the algorithm looks for several consecutive seconds of high detector occupancy in
order to identify the presence of stationary or slow moving vehicles over individual

detectors.

One of the shortcomings of incident detection algorithm is that, as a consequence of
point based, rather than spatial measurements of the data detection algorithms
sometimes lack efficiency. Indeed, traffic flow dynamics rely on two dimensions
(time and space), only one of which (time) is taken into account in the
measurements, Consequently, a large number of false alarms and missed detection
has been reported in operational use. Nevertheless, when the traffic data collection
is to be combined with an Automatic Incident Detection algorithm some other
systems can be used. At the same time as new, more efficient Automatic Incident
Detection algorithms are developed, some new Automatic Incident Detection systems
have appeared, such as video image processing. The technique of video image
processing for the detection of queues and incidents in urban networks gains by the
extensive level of coverage which the cameras provide within their field of view. The
research which has been carried out recently on video image processing includes the
DRIVE project INVAID (INtegration of computer vision techniques for Automatic
Incident Detection), and a project to design ’AUTOSCOPE’ video image processing
system (Michalopoulos, Jacobson et al., 1993).

2.4.4 Incident Management Strategies

Following an incident and its detection by a suitable method, there is a need to
predict the effects of an incident in the network and to bring some incident
management strategies which provides the appropriate response to minimize the
adverse effects of the incident. The current automated management strategies coping

with traffic incidents are based on traffic data collection and processing. They aim
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at adapting traffic signal timings to the new congested traffic conditions in the streets
comprising or bordering the incident location and in some cases to make use of
variable message signing. Today these techniques are still being improved so as to
decrease the number of false alarms and missed detection being made. As for man-
operated techniques for the detection of incidents (e.g. using video cameras), they
are demanding and, although they minimise the risk of false alarms, some incidents
are still missed or detected long after they have appeared. Moreover, the latter

techniques are against the current trend to develop an automatic Integrated Traffic

Management.

The Automatic Incident Detection (AID) techniques described earlier can be used
effectively within management strategies to decrease the detection process duration.
Then, vehicle-drivers whose vehicles are equipped with an information transmission
system such as a radio or route guidance system have a faster knowledge of incident

occurrences on the network.

244.1 Radio Information System

Vehicles which are equipped with a radio working in certain frequencies can receive
current traffic information about the area of the network where they are located.
Some radio information systems are developed so as to minimise the time gap
between the actual detection of an incident and its radio transmission to road users.
Radio Data Systems (RDS) as well as common FM radio stations can be used for this
purpose. These systems are coupled with automatic traffic control systems which
analyze the data for traffic incidents. Then, the German ARIAM Car-Driver-Radio-
Information system (Giesa, 1987) for instance, automatically elaborates a text
describing an incident and transmits it to the broadcasting station. Moreover radio
information systems are one possible basis for the development of route guidance

systems.
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2.44.2 On-line Route Guidance Systems

Because of their ability to divert vehicles on to routes which avoid an incident, route
guidance systems are assumed to achieve greater time savings in urban areas than
simple traffic information systems. Dynamic Route Guidance (DRG) systems ’aim
at guiding drivers on their optimum route to their destination, taking account of
existing/forecast traffic conditions, with guidance being provided by in-vehicle units
(Hounsell et al, 1992b). The principle of these systems consists of transmitting traffic
information both ways between an in-vehicle unit and a central computer via road-
side beacons or directly, for instance using cellular radio communications (e.g.
APPLE project in London).

2443 EURO-SCOUT System

When the information is not transmitted directly between the in-vehicle unit and the
central computer, it can be transmitted by infra-red between road-side beacons
located at key intersections and vehicles, and by telephone lines between the beacons
and the central computer. An incident management system (IMS) was developed
(Janko, 1989) for the Berlin field trial of the EURO-SCOUT route guidance system.
The IMS has been designed to be operated by police officers in the traffic control
centre. To start the incident management procedure information is required on the
type of incident, the location and the (estimated) severity. Incidents are allocated to
links; three degrees of severity are possible from minor restraints to the total
blocking of a link. For travel time modifications in connection with predictable
incidents the ratio between the predicted link travel time under normal conditions and
the optimum link travel time is used. Travel time modification for unpredictable
incidents depends on six parameters, the saturation flow of the considered link,
saturation flow of the incident link, the severity of the incident, the maximum travel
time to the management border, the travel time between the considered link and the

incident link, the duration since the incident became known. The central computer
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operates route calculations repeatedly on the basis of ’static’ network information and
real-time data provided mainly by equipped vehicles. The interaction between
vehicles and the central computer provides knowledge of the current traffic

conditions on the network, particularly concerning incidents and congestion.

Other forms of DRG (eg. cellular radio) involve in-vehicle systems able to calculate
the optimum route in each single vehicle, on the basis of real-time ’broadcast’
information (eg. link journey times). Some studies have shown the benefits of route
guidance systems (JMP Consultants Ltd, 1989) and potential benefits in some other
cities provided with a traffic control system such as SCOOT (University of
Southampton, 1987) when traffic incidents were taken into account. The detection
of an incident by the central computer is made from the analysis of data indicating
very long journey times on a link, or no information received from a certain beacon.
In the latter case, when the possibility of a beacon breakdown has been dismissed,
it can be assumed that no equipped vehicle is travelling on the relevant link, which
is a plausible sign that an incident has occurred, and which can be checked out
easily. The future calculated routes then avoid the ’disrupted’ link. At this stage it
should be mentioned that DRG systems face a problem in the event of an incident,
with all vehicles diverted from the incident location link, and no more feedback on
the incident evolution and the end of the disruption. A solution to get the missing
information would be to direct a small number of equipped cars on to routes

including the incident regularly.

2.4.5 Need for Statistical Modelling

One way of predicting incident effects is by running an assignment model on line,
however there are two problems involved in this, firstly road traffic assignment and
simulation models are very demanding in computing (processing) time and computer

main memory particularly with very large networks. This is mainly due to the variety
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of traffic parameters and scenarios that have to be represented in sufficient detail to
enable rational deductions to be made from results of simulations. The detailed
representation of network traffic by most of the existing models requires high
computing time on commonly available and affordable computer hardware (i.e,
desktop PCs). Running a model like CONTRAM on a 1600 link network with
average demand matrix on a top of the range 486 PC takes several hours. These
models are currently being undertaken off-line, which is appropriate for traffic
management schemes and traffic appraisal. However to predict the effects of an
incident, for dynamic route guidance systems and for other on-line control systems
requires real-time processing, this would further substantially increase the computing
requirements. The performance of widely available and affordable single processor
hardware would be struggling to keep pace with these requirements. Secondly even
when sufficiently powerful computers will be available in the future to run an
assignment model on-line, it will require detailed representations of the network
before an on-line simulation can be run, which can be very costly and will not be
available for most of the networks. For such reasons there is a need for simple
statistical models which can be used on-line to predict the affects of an incident in

a network.

2.5 Discussion

The review of forecasting techniques in section 2.2 indicate that a number of
forecasting methods have been tested before. However, there is a need to apply new
forecasting techniques which have not been used either due to the complexity of the
technique or due to the unavailability of much needed computing power. But with the
availability of powerful computers and new developments in forecasting techniques

lead to consider the application of these methods for traffic forecasting.

Time-Series type of forecasting methods may be equally successful in ’stable’
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conditions where current data has relatively little variability and is close to
historically-based expectations. However, where current data differs markedly (i.e.
when forecasts are most needed) the form of prediction algorithm is important, this
lead to the consideration of another type of forecasting where the effects of incidents

can be incorporated successfully into the forecasting model.

For both the categories of incident defined above, the net effect is a reduction in road
capacity, which lasts for varying lengths of time. The result is often an excess of
traffic demand over reduced capacity which leads to higher than normal journey
time, not only on the link of incident but also on the approaching links and other
links in the network. This could lead to serious congestion, rise in energy
consumption, environmental nuisance. The prediction of the effects of traffic
incidents is therefore an important issue for better efficiency and for on line Dynamic
Route Guidance (DRG) systems and other traffic control and information systems

which may be used as possible incident management strategy.
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CHAPTER 3

" DATA COLLECTION “

A number of methods are available for traffic data collection. They cover a range of
different techniques; such as number plate matching techniques, vehicle detectors at

traffic signals and on-street surveys.

For this study, it was decided to collect data from Southampton SCOOT network
system (Figure 3.1). Southampton is considered suitable for monitoring of the traffic
conditions since there is a relatively large proportion of the city network within the
SCOOT area and also data is readily available as Transportation Research Group has
close links with traffic authorities who are responsible of SCOOT operation in

Southampton.

3.1 SCOOT Data

The primary purpose of SCOOT (Hunt et al, 1981) system is to calculate and
implement signal settings in urban networks which optimise overall traffic
performance (see figure 3.2). However in the process of optimisation, the traffic
model within SCOOT provides a large quantity of on-line traffic data such as flow,

delay and congestion, which is potential source of useful information (see figure
3.3).
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Figure 3.2 The flow of information in a SCOOT urban traffic control system
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Figure 3.3  Principles of the SCOOT traffic model

Time ‘now’
Current
,/ . cyclic
”/ é & . flov: rl
R ile
B 3 : T P
- o
g0 == A0 wl
2 0 ‘\\\ J! 1Cycle
7 - 4
7/, Detector \\
7 data \*_. i
7, \ , ,
7 Cruise
7 \ speed
EV W
7
. \
7 \ /
7 \
7 \v
7 , .
7 Saturation
Z \ \ {S flow rate
7 W
\
4 Yy
7 \
v % Flow addsto  \ \ X
Z the back of |\
7 Back
% the queue 1
q// Predicted
% é\tfé:]’:' queue at
fl/ time ‘now’ P
7 | I -
Z Front -
I/ . R
m —_——=F |, DO0OD00000000003O0! 3-
m ? Green time
/ :
4 Past <«——+—» Future

Source :

T.R.L Report LR 1014

45



3.2 SCOOT in Southampton

The SCOOT system is operating in Southampton since 1983. The model initially
comprised four distinct regions of Southampton, but has since been expanded to
contain smaller sub areas. There are now 15 regions in the SCOOT network which
contain most of the signal controlled junctions in the city. These junctions control
traffic on a total of over 200 SCOOT links. The regions and junctions within the
SCOOT system are illustrated in figure 3.1. Since SCOOT data was used for this
study, a critical review is presented to see how these traffic parameters are described
and calculated in SCOOT.

3.3 Traffic Parameters in SCOOT

The SCOOT traffic model predicts the effects of changes in traffic signal settings.
The current signal settings and measurements from vehicle detectors are used to
produce the estimates of traffic queues, delay and vehicle stops. The output from
SCOOT also includes traffic flow from the vehicle detectors and the estimated queue

length.

3.3.1 Traffic Flow In SCOOT

SCOOT records information on vehicle presence (i,e occupancy) at each detector and
produces estimates of traffic arrivals on each link in terms of link profile units
(LPU). Each detector is interrogated at the roadside 4 times every second to see
whether it is occupied or not, and this information is transmitted to the central
SCOOT computer every second for processing. LPUs are a hybrid of flow and
occupancy, although it is possible to obtain flow estimates from SCOOT LPUs.

SCOOT outputs traffic flow estimates in its M02, M03 and M04 messages in
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vehicles per hour, having divided its LPU count by 17. The factor 17 is a global
average found from measurement, but there are considerable between-link variations
depending on detector location, the number of traffic lanes and so on. An average
conversion factor over all links surveyed in Southampton (Carden et al, 1987) was
found to be 16.6 LPUs per vehicle. This does not adversely affect SCOOT’s
performance, as these fluctuations are catered for by validation. It is also probably
not significant if the traffic flow/delay data is only to be used to indicate trends.
However, if the flow data is used directly as an absolute value, a link specific
Ipu/vehicle conversion factor -obtained by measurement- would be required to ensure

accuracy.

3.3.2 Traffic Delay in SCOOT

SCOOT’s estimate of delay on a link is based on its queue model. Aggregate delay
per cycle is equal to the area between the arrival and discharge profiles, while delay
per vehicle (which is not output by SCOOT) can be calculated from the time between

arrival and discharge.

3.3.3 Link Journey Time from SCOOT

Estimates of delay per vehicle can be obtained by dividing aggregate delay by flow,
average journey time (in secs) is then calculated by adding a ’cruise time’ for vehicle
movements between the SCOOT detector(s) at the upstream end of the link and the

stop line.

Delay (secs/veh) = (Delay (veh. hr/hr) / Flow (vehs/hr)) * 3600 (3.1)

Journey Time (secs) = Delay (secs/veh) + Cruise Time (secs) (3.2)

Such estimates of journey time from SCOOT data have been shown (Carden et al,

1989) to accurately reflect on-street journey times over a wide range of conditions.
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3.4 Data Availability

The data collected for this study is traffic flow, delay, congestion and degree of
saturation at link level and flow, delay and congestion at region level. Data is also
collected for a route. The information on these traffic parameters were obtained from
SCOOT by M02, C30 and M04 messages. The message M02 as come from the

SCOOT computer contains following information:

TIME MO02 LINK NO PERIOD STP DLY*10 FLO CONG RAW FLTS
where

PERIOD is the time in seconds over which the figures were collected.

STP is the approximate number of vehicle stops per hour.
DLY is the approximate delay in vehicle hours per hour.
FLO is the approximate flow in vehicles per hour.

CONG is SCOOT congestion in intervals per hour

RAW is the number of 4-seconds intervals per hour where detector
was continuously occupied. (maximum = 900)

FLTS indicate the detector status of the link.
(FLTS=0 for OK ; FLTS=1 for FAULTY or SUSPECT)

Region data given by M04 message is equal to the sum of the data from all links
within the region. The format of the message which comes from the SCOOT

computer is:

TIME M04 REGION NO PERIOD STP/10 DLY FLO/10 RAW/10 FLTS
where
PERIOD is the time in seconds over which the figures were collected.
DLY is the approximate delay in vehicle hours per hour and is the
sum of DLY values from all the links within the region.

FLO is the approximate flow in vehicle hours per hour and is the sum
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of FLO values from all the links within the region.

RAW is the sum of RAW parameters from all the links within the
region.
FLTS number of faulty links within the region.

3.5 Data Correction

3.5.1 Faulty Detectors

In SCOOT model each detector has status OK , SUSPECT or FAULTY. The FLTS
parameter in the M02 message indicates the number of FAULTY and SUSPECT
detectors within the link.

(FLT =0 "OK" ; FLTS =1 "SUSPECT OR FAULTY")

If FLTS = 1, then MO02 is still output but data items are zero, this data was not

used.

Within the regions where there may be a large number of links, it is possible that
some of the detectors are Faulty or Suspect. Whenever the FLTS parameter in M04
message has value greater than zero, the M04 data is factored up by the ratio of the

links in the region to the number of OK links.
3.5.2 Missing Data
During data collection some messages were lost for a variety of reasons, such as

transmission faults, corruption of the data, power failure, or whenever the SCOOT

computer is down. This data was discarded and was not included in the database.
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3.6 Pilot Survey

An initial screening of areas for detailed data collection was first carried out
following a "blanket" collection of sample data at all locations. This revealed that
"normal” congestion levels in Southampton were generally low and confined to a
limited number of links. (The widespread use of SCOOT and the introduction of new
road schemes in some congested areas were probably contributory factors to the low
levels of congestion. On the basis of this survey, 10 links, 10 regions and 1 route

were selected for regular monitoring.
3.7 Regular Monitoring

After selection of the most congested links/regions, SCOOT data was collected for
three-hour morning and three-hour evening peaks at 10 links, 10 regions and at 1
route over the 6 months (21-01-91 to 07-07-91) data collection period. Recording of
data from SCOOT was undertaken at the University via a dedicated telephone line
installed between the SCOOT computer in Southampton civic centre offices and
Transportation Research Group (TRG) offices. This communications facility, together
with associated terminal equipment (such as modems and visual display units),
allowed requests for information to be sent to the central computer as needed. The
information was then recorded on the PC at the TRG offices. The ASTRID database
system (Hounsell et al, 1989) was used for data collection, processing and initial

analysis.
3.7.1 Data Collection Sites

Information on traffic flow, delay, congestion and degree of saturation at link level

were collected from the following links:

NO020A NO19D NOISE NO17C NO16D NO073A NO072C NOIOE NO071D NO71A

and on flows, delays and congestion at region level from the following regions
ABCELPRSTU
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3.7.2 Data Collection Time Table

Data was collected on working week days during three hours morning peak (0700-
1000) and three hours evening peak (1600-1900) periods at five minute aggregation
level. Tables 3.1 and 3.2 show the data collection time tables.

3.8 Discussion

Journey time data used in this study are derived from the output of SCOOT UTC
system in Southampton. The primary purpose of the SCOOT system is to calculate
and implement signal settings in urban networks which optimise overall traffic
performance. However in the process of optimisation, the traffic model within
SCOOT provides a large quantity of on-line traffic data such as flow and delay, from
which link journey time can be calculated. Flow is measured in ’link profile units’
(Ipu) per hour. The lIpu is a combined measure of vehicle flow and occupancy of the
detector. For absolute measure of flow estimates, link specific lpu conversion factor
may be required. However this is not necessary for the purpose of journey time
calculations as in journey time calculation (see equation 3.1) the units of Ipu’s cancel
out to give delay in seconds. Such estimates of journey time from SCOOT data have
been shown (Carden et al, 1989) to accurately reflect on-street journey times over

a wide range of conditions.

It was decided to take advantage of this rich data source for this study, following
selection of appropriate links exhibiting relatively high congestion characteristics
which would be most suitable for developing and testing journey time forecasting
models, data was collected for three hour morning (7:00-10:00) and three hour
evening peak (16:00-19:00) at 10 links, 10 regions and at 1 route over the six
months period. This provided data from 138 peak periods from congested parts of
the Southampton network (Figure 3.1). This data set is subsequently used as a

historic database for the development of journey time forecasting models.
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Table 3.1

Data Collection Time Table - Morning Peak (07:00-10:00)

— — — e
Week Date Mon | Tue Wed | Thr Fri
No. 1991

1 21/01 - 25/01 * * * * *
2 28/01 - 01/02 * * * * *
3 04/02 - 08/02 * * * * *
4 11/02 - 15/02 * * * * *
5 18/02 - 22/02 * * * * -
6 25/02 - 01/03 - - - * *
7 04/03 - 08/03 * * - - -
8 11/03 - 15/03 - - - - -
9 18/03 - 22/03 * - - - -
10 25/03 - 29/03 - - - - -
11 01/04 - 05/04 - - - - -
12 08/04 - 12/04 - - - - *
13 15/04 - 19/04 * * - *
14 22/04 - 26/04 - - - -
15 29/04 - 03/05 - - - - -
16 06/05 - 10/05 - - - - *
17 13/05 - 17/05 * * * * *
18 20/05 - 24/05 * * * * *
19 27/05 - 31/05 * * * * *
20 03/06 - 07/06 - - * * *
21 10/06 - 14/06 - * * * *
22 17/06 - 21/06 * * - * *
23 24/06 - 28/06 * - - - -
24 01/07 - 05/07 - - * * *
25 08/07 - 12/07 * - * - -

L3

Data Available
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Table 3.2

Data Collection Time Table - Evening Peak (16:00-19:00)

Week Date Mon | Tue Wed | Thr Fri
No. 1991
1 21/01 - 25/01 * * * * *
2 28/01 - 01/02 * * * * *
3 04/02 - 08/02 * * * * *
4 11/02 - 15/02 * * * * *
5 18/02 - 22/02 * * * * -
6 25/02 - 01/03 - - - * *
7 04/03 - 08/03 * - - - -
8 11/03 - 15/03 - - - - *
9 18/03 - 22/03 - - - - -
10 25/03 - 29/03 - - - - -
11 01/04 - 05/04 - - - - -
12 08/04 - 12/04 - - - * *
13 15/04 - 19/04 * - - * *
14 22/04 - 26/04 - - * - -
15 29/04 - 03/05 - * * * *
16 06/05 - 10/05 - - - * -
17 13/05 - 17/05 * * * * *
18 20/05 - 24/05 * * * * *
19 27/05 - 31/05 * * * * *
20 03/06 - 07/06 - * * * *
21 10/06 - 14/06 * * * * -
22 17/06 - 21/06 - - * * *
23 24/06 - 28/06 - * - - -
24 01/07 - 05/07 - * * * *
25 08/07 - 12/07 - * - - -

Data Available
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CHAPTER 4

" ANALYSIS OF DATA “

In this chapter, after checking the distributional form of the empirical data set, the
variability through time in traffic parameters is studied and statistically analyzed. The
parameters which were analyzed are Journey Time (secs) and Flow (vehs/hr) at link
and route level and Delay (secs/veh) and Flow (vehs/hr) at region level. This
analysis is intended to test the data sets available, trying to discover different sources

of variability which can be incorporated into forecasting models.

4.1 The Normality of the Data

Before any further data analysis is carried out, it is required to determine the
characteristics of traffic pattern in terms of the statistical distribution. Several
previous studies (e.g Smeed and Jeffcoate, 1971; May et al, 1989; Mogridge and
Fry, 1984) have attempted to explore the distributional forms of traffic parameters.
However, here our aim is not try to fit any distribution on the data but rather to
show that the data set used in this study is normally distributed (or approximately
normally distributed) and hence classical statistical methods can be employed for

further data analysis.

For this purpose, Link N0O19D is used here as an example to check the distribution
form of journey times. Figure 4.1 shows the frequency histogram of journey time
on link NO19D, the graph shows that the distribution has long right tail, however the
frequency of journey time of more than 45 secs is very small. The data set contain

some outlier, which may be distorting the distribution curve.
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- Figure 4.1 Frequency distribution of journey times on link NO19D
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Figure 4.2  Frequency distribution of journey times (truncated data) on link NO19D
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Figure 4.2 shows the frequency histogram of the data which contains all the journey
times upto 95th percentile. With this relaxed condition, the distribution of journey
time appeared to be normal. Similar approach was used to test the distributional form
of journey times on other sites. Overall it is concluded that journey time on links are

approximately normally distributed.

4.2 Time Dependent Variability

The development of appropriate short-term forecasting models required an initial
analysis of the underlying time dependent variability in the parameter to be forecast.
The accuracy of such forecasts depend on the variability of traffic conditions through
time; identification of different sources of variability in traffic will clearly allow
much more accurate forecasts to be made than situations where different sources of
variability are not separated. Clearly, if the parameter values are relatively stable
within and between days, the forecasting process is greatly simplified. It is widely
recognised (Montgomery et al, 1987) that several sources of variability are present
in traffic data (e.g: peak and off peak, between-days, within-days). These sources of
variability can affect the forecasts. In order to have good forecasts, data should be

grouped in such a way that it has minimum possible variability.

The detailed statistical analysis of the collected data revealed the following sources

of time dependent variability in the data :

4.2.1 Cyclic Variability

The cyclic nature of traffic signal operations in urban areas gives rise to a cyclic
pattern of flows and journey times. Thus one driver may clear a set of signals at the

end of green time undelayed, while another following driver may be delayed by the
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red signal and preceding queuing traffic. The extent to which this pattern is
repeatable depends largely on junction capacity, which determines whether or not

vehicles are delayed for more than one cycle.

Accounting for cyclic patterns in very short term forecasting may be necessary; e.g.
for signal control application. However, it becomes less relevant for longer forecast
horizons typically required for information systems etc. To do so would require a
forecast of the location of each vehicle in relation to the likely signal aspect at that
time; this would involve too many uncertainties except perhaps for very short term
forecasting. In reality, cyclic variability would either be *swamped’ by other sources
of variability, or where routes involve negotiation of a number of signal controlled
junctions, underestimates of a traffic parameter on some links (due to cyclic
variation) are likely to be balanced by overestimates on others. Therefore this very
short term variability is usually not of interest in traffic forecasting, except for

particular signal control applications.

4.2.2 Variability By Time Of Day

In an urban network the level of traffic varies during different times of the day, such
as peak (morning and evening) and off peak hours. Furthermore, the level of traffic
may also vary between morning and evening peak. Since for this study the data was
collected for three hours morning (07:00-10:00) and three hours evening (16:00-
19:00) peak, it was possible to test whether the data differed significantly between
morning and evening peak. The statistical procedure that was used is : "Hypothesis
test for the equality of the means for two populations’. This test generally known as

standard Z test is described in detail.

4.2.2.1 Hypothesis test for the equality of the means for two populations

This test is applied to establish whether an observed difference between two sample
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means can be attributed to chance, or whether it is statistically significant. If x, and
X, are means of two independent samples of sizes n, and n,, then to test the
hypothesis that there is no difference in population means we adopt the following

procedure.

(1)  The null hypothesis is Hy: p =
the alternative hypothesis is H: p #=u

@i1))  The level of significance is «

(iii)  The test statistic to be used is

where
x, and X, are the means to be tested and

s,2 and s,? are unbiased estimates of population variances o,> and 0,

(iv) The critical region is

Z,<2Z<7Z,

(v)  Compute the value of Z from the sample data.
(vi) RejectHyifZ<Z_, orZ > 2,

The standard Z test (described above) was applied to the data of all sites to test the
variability in traffic parameters between morning and evening peak. The results of
the application of this test on all sites are summarised in tables 4.1 and 4.2. This
revealed that there is significant difference in mean level of parameters during

morning and evening peak. The variability between morning and evening peak at link
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and route level is much higher than the regional level (which are an aggregation of
results for all links in each region). At link level the mean flow and journey time is
much higher during the morning peak, this is due to the tidal nature of traffic flow
(all the links monitored for this study have the same direction of traffic flow, i,e
towards the city centre). At region level the evening peak is more busy than the

morning peak though the variability is not as high as at link level.

In the following tables, the following notations are used.

1 Flow is Flow in vehicles per hour
JT  is Journey Time in seconds

Delay is average delay in seconds per vehicle

2 Mean is the average of the parameter over given number of days
SD  standard deviation
SS  sample size (number of days)

CV  coefficient of variation (SD/Mean) in %
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Table 4.1

Variability between Morning and Evening peak (Link level)

Site Parameter Morning Peak Evening peak
(07:00-10:00) (16:00-19:00)
Mean SD SS CV Mean SD SS CV
Flow *584 49 57 8 290 30 61 10
NO71A
T * 16 2 57 13 12 1 61 8
Flow * 977 48 54 5 638 38 55 6
NOI18E
T * 45 14 54 31 28 1 55 4
Flow * 0933 55 57 6 511 30 61 6
NO73A
JT * 43 1 57 2 41 1 61 2
Flow * 320 18 S8 6 348 18 61 5
NO71D
JT 21 6 58 29 21 3 61 14
Flow * 836 30 48 4 489 34 52 7
NO072C
T * 23 3 48 13 32 2 52 6
Flow *1069 84 55 8 771 41 60 5
NO19D
JT * 34 4 55 12 27 1 60 4
Flow * 568 83 54 15 251 21 61 8
NO20A
T * 17 3 54 18 20 3 61 15
Flow * 810 60 S8 7 580 36 60 6
NO017C
JT * 19 1 58 5 16 1 60 6
Flow * 754 58 S8 8 544 31 57 6
NO16D
IT * 28 3 58 11 19 3 57 16
Flow * 539 30 52 6 32860 19 57 6
NO10E
JT * 20 2 52 10 16 3 57 19
Flow * 6651 333 58 5 4275 234 60 5
Route 1
IT * 244 18 58 7 217 9 60 4

* Differ significantly from evening peak at 5% level of significance.
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Table 4.2

Variability between Morning and Evening peak (Region level)

Site Parameter Momming Peak Evening Peak
(07:00-10:00) (16:00-19:00)
Mean SD SS CV Mean SD SS CV

Flow * 8140 602 59 7 0852 597 62 6
Region A

Delay * 34 3 59 9 46 S 62 11

Flow 11977 871 58 7 11798 859 60 7
Region B

Delay * 27 4 58 15 14 2 60 14

Flow * 17584 599 59 3 19158 976 62 5
Region C

Delay * 24 1 59 4 26 3 62 11

Flow * 11219 400 52 4 13673 418 59 3
Region E

Delay * 27 5 52 19 21 3 59 14

Flow * 5506 329 57 6 6599 470 59 7
Region L

Delay * 19 2 57 10 22 3 59 14

Flow *20004 786 59 4 22670 700 62 3
Region P

Delay * 16 2 59 12 14 1 62 7

Flow * 3806 180 61 5 5501 303 63 6
Region R

Delay * 22 3 61 14 20 2 63 10

Flow * 4556 388 55 9 5739 399 61 7
Region S

Delay * 13 4 55 31 11 2 61 18

Flow * 8203 304 61 4 9400 356 63 4
Region T

Delay * 16 2 61 13 17 1 63 6

Flow * 4097 139 58 3 4489 222 62 5
Region U

Delay * 57 10 58 18 76 18 62 24

* Differ significantly from evening peak at 5% level of significance.
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4.2.3 Variability By Day of Week

Variability here is largely due to the variations in activities which occur on different
days; such as working and non-working days. The level of between-day variability
in traffic parameters is important in determining the requirements for forecasting. It
is already well documented (Montgomery, 1987) that traffic flows and journey times
differ substantially at weekends and on public holidays than on normal working days,
and separate measurements and forecasts for these days would be required. However,
variability between working days may also be sufficient to warrant separate
measurements and predictions for each day of the week. Table 4.3 shows the mean
(Mean), standard deviation (SD) and coefficient of variation (CV) of flows and

journey times on different days of the week for three sites of Southampton.

