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Journey time forecasts are required in many new dynamic traffic control and route guidance 
systems. This study has concentrated on the development of journey time forecasting 
models in urban networks. Two different traffic conditions (Normal and Incident) were 
categorised and hence two different modelling approaches were considered. 

For normal traffic conditions, requirements are typically for a forecast of journey time on 
a link-by-link basis for periods of up to about one hour z îead depending on the application. 
The development of short term forecasting models required initio analysis of the underlying 
time dependent variability in the parameter to be forecast. This was achieved by collecting 
and statistically analysing traffic data. The data was collected from Southampton using 
SCOOT Urban Traffic Control system over a period of six months. Time series methods 
(Box-Jenkins and Horizontal-Seasonal) were then used to develop journey time forecasting 
models, on a link-by-link basis. The developed forecasting models were tested by applying 
them on real data sets. The models are considered to be very useful for on-line application 
under normal traffic conditions particularly for Drivers Information Systems. 

The performance of time-series forecasting models deteriorates in situations of traffic 
accidents or other unexpected incidents and therefore a different modelling approach is 
required for incident cases. Traffic incidents in urban networks are the source of higher 
journey times and may cause serious congestion. In these situations journey times may be 
increased not only on the incident link, but also on the links which are the upstream links 
of incident location. 

A new modelling approach was considered in which an 'incident database' was compiled 
using the CONTRAMI simulation tool applied to a range of network, traffic and incident 
scenarios. A set of parameters were defined and effects of these parameters on traffic 
conditions were studied. Generalised statistical models were then developed to predict the 
number of links which would be affected by an incident. To find the location of affected 
links in the network, an algorithm was developed which constructs a backward tree from 
the incident link. Finally models were developed, which when supplied with incident 
severity and location in the network, forecast journey time on incident link and on the 
affected links. Models were validated by applying them on a bigger network. The 
application of developed models can be found in incident management strategies and in 
dynamic route guidance systems. 
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CHAPTER 1 

INTRODUCTION 

The rapid rise in traffic growth in almost every city of the world is leading to 

increased traffic congestion and its related problems air pollution, over utilization of 

scarce petroleum resources, time consuming delay to people and goods movement, 

other economic and environmental effects. A range of increasingly sophisticated 

traffic management measures have been introduced in recent years which have 

improved traffic efficiency and generally 'kept traffic moving', albeit at low level of 

service. The SCOOT on-line Urban Traffic Control system (Hunt et al, 1981) is an 

example of such measures, improving efficiency by optimally co-ordinating networks 

of traffic signals in order to make the efficient use of the available road space. Such 

systems are designed to cope with existing traffic patterns and use only current 

values of traffic parameters upon which to base their actions and therefore by 

themselves do not try to avoid the unfavourable conditions that can occur (one 

exception is the new 'gating' facility in SCOOT where congestion in one part of a 

network can be used as a criterion to control traffic entering upstream). 

However in urban areas where the scope for road improvements is limited, it 

becomes more difficult to achieve efficient signal co-ordination. There is a growing 

need of the derivation and design of intelligent measures to combat urban traffic 

problems by making maximum use of available road space. Dynamic methods are 

therefore required for the effective management and control of urban traffic. While 

many of the existing dynamic methods are responsive to the existing patterns of 

traffic, new techniques involving signal control and/or vehicle routing require a 

predictive element involving short term forecasting of traffic conditions. 



Requirements for short term traffic forecasting can be identified in many new 

dynamic traffic management and control systems, such as : 

* Traffic control systems, in which a forecast of critical traffic parameters could 

trigger a 'remedial' control strategy. 

* Dynamic Route Guidance systems, where the calculation of optimum routes 

requires a forecast of traffic conditions on links for the time at which vehicles 

will arrive on those links. 

* Drivers Information Systems, where forecast of travel time for a given 

journey will be required. 

* Parking guidance systems, where a forecast of car park occupancy is required 

for efficient guidance. 

In its 'simplest' form, requirements are for a forecast of traffic conditions on a link-

by-link basis for periods of up to about 1 hour ahead depending on the application. 

For traffic control, a much shorter range forecast will typically be most appropriate, 

while for routing systems, the required forecast horizon depends on the journey time 

from the point of routing advice to the destination. The parameter to be forecast also 

depends on the application, for example, traffic control system may require forecast 

of traffic demand and queue length, while route guidance systems require link 

journey time/cost forecasts. 

Another situation when forecast of traffic parameters would be required is during 

incidents. Traffic incidents occur in a variety of forms. The net affect of an incident 

is a reduction in road capacity which leads to higher than normal journey time, not 

only on the link of incident link but also on the approaching links and other links in 

the network. This could lead to serious congestion, rise in energy consumption, 



environmental nuisance. The prediction of the effects of traffic incidents is therefore 

an important issue for better efficiency for on line Dynamic Route Guidance (DRG) 

systems and other traffic control systems. 

1.1 Objectives 

The objectives of this study were : 

1 To develop models for short term forecasting of journey time on link-by-link 

basis for non-incident cases. 

2 To develop model for short term forecasting of journey time under incident 

conditions, on link of incident and on affected links, in urban networks. 

3 Test the effectiveness of methods developed in (1) and (2), on a range of data. 

1.2 Method of Approach 

Improvements in understanding of urban traffic congestion and its related problems 

were achieved by combining a full literature review followed by collection of traffic 

data (flow, journey time etc) over a 6 month period (January-July 1991). This 

provided data from 134 peak periods from congested parts of the Southampton 

network (Figure 3.1). Data was obtained fi-om the SCOOT Urban Traffic Control 

system (Hunt et al, 1981) with automatic recording undertaken at the University via 

a dedicated telephone line installed between the SCOOT computer in Southampton 

Traffic Control Unit offices and Transportation Research Group (TRG) offices. 

An initial screening of areas for detailed data collection was first carried out 



following a "blanket" collection of sample data at all locations. This revealed that 

"normal" congestion levels in Southampton were generally low and confined to a 

limited number of links. (The widespread use of SCOOT and the introduction of new 

road schemes in some congested areas were probably contributory factors to the low 

levels of congestion). After selection of the most congested links/regions, data was 

collected for three hour morning (07:00-10:00) and three hour evening (16:00-19:00) 

peaks at 10 links, 10 regions and at 1 route over the 6 months period. Data was also 

obtained from a London SCOOT region where, during the peak hours, congestion 

was much higher than in the Southampton SCOOT network. Data was processed 

using the ASTRID (Hounsell and Mcleod, 1990) database software. 

The development of short term forecasting models required initial analysis of the 

underlying time dependent variability in the parameter to be forecast. This was 

achieved by statistically analysing the available traffic data from Southampton 

SCOOT network. Two Time-series methods, Box-Jenkins ARIMA modelling (Box 

et al, 1976) and Horizontal-Seasonal modelling (Thomopoulos, 1980), were then used 

to develop journey time forecasting models, on a link-by-link basis. These journey 

time forecasts are based on historical journey time information on the particular link 

and updated to reflect the current conditions. 

Though, the time series models which were developed as above, capture small day-

to-day variations and adjust the journey time forecasts according to the present day 

conditions, these models can not be used successfully in situations of traffic accidents 

or other unexpected events. To study the effects of incidents, an 'incident database' 

was compiled using the CONTRAMI (University of Southampton, 1992) simulation 

tool applied to a range of network/traffic/incident scenarios. Regression techniques 

were then used to develop generalised statistical models for predicting the number 

of links which would be affected by an incident. To find the location of affected links 

in the network, a procedure was developed which constructs a backward tree from 

the incident link. 



The increase in journey time on incident link and on affected links is a function of 

many parameters, such as incident severity, duration and importance of the link in 

the network. A set of parameters were defined and effects of these parameters on 

journey time after an incident were studied. Models were then developed, which 

when supplied with incident severity and location in the network, predict the increase 

in journey time on incident link and on affected links following the on-set of an 

incident. 

Models were evaluated by comparing the simulated and predicted results and by 

statistically analysing the forecasting errors. A type of validation of the developed 

models was also achieved by applying them on a bigger network (London network). 

1.3 Outline of This Thesis 

This thesis is divided into 7 chapters. Following this chapter. Chapter 2 is the review 

of earlier work on traffic forecasting. Forecasting methods are discussed which can 

be used to forecast traffic parameters, some of these methods have been used earlier 

by different organisations, their performance is discussed relative to the earlier 

applications. 2nd part of chapter 2 gives a review of traffic parameters, which can 

be predicted and used in order to achieve the effective management and control of 

urban traffic. In third part of this chapter, idea of an incident is presented, it's affects 

on journey times are discussed. Methods of incident detection are reviewed and need 

for new modelling approach is discussed. 

In Chapter 3, details of data collection are given. Data was collected from SCOOT 

system. Details of SCOOT messages are presented and description is given how 

different traffic parameters are defined and calculated in SCOOT. 

In Chapter 4, a comprehensive analysis of the data is made. Sources of variability 



in the data are discussed. The principles of the statistical analysis are introduced and 

the general expressions used in the analysis of journey time are specified. A possible 

pattern for the variability of journey time between time of day, between days of week 

and between months is investigated. 

Chapter 5, presents the development and application of journey time forecasting 

models, which have the ability to accommodate random variability in journey times 

and update the forecasts when the new data is available. Box-Jenkins and Horizontal-

Seasonal methods are used to develop these models. The results of the application 

of the developed models are presented. The models are tested on real data sets 

collected from two different links and a route in Southampton SCOOT network. The 

performance of the models are evaluated in terms of forecast errors analysis. 

In Chapter 6, different incident scenarios are studied using traffic simulation model 

CONTRAMI. A database was compiled and from this database models are developed 

which predict, number and location of links which are affected by an incident, 

journey time on incident link and on incident affected links. 

Finally, Chapter 7 summarises the conclusions obtained in this research and presents 

suggestions to continue the investigation of the subjects discussed in this thesis. 



1.4 Research Time Table 

Table 1.1 Research Time Table 

Activities Time (Months) 

3 6 9 12 15 18 21 24 27 30 33 36 

Review of literature/ 
associated activities 

Data Collection 

Data Analysis 

Development of 
journey time 
forecasting models -
Normal conditions. 
Application/Testing 

Development of 
journey time 
forecasting models -
Incident conditions. 
Application/Validation 

Recommendations and 
Reporting 



CHAPTER 2 

BACKGROUND 

This chapter is divided into three parts. In first part forecasting techniques are 

reviewed which can be used to forecast traffic parameters in normal traffic 

conditions. In the second part traffic parameters are discussed in the view to find 

such parameters which can be forecasted and used in solution of traffic related 

problems. 

The third part is a review of the characteristics of traffic incidents in urban networks, 

based on previous research studies. Types of incidents are discussed which occur 

most frequently in urban networks. The review also deals with information on traffic 

incidents, from data gathering to incident detection methods. The aim is to study the 

characteristics of various types of incidents and the effects they make on network 

performance and then to develop the predictive models to forecast the effects of 

incidents in urban networks. 