Table 4.3 Variability by day of week

Site Day | SS'! Flow (vehs/hr) Journey Time (secs)

Mean SD CvV Mean SD CvV

Mon 9 977.41 50.15 5.1 39.41 9.84 25.0
Tue 9 085.80 43.72 4.4 44.62 13.51 30.3
NOIBE | Wed 9 971.42 58.14 6.0 43.56 14.05 32.2

Thr 15 082.52 5793 5.9 4193 11.82 28.2
Fri 15 969.32 3491 3.6 45.78 10.14 22.2

Mon | 10 1082.91 84.73 7.8 31.74 1.04 33
Tue 9 1100.19 97.31 8.8 33.45 3.54 10.6
NOISD | Wed | 8 1087.60 74.77 6.9 32.68 3.23 9.9
Thr | 16 1063.74 82.90 7.8 3297 2.81 85
Fri 15 1043.69 76.03 7.3 33.19 325 9.8

Mon | 10 | 6632.66 293.00 4.4 | 231.92 12.41 5.35
Tue 10 | 6746.73 387.88 5.7 | 239.16 20.45 8.55
Routel | Wed | 10 | 6657.91 331.71 5.0 | 238.92 19.35 8.10
Thr 16 | 6663.50 359.75 5.4 | 236.90 19.81 8.36
Fri 15 | 6609.62 300.84 4.6 | 244.23 16.52 6.76

1 SS  sample size (number of days)
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Level of between-day variability can be assessed statistically by applying Analysis
of Variance (ANOVA) test. The following section describes the ANOVA test in
detail.

4.2.3.1 Analysis of Variance Test

This technique is used to decide whether observed differences among more than two
sample means can be attributed to chance, or whether there are real differences
among the means of the populations sampled. The analysis of variance has been
shown the most powerful and useful technique whenever the statistical data can be
categorised in groups and the aim is to test for homogeneity. The classification
according to a single criterion is called a one-way classification, while the

classification according to two criteria is known as a two-way classification.
Here we want to test whether the mean level of traffic parameters (flow, journey
time etc) on different days of week (Mon-Fri) are significantly different from each

other; the criterion used for this purpose is One-Way classification, which is

described below.

4.2.3.2 One-Way Classification

Suppose we have k random samples of sizes m from k populations.

Sample-1  Sample-2 Sample-k
Xn X2 Xk1
X2 X2 X2
X1im Xom Xym
Mean X, X, X,
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Assuming that the populations are independently and normally distributed (see section
4.1) with means u;,u,, - - -, and common variance ¢°>, we wish to test the

hypothesis that all the means are equal, i.e. Hy: pu, =p =--- =

against the alternative hypothesis

H, : At least two of the means are not equal.

In practical terms the ANOVA test is performed based on the following formulae:
SST (Total Sum of Squares) = LI x;*> - C.F
SSB (Between Sum of Squares) = £ T,%/k - C.F
SSE (Error Sum of Squares) = TSS - SSB
where
X; is the observation in ijth cell.
T; is the sum of the observations of ith sample.
C.F is correction factor given by T?/n
T being the grand total of all the observations.

and n is total number of observations

The summary of calculations is shown in table 4.4, generally referred as ANOVA
table.

Table 4.4 Summary of ANOVA

Source of Degrees of | Sum of Squares | Mean Squares F-ratio
Variation freedom
Between Samples k-1 SSB = Q, s,y = Qy/k-1 | F=s%s?
Error n-k SSE = Q, 8.2 = Q,/n-k
Total n-1 SST=Q s2 = Q/n-1

The ratio (F=s,2/s,?) has the F-distribution with k-1 and n-k degrees of freedom, the
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calculated value of F is compared with the table value of F and if (F > Fo 1 01)

then the null hypothesis is rejected otherwise accepted.

4.2.3.3 Samples of Unequal Size

The above procedure of One Way Classification deals with the case of equal sample
sizes, the above procedure can also be applied for samples of unequal sizes with the

slight modifications described below.

Let the k random samples of sizes m;, m,, . . ., m, respectively with n = T m.. The

formulas for computing the Total SS and Between SS are given as below :

SST (Total SS) = LT x;> - C.F
SSB (Between SS) = L T;?/m, - C.F
SSE (Error SS) = Total SS - Between SS
where
X; is the observation in ijth cell.
T, is the sum of the observations of ith sample.
C.F is correction factor given by T%/n

T being the grand total of all the observations.

The variance ratio F = s,* / 5,2, will still be valid. For d.f we replace mk by n,
therefore the respective d.f are (n-1)(n-k) and k-1. The rest of the analysis is same
as described for equal sample sizes case. Between-day variability was assessed by
applying the ANOVA test to flows, journey time and delays between 07:00-10:00.
Table 4.5 shows the average daily flows on different days of week and table 4.6

summarise the calculations of ANOVA test.
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Table 4.5

Link NOIS8E - Average daily Flow (07:00-10:00) by day of week

Mon Tue Wed Thr Fri
970.00 1016.00 975.31 1018.64 960.56
984.28 1032.67 1001.61 1032.50 1017.61
976.81 980.25 1028.44 979.44 1032.39
904.06 912.31 908.97 867.11 990.39

1049.56 1005.78 1028.36 1035.33 968.36
1008.36 980.08 1046.89 994.97 975.56
1041.81 1035.56 916.86 1012.33 988.56
932.56 923.83 891.89 1016.09 954.94
929.28 986.53 944 .42 1015.00 984.53
1071.97 983.69
898.67 888.14
926.11 930.61
915.47 940.31
953.93 953.75
1000.19 970.44
Table 4.6 Link NOI8E Flows - Analysis of variance (ANOVA)

Source of Degrees of | Sum of Squares | Mean Squares F-ratio

Variation freedom
Between Days 4 2333.99 583.50 0.24
Error 52 126501.86 2432.73
Total 56 128835.85

Analysis of variance test applied on the above table at 5% level of significance show
that the difference in mean level of flows between different days of the week is not

significant.
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Table 4.7  Link NOI8E - Average daily Journey Time (07:00-10:00) by day of week

Mon Tue Wed Thr Fri
38.52 46.46 31.04 31.03 46.34
42.34 41.76 37.64 31.88 36.51
32.11 31.13 31.10 31.25 62.72
34.20 40.22 30.72 33.16 38.13
32.24 31.30 32.70 32.30 31.07
30.70 30.70 68.65 43.15 31.12
33.47 66.08 55.17 54.53 46.04
55.45 49.57 49.09 47.35 50.15
55.67 64.39 55.95 63.24 60.34
34.04 32.08
32.21 46.39
49.84 52.03
53.77 51.17
60.12 55.06
31.04 47.56

Table 4.7 shows the average journey time at link NO18E on different days of week and the
result of ANOVA test are summarised in table 4.8.

Table 4.8 Link NOI8E Journey Times - Analysis of Variance (ANOVA)

Source of Degrees of | Sum of Squares | Mean Squares F-ratio
Variation freedom
Between Days 4 272.76 68.19 0.49
Error 52 7208.14 138.62
Total 56 7480.90

Analysis of variance test applied on the above table at 5% level of significance show
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that the difference in mean level of journey time between different days of the week

is not significant.

The same test procedure was applied to flows and journey time and delays at other
sites to assess the variability between different days of weeks. The results are

summarised in table 4.9.

Table 4.9 Link Flows (07:00-10:0) - Analysis of variance (ANOVA) results

Site Source of F-calculated F-tabulated Significantly
Variation Different
NO20A Days of Week 0.50 2.55 NO
NO19D Days of Week 0.85 2.55 NO
NO18E Days of Week 0.24 2.55 NO
NO017C Days of Week 0.50 2.54 NO
NO16D Days of Week 0.55 2.54 NO
NO73A Days of Week 0.39 2.54 NO
NO71A Days of Week 1.63 2.54 NO
NO072C Days of Week 0.12 2.54 NO
NO10E Days of Week 0.80 2.55 NO
NO71D Days of Week 0.91 2.54 NO
Routel Days of Week 0.27 2.54 NO

68



Table 4.10  Region Flows (07:00-10:00) - Analysis of variance (ANOVA) results

Site Source of F-calculated F-tabulated Significantly
Variation Different
Region A Days of Week 0.39 2.53 NO
Region B Days of Week 0.64 2.53 NO
Region C Days of Week 0.79 2.53 NO
Region E Days of Week 0.24 2.53 NO
Region L Days of Week 1.16 2.53 NO
Region P Days of Week 0.60 2.53 NO
Region R Days of Week 1.01 2.54 NO
Region S Days of Week 1.56 2.54 NO
Region T Days of Week 0.08 2.54 NO
Region U Days of Week 1.46 2.53 NO
Table 4.11  Link Journey Times (07:00-10:00) - Analysis of variance (ANOVA) results
Site Source of F-calculated F-tabulated Significantly
Variation Different
NO20A Days of Week 0.84 2.55 NO
NO19D Days of Week 0.53 2.55 NO
NOI18E Days of Week 0.49 2.55 NO
NO17C Days of Week 1.44 2.54 NO
NO16D Days of Week 0.99 2.54 NO
NO73A Days of Week 0.54 2.54 NO
NO71A Days of Week 1.38 2.54 NO
NO72C Days of Week 0.27 2.54 NO
NO10E Days of Week 0.06 2.55 NO
NO71D Days of Week 0.71 2.54 NO
Routel Days of Week 0.75 2.54 NO
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Table 4.12  Region Delays (07:00-10:00) - Analysis of variance (ANOVA) results)

Site Source of F-calculated F-tabulated Significantly
Variation Different
Region A Days of Week 1.22 2.53 NO
Region B Days of Week 0.20 2.53 NO
Region C Days of Week 0.38 2.53 NO
Region E Days of Week 0.87 2.53 NO
Region L Days of Week 1.65 2.53 NO
Region P Days of Week 1.27 2.53 NO
Region R Days of Week 0.27 2.54 NO
Region S Days of Week 0.35 2.54 NO
Region T Days of Week 1.34 2.54 NO
Region U Days of Week 0.75 2.53 NO

The results showed that between-day differences in mean flows, journey time and
delays were never significant. These results are clearly site dependent and affected
by the sampled data available, thus if between-day variability is significant, separate
measurements and predictions may be required for each day of week. However, from
the results shown in tables above, it is clear that for this particular data set, data
would be grouped together for all working days of the week and there is no need of
profiles for separate day of the week, this also has the advantage that journey time
profiles from which the predictions may be made, have less uncertainty (i.e tighter

confidence limits) with increasing sample size.
4.2.4 Variability By Month
This ’seasonal’ variability may be related to environmental changes, changes in work

practices (e.g. vacation periods) and so on. Individual monthly profiles from Jan-July

in the following table.

70



Table 4.13  Variability by Month

Flow Journey Time

Site | Month | S [\ m  SD CV | Meam SD OV

Jan 7 993.92 28.06 2.8 39.64 6.49 16.4
Feb 14 976.23 56.05 5.7 3593 829 23.1
NO18E Mar 4 1008.02 33.18 3.3 31.33  0.66 2.1

Apr 6 998.89 24.67 2.5 39.83 9.65 24.2
May 11 993.08 5892 5.9 48.47 14.40 29.7
Jun 12 933.43 2373 25 5428 452 8.3

Jul 3 971.68 2790 2.9 4485 12.67 28.3

Jan | 9 | 112044 69.82 6.2 | 31.49 141 45
Feb |14 | 1043.77 102.44 9.8 | 32.74 198 6.0
Mar | 4 | 111173 5821 52 | 3262 0.39 1.2
NOI9D | Apr | 6 | 1098.71 2790 2.5 | 32.44 214 6.6
May |11 | 1056.82 111.03 10.5 | 36.08 4.26 11.8
Jun |11 | 1054.59 4838 4.6 | 31.10 1.43 4.6
Jul 3 1048.52 14.06 1.3 | 33.16 2.05 6.2

Jan 9 6622.37 212.98 3.2 | 234.25 9.56 4.08
Feb 16 | 6521.26 341.87 5.2 | 228.25 11.66 5.11
Routel Mar 4 6742.50 196.13 2.9 | 221.54 3.70 1.67
Apr 6 6849.08 173.16 2.5 | 230.25 21.28 9.24
May 11 | 6823.96 538.21 7.9 | 253.21 22.16 8.75
Jun 12 | 6596.08 147.45 2.2 | 251.20 9.41 3.74
Jul 3 6636.92 100.95 1.5 | 242.12 15.52 6.41

Monthly variability was assessed by applying the ANOVA (One-Way Classification,
described in section 4.3.1) to flows and journey time between 07:00-10:00.
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Table 4.14  Link NOISE - Average daily flows (07:00-10:00) by month

Jan Feb Mar Apr May Jun Jul

970.00 976.81 1049.56 1041.81 1035.56 932.56 944.42
984.28 904.06 1008.36 980.08 1028.36 929.28 1000.19
1016.00 980.25 1005.78 994.97 1046.89 923.83 970.44
1032.67 912.31 968.36 1012.33 1016.09 986.53

975.31 1001.61 975.56 1015.00 916.86

1018.64 1028.44 988.56 1071.97 891.89

960.56 908.97 898.67 926.11
1032.50 954.94 915.47
979.44 984.53 953.93
867.11 983.69 930.61
1035.33 888.14 940.31
1017.61 953.75
1032.39
990.39

Table 4.15  Link NOI8E Monthly Flows - Analysis of variance (ANOVA)

Source of Degrees of | Sum of Squares | Mean Squares F-ratio
Variation freedom
Between Months 6 34444.90 5740.82 3.04
Error 50 94390.95 1887.82
Total 56 128835.85

Analysis of variance test applied on the above table at 5% level of significance show
that the difference in mean level of flows at link NO18E between different months

is significant.
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Table 4.16  Link NOIS8E - Average daily Journey Time (07:00-10:00) by month

Jan Feb Mar Apr May Jun Jul
38.52 32.11 32.24 33.47 66.08 55.45 55.95
42.34 34.20 30.70 30.70 32.70 55.67 31.04
46.46 31.13 31.30 43.15 68.65 49.57 47.56
41.76 40.22 31.07 54.53 47.35 64.39
31.04 37.64 31.12 63.24 55.17
31.03 31.10 46.04 34.04 49.09
46.34 30.72 32.21 49.84

31.88 50.15 53.77
31.25 60.34 60.12
33.16 32.08 52.03
32.30 46.39 51.17
36.51 55.06
62.72

38.13

Table 4.17  Link NOI8E Monthly Journey Times- Analysis of Variance (ANOVA)

Source of Degrees of | Sum of Squares | Mean Squares F-ratio
Variation freedom
Between Months 6 3246.41 541.07 6.39
Error 50 4234.49 84.69
Total 56 7480.90

Analysis of variance test applied on the above table at 5% level of significance
showed that the mean level of journey time at link NO18E between different months
was significantly different. The same test procedure was applied to flows and journey
time at other sites to assess the variability between different months. The results are

summarised in the following table.
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4.3 Discussion

Among the parameters measured by SCOOT were traffic flow (veh/hr) and delay
(veh hrs/hr). From flow (veh/hr) and delay (veh hr/hr); journey time (sec/veh) were
calculated. The data set includes links with different characteristics and different

patterns of variability of flow, delay and journey time.

Analysis of the data suggests that the variability in traffic parameters caused by
traffic signal cycles will not be possible to account for. The aggregation periods for
forecasting should include several complete cycles (for example five minutes).
Analysis also show that there is significant difference in mean level of parameters
between morning and evening peak. So data from both peaks should be grouped

separately.

To determine whether the day of the week made any difference to the traffic flow
and journey time, analysis of variance test applied to the data of all sites. In the
majority of the cases, it was found that when any two of the five days were
compared, the difference was not significant. In such cases the data for different days

of the week are grouped together to form a single time series.

Monthly variability is site dependent. Where it is significant, it should be reflected
in the journey time patterns from which predictions are to be made. This will require
updating of the forecasting model’s parameters, however if decrease/increase in the
journey time between different months is gradual then there may not be the need of
separate monthly profiles as the change will be covered by updating the historical

profiles.
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CHAPTER 5§

DEVELOPMENT AND APPLICATION OF JOURNEY
TIME FORECASTING MODELS - (Normal Conditions)

The objective of this chapter is the development and application of journey time
forecasting models on link-by-link basis. A number of forecasting methods were
discussed in chapter 2. Some of these methods particularly Holt-Winter and Kalman
Filtering have been applied earlier by different organisations (University of
Southampton (1987), Richards A (1991), Whittaker J (1991), Drive Project
deliverable 10; 1990) for the prediction of traffic parameters. In this chapter, two
time-series methods were used to develop journey time forecasting models. The
developed models were tested on two links (NOI8E, NO19D) and a route (Routel)
in Southampton network. Links NO18E and NO19D, both are signalised links with
relatively more congestion than other links in the network. Routel consists of 9 links
with the traffic flow towards the city centre and usually a busy route particularly

during the peak period.

5.1 Selection of Forecasting Methods

The journey time data in this study is available as a series of observations collected
at regular time intervals (5-minutes). A suitable approach for analysis of this type of
data is the use of time series methods. These methods rely upon an underlying
period-to-period relationship in the data. Thus the observation at the current time
period is related to a previous observation. Another advantage of time-series methods
is their ability to forecast the parameter of interest directly. Journey Time data

analyzed in chapter 4, revealed periodic behaviour in it, during the three hour period
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(0700-1000). Journey Times steadily increase to a peak and then steadily decrease
back to normal. This periodic behaviour in the data suggests the use of seasonal
forecasting methods. With these findings as a background, two standard time series
forecasting methods, Box-Jenkins ARIMA modelling (Box and Jenkins, 1976) and
Horizontal-Seasonal modelling (Thomopoulos, 1980) were selected to develop

journey time forecasting models on link-by-link basis.

5.2 Box-Jenkins ARIMA Modelling

5.2.1 Basic assumptions and model

In this section, journey time forecasting models are developed using the Box-Jenkins

technique, with the following basic assumptions.

° Journey times on links in an urban network have similar profiles in following

days of the same class (week days, Saturdays ...).

o Daily historical journey time are assumed available for previous days for each

of the 5-minute time period.

Box and Jenkins (Box G et al, 1976) proposed a family of Algebraic models called
ARIMA models (Auto Regressive Integrated Moving Average) from which one is

selected that seems appropriate for forecasting a given data series.

The term AutoRegressive means that JT,, the current value of the journey time, is

"regressed" or expressed as a function of JT,,, JT,,, - - -, JT,, ,which are the

-p ’
previous values of the journey times, and to an unknown noise a, ,in a linear manner

by the relation:
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IT, = ¢JT, + ¢JT, + - - - + ¢JT,, + a, G.1)

The term Moving Average means that the current value of the journey time can be

expressed as a finite linear aggregate of previous a’s (random shocks) by the

relation:
JT, = a - 03, -03,- --- - 0.8, (5.2)
The parameters of Autoregressive Integrated Moving Average models are:

ARIMA (p,d,q) (P,D,Q), (5.3)

where
p = Order of Non-Seasonal Autoregressive operator
d = Order of Non-Seasonal Differencing

q = Order of Non-Seasonal Moving-Average operator

P = Order of Seasonal Autoregressive operator
D = Order of Seasonal Differencing
Q = Order of Seasonal Moving-Average operator

s = Length of Seasonality

The values of d and D in ARIMA (p,d,q)(P,D,Q), determines the degree of non-
seasonal and seasonal differencing. Differencing is required when a series is non-
stationary, i,e: a series which has a mean changing over time. The values of p,q and
P,Q in ARIMA (p,d,q) (P,Q,D), determines that how far into the past is necessary

to go to establish a relation between different values of the time series.

Season here refers to a period after which the pattern of the series repeats itself, e.g.

journey time is expected to be higher during peak hours on every day, where day
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here is one season and on different days the patterns of journey time are more or less

the same.

Consider an example where journey time on different days at different time periods

are denoted by :

Day, Day, Day, Day,
t, I, IT,, JT,, JT,,
t, JT, T, T, JT,,

Here, JT,, is a function of JT,,, JT,, and JT,;, JTs,, JT;,

The Box-Jenkins technique uses the previous days journey time for the estimates of

the model’s parameters. The starting point is the following stochastic dynamic model.
$p(B) Bp(B%) v v.,” JT = 6,(B) Oo(B) a, 6.4
where

¢,(B) = (1-¢,B-¢,B> - --- -¢.B)

is the Non-Seasonal Autoregressive operator of order p.

$p(B°) = (1-8,B*-$, B> ---- -&,B")

is the Seasonal Autoregressive operator of order P.

6,(B) = (1-6,B-6,B> - - - - -6.BY
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is the Non-Seasonal Moving Average operator of order q.

Oq(B) = (1-0B-0, - - - - -0oB%Y

is the Seasonal Moving Average operator of order Q.

v¢ = (1-B)*

is the non-seasonal differencing operator of order d

vl = (1-B9P

is the seasonal differencing operator of order D
s = Length of Seasonality.
B = Backshift operator so that BT, = JT,,

a, = the random error

ARIMA models are fitted to a particular data set by a three stage iterative procedure;
Identification, Estimation and Diagnostic checking. The schematic representation of

these three stages is shown in figure 5.1.

The model’s building starts with the analysis of the historical data. Suppose journey
time data for every 5-minute time interval between 0700-1000 for six days is
available. The first step is to plot the data, if the data is non-stationary (i.e. the mean
changing over time) then the non-stationarity of the data is removed by taking
seasonal and/or non-seasonal differences, the order of non-seasonal difference is
denoted by ’d’ and of seasonal difference is denoted by *D’. Once the stationarity is
achieved by taking differences, the next step is identify a parsimonious (with the
smallest number of estimated parameters needed to fit adequately the patterns in the
available data). This can be done by looking at two graphs derived from the available
data. These graphs are called an estimated autocorrelation function (ACF) and an

estimated partial autocorrelation function (PACF).
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Figure 5.0 Flow chart of ARIMA modelling process

Stage 1 : Identification

Selection of one or more ARIMA
models that suit the given data

|

Stage 2 : Estimation

Estimation of parameters for the
model(s) selected at step 1

Stage 3 : Diagnostic Checking

Statistical tests for
model adequacy

Is the model
satisfactory

Forecasts

End
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An estimated autocorrelation function (ACF) shows the correlation between ordered
pairs (JT, , JT,,,) separated by various time spans (k = 1,2,3, - - - ). Each estimated
autocorrelation coefficient r, is an estimate of the corresponding parameter p,. An
estimated partial autocorrelation function (pacf) shows the correlation between
ordered pairs (JT,, JT,,,) separated by various time spans (k = 1,2,3, - - -) with the
effects of intervening observations (JT,,, , JT,;, , - - - , JT,4.1) accounted for. The

ordered pairs are drawn from a single time series. We choose a model whose
associated theoretical ACF and PACF look like the estimated ACF and PACF
calculated from the data.

At the estimation stage, estimates of the parameters for the ARIMA model tentatively
chosen at the identification stage. This is usually done by using a computer program,
for this study, STATGRAPHICS software package was used to obtain the estimates
of the model’s parameters. The estimates of the model parameters should satisfy the
stationarity and invertibility conditions. The stationarity condition for autoregressive
models is checked by ensuring:

o] <1 (for first order autoregressive AR(1) models)

and for second order autoregressive AR(2) models it should be:

6| <1, |+ <1, |¢-¢] <1

Similarly the invertibility condition for moving average models requires that
|6, | < 1 (for first order moving average MA(1) models)
and for second order moving average models it should be:
6, ] <1, |6,+6,] <1, 16,-6,] <1

At diagnostic-checking stage, tests are performed to see if the estimated model is
statistically adequate. If it is not satisfactory we return to the identification stage to
tentatively select another model. In particular, we test the random shocks (forecasting
residuals, that can not be predicted within the ARIMA model). Analysis of

autocorrelations of the estimated residuals is an appropriate means of doing this.
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Recognizable patterns in the ACF of the a,’s could point to appropriate modifications

in the model.

Box-Jenkins also describe a lack of fit test which examines a group of
autocorrelations (say the first 20) as a whole, as opposed to considering the
individual autocorrelations. If the fitted model is appropriate, then the first k
autocorrelations, yielding a value Q is approximately distributed as x*.,., where Q

is computed as:

Q = (n-d)Lr’,
n is number of observations in the original series
d is the degree of differencing

r, is the sample autocorrelation of residuals separated by lag t
If the value of Q is large relative to x* then the model is inappropriate. If this
assumption is not satisfied there is an autocorrelation pattern in the original series

that has not been explained by the ARIMA model. Our goal however is to build a

model that fully explains any autocorrelation in the original series.

Once an appropriate ARIMA model is selected, point forecasts can be calculated by

writing the model in algebraic equation form.

5.2.2 Examples of Algebraic Forms of ARIMA Models

Two examples are given, how to develop the algebraic form of the ARIMA (p,q,d)
(P,Q,D) models.

52.2.1  ARIMA (0,1,1)(0,1,1)

The general form of the model is
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¢,(B) p(B*) v¢ v.° JT = 6,(B) Oy(B°) a,
Substituting p=0, d=1, q=1 and P=0, D=1, Q=1 in the above equation, we get
vl v ! JT = 6,(B) 6,(B° a,
(1-B) (1-B®) JT, = (1-6B) (1-0,B") a,
dT, - JT,.) (1-B°) = (a - fa,,) (1-6,B)
JT,-JT,,-JT,, + JT,,, = a, - 0a,, - Oa, + 60,

JT! = JTl—l + JTl-s - J'Tl-s-l - Oat-l - esat-s + Besat-s-l (5-5)

where
T, = Predicted journey time for time interval t.
IT,, = Observed (or predicted) journey time at time interval t-1.
IT,, = Observed journey time at time interval t on previous day.
and so on.

5.2.2.2 ARIMA (1,0,0)(2,1,0)

The general form of the model is

$o(B) Bp(B*) v v T, = 0,(B) Oo(B) 2,

Substituting p=1, d=0, q=0 and P=2, D=1, Q=0 in the above equation, we get

(1-¢,B) (1-,B*-®,,B*) (1-B*) JT, = a,
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(1-2,B*-®,,B*) (1-B") (T, - ¢JT,)) = a,

(1-,B*-®,B*) (T, - BIT, - ¢JT,; + ¢,BIT,) = a

(1-@,B*&,B*) (JT, - IT,, - $JT,; + ¢JT0) = 2,

JT, - BT, -, B*IT, - JT,, + $BIT,, + &, B*IT,, - $JT,, + ¢,®BIT,,
+ ¢lq)2sstJTt-l + ¢1JTt-s-l = ¢lq)sBsJTt-s-l = ¢1¢28B2SJT1-8—1 = a

JT! = q)sJTt-s + q:'ZJTt-zs + JTt—s - q)sJTt-Zs - q)ZsJTt-Ss + ¢1JTt-1 - d)l‘I)JT,_s_] =
¢lq)25JTt-25-l - ¢1JTt-s-1 + ¢1QJTI-2S-1 + ¢lq)2sJTl-3s-l

IT, = ¢JT,, + (1+ ST, + (&, - )Ty, - $,JT,5, - 6,(®, + DIT,,, -
¢l(@25 —(I)s)JTth-l + ¢lq)25 JTt-Ss-l

(5.6)
where
T, = Predicted journey time for time interval t.
IT,, = Observed (or predicted) journey time at time interval t-1.
IT,, = Observed journey time at time interval t on previous day.
and so on.

5.2.3 Implementation on Computer For Real Time Application

The Box-Jenkins modelling procedure starts by analysing the historical data. This
analysis is carried out off-line in order to find a suitable model. Several statistical
software packages are available which provides procedures for Box-Jenkins
modelling process. For this study, the STATGRAPHICS (Statistical Graphics
Corporation, 1991) software package was used which provides functions for model

identification and estimation of the model’s parameters (this uses a basic Marquardt
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nonlinear least squares algorithm). Once a model was selected and its parameters
estimated, forecasts were generated by using the algebraic form of the selected model
(examples of algebraic forms of models are given in section 5.2.2). Box-Jenkins
modelling does not provide any procedure which automatically update the estimates
of the model parameters, however for forecasts of more than one-period ahead, one
can use the last available observation instead of its forecast. For example in equation
(5.4) JT,, is not available when making several steps ahead forecasts, but on a
current day at any time interval t, the value of observed journey time at time (t-1)
would be available, this observed value can be substituted in place of forecasted
value to update the forecasts. To achieve this purpose a FORTRAN program
(Appendix C.1) was written which updates the forecasts as soon as new journey time
value is observed. The program also analyze forecast-errors by calculating forecast-
error statistics (i,e ME, MAE, MAPE as described in section 5.4.3).
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5.3 Horizontal-Seasonal Modelling

Most of the traffic parameters (flow, journey time etc) show periodic behaviour
within a day, i,e there are higher flows and journey time during the peak period, this
periodic behaviour of the parameters can be explained by so called seasonal models,

here season refers to the period after which the pattern of the data repeats itself.