Traffic speeds have been generally maintained in urban areas despite the continuing 

growth of traffic, mainly due to the introduction of a range of traffic management 

measures. Of particular significance has been the introduction of Urban Traffic 

Control (UTC) systems which have helped in running traffic by efficient linking of 

traffic signals within the urban network despite the continuous growth in traffic. 

However, most UTC systems are fixed time systems (i.e, they have signals linked 

by off-line derived coordinated timings based on historical traffic data. A number of 

fixed time UTC systems are in operation in many of cities throughout the world 

(McShane et al, 1990), e.g. TRANSYT (Robertson, 1969). Such systems can control 

known patterns of traffic, rather than respond to demand. 
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This limitation led to the development of traffic responsive control systems, which 

continually monitor traffic conditions in a network by some form of detection and 

react to the information received by implementing appropriate signal settings. They 

thus adapt themselves to traffic patterns and respond to traffic demand as they occur. 

An example of such a system is SCOOT (Split Cycle Offset Optimisation Technique) 

(Hunt et al, 1981), which is designed to optimize network performance usually by 

minimizing overall delay on the basis of on-line traffic demand. SCOOT employs a 

number of inductive vehicle detectors located on approaches to all controlled 

junctions. The data collected from these detectors is processed by a central 

coordinating computer, which can then alter the green split, cycle time, or offset at 

any junction. SCOOT is a fully adaptive control system. It is operational in many 

cities around the world. Field trials with the SCOOT system showed (Hunt et al, 

1981) that it reduces the average delay at traffic signals by about 12 per cent. This 

saving is in comparison with up-to-date fixed time signal plans which were derived 

mainly from the TRANSYT method. 

Several other real-time traffic control systems have been developed in recent years. 

These include OP AC (Optimisation Policies for Adaptive Control) (Gartner, 1983) 

developed in USA; UTOPIA (Urban Traffic Optimisation by Integrated Automation) 

(Mauro et al, 1989), implemented in Turin (Italy); PRODYN (Henry et al, 1983) 

developed by CERT in France; SCATS (Sydney Coordinated Adaptive Traffic 

System) (Sims and Finlay, 1984) in Australia. 

Although UTC systems have been able to provide some degree of success in 

alleviating congestion in urban areas, perhaps more efficient use of road space could 

be achieved if the traffic conditions can be forecasted and control actions are taken 

beforehand to avoid the unfavourable conditions that can occur. 

Developments in information technology and telecommunications together with 

advances in computing and operations research provide several opportunities for 



alternative approaches to traffic management and control. In recent years a great deal 

of effort has been invested in what is becoming known as Advanced Transport 

Telemetics (ATT). 

ATT systems in Europe are collectively known as Road Transport Informatics (RTI) 

systems, in America as Intelligent Vehicle Highway Systems (IVHS), and in Japan 

as Super Smart Vehicle Systems (SSVS). All the systems have the common objective 

of using advanced computer, information and communications technologies to 

improve the performance of transportation systems, and at the same time reduce the 

impact of transport on the environment. 

European DRIVE and PROMETHEUS (Keen et al, 1991) initiatives involve the 

development and implementation of a wide range of Advanced Transport Telematics 

(ATT) systems, of which Dynamic Route Guidance (DRG) and Driver Information 

Systems constitute a major part. A DRG system is based on providing guidance to 

drivers to their optimum route via in-car equipments, taking into account current and 

forecasted traffic conditions. 

IVHS program in America has the main goal to develop the state-of-the-art 

vehicle/highway management, information and control systems which will effectively 

combat congestion, and succeed in providing an increased level of safety, mobility, 

driver convenience and environmental quality in both rural and urban areas. 

The main aim of Japan's Super Smart Vehicle System (SSVS) is to develop advanced 

vehicle control systems, traffic management and driver information systems. The 

concept of SSVS is based on info-mobility, which corresponds to RTI and IVHS 

concept. 

These technological developments also offer new opportunities for road information 

provision. Of particular interest are Driver Information Systems (DIS). When making 
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travel choices, drivers constantly combine various sources of information to form 

perceptions and expectations of traffic conditions. 

The techniques for providing drivers with improved information include (i) traffic 

information broadcasting systems; (ii) pretrip electronic route planning; (iii) on board 

navigation systems; and (iv) electronic route guidance systems. Information available 

to drivers may conceptually fall into one of three categories (Ben-Akiva et al, 1991). 

Historical information - information which describes the state of the transportation 

system during previous time periods. 

Current information - the most up-to-date information about current traffic 

conditions. 

Forecasted information - information concerning expected traffic conditions during 

subsequent time periods when travel can occur. 

Since drivers decisions are affected by expected network conditions, the most useful 

type of information to a driver faced with travel choices would be reliable forecasted 

information. 

The success of the emerging traffic control and driver information systems will 

largely depend on the quality of the forecasting procedures. Considering the variety 

of issues regarding forecasting, the basis of this thesis is to develop appropriate 

traffic forecasting models which can be incorporated into the driver information and 

traffic control systems in order to achieve better efficiency and to combat growing 

congestion particularly in urban areas. 
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2.1 Control Actions Based On Forecasts 

Traffic forecasts have been recognised as a core issue in the area of Urban Traffic 

Management, such forecasts need to be produced in real-time, be accurate, and have 

a sufficiently large time horizon. With such information, measures can be taken not 

only to inform and warn drivers about existing congestion, but also to reduce 

expected near-future congestion or even avoid it altogether. In most urban networks 

traffic demand is dependent upon time. There are typically two occasions during the 

"normal" working day when traffic is higher than other periods. When demand 

exceeds capacity, the result is a formation of a queue of stopped (or crawling) 

vehicles at bottleneck locations. Therefore, the volume of traffic momentarily drops 

to zero, leaving only congestion on the facility until a clearout can be effected. 

Figure 2.1 Control actions based on forecasts 

Flow (on link) 

Capacity 

Time 
7:00 8:00 9:00 10:00 

In figure 2.1, "A" represents the point where congestion is identified from the data 

12 



and necessary control action can be taken. Ideally, however one would like to be 

able to predict congestion at time "B" so that control actions can be introduced 

before congestion occurs. 

Some form of network control can be imposed which limits traffic growth in a 

network and overrides growth that might otherwise occur. Possible control actions 

which are based on prediction of traffic parameters are ; 

2.1.1 Dynamic Route Guidance 

As traffic flows and delays increase in a network, new routes are often sought by 

drivers to minimise their journey time. A number of route guidance systems have 

been developed in the past decade. They include self-contained navigation units, 

radio broadcasting systems and fully automatic route guidance systems in which units 

within vehicles interact with roadside equipment to give automatic guidance. The aim 

is to provide guidance to drivers to their optimum route via in-car equipments, taking 

into account current and forecasted traffic conditions. The recommendations are 

frequently updated, e.g. every five minutes. 

Dynamic route guidance systems need the prediction of journey times for the links 

of their networks in order to give optimum route recommendations, so that the driver 

can be routed round transient congestion or blockages caused by accidents or other 

incidents. In this case it is not possible to provide all the necessary information 

autonomously within the database held in the vehicle's system (usually on CD-

ROM), but a central system is required to calculate continuously-varying best routes 

based on current and predicted traffic situations. Some elaborate and versatile 

systems are being developed to demonstration stage in Europe's DRIVE program: 

ALI-SCOUT (V. Tomkewitsch, 1986) in Germany and similar system in Britain 

AUTOGUIDE (West et al, 1991) have already been demonstrated, while the 

SOCRATES, CARMINAT and TRAVEL Pilot systems are still under development. 
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Japan, and the US IVHS programme are also developing these systems. 

2.1.3 Variable Message Signs (VMS) 

Road signs are at present the main method of obtaining route information while 

travelling. Electronically controlled 'Variable Message' signs (VMS) are being 

increasingly used particularly on motorways and on major urban corridors to provide 

dynamic route information to travellers. In the UK, such systems have mainly been 

associated with warnings of hazards, speed restrictions and lane closures. However, 

a number of other systems also incorporate traffic detection devices (usually via 

buried loops), so that messages can be directly related to levels of traffic flow, 

estimated journey time and so on. 

2.1.3 Gating 

It is usual for a small proportion of links in a network to become full during mid-

peak periods, thereby reducing the capacity of feeding links upstream. Where this 

propagates beyond junctions adjacent to the critical junction, more widespread 

congestion occurs and this has been defined as the start of system oversaturation 

(McShane et al, 1978). To prevent this, the Transport Authorities may include the 

implementation of "gating" where traffic is stored on the outskirts of the network. 

Traffic flows entering the network are then regulated in an attempt to avoid 

congestion. 

Activity in these areas are increasing; these systems require predictions to be made 

of appropriate traffic parameters (e.g. link journey time, flows). It is estimated 

(Jeffery, 1987) that, on average journey times would be reduced by about 10% for 

vehicles benefiting from in-vehicle route guidance systems, with smaller benefits for 

non-equipped vehicles due to a general reduction in congestion. 
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Forecasting can also play an important role to improve the public transport systems 

and hence encouraging people to make more use of it. Computerised trip planning 

systems are becoming available, though only at major terminals, and dynamic 

journey time predictions, taking account of current road conditions, will become 

possible via similar systems to those needed for dynamic route guidance. This also 

make possible to predict the time of arrival of the next bus at a stop. Time-to-next-

bus indicators are being tested in London (COUNTDOWN project) and Southampton 

(McDonald M, 1994; ROMANSE project). Since waiting time and uncertainty are 

greatly disliked aspects of public transport, the prediction of time-to-next-bus could 

considerably improve the perception of the services. On the whole, forecasting of 

traffic parameters will play an important role in the emerging Advanced Transport 

Telematics systems. 

2.2 Review of Forecasting Techniques 

The dynamic behaviour of traffic parameters has been the subject of interest for 

many years. Different approaches for forecasting traffic parameters has been used. 

Lam and Rothery (1970) used discrete time series from uniformly sampled or 

aggregated values analysing vehicle speeds, while Wright (1972) proposed a time 

series model for flow and concentration. Nicholson and Swann (1974) studied a 

spectral technique for predicting traffic volumes. Hillegas et al (1974) postulated 

stationary first-order autoregressive models for predicting 'occupancies'. Ahmed and 

Cook (1977) used Box-Jenkins ARIMA technique to forecast freeway traffic volume 

and occupancy data. Nihan et al (1980) and Wang (1981) also used ARIMA models 

to empirically estimate travel demand. Davis et al (1990) used adaptive forecasting 

method to predict the freeway congestion. More recently several projects within 

DRIVE I and DRIVE II programme were involved in development and application 

of journey time prediction models; of these projects is the CAR-GOES project 

(DRIVE I, 1990) where journey time forecasting is discussed by relating flow and 
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occupancy to journey time; however, models relating journey time to flow are 

needed only if they result in better estimations and predictions of journey time than 

are available from direct journey time prediction methods. Another technique which 

is being used for traffic forecasting is Kalman Filtering; Whittaker (1991) used this 

technique for network travel time prediction. 