In these models smoothing of the past demand entries is used and higher weights are
assigned to the more current entries. The feature allows the forecasts to react quicker
to more current shifts in the level or seasonal influences of the demands. The model

applies when the expected journey time at time t is

IT, = pp, (.7)

where
p represents the average journey time per day and

p, represents the seasonal ratio at time t.

The seasonal ratio for time period t is found from the relation between JT, and u.
The seasonal ratios are always greater or equal to zero and over a day their average
value is 1. When p,=1, the expected journey time at time period t is the same as the
average daily journey time; when p, < 1, then JT, is less than u and when p, > 1,

then JT, is greater than u.

Two phases are necessary in order to implement the model. The first is concerned

with initializing the system and the second is with updating the forecasts.

In the initializing phase the past journey time entries (JT,, JT,, - - -, JT; ) are used
to find estimates of u and p,. The estimate of u as of time T is 4; and estimates of

the seasonal ratios pr,; are rp,; fori=1,2,3, - - -,
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With these estimates available, the initializing phase is complete. From this time
period on, the estimates above are updated as each new journey time entry becomes

available, the forecast for ith future time period made at time T is

JT(1) =41y,

For journey time forecasts, the initializing phase of the modelling process is carried

out by the following steps.
1: Find the average daily journey time for each of the m days data

JTy = (T +ITu+ - - - +JT,)/n
JTy = (Ty+ITyu+ - - - +IT,)/n

ITg = (Ta+ITg+ - - - +IT,)/n

Where
m = Number of days.

n = Number of time periods per day.

2: Calculate the seasonal ratios for each day on time period t by the relation
JTAT,, fort = 11,12, - - -,1n
JT/IT,, for t = 21,22, - - -,2n

JT/AT fort = ml,m2, - - -,mn
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where
m = 1. .. Number of days.

n = 1. .. Number of time periods.

3: Calculate the average seasonal ratio for each of the n time periods
f, = () +5+ - - - +1,,)/m
t, = (Fpt+in+ - - - +F,)/m

B, = [+t - -- +1,)/m

4: Let 4, = Jil)
Now, starting with t=1 and estimating until t=mn, apply the following recursive

relations.
i, = o«(JT/t)+(1-a)4,, (5.8)
firn = Y(T/8)+(1-)E, (5.9

Here at time t, the ratio (JT,/f) represents the current seasonally adjusted journey
time. This is smoothed with the corresponding prior average 4, , to yield an updated
average 4. The ratio (JT,/4) gives the seasonal ratio for time period t. This is
smoothed with , to generate the new seasonal ratio ,,,. The jump of n time periods
is necessary because there are n time periods per day. For example when t
corresponds to a 1st time period of day one, t+n is associated with the 1st time

period of following day.

o and vy are smoothing constants, their values should be between 0 and 1, higher

values of o and v gives more weight to the current data.
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5: The most current n seasonal ratios

i\'1'+19 i\'1‘+29 T T i\'1‘+u

are normalized so that their average is 1. This is performed by first finding the
average

r= (fry; + frez + fri)/n
and then adjusting the ratios by
rT_H = fT'H /? fOI‘ i=1,2,' - ',n

Having carried out these five steps, the initialization phase is complete. At this time
the first set of forecasts can be generated. The forecast for the ith future time period
is

ITG) = Arrr; (5.10)
5.3.1 Updating

As each new demand entry becomes available, an updating scheme is carried forward
to obtain the current estimates of the mean journey time level and the seasonal ratios.
Calling the current time period T, the new observation is JT; and the updating

relations are the following:

i = a(T/rp+(1-a)ér,
ey = YUTH/aD +(1-p)rp

As before,the seasonal ratios are normalized so that their average is 1. Three steps

are required for this purpose.
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1: T = (fpy;+Tpyp+ - - -+rp,)/n
2: Try; = Ipy / T fori=1,2,- - -,)n
3: Ity = try; fori=1,2, .. .,n

With updating of the estimates completed, the forecasts for the ith future time period
is generated by

JT1(1)) = &rpy,

5.3.2 Implementation on the Computer for Real Time Application

Horizontal-Seasonal model (described above) is implemented on a computer by
writing a FORTRAN program (Appendix C.2). The input for this program are:

1 Number of days historical data.

2 Number of time periods per day.

3 File which contains historical data.

The program calculates all the steps of Horizontal-Seasonal model (as described in
section 5.3), forecasts are generated by using equation (5.10) and then updated by
using the current day’s observations. The program also analyze forecast-errors by
calculating forecast-error statistics (i,e ME, MAE, MAPE as described in section
5.4.3).
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5.4 Journey Time Forecasting

Journey Time parameter was selected as it is a suitable descriptor of congestion on
a link basis and is relatively easily interpreted. Also it is a key parameter (or
component) in control systems such as traffic signals and dynamic route guidance
(DRG). The development of journey time forecasting models required some pre-
modelling decisions, e.g. forecast aggregation level, forecast horizon, these

requirements are discussed here and are incorporated in the modelling process.
5.4.1 Aggregation Level of Forecast

Different application of journey time forecasts would need different aggregation
level. For signal control settings, the forecast aggregation level can be any fraction
of a second to the signal cycle length. For route guidance and traffic information
broadcasting, the forecast aggregation level could be from 1-minute to 15-minute.
In reality for any application there can be many level of aggregation. For this study

5-minute aggregation level is used.
5.4.2 Forecast Horizon

This is the length of time into future for which forecasts are required and depends
upon the pui’pose for which the forecast is needed, e.g. for route guidance systems,
the forecast horizon would be length of journey time between the points of advice
to the destination. For traffic information broadcasting system the forecasts may be
required for the whole of the peak period which may last from 0700-1000. For this
study, the forecast horizon was as much as three hours ahead at 5-min aggregation

level.
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5.4.3 Forecasts Accuracy

The accuracy of forecasts is determined through forecast errors. The forecast error

for lead time k at time t is defined as:
e =JT, - JT!—I(k)

where

JT, is the observed journey time at time t

JT,,(k) is the k-period ahead forecast generated at time t-1.

(5.11)

Various checks based on these errors are then performed. These comparison are

based on the following statistics.

1 : Mean Error
ME = Xe/n

2: Mean Percent Error
MPE = (100/n)*Z(e/JT)

3: Mean Square Error
MSE = Le?2/n

4: Mean Absolute Error
MAE = Z|e,|/n

5: Mean Absolute percent Error
MAPE = (100/n)*Z|e,/JT,|

(t

(t

(t

(t

(t

..n)

.. n)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

The first two statistics measure forecast bias and should be close to zero. The other

three measure forecast accuracy; methods that has small values for these statistics

consider to be better than other.
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5.4.4 Journey Time Data

The journey time data used in this study is derived from the output of SCOOT (Hunt
et al, 1981), a fully-adaptive urban traffic control system. In the course of its signal
optimisation SCOOT measures detector presence through time, which can be
converted into traffic flow and calculates delay, from which link journey time can
be calculated. Carden et al (1989) in their report "SCOOT model accuracy” have
shown that journey time estimates from SCOOT are accurate. Mean journey time for

a vehicle, during a five minute period was estimated as follows:

Mean Delay per vehicle (sec) = Mean Total Delay (Ipu) * 3600/Mean Flow(lpu/hour)

Journey Time (sec) = Cruise Time (sec) + Mean Delay per vehicle (sec)

It should be noted that in the above formula for Mean Delay per vehicle, the units
of Ipu’s cancel out to give Delay in seconds. The cruise time (i.e. undelayed journey
time) used for each link were the constant values within the SCOOT model which

were obtained by observations when the system was calibrated.

For each day during morning peak, the data was collected between 07:00 - 10:00 at
5-min aggregation level. To determine whether the day of the week made any
difference to the links journey time, Analysis of Variance (ANOVA) test applied on
the data of all the sites (section 4), it was found that links journey time do not differ
significantly on different days of the week (Mon-Fri). So the data was grouped
together (Mon-Fri). Journey time forecasting models are developed for three sites
(Link NO19D, Link NO18E and Routel).
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Figure 5.1 Flow-Chart of the Forecasting Process
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5.5 Application of Box-Jenkins Modelling
5.5.1 Application of Box-Jenkins Modelling to Link N019D

Link NO19D is a signalised link in Southampton SCOOT network (Appendix O.1)
with cruise time of 21 secs. The analysis of journey time data (section 4.3) showed
that the mean level of journey time between days of week is not significantly
different on this link, so a single model for all working days was used to predict

journey times on the link.

In the example given here, eight days of historical data between 07:00-10:00 at 5-
min aggregation level was used to generate journey time forecasts for 9th day. The

eight days observed journey times are plotted in figure 5.2.

The first step in ARIMA modelling is to check whether the data is stationary or not.
From figure 5.2, it is clear that the data is non-stationary (i.e. the mean is not
constant over time). To make the data stationary, first order non-seasonal (d=1) and
first order seasonal differences (D=1) were obtained. The differenced data is plotted
in figure 5.3, which shows the data is stationary after differencing.

The second step is to find the appropriate values of p,q and P,Q of ARIMA
(p,d,q)(P,D,Q). For this, autocorrelation structure is used. The autocorrelations of
differenced data is plotted in figure 5.4. The strong autocorrelation values at lag 1
and 2 suggest the inclusion of non-seasonal moving average operators of order 1 and
2 (q=2). Similarly the strong autocorrelation at lag 36 suggests the inclusion of
seasonal moving average operator of order 1 (Q=1). The selected model is ARIMA
(0,1,2)(0,1,1), the algebraic form of the model is:

JTt = JT!-] + JT!—s - JTl—s—l + a - 01a1-1 - 02a1-2 - esat-s + olesat-s-l + 026sal-s-2
5.17)
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The estimates of the parameters 6,, 6, and ©, were obtained from eight days of
historical data using STATGRAPHICS software package. These estimates of the
parameters with their estimated standard error and x*-test on the first 36 residual
autocorrelations are given in table 5.1. An adequate model satisfies the assumption
that random shocks are independent. This can be checked by analysing the residual
autocorrelations. The residual autocorrelation shown in figure 5.5, exhibit no
systematic pattern and are quite small, which shows that the selected model is
adequate. The adequacy of the model is also confirmed by the x>-test which has
value 24.46, which is less than the table value of x> at 5% level of significance.

The forecasting equation can be written by substituting the estimates of the

parameters in equation (5.17), which is:

JT, = JT,, + JT, - JT.,, + a - 0.6391 a,, - 0.3069 a,_, - 0.6849 a,_,

+0.4377 a, ., + 0.2102 a ,, (5.18)
where
i, = Predicted journey time for time interval t.
IT, = Observed (or predicted)journey time at time interval t-1.
IT,, = Observed journey time at time interval t on previous day.
and so on.

Using equation (5.18), forecasts at link NO19D were generated for all 5-minute time
intervals between 07:00-10:00 on 9th day (20-2-91). The observed and forecasted
journey times are plotted in figure 5.6. These forecasts are generated at 7:00 for all
the 5-minute time periods until 10:00 and are referred to as 36-steps ahead (not-
updated) forecasts. However, for real time application, on-street information may
well be available for every 5-minute time interval, this latest information could be

used to update the forecasts.

Box-Jenkins modelling does not provide any procedure which automatically updates
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the estimates of the model parameters. However for forecasts of more than one-
period ahead, one can use the last available observation instead of its forecast. For
example in equation (5.18) JT,, was not available when making 36-steps ahead
forecasts, but on a current day at any time interval t, the value of observed journey
time at time (t-1) would be available and this observed value can be substituted in

place of forecast value to update the forecasts.

To update the forecasts for every 5-minute time interval a FORTRAN program
(Appendix C.1) was written which updates the forecasts as soon as a new journey
time value is observed. One step ahead updated forecasts at link NO19D which are
obtained by using this program are plotted in figure 5.7.

Models were also developed based on 6, 7, 9, and 10 days of historical data. The
estimates of parameters are given in table 5.1 with their estimated white noise
standard deviation and x’-test values on the first 36 residuals. The adequacy of
models is confirmed by the x?-test on first 36 residual autocorrelations, which is less

than the table values for all the models.

Forecasting accuracy was evaluated through analysis of forecast-errors. For 9th day
not-updated forecasts the mean absolute percentage error is 8.97, this is reduced to
8.89 for updated forecasts. Table 5.2 shows forecast-errors for all days when
forecasts were generated. It can be seen from this table that in most cases updated

forecasts are better than 36-step ahead forecasts.
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Figure 5.2 Link NOI9D : Eight days observed journey times (7:00-10:00)
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Figure 5.4 Link NOI9D : Estimated autocorrelations of differenced data
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Figure 5.5 Link NOI9D : Estimated residual autocorrelations
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Figure 5.6 Link NOI9D : 36-steps ahead forecasts
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Table 5.1

Link NOIYD : ARIMA (0,1,2)(0,1,1) parameters estimates

No. Date of Parameter’s Estimates Estimate | x*-test
of Fore- d white | on 1st
day’s | -casts noise SD | 36
Histo residual
rical
data 0, 0, 0, a,
6 18-2-91 | 0.63878  0.30502 0.62787 10.98 26.46
7 19-2-91 { 0.64005 0.30016 0.67881 10.32 31.09
8 20-2-91 | 0.63909  0.30687 0.68488 9.72 35.52
9 21-2-91 | 0.64117 0.30931 0.68593 9.19 39.31
10 28-2-91 | 0.65329  0.29221 0.69010 8.92 40.63
Table 5.2  Link NOI9D : Box-Jenkins Forecast-Errors statistics
No. of | Date of Forecasts Forecast-Error Statistics
day’s Fore-
Histori | -casts
-cal
data
MAE MSE MAPE
6 18-2-91 Not-Updated 5.0 48.8 15.5
Updated 4.7 44.1 14.7
7 19-2-91 | Not-Updated 4.2 28.8 13.1
Updated 3.8 26.0 12.1
8 20-2-91 | Not-Updated 2.8 15.3 9.0
Updated 2.8 14.8 8.9
9 21-2-91 | Not-Updated 3.6 40.3 9.3
Updated 3.9 44.9 10.6
10 28-2-91 | Not-Updated 3.2 16.2 10.0
Updated 3.2 16.5 10.2




5.5.2 Application of Box-Jenkins Modelling to Link NO1SE

Link NOI8E is also a signalised link with cruise time of 24 secs. The analysis of
journey time data (section 4.3) showed that the mean level of journey time between
days of week is not significantly different on this link, so a single model for all

working days can be used to predict journey times on the link.

In the example given here, Journey time data for six consecutive days between
07:00-10:00 at 5-min aggregation level is plotted in figure 5.8. This figure shows
that journey times are within a day have peaks and troughs; the peak is usually
during the middle, with the pattern of journey times more or less same between days.
The modelling procedure started with finding the appropriate values of p,d,q and
P,D,Q in ARIMA (p,d,q)(P,D,Q). From figure 5.8, it is clear that data is non
stationary and has strong seasonality. To remove this seasonality and to make the
data stationary, first order non-seasonal (d=1) and first order seasonal differences
(D=1) were obtained. The differenced data is plotted in figure 5.9, which shows that

the data is stationary after differencing.

The autocorrelation of differenced data is plotted in figure 5.10. The strong
autocorrelation values at lag 1 and 2 suggest the inclusion of non-seasonal moving
average operators of order 1 and 2. Similarly the strong autocorrelations at lags 36
suggests the inclusion of seasonal moving average operator of order 1. The selected
model is ARIMA (0,1,2)(0,1,1), the algebraic form of the model is:

JT: =JT,, +JT,,-JT,, + a - b,a, - 6,3, - O3, + 0,04, + 6,04, ,,
5.19

The estimates of the parameters 6, 6, and ©, were obtained from six days historical
data using STATGRAPHICS software package. These estimates with their estimated

standard error and x*-test on first 36 residual autocorrelations are given in table 5.3.
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By substituting the estimates of these parameters in equation (5.19), the prediction
equation can be written as:
t, =T, + )T, - JT,,, + a - 0.5934 a_, - 0.3868 a,_, - 0.5110 a_, +
0.3032 a,; + 0.1976 a,,

(5.20)
where
T, = Predicted journey time for time interval t.
IT,, = Observed (or predicted)journey time at time interval t-1.
IT,, = Observed journey time at time interval t on previous day.
and so on.

Using equation (5.20) forecasts at link NO18E were generated for all 5-minute time
intervals between 07:00-10:00 on 7th day (14-6-91). The observed and forecasted
journey times are plotted in figure 5.12. These forecasts were generated at 7:00 for
all time intervals and are referred to as not-updated forecasts. Forecasts were updated
(as at link NO19D) using UPDATE program. One step ahead updated forecasts are
plotted in figure 5.13. From the plots of observed vs predicted journey times that
forecasts follow the pattern of present day data. Forecasts accuracy is evaluated by
making analysis of forecast-errors. For 7th day not-updated forecasts the mean

absolute percentage error is 12.66, this is reduced to 12.16 for updated forecasts.

Models were also developed based on 7, 8, 9 and 10 days of historical data, the
estimates of parameters are given in table 5.3. Forecast-errors for these days are
shown in table 5.4 which shows that on this link forecasts are quite good and further

improvement in forecasts are achieved in all cases by updating the forecasts.
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Figure 5.8 Link NOISE : Six days observed journey times (7:00-10:00)
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Figure 5.10 Link NOISE : Estimated Autocorrelations of differenced data
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Figure 5.11 Link NOI8E : Estimated Residual Autocorrelations
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Table 5.3

Link NOISE : ARIMA (0,1,2)(0,1,1) parameters estimates

No. Date of Parameter’s Estimates Estimated | x*-test
of Fore- white on 1st
day’s | -casts noise SD | 36
Histo residual
rical
data 0, 0, 0, o,
6 14-6-91 | 0.59336 0.38679 0.51096 10.93 14.64
7 17-6-91 | 0.60167 0.38914 0.58169 10.47 18.35
8 18-6-91 | 0.57447 0.40411 0.59952 10.49 17.01
9 21-6-91 | 0.55087 0.39011 0.56479 11.22 25.10
10 24-6-91 | 0.49637 0.36205 0.57830 11.13 29.83
Table 5.4  Link NOISE : Box-Jenkins Forecast-Errors statistics
No. of Date of Forecasts Forecast-Error Statistics
day’s Fore-
Historic | -casts
al data
MAE MSE MAPE
6 14-6-91 | Not-Updated 6.3 72.0 12.7
Updated 6.2 68.3 12.2
7 17-6-91 | Not-Updated 8.1 146.6 12.4
Updated 7.8 123.3 12.6
8 18-6-91 | Not-Updated 12.2 384.8 15.7
Updated 12.7 376.2 17.1
9 21-6-91 | Not-Updated 12.9 268.2 28.1
Updated 12.1 236.2 26.1
10 24-6-91 | Not-Updated 9.9 278.5 17.2
Updated 9.0 208.5 16.6
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Figure 5.12 Link NOISE : BJ 36-step ahead forecasts
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Figure 5.13 Link NOISE : BJ I-step ahead updated forecasts
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5.5.3 Application of Box-Jenkins Modelling to Routel

Routel consist of 9 links (Appendix O.1) with the total cruise time of 136 secs,
journey time on these links are summed to obtain the journey time for whole route.
The analysis of journey time data at Routel (section 4.3) showed that the mean level
of journey time between days of week is not significant, so a single model for all

working days can be used to predict journey times on Routel.

Journey time data for six consecutive days between 07:00-10:00 at 5-min aggregation
level is plotted in figure 5.14, which shows that data has strong seasonality. To
remove this seasonality and to make the data stationary, first order seasonal
differences (D=1) and first order non-seasonal differences (d=1) were obtained. The
autocorrelation of differenced data is plotted in figure 5.16. The strong
autocorrelation values at lag 1 and at lag 2 suggest the inclusion of non-seasonal
moving average operator of order 1 and 2 (q=2), also the strong autocorrelation at
lags 36 suggest the inclusion of seasonal moving average operator of order 1 (Q=1).

The selected model is ARIMA (0,1,2)(0,1,1), the algebraic form of the model is:

T, =JT, +IT,,-JT.,, + a-0,a,-6,a,-06a,+ 00,,, +60a.,,
(5.21)

The estimates of the parameters 68,, 6, and O, were obtained from 6 days historical

data. By substituting the estimates of these parameters in equation (5.21), the

prediction equation can be written as:
T, =T, + JT,, - )T, + a - 0.4451 a, - 0.2499 a,, - 0.5340 a_, +

0.2380 a., + 0.1335 a,,
(5.22)
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where

A

JT, = Predicted journey time for time interval t.

JT,, = Observed (or predicted)journey time at time interval t-1.

T, = Observed journey time at time interval t on previous day.
and so on.

Using equation (5.22) forecasts at Routel were generated for all 5-minute time
intervals between 07:00-10:00 on 7th day (14-6-91), the observed and forecasted
journey times are plotted in figure 5.18. Forecasts were also updated using UPDATE
program. One step ahead updated forecasts are plotted in figure 5.19. Forecasts
successfully follow the pattern of current days data. Forecasts accuracy were
evaluated by making analysis of forecast-errors. For 7th day not-updated forecasts
the mean absolute percentage error is 7.48, this is reduced to 5.89 for updated

forecasts.

Models were also developed based on 7, 8, 9 and 10 days of historical data. The
estimates of parameters are given in table 5.5. Forecast-errors for these days are

shown in table 6.6. In all cases forecasts are improved when updated.
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Figure 5.14 Routel : Six days observed journey times (7:00-10:00)
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Figure 5.16 Routel : Estimated autocorrelations of differenced data
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Figure 5.17 Routel : Estimated Residual Autocorrelations
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Table 5.5

Routel : ARIMA (0,1,2)(0,1,1) parameters estimates

No. of | Date of Parameter’s Estimates Estimated | x>-test
day’s Fore- white on Ist
Histori | -casts noise SD | 36
cal residual
data
0, 6, O, o,
6 14-6-91 | 0.44510 0.24995 0.53403 24.93 29.99
7 17-6-91 | 0.42941  0.26533 0.57771 23.86 33.27
8 18-6-91 | 0.44365 0.27666 0.58649 22.96 37.62
9 21-6-91 | 0.43858  0.27431 0.60691 22.97 37.08
10 24-6-91 | 0.43007 0.28181 0.62076 22.64 35.09
Table 5.6  Routel : Box-Jenkins Forecast-Errors statistics
No. of Date of Forecasts Forecast-Error Statistics
day’s Fore-
Historic- | -casts
al data
MAE MSE MAPE
6 14-6-91 | Not-Updated 18.3 544.7 7.5
Updated 14.6 339.7 59
7 17-6-91 | Not-Updated 13.8 309.9 5.9
Updated 13.9 282.7 5.8
8 18-6-91 | Not-Updated 21.7 1015.9 7.3
Updated 18.8 714.9 6.4
9 21-6-91 | Not-Updated 17.2 540.4 7.1
Updated 14.3 423.0 5.9
10 24-6-91 | Not-Updated 19.1 659.1 7.4
Updated 17.0 564.5 6.6
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Figure 5.18

Routel : 36-steps ahead forecasts

ARIMA CO,1,23C0, 1, 1D
T T T Y T v v Y T T
350 I
& — Observed
- k -+ FOorecast
310 -
Fan)
w
P
w
p—
g 270 —
.—
L}
o
]
230 |- ]
190 |- 7
1 1 i /]
700 8:00 S:00 10:00
T i me
Figure 5.19 Routel : 1-step ahead updated forecasts
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5.6 Application of Horizontal-Seasonal Modelling

Horizontal-Seasonal model (discussed in section 5.2) is applied in this section to
generate journey time forecasts on link NO19D, NOI8E and on Routel. A
FORTRAN program (Appendix C.2) is written to implement the model. The

smoothing constants ®=0.3 and y=0.2 were used. The prediction equation is:

ITy(i) = agrey; (5.23)

where
a; is estimate of u (mean journey time per day)
rr,; estimates of seasonal ratios, which are estimated from the historical data

of the link or Route concerned.

5.6.1 Application of Horizontal-Seasonal Modelling to Link N019D

The initial estimate of u which is calculated from eight days of historical data
(plotted in figure 5.2) is 32.91. The seasonal ratios from eight days historical data
are given in Appendix A.l. Substituting the estimate of u and seasonal ratios in
equation (5.23), forecasts were generated for all 5-minute time periods between
07:00-10:00. Forecasts were updated for all time periods as new values of journey

time were observed. These forecasts are given in Appendix B.1 and are plotted in
figure 5.20 and figure 5.21.

Figures 5.20 and 5.21 show that the current days journey time are not consistent and
changing from one time period to another. However, forecasts still close enough to
the observed values apart from few time periods when forecasts are high as
compared to observed journey times. overall forecasts accuracy is quite good and

mean absolute percentage error is 9.95%.
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Forecasts were also generated for four other days based on previous 7, 8, 9 and 10
days historical data. The forecast errors given in table 5.7 show that overall forecasts

accuracy is quite good.

Table 5.7 Link NOI9D : Horizontal-Seasonal Forecast-Errors statistics

No. Date of Forecasts Forecast-Error Statistics
of Fore-
day’s | -casts
Histo
rical
data MAE MSE MAPE
6 18-2-91 | Not-Updated 4.8 40.0 14.4
Updated 4.3 32.8 13.4
7 19-2-91 | Not-Updated 4.1 27.5 12.8
Updated 3.7 24.1 11.6
8 20-2-91 | Not-Updated 3.2 19.2 10.3
Updated 3.2 17.6 10.0
9 21-2-91 | Not-Updated 3.4 33.6 9.5
Updated 4.0 42.2 11.4
10 28-2-91 | Not-Updated 3.0 13.7 9.8
Updated 2.8 11.5 9.2
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Figure 5.20

Link NOI19D : 36-steps ahead forecasts HS-Model
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Figure 5.21

Link NOI19D : 1-step ahead updated forecasts HS-Model
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5.6.2 Application of Horizontal-Seasonal Modelling to Link NO18E

The initial estimate of u which is calculated from six days of historical data (plotted
in figure 5.8) is 50.64. The seasonal ratios from 6 days historical data are given in
Appendix A.2. Substituting the estimate of u and seasonal ratios in equation (5.23),
forecasts were generated for all 5-minute time periods between 07:00-10:00.
Forecasts were updated for all time periods as new values of journey time were
observed. These forecasts are given in Appendix B.2 and plotted in figure 5.22 and
figure 5.23. It can be seen from these figures that forecasts are quite good and follow
the pattern of observed data. Forecasts were also generated 8th, 9th, 10th and 11th

days based on previous days historical data. Table 5.8 shows forecast errors for all

the days for which forecasts were generated.

Table 5.8 Link NOISE : HS Model Forecast-Errors statistics
No. of | Date of Forecasts Forecast-Error Statistics
day’s Fore-
Histori | -casts
cal
data
MAE MSE MAPE
6 14-6-91 | Not-Updated 4.9 35.8 10.0
Updated 4.9 46.3 9.7
7 17-6-91 | Not-Updated 7.9 122.2 12.4
Updated 8.1 133.3 13.2
8 18-6-91 | Not-Updated 14.0 506.1 17.5
Updated 13.1 324.1 20.5
9 21-6-91 | Not-Updated 9.5 183.4 17.0
Updated 8.8 138.4 17.0
10 24-6-91 | Not-Updated 8.0 192.0 12.1
Updated 8.7 158.4 14.2
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Figure 5.22 Link NOISE : 36-steps ahead forecasts HS-Model
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Figure 5.23 Link NOISE : 1-step ahead updated forecasts HS-Model
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5.6.3 Application of Horizontal-Seasonal Modelling to Routel

The initial estimate of yu which is calculated from 6 days of historical data (plotted
in figure 5.14) is 254.14. The seasonal ratios from 6 days historical data are given
in Appendix A.3. Substituting the estimate of u and seasonal ratios in equation
(5.23), forecasts were generated for all 5-minute time periods between 07:00-10:00.
Forecasts are updated for all time periods as new values of journey time were
observed, these forecasts are given in Appendix B.3 and plotted in figure 5.24 and
figure 5.25. It can be seen from these figures that forecasts are quite good and follow
the pattern of observed data. Forecasts were also generated 8th, 9th, 10th and 11th
days based on previous days historical data. Table 5.9 shows forecast errors for all

the days for which forecasts were generated.

Table 5.9  Routel : HS Model Forecast-Errors statistics

No. of | Date of Forecasts Forecast-Error Statistics
day’s Fore-
Histori | -casts
cal
data
MAE MSE MAPE
6 14-6-91 | Not-Updated 14.6 307.5 6.0
Updated 11.9 247 4 4.8
7 17-6-91 | Not-Updated 16.1 422.7 6.9
Updated 13.9 290.5 5.8
8 18-6-91 | Not-Updated 21.3 921.0 7.3
Updated 19.8 589.1 7.1
9 21-6-91 | Not-Updated 17.4 560.3 7.0
Updated 16.3 467.4 6.4
10 24-6-91 | Not-Updated 16.1 439.6 6.2
Updated 14.9 334.1 5.9
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Figure 5.24

Routel : 36-steps ahead forecasts HS-Model
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5.7 Comparison of BJ and HS modelling results

Two forecasting methods "Box-Jenkins" (BJ) and "Horizontal-Seasonal” (HS) were
used to generate journey time forecasts on link-by-link basis. Both techniques proved
appropriate for forecasting on an individual link basis in conditions of low/moderate

congestion.