While the previous studies mentioned above present reasonably accurate models for 

forecasting traffic parameters, relatively few studies have attempted to develop 

models which can be implemented for real time application and make the best use 

of large amount of traffic data which is available in real time from Urban Traffic 

Control systems. 

Recently, for the LISB field trial of the dynamic route guidance system ALI-SCOUT 

(Von-Tomkewitsch, 1986) a special method for journey time prediction has been 

developed for real time application. It is based on control strategies in traffic 

engineering and uses multiple exponential smoothing with variable weighting 

parameters. However, this method is also constrained by its special data collection 

procedure. 

Advances in computing technology provides the opportunity to develop traffic 

forecasting models which can be used for real time application. From traffic engineer 

point of view a wide range of forecasting methods are available which can be used 

to develop traffic forecasting models. Such methods can be classified and are 

discussed below. 

2.2.1 Time-Series Methods 

In the field of Statistics and Operation Research a number of methods for time series 

analysis and forecasting have been developed which in traffic engineering can be 

used for the prediction of traffic parameters. In time series models, forecasts are 
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based on historical (past) data, this historical data is analyzed in order to identify a 

pattern that can be used to describe it, then this pattern is extrapolated or extended 

into the future in order to prepare a forecast. All the models in this field have the 

same general mathematical background and the same objective function, the 

minimizing of the squared differences between predicted and observed values. Many 

of these techniques have been used by different organisations to generate traffic 

forecasts. Possible time series forecasting techniques are discussed in the following 

sections and their relevance to typical traffic data described. 

2.2.1.1 Exponential Smoothing 

In its basic form exponential smoothing is used for non-seasonal time series showing 

no trend. Given a stationary, non-seasonal time series, z, ,2%, , z^ , it is natural 

to take as an estimate of z^+i, a weighted sum of the past observations. 

Z(N+i) ~ CqẐ  4- C;Z .̂] + C2ZN.2 + (2.1) 

where the {Cj} are weights. 

In order that the weights sum to one, we take 

Cj = a(l-ay ( i=0 , l , - - ) (2.2) 

where 

0 < a < 1 

The prediction equation can be written as 

Z(N,1) = ocZn + (l-a)Z(N.,,,) (2.3) 

If we set Z(i,) = z, , then equation (2.3) can be used recursively to compute 
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forecasts. 

Choice of Smoothing Constant 

The smoothing constant a determines the extent to which past observations influence 

the forecast. A small a results in a slow response to changes in the level; a large a 

results in a rapid response, which, however will also make the forecast respond to 

irregular movements in the time series. The smoothing constant is frequently 

determined by simulation. Forecasts are generated for various or's (usually over the 

range 0.05 to 0.30) and are then compared to the actual observations Zj , Zj , , 

Zn. For each a , one-step ahead forecast errors: 

et-i(l) = z, - z,.,(l) (2.4) 

and the sum of the squared one-step ahead forecast errors: 

SSE(a) = Se \ , ( l ) (2.5) 

are calculated. The smoothing constant, which minimises the sum of the squared 

forecast errors, is then used as smoothing constant in the derivation of future 

forecasts. 

The notation en(l) expresses the fact that it is the one-step ahead forecast error of 

the forecast that is calculated from the past data up to and including time t-1. In 

general e,(l) = Zt+, - z,(l) is the 1-step ahead forecast error corresponding to the 1-step 

ahead forecast made at time t. The main reason for the widespread use of simple 

exponential smoothing comes from the updating equation : 

z„(l) = az„ +(l-a)z„.,(l) (2.6) 

Since this make the calculation of new forecasts computationally very convenient, 

only the previous forecast and the most recent observation have to be stored when 

updating the forecast. Another reason exponential smoothing techniques have 
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received broad attention is that they are fully automatic. Once a computer program 

has been written and a smoothing constant a has been chosen, forecasts for any time 

series can be derived without manual intervention of the forecaster. 

University of Southampton (1987) in " Traffic incidents and Route Guidance in a 

SCOOT network" considered this method and conclude that the method is only useful 

in off-peak traffic forecasting when traffic demand is stationary. A stationary demand 

situation is one in which, although demand fluctuates from one time period to the 

next, the average value remains steady over a reasonably long period of time. 

2.2.1.2 Holt-Winters Forecasting Method 

Exponential smoothing may easily be generalized to deal with time series containing 

trend and seasonal variation. The resulting procedure is usually referred to as the 

Holt-Winters procedure. Trend and seasonal terms are introduced which are also 

updated by exponential smoothing. Suppose the observations are monthly. Let m, 

denote the estimated current mean in month t, r, denote the estimated trend term in 

month t (i.e. the expected increase or decrease per month in the current mean), and 

Si denote the estimated seasonal factor appropriate to month t. Then as each new 

observation becomes available, all three terms are updated. If the seasonal variation 

is multiplicative, the updating equations are: 

m, = Of z,/s,.,2 + (1-a) (m,.i + r,.,) (2.7) 

s, = /3 z,/m, + (l-i8)Sn2 (2.8) 

Tj = 7 (m,-m,.i) + (l-7)r,., (2.9) 

where z, is the latest observation and a , /3, 7 are constants such that: 
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0 < or, jS, 7 < 1 

The forecasts from time t are then generated by the equation 

Z(t,h) = (m, + hr^s,.,2+h (2.10) 

(h = l,2,—,12) 

If the seasonal variation is additive, the updating equations are: 

mj = a (Zi-St.12) + (1-a) (m,., + r,.,) (2.11) 

St = /3 (z,-mj + (1-/3)s,.,2 (2.12) 

r, = 7 (m,-mj.,) + (l-7)r,.i (2.13) 

A graph of the data should be examined to see if an additive or multiplicative 

seasonal effect is the more appropriate. Starting values for m,, r,, and s, may be 

estimated in a fairly crude way from the first two years data, by taking: 

m, = Ez,/12 (2.14) 

rj = (mean of 2nd year - mean of 1st year)/12 (2.15) 

Si, Sj, , Si2 to be the average seasonal effects in the first two years when the 

different months are compared with the yearly means. 

This method has been used by many researchers to forecast traffic parameters. 

Richards A J (1991) used the method to forecast delay on link-by-link basis using 

Southampton SCOOT data. The method has also been used in (DRIVE CARGOES 

Project, 1990) where it was used for journey time prediction. The results from both 

the studies show that method is good when the historic data has relatively less noise, 
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however when historic data has higher level of noise or when the current days data 

is very different from historic data, the model can give very inaccurate forecasts. 

Another disadvantage associated with Holt-Winter method is the selection of suitable 

values for parameters a, /3 and y, often these are calculated from historic data. 

2.2.2 Adaptive Forecasting 

Statistical techniques for modelling time-series data are of course well established; 

however another forecasting technique which gained popularity in engineering 

applications particularly in control is adaptive forecasting, in this technique the 

parameters of time-series model are continually being modified to correct for past 

errors in prediction. One such technique is Kalman filtering, which has been used 

in traffic forecasting, e.g. (Okutani and Stephanides, 1984), (Willsky, 1980) and 

(Whittaker, 1991). 

2.2.2.1 Kalman Filtering 

The Kalman-Filter technique has been developed as an instrument in control 

engineering. It deals with two distributions. The knowledge of observed values is 

used in a recursive process to predict a distribution of expected values, individual 

factors control the (long term) updating and the short term prediction. 

In this technique, the problem of short term traffic forecasting can be considered 

with the help of the following basic assumptions. 

* Traffic parameters in an urban network have similar profiles in following days 

of the same class (week days, weekend). 

* Changes in daily profiles may be of three types: 

Changes due to specific events in a particular day. In this case, 
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normally, modifications are of short duration (eg incident on a link). 

Trends in the profile, such to modify continuously the profile, on a 

day-by-day basis. 

Casual and totally unpredictable changes of small amplitudes. 

* Parameter values, to be significant, have to be averaged on suitable time 

intervals, of the order of few minutes. 

From these basic assumptions, a suitable dynamic stochastic model for the parameter 

can be outlined, as follows; 

Ti,k = -f- Wif (2.16) 

(t-T)i,k = a(t-T)i.i,k 4- Vi,k (2.17) 

where 

tj k is the parameter value on interval i of day k. 

Tj k is the "ideal profile" at the same time. 

a is a suitable coefficient. 

v,w are white noises. 

Equation (2.16) states that the "ideal profile" behaves, on a day-by-day basis. 

Equation (2.17) states that, during day k, short time variation may arise. Moreover 

these variations (t-T) behave, within day k, as a linear, first order, stable process. 

Equations (2.16) and (2.17) are the simplest mathematical formulation of the 

previous assumptions. Equations (2.16) and (2.17) are very useful in the prediction 

problem. Indeed they allow for the separation of "short time, non repetitive" events 

(as described by (t-T) from the trend in the daily profile represented by T). The best 

estimates for t and T are to be used for the prediction within day k, while only T 

will then be used as the starting point for day k+1. This method is also called 

adaptive-forecasting, because it relies on a continuous comparison of past predictions 

22 



and realisations in order to adapt its forecasts to observed forecasting errors. In this 

way forecasting errors will be damped out, instead of being amplified by subsequent 

applications of the model. 

The Kalman Filtering, defined above, has been used to predict journey time on link-

by-link basis (DRIVE CARGOES Project, 1990). Also in Whittaker (1991) an 

outline is given of a dynamic state space model with its associated Kalman filter for 

very short-term prediction of traffic on a highway network. However, literature on 

the successful use of the Kalman filter for traffic forecasting is rather sparse, 

furthermore due to its strong data requirements, the technique is not easy to 

implement. 

2.2.3 Neural Networks 

Neural networks is a large, growing subject (Clark et al, 1993). They differ from the 

statistical methods conventionally used to analyze data, since relationships between 

inputs and outputs are not pre-defined. In essence, such system deduce the strength 

to be attached to different relationships. The networks 'learn' by exposing to 

examples. The main features of neural networks are 'input data' entering at various 

nodes along the bottom layer and is converted into 'output data' along the top layer 

via a weighting and thresh holding function at other nodes in an intermediate or 

hidden layer. There are many different ways of defining and training a neural 

network (Beale and Jackson, 1990). One problem with neural networks is that they 

can be trained to exhibit many interesting behavioural properties, it can often be very 

difficult to interpret why the training was successful. The fact that convergence has 

occurred means that pattern exist, but it may be impossible to isolate them. This 

means neural networks are often treated as a 'black box' and incorporated into 

software accordingly. Although this can be very successful, it complicates the 

question of system verification and validation and can also cause difficulties in 
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providing sufficient explanation to the end user. 

(Kirby et al 1993), used neural networks to predict traffic flows and compared the 

results with three other methods, these were : linear regression, time series ARIMA 

and Transfer functions. They concluded that regression techniques were not very 

good; that ARIMA methods provided results equivalent to those obtained using 

neural networks; and that the use of transfer functions could show an additional 

improvement, but at a cost of greater complexity in fitting method. 

2.2.4 LISB Method : (the method used in the Berlin LISB fleld trial) 

For the LISB (Von-Tomkewitsch, 1987) field trial in Berlin vehicles collect the 

actual travel times from the links in the road network and send these data first to the 

beacons and then to the central computer, the travel time prediction consists of three 

stages: 

development of travel time standard profiles for each link in the network, 

continuation of standard profiles after a day of operation by incorporating the 

gathered travel time data of that day. 

prediction of travel times on the basis of the travel time standard profiles and 

current day travel time by using multiple exponential smoothing with variable 

weighting parameters. 

Considering the problems associated with above forecasting techniques, and the less 

than good forecasting results for on-line application, there is a need to consider new 

modelling approach where better results could be obtained. 
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2.3 Review Of Traffic Parameters 

The choice of a traffic parameter to be forecast depends on the application for which 

this forecast is going to be used. The initial stage of this study involved a literature 

review of the characteristics of the traffic parameters. A description of these 

parameters is given in the following section. 

2.3.1 Flow 

The average number of vehicles passing a given point on the road in the same 

direction per unit of time is called flow. Volume and rate of flow are two measures 

that quantify the amount of traffic passing a point on a lane or roadway during a 

designated time interval. These terms are defined as follows: 

i. Volume : The total number of vehicles that pass over a given point or 

section of a lane or roadway during a given time interval; volume may be 

expressed in terms of annual, daily, hourly or subhourly periods. 

ii. Rate Of Flow : The equivalent hourly rate at which vehicles pass over a 

given point or section of a lane or roadway during a given time interval less 

than one hour, usually 5 minutes or 15 minutes. 

The values of traffic flow required in traffic engineering are a key point in many 

control and planning strategies. The usage of the average, or mean, value is 

generally accepted as a standard. It is possible to estimate average hourly flow in a 

specific weekday, in a particular month of the year by the application of factors 

available in the Traffic Appraisal Manual (DTp, 1981a, p 591). Nevertheless, the 

existence of variability in traffic flow throughout each hour, day, week and month 

is widely recognised. Therefore, forecasting of traffic flows on 5-minute or 15-

minute basis can be of great interest in many traffic control applications. 
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2.3.2 Capacity 

Capacity is the maximum number of vehicles that can pass a point on a lane or 

roadway during a given period of time under prevailing roadway and traffic 

conditions. So capacity is a particular rate of flow "the maximum rate". 

2.3.3 Delay 

The difference between the actual and desired travel times is delay. Two widely used 

measure of delay are : 

i. Aggregate Delay 

The total delay to all vehicles on an intersection approach during some time 

period. This is usually measured in vehicle hours/hour. Aggregate delay is an 

indicator of the magnitude of oversaturation and is generally useful as a 

control parameter. 

ii. Average Delay 

The average delay is delay per vehicle on an intersection approach during 

some time period, this is usually measured in seconds/vehicle. Average delay 

is a good indicator of the magnitude of saturation. It is well correlated to 

other characteristics of intersections such as volume, queue length and 

characteristics of signal operations. 

Delay can be used as an indication of the existence of congestion or a measure of the 

degree of congestion in a system. It is seen that when flow reaches about 90% of the 

ultimate capacity, the delay rises steeply. Theoretically the delay increases to infinity 

as the flow tends to the ultimate capacity; but in practise the level of flow rarely 
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remains at a high value for a long period. Delay however is a complex variable that 

is affected by many variables. 

The forecasting of delay can be useftil in signal control applications, however for 

information systems delay may not be the best parameter to forecast as for general 

public it is not always easy to understand the exact meaning of delay. 

2.3.4 Journey Time 

Journey time is defined as the time taken to travel from one point to another in free 

flow conditions plus any delay (e.g. due to traffic signals, by other vehicles on the 

road etc) incurred during the journey. 

2.3.4.1 Distribution of Journey Time 

A number of studies have been carried out to examine the distribution of journey 

time and identify those factors affecting it's variability. Smeed and Jeffcoate (1971) 

and May, Bonsall and Marler (1989) showed that the distribution of journey time is 

'normal'. However, other studies such as those carried out by Mogridge and Fry 

(1984) have reported a positively skewed distribution of travel time. Mogridge and 

Fry (1984) concluded that the distribution of journey time is 'log normal'. 

The previous studies (Smeed and Jeffcoate, 1971) also showed a positive relationship 

between the mean and standard deviation of journey times. May et al (1989) also 

reported a significant relationship between the mean and standard deviation of 

journey time, with standard deviation increasing with increasing mean journey time. 
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Although Smeed and Jeffcoate (1971) reported that journeys were significantly longer 

on Mondays, May et al (1989) found no general trend in the day to day values of 

standard deviation or any relationship with weather condition. 

2.3.5 Queue Length 

Queue length is the number of vehicles in, or the length in metres of, a given queue. 

This is an intersection measure of utility in both characterizing conditions and on line 

control. It is indicative of the magnitude of saturation. Queue length is well 

correlated with other intersection measures, such as delay and input. It is the most 

frequently used control parameter with delay. 

Queue length may be the intersection measure that most directly affects drivers 

behaviour under saturated conditions because it is most readily observable. Various 

detection systems and techniques for estimating queue length have been developed 

in recent years. In some systems, queue length is used as a congestion indicator. 

Several control schemes with the queue as a control parameter have been developed 

and some of them are applied. 

Delay is currently the most widely used parameter in existing control schemes 

because minimum delay relates to minimum operating cost. However once saturation 

occurs, optimization of flow, based on a delay parameter may be less valid because 

delay may not be a primary problem. The primary task of the control scheme may 

then be prevention of contamination of other intersections. Queue parameters are also 

more easily observed and measured than delay parameters. Thus, a measure 

expressed in terms of queue appears to be the most promising. 

2.3.6 Degree Of Saturation 

" The ratio of the average flow to the maximum flow which can be passed through 
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the intersection from the particular approach is called degree of saturation ". 

Serious congestion is likely to occur as the degree of saturation approaches 100% 

and it is desirable that stop lines be no more than 90% saturated. The degree of 

saturation is affected by the choice of signal cycle time and the percent of the cycle 

time that signals are effectively green on any one approach. It is given by: 

X = qc/gs (2.18) 

where 

X = degree of saturation 

q = flow ; average number of vehicles/sec 

g = green time 

s = saturation flow 

c = cycle time 

McShane et al (1978), in their review of traffic control in oversaturated street 

networks adopt the following definitions: 

i. Congested Operations 

"The entire range of operations which may be experienced when traffic 

demand approaches or exceeds, or both, the capacity of the signal." 

ii. Saturated Operations 

"The range of congestion wherein queues form but their adverse affects on the 

traffic in terms of delay and/or stops are local. Local affects in this context 

means that traffic performance is only affected at the intersection at which the 

queue occurs and that no other intersections performance is affected by this 

queue. Saturated operations have been sub-categorized further into: 
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a: Stable Saturation 

When a queue formed but not growing and delay effects are local, 

b: Unstable Saturation 

When a queue exists and is growing and delay effects are still local. 

Unstable saturation is a transient state whose duration may be quite 

short depending on such factors as rate of queue formation and distance 

to next upstream intersection. 

iii. Oversaturated Operations 

A situation where a queue exists and that have grown to the point where the 

upstream intersections performance is adversely affected. 

2.3.7 Density 

Density is the number of vehicles per unit length of roadway or lane. Density is not 

sufficient in itself, because the presence of high density does not necessarily 

guarantee the presence of queues sufficiently long as to cause oversaturation. 

This measure may be useful in conjunction with queues or velocity measures. Such 

combined measures must be calibrated for individual links to permit their use as 

descriptors and predictors. If possible a more general type of measure is desirable. 

Direct measurement of density in the field is difficult, it can be computed, however, 

from the average travel speed and rate of flow, which are more easily measured. 

density = flow/space mean speed (2.19) 
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2.3.8 Congestion 

Congestion is a qualitative term, used by the general public as well as traffic 

engineers, which refers to what can quantitatively be defined as vehicular density. 

The results of an oversupply of vehicles is the formation of a queue of stopped (or 

crawling) vehicles at bottleneck locations (a breakdown of the operation) such that 

volumes momentarily drop to zero, leaving only congestion on the facility until a 

clearout can be effected. Basically, congestion will be a direct result of the nature 

of the "supply and demand" on a facility. If it is possible on a given system, for 

more vehicles to enter than the facility can handle, congestion will result whenever 

the demand exceeds capacity. 

2.4 Traffic Incidents 

The time-series forecasting methods discussed in section 2.2 can be applied to 

individual links under normal traffic conditions where day-to-day patterns of journey 

time do not change dramatically. However, a different modelling approach is 

required to predict the journey time after an incident occurs on an urban road. 

Traffic incidents occur in a variety of forms and contribute to increase congestion 

and hence journey time by reducing the capacity of road networks for various periods 

of time and at various levels of severity. The disruptions which they create depend 

on the type of incident (University of Southampton, 1987). 

2.4.1 Types of Incidents 

A commonly adopted definition of a traffic incident is 'an unusual occurrence which 

reduces the capacity of the road on which it occurs' (Collings J F, 1981). Incidents 

occur in a variety of forms and can be classified into two main categories: 
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2.4.1.1 Predictable Incidents 

Incidents due to planned events are predictable incidents, such as roadworks, traffic 

signal maintenance, special events. Authorities may advise drivers of their 

occurrence, or of diversions. Also, where such 'incidents' are prolonged, drivers will 

leam of their effects and adjust their travel habits accordingly. 

2.4.1.2 Unpredictable Incidents 

The second main category of incidents which may be termed 'unpredictable' are 

those due to accidents, traffic signal failures, vehicle breakdowns, illegal 

parking/stopping, abnormal weather conditions, other emergencies. As may be 

expected, it is these events which cause most difficulties to traffic authorities and 

road users due to the uncertain nature of the incident and its effects. 

2.4.1.3 Other Classification 

A recent review of incidents in London area (Holmes and Leonard, 1992) was based 

on a traffic database maintained by the London Metropolitan police for a 6-month 

period in 1991. The database, covering the London area bordered by the M25 

peripheral motorway, recorded approximately 4000 incidents causing traffic 

congestion. The incidents are classified into the three following causes: 

Network effects: 

Traffic signal failure, roadworks, burst water mains, other works. 