Table 5.10 gives overall comparison of both the forecasting methods. The
comparison is based on Mean Square Error (MSE) and Mean Absolute Percentage
Error (MAPE). MSE detects the presence of frequent large forecasting errors, while
MAPE gives forecasting errors in terms of percentage. The method which has less
MSE and MAPE values is considered to perform better. The comparison of MSE in
Table 5.10 shows that on average HS method performed slightly better than BJ
method. Forecasts accuracy by both the methods was further improved by updating
the forecasts. This can be seen in Table 5.10 where updated forecasts have less MSE
in all cases. For Box-Jenkins method the MAPE values ranged from 6.13% to
17.22% and for HS method MAPE ranged from 6.01% to 14.93%.

Table 5.10 Comparison of BJ and HS forecasting-errors statistics

Site No. of | Model MSE (Average) MAPE (Average)
Days Journey Time (secs) Journey Time
Forecast (secs)
Not Updated Not Updated
Updated Updated

NO19D 6 BJ 29.9 29.3 11.4 11.3
6 HS 26.8 25.6 11.4 11.1

NOI18E 5 BJ 230.0 202.5 17.2 16.9
5 HS 207.9 160.1 13.8 14.9

Route 1 5 BJ 614.0 465.0 7.0 6.1
5 HS 530.2 385.7 6.7 6.0
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5.8 Discussion

In this chapter two time-series methods were used to develop journey time
forecasting models. The first method is Box-Jenkins ARIMA modelling. This
dynamic modelling technique which accounts for interdependence of data is applied
successfully to forecast journey times. An ARIMA (0,1,2)(0,1,1) model was found
to represent journey time data from three different sites of varying congestion level.
In ARIMA (0,1,2)(0,1,1) model, the first order non-seasonal differencing of the data
was necessary to account for the trends and level shifts which occur within a day and
first order seasonal differencing was required to account for level shifts which occur
between days. The autocorrelation structure of the data sets of all sites showed that
first order non-seasonal moving average term was always significant, so does the
first order seasonal moving average term. The second order non-seasonal moving
average term was also significant in most of the cases and therefore kept in the
model for the sake of universality. The advantages of the ARIMA type of time series
model include explicit structural relationships that can be clearly understood. Once
a model is developed, it can be used on-line for journey time forecasting for real

time applications.

The second technique which was used for journey time forecasting is Horizontal-
Seasonal modelling. The HS method is simpler than Box-Jenkins technique and
required less computing time. The method uses the historical journey time data to
calculate seasonal ratios which are smoothed over time by using suitable smoothing
parameters. For the application of HS model on three sites in this study, the
smoothing constants «=0.3 and y=0.2 were used. The application of the method

produced good forecasting results.

Overall it has been shown that both the methods leads to a feasible application for
Journey time forecasting. Moreover, the methods has been tested on real data sets

for two links and a route in Southampton. Result of the application have been fairly
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good. The forecasts by both methods for any site was never more than 17.22% in
error (see Table 5.10), which shows that overall both the methods performed
satisfactorily. The developed models can be used in real-time to provide short-term
journey time forecasts and may be used in Dynamic Route Guidance systems and
other information and control systems where link journey time forecasts would be

required.
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CHAPTER 6

DEVELOPMENT AND APPLICATION OF JOURNEY
TIME FORECASTING MODELS - (Incident Conditions)

Time-Series forecasting models (developed in chapter 5), are appropriate for the
situations where historical journey time patterns are reasonably recurrent. However,
for high and variable congestion situations particularly those related to traffic

incidents, historic patterns become unstable and time-series forecasting is more
difficult.

Also the time-series models (developed in chapter 5) apply to individual links and do
not encompass link interactions, the build up/decay of congestion ’trees’ or other
network influences. The link-based analysis remains relevant as it reflects the
operation of many systems such as traffic control and dynamic route guidance and
a specific forecast can be made of the parameter of interest (e.g. journey time).
However, in cases of traffic incidents, queues in urban networks spread to affect a
number of upstream links. Journey time on adjacent links are then interrelated both
in time and space, and ’isolated’ link-based forecasting becomes less relevant. A

network-based, rather than link-based interpretation is then required.

The extent of the additional journey time caused by an incident is difficult to assess
(Holmes and Leonard, 1993) as it needs to be separated from the existing
background congestion and needs to take account of its effect over the network as
a whole. The quantitative assessments for incident effects must therefore be inferred
from modelling studies. A useful approach for studying the time varying network
affects of an incident is through the dynamic assignment modelling. From this point,

this study has concentrated on modelling a number of incident/network/traffic
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scenarios and compiling a database from which to develop generalised statistical
models for predicting the spread of congestion effects following an incident and the

required journey time modifications on the incident and affected links.

Four stages were involved in the modelling process. At stage one, a database was
compiled for different incident, traffic and network scenarios. At stage two,
statistical models were developed to predict the number of links affected by an
incident. Stage three involved the development of an algorithm to find the location
of links which would be affected by an incident. At stage four, statistical models
were developed to predict the increase in journey times on the incident and affected
links. The aim would be to use such models in real time systems as an aid to predict
optimum routes for route guidance purposes, and in traffic control systems to

implement better control strategies based on these predictions.

6.1  Selection of Method to Compile Incident Database

The uncertain and wide-range nature of traffic incidents requires a flexible and
reliable method of study. The objective is to study the time varying congestion
phenomenon in a variety of network, traffic and control scenarios to try and then
develop short term forecasting models for networks. It may be possible, for example,
to relate statistically the rate of increase of journey time with its key controlling
parameters, such as the incident characteristics (severity, location, duration), the

underlying level of flow and capacity and so on.

To compile an incident database the method which is to be chosen among the two

most obvious ones, namely: trials on streets and simulation.
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6.1.1 Trials on Streets

Trials on streets are laborious, sometimes require a long time to be carried out, and
can be expensive. Moreover they are not practical with unpredictable incidents. For

these reasons their scope is limited.

6.1.2 Simulation

Simulation is easier to realise than trials on streets and can be repeated with least
extra-cost, also the same traffic conditions can be identically repeated, which is not
always possible with trials on streets. Therefore given an appropriate simulation with
realistic driver behaviour assumptions, the reliability of simulation can be compared
to the one of on-street trials and at the same time it is less time consuming and less

expensive.

Therefore, simulation appears to be the method for the study of incident effects.

6.2 Selection of a Simulation Model

The task described above can be performed by simulation modelling incorporating
dynamic traffic assignment. The simulation models are commonly grouped into three
levels of aggregation, namely macroscopic, mesoscopic and microscopic, respectively

from the least detailed representation of traffic to the most detailed one.

Macroscopic models are flow-based and involve speed/flow relationships based on
fluid analogy and ’continuously’ divisible of flows of vehicles. Microscopic models
are based on individual vehicles and the modelling implies fundamental rules such

as the ’safe headway theory’ and distribution laws (statistical distribution, gap

129



acceptance). Mesoscopic models lie between the two previous ones and involve an
intermediate level of aggregation either in time (allowing within-cycle variations in
flow, which is not possible with macroscopic models) or in space by considering the
movement of small, discrete and indivisible groups of vehicles following the same

route.

At present the traffic assignment models which might be suited for incident
simulation are SATURN (Van Vliet, 1980 and 1982), INTEGRATION (Van Aerde
and Yagar, 1988) and CONTRAM (Leonard et al., 1978; Leonard et al., 1989; also
in CONTRAMI: University of Southampton, 1992).

6.2.1 SATURN

SATURN (Simulation and Assignment of Traffic to Urban Road Networks) is a
macroscopic model incorporating a simulation and an assignment sub-models. The
assignment sub-model predicts route choices and the simulation sub-model moves
traffic through the network and calculates the corresponding delays. The program
performs an iterative loop between the assignment and simulation phases until a
specified number of iterations has been achieved or until convergence has been
reached. SATURN is largely based on a signalised intersection approach (using
cyclic flow profiles, very much like TRANSYT). But the macroscopic and

equilibrium nature of SATURN make it less than ideal for incident modelling.

6.2.2 INTEGRATION

INTEGRATION is a microscopic simulation model which considers the behaviour
of individual vehicles having self-assignment capabilities. The program assigns

vehicles to a loaded network applying the minimum-path theory at each node in the
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network every 6 seconds. Although this program has been specifically developed to
perform traffic assignment in typical integrated controlled/uncontrolled roads, it lacks

application to a larger number of networks, particularly large ones.

6.2.3 CONTRAM

CONTRAM (Leonard et al., 1989) is a mesoscopic dynamic traffic assignment
model which predicts vehicle routes, as well as flows and queues on road network
links. The program uses an ’incremental’ form of vehicle loading which assign
packets of vehicles to their minimum journey time routes in the network through a
number of iterations, for each time interval. It is a capacity restrained model taking
account of the interactive effects of traffic between intersections and the variations
in traffic conditions through time. Particularly, it models the build up and decay of
congestion such as occurs during peak periods. As a result it appears that
CONTRAM structure is overall more flexible than the one of SATURN and
INTEGRATION.

However, the simulation of incidents by dynamic traffic assignment involves different
assignment procedures from the ’optimum’ ones (here ’optimum’ implies a cost
minimising assignment). When visual effects of an incident occur, drivers may either
change lane (and look for a gap in the traffic of a non-blocked lane) or modify their
routes. In the latter case the *diversion’ is generally not a re-optimised route because
drivers do not have sufficient knowledge of the current traffic conditions (unless they
use a dynamic guidance/information system). Therefore, when selecting an incident
simulation model the permitted driver responses will have to be considered. It
appears that only CONTRAM offers a version which simulates incidents and includes
driver behavioural options towards diversions.Indeed, CONTRAMI (Incident
Module for CONTRAM, University of Southampton, 1992) has been developed on
the basis of CONTRAM for taking account of the effects of traffic incidents in urban
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networks, and particularly of their unpredictability. Unpredictable incidents create
complex effects in terms of uncertain driver responses and of traffic interactions over
the whole network. Although CONTRAM models traffic interactions over the
network, it assumes that drivers are aware of the current traffic conditions and they
choose their routes accordingly. This assumption is consistent with *normal’ traffic
conditions, but becomes unrealistic with unpredictable incidents because drivers then
do not know how traffic conditions are going to change all over the network.

CONTRAMI has been developed to model drivers responses to changes in traffic
conditions (flows, queues etc), i.e. decisions to remain on their usual routes (e.g. if
not familiar with alternative routes) or to divert. CONTRAMI therefore allows

incident modelling with various types of strategies and simultaneously benefits from
CONTRAM basic attributes.

Consequently it is CONTRAMI (version of CONTRAM for incidents) which has

been selected to study the effects of traffic incidents.

The flow chart in figure 6.1 summarises the CONTRAMI modelling process which
starts by a normal CONTRAM run to obtain the usual routes taken by vehicles. Only
one normal run is required for a particular set of 'normal’ network conditions. After
the normal run, the assignment procedure has 3 distinct phases. (i) Loading the
network, the ’usual’ routes are read in from the file and used to load the network.
A number of iterations are performed, keeping these routes fixed, to model the
interaction of vehicles properly and to calculate the queues and delays in the
network. (ii) Introduction of an incident, this assignment may be performed for one
or more (user specified) iterations (it is considered that one iteration is sufficient).
(ii1) Fixed routeing, after the diversions has been made, a number of iterations are
performed, keeping the new routes fixed in order to calculate the new queues and

delays in the network.
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Figure 6.1 Flow Chart of CONTRAMI Modelling Process
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6.2.4 Information Required And Provided By CONTRAMI

Because CONTRAMI consists of a module added to CONTRAM, a large amount of
input data is the same for both packages. In particular, CONTRAMI input data

comprise the three major input components which are:

° The network and time data, which define the network geometry properties and
the period to be simulated.

® The demand data, which specify the flow rates for each Origin-Destination
(O-D) movement for each time interval.

® The control data, with two major functions. The first one describes the
running of the program and defines the number of iterations to be carried out
and the types of output required. The second function is to provide the

additional data required for signalised intersections.

In addition CONTRAMI requires supplementary information on the incident
specification (in terms of location, severity and duration) to be added into the
network data file (using the new card type 100), and on the methodology logic (the
specification of the number of iterations for network loading, permitted diversions
and fixed routing). A ’diversion logic’ is also included in the control data file (using
card types 101 and 93) respectively. The diversion logic information reflects the
drivers strategy towards diversions and is input into the programme as: the maximum
number of diversions allowed for a driver, the coefficient of diversion, the
percentage of packets which will not divert and the percentage of occupancy which
will trigger diversions. In summary, drivers who are eligible for diversion can divert
at any junction along their route if they encounter an unexpected queue ahead, and
if the journey time on the normal ’next best’ route is acceptable (ie. within a
specified multiple of that of the normal route, as controlled by the coefficient of

diversion).
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The output information provided by CONTRAMI is basically of the same type as the
CONTRAM one. The information contained in the result file consists of link-by-link

and overall data for each time interval such as:

- Journey time

- Overall distance travelled

- Average speed on the network
- Point-to-Point O-D speed

- Fuel consumption

- Queues

- Total link counts (flows)

- Congestion Index: ratio of the travel time to the cruise time on a link.

A "route" file is also output from CONTRAM/CONTRAMI runs. It provides vehicle
route data for further analysis of journey patterns over the network. Moreover
CONTRAMI provides a "diversions" and an "occupancy" output files. The first one
is a record of all diversions taken by packets of vehicles and the corresponding cruise
times. The second file is a record of the percentage occupancy values for every link

in the network and each time slice.

6.2.5 Implications

The incident version (CONTRAMI) of the CONTRAM traffic dynamic assignment
model has been selected for study the effects of various unpredictable incidents,
which equilibrium assignment models cannot achieve. These effects are characterised
by increases in journey times, delays, decreases in mean speeds and new or longer

queues, which can be calculated from CONTRAMI output data.
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6.3 Modelling Scenarios

6.3.1 The Study Networks

The simulation of incidents was carried out on two urban road networks located in
the U.K. Networks were developed and calibrated by the local authorities concerned.
The networks are:

- Kingston (in London)

- Boscombe (in Bournemouth)

This has allowed network dependence to be assessed as well as the other traffic and

incident related parameters.

6.3.1.1 Kingston Network

The first road network where incidents have been simulated is located in Kingston
(Appendix O.1). The network data comprise 150 coded links and 55 junctions of all
types (including 14 signal junctions) and 28 pairs of origins and destinations. Links
are defined as a section of road between two intersections and are allocated a

number. The study network is made of:

- 43 signal-controlled links (28.7%);
- 67 uncontrolled links (44.7%);
- 40 give-way links (26.7%).

The demand data was available for the morning peak period. The data is known for
each O-D movement and has been disaggregated into twelve five-minute time slices
between 0800 and 0900 hours. This detailed data also allows queue growth and decay

to be monitored in five-minute intervals.
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6.3.1.2 Boscombe Network

The second road network which has been used for incident simulations is located in
Boscombe (Appendix O.2). The network data comprise 190 coded links and 71
junctions of all types (including 7 signal junctions) and a set of 28 origins and 29

destinations. Moreover the study network is made of:

- 22 signal-controlled links (11.5%);
- 117 uncontrolled links (61.5%);
- 51 give-way links (27 %).

This network is made of smaller and more numerous roads than Kingston network,
and is characterised by a higher proportion of uncontrolled links and a much lower
proportion of signalised links. The demand data was again in twelve five-minute

intervals.

6.3.2 The Incidents

6.3.2.1 Incident Type

As the effects of unpredictable incidents are the least well known, it has been decided
to simulate unpredictable short-term incidents whose duration does not exceed 45
minutes. This type of incident is most suited to CONTRAMI applications rather than
predictable incidents (eg. longer term roadworks) where drivers would gradually re-

optimise their routes.
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6.3.2.2

In each of the two networks three incident locations were chosen. In Kingston, links
714, 725 and 730 were selected (Appendix O.1); in Boscombe network, links 1163,
1494 and 1692 (Appendix O.2). Five of the six selected links are signalised only link
1163 in Boscombe network is uncontrolled. The selected links are of average or
major importance and their lengths vary between 65 and 410 metres. They have been
chosen to the proximity of an exit to the network, and with a sufficient number of
upstream links to show the evolution of the affected links over time. In order to give

a representation of the relative importance of the links their characteristics are shown

in table 6.1 below:

Incident Locations

Table 6.1  Links characteristics
Link Length Cruise Time | Saturation Flow
(meters) (secs) (pcu/h)
Kingston 714 120 10 2650
Kingston 730 150 17 1960
Kingston 725 170 17 1850
Boscombe 1494 410 31 1950
Boscombe 1692 65 5 1900
Boscombe 1163 130 10 1825

6.3.2.3

On each location 12 types of incidents have been created with different combinations

of durations and severities:

t

Severity and Duration of Incidents

Three durations were simulated: 15 minutes, 30 minutes, 45 minutes.




- Four levels of severity were simulated: 0.20, 0.50, 0.70, 0.99, which
correspond to reductions in saturation flow to 80%, 50%, 30% and 1%

respectively. (for programming reasons 0% is not achievable).

All incidents have been simulated from the first time slice, which makes their

duration last for 3, 6, 9 time slices.

6.3.3 Permitted Diversions

It was decided to simulate ’fixed route’ strategy which allows no diversion to drivers
who are then ’forced’ into the incident link, whichever the incident severity. The
results of such a scenario are expected to produce somewhat worse traffic conditions
than might occur in practice, but considered reasonable for this study. As the main
uncertainty with another approach concern the proportion of drivers who will divert
and the diversion criteria adopted (knowledge on both of these issues is scarce).
There are also likely to be other behavioural issues involved. Therefore at this stage
"fixed route’ strategy is considered to form a good basis for the development of
predictive models and is suitable for further enhancements as more information on

behavioural issues becomes available.

6.3.4 Simulation Runs

The process of CONTRAMI has been explained in section 6.2.3. CONTRAM is first
run on each network in non-incident conditions, in order to:

- keep a record of the data in normal conditions for future calculations;

- initialise the following CONTRAMI runs in incident conditions.

The details of the information relevant to the incident cases are given in (Appendix

D). Basically the extra information needed by CONTRAMI deals with the location
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and modified saturation flow of the incident link as well as the drivers ’diversion

strategy’.

6.4 Development of Predictive Models

Four stages are involved for the development of predictive models for incident
management procedure. At stage-A, an incident is detected, its location and severity
is fed in; this information may come from the traffic operator in the traffic control
centre which confirms the location of the incident through CCTV and can also
estimate the severity of the incident from number of lanes closed. The model output
is not used for incident detection, although the task of incident detection can also be

achieved with the development of suitable software.

At stage-B, the number of links which would be affected by an incident are
predicted; the prediction of Number of links affected’ is important here as this
information is subsequently used as a threshold for the extent of backward route
search required for predicting the location of incident affected links in the network
(here we are not modelling queue build up explicitly with this procedure, if we were,

we would not need to predict how many links are affected).

Stage-C involves finding the location of affected links in the network.

At stage-D, journey times on incident link and on affected links are predicted. Then
as the new data becomes available, it is analyzed and if the data is normal (close to
historic profiles) then the procedure ends otherwise stages B to D are repeated and

the predictions are updated using the new data.

The flow chart of the modelling procedure is shown in figure 6.2.
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Figure 6.2 Flow chart of the modelling procedure
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6.4.1 Identification of the Key Parameters

The effects (increase in journey time, number of links affected) of an incident is
attributed to many parameters, it can be seen from the simulation results that the
incident characteristics which are defined as duration and severity are two of the
many key parameters. Moreover the effect of an incident from one link to another
is different, this can be attributed to link characteristics (geometric, traffic
characteristics) as well as of each network. The geometric properties are assumed not
to vary strongly from one link to another according to the available information
provided by the original data-files. However the importance of a link in a network
and its ’traffic performance’ seem to have an important role to play in the effects that
an incident could have on other links. A range of parameters can reflect these
situations, for example Congestion Index (link journey time/link cruise time), Degree
of saturation (number of arrivals/link capacity), or Delay (link journey time - cruise
time). However, it was decided that the variables which will be used in modelling
are restricted to those which would be available in a DRG system. This therefore
excluded traffic flow and flow-related parameters, such as degree of saturation, even
though these parameters may have produced a superior model. Furthermore, because
the key goal of the study is to build predictive models, the independent parameters
in the models will have to refer to non-incident conditions. More precisely, in a
future application the parameters should be practically available for all links of any
network, which is only possible for 'normal’ traffic conditions (although subject to
updating with real time incident data as it becomes available). Some appropriate

parameters would be Congestion Index, Delay (secs/veh).

6.4.2 Prediction of Number of Links Affected

For DRG systems, the important quantification is the identification of those links

whose journey times are affected by the incident. However CONTRAMI output files
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do not provide the numbers of affected links directly. For this purpose a FORTRAN
program was written (Appendix J) which compares the journey times in non-incident
and in incident conditions for all links and all time slices. The criterion for a link
to be named ’affected’ during at least one time slice is to have a total journey time
in incident conditions exceeding by at least 20% the total journey time in non-
incident conditions and then if for any time slice the journey time for incident case
is 20% higher than the journey time for non-incident case, then the link is considered
as affected during that time slice. By using this criteria the number of affected links
were evaluated for different incident scenarios (severity, duration, location), the
results are shown in Appendix E.1 - E.4. An example of number of links affected

by an incident is shown in figure 6.3 below:

Figure 6.3 Example of Number of Links Affected (simulation)
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A quantification of the number of links affected was then related to the key incident

characteristics for the full database. As expected, incident severity proved to be a
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dominant parameter. Plots such as those in figure 6.3, were used to develop a
method for predicting the number of links affected by the incident. Methods tested
initially for predicting the curve forms included the use of (i) curve fitting and (ii)
probability distribution fitting to the data. However, these methods proved relatively
complex and a simpler approach was finally calibrated which also gave a better
statistical fit. This preferred approach consisted of producing a linear two stage
profile, with stage 1 describing congestion build-up during the incident and stage 2

describing post-incident "recovery”. This is illustrated in figure 6.4 below:

Figure 6.4 Envisaged Model for Number ofi Links Affected

No. of links
affected (N)
2
M1 M2
I
Stagat: Stage2: Time (T)
incident post-incident

The requirement here is to predict the two slopes of the profile termed M1 and M2
here. Analysis centred on predicting M1 from key incident, network and traffic
characteristics and M2, based on similar parameters excluding those describing the
incident. Predictions of these slopes and incident duration would then provide
predictions of the numbers of links affected at any time following the onset of the
incident. Constant slopes are illustrated here for simplicity, although in practice,

slopes would be recalculated (and may vary) for every time interval (e.g. 5 minutes).

6.4.2.1 Database for Slope M1

The slope M1 represents the increase in number of links affected from the beginning
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until the actual end of the incident, this situation is clearly defined by a ’build up’
slope.
From the simulated results (Appendix E), the rate of increase in number of links

affected per minute were calculated by the relation :

M1 = (No. of links affected at time t - No. of links affected at time t-1) / 5
6.1)
In this way a database (see Appendix G.1) for slopes M1 was created for different

incident scenarios.

6.4.2.2 Model for M1

From the database of slopes M1 (Appendix G.1), it can be seen that a greater
severity produce a steeper slope, moreover if the incident link is particularly likely
to get congested rapidly (this is represented by Congestion Index in the database),
then the number of affected links in the network will grow faster, several models
were produced from this database and are given in (Appendix H.1) with their
statistics. A simple and robust model produced from incident database (which will

be used for all future application) is of the form:

MI, = 0.37 * Sev, * LCI, (R* = 0.51) 6.2)
where
MI, = rate of increase of number of links affected with time
(number/minute)
Sev, = incident severity at time interval t (range 0 to 1 (blocked link))
LCIL = link congestion index for the incident link during the time

interval t, from the historic profile.
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In this model, the congestion index reflects the normal state of congestion on the
incident affected link during the analyzed time interval. The higher the CI, the
greater the incident effects, as expected. Similarly, the higher the incident severity,
the greater are the incident affects. This product model proved to have equally as
good a fit as other additive and power function models tested and hence selected for

future applications.

Time interval specific forecasts of M1, would then allow predictions to be made of
the number of links affected, for any forecast horizon. For example, slopes M1,,
M1, and M1, may apply to consecutive 5 minute time intervals t;, t, and t,. The
prediction of the number of links affected by the incident after 15 minutes would
then be:

Number of links affected = 5 * M1, + M1, + Ml,) 6.3)

6.4.2.3 Database for Slope M2
Slope M2 represents the function to calculate the number of links affected for *post
incident’ case. M2 values were calculated from the numbers of links affected during

the time slices following the incident ends, by the relation :

M2 = (No. of links affected at time t - No. of links affected at time t-1) / 5
(6.4)

The database for slope M2 is given in (Appendix G.2).
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64.2.4 Model for M2

For "post incident" slope, it seems that the decay of the number of affected links
sometimes starts only after a transition period has been achieved. This transition
period would reflect a situation where the network was still partly congested at the
time of the incident end, and where drivers would be re-optimising their routes
according to the latest traffic conditions; for this reason the number of affected links
would either rise or remain almost constant for a short time. Hence the link ’traffic
performance’ parameter is expected to be involved in the number of affected links
of the *after incident’ situation. Several regression models were developed (Appendix
H.2) by using ’post-incident’ database (Appendix G.2), but because of negative and
positive values of M2 slopes, few models are suitable for a good fit. A preferred

model which is developed from post-incident database is:

M2, = 0.44 - 1.75/LCI, R? = 0.20) (6.5)
where
M2, = rate of decrease of number of links affected with time
(number/minute)
LCI, = congestion index for the incident link during the time interval t,

from the historic profile.
With this model M2 value is positive when the ratio (1.75/LCI) is less than 0.44, it

will be negative if the ratio (1.75/LCI) is greater than 0.44 and for the ratio
(1.75/LCI) is 0.44 the value of M2 is zero.
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6.4.3 Prediction of Location of Affected Links

Given a time-dependent prediction of the number of links affected, it is then
necessary to locate these links in the network. It is usual that the first affected links
are the nearest upstream links to the incident link, and that the propagation will
continue in the direction of the nearest upstream links connected to affected links
until the maximum number of affected links has been reached. Then, after the
incident has ended, the number of affected links will decrease following the reverse
process. To find out the location of affected links in the network, a reverse route
search has to be made from the upstream node of incident link, in this way a
backward tree is constructed considering (i) all feasible upstream links, (ii) upstream
links prioritised according to the proportion of traffic on the link which also
(normally) proceeds through the incident affected link. (It is expected that the spread
of congestion will predominate on routes/trees which contribute most traffic to the
incident affected link.).

For example, if a network connection is constructed as:

Link No. Upstream Links
730 518 603 604
518 517
603 515 108
604 523
517 703 117

and if there is an incident on link 730 then link 518 is expected to be affected before
links 603 and 604, link 603 is expected to be affected after link 518 but before link
604 and so on.
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6.4.4 Prediction of Journey Time on Incident Link

Journey time prediction on incident links was analyzed using techniques compatible
with those described in (Section 6.4.2), looking initially at the incident link itself.
The incident modelling using CONTRAMI produced a number of journey time

profiles (see Appendix F), one example being given in Figure 6.5 below:

Figure 6.5 Example of increased journey time (simulation)
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This example illustrates the increase in journey time following the onset of an
incident, and how the journey time stabilises to a relatively constant value if/when
the link becomes full. It also illustrates how the maximum journey time on the link
(when it is full) varies according to the incident severity, as would be expected, as
severity is directly related to reduction in capacity. A three stage model is therefore

suggested for the incident-affected link. This is illustrated in figure 6.6 below:
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Figure 6.6 Envisaged model for increased journey time
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With this model, S1 represents the rate of increase of journey time with time,
following the onset of the incident, (again a linear slope is illustrated here for
simplicity). At time T1 the link becomes full (and queues extend upstream) so that
a maximum journey time (JT max) is maintained for a period (T2-T1). Some time
after the end of the incident, the link journey time will start to decline at a rate S2.

Analysis was concentrated to develop predictive models for S1, MaxJT and S2.

6.44.1 Database for Slope S1

The slope S1 represents the increase in Journey Time on incident link from the
beginning of the incident until the journey times reach its maximum, this situation
is defined by an "upward’ slope. From the simulated journey times (Appendix F), the
rate of increase in journey time per minute for different incident scenarios were

calculated by the relation :

S1, = (JTL-JTL.,)/5 (6.6)
where
S, = rate of increase of journey time on incident link with time,
(secs/minute).
JTI, = Journey time at time t, following the onset of an incident
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JITI,, = Journey time at time t-1, following the onset of an incident

In this way a database for slopes S1 was created for different incident scenarios. This

database is given in (Appendix G.3).