Vehicle effects: 

Traffic accidents, heavy vehicle breakdowns, light vehicle breakdowns, 

diesel fuel spillage. 
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Other causes: 

Special events, weather, hazards, security, unclassified. 

The results of the database analysis on the type of incident shows that most numerous 

of the specific incidents are traffic accidents (28%), roadworks (22%), vehicle 

breakdowns (11 %), traffic signal faults (8%), security alerts (6%), hazards (6%) and 

unclassified categories. It was anticipated that the severity of congestion caused by 

an incident increases according to the level of the network traffic, with the greatest 

impact during the morning and evening peak periods. The duration of incidents were 

also analyzed. For the incidents of known duration and as a percentage of all 

incidents, 25% lasted less than one hour, 31% between one to four hours, 11% 

between four to twelve hours, with 6% of incidents lasting over 12 hours. The 

database indicated that for incidents causing congestion lasting up to four hours, 

traffic accidents are the main cause. The longer term incidents, that is over four 

hours, are dominated by roadworks. The review provided useful information on the 

various degrees of traffic congestion and typical duration for an urban network and 

will be directly applicable to the computer simulation work. 

2.4.2 Effects of Incidents 

For both the categories of incident defined above, the net effect is a reduction in road 

capacity, which lasts for varying lengths of time. The result is an excess of traffic 

demand over reduced capacity which leads to higher than normal journey time, not 

only on the link of incident but also on the approaching links and other links in the 

network. 
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2.4.3 Incident Detection Methods 

Incident detection is an essential element of adaptive network control in Advanced 

Transportation Management Systems (Stephanedes et al,1992). Successful detection 

and dynamic prediction are necessary for assessing on-line traffic data at the highest 

level of intelligence and guiding the network control strategies to an optimal solution. 

Traffic management, control and guidance can be facilitated by detecting incidents 

and predicting traffic behaviour in the network. 

2.4.3.1 Information Gathering 

Incident information can be obtained by several means including Police department, 

motoring organisations, meteorological offices, emergency services. Urban Traffic 

Control Systems (UTC). The general public can also be a useful source of 

information, particularly in the case of unpredictable incidents which the public is 

often the first one to be aware of, this initial information from general public can 

then be pass on to the local police division via the telephone network. Predictable 

events are usually passed on by those responsible either to the local police or to a 

designated department at police headquarters. There has also been an increase in the 

use of CCTV monitors in police control centres covering key areas, such as Urban 

Traffic Control networks. 

2.4.3.2 Control systems and road sensors in urban areas 

Information from UTC systems and road sensors is a major source of traffic data. 

Incidents can be detected fi-om this information. On-line incident detection methods 

are also being developed within UTC systems. A number of such techniques have 

been developed in UK (Collings J F, 1983 and Hall M D et al, 1984) and overseas 

(Levin et al, 1979 and Shibata et al, 1984) based on the processing of detector 

information on vehicle occupancy and speed (e.g. high occupancy and low speed 
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would be indicative of congestion which could be caused by a traffic incident if such 

conditions were not expected, 

2.4.3.3 Automatic Incident Detection 

The use of vehicle detectors allows incidents to be detected automatically provided 

a suitable detection algorithm can be devised. Automatic Incident Detection (AID) 

techniques allow a faster knowledge of incident occurrences on the network for 

vehicles equipped with an information transmission system such as radio or a route 

guidance system and for traffic responsive control system. 

At present most Automatic Incident Detection algorithms are designed to operate 

with limited traffic data, typically traffic volume and occupancy, simple functions are 

used to compare raw volume and occupancy measurements against preselected 

thresholds. Within the most widely known algorithms those following the California 

logic (Payne et al, 1976) rely on the principle that an incident is likely to 

significantly increase occupancy upstream while reducing the occupancy downstream, 

A typical algorithm includes a test to ensure that exceeding a threshold is not due to 

random fluctuations in the data. 

Algorithms employing statistical forecasting of traffic behaviour consider a time 

series model to provide short term forecasts of traffic behaviour. The simplest 

models consider the occupancy mean and standard deviation over the most recent few 

minutes (Dudek C L, 1974) or are based on double exponential smoothing (Cook et 

al, 1974). Significant deviation between observations and values forecast by the 

algorithms are attributed to incidents. 

The McMaster algorithm (Persaud et al, 1990) is based on a two-dimensional 

analysis of the traffic data and proposes separating the flow-occupancy diagram into 

four areas corresponding to different states of traffic conditions. Incidents are 
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detected after observing specific changes of the traffic state in a short time period. 

The HIOCC algorithm (Collings et al, 1981) is based on one-second occupancy data, 

the algorithm looks for several consecutive seconds of high detector occupancy in 

order to identify the presence of stationary or slow moving vehicles over individual 

detectors. 

One of the shortcomings of incident detection algorithm is that, as a consequence of 

point based, rather than spatial measurements of the data detection algorithms 

sometimes lack efficiency. Indeed, traffic flow dynamics rely on two dimensions 

(time and space), only one of which (time) is taken into account in the 

measurements, Consequently, a large number of false alarms and missed detection 

has been reported in operational use. Nevertheless, when the traffic data collection 

is to be combined with an Automatic Incident Detection algorithm some other 

systems can be used. At the same time as new, more efficient Automatic Incident 

Detection algorithms are developed, some new Automatic Incident Detection systems 

have appeared, such as video image processing. The technique of video image 

processing for the detection of queues and incidents in urban networks gains by the 

extensive level of coverage which the cameras provide within their field of view. The 

research which has been carried out recently on video image processing includes the 

DRIVE project INVAID (INtegration of computer vision techniques for Automatic 

Incident Detection), and a project to design 'AUTOSCOPE' video image processing 

system (Michalopoulos, Jacobson et al., 1993). 

2.4.4 Incident Management Strategies 

Following an incident and its detection by a suitable method, there is a need to 

predict the effects of an incident in the network and to bring some incident 

management strategies which provides the appropriate response to minimize the 

adverse effects of the incident. The current automated management strategies coping 

with traffic incidents are based on traffic data collection and processing. They aim 

36 



at adapting traffic signal timings to the new congested traffic conditions in the streets 

comprising or bordering the incident location and in some cases to make use of 

variable message signing. Today these techniques are still being improved so as to 

decrease the number of false alarms and missed detection being made. As for man-

operated techniques for the detection of incidents (e.g. using video cameras), they 

are demanding and, although they minimise the risk of false alarms, some incidents 

are still missed or detected long after they have appeared. Moreover, the latter 

techniques are against the current trend to develop an automatic Integrated Traffic 

Management. 

The Automatic Incident Detection (AID) techniques described earlier can be used 

effectively within management strategies to decrease the detection process duration. 

Then, vehicle-drivers whose vehicles are equipped with an information transmission 

system such as a radio or route guidance system have a faster knowledge of incident 

occurrences on the network. 

2.4.4.1 Radio Information System 

Vehicles which are equipped with a radio working in certain fi-equencies can receive 

current traffic information about the area of the network where they are located. 

Some radio information systems are developed so as to minimise the time gap 

between the actual detection of an incident and its radio transmission to road users. 

Radio Data Systems (RDS) as well as common FM radio stations can be used for this 

purpose. These systems are coupled with automatic traffic control systems which 

analyze the data for traffic incidents. Then, the German ARIAM Car-Driver-Radio-

Information system (Giesa, 1987) for instance, automatically elaborates a text 

describing an incident and transmits it to the broadcasting station. Moreover radio 

information systems are one possible basis for the development of route guidance 

systems. 
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2.4.4.2 On-line Route Guidance Systems 

Because of their ability to divert vehicles on to routes which avoid an incident, route 

guidance systems are assumed to achieve greater time savings in urban areas than 

simple traffic information systems. Dynamic Route Guidance (DRG) systems 'aim 

at guiding drivers on their optimum route to their destination, taking account of 

existing/forecast traffic conditions, with guidance being provided by in-vehicle units 

(Hounsell et al, 1992b). The principle of these systems consists of transmitting traffic 

information both ways between an in-vehicle unit and a central computer via road-

side beacons or directly, for instance using cellular radio communications (e.g. 

APPLE project in London). 

2.4.4.3 EURO-SCOUT System 

When the information is not transmitted directly between the in-vehicle unit and the 

central computer, it can be transmitted by infra-red between road-side beacons 

located at key intersections and vehicles, and by telephone lines between the beacons 

and the central computer. An incident management system (IMS) was developed 

(Janko, 1989) for the Berlin field trial of the EURO-SCOUT route guidance system. 

The IMS has been designed to be operated by police officers in the traffic control 

centre. To start the incident management procedure information is required on the 

type of incident, the location and the (estimated) severity. Incidents are allocated to 

links; three degrees of severity are possible fi^om minor restraints to the total 

blocking of a link. For travel time modifications in connection with predictable 

incidents the ratio between the predicted link travel time under normal conditions and 

the optimum link travel time is used. Travel time modification for unpredictable 

incidents depends on six parameters, the saturation flow of the considered link, 

saturation flow of the incident link, the severity of the incident, the maximum travel 

time to the management border, the travel time between the considered link and the 

incident link, the duration since the incident became known. The central computer 
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operates route calculations repeatedly on the basis of 'static' network information and 

real-time data provided mainly by equipped vehicles. The interaction between 

vehicles and the central computer provides knowledge of the current traffic 

conditions on the network, particularly concerning incidents and congestion. 

Other forms of DRG (eg. cellular radio) involve in-vehicle systems able to calculate 

the optimum route in each single vehicle, on the basis of real-time 'broadcast' 

information (eg. link journey times). Some studies have shown the benefits of route 

guidance systems (JMP Consultants Ltd, 1989) and potential benefits in some other 

cities provided with a traffic control system such as SCOOT (University of 

Southampton, 1987) when traffic incidents were taken into account. The detection 

of an incident by the central computer is made from the analysis of data indicating 

very long journey times on a link, or no information received from a certain beacon. 

In the latter case, when the possibility of a beacon breakdown has been dismissed, 

it can be assumed that no equipped vehicle is travelling on the relevant link, which 

is a plausible sign that an incident has occurred, and which can be checked out 

easily. The future calculated routes then avoid the 'disrupted' link. At this stage it 

should be mentioned that DRG systems face a problem in the event of an incident, 

with all vehicles diverted fi-om the incident location link, and no more feedback on 

the incident evolution and the end of the disruption. A solution to get the missing 

information would be to direct a small number of equipped cars on to routes 

including the incident regularly. 

2.4.5 Need for Statistical Modelling 

One way of predicting incident effects is by running an assignment model on line, 

however there are two problems involved in this, firstly road traffic assignment and 

simulation models are very demanding in computing (processing) time and computer 

main memory particularly with very large networks. This is mainly due to the variety 
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of traffic parameters and scenarios that have to be represented in sufficient detail to 

enable rational deductions to be made from results of simulations. The detailed 

representation of network traffic by most of the existing models requires high 

computing time on commonly available and affordable computer hardware (i.e, 

desktop PCs). Running a model like CONTRAM on a 1600 link network with 

average demand matrix on a top of the range 486 PC takes several hours. These 

models are currently being undertaken off-line, which is appropriate for traffic 

management schemes and traffic appraisal. However to predict the effects of an 

incident, for dynamic route guidance systems and for other on-line control systems 

requires real-time processing, this would further substantially increase the computing 

requirements. The performance of widely available and affordable single processor 

hardware would be struggling to keep pace with these requirements. Secondly even 

when sufficiently powerful computers will be available in the future to run an 

assignment model on-line, it will require detailed representations of the network 

before an on-line simulation can be run, which can be very costly and will not be 

available for most of the networks. For such reasons there is a need for simple 

statistical models which can be used on-line to predict the affects of an incident in 

a network. 

2.5 Discussion 

The review of forecasting techniques in section 2.2 indicate that a number of 

forecasting methods have been tested before. However, there is a need to apply new 

forecasting techniques which have not been used either due to the complexity of the 

technique or due to the unavailability of much needed computing power. But with the 

availability of powerful computers and new developments in forecasting techniques 

lead to consider the application of these methods for traffic forecasting. 

Time-Series type of forecasting methods may be equally successful in 'stable' 
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conditions where current data has relatively little variability and is close to 

historically-based expectations. However, where current data differs markedly (i.e. 

when forecasts are most needed) the form of prediction algorithm is important, this 

lead to the consideration of another type of forecasting where the effects of incidents 

can be incorporated successfully into the forecasting model. 

For both the categories of incident defined above, the net effect is a reduction in road 

capacity, which lasts for varying lengths of time. The result is often an excess of 

traffic demand over reduced capacity which leads to higher than normal journey 

time, not only on the link of incident but also on the approaching links and other 

links in the network. This could lead to serious congestion, rise in energy 

consumption, environmental nuisance. The prediction of the effects of traffic 

incidents is therefore an important issue for better efficiency and for on line Dynamic 

Route Guidance (DRG) systems and other traffic control and information systems 

which may be used as possible incident management strategy. 
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CHAPTER 3 

DATA COLLECTION 

A number of methods are available for traffic data collection. They cover a range of 

different techniques; such as number plate matching techniques, vehicle detectors at 

traffic signals and on-street surveys. 

For this study, it was decided to collect data from Southampton SCOOT network 

system (Figure 3.1). Southampton is considered suitable for monitoring of the traffic 

conditions since there is a relatively large proportion of the city network within the 

SCOOT area and also data is readily available as Transportation Research Group has 

close links with traffic authorities who are responsible of SCOOT operation in 

Southampton. 

3.1 SCOOT Data 

The primary purpose of SCOOT (Hunt et al, 1981) system is to calculate and 

implement signal settings in urban networks which optimise overall traffic 

performance (see figure 3.2). However in the process of optimisation, the traffic 

model within SCOOT provides a large quantity of on-line traffic data such as flow, 

delay and congestion, which is potential source of useful information (see figure 

3.3). 
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Figure 3.1 Area of Southampton controlled by SCOOT 
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Figure 3.2 The flow of information in a SCOOT urban traffic control system 
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Figure 3.3 Principles of the SCOOT traffic model 
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3.2 SCOOT in Southampton 

The SCOOT system is operating in Southampton since 1983. The model initially 

comprised four distinct regions of Southampton, but has since been expanded to 

contain smaller sub areas. There are now 15 regions in the SCOOT network which 

contain most of the signal controlled junctions in the city. These junctions control 

traffic on a total of over 200 SCOOT links. The regions and junctions within the 

SCOOT system are illustrated in figure 3.1. Since SCOOT data was used for this 

study, a critical review is presented to see how these traffic parameters are described 

and calculated in SCOOT. 

3.3 Traffic Parameters in SCOOT 

The SCOOT traffic model predicts the effects of changes in traffic signal settings. 

The current signal settings and measurements from vehicle detectors are used to 

produce the estimates of traffic queues, delay and vehicle stops. The output from 

SCOOT also includes traffic flow from the vehicle detectors and the estimated queue 

length. 

3.3.1 Traffic Flow In SCOOT 

SCOOT records information on vehicle presence (i,e occupancy) at each detector and 

produces estimates of traffic arrivals on each link in terms of link profile units 

(LPU). Each detector is interrogated at the roadside 4 times every second to see 

whether it is occupied or not, and this information is transmitted to the central 

SCOOT computer every second for processing. LPUs are a hybrid of flow and 

occupancy, although it is possible to obtain flow estimates from SCOOT LPUs. 

SCOOT outputs traffic flow estimates in its M02, M03 and M04 messages in 
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vehicles per hour, having divided its LPU count by 17. The factor 17 is a global 

average found from measurement, but there are considerable between-link variations 

depending on detector location, the number of traffic lanes and so on. An average 

conversion factor over all links surveyed in Southampton (Garden et al, 1987) was 

found to be 16.6 LPUs per vehicle. This does not adversely affect SCOOT's 

performance, as these fluctuations are catered for by validation. It is also probably 

not significant if the traffic flow/delay data is only to be used to indicate trends. 

However, if the flow data is used directly as an absolute value, a link specific 

Ipu/vehicle conversion factor -obtained by measurement- would be required to ensure 

accuracy. 

3.3.2 Traffic Delay in SCOOT 

SCOOT's estimate of delay on a link is based on its queue model. Aggregate delay 

per cycle is equal to the area between the arrival and discharge profiles, while delay 

per vehicle (which is not output by SCOOT) can be calculated from the time between 

arrival and discharge. 

3.3.3 Link Journey Time from SCOOT 

Estimates of delay per vehicle can be obtained by dividing aggregate delay by flow, 

average journey time (in sees) is then calculated by adding a 'cruise time' for vehicle 

movements between the SCOOT detector(s) at the upstream end of the link and the 

stop line. 

Delay (secs/veh) = (Delay (veh. hr/hr) / Flow (vehs/hr)) * 36(X) (3.1) 

Journey Time (sees) = Delay (secs/veh) + Cruise Time (sees) (3.2) 

Such estimates of journey time from SCOOT data have been shown (Carden et al, 

1989) to accurately reflect on-street journey times over a wide range of conditions. 
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3.4 Data Availability 

The data collected for this study is traffic flow, delay, congestion and degree of 

saturation at link level and flow, delay and congestion at region level. Data is also 

collected for a route. The information on these traffic parameters were obtained from 

SCOOT by M02, C30 and M04 messages. The message M02 as come from the 

SCOOT computer contains following information: 

TIME M02 LINK NO PERIOD STP DLY*10 FLO CONG RAW FLTS 

where 

PERIOD is the time in seconds over which the figures were collected. 

STP is the approximate number of vehicle stops per hour. 

DLY is the approximate delay in vehicle hours per hour. 

FLO is the approximate flow in vehicles per hour. 

CONG is SCOOT congestion in intervals per hour 

RAW is the number of 4-seconds intervals per hour where detector 

was continuously occupied, (maximum = 900) 

FLTS indicate the detector status of the link. 

(FLTS=0 for OK ; FLTS = 1 for FAULTY or SUSPECT) 

Region data given by M04 message is equal to the sum of the data from all links 

within the region. The format of the message which comes from the SCOOT 

computer is: 

TIME M04 REGION NO PERIOD STP/10 DLY FLO/10 RAW/10 FLTS 

where 

PERIOD is the time in seconds over which the figures were collected. 

DLY is the approximate delay in vehicle hours per hour and is the 

sum of DLY values from all the links within the region. 

FLO is the approximate flow in vehicle hours per hour and is the sum 
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of FLO values from all the links within the region. 

RAW is the sum of RAW parameters from all the links within the 

region. 

FLTS number of faulty links within the region. 

3.5 Data Correction 

3.5.1 Faulty Detectors 

In SCOOT model each detector has status OK , SUSPECT or FAULTY. The FLTS 

parameter in the M02 message indicates the number of FAULTY and SUSPECT 

detectors within the link. 

(FLT = 0 "OK " ; FLTS = 1 "SUSPECT OR FAULTY" ) 

If FLTS = 1, then M02 is still output but data items are zero, this data was not 

used. 

Within the regions where there may be a large number of links, it is possible that 

some of the detectors are Faulty or Suspect. Whenever the FLTS parameter in M04 

message has value greater than zero, the M04 data is factored up by the ratio of the 

links in the region to the number of OK links. 

3.5.2 Missing Data 

During data collection some messages were lost for a variety of reasons, such as 

transmission faults, corruption of the data, power failure, or whenever the SCOOT 

computer is down. This data was discarded and was not included in the database. 
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3.6 Pilot Survey 

An initial screening of areas for detailed data collection was first carried out 

following a "blanket" collection of sample data at all locations. This revealed that 

"normal" congestion levels in Southampton were generally low and confined to a 

limited number of links. (The widespread use of SCOOT and the introduction of new 

road schemes in some congested areas were probably contributory factors to the low 

levels of congestion. On the basis of this survey, 10 links, 10 regions and 1 route 

were selected for regular monitoring. 

3.7 Regular Monitoring 

After selection of the most congested links/regions, SCOOT data was collected for 

three-hour morning and three-hour evening peaks at 10 links, 10 regions and at 1 

route over the 6 months (21-01-91 to 07-07-91) data collection period. Recording of 

data from SCOOT was undertaken at the University via a dedicated telephone line 

installed between the SCOOT computer in Southampton civic centre offices and 

Transportation Research Group (TRG) offices. This communications facility, together 

with associated terminal equipment (such as modems and visual display units), 

allowed requests for information to be sent to the central computer as needed. The 

information was then recorded on the PC at the TRG offices. The ASTRID database 

system (Hounsell et al, 1989) was used for data collection, processing and initial 

analysis. 

3.7.1 Data Collection Sites 

Information on traffic flow, delay, congestion and degree of saturation at link level 

were collected fi-om the following links: 

N020A N019D N018E N017C N016D N073A N072C NOlOE N071D N071A 

and on flows, delays and congestion at region level from the following regions 

A B C E L P R S T U 
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3.7.2 Data Collection Time Table 

Data was collected on working week days during three hours morning peak (0700-

1000) and three hours evening peak (1600-1900) periods at five minute aggregation 

level. Tables 3.1 and 3.2 show the data collection time tables. 