6.4.4.2 Model for S1

From the simulation results, it can be seen that the incident characteristics which are
defined as duration and severity, are the key parameters of increase in journey time,
moreover the effect of an incident from one link to another is different, this can be
attributed to link characteristics (geometric, traffic characteristics). Two parameters
(Congestion Index and Delay) were selected to represent link characteristics.
Regression techniques were then used to develop several forms of additive and

multiplicative models (Appendix H.3), the preferred model for S1 is:

S1;, = 1.25 * Sev, * Delay, R* = 0.69) (6.7)
where
S1, = rate of increase of journey time on incident link with time,
(secs/minute).
Sev, = incident severity at time t (range 0 to 1).
Delay, = Delay (secs/veh) on the incident link during the time interval t,

(for non-incident case).
Time interval specific forecasts of S1, would then allow predictions to be made of
increased journey time on incident link, for any forecast horizon. The forecasting

equation would be:

JTI, = JTI, + 5*S], (6.8)
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where

JTI, = Increased Journey time on the link at time interval t.
ITL, = Increased Journey time on the link at time interval t-1.
SI, = Rate of increase of journey time (as calculated by equation 6.7)

on incident link.

6.4.4.3 Maximum Journey Time on Incident Link

With the model given in equation (6.8), the journey time after an incident will keep
increasing with the time, however in reality there is an upper limit of journey time
faced by vehicles on a link, this upper limit is defined here as MaxJt and is a

function of incident severity and link characteristics.

6.4.4.4 Database for MaxJt

MaxJt represents the maximum journey time faced by vehicles on a link after an
incident. From the simulation results a database (Appendix G.4) of maximum
journey time was compiled. In this database MaxJtNon is the maximum journey time
on the link at any time slice during normal traffic conditions and MaxJt is the

maximum journey time on the link at any time slice for a given incident scenario.

6.4.4.5 Model for Max]Jt

Regression analysis were carried out on the MaxJT database (Appendix G.4) to
develop the models for maximum journey time on a link; the developed models are

given in Appendix H.5, the selected model for MaxJt is:
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MaxJt = MaxJtNon + (27.34 * Sev *CT) (R? = 0.73) 6.9)

where
MaxJt = Maximum journey time (secs) on the link after an
incident.
MaxJtNon = Maximum journey time (secs) on the link in non-
incident case at any time interval.
Sev = Severity of the incident (range 0 to 1).
CT = Cruise time (secs) on the link.

With this model when severity equal to zero, the maximum journey time after an
incident would be the same as the maximum journey time in non-incident conditions
and as severity is higher so does the MaxJt. MaxJt is also related to the cruise time
on link which represents the link characteristics. For longer links the increase in

MaxJt would be higher for a given incident scenario.

6.4.4.6 Database for Slope S2

Slope S2 represents the function to calculate rate of decrease in journey time for
’post incident’ case. The database for slope S2 compiled from simulated results is
given in Appendix G.5. In the database, S2 values were calculated by the following

relationship:
S2, = (JTL-JTL.,)/S (6.10)
The negative values of S2 shows the rate of decrease in journey time for post

incident time periods; whereas positive values of S2 shows that for some cases

journey times may not start decreasing soon after the end of an incident.
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6.4.4.7 Model for S2

For "post incident" slope, it seems that the decrease in journey time starts only after
a transition period has been achieved. This transition period would reflect a situation
where the network was still partly congested at the time of the incident end; for this
reason the journey times would remain almost constant (at MaxJt) for a short time.
Regression models were developed by using *post-incident’ database (Appendix G.5),
but because of negative and positive values of S2 slopes, few models are suitable for
a good fit. The developed models for S2 are given in Appendix H.4; the preferred

model for S2 is :

S2, = -1.46 * (MaxJT/Delay) + 2.25 (R* = 0.52) (6.11)

where

S2, = rate of decrease of journey time on incident link with

time, (secs/minute).

MaxJt = Maximum journey time (secs) on the link after an
incident.
Delay, = Delay (secs/veh) on the incident link during the time

interval t, (for non-incident case).

With this model, slope S2 is inversely proportional to delay, lower the delay
(representing link importance in the network) value, steeper the slope S2 and journey
time quickly back to normal, whereas links with higher delay values take longer time

to come back to normal.

Time interval specific forecasts of slope S2, would allow predictions to be made of
decrease in journey time on incident link, for any forecast horizon. The forecasting
equation would be :

JTI, = JTI, + 5*S2, 6.12)
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where

IT, = Increased Journey time on the link at time interval t.
ITI,, = Increased Journey time on the link at time interval t-1.
S2, = Rate of decrease of journey time (as calculated by equation

6.11) on incident link.

6.4.5 Prediction of Journey Time on Affected Links

Finally, it is necessary to predict journey times on all upstream links affected by the
incident, as identified in (Section 6.4.3). Similar procedures are envisaged to those
described above, with some factoring of S1 and S2 slopes according to the

remoteness of the link concerned from the incident link. In the figure 6.7 below:

Figure 6.7 Envisaged model for increase in journey time on affected links
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T1 is the start time of the incident, T2 is the time when a link is affected by the
incident, this time is predicted from section 6.4.2 and 6.4.3. Once the link is
affected, the increase in JT on affected link is predicted by slope S1, the JT on
affected links keep increasing until it reaches to the maximum at time T3. The
maximum JT on affected link can be predicted by the MaxJT model given in
equation (6.9). T4 is the End time of the incident, however the JT on affected link
stays at maximum until time T5, after which JT start decreasing. At time T6 the link
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is no more affected (this time is predicted in section 6.4.3) and at time T6 the

journey time back to normal profile.

6.5 Application, Evaluation And Validation of the Models

The predictive models which were developed in section 6.4 are based on simulated
database for different incident scenarios. The goodness of fit of these models on this
database is illustrated by comparing the results with that of CONTRAMI simulated
results and by analysing forecasting errors statistically. Secondly, a type of validation
of these predictive models is also achieved by applying them to an alternative larger
network (London Network). It should be noted that the choice of a larger network
such as London would be particularly relevant, considering the large number of links

expected to be affected in the event of an incident.

6.5.1 Application of M1 and M2 Models

Models for M1 and M2 slopes can be used to predict the number of links affected
after an incident occur. These models were applied to predict the *number of links
affected’ with incident on links, K-714 (Kingston network), B-1494 (Boscombe
network) and L-3232 (London network) for different incident scenarios by using the
models given in equations (6.3) and (6.5), the detailed results of the application of
these models are given in Appendix M. Examples of simulated and predicted
"Number of links affected’ are shown in figures 6.8, 6.10 and 6.12. The predicted
results were compared with the simulated results of CONTRAMI, the accuracy of
the forecasts can be seen in figures 6.9, 6.11 and 6.13 which shows the
corresponding plots of simulated and predicted *Number of links affected’. These
figures show how the models perform following the onset of the incident. The
forecasting errors statistics for *"Number of links affected’ for different incident

scenarios were calculated and are given in table 6.2.
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Figure 6.8 Number of links affected with incident link 714 (Sim vs Pre)
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Figure 6.9 Simulated vs Predicted "Number of links affected’ incident link 714
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Figure 6.10 Number of links affected with incident link 1494 (Sim vs Pre)
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Figure 6.11 Simulated vs Predicted 'Number of links affected’ incident link 1494
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Figure 6.12 Number of links affected with incident link 3232 (Sim vs Pre)
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Figure 6.13 Simulated vs Predicted 'Number of links affected’ incident link 3232
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The forecasting results show that the models are capable of predicting ’Number of
links affected’ in the network with reasonable quality, however further improvements
in the models can be achieved by careful calibration of the model’s parameters and

with updating of forecasts.

Table 6.2  Forecast-Errors statistics for 'Number of links affected’

Site! Incident® ME? MAE MAPE
Type
I3 0 1 31
K-714 16 9 10 55
19 7 8 37
I3 14 14 58
L-3232 I6 9 10 62
19 3 6 71

1 K-714 = Kingston link 714 L-3232 = London link 3232

2 I3 = Incident Severity = 20% 16 = Incident Severity = 50%
I9 = Incident Severity = 70%

3 ME = Mean Error MAE = Mean Absolute Error
MAPE = Mean Absolute Percentage Error

6.5.2 Application of Procedure to find Location of Affected Links

The procedure for finding the location of affected links in the network is

implemented on computer for real time applications by writing two FORTRAN
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programs (see Appendix L). The first program (NETTREE), when supplied with
number of links affected by an incident, finds the location of affected links by using
the network connection files and the second program (GRAPH) plots them

graphically on the computer screen.

Network Connection File

In this file all the links in the network are defined with their upstream links,
upstream links are prioritised according to the proportion of traffic on the link which
also (normally) proceeds through the incident link. The proportion of traffic was
determined by using card 54 during CONTRAMI run. Network connection files for

Kingston and Boscombe networks are given in (Appendix K).

NETTREE Program
Input : Network Connections File
Number of links affected
Output : Location of affected links in the network
GRAPH Program
Input : Nodes file
Links file

Location of affected links (obtained from NETTREE program)
Output Shows the affected links graphically

Nodes file was obtained by digitising the network and Links file contains the link

numbers of two joining nodes.

The application of this procedure has produced promising results, as illustrated in
figures 6.14 and 6.15. These figures show (in thicker lines) those links predicted to
be affected after an incident at different times, using this route search process, and

can be compared with simulated results for a quality of prediction.
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Figure 6.15 Location of affected links (Boscombe Network)
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6.5.3 Application of S1, MaxJt and S2 Models

Models S1, MaxJt and S2 can be used to predict increase in journey time on incident
link. Increase in journey time on incident link is predicted for different incident
scenarios by using the S1 model given in equation (6.7), MaxJt model given in
equation (6.9) was used as a cut off for maximum journey time on incident link and
S2 model given in equation (6.11) was used to obtain the post incident slopes,
examples of simulated and predicted journey time on three links (Kingston-714,
Boscombe-1494, London-3232) are given in figures 6.16, 6.18 and 6.20, and figures
6.17, 6.19 and 6.21 show the corresponding comparison of predicted vs simulated

journey times.
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Figure 6.16 Increased Journey Time on incident link 714 (Simulated vs Predicted)
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Figure 6.17 Simulated vs Predicted journey times - Link 714
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Figure 6.18 Increased Journey Time on incident link 1494 (Simulated vs Predicted)
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Figure 6.19 Simulated vs Predicted journey times - Link 1494
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Figure 6.20 Increased Journey Time on incident link 3232 (Simulated vs Predicted)
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Figure 6.21 Simulated vs Predicted journey times - Link 3232
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Forecasting quality of S1, MaxJt and S2 models were checked analysing forecasting
errors statistically. Summary statistics of forecasting errors based on ME, MAE and
MAPE is given in table 6.3. The MAPE error range from 27% to 74%, which are
rather high. However, given the big variations in networks and traffic characteristics,
the forecasting results are considered encouraging. Further improvements in forecasts
can be achieved by updating the forecast using latest on-street information and by

careful calibration of the models for the particular network.

Table 6.3  Forecast-Errors statistics for 'Journey Times’

Site! Incident? ME? MAE MAPE
Type
13 =22 28 47
K-714 I6 =51 59 74
19 -38 63 68
I3 23 71 27
B-1494 I6 19 116 34
19 54 272 48
13 -60 60 60
L-3232 16 -71 78 46
19 33 153 30

1 K-714 = Kingston link 714 B-1494 = Boscombe link 1494
L-3232 = London link 3232

2 I3 = Incident Severity = 20% 16 = Incident Severity = 50%
I9 = Incident Severity = 70%

3 ME = Mean Error MAE = Mean Absolute Error
MAPE = Mean Absolute Percentage Error
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6.5.4 Application of Models to Predict Journey Times on Affected Links

Models developed in section 6.4.2 can be used to predict the number of links that
will be affected at a given time after an incident and then the location of affected
links in the network can be found by using the procedure developed in section 6.4.3.
These models also predict the time when a link is affected, once a link is affected it
is treated as incident link for the increase in journey time, models for S1, MaxJt and
S2 are used to predict the journey time on the affected links (for simplicity, no
factoring of S1, MaxJt and S2 was considered here, however for more accurate
forecasts, factoring may be required). Table 6.4 shows the results of application of
the above procedure. In this table, following the on-set of an incident, 'Number of
links affected’ were predicted for each time slice using M1 model, then the location
of affected links were predicted using the procedure developed in section 6.4.3.
Journey times on affected links were predicted using S1, MaxJt and S2 models
developed in section 6.4.4. The predicted results are compared with simulated
results, it can seen from table 6.4 that the prediction of "Number of links affected’
and the prediction of ’Location of affected links’ is quite good. Also, prediction of
’Journey times’ on incident affected links is reasonably good, apart from the incident
link itself, where in most cases, the model is over predicting journey times. Again
it is expected that updating of forecasts (say every 5-minutes) will help in reduction

of forecasting errors.
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Table 6.4

Incident Link = 714

Severity =20%

Increase in Journey Time on affected links (Simulated vs Predicted)

Duration=30-min

Time | Number of Number of | Location ! Location of | Journey Journey
links links of affected affected Time Time
affected affected links links
(Simulated) (Predicted) (Simulated) | (Predicted) (Simulated) (Predicted)

8:05 0 0 - -

8:10 1 1 714 714 17 24

8:15 1 2 714 714 31 37

535 9

8:20 2 3 714 714 59 61

535 535 10 9
711 24
8:25 5 5 714 714 76 107
535 535 22 13
711 711 35 30
708 710 46 19
724 712 25 28
8:30 8 7 714 714 78 122
535 535 41 19
711 711 80 39
710 710 31 25
712 712 30 32
708 708 52 77
707 724 59 48
520 27

1

See map on page 270 for location of affected links in the network.
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6.6 Implementation of the Models in Real Time

The models which are developed above, predict the effects of an incident at the start
of incident for the rest of the time periods. However for real time applications, on-
street information would be available at regular time intervals (e.g. 5-minutes).
Forecasts can then be compared with this information and be updated accordingly.
Consider an example where the "Number of links affected’ were predicted by using

M1 (equation 6.2) and M2 (equation 6.5) slopes.

Number of links affected = 5 * (M1, + M1, + M1, + - - - + M2, + M2,)
(6.13)
Here at any time interval the predicted 'Number of links affected’ is the sum of
previous predicted slopes plus the current slope, to update the forecasts, sum of
predicted slopes can be replaced by the observed *number of links affected’ at time
t-1. So the forecasts can be updated by using the following equation:

Number of links affected (t) = 5 * ( observed number of links affected (t-1) + M1)
6.14)

The above equation was used to obtain updated forecasts for ° Number of links
affected’, these forecasts are given in Appendix N. Results were compared with not-
updated forecasts; an example of updated forecasts is shown in figure 6.22 below

with the forecasts error-statistics given in Table 6.5.

Once the forecast for 'Number of links affected’ is updated, then the prediction of
"location of affected links’ can also be updated by re-running the NETTREE and
GRAPH programs (section 6.5.2) which predict the location of affected links in the

network.
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Figure 6.22 Updated forecasts for 'number of links affected’ : Incident link K-714

Link 714
Dur = 30 min Sev = 50%
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Table 6.5  Comparison of not-updated and updated forecasts for 'Number of links
affected’ with incident link K-714
Site Incident Forecasts Error-Statistics
Type
ME MAE MAPE
Not-Updated 4 6 54
K-714 I5
Updated -0.2 3 35

It can be seen from the above table that updated forecasts are more close to the

observed values and therefore has smaller forecast errors. The MAPE is reduced to

35% for updated forecasts as compared to 54% for not-updated forecasts.
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Similarly, journey time forecasts which were obtained by using the equation (6.8) as:

JTL = JTL, + 5*S1,

where
JITI, = Predicted Journey time on the link at time interval t.
T, = Predicted Journey time on the link at time interval t-1.
Sl, = Rate of increase of journey time (as calculated by equation 6.7)

on incident link.

can be updated by replacing predicted journey times at time t-1 with observed

journey time t-1, the prediction equation would then be :

JTI, = JTO,, + 5*S1, (6.15)
where
JIT, = Predicted Increased Journey time on the link at time interval t.
JTO_, = Observed Journey time on the link at time interval t-1.
S1, = Rate of increase of journey time (as calculated by equation 6.7)

on incident link.

The above equation was used to obtain updated forecasts for > Journey times’ and
compared with not-updated forecasts, these forecasts are given in Appendix N. An
example of updated forecasts is shown in Figure 6.23 below with the forecasts error-

statistics are given in Table 6.6.
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Figure 6.23 Updated forecasts for 'Journey Time’ with incident link B-1494 16

Link B-14394
Dur = 45 min Sev = 50%
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Table 6.6  Comparison of not-updated and updated forecasts for ’Journey times’
with incident link B1494

Site Incident Forecasts Error-Statistics
Type
ME MAE MAPE
Not-Updated -19 116 35
B-1494 16
Updated -31 73 23

Again forecasts have been improved by updating and MAPE reduced from 35% to
23%.

176



6.7 Discussion

This chapter has been based on simulation modelling of a variety of traffic/network
incident scenarios, producing a database from which generalised statistical models
have been developed for predicting the spread of congestion effects following an
incident and the required journey time modifications on incident link and on affected
links. The ’goodness’ of fit of the models were evaluated by comparing the results
of developed models with that of CONTRAMI (simulation) results. A type of
validation was also achieved by applying the developed models on a larger network

(London network).

These models have demonstrated a reasonable predictive quality, given the highly
variable effects of unexpected incidents and could readily be implemented on-line.
However, before these models can be used, some improvements are envisaged. The
incident simulations were based on ’no diversion’ strategy for drivers, therefore,
although the results were considered reasonable for this study, they are expected to
produce somewhat worse traffic conditions than those which could occur in practice.
As a consequence the predicted values of M1’ and ’S1’ slopes are expected to be
slightly greater than practical ones. There is evidence (Sparmann, 1991) from on-
street observations that a certain number of drivers do divert from their original route
when an incident happens although no quantification of this effect has been achieved.
This could be simulated by CONTRAMI by describing the maximum number of
diversions allowed per driver, the coefficient of diversion and the percentage of
vehicles diverting. Several strategies could therefore be experienced by CONTRAMI
simulation, and it can be imagined that the strategies could be adjusted to each

network and type of road users.

The developed procedure is therefore recommended as a valuable real-time tool to
help journey time prediction within DRG incident management strategies and for

other traffic control and information systems.
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CHAPTER 7

CONCLUSIONS

This study was involved in the development and testing of short-term journey time

forecasting models for normal traffic conditions and for incident conditions. The

developed models have demonstrated the potential as a real time tool for link-based

journey time forecasting in low/moderate congestion and for network-based DRG

(Dynamic Route Guidance) incident management strategies particularly in low

penetration level. The general conclusions which are drawn from the research are

outlined below.

7.1

General Conclusions

Among the parameters measured by SCOOT UTC system in Southampton
were traffic Flow (veh/hr) and Delay (veh hrs/hr). From Flow (veh/hr) and
Delay (veh hr/hr); average journey time (sec/veh) can be calculated. Such
estimates of journey time accurately reflect on-street journey times over a

wide range of conditions.

Analysis of the SCOOT data suggested that journey time variability between
morning and evening peak can be significant. Moreover variability between
days of week (Mon-Fri) may also be sufficient to warrant separate
measurements and predictions for each day of the week. However, for sites
where between day variability is not significant, data should be grouped
together for all working days of the week to form a single time series. This

has the advantage that journey time profiles from which the predictions are
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made will have tighter confidence interval due to increased sample size.

Monthly variability may also be significant, however if decrease/increase in
journey time between different months is gradual then there may not be the
need of separate monthly profiles as the change will be covered by updating
of historical profiles (e.g. by using only last six days data as historical
database).

Another source of journey time variability which can be significant is caused
by traffic signal cycles. Accounting for cyclic patterns may be necessary in
very short term journey time forecasting such as for signal control application.
However, it becomes less relevant for longer forecast horizons typically
required for traffic information systems etc. Therefore this very short term
variability is usually not of interest in journey time forecasting, except for

particular signal control applications.

Time-Series methods can be effectively used to develop journey time
forecasting models. These methods had the merits of being relatively simple
and of ’direct’ forecasting of the parameter(s) of interest. These methods are
appropriate for link-based forecasting in conditions of low/moderate

congestion.

Two time-series methods (Box-Jenkins ARIMA and Horizontal-Seasonal) were
used to develop journey time forecasting models on a link-by-link and a route

basis, models were tested on a variety of data sets.

These forecasts are based on the historical data of previous days and at first
forecasts were generated at the start of current day for all the 5-min time
periods between 07:00-10:00 and then as soon as the new journey time value

is observed, forecasts for all the next time periods can be updated by using the
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latest journey time information.

Application of Box-Jenkins ARIMA and Horizontal-Seasonal forecasting
methods on a variety of data sets show that overall both methods have

performed satisfactorily with neither method proving consistently superior.

The most important factor which influences the quality of forecasts is the
variability in the historic data and how close is the current day’s data to the
historic data. Forecasts on a link, which has less variability in the historic
data, are much better than the forecasts at a link where day to day variability

was much higher.

Improvement in forecasts was achieved when forecasts were updated for every
5-min interval and this is due to the fact that both the models used to generate
forecasts are quite flexible and quickly adapt themselves to the current
situations; e.g. if on the current day the level of journey time is higher than
the historical journey time data, models react quickly and updated forecasts

follow the pattern of the current day data.

Forecasting errors decreased with increasing time aggregation. However, such
aggregation could compromise the speed/usefulness of forecasting for traffic

information and control.

For Box-Jenkins ARIMA models, prediction is only a part of the method; it
also includes the analysis of time series. It is therefore more general than the
other method, where the user has to decide about the model’s parameters. A
family of (ARIMA) models is proposed and the analysis of historical data

leads to the selection of an appropriate model.

For real time application of the Box-Jenkins ARIMA method, the analysis of
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historical data, for the selection of an appropriate model, can be carried out
off-line and once an appropriate model is selected the forecasts can be
generated on-line in real time. The same selected model is used day after day
unless the forecasting errors are out of specified limits, in this case analysis
of historical data would be repeated off-line to select a new model and then

forecasts would be generated by the new model.

For the Horizontal-Seasonal method, the prediction equation contains a base
value and a seasonal factor. The base value represents the mean value of the
time series over one season and for every time period t of the season a
seasonal factor is defined as the ratio between the travel time in period t and
the base value. Base value and seasonal factors are being updated in every

period using exponential smoothing with individual weighting parameters.

The Horizontal-Seasonal method can be implemented on a computer for real-
time application by writing a computer program in any high level language.

The method is simple and forecasts can be generated on-line.

Time-series forecasting methods were successfully used in ’normal’ traffic
conditions, where day-to-day pattern of journey time is not changed
dramatically. This study has developed suitable models for such forecasting
on a link-by-link basis and where congestion is reasonably recurrent. These
models could be further refined and tested on-line by adopting methods for
automatic validation within systems where such forecasts are used (e.g. for
route guidance). An expert system approach could also be adopted in which
the performance of a range of forecasting methods is automatically monitored

and the method is chosen appropriate to the traffic situation.

For high and variable congestion situations, including those related to traffic

incidents, historic patterns become unstable and the performance of time-series
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forecasting methods deteriorates. Additional strategies are then necessary to
handle such situations. Also a network-based, rather than link-based

interpretation is then required.

Traffic incidents occur in a variety of forms and contribute to increase
congestion and hence journey time by reducing the capacity of road networks

for various periods of time and at various levels of severity.

A commonly adopted definition (Collings J F, 1983) of a traffic incident is "an
unusual occurrence which reduces the capacity of the road on which it
occurs’. Incidents can be classified into two main categories (i) Predictable
Incidents (such as roadworks etc) and (ii) Unpredictable Incidents (such as

traffic accidents).

For both the categories of incident defined, the net effect is a reduction in
road capacity, which lasts for varying lengths of time. The result is an excess
of traffic demand over reduced capacity which leads to higher than normal
journey time, not only on the link of incident but also on the approaching

links and other links in the network.

Following an incident and its detection by a suitable method, there is a need
to predict the incident effects in the network and to bring some incident
management strategies which provides the appropriate response to minimize

the adverse effects of the incident.

One way of predicting incident effects is by running an assignment model on
line, however there are two problems involved in this, firstly road traffic
assignment and simulation models are very demanding in computing
(processing) time particularly with very large networks. Secondly even when

sufficiently powerful computers will be available in the future to run an
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assignment model on-line, it will require detailed representations of the
network before an on-line simulation can be run, which can be very costly and

will not be available for most of the networks.

For such reasons there is a need for simple statistical models which can be

used on-line to predict the affects of an incident in a network.

In incident conditions under a variety of network traffic scenarios, models are
required, to predict (i) Number of links that will be affected by an incident,
(ii) Location of affected links in the network, (iii) Increase in Journey Time

on incident link, (iv) Increase in Journey Time on incident affected links.

The extent of the additional journey time caused by an incident is difficult to
assess as it needs to be separated from the existing background congestion and
needs to take account of its effect over the network as a whole. The
quantitative assessments for incident effects must therefore be inferred from

modelling studies.

Two methods, (i) trial on street and (ii) simulation, were considered to
compile a database for different incident/traffic/network scenario. However
trials on streets are laborious and can be expensive, also they are not practical
with unpredictable incidents, whereas simulation is easier to realise and can
be identically repeated with less extra cost. Therefore simulation was
considered to be the most appropriate method for the compilation of an

incident data-base on which to build predictive models.
CONTRAMI is a suitable simulation tool to study the affects of incidents, as

it allows incident modelling with various type of strategies and simultaneously
benefits from CONTRAM’s fundamental attributes.
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The affects of unpredictable incidents are less well known. It was therefore,

more need to simulate unpredictable short-term incidents.

The simulation of incidents carried out on two urban road networks, allowed
network dependence to be assessed as well as the other traffic and incident
related parameters. These are real networks and the simulation results can be

related to what would be effects of incidents on-street.

The effects of an incident can be attributed to many parameters, it was seen
from the simulation results that the incident characteristics which were defined
as duration and severity are two of the many key parameters. Moreover the
effect of an incident from one link to another was different, this can be
attributed to link characteristics (geometric, traffic characteristics) as well as
of each network. The geometric properties are assumed not to vary strongly
from one link to another according to the available information provided by
the original data-files. However the importance of a link in a network and its
’traffic performance’ played an important role in the effects that an incident
had on other links. A range of parameters can reflect these situations, for
example Congestion Index (link journey time/link cruise time), Degree of
saturation (number of arrivals/link capacity), or Delay (link journey time -

cruise time).

However, only those variables may be used in modelling which would be
available in a DRG system. This therefore excluded traffic flow and flow-
related parameters, such as degree of saturation, even though these parameters
may have produced a superior model. Furthermore, because the key goal is
to build predictive models, the independent parameters in the models referred
to non-incident conditions so that they are practically available for all links of

any network, which is only possible for *normal’ traffic conditions.
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For number of links that were affected by an incident, incident severity
proved to be a dominant parameter. A linear two stage model can be used,
with stage 1 describing congestion build-up during the incident and stage 2
describing post-incident recovery. For stage 1 slope, it was seen that a greater
severity produce a steeper slope, moreover if the incident link was particularly
likely to get congested rapidly, then the number of affected links in the
network grew faster. For "post incident"” slope, it was seen that the decay of
the number of affected links sometimes started only after a transition period
has been achieved. This transition period reflected a situation where the
network was still partly congested at the time of the incident end, and where
drivers would be re-optimising their routes according to the latest traffic
conditions; for this reason the number of affected links would either rise or
remain almost constant for a short time. Hence the link ’traffic performance’
parameter was involved in the number of affected links of the ’after incident’

situation.

Following a time-dependent prediction of the number of links affected, it is
then necessary to locate these links in the network. It is usual that the first
affected links are the nearest upstream links to the incident link, and that the
propagation will continue in the direction of the nearest upstream links
connected to affected links until the maximum number of affected links has
been reached. Then, after the incident has ended, the number of affected links
decrease following the reverse process. To find out the location of affected
links in the network, a reverse route search can be made from the upstream
node of incident link, upstream links prioritised according to the proportion
of traffic on the link which also (normally) proceeds through the incident
affected link. Computer programs written to implement the above procedures

produced promising results.

Journey time prediction on incident link can be analyzed using techniques
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compatible with those as for the prediction of *number of links affected’. The
incident modelling using CONTRAMI produced a number of journey time
profiles. These profiles showed that journey time gradually increase following
the onset of the incident, and then stabilises to a relatively constant value
if/when the link becomes full. It also illustrated that the maximum journey
time on the link (when it is full) varies according to the incident severity, as
would be expected, as severity is directly related to reduction in capacity. A
three stage model was therefore developed for the prediction of journey time
on incident link. As before (for the prediction of number of links affected),
the incident characteristics which are defined as duration and severity, were
the key parameters of increase in journey time, moreover the effect of an
incident from one link to another is different, this can be attributed to link
characteristics (geometric, traffic characteristics). Two parameters (Congestion

Index and Delay) were selected to represent link characteristics.

The developed models were applied to three different networks to predict the
effects of an incident. The *goodness’ of fit of the models were evaluated by
comparing the results of developed models with that of CONTRAMI
(simulation) results and analysing the forecasting-errors. The models showed

a reasonable predictive quality.

The developed models have shown the potential for real-time applications.
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7.2  Further Work

The time-series methods which were applied in normal-traffic conditions to generate
journey time forecasts are univariate stochastic models, i.e. forecasts are based on
historical journey time information on the particular link and updated to reflect the
current conditions. These models have proved quite successful in forecasting day to

day patterns of journey time.