3.8 Discussion 

Journey time data used in this study are derived from the output of SCOOT UTC 

system in Southampton. The primary purpose of the SCOOT system is to calculate 

and implement signal settings in urban networks which optimise overall traffic 

performance. However in the process of optimisation, the traffic model within 

SCOOT provides a large quantity of on-line traffic data such as flow and delay, from 

which link journey time can be calculated. Flow is measured in 'link profile units' 

(Ipu) per hour. The Ipu is a combined measure of vehicle flow and occupancy of the 

detector. For absolute measure of flow estimates, link specific Ipu conversion factor 

may be required. However this is not necessary for the purpose of journey time 

calculations as in journey time calculation (see equation 3.1) the units of Ipu's cancel 

out to give delay in seconds. Such estimates of journey time fi-om SCOOT data have 

been shown (Carden et al, 1989) to accurately reflect on-street journey times over 

a wide range of conditions. 

It was decided to take advantage of this rich data source for this study, following 

selection of appropriate links exhibiting relatively high congestion characteristics 

which would be most suitable for developing and testing journey time forecasting 

models, data was collected for three hour morning (7:00-10:00) and three hour 

evening peak (16:00-19:00) at 10 links, 10 regions and at 1 route over the six 

months period. This provided data from 138 peak periods fi-om congested parts of 

the Southampton network (Figure 3.1). This data set is subsequently used as a 

historic database for the development of journey time forecasting models. 
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Table 3.1 Data Collection Time Table - Morning Peak (07:00-10:00) 

Week 
No. 

Date 
1991 

Mon Tue Wed Thr Fri 

1 21/01 - 25/01 * * * * * 

2 28/01 - 01/02 * * * * * 

3 04/02 - 08/02 * * * * * 

4 11/02 - 15/02 * * * * * 

5 18/02 - 22/02 * * * * 
-

6 25/02 - 01/03 - - -
* * 

7 04/03 - 08/03 # * 
- - -

8 11/03 - 15/03 - - - - -

9 18/03 - 22/03 * 
- - - -

10 25/03 - 29/03 - - - - -

11 01/04 - 05/04 - - - - -

12 08/04 - 12/04 - - - -
* 

13 15/04 - 19/04 * * 
-

* # 

14 22/04 - 26/04 - - -
* 

-

15 29/04 - 03/05 - - - - -

16 06/05 - 10/05 - - - -
* 

17 13/05 - 17/05 * * # * * 

18 20/05 - 24/05 * * * * * 

19 27/05 - 31/05 * * * * * 

20 03/06 - 07/06 - -
* * * 

21 10/06 - 14/06 -
* * * * 

22 17/06 - 21/06 * * 
-

# * 

23 24/06 - 28/06 * 
- - - -

24 01/07 - 05/07 - -
* * * 

25 08/07 - 12/07 * 
-

* 
- -

Data Available Data Not Available 
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TMe 3.2 Data Collection Time Table - Evening Peak (16:00-19:00) 

Week 
No. 

Date 
1991 

Mon Tue Wed Thr Fri 

1 21/01 - 25/01 * * * * * 

2 28/01 - 01/02 * * * * * 

3 04/02 - 08/02 * * * * * 

4 11/02-15/02 * * * * * 

5 18/02 - 22/02 * * * * -

6 25/02 - 01/03 - - - * * 

7 04/03 - 08/03 * - - - -

8 11/03 - 15/03 - - - - * 

9 18/03 - 22/03 - - - - -

10 25/03 - 29/03 - - - - -

11 01/04 - 05/04 - - - - -

12 08/04 - 12/04 - - - * * 

13 15/04 - 19/04 * - - * * 

14 22/04 - 26/04 - - * - -

15 29/04 - 03/05 - * * * » 

16 06/05 - 10/05 - - - * -

17 13/05 - 17/05 * * * * * 

18 20/05 - 24/05 * * * * * 

19 27/05 - 31/05 * * * * * 

20 03/06 - 07/06 - * * * * 

21 10/06 - 14/06 * * * * -

22 17/06 - 21/06 - - * * * 

23 24/06 - 28/06 - * - - -

24 01/07 - 05/07 - * * * * 

25 08/07 - 12/07 -
* 

- - -

Data Available Data Not Available 
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CHAPTER 4 

ANALYSIS OF DATA 

In this chapter, after checking the distributional form of the empirical data set, the 

variability through time in traffic parameters is studied and statistically analyzed. The 

parameters which were analyzed are Journey Time (sees) and Flow (vehs/hr) at link 

and route level and Delay (secs/veh) and Flow (vehs/hr) at region level. This 

analysis is intended to test the data sets available, trying to discover different sources 

of variability which can be incorporated into forecasting models. 

4.1 The Normality of the Data 

Before any further data analysis is carried out, it is required to determine the 

characteristics of traffic pattern in terms of the statistical distribution. Several 

previous studies (e.g Smeed and Jeffcoate, 1971; May et al, 1989; Mogridge and 

Fry, 1984) have attempted to explore the distributional forms of traffic parameters. 

However, here our aim is not try to fit any distribution on the data but rather to 

show that the data set used in this study is normally distributed (or approximately 

normally distributed) and hence classical statistical methods can be employed for 

further data analysis. 

For this purpose. Link N019D is used here as an example to check the distribution 

form of journey times. Figure 4.1 shows the frequency histogram of journey time 

on link N019D, the graph shows that the distribution has long right tail, however the 

frequency of journey time of more than 45 sees is very small. The data set contain 

some outlier, which may be distorting the distribution curve. 
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Figure 4.1 Frequency distribution of journey times on link N019D 
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Figure 4.2 Frequency distribution of journey times (truncated data) on link N019D 
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Figure 4.2 shows the frequency histogram of the data which contains all the journey 

times upto 95th percentile. With this relaxed condition, the distribution of journey 

time appeared to be normal. Similar approach was used to test the distributional form 

of journey times on other sites. Overall it is concluded that journey time on links are 

approximately normally distributed. 

4.2 Time Dependent Variability 

The development of appropriate short-term forecasting models required an initial 

analysis of the underlying time dependent variability in the parameter to be forecast. 

The accuracy of such forecasts depend on the variability of traffic conditions through 

time; identification of different sources of variability in traffic will clearly allow 

much more accurate forecasts to be made than situations where different sources of 

variability are not separated. Clearly, if the parameter values are relatively stable 

within and between days, the forecasting process is greatly simplified. It is widely 

recognised (Montgomery et al, 1987) that several sources of variability are present 

in traffic data (e.g: peak and off peak, between-days, within-days). These sources of 

variability can affect the forecasts. In order to have good forecasts, data should be 

grouped in such a way that it has minimum possible variability. 

The detailed statistical analysis of the collected data revealed the following sources 

of time dependent variability in the data : 

4.2.1 Cyclic Variability 

The cyclic nature of traffic signal operations in urban areas gives rise to a cyclic 

pattern of flows and journey times. Thus one driver may clear a set of signals at the 

end of green time undelayed, while another following driver may be delayed by the 
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red signal and preceding queuing traffic. The extent to which this pattern is 

repeatable depends largely on junction capacity, which determines whether or not 

vehicles are delayed for more than one cycle. 

Accounting for cyclic patterns in very short term forecasting may be necessary; e.g. 

for signal control application. However, it becomes less relevant for longer forecast 

horizons typically required for information systems etc. To do so would require a 

forecast of the location of each vehicle in relation to the likely signal aspect at that 

time; this would involve too many uncertainties except perhaps for very short term 

forecasting. In reality, cyclic variability would either be 'swamped' by other sources 

of variability, or where routes involve negotiation of a number of signal controlled 

junctions, underestimates of a traffic parameter on some links (due to cyclic 

variation) are likely to be balanced by overestimates on others. Therefore this very 

short term variability is usually not of interest in traffic forecasting, except for 

particular signal control applications. 

4.2.2 Variability By Time Of Day 

In an urban network the level of traffic varies during different times of the day, such 

as peak (morning and evening) and off peak hours. Furthermore, the level of traffic 

may also vary between morning and evening peak. Since for this study the data was 

collected for three hours morning (07:00-10:00) and three hours evening (16:00-

19:00) peak, it was possible to test whether the data differed significantly between 

morning and evening peak. The statistical procedure that was used is : 'Hypothesis 

test for the equality of the means for two populations'. This test generally known as 

standard Z test is described in detail. 

4.2.2.1 Hypothesis test for the equality of the means for two populations 

This test is applied to establish whether an observed difference between two sample 
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means can be attributed to chance, or whether it is statistically significant. If x, and 

Xj are means of two independent samples of sizes n, and then to test the 

hypothesis that there is no difference in population means we adopt the following 

procedure. 

(i) The null hypothesis is Hq : Hi = 1x2 

the alternative hypothesis is Hj : /X2 

(ii) The level of significance is a 

(iii) The test statistic to be used is 

Z= 

n, 

where 

X, and X; are the means to be tested and 

s,̂  and S2 are unbiased estimates of population variances and 02 

(iv) The critical region is 

Z-a/2 ^ Z < Z„/2 

(v) Compute the value of Z from the sample data. 

(vi) Reject Hq if Z < or Z > Z„f2 

The standard Z test (described above) was applied to the data of all sites to test the 

variability in traffic parameters between morning and evening peak. The results of 

the application of this test on all sites are summarised in tables 4.1 and 4.2. This 

revealed that there is significant difference in mean level of parameters during 

morning and evening peak. The variability between morning and evening peak at link 
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and route level is much higher than the regional level (which are an aggregation of 

results for all links in each region). At link level the mean flow and journey time is 

much higher during the morning peak, this is due to the tidal nature of traffic flow 

(all the links monitored for this study have the same direction of traffic flow, i,e 

towards the city centre). At region level the evening peak is more busy than the 

morning peak though the variability is not as high as at link level. 

In the following tables, the following notations are used. 