Journey Time, however is a complex variable which is influenced by many other
factors (e.g. flows, green-time), perhaps the accuracy of forecasts can be improved
by extending the current models where genuine systematic effects which can be
explained physically should be taken into account by the inclusion of a suitable
deterministic component in the model. For example, if it is known that flow is being
added to a network, then it would be better to explain the resulting increase in
journey time by means of a suitable deterministic function, in addition to the
stochastic component. This will require to construct deterministic models (multiple
regression models and/or multiple time series models). Constructing a deterministic
model that is likely to provide more accurate forecasts of a given time series requires
both specifying an appropriate set of independent variables (say flow, queue length,
green-time etc) and determining the functional form of the regression relationship

between the dependent variable and a given set of independent variables.

Also, so far in normal-traffic conditions, the forecasting methods were applied to
individual links and do not encompass link interactions, the build up/decay of queues
or other network influences. In urban networks the traffic parameters journey
time/congestion are often associated with one or more "pinchpoints” from which
queues spread to affect a number of upstream links. Queues on adjacent links are
then interrelated both in time and space, and the forecasting on an independent link-
by-link basis becomes less relevant. A useful method for forecasting journey time in

urban networks is the use of so called transfer function models. These models are the
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extension of univariate ARIMA models where journey time at a link can be related
with its key controlling parameters, such as flow on upstream links. The methods
could be further tested and refined on-line by adopting methods for automatic
validation within systems where such forecasts are used (e.g. for route guidance). An
expert system approach could also be adopted in which the performance of a range
of forecasting methods is automatically monitored and the method chosen appropriate

to the traffic situation.

For journey time forecasting in incident conditions, this study has been based on
simulation modelling of a variety of traffic/network incident scenarios, producing a
database from which generalised statistical models have been developed for
predicting the spread of congestion effects following an incident and the required
journey time modifications on incident link and on affected links. These models have
demonstrated the potential in real time systems (such as in DRG). However, before
these models can be used, some improvements are envisaged. The incident
simulations were based on ’no diversion’ strategy for drivers, therefore, although the
results were considered reasonable for this study, they are expected to produce
somewhat worse traffic conditions than those which could occur in practice. As a
consequence the predicted values of M1’ and ’S1’ slopes are expected to be slightly
greater than practical ones. There is evidence from on-street observations that a
certain number of drivers do divert from their original route when an incident
happens although no quantification of this effect has been achieved. This could be
simulated by CONTRAMI by describing the maximum number of diversions allowed
per driver, the coefficient of diversion and the percentage of vehicles diverting.
Several strategies could therefore be experienced by CONTRAMI simulation, and
it can be imagined that the strategies could be adjusted to each network and type of
road users. Incident databases can then be compiled according to the individual
network requirements and the developed models can then be re-calibrated by using

the compiled database.
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7.3 Concluding Comments

Journey time forecasting in urban areas is likely to become an increasingly important
element in traffic information and control systems. This study has revealed suitable
time-series methods for such forecasting on link-by-link basis and also illustrated the
usefulness of a comprehensive historic database, such as can be obtained from
SCOOT Urban Traffic Control system, in providing the basis for such short-term
forecasting using time-series techniques. A key requirement is appropriate
disaggregation of the database to represent all sources of "predictable” time
variability. An appropriate forecasting update interval is also required to provide a
dynamic forecast but one which is not dominated by "noise”. A 5-minute interval
has been used successfully in this study. Time series forecasting has the merits of
relative simplicity and of "direct” forecasting of the parameter(s) of interest. It is
appropriate for link-based forecasting in conditions of low/moderate congestion.
These methods have been successfully used in this study to develop journey time

forecasting models for real data sets where traffic was reasonably recurrent.

For incident conditions, historic patterns become unstable and time-series forecasting
is more difficult. A different modelling strategy is then required. This study has
demonstrated the usefulness of simulation tool such as CONTRAMI to compile an
incident database for different incident/traffic/network scenarios to study the effects
of an incident. From such simulated incident database, generalised statistical models
can be developed for predicting the effects of an incident and required journey time
forecasting on incident link and on affected links. Such models have been developed
and applied for various incident scenarios in this study. Despite some limitations and
required improvements mentioned earlier, it is considered that the developed models,
would be very valuable for application within real time traffic control and
information systems, such as in Dynamic Route Guidance Systems and in Drivers

Information Systems.
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Appendix A

Estimates of Seasonal-Ratios For HS-Model
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Table A.1 Seasonal Ratios for Link NO19D on 20-2-91

Time S-Ratio ! Time S-Ratio Time S-Ratio
07:05 0.92 08:05 1.33 09:05 0.91
07:10 0.93 08:10 1.06 09:10 0.87
07:15 0.92 08:15 1.01 09:15 0.92
07:20 0.97 08:20 0.99 09:20 0.94
07:25 0.96 08:25 0.98 09:25 0.98
07:30 1.07 08:30 1.02 09:30 0.93
07:35 0.95 08:35 0.98 09:35 0.96
07:40 0.94 08:40 1.05 09:40 0.93
07:45 1.11 08:45 1.01 09:45 0.88
07:50 1.17 08:50 1.06 09:50 0.94
07:55 1.13 08:55 0.97 09:55 1.01
08:00 1.24 09:00 0.96 10:00 1.02
Table A.2 Seasonal Ratios for Link NOISE on 14-6-91
Time S-Ratio Time S-Ratio Time S-Ratio
07:05 0.63 08:05 1.00 09:05 0.73
07:10 0.68 08:10 1.23 09:10 0.69
07:15 0.71 08:15 1.48 09:15 0.72
07:20 0.69 08:20 1.84 09:20 0.70
07:25 0.67 08:25 1.91 09:25 0.72
07:30 0.71 08:30 1.94 09:30 0.70
07:35 0.75 08:35 1.65 09:35 0.67
07:40 0.80 08:40 1.79 09:40 0.63
07:45 0.86 08:45 1.90 09:45 0.61
07:50 1.16 08:50 1.34 09:50 0.65
07:55 1.35 08:55 0.97 09:55 0.60
08:00 1.11 09:00 0.78 10:00 0.63

1 Seasonal ratio : calculated by the relation IT,/J’Y‘(I,

where

JT, is journey time at time period t

JT(D

is average journey time on day i
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Table A.3 Seasonal Ratios for Routel on 14-6-91

Time S-Ratio Time S-Ratio Time S-Ratio
07:05 0.81 08:05 0.97 09:05 0.96
07:10 0.84 08:10 1.07 09:10 0.93
07:15 0.89 08:15 1.16 09:15 0.89
07:20 0.88 08:20 1.27 09:20 0.88
07:25 0.87 08:25 1.30 09:25 0.88
07:30 0.87 08:30 1.29 09:30 0.88
07:35 0.90 08:35 1.28 09:35 0.87
07:40 0.94 08:40 1.24 09:40 0.85
07:45 1.04 08:45 1.29 09:45 0.83
07:50 1.10 08:50 1.26 09:50 0.86
07:55 1.10 08:55 1.13 09:55 0.82
08:00 1.00 09:00 1.02 10:00 0.81
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Appendix B

Journey Time Forecasts - Normal Conditions
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Table B.1 Link NO19D - Journey Time Forecasts on 20-2-91

Time | Observed BJ-Model ! HS-Model 2
Forecasts 3 Updated * Forecasts Updated

07:05 27.75 26.95 26.95 30.27 30.27
07:10 31.10 28.79 28.79 30.46 29.70
07:15 30.59 29.08 29.66 30.28 29.94
07:20 27.75 30.42 30.26 31.80 31.65
07:25 29.69 30.10 28.67 31.51 30.20
07:30 33.91 33.95 34.62 35.05 33.43
07:35 27.84 31.09 31.20 31.40 30.07
07:40 30.41 29.80 28.64 31.04 29.07
07:45 46.90 34.80 36.02 36.44 34.59
07:50 32.31 37.23 41.41 38.58 40.53
07:55 29.64 35.08 29.59 37.20 36.71
08:00 28.32 36.01 35.57 40.65 37.80
08:05 33.15 41.53 40.42 43.66 37.55
08:10 33.10 32.86 32.20 35.05 29.08
08:15 36.14 30.93 33.59 33.30 28.77
08:20 30.78 30.11 31.92 32.72 30.44
08:25 33.67 29.78 28.42 32.38 30.23
08:30 29.58 30.74 31.94 33.41 32.25
08:35 28.81 29.74 28.12 32.16 30.28
08:40 34.61 33.10 33.12 34.45 31.96
08:45 31.08 32.20 33.03 33.14 31.51
08:50 27.19 34.78 33.92 34.88 33.03
08:55 32.15 31.34 28.94 31.93 28.63
09:00 32.91 30.37 32.99 31.65 29.43
09:05 25.92 28.90 29.57 29.81 28.70
09:10 29.59 27.76 25.90 28.58 26.72
09:15 30.18 29.03 30.61 30.36 29.30
09:20 28.50 29.71 29.56 30.89 30.08
09:25 27.60 31.64 30.85 32.32 30.98
09:30 30.24 31.19 30.10 30.56 28.33
09:35 29.03 33.23 34.13 31.68 29.96
09:40 28.39 29.64 28.41 30.49 28.57
09:45 31.04 29.02 29.85 28.86 26.99
09:50 28.91 30.47 31.58 30.88 30.18
09:55 30.74 31.03 29.85 33.27 32.11
10:00 35.28 30.40 30.77 33.68 32.08

1 BJ-Model is Box-Jenkins modelling : ARIMA (0,1,2)(0,1,1)

2 HS-Model  is Horizontal-Seasonal modelling : a=0.3 and y=0.2

3 Forecasts are 36-steps ahead not-updated forecasts.

4 Updated are 1-step ahead updated forecasts.
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Table B.2 Link NOI18E - Journey Time Forecasts on 14-6-91

Time | Observed BJ-Model HS-Model
Forecasts Updated Forecasts Updated
07:05 35.29 32.52 32.52 31.78 31.78
07:10 32.34 36.96 36.96 34.49 35.63
07:15 36.82 36.48 33.53 35.81 35.97
07:20 39.41 35.87 37.79 34.78 35.19
07:25 36.00 33.92 35.23 34.18 35.83
07:30 33.05 35.26 34.74 36.08 37.87
07:35 34.34 38.10 36.40 38.20 38.56
07:40 49.64 42.17 41.50 40.59 39.63
07:45 45.62 40.14 44.64 43.49 45.68
07:50 48.41 48.52 47.85 58.95 61.90
07:55 65.34 71.94 69.77 68.21 66.94
08:00 50.42 71.32 68.68 56.39 54.94
08:05 40.06 59.25 53.30 50.48 47.97
08:10 54.49 74.07 74.35 62.45 56.41
08:15 91.65 76.70 76.16 74.99 67.04
08:20 99.01 92.98 106.63 93.25 92.54
08:25 99.38 99.02 95.69 96.78 98.06
08:30 88.78 106.60 104.41 98.40 100.10
08:35 91.07 80.99 73.60 83.70 82.26
08:40 92.26 88.92 99.91 90.47 91.76
08:45 88.87 96.02 93.48 96.00 97.53
08:50 64.18 71.30 67.10 67.90 67.14
08:55 44.30 55.59 55.46 49.32 48.13
09:00 44.31 41.09 39.25 39.53 37.65
09:05 46.25 36.20 41.88 37.12 37.24
09:10 34.50 35.55 38.39 34.87 37.52
09:15 42.02 36.67 32.35 36.49 38.32
09:20 39.39 33.60 36.18 35.21 38.04
09:25 33.19 35.89 36.17 36.41 39.76
09:30 39.61 34.81 31.47 35.38 36.71
09:35 30.14 35.49 38.48 33.72 35.82
09:40 32.56 35.31 31.28 31.88 32.26
09:45 32.57 32.25 33.20 30.92 31.37
09:50 34.87 34.23 35.43 32.85 33.72
09:55 35.72 30.10 30.23 30.18 31.29
10:00 36.11 32.12 34.16 32.01 34.59
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Table B.3 Routel - Journey Time Forecasts on 14-6-91

Time | Observed BJ-Model HS-Model
Forecasts Updated Forecasts Updated
07:05 202.12 200.91 200.91 204.91 204.91
07:10 197.30 215.22 215.22 213.29 212.42
07:15 205.49 231.31 221.06 226.63 220.89
07:20 | 208.90 226.21 216.37 224.41 214.15
07:25 213.86 224.26 221.11 222.05 210.34
07:30 227.11 229.91 228.47 221.74 211.10
07:35 222.32 229.67 230.71 228.60 222.58
07:40 268.17 241.41 238.04 239.74 233.34
07:45 248.98 251.32 268.01 265.33 269.82
07:50 256.00 264.25 256.26 279.72 277.86
07:55 263.72 283.41 279.41 280.25 271.81
08:00 236.44 269.29 260.43 255.10 245.21
08:05 216.33 249.22 235.91 245.35 233.30
08:10 253.99 276.18 266.14 272.60 253.56
08:15 309.74 285.21 281.12 295.54 275.04
08:20 312.78 315.82 334.98 322.68 311.67
08:25 327.15 332.43 324.61 330.83 319.88
08:30 311.04 334.78 332.61 328.23 319.53
08:35 315.42 327.29 315.44 324.70 313.57
08:40 303.11 315.25 314.60 316.06 305.77
08:45 303.41 332.81 329.04 326.87 315.40
08:50 280.17 345.25 331.96 320.27 305.51
08:55 246.77 312.04 283.27 285.95 265.98
09:00 253.68 278.33 258.38 258.29 235.05
09:05 235.56 254.55 257.18 243.48 226.83
09:10 226.25 246.22 241.85 235.49 221.93
09:15 237.92 232.67 226.34 227.25 215.41
09:20 240.67 225.49 233.39 223.07 218.07
09:25 226.16 224.74 231.85 224.44 226.23
09:30 212.06 226.69 223.68 224.27 226.05
09:35 218.46 227.43 218.96 221.38 218.99
09:40 208.50 226.22 224.90 216.32 213.82
09:45 198.81 220.12 212.52 211.35 207.35
09:50 213.27 223.74 216.35 218.21 211.43
09:55 238.77 213.98 213.49 208.39 202.45
10:00 214.07 206.64 223.02 206.29 211.20

197



Appendix C

Computer Programs to implement BJ and HS Models
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C.1 BJ-Model Updating Program

PROGRAM UPDATE_BJ
INCLUDE °JVAR.FOR’

This program reads Journey Time forecasts generated by BOX-JENKINS
procedures of STATGRAPHICS package and update the forecasts for
every time period by reading the current day observations. Program also
calculates forecast-error statistics.

* X X X * %X x

WRITE(*,*)

CALL READ_FCAST
CALL READ NDATA

WRITE(*,*) ’Enter the model number =’
READ(*,*) NO

IF(NO.EQ.35) THEN

CALL MODEL 35

ELSE

WRITE(*,*) * This model can not be updated.’
GOTO 99

ENDIF

CALL WRITE_FCAST
CALL ERROR_STAT

*

99 END

COMMON/PAR/ NO,SERR,SAERR,SSERR,SPERR,

ISAPERR,SE1,SE2,ME1,ME2,SAE1,SAE2,SSE1,SSE2, MAD1,MAD2,MSE1,MSE2
2CHISUM1,CHISUM?2,CHISQ1,CHISQ2,PSUM1,PSUM2 MAPE1,MAPE2

*

’

COMMON/DIM1/ OBSER,ERR1,ERR2, ME,MAE,MSE,MPE,MAPE
COMMON/DIM1/ FCAST,UPDATE

COMMON/CHAR/ TIME

INTEGER NO
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REAL OBSER(36),ERR1(36),ERR2(36)

REAL FCAST(36),UPDATE(36)

REAL SERR,SAERR,SSERR,SPERR,SAPERR

REAL ME(36), MAE(36),MSE(36), MPE(36), MAPE(36)

REAL SE1,ME1,SAE1,SSE1,MAD1,MSE1,CHISUM1,CHISQ1,PSUM1,MAPEI
REAL SE2,ME2,SAE2,SSE2,MAD2,MSE2,CHISUM2, CHISQ2,PSUM?2,MAPE2
CHARACTER*5 TIME(36)

SUBROUTINE READ_FCAST
INCLUDE ’JVAR.FOR’
INTEGER 1
CHARACTER*15 FFILE
WRITE(*,*) ’Enter the FORECASTS file name : °’
READ(*,16) FFILE
16 FORMAT(A10)
OPEN (UNIT=1,FILE=FFILE,STATUS="0OLD”)
DO 10 1=1,36
READ(1,11,END=100) FCAST()
11 FORMAT(F10.5)
10 CONTINUE
100 END

*

SUBROUTINE READ_NDATA
INCLUDE 'JVAR.FOR’
INTEGER K,CT
REAL DELAY(36),FLOW(36)
CHARACTER*15 NDFILE
WRITE(*,*) *Enter the NEW DATA filename : ’
READ(*,25) NDFILE
25 FORMAT(A1S)
OPEN (UNIT=2, FILE=NDFILE,STATUS="OLD’)
WRITE(*,*) ’Enter the CRUISE TIME =’
READ(*,*) CT
DO 21 K=1,36
READ(2,22,END =200) TIME(K),DELAY(K),FLOW(K)
22 FORMAT(AS,F5.0,F6.0)
OBSER(K)=((DELAY(K)/FLOW(K))*360.0)+FLOAT(CT)
21 CONTINUE
200 END

E 3
%*

SUBROUTINE MODEL _35
* ====== ARIMA (0’1’2)(0’1’1) ===
INCLUDE ’JVAR.FOR’



INTEGER 1,J
REAL THETA1,THETA2

WRITE(*,*) ’Enter the value of THETAl =’
READ(*,*) THETA1

WRITE(*,*) 'Enter the value of THETA2 =’
READ(*,*) THETA2

UPDATE(1)=FCAST(1)
UPDATE(2) =FCAST(2)

DO 341 I=3,36
UPDATE(I) =FCAST(I)-FCAST(-1) + OBSER(I-1)-
1  THETAI1*(OBSER(I-1)-FCAST(-1))-
2 THETA2*(OBSER(I-2)-FCAST(I-2))
342 CONTINUE
341 CONTINUE
END

%
*

SUBROUTINE WRITE _FCAST
INCLUDE ’JVAR.FOR’
INTEGER 1
CHARACTER*15 UPFILE
WRITE(*,*) ’ Enter the UPDATED FORECASTS file name : °’
READ(*,56) UPFILE
56 FORMAT(A10)
OPEN (UNIT=9,FILE=UPFILE,STATUS="NEW’)
DO 51 1=1,36
WRITE(9,52) I, FCAST(I),OBSER(1),UPDATE()
52 FORMAT(1X,12,2X,3(1X,F8.2))
51 CONTINUE
500 END

*
*

SUBROUTINE ERROR_STAT
INCLUDE "JVAR.FOR’
CHARACTER*15 ESFILE
WRITE(*,*) * Enter ERROR STATISTICS file name : ’
READ(*,70) ESFILE
70 FORMAT(A10)
OPEN (UNIT=8,FILE=ESFILE,STATUS =’"NEW’)
SE1=0.0
SAE1=0.0
SSE1=0.0
CHISUM1=0.0
PSUM1=0.0
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DO 71 1=1,36
ERR1(I) =OBSER(I)-FCAST(I)
SE1=SE1+ERRI(I)
SAE1=SAEl+ABS(ERR1(]))
SSE1=SSE1+ERRI(I)**2
CHISUM1=CHISUM]1 +(ERR1(I)/OBSER(I))
PSUM1=PSUM1+ ABS(ERR1(I)/OBSER(I))

71 CONTINUE

ME1=SE1/36.0

MADI=SAE1/36.0

MSE1 =SSE1/36.0

CHISQ1 =(100.0/36.0)*CHISUM1

MAPEI =(100.0/36.0)*PSUM 1

SE2=0.0

SAE2=0.0

SSE2=0.0

CHISUM2=0.0

PSUM2=0.0

DO 72 1=1,36
ERR2(J) =OBSER(J)-UPDATE()
SE2=SE2+ERR2(J)
SAE2=SAE2+ABS(ERR2()))
SSE2=SSE2+ERR2(J)**2
CHISUM2 =CHISUM2+(ERR2(J)/OBSER(J))
PSUM2=PSUM2+ABS(ERR2(J)/OBSER()))

72 CONTINUE

ME2=SE2/36.0

MAD2=SAE2/36.0

MSE2 =SSE2/36.0

CHISQ2 =(100.0/36.0)*CHISUM2

MAPE2 =(100.0/36.0)*PSUM2

WRITE(8,73) ME1, ME2, MAD1, MAD2, MSE1, MSE2, CHISQ1, CHISQ2,

MAPE1, MAPE2

73 FORMAT(8X///,8X,"FORECAST’,38X,"UPDATE’, 1X////,
17X,’ME = *,F12.2,28X,"ME = *,F12.2////,

26X,’MAE =’ ,F12.2,28X,"MAE = *.F12.2////,

37X,’MSE = *,F12.2,26X,"MSE = *,F12.2////,

47X,’MPE = *,F12.2,26X,"MPE = ' F12.2////,

57X,’MAPE = ’,F12.2,26X,"MAPE = ’,F12.2)

WRITE(*,*) *THIS IS END OF THE PROGRAM’

END
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C.2 Program to Implement HS-Model

* O OX K X K X X X ¥ X X H X X X X X X *

PROGRAM MODEL
INCLUDE "HSVARS.FOR’
CHARACTER*10 FRFILE

This program implement HORIZONTAL SEASONAL MODEL.
INPUT:

Number of days.

Number of time periods in each day.

Data file containing specified number of days data.
Data file containing current day data for updating.
Values of smoothing parameters.

OUTPUT:
36-steps ahead not-updated forecasts.

1-step ahead updated forecasts.
Forecast-Error statistics.

WRITE(*,*)

WRITE(*,*) ’Enter ’
WRITE(*,*)

WRITE(*,*) 'DAYS ="
READ*,DAYS
WRITE(*,*) "TIME PERIODS =’
READ* PERIODS
WRITE(*,*) "ALPHA ="
READ(*,*) ALPHA
WRITE(*,*) '"GAMMA ="
READ(*,*) GAMMA
WRITE(*,*) ’Cruise Time =’
READ(*,*) CT
WRITE(*,*)

CALL STEPI

CALL STEP2

CALL STEP3

CALL STEP4

CALL STEPS

CALL STEP6

CALL FC

CALL NDATA
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PRINT*
CALL UPDATE
PRINT*
WRITE(*,*) * Enter the FORECAST RESULTS file name :’
READ(*,106) FRFILE
106 FORMAT(A10)
OPEN (UNIT=13,FILE=FRFILE,STATUS =’"NEW")
DO 96 I=1,PERIODS
WRITE(13,93) I, FORECAST(I), NEWDATA (), UPCAST(I)
93 FORMAT(IX,I2,2X,3(1X,F8.2))
96 CONTINUE
PRINT*
CALL ANALYSIS
PRINT*
CALL WP
PRINT*
END

COMMON/DIM2/ DATA,RTILD,AHAT,RHAT

COMMON/DIM1/ MEAN,RFINAL,FORECAST,NEWDATA,UPCAST
COMMON/PAR/DAYS,PERIODS,ALPHA,GAMMA,CT
COMMON/CHAR/TIME

REAL DATA(11,36),RTILD(11,36), AHAT(11,0:36), RHAT(11,0:36)

REAL MEAN(36),RFINAL(36), FORECAST(36), NEWDATA(36), UPCAST(36)
INTEGER DAYS,PERIODS

REAL ALPHA,GAMMA,CT

CHARACTER*S TIME(36)

SUBROUTINE STEP1

INCLUDE "HSVARS.FOR’
REAL DELAY(10,36),FLOW(10,36)
CHARACTER*10 DFILE

WRITE(*,*) * Enter the DATA file name :’
READ(*,16) DFILE
16 FORMAT(A10)
OPEN (UNIT=11,FILE=DFILE,STATUS ='OLD’)
DO 10 I=1,DAYS
DO 11 J=1,PERIODS
READ(11,12,END=100) DELAY(I,J),FLOW(L,J)
12 FORMAT(5X,F4.0,F5.0)
DATA(,J)=((DELAY(I,J)/FLOW(I,J))*360.0)+CT
11 CONTINUE
10 CONTINUE
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100 RETURN
END

*
3

SUBROUTINE STEP2

REAL SUM(36)
INCLUDE 'HSVARS.FOR’
DO 20 I=1,DAYS
SUM(I) =0
DO 21 J=1,PERIODS
SUM() =SUM()+DATA(L,J)
21 CONTINUE
MEAN(I) =SUM(I)/FLOAT(PERIODS)
20 CONTINUE
RETURN
END

SUBROUTINE STEP3

INCLUDE "HSVARS.FOR’

DO 30 I=1,DAYS

DO 31 J=1,PERIODS

RTILD(,J)=DATA(,J)/MEAN(I)

31 CONTINUE
30 CONTINUE

RETURN

END

SUBROUTINE STEP4

REAL SRTILD(36)
INCLUDE 'HSVARS.FOR’
DO 40 J=1,PERIODS
SRTILD(J)=0
DO 41 I=1,DAYS
SRTILD(J) =SRTILD(J) + RTILD(L,J)
41 CONTINUE
RHAT(1,J) =SRTILD(J)/FLOAT(DAYS)
40 CONTINUE
RETURN
END

SUBROUTINE STEPS
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INCLUDE "HSVARS.FOR’
DO 50 I=1,DAYS
IF(I.EQ.1)THEN
AHAT(,0)=MEAN()
ELSE
AHAT(,0)=AHAT(-1,PERIODS)
ENDIF
DO 51 J=1,PERIODS
IF(J.EQ.1)THEN
RHAT(+1,0)=RHAT(I,PERIODS)
ENDIF
AHAT(1,J)=ALPHA*(DATA(,J)/RHAT(,J)) +(1.0-ALPHA)*AHAT(,J-1)
RHAT(I+1,J))=GAMMA*(DATA(I,J)/AHAT(,J)) + (1.0-GAMMA)*RHAT(LJ)
51 CONTINUE
50 CONTINUE
RETURN
END

SUBROUTINE STEP6

REAL RSUM,RMEAN
INCLUDE "HSVARS.FOR’
RSUM=0.0
DO 61 I=1,PERIODS
RSUM=RSUM+RHAT(DAYS+1,I)
61 CONTINUE
RMEAN=RSUM/FLOAT(PERIODS)
DO 62 J=1,PERIODS
RFINAL(J)=RHAT(DAYS+1,J)/RMEAN
62 CONTINUE
RETURN
END

SUBROUTINE FC

INCLUDE "HSVARS.FOR’
DO 71 1=1,PERIODS
FORECAST(I)=AHAT(DAYS,PERIODS)*RFINAL(I)

71 CONTINUE

RETURN

END

SUBROUTINE NDATA

INCLUDE "HSVARS.FOR’
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REAL NDELAY(36),NFLOW(36)
CHARACTER*10 NDFILE
WRITE(*,*) * Enter the NEW DATA file name :’
READ(*,79) NDFILE
79 FORMAT(A10)
OPEN (UNIT =12,FILE=NDFILE,STATUS =’OLD’)
DO 75 I=1,PERIODS
READ(12,76,END =200) TIME(I), NDELAY(I), NFLOW(I)
76 FORMAT(AS,F4.0,F5.0)
NEWDATA(I) =((NDELAY (I)/NFLOW(I))*360.0) + CT
75 CONTINUE
200 RETURN
END

SUBROUTINE UPDATE

REAL AHATNEW(0:36),RNEW(36)
INCLUDE "HSVARS.FOR’
AHATNEW(0)=AHAT(DAYS,PERIODS)
DO 81 I=1,PERIODS

AHATNEW(I)=ALPHA*(NEWDATA(I)/RFINAL(I)) + (1.0-ALPHA)*AHATNEW(I-1)
RNEW(I)=GAMMA*(NEWDATA(I)/AHATNEW(I)) + GAMMA *RFINAL(I)
81 CONTINUE
DO 82 J=2,PERIODS
UPCAST(J) =AHATNEW(J-1)*RFINAL(J)
82 CONTINUE
UPCAST(1)=FORECAST(1)
RETURN
END

SUBROUTINE ANALYSIS

INCLUDE "HSVARS.FOR’

REAL ERR1(36),ERR2(36)

REAL SE1,SAE1,SSE1,ME1,MAD1,MSE1,CHISUMI1,CHISQ1,PSUM1,MAPEl
REAL SE2,SAE2,SSE2,ME2, MAD2,MSE2,CHISUM?2,CHISQ2,PSUM2, MAPE2
CHARACTER*10 FEFILE

SE1=0.0

SAE1=0.0

SSE1=0.0

CHISUM1=0.0

PSUM1=0.0

DO 101 I=1,PERIODS

ERR1(I)=NEWDATA(I)-FORECAST(I)

SE1=SE1+ERRI1(I)
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SAE1=SAE1+ABS(ERRI1(I))

SSE1=SSE1+ERRI(I)**2

CHISUM1=CHISUMI1 +(ERR1(I)/NEWDATA(I))

PSUM1=PSUM1 +ABS(ERR1(I)/NEWDATA(I))
101 CONTINUE

ME1 =SE1/FLOAT(PERIODS)

MADI1 =SAE1/FLOAT(PERIODS)

MSE1 =(SSE1/FLOAT(PERIODS))

CHISQ1=(100.0/36.0)*CHISUMI

MAPE1=(100.0/36.0)*PSUM1

SE2=0.0

SAE2=0.0

SSE2=0.0

CHISUM2=0.0

PSUM2=0.0

DO 103 J=1,PERIODS

ERR2(J)=NEWDATA(J)-UPCAST()

SE2=SE2+ERR2())

SAE2 =SAE2+ABS(ERR2(J))

SSE2=SSE2+ERR2(J)**2

CHISUM2 =CHISUM2+(ERR2(J)/NEWDATA(J))

PSUM2=PSUM2+ ABS(ERR2(J)/NEWDATA()))
103 CONTINUE

ME2 =SE2/FLOAT(PERIODS)

MAD2=SAE2/FLOAT(PERIODS)

MSE2 =(SSE2/FLOAT(PERIODS))

CHISQ2 =(100.0/36.0)*CHISUM2

MAPE2 =(100.0/36.0)*PSUM2

WRITE(*,*) * Enter the FORECAST ERROR file name :’
READ(*,107) FEFILE
107 FORMAT(A10)
OPEN (UNIT=18,FILE=FEFILE,STATUS ="NEW’)
WRITE(18,102)
ME1,ME2,MAD1,MAD2,MSE1,MSE2,CHISQ1,CHISQ2,MAPE],
1IMAPE2
102 FORMAT(8X///,8X,"FORECAST’,38X,"UPDATE’, 1X////,
18X,’ME = *,F8.2,34X,"ME = *,F8.2////,
27X,’MAE = ’,F8.2,33X,"MAE = *,F8.2///,
37X,’MSE = *,F8.2,30X,"MSE = ’ ,F8.2///,
47X,’MPE = ’,F8.2,33X,’"MPE = * F8.2///,
57X,"MAPE = *,F8.2,33X,"MAPE = *,F8.2)
RETURN
END

SUBROUTINE WP
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INCLUDE "HSVARS.FOR’
CHARACTER*10 RFILE
WRITE(*,*) * Enter the WP-RESULTS file name :’
READ(*,119) RFILE
119 FORMAT(A10)
OPEN (UNIT=15,FILE=RFILE,STATUS="NEW’)
WRITE(15,*) 'AHAT(6,36) = *,AHAT(DAYS,PERIODS)
WRITE(15,%)
DO 109 I=1,DAYS
WRITE(15,112) I, MEAN(I)
112 FORMAT(2X,12,2X,F5.2)
109 CONTINUE
WRITE(15,%)
DO 110 I=1,12
WRITE(15,111) TIME(I),RFINAL(I), TIME(I+12), RFINAL(I+12), TIME(I+24)
1,RFINAL(I1+24)
111 FORMAT(3(3X,A5,2X,F8.2))
110 CONTINUE
RETURN
END
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Appendix D

Traffic Characteristics of the links studied.
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Table D.1 Congestion Index values for Non-Incident case (Simulated)

Time " K-714 K-730 B-1494 B-1692 L-3232
8:05 1.29 1.00 1.85 2.80 1.75
8:10 1.57 1.51 2.45 2.98 1.75
8:15 2.06 1.96 2.92 2.97 1.93
8:20 2.84 1.93 3.19 3.18 2.25
8:25 4.44 2.21 3.92 3.19 2.42
8:30 6.50 2.78 5.20 3.17 3.24
8:35 6.07 2.94 5.62 2.95 3.28
8:40 6.22 3.06 5.10 3.00 3.03
8:45 6.63 2.78 4.22 2.97 3.49
8:50 5.91 2.69 4.12 3.18 3.21
8:55 2.65 2.05 4.49 3.20 2.52
9:00 1.81 2.17 5.11 3.17 2.89
Table D.2 Degree of Saturation values for Non-Incident case (Simulated)

Time K-714 K-730 B-1494 B-1692
8:05 0.06 0.00 0.35 0.13
8:10 0.51 0.24 0.95 0.23
8:15 0.77 0.17 0.95 0.33
8:20 0.95 0.51 0.98 0.36
8:25 1.13 0.53 1.16 0.33
8:30 0.94 0.86 1.05 0.34
8:35 1.01 0.78 0.98 0.23
8:40 1.02 0.89 0.85 0.24
8:45 0.98 0.78 0.93 0.33
8:50 0.87 0.75 0.97 0.36
8:55 0.76 0.50 1.09 0.34
9:00 0.71 0.57 0.97 0.37

* K-714 Kingston Network Link 714

K-730 Kingston Network Link 730

B-1494 Boscombe Network Link 1494

B-1692 Boscombe Network Link 1692

1-3232 London Network Link 3232
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Table D.3 Delay (sec/veh) values for Non-Incident case (simulated)

Time K-714 K-730 B-1494 B-1692 L-3232
8:05 4 0 27 9 21
8:10 6 11 45 10 21
8:15 11 20 60 10 26
8:20 19 17 69 11 35
8:25 37 22 95 11 40
8:30 57 31 135 11 40
8:35 49 34 144 10 63
8:40 53 36 121 10 62
8:45 57 31 99 10 56
8:50 47 29 97 11 72
8:55 15 18 111 11 60
9:00 8 20 129 11 41
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Appendix E

Simulated Number of Links Affected
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Table E.1 Number of links affected with incident on link K-714 (Simulated)

Time I1 12 I3 14 I5 I6
8:05 0 0 0 1 1 1
8:10 0 1 1 1 1 1
8:15 0 1 1 2 2 2
8:20 0 2 2 3 4 5
8:25 0 5 4 3 9 9
8:30 0 8 8 2 26 27
8:35 0 9 11 4 33 38
8:40 0 9 15 4 33 46
8:45 0 8 17 4 31 51
8:50 0 9 15 3 26 53
8:55 0 6 12 3 23 54
9:00 0 3 10 1 18 51
Time 17 I8 9 I10 I11 112
8:05 1 1 1 1 1 1
8:10 2 2 2 3 3 3
8:15 4 4 4 9 9 9
8:20 4 10 10 10 20 20
8:25 9 23 23 12 34 34
8:30 7 37 38 12 51 51
8:35 8 46 52 18 56 55
8:40 8 51 54 19 55 57
8:45 8 49 58 17 56 57
8:50 9 48 58 18 56 57
8:55 7 43 59 14 58 60
9:00 2 20 59 11 57 60
* Incident categories 11 .. 112 are defined as:
Severity Duration
15-min 30-min 45-min

20% I1 12 I3

50% 14 I5 I6

70% 17 I8 9

99 % 110 I11 I12
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Table E.2 Number of links affected with incident on link K-730 (Simulated)

Time Il 12 I3 14 I5 16
8:05 0 0 0 0 0 0
8:10 0 0 0 0 1 1
8:15 0 0 0 0 1 1
8:20 0 0 1 0 1 1
8:25 0 0 1 0 1 1
8:30 0 0 1 0 1 3
8:35 0 0 1 0 1 3
8:40 0 0 1 0 1 5
8:45 0 0 1 0 1 5
8:50 0 0 1 0 1 5
8:55 0 0 0 0 0 4
9:00 0 0 0 0 0 3
Time 17 I8 19 110 I11 112
8:05 0 0 0 0 0 0
8:10 0 1 1 1 1 1
8:15 0 1 1 1 1 1
8:20 0 1 1 1 3 3
8:25 0 3 3 0 5 5
8:30 0 5 6 0 6 7
8:35 0 4 5 0 5 11
8:40 0 3 6 1 6 14
8:45 0 3 12 1 7 19
8:50 0 3 11 1 6 22
8:55 0 1 10 1 5 22
9:00 0 0 9 0 6 23
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Table E.3 Number of links affected with incident on link B-1692 (Simulated)
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Table E.4 Number of links affected with incident on link B-1494 (Simulated)

F

Time I 12 I3 14 I5 16
8:05 0 0 0 1 1 1
8:10 1 1 1 1 1 1
8:15 1 1 1 1 1 1
8:20 1 1 1 1 3 3
8:25 1 1 1 1 8 8
8:30 1 1 2 1 13 13
8:35 1 1 3 1 16 20
8:40 1 1 3 1 12 21
8:45 1 1 4 1 12 24
8:50 1 1 4 1 12 27
8:55 1 1 5 1 13 26
9:00 0 1 5 1 13 26
Time I7 I8 9 110 I11 112
8:05 1 1 1 1 1 1
8:10 1 1 1 3 3 3
8:15 3 3 3 9 9 9
8:20 5 9 9 9 17 17
8:25 5 17 17 11 27 26
8:30 5 22 22 11 33 33
8:35 6 25 28 15 38 38
8:40 5 24 30 11 36 39
8:45 5 23 35 10 37 42
8:50 4 22 33 10 34 48
8:55 4 22 35 11 34 49
9:00 5 22 36 11 35 52
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Table E.5 Number of links affected with incident on link L-3232 (Simulated)

Time I3 I6 19
8:05 0 1 1
8:10 0 1 1
8:15 2 3 3
8:20 6 6 7
8:25 5 6 7
8:30 8 10 11
8:35 16 21 21
8:40 26 31 30
8:45 39 43 42
8:50 40 45 43
8:55 38 41 38
9:00 17 46 41
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Appendix F

Simulated Journey Times
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Table F.1 Simulated Journey Times for Link K-714

Time Non ! I1 I2 13 I4 I5 I6
8:05 14 14 14 14 15 15 15
8:10 16 17 17 17 33 33 33
8:15 21 30 31 31 68 87 87
8:20 29 32 59 59 68 123 123
8:25 47 49 76 76 63 118 118
8:30 67 60 78 79 62 116 116
8:35 59 59 68 80 62 61 105
8:40 63 64 64 78 64 60 109
8:45 67 69 58 73 68 61 106
8:50 57 57 59 63 66 67 61
8:55 25 25 61 57 48 59 58
9:00 18 18 50 57 22 53 60
Time 17 I8 9 110 111 112
8:05 15 15 15 626 1204 1204
8:10 90 90 90 587 1422 1798
8:15 184 185 185 327 1216 2108
8:20 63 180 180 82 934 1825
8:25 56 189 189 58 646 1538
8:30 62 195 195 64 371 1262
8:35 60 65 174 63 94 960
8:40 58 67 203 67 63 663
8:45 63 57 166 63 63 399
8:50 62 57 64 59 64 126
8:55 58 60 60 62 72 74
9:00 50 56 56 64 60 59
1 Non Non-incident case.

I1.. 112 Incident categories as defined on page 213.
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Table F.2 Simulated Journey Times for Link K-730

Time Non I1 12 I3 I4 I5 I6
8:05 17 17 17 17 17 17 17
8:10 28 28 28 28 32 32 32
8:15 37 37 37 37 41 41 41
8:20 34 34 37 37 34 55 55
8:25 39 39 43 43 39 103 103
8:30 48 48 68 71 48 162 206
8:35 51 51 59 91 51 149 320
8:40 53 54 55 115 54 112 367
8:45 48 51 51 129 51 79 271
8:50 46 48 49 91 48 48 179
8:55 35 36 36 35 36 35 174
9:00 37 37 37 37 37 37 148
Time I7 18 I9 110 I11 112
8:05 17 17 17 17 17 17
8:10 43 43 43 583 981 1096
8:15 61 61 61 294 1186 2075
8:20 35 97 97 109 991 1880
8:25 39 359 390 39 692 1578
8:30 48 329 489 48 510 1395
8:35 51 177 557 51 272 1072
8:40 54 171 593 54 190 771
8:45 51 156 311 51 165 609
8:50 48 154 178 48 170 331
8:55 36 84 178 36 172 192
9:00 37 37 179 37 159 165
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Table F.3 Simulated Journey Times for Link B-1494

Time Non 11 12 I3 14 IS 16
8:05 58 60 60 60 72 72 72
8:10 76 102 102 102 208 208 208
8:15 91 159 166 166 331 477 477
8:20 100 170 231 231 339 665 668
8:25 126 193 327 328 353 652 753
8:30 166 227 381 429 375 503 755
8:35 175 238 386 469 384 399 747
8:40 152 216 376 478 373 389 647
8:45 130 194 354 432 349 391 501
8:50 128 188 341 391 336 392 406
8:55 142 199 345 391 340 394 391
9:00 160 168 209 251 209 251 251
Time 17 I8 19 110 I11 112
8:05 136 136 136 767 1658 2548
8:10 377 464 464 703 1593 2484
8:15 440 941 962 648 1538 2428
8:20 403 962 1243 411 1242 2131
8:25 390 750 1239 392 873 1763
8:30 392 535 1164 394 680 1569
8:35 394 407 969 391 429 1279
8:40 391 392 744 390 394 985
8:45 390 393 525 392 399 703
8:50 391 391 416 393 402 445
8:55 392 390 398 391 404 398
9:00 244 253 239 250 242 227

222




Table F.4 Simulated Journey Times for Link B-1692

Time Non I1 12 I3 I4 IS I6
8:05 14 14 14 14 16 16 16
8:10 15 15 15 15 19 19 19
8:15 15 17 17 17 24 24 24
8:20 16 16 17 17 16 27 27
8:25 16 16 17 17 16 27 27
8:30 16 16 17 17 16 27 27
8:35 15 15 15 15 15 15 20
8:40 15 15 15 16 15 15 20
8:45 15 15 15 17 15 15 24
8:50 16 16 16 16 16 16 16
8:55 16 16 16 16 16 16 16
9:00 16 16 16 16 16 16 16
Time I7 I8 19 110 I11 112
8:05 21 21 21 694 1585 2363
8:10 35 35 35 578 1469 2360
8:15 57 68 68 337 1228 2119
8:20 19 125 125 53 933 1824
8:25 16 158 158 17 535 1426
8:30 16 137 159 16 287 1178
8:35 15 25 159 15 75 791
8:40 15 15 159 15 56 605
8:45 15 15 134 15 23 385
8:50 16 16 22 16 16 98
8:55 16 16 16 16 16 58
9:00 16 16 16 16 16 53
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Table F.5 Simulated Journey Times for link L-3232

Time Non I3 16 I9

8:05 49 52 67 137
8:10 49 52 69 189
8:15 54 62 119 379
8:20 63 93 269 606
8:25 68 100 379 769
8:30 68 125 446 1051
8:35 91 184 506 970
8:40 90 233 501 736
8:45 84 237 422 537
8:50 100 228 361 357
8:55 88 160 307 357
9:00 69 113 201 221
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Databases Compiled from Simulation Runs
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Table G.1 Database for slope M1

Duration * Severity LCI M1 Link
15 0.20 1.64 0.00 714
15 0.50 1.64 0.20 714
15 0.70 1.64 0.40 714
15 0.99 1.64 1.20 714
30 0.20 3.12 0.28 714
30 0.50 3.12 1.14 714
30 0.70 3.12 1.72 714
30 0.99 3.12 2.38 714
45 0.20 4.18 0.42 714
45 0.50 4.18 1.60 714
45 0.70 4.18 1.86 714
45 0.99 4.18 1.77 714
15 0.20 2.40 0.00 1494
15 0.50 2.40 0.00 1494
15 0.70 2.40 0.40 1494
15 0.99 2.40 1.20 1494
30 0.20 3.26 0.00 1494
30 0.50 3.26 0.62 1494
30 0.70 3.26 1.12 1494
30 0.99 3.26 1.56 1494
45 0.20 3.83 0.09 1494
45 0.50 3.83 0.76 1494
45 0.70 3.83 1.04 1494
45 0.99 3.83 1.17 1494
30 0.50 1.73 0.06 730
30 0.70 1.73 0.18 730
30 0.99 1.73 0.28 730
45 0.20 2.13 0.04 730
45 0.50 2.13 0.13 730
45 0.70 2.13 0.25 730
45 0.99 2.13 0.48 730
* Duration Duration of the incident in minutes

Severity Severity of the incident (between O to 1)
LCI Link congestion index

Ml slope calculated by using equation 6.1
Link Link number
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Table G.2 Database for Slope M2

Time * Duration Severity M2 LCI Link
8:20 15 0.5 0.2 2.84 714
8:30 15 0.5 -0.2 6.50 714
8:35 15 0.5 0.4 6.07 714
8:50 15 0.5 -0.2 5.91 714
9:00 15 0.5 -0.4 1.81 714
8:25 15 0.7 1.0 4.44 714
8:30 15 0.7 -0.4 6.50 714
8:35 15 0.7 0.2 6.07 714
8:50 15 0.7 0.2 5.91 714
8:55 15 0.7 -0.4 2.65 714
9:00 15 0.7 -1.0 1.81 714
8:35 30 0.2 0.2 6.07 714
8:45 30 0.2 -0.2 6.63 714
8:50 30 0.2 0.2 5.91 714
8:55 30 0.2 -0.6 2.65 714
9:00 30 0.2 -0.6 1.81 714
8:35 30 0.5 1.4 6.07 714
8:45 30 0.5 -0.4 6.63 714
8:50 30 0.5 -1.0 5.91 714
8:55 30 0.5 -0.6 2.65 714
9:00 30 0.5 -1.0 1.81 714
8:35 30 0.7 1.8 6.07 714
8:40 30 0.7 1.0 6.22 714
8:45 30 0.7 -0.4 6.63 714
8:50 30 0.7 -0.2 5.91 714
8:55 30 0.7 -1.0 2.65 714
8:50 45 0.2 -0.4 5.91 714
8:55 45 0.2 -0.6 2.65 714
9:00 45 0.2 -0.4 1.81 714
8:50 45 0.5 0.4 5.91 714
8:55 45 0.5 0.2 2.65 714
9:00 45 0.5 -0.6 1.81 714
8:55 45 0.7 0.2 2.65 714
8:55 30 0.5 -0.2 2.05 730
8:35 30 0.7 -0.2 2.94 730
8:40 30 0.7 -0.2 3.06 730
8:55 30 0.7 -0.4 2.05 730
9:00 30 0.7 -0.2 2.17 730
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Table G.2 (Contd) Database for Slope M2

Time Duration Severity M2 LCI Link
8:55 45 0.2 -0.2 2.05 730
8:55 45 0.5 -0.2 2.05 730
9:00 45 0.5 -0.2 2.17 730
8:50 45 0.7 -0.2 2.69 730
8:55 45 0.7 -0.2 2.05 730
9:00 45 0.7 -0.2 2.17 730
9:00 15 0.2 -0.2 5.11 1494
8:20 15 0.7 0.4 3.1 1494
8:35 15 0.7 0.2 5.62 1494
8:40 15 0.7 -0.2 5.10 1494
8:50 15 0.7 -0.2 4.12 1494
9:00 15 0.7 0.2 5.11 1494
8:35 30 0.5 0.6 5.62 1494
8:40 30 0.5 -0.8 5.10 1494
8:55 30 0.5 0.2 4.49 1494
8:35 30 0.7 0.6 5.62 1494
8:40 30 0.7 -0.2 5.10 1494
8:45 30 0.7 -0.2 4.22 1494
8:50 30 0.7 -0.2 4.12 1494
8:55 45 0.2 0.2 4.49 1494
8:50 45 0.5 0.6 4.12 1494
8:55 45 0.5 -0.2 4.49 1494
8:50 45 0.7 -0.4 4.12 1494
8:55 45 0.7 0.4 4.49 1494
9:00 45 0.7 0.2 5.11 1494
* Duration Duration of the incident in minutes

Severity Severity of the incident (between 0 to 1)

LCI Link congestion index

M2 slope calculated by using equation 6.4

Link Link number
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Table G.3 Database for Slope S1

Severity LCI S1 DSat CT Delay Link
0.2 1.57 0.6 0.51 10 6 714
0.5 1.57 3.6 0.51 10 6 714
0.7 1.57 15.0 0.51 10 6 714
0.2 1.57 0.6 0.51 10 6 714
0.5 1.57 3.6 0.51 10 6 714
0.7 1.57 15.0 0.51 10 6 714
0.2 1.57 0.6 0.51 10 6 714
0.5 1.57 3.6 0.51 10 6 714
0.7 1.57 15.0 0.51 10 6 714
0.2 1.51 2.2 0.24 17 11 730
0.5 1.51 3.0 0.24 17 11 730
0.7 1.51 5.2 0.24 17 11 730
0.2 1.51 2.2 0.24 17 11 730
0.5 1.51 3.0 0.24 17 11 730
0.7 1.51 5.2 0.24 17 11 730
0.2 1.51 2.2 0.24 17 11 730
0.5 1.51 3.0 0.24 17 11 730
0.7 1.51 5.2 0.24 17 11 730
0.2 2.45 8.4 0.95 31 45 1494
0.5 2.45 27.2 0.95 31 45 1494
0.7 2.45 48.2 0.95 31 45 1494
0.2 2.45 8.4 0.95 31 45 1494
0.5 2.45 27.2 0.95 31 45 1494
0.7 2.45 65.6 0.95 31 45 1494
0.2 2.45 8.4 0.95 31 45 1494
0.5 2.45 27.2 0.95 31 45 1494
0.7 2.45 65.6 0.95 31 45 1494
0.2 2.98 0.2 0.23 5 10 1692
0.5 2.98 0.6 0.23 5 10 1692
0.7 2.98 2.8 0.23 5 10 1692
0.2 2.98 0.2 0.23 5 10 1692
0.5 2.98 0.6 0.23 5 10 1692
0.7 2.98 2.8 0.23 5 10 1692
0.2 2.98 0.2 0.23 5 10 1692
0.5 2.98 0.6 0.23 5 10 1692
0.7 2.98 2.8 0.23 5 10 1692
0.2 2.06 2.6 0.77 10 11 714
0.5 2.06 7.0 0.77 10 11 714
0.2 2.06 2.8 0.77 10 11 714
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Table G.3 (Comtd) Database for Slope S1
Severity * LCI S1 DSat CT Delay Link
0.5 2.06 10.8 0.77 10 11 714
0.2 2.06 2.8 0.77 10 11 714
0.5 2.06 10.8 0.77 10 11 714
I o2 1.96 1.8 0.17 17 20 | 730
0.5 1.96 1.8 0.17 17 20 730
0.7 1.96 3.6 0.17 17 20 730
0.2 1.96 1.8 0.17 17 20 730
0.5 1.96 1.8 0.17 17 20 730
0.7 1.96 3.6 0.17 17 20 730
0.2 2.92 11.4 0.95 31 60 1494
0.5 2.92 24.6 0.95 31 60 1494
0.2 2.92 12.8 0.95 31 60 1494
0.5 2.92 53.8 0.95 31 60 1494
0.2 2.92 12.8 0.95 31 60 1494
0.5 2.92 53.8 0.95 31 60 1494
0.2 2.97 0.4 0.33 5 10 1692
0.5 2.97 1.0 0.33 5 10 1692
0.7 2.97 6.6 0.33 5 10 1692
0.2 2.97 0.4 0.33 5 10 1692
0.5 2.97 1.0 0.33 5 10 1692
0.7 2.97 6.6 0.33 5 10 1692
0.2 2.84 5.6 0.95 10 19 714
0.2 2.84 5.6 0.95 10 19 714
0.5 1.93 2.8 0.51 17 17 730
0.7 1.93 7.2 0.51 17 17 730
0.2 1.93 0.0 0.51 17 17 730
0.5 1.93 2.8 0.51 17 17 730
0.7 1.93 7.2 0.51 17 17 730
0.2 1.93 0.0 0.51 17 17 730
0.2 3.19 13.0 0.98 31 69 1494
0.2 3.19 13.0 0.98 31 69 1494
0.5 3.19 38.2 0.98 31 69 1494
0.7 3.18 11.4 0.35 5 11 1692
0.7 3.18 11.4 0.35 5 11 1692
0.2 2.21 1.2 0.53 17 22 730
0.5 2.21 9.6 0.53 17 22 730
0.2 2.21 1.2 0.53 17 22 730
0.5 2.21 9.6 0.53 17 22 730
0.7 2.21 58.6 0.53 17 22 730
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Table G.3 (Contd) Database for Slope S1
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Severity LCI S1 DSat CT Delay Link
0.2 3.92 19.2 1.16 31 95 1494
0.2 3.92 19.4 1.16 31 95 1494
0.2 2.78 5.6 0.86 17 31 730
0.5 2.78 20.6 0.86 17 31 730
0.7 2.78 19.8 0.86 17 31 730
0.2 5.20 20.2 1.05 31 135 1494
0.2 2.94 4.0 0.78 17 34 730
0.5 2.94 22.8 0.78 17 34 730
0.7 2.94 13.6 0.78 17 34 730
0.2 3.06 4.8 0.89 17 34 730

* Severity Severity of the incident (between 0 to 1)
LCI Link congestion index
S1 slope calculated by using equation 6.6
DSat Degree of saturation
CT Cruise Time on the link in secs
Delay Delay in secs/veh
Link Link number



Table G.4 Database for MaxJt

Duration Severity MaxJt CT MaxJtNon Link
15 0.2 69 10 67 714
15 0.5 68 10 67 714
15 0.7 184 10 67 714
30 0.2 78 10 67 714
30 0.5 123 10 67 714
30 0.7 195 10 67 714
45 0.2 80 10 67 714
45 0.5 118 10 67 714
45 0.7 203 10 67 714
15 0.2 54 17 53 730
15 0.5 54 17 53 730
15 0.7 61 17 53 730
30 0.2 68 17 53 730
30 0.5 162 17 53 730
30 0.7 359 17 53 730
45 0.2 129 17 53 730
45 0.5 367 17 53 730
45 0.7 593 17 53 730
15 0.2 238 31 175 1494
15 0.5 384 31 175 1494
15 0.7 440 31 175 1494
30 0.2 386 31 175 1494
30 0.5 665 31 175 1494
30 0.7 962 31 175 1494
45 0.2 478 31 175 1494
45 0.5 755 31 175 1494
45 0.7 1243 31 175 1494
15 0.2 17 5 16 1692
15 0.5 24 5 16 1692
15 0.7 57 5 16 1692
30 0.2 17 5 16 1692
30 0.5 27 5 16 1692
30 0.7 158 5 16 1692
45 0.2 17 5 16 1692
45 0.5 27 5 16 1692
45 0.7 159 5 16 1692

* MaxJT Maximum journey time on the link after an incident in secs
CT Cruise time on the link in secs

MaxJtNon = Maximum journey time on the link during non-incident
conditions in secs
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Table G.5 Database for slope S2

Duration | Severity CT LCI Delay MaxJt S2 Link
15 0.7 10 2.84 19 184 -24.2 714
30 0.2 10 6.07 49 78 -2.0 714
30 0.5 10 6.07 49 123 -11.0 714
30 0.7 10 6.07 49 195 -26.0 714
45 0.2 10 5.91 47 80 -2.0 714
45 0.5 10 5.91 47 118 -9.0 714
45 0.7 10 5.91 47 203 -20.5 714
15 0.2 17 1.93 17 54 -0.6 730
15 0.5 17 1.93 17 54 -1.4 730
15 0.7 17 1.93 17 61 -5.2 730
30 0.2 17 2.94 34 68 -1.8 730
30 0.5 17 2.94 34 162 -2.6 730
30 0.7 17 2.94 34 359 -30.4 730
45 0.2 17 2.69 29 129 -1.6 730
45 0.5 17 2.69 29 367 -18.4 730
45 0.7 17 2.69 29 593 -26.6 730
15 0.7 31 3.19 69 440 -7.4 1494
30 0.5 31 5.62 144 665 -20.8 1494
30 0.7 31 5.62 144 962 -25.6 1494
45 0.2 31 4.12 97 478 -8.2 1494
45 0.5 31 4.12 97 755 -19.0 1494
45 0.7 31 4.12 97 1243 -21.8 1494
15 0.5 5 3.18 11 24 -1.6 1692
15 0.7 5 3.18 11 57 -1.6 1692
30 0.5 5 2.95 10 27 -2.4 1692
30 0.7 5 2.95 10 158 -22.4 1692
45 0.5 5 3.18 11 27 -1.6 1692
45 0.7 5 3.18 11 159 -22.4 1692

* Duration Duration of the incident in minutes
Severity Severity of the incident (0 to 1)
CT Cruise time on the link in secs
LCI Link congestion index
Delay Delay in secs/veh
MaxJT Maximum journey time on the link after an incident in secs
CT Cruise time on the link in secs
S2 slope calculated by using equation 6.10
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Table G.6 Database for MaxJt on affected links

Affected

Incident | Severity CT Distance MaxJt MaxJt
Link Links Non

714 0.2 519 15 74 15 116
0.2 520 15 59 15 157
0.2 535 9 9 20 47
0.2 707 25 59 36 318
0.2 708 23 57 50 280
0.2 710 10 34 15 82
0.2 711 15 24 25 127
0.2 712 21 45 27 186
0.2 731 25 99 48 119
0.2 732 25 99 45 77
0.5 520 15 59 15 353
0.5 535 9 9 20 116
0.5 707 25 59 36 650
0.5 708 23 57 50 676
0.5 710 10 34 15 169
0.5 711 15 24 25 266
0.5 712 21 45 27 614
0.5 724 10 44 32 181
0.7 520 15 59 15 636
0.7 535 9 9 20 304
0.7 707 25 59 36 1122
0.7 708 23 57 50 1191
0.7 710 10 34 15 349
0.7 711 15 24 25 468
0.7 712 21 45 27 1169
0.7 724 10 44 32 281
1494 0.2 2014 3 3 10 36
0.2 1474 10 13 10 71
0.5 1424 16 49 16 307
0.5 1434 4 33 4 71
0.5 1444 6 29 6 149
0.5 1454 4 23 4 108
0.5 1464 6 19 6 151
0.5 1474 10 13 10 277
0.5 2014 3 3 11 88
0.7 1424 16 49 16 525
0.7 1434 4 33 4 121
0.7 1444 6 29 6 238
0.7 1454 4 23 4 171
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Table G.6 (Contd) Database for MaxJt on affected links

Incident | Severity | Affected CT Distance MaxJt MaxJt

Link Links Non

1494 0.7 1464 6 19 6 259

0.7 1474 10 13 10 457

0.7 2014 3 3 11 188

730 0.5 518 15 15 17 296

0.5 603 41 41 52 333

0.7 517 4 19 5 291

0.7 518 15 15 17 734

0.7 603 41 41 52 661

0.7 703 19 38 28 444

0.7 706 15 53 24 131

* Affected links Links which are affected by the incident (20%
increase in journey time

CT Cruise time on the link in secs

Distance Distance of affected link from incident link in meters
MaxJT Maximum journey time on the link after an incident in secs
MaxJtNon = Maximum journey time on the link during non-incident

conditions in secs
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Appendix H

Predictive Models
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Table H.1 Predictive Models for Slope M1

Equation R? SE(r)
M1 = 0.37 * Sev * LCI 0.51 0.47
M1 = 0.24 * Sev * LCI * NCI 0.51 0.47
M1 = 0.70 * Sev * LCI -1.19*NCI 0.63 0.42
M1 = 0.14 * Sev * LCI * NCI + 1.15 0.51 0.47
M1 = 0.08 * Sev * (LCI)? 0.61 0.43

Table H.2 Predictive Models for Slope M2

Equation R? SE(r)
M2 = 0.44 - 1.75*(1/LCI) 0.20 0.48
M2 = -0.9*%(NCI/LCI) - 0.44 0.22 0.47
M2 = -0.62 + 0.13*LCI 0.17 0.49

Table H.3 Predictive Models for Slope S1
Equation R? SE(r)

Additive Models
S1 =-24.7 + 8.5 CI + 38.7 Sev 0.21 17.4
S1 = 1.6 CI + 23.5 Sev 0.40 18.2
S1 = -31.7 + 40.6 DSat + 47.5 Sev 0.51 13.6
S1 = 17.8 DSat + 12.1 Sev 0.50 16.6
Multiplicative Models
S1 = 1.8*CT * Sev 0.58 9.6
S1 = 0.8 * CT * Sev * CI 0.69 8.1
S1 = 0.05 * Sev * CT * Delay 0.70 8.2
S1 = 0.41 * Sev * CI * Delay 0.56 9.9
S1 = 1.25 * Sev * Delay 0.69 8.2
Power Function Models
S1 = (1.45 * CI) * (15.96)~" 0.22 17.3
S1 = (4.51 * DSat) * (36.23)*" 0.62 11.8
S1 = 10.29 * CI'*® * Sev!¥® 0.22 17.2
S1 = 146.4 * DSat*!” * Sev!-”2 0.76 9.4
S1 = (0.08 * CT * CI) * 1) 0.70 8.0
S1 = (0.50* CT * CI * Sev) * (2.28)*" 0.71 8.0
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Table H.4 Predictive Models for Slope S2

Equation R? SE(r)
S2 = -1.46%(MaxJT/Delay) + 2.25 0.52 6.9
S2 = -1.78*(MaxJT/Delay) 0.47 7.1
$2 = -0.79*(MaxJT/CT) 0.75 5.0
S2 = -0.09*Delay + 96.5 0.11 9.4

Table H.5 Predictive Models for MaxJT

Equation R? SE(r)
MaxJT = MaxJtNon + (27.34 * Sev * CT) 0.73 147
MaxJT = MaxJtNon + (2.24 *Sev * LL) 0.75 143
MaxJT = 2.87 * MaxJtNon + 128.06 * Sev 0.75 189
MaxJT = 12.94 * CI * CT * Sev 0.87 101
MaxJT = 50.12 * DSat * CT * Sev 0.84 114
MaxJT = -584.2 + 98.3 CI + 21.5 CT + 483 Sev 0.74 145
MaxJT = -23.8 CI 4+ 17.1 CT + 162 Sev 0.73 197
MaxJT = -395 + 304.5 DSat +16.4 CT + 483 Sev 0.71 154
MaxJT = 67 DSat 4+ 14.3 CT + 59.5 Sev 0.73 199
MaxJT = 4.08 * CI''* * CT!2 * Sey®#! 0.89 92
MaxJT = 55.2 * DSat’%® * CT%% * Sev®$ 0.85 112
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Appendix I

Detailed information used for the simulation of incidents
in CONTRAMI programme.
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Card type 100 (added into the network file)

Card type 100 is used to introduce an incident on a specific link. e.g. on Kingston link
714, for an incident lasting for 30 minutes with a severity of 50%; card 100 in Network
file is inserted as:

100 714 4 1325 1325 1325 1325 1325 1325 2650 2650 2650 2650 2650 2650

where

- parameter 1 is the card type number;

- parameter 2 is the number of the incident link;

- parameter 3 is the iteration number when the incident is to be introduced;

- The following parameters are the new saturation flows for each time slice. In this
example, the initial link saturation flow was 2650. During the incident (which
lasts here for 30 min = 6 time slices) the saturation flow is reduced to 50% of
the initial saturation flow:

50% X 2650 = 1325 (pcu/h)
After the end of the incident the new capacity of the link is 1325 pcu/h (from
time slice 7).

Card type 93 (added in Control file)

This card is used to define the diversion strategy. As fixed route strategy is used in this
study, card 93 has same parameters for all the incidents simulated in this study, i.e.

93 0 20 100 100

where

- parameter 1 is the card type number;

- parameter 2 is the maximum number of diversions allowed;

- parameter 3 is the coefficient of diversion (10 * the maximum acceptable ratio of
new over usual cruise time);

- parameter 4 is the percentage of packets which will not divert;

- parameter 5 is the percentage of occupancy which will trigger diversions.
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Card 101 (added in Control file)

This card is used to define iterations, for all the incidents simulated in this study, the
card has fixed parameters as :

101 3 1 3
where
- parameter 1 is the card type number;
- parameter 2 is the number of iterations to load the network;

- parameter 3 is the number of iterations allowing diversions;
- parameter 4 is the number of iterations keeping the routes fixed.
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Appendix J

Description of the ANALYSE Program.
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The ANALYSE program compares Journey times on links before and after an incident.
The input for this program are the result file from CONTRAMI standard run (non-
incident), and CONTRAMI result file of incident run.

It then compares the two files and output a file which contains all the links that have
been affected as a result of the incident, the JTM (journey time multiplier) for each link
and the number of links affected per 5 minute time intervals.

Links affected by incident are selected by comparing their TIT (total journey time)
during the incident that without the incident. Varying degrees of affected links could be
selected by choosing only those links which have been affected by a specified percentage
(for this study it is 20%) of their TJT without incident.

PROGRAM ANALYSE

This program reads CONTRAM result files and compare the journey
time on every link before and after the incident and output those
links where journey time has changed for more than 20% for the
current time interval.

INPUT : Non-Incident Result File.
Incident Result File.
OutPut file name.

OUTPUT : Number of links which are affected by an incident.

¥ X X X X X X X X ¥ X ¥ X

INTEGER LNO,TS,NAL

INTEGER NOLA(13), TIT(1700), TITI(1700)

INTEGER JT(1700, 13),JTI(1700,13)

REAL CL

REAL JTM(1700,15)

CHARACTER*7 LINK(1700)

CHARACTER*7 ALINK(1700,13)

CHARACTER*15 DATAFILE],DATAFILE2,RESFILE
CHARACTER*90 LINE, TLINE

TLINE="1 LINK-BY-LINK ALL-TIME-SLICES - MEAN
ITRAVEL TIMES PER VEHICLE (SEC)’
%*
101 WRITE(*,*) ’ Enter the name of first data file : ’
READ(*,’(A)’,ERR=101) DATAFILEI
OPEN(UNIT =8,FILE=DATAFILE]1,STATUS="OLD’)

%*

64 READ(8,62) LINE
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62 FORMAT(A90)
IF(LINE.EQ.TLINE) THEN
GO TO 63
ELSE
GO TO 64
ENDIF

* ¥ ¥ ¥

Reading data line by line from first file.

63 READ(S,59)
59 FORMAT(12(/))
LNO=1
21 READ(8,31,ERR=100) LINK(LNO),(JT(LNO,TS),TS=1,13)
31 FORMAT(A7,3X,13(18))
LNO=LNO+1
GO TO 21
100 LNO=LNO-1

*

102 WRITE(*,*) ’ Enter the name of second data file ; °’
READ(*,’(A)’,ERR=102) DATAFILE2
OPEN(UNIT=9,FILE=DATAFILE2,STATUS="OLD’)

*

74 READ(9,72) LINE

72 FORMAT(A90)
IF(LINE.EQ.TLINE) THEN
GO TO 73
ELSE
GO TO 74
ENDIF

£ 3

*  Reading data line by line from second file.

*

73 READ(9,49)
49 FORMAT(12(/))
DO 22 K=1,LNO
READ(9,41) (JTI(K,TS),TS=1,13)
41 FORMAT(10X,13(I8))
22 CONTINUE

%*

*  Reading output file name.
%*

103 WRITE(*,*) ’ Enter the name of result file : ’
READ(*,’(A)’,ERR=103) RESFILE
OPEN(UNIT=7,FILE=RESFILE,STATUS ="NEW’)

DO 23 I=1,LNO
TITT)=0
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TITI(I)=0
DO 24 K=1,13
TIT() =TIT{)+IT(K)
TITIQ) =TITI() +ITIA,K)
24 CONTINUE
IF(TITI(I).NE.O) THEN
CL=(1.2)*(FLOAT(TIT()))
IF(TITI().GT.CL) THEN
DO 27 L=1,13
IF (JT(I,L).NE.0) THEN
JTM(,L)=FLOAT(TI(I,L))/FLOAT(JT(I,L))
ELSE
JTM(,L)=0.0
ENDIF
27  CONTINUE
WRITE (7,39) LINK(T),JTM(I,L),L=1,13)
39 FORMAT(AS,13(2X,F5.1))
ENDIF
ENDIF
23 CONTINUE
DO 91 L=1,13
NOLA(L)=0
NAL=1
DO 92 I=1,LNO
IF JTM(,L).GE.1.2) THEN
NOLA(L)=NOLA(L)+1
ALINK(NAL,L)=LINK(I)
NAL=NAL+1
ENDIF
92 CONTINUE
91 CONTINUE
WRITE(7,*)

WRITE(7, *)’

1 9

WRITE(7,84) (NOLA(L),L=1,13)
84 FORMAT(8X,13(2X,I5))

WRITE(7,*) °’
1 ’
DO 86 I=1,LNO
WRITE(7,85) (ALINK(I,TS),TS=1,13)

85 FORMAT(8X,13(A7))

86 CONTINUE
WRITE(*,*) *This is the end of the program.’
END
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Example of output file from ANALYSE program

1454 1.0 1.0 1.0 1.0 1.9 1.0 1.0 1.0 1.0 1.0 23 3.5 1.3
1464 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.7 33 33 33 1.2
1474 1.0 1.0 1.0 1.0 1.0 1.0 3.5 51 71 59 6.5 6.8 1.5
1494 1.0 1.3 1.8 23 2.6 2.6 2.7 31 33 31 2.8 1.6 1.0
2014 1.0 1.0 1.0 1.0 1.0 1.4 29 2.7 3.6 2.1 24 2.6 1.0
0 1 1 1 1 2 3 3 4 4 5 5 2
1494 1494 1494 1494 1474 1474 1474 1464 1464 1454 1454 1454
2014 1494 1494 1474 1474 1464 1464 1474
2014 2014 1494 1494 1474 1474
2014 2014 1494 1494
2014 2014
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Appendix K

Network Connection Files
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Table K.1 Kingston Network Connections File

Link Upstream Links Juncil Junc2
No.

100 201 42 41
101 42 43
102 40 41
103 19 3
104 18 20
105 21 4
106 57 55
107 203 53 55
108 202 53 51
109 50 6
110 13 12
111 23 24
112 37 36
113 31 29
114 33 34
115 48 45
116 68 47
117 16 5
118 200 11 28
119 11 9
120 26 27
200 310 541 9 11
201 501 500 43 42
202 510 601 55 53
203 516 515 51 53
300 69 49
301 67 1
302 405 404 403 56 1
303 405 404 402 56 2
304 405 403 402 56 55
305 402 403 404 56 62
306 63 62
307 408 64 62
308 66 65
309 59 58
310 413 10 9
311 411 10 29
312 412 30 29
313 401 46 29
314 412 414 30 47
315 415 46 47
400 714 718 49 69
401 528 116 612 47 46
402 700 1 56
403 508 2 56
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Table K.1

404
405
406
407
408
409
410
411
412
413
414
415
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

(Contd)

512
512
600
727
727
715
541
541
113
504
113
717
716
501
302
543
102
301
506
509
704
705
510
723
721
513
514
519
703
517
731
519
539
519
532
709
524
525
526
527
315
529
609
531

711
722
308
312
538
304

307
305
512
308
725
728

504

713
500
301

503

303
103

702
601
719
723
540

604
117

732
603
111
111
610
116

115
530

720
727
311

107

305

304

518

605

314

313

106

107
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Table K.1

541
542
543
544
600
601
602
603
604
605
606
607
608
609
610
611
612
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734

(Contd)

730
729
542
538
510
306
309
515
523
522
5340
531
525
521
521
116
539
502
508
507
702
734
734
734
702
514
707
708
710
532
535
535
308
300
529
529
511
511
306
306
537
520
536
536
309
732
715
518
310
544
501
733

729

543

106
307
728
108

110

525

528

102

103
706

104
104
706

708
724
712
111

726

307
305
602

728
730
309
603

500
505

107

715

315

105

105

117
707

605

305
307

604

314

250

27
28
55
62
58
51
12
12
36
25
27
34
35
47
32
41

20

20

52

15
24
38
38
65
49
49
45
54
54
62
62
60

60
65
58

58

27

43
39
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Table K.2 Boscombe Network Connections File

Link Upstream Links Juncl Junc2
No.

1132 1142 1143 4
1134 1172 1173 12 4
1142 1153 1152 6 5
1143 1903 14 5
1144 1134 4 5
1151 1144 1143 5 6
1152 1163 7 6
1153 1182 1183 9 6
1163 1203 10 7
1164 1151 1153 6 7
1171 1132 4 12
1172 1282 1284 32 12
1173 1262 30 12
1181 1151 1152 6 9
1182 1201 1203 10 9
1183 1303 15 9
1201 1164 7 10
1203 1343 1344 1342 17 10
1261 1171 1172 12 30
1262 1272 1273 31 30
1272 1282 1281 32 31
1273 1682 1681 74 31
1274 1261 30 31
1281 1171 1173 12 32
1282 1292 1293 1291 33 32
1284 1274 1273 31 32
1291 2061 2062 23 33
1292 2052 2051 34 33
1293 1533 1532 57 33
1294 1284 1281 32 33
1301 1181 1182 9 15
1303 1312 1313 24 15
1311 1301 15 24
1312 2542 25 24
1313 1324 1322 35 24
1321 1311 1312 24 35
1322 1332 36 35
1324 2054 2051 34 35
1332 2002 37 36
1334 1324 1321 35 36
1341 1201 10 17
1342 1353 18 17
1343 1383 26 17
1344 2554 16 17
1353 1392 1394 1393 27 18
1362 20 19
1363 1403 28 19
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Table K.2

1364
1373
1374
1381
1383
1391
1392
1393
1394
1401
1403
1411
1412
1413
1414
1421
1422
1424
1432
1433
1434
1442
1443
1444
1451
1452
1454
1461
1462
1464
1472
1473
1474
1492
1493
1494
1531
1532
1533
1541
1542
1543
1551
1553
1554
1561
1562
1563
1571
1572
1573
1574

(Contd)
1353

1462 1464
1364

1341 1344
1413 1412
1401 1403
1422 1424
1381

1362

1381

1422 1421
1572 1574
2004

1392 1394
1432 1433
1414 1411
1442 1443
1424 1421
1452 1451
2033

1434 1433
1401

1462 1461
1444

1472 1473
1454

2012

2023

1464 1461
5023

1613

2014

1291 1294
1551 1553
1682 1684
1332

2562

1554 1553
1542 1541
1563 1562
1531 1533
1551 1554
1582 1581
1693

1411 1412
1593 1591
1582

2564

1342
1414

1573

1413

1292

1683

1414
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18
43
19
17
38
18
28
39
26
19
42
26
39
51
37
27
40
38
41
52
39
42
60
40
28
43
41
20
44
42
45
62
43
47
54
45
33
58
74
36
50
58
49
66
57
58
67
75
38
52
67
50

19
20
20
26
26
27
27
27
27
28
28
38
38
38
38
39
39
39
40
40
40
41
41
41
42
42
42
43
43
43
44
44
44
46
46
46
57
57
57
49
49
49
58
58
58
66
66
66
51
51
51
51
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Table K.2

1581
1582
1584
1591
1593
1594
1601
1603
1604
1611
1613
1641
1643
1644
1661
1662
1663
1664
1681
1682
1683
1684
1691
1692
1693
1694
1702
1703
1704
1712
1713
1714
1721
1722
1724
1732
1734
1741
1742
1743
1744
1751
1752
1754
1762
1764
1771
1773
1791
1793
1794
1801

(Contd)
1571 1572
1603

1432 1434
1603

1574 1571
1591 1594
1722

1492 1494
1643 1644
1611

1773

1664 1661
2021

1641 1643
1793 1791
1754 1752
1531 1532
1692

1833 1831
1274 1272
1561 1562
1702

1833 1834
1684 1681
1712 1713
1922 1923
1694

1722

1852

1704 1703
1601 1604
1732

1714 1713
1742 1743
1724 1721
2031

1752 1751
1872 1874
1734

1661 1662
1762

1744 1743
1801

1754 1751
1641 1644
1793 1794
1771

1804

1661 1664
1794 1791

1574

1573

1663

1683

1741

1663

1741

1662
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51
68
66
40
68
51
52
78
67
46
64
54
69
72
62
64
73
81
57
75
90
31
66
76
90
74
77
91
75
78
92
76
68
79
77
80
78
60
81
94
79
72
82
80
83
81
64
73
69
83
72
73

67
67
67
52
52
52
68
68
68
54
54
64
64
64
72
72
72
72
74
74
74
74
75
75
75
75
76
76
76
77
77
77
78
78
78
79
79
80
80
80
80
81
81
81
82
82
69
69
73
73
73
83
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Table K.2

1804
1831
1833
1834
1851
1852
1854
1862
1864
1871
1872
1874
1884
1901
1903
1911
1912
1921
1922
1923
2002
2004
2012
2014
2021
2023
2031
2033
2044
2051
2052
2054
2061
2062
2064
2542
2554
2562
2564

(Contd)
1764

1691

1912

1684 1681
1714 1712
1862

1923 1921
1872

1851 1854
1742 1741
5029

1864

1874 1871
1142 1144
2064 2062
1834 1831
1921 1922
1702

1852 1851
1911

1412 1411
1334

1492 1493
1474

1474 1472
1662 1663
1444 1442
1743 1742
1494 1493
2061 2064
1322 1321
1294

1901

2052 2054
1294 1293
1383 1381
1301 1303
1572 1571
1543 1541

1682

1744

1413

1664

1744

1573
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82
75
97
74
77
93
91
94
92
80
95
93
94

23
90
91
76
92
97
38
36
46
44
44
72
41
80
46
23
35
33
14
34
33
26
15
51
49

83
90
90
90
92
92
92
93
93
94
94
94
95
14
14
97
97
91
91
91
37
37
45
45
62
62
60
60
47
34
34
34
23
23
23
25
16
50
50
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Appendix L

Network Plotting Programs
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L.1 Description of NETTREE program

PROGRAM TREE

INTEGER LINK1,LINK2,LINK3,LINK4,LINK5

INTEGER SEV,UPSTREAM,INCLNK,TAL
INTEGER*1 FLAG(1132:2565)
INTEGER LINK(1132:2565,0:4), ALINK(0: 190)
CHARACTER OUTFILE*15,TAIL*20
PARAMETER(TOTAL =190,UPSTREAM =4)
OPEN(UNIT=2,FILE="BOS2.LST’,STATUS =’OLD")

%*

33 FORMAT(6)

51 FORMAT(2X,16,1X,4(1X,15))

52 FORMAT(5(I8))

%*

CALL GETCOM(TAIL)
READ(TAIL,71) INCLNK,SEV

71 FORMAT(1X,14,1X,12)
OUTFILE=TAIL(10:18)

OPEN(UNIT=3,FILE=OUTFILE,STATUS =’NEW")
%*
101 READ(2,51,END=102) LINK1,LINK2,LINK3,LINK4,LINK5
LINK(LINK1,0)=LINK1
LINK(LINK1,1)=LINK2
LINK(LINK1,2) =LINK3
LINK(LINK1,3)=LINK4
LINK(LINK1,4)=LINK5
FLAG(LINK1)=0
FLAG(LINK2)=0
FLAG(LINK3)=0
FLAG(LINK4)=0
FLAG(LINK5)=0
GO TO 101

*

102 CONTINUE
%*
TAL=0
DO 21 1=1,SEV
IF(I.EQ.1) THEN
ALINK(0) =LINK(INCLNK,0)
WRITE(3,33) ALINK(0)
ELSE
41 DO 22 J=1,4
TAL=TAL+1
ALINK(TAL)=LINK(ALINK(I-2),])
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IF((ALINK(TAL).EQ.0).OR.(FLAG(ALINK(TAL)).EQ.1)) THEN
TAL=TAL-1
GO TO 22
ENDIF
WRITE(3,33) ALINK(TAL)
FLAG(ALINK(TAL))=1

22 CONTINUE
ENDIF
21 CONTINUE

WRITE(*,*) ’ TAL = >, TAL
WRITE(*,*) * This is END of the program.’
END

257



L.2 Description of Graph Program

This program plots the given network on the screen with incident link and affected links
shown in different colours (darker on black & white screen).

Input 1. Incident link number
2. NODES.LST - File with junction co-ordinates file
3. LINKS.LST - File with link numbers and start/end nodes
4. File which contain affected link numbers (from output of ANALYSE

program)
Output Graph to screen, printer or file
Facilities 1. One line per road

2. Zoom in/out, move graph etc
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Appendix M

Comparison of Simulated vs Predicted results
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Table M.1 Number of links affected with incident link K-714 (Sim vs Pre ')

Time 2 3 16 19
Sim Pre Sim Pre Sim Pre
8:05 0 0 1 1 1 2
8:10 1 1 1 3 2 4
8:15 1 2 2 5 4 6
8:20 2 3 5 7 10 10
8:25 4 5 9 11 23 16
8:30 8 7 27 17 38 24
8:35 11 9 38 23 52 32
8:40 15 11 46 29 54 40
8:45 17 14 51 35 58 49
8:50 15 15 53 36 58 50
8:55 12 14 54 35 59 49
9:00 10 11 51 32 59 46
* ME 0 9 7
MAE 1 10 8
MAPE 31 55 37
1 Sim  Simulated
Pre  Predicted
2 I3 Incident with Duration = 45 min  Severity = 20%
I6 Incident with Duration = 45 min  Severity = 50%
9 Incident with Duration = 45 min  Severity = 70%
3 ME Mean Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
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Table M.2 Number of links affected with incident link B-1494 (Sim vs Pre)

Time I3 16 9
Sim Pre Sim Pre Sim Pre
8:05 0 0 1 2 1 2
8:10 1 1 1 4 1 5
8:15 1 3 1 7 3 9
8:20 1 4 3 10 9 13
8:25 1 5 8 13 17 18
8:30 2 7 13 18 22 25
8:35 3 9 20 23 28 32
8:40 3 11 21 28 30 39
8:45 4 12 24 32 35 44
8:50 4 12 27 32 33 44
8:55 5 12 26 32 35 44
9:00 5 13 26 33 36 45
ME -5 -5 -6
MAE 5 5 6
MAPE 201 123 76
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Table M.3 Number of links affected with incident link L-3232 (Sim vs Pre)

Time I3 I6 19
Sim Pre Sim Pre Sim Pre
8:05 0 1 1 2 1 2
8:10 0 1 1 3 1 4
8:15 2 2 3 5 3 7
8:20 6 3 6 7 7 10
8:25 5 4 6 9 7 13
8:30 8 5 10 12 11 17
8:35 16 6 21 15 21 21
8:40 26 7 30 18 30 25
8:45 39 8 42 21 42 30
8:50 40 7 45 20 43 29
8:55 38 6 41 19 38 28
9:00 42 5 46 18 41 27
ME 14 9 3
MAE 14 10 6
MAPE 58 62 71
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Table M.4 Comparison of Predicted vs Simulated JT at Link K-714

Time 13 I6 19
Sim Pre Sim Pre Sim Pre

8:05 14 19 15 26 15 31

8:10 17 26 33 45 90 58

8:15 31 40 87 79 185 106
8:20 59 64 123 139 180 189
8:25 76 110 118 204 189 258
8:30 79 122 116 204 195 258
8:35 80 122 105 204 174 258
8:40 78 122 109 204 203 258
8:45 73 122 106 204 166 258
8:50 63 114 61 183 64 229
8:55 57 66 58 95 60 115
9:00 57 18 60 18 56 18

ME =22 -51 -38
MAE 28 59 63

MAPE 47 74 68
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Table M.5 Comparison of Predicted vs Simulated JT at Link B-1494

Time I3 I6 19
Sim Pre Sim Pre Sim Pre
8:05 60 92 72 142 136 176
8:10 102 148 208 283 464 373
8:15 166 223 477 470 962 635
8:20 231 309 668 599 1243 768
8:25 328 344 753 599 1239 768
8:30 429 344 755 599 1164 768
8:35 469 344 747 599 969 768
8:40 478 344 647 599 744 768
8:45 432 344 501 599 525 768
8:50 391 330 406 565 416 722
8:55 391 319 391 537 398 682
9:00 251 310 251 514 239 650
ME 23 -19 54
MAE 71 116 272
MAPE 27 34 48
Table M.6 Comparison of Predicted vs Simulated JT at Link L-3232
Time 13 16 9
Sim Pre Sim Pre Sim Pre
8:05 52 75 67 114 137 140
8:10 52 101 69 179 189 232
8:15 62 133 119 260 379 346
8:20 93 176 269 369 606 499
8:25 100 226 379 483 769 636
8:30 125 253 446 483 1051 636
8:35 184 253 506 483 970 636
8:40 233 253 501 483 736 636
8:45 237 253 422 483 537 636
8:50 228 238 361 445 357 583
8:55 160 218 307 397 357 517
9:00 113 184 201 322 221 415
ME -60 -71 33
MAE 60 78 153
MAPE 60 46 30
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Table N.1 Updated forecasts for ’Number of links affected’ with incident link K-714

Time LCI 5*M1 Forecasts Observed Update
5*M2

8:05 1.29 1.2 1 1 1
8:10 1.57 1.5 3 1 3
8:15 2.06 1.9 5 2 3
8:20 2.84 2.5 7 4 5
8:25 4.44 4.1 11 9 8
8:30 6.50 6.0 17 26 15
8:35 6.07 0.7 18 33 27
8:40 6.22 0.8 19 33 34
8:45 6.63 0.9 20 31 34
8:50 5.91 0.7 21 26 32
8:55 2.65 -1.1 20 26 25
9:00 1.81 -2.6 17 18 23
ME 4 - 0.25
MAE 6 3

MAPE 54 35
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Table N.2 Updated forecasts of Journey Time (16) on Link B-1494

Time Delay 5%S1 Forecasts Observed Update
5%S2

8:05 27 84 142 72 142
8:10 45 141 282 208 213
8:15 60 187 470 477 395
8:20 69 216 599 668 599
8:25 95 297 599 753 668
8:30 135 422 599 755 753
8:35 144 450 599 747 755
8:40 121 378 599 647 755
8:45 99 309 599 501 755
8:50 97 -34 565 406 467
8:55 111 -28 537 391 378
9:00 129 -23 514 251 368
ME -19 - 31
MAE 116 73
MSE 17772 9788
MAPE 34 23
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Table N.3 Updated forecasts of increased Journey Time (19) on Link 1494

Time Delay 5*S1 Forecasts Observed Update
5%S2

8:05 27 118 176 136 176
8:10 45 197 373 464 333
8:15 60 262 635 962 726
8:20 69 302 768 1243 962
8:25 95 416 768 1239 1243
8:30 135 591 768 1164 1243
8:35 144 630 768 969 1243
8:40 121 529 768 744 1243
8:45 99 433 768 525 1177
8:50 97 -47 721 416 478
8:55 111 -39 682 398 377
9:00 129 -32 650 239 366
ME 54 - 89
MAE 272 200
MAPE 48 34
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