1 Flow is Flow in vehicles per hour 

JT is Journey Time in seconds 

Delay is average delay in seconds per vehicle 

2 Mean is the average of the parameter over given number of days 

SD standard deviation 

SS sample size (number of days) 

CV coefficient of variation (SD/Mean) in % 
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Table 4.1 Variability between Morning and Evening peak (Link level) 

Site Parameter Morning Peak 
(07:00-10:00) 

Evening peak 
(16:00-19:00) 

Mean SD SS CV Mean SD SS CV 

N071A 
Flow * 584 49 57 8 290 30 61 10 

JT * 16 2 57 13 12 1 61 8 

N018E 
Flow • 977 48 54 5 638 38 55 6 

JT * 45 14 54 31 28 1 55 4 

N073A 
Flow * 933 55 57 6 511 30 61 6 

JT » 43 1 57 2 41 1 61 2 

N071D 
Flow * 320 18 58 6 348 18 61 5 

JT 21 6 58 29 21 3 61 14 

N072C 
Flow » 836 30 48 4 489 34 52 7 

JT * 23 3 48 13 32 2 52 6 

N019D 
Flow * 1069 84 55 8 771 41 60 5 

JT » 34 4 55 12 27 1 60 4 

N020A 
Flow * 568 83 54 15 251 21 61 8 

JT * 17 3 54 18 20 3 61 15 

N017C 
Flow * 810 60 58 7 580 36 60 6 

JT • 19 1 58 5 16 1 60 6 

N016D 
Flow * 754 58 58 8 544 31 57 6 

JT * 28 3 58 11 19 3 57 16 

NOlOE 
Flow * 539 30 52 6 328 19 57 6 

JT * 20 2 52 10 16 3 57 19 

Route 1 
Flow » 6651 333 58 5 4275 234 60 5 

JT » 244 18 58 7 217 9 60 4 

* Differ significantly from evening peak at 5 % level of significance. 
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Table 4.2 Variability between Morning and Evening peak (Region level) 

Site Parameter Morning Peak Evening Peak 
(07:00-10:00) (16:00-19:00) 

Mean SD SS CV Mean SD SS CV 

Flow * 8140 602 59 7 9852 597 62 6 
Region A 

Delay * 34 3 59 9 46 5 62 11 

Flow 11977 871 58 7 11798 859 60 7 
Region B 

Delay * 27 4 58 15 14 2 60 14 

Flow * 17584 599 59 3 19158 976 62 5 
Region C 

Delay * 24 1 59 4 26 3 62 11 

Flow * 11219 400 52 4 13673 418 59 3 
Region E 

Delay * 27 5 52 19 21 3 59 14 

Flow * 5506 329 57 6 6599 470 59 7 
Region L 

Delay * 19 2 57 10 22 3 59 14 

Flow * 20004 786 59 4 22670 700 62 3 
Region P 

Delay * 16 2 59 12 14 1 62 7 

Flow • 3896 180 61 5 5501 303 63 6 
Region R 

Delay * 22 3 61 14 20 2 63 10 

Flow * 4556 388 55 9 5739 399 61 7 
Region S 

Delay * 13 4 55 31 11 2 61 18 

Flow * 8203 304 61 4 9400 356 63 4 
Region T 

Delay * 16 2 61 13 17 1 63 6 

Flow * 4097 139 58 3 4489 222 62 5 
Region U 

Delay * 57 10 58 18 76 18 62 24 

Differ significantly from evening peak at 5 % level of significance. 
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4.2.3 Variability By Day of Week 

Variability here is largely due to the variations in activities which occur on different 

days; such as working and non-working days. The level of between-day variability 

in traffic parameters is important in determining the requirements for forecasting. It 

is already well documented (Montgomery, 1987) that traffic flows and journey times 

differ substantially at weekends and on public holidays than on normal working days, 

and separate measurements and forecasts for these days would be required. However, 

variability between working days may also be sufficient to warrant separate 

measurements and predictions for each day of the week. Table 4.3 shows the mean 

(Mean), standard deviation (SD) and coefficient of variation (CV) of flows and 

journey times on different days of the week for three sites of Southampton. 

Table 4.3 Variability by day of week 

Site Day SS ' Flow (vehs/hr) Journey Time (sees) 

Mean SD CV Mean SD CV 

Men 9 977.41 50.15 5.1 39.41 9.84 25.0 
Tue 9 985.89 43.72 4.4 44.62 13.51 30.3 

NOISE Wed 9 971.42 58.14 6.0 43.56 14.05 32.2 
Thr 15 982.52 57.93 5.9 41.93 11.82 28.2 
Fri 15 969.32 34.91 3.6 45.78 10.14 22.2 

Men 10 1082.91 84.73 7.8 31.74 1.04 3.3 
Tue 9 1100.19 97.31 8.8 33.45 3.54 10.6 

N019D Wed 8 1087.60 74.77 6.9 32.68 3.23 9.9 
Thr 16 1063.74 82.90 7.8 32.97 2.81 8.5 
Fri 15 1043.69 76.03 7.3 33.19 3.25 9.8 

Mon 10 6632.66 293.00 4.4 231.92 12.41 5.35 
Tue 10 6746.73 387.88 5.7 239.16 20.45 8.55 

Route 1 Wed 10 6657.91 331.71 5.0 238.92 19.35 8.10 
Thr 16 6663.50 359.75 5.4 236.90 19.81 8.36 
Fri 15 6609.62 300.84 4.6 244.23 16.52 6.76 

1 SS sample size (number of days) 
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Level of between-day variability can be assessed statistically by applying Analysis 

of Variance (ANOVA) test. The following section describes the ANOVA test in 

detail. 

4.2.3.1 Analysis of Variance Test 

This technique is used to decide whether observed differences among more than two 

sample means can be attributed to chance, or whether there are real differences 

among the means of the populations sampled. The analysis of variance has been 

shown the most powerful and useful technique whenever the statistical data can be 

categorised in groups and the aim is to test for homogeneity. The classification 

according to a single criterion is called a one-way classification, while the 

classification according to two criteria is known as a two-way classification. 

Here we want to test whether the mean level of traffic parameters (flow, journey 

time etc) on different days of week (Mon-Fri) are significantly different from each 

other; the criterion used for this purpose is One-Way classification, which is 

described below. 

4.2.3.2 One-Way Classification 

Suppose we have k random samples of sizes m from k populations. 

Sample-1 Sample-2 Sample-k 

x j , x21 x|ji 

*12 2̂2 Xk2 

*lm 2̂m Xkm 

Mean x, Xj x̂  
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Assuming that the populations are independently and normally distributed (see section 

4.1) with means and common variance o^, we wish to test the 

hypothesis that all the means are equal, i.e. Hg : fii = fiz = = /Xk 

against the alternative hypothesis 

Hj : At least two of the means are not equal. 

In practical terms the ANOVA test is performed based on the following formulae: 

SST (Total Sum of Squares) = EE Xjĵ  - C.F 

SSB (Between Sum of Squares) = E Tj^/k - C.F 

SSE (Error Sum of Squares) = TSS - SSB 

where 

Xjj is the observation in ijth cell. 

Tj is the sum of the observations of ith sample. 

C.F is correction factor given by T^/n 

T being the grand total of all the observations. 

and n is total number of observations 

The summary of calculations is shown in table 4.4, generally referred as ANOVA 

table. 

Table 4.4 Summary of ANOVA 

Source of Degrees of Sum of Squares Mean Squares F-ratio 

Variation freedom 

Between Samples k-1 SSB = Q, Sb' = Q,/k-l F = Sy'/V 

Error n-k SSE = Qz = Qa/n-k 

Total n-1 SST = Q St̂  = Q/n-1 

The ratio = has the F-distribution with k-1 and n-k degrees of freedom, the 
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calculated value of F is compared with the table value of F and if (F > F„. ̂  

then the null hypothesis is rejected otherwise accepted. 

4.2.3.3 Samples of Unequal Size 

The above procedure of One Way Classification deals with the case of equal sample 

sizes, the above procedure can also be applied for samples of unequal sizes with the 

slight modifications described below. 

Let the k random samples of sizes m,, m ,̂ . . ., m^ respectively with n = E m;. The 

formulas for computing the Total SS and Between SS are given as below : 

SST (Total SS) = EE Xj/ - C.F 

SSB (Between SS) = E Tj^/mj - C.F 

SSE (Error SS) = Total SS - Between SS 

where 

Xjj is the observation in ijth cell. 

Tj is the sum of the observations of ith sample. 

C.F is correction factor given by T^/n 

T being the grand total of all the observations. 

The variance ratio F = Sŷ  / s j , will still be valid. For d.f we replace mk by n, 

therefore the respective d.f are (n-l)(n-k) and k-1. The rest of the analysis is same 

as described for equal sample sizes case. Between-day variability was assessed by 

applying the ANOVA test to flows, journey time and delays between 07:00-10:00. 

Table 4.5 shows the average daily flows on different days of week and table 4.6 

summarise the calculations of ANOVA test. 
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Table 4.5 Link N018E - Average daily Flow (07:00-10:00) by day of week 

Mon Tue Wed Thr Fri 

970.00 1016.00 975.31 1018.64 960.56 

984.28 1032.67 1001.61 1032.50 1017.61 

976.81 980.25 1028.44 979.44 1032.39 

904.06 912.31 908.97 867.11 990.39 

1049.56 1005.78 1028.36 1035.33 968.36 

1008.36 980.08 1046.89 994.97 975.56 

1041.81 1035.56 916.86 1012.33 988.56 

932.56 923.83 891.89 1016.09 954.94 

929.28 986.53 944.42 1015.00 984.53 

1071.97 983.69 

898.67 888.14 

926.11 930.61 

915.47 940.31 

953.93 953.75 

1000.19 970.44 

Table 4.6 Link N018E Flows - Analysis of variance (ANOVA) 

Source of Degrees of Sum of Squares Mean Squares F-ratio 

Variation freedom 

Between Days 4 2333.99 583.50 0.24 

Error 52 126501.86 2432.73 

Total 56 128835.85 

Analysis of variance test applied on the above table at 5 % level of significance show 

that the difference in mean level of flows between different days of the week is not 

significant. 
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Table 4.7 Link N018E - Average daily Journey Time (07:00-10:00) by day of week 

Mon Tue Wed Thr Fri 

38.52 46.46 31.04 31.03 46.34 

42.34 41.76 37.64 31.88 36.51 

32.11 31.13 31.10 31.25 62.72 

34.20 40.22 30.72 33.16 38.13 

32.24 31.30 32.70 32.30 31.07 

30.70 30.70 68.65 43.15 31.12 

33.47 66.08 55.17 54.53 46.04 

55.45 49.57 49.09 47.35 50.15 

55.67 64.39 55.95 63.24 60.34 

34.04 32.08 

32.21 46.39 

49.84 52.03 

53.77 51.17 

60.12 55.06 

31.04 47.56 

Table 4.7 shows the average journey time at link N018E on different days of week and the 

result of ANOVA test are summarised in table 4.8. 

Table 4.8 Link NOISE Journey Times - Analysis of Variance (ANOVA) 

Source of Degrees of Sum of Squares Mean Squares F-ratio 

Variation freedom 

Between Days 4 272.76 68.19 0.49 

Error 52 7208.14 138.62 

Total 56 7480.90 

Analysis of variance test applied on the above table at 5 % level of significance show 
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that the difference in mean level of journey time between different days of the week 

is not significant. 

The same test procedure was applied to flows and journey time and delays at other 

sites to assess the variability between different days of weeks. The results are 

summarised in table 4.9. 

Table 4.9 Link Flows (07:00-10:0) - Analysis of variance (ANOVA) results 

Site Source of 

Variation 

F-calculated F-tabulated Significantly 

Different 

N020A Days of Week 0.50 2.55 NO 

N019D Days of Week 0.85 2.55 NO 

NOISE Days of Week 0.24 2.55 NO 

N017C Days of Week 0.50 2.54 NO 

N016D Days of Week 0.55 2.54 NO 

N073A Days of Week 0.39 2.54 NO 

N071A Days of Week 1.63 2.54 NO 

N072C Days of Week 0.12 2.54 NO 

NOlOE Days of Week 0.80 2.55 NO 

N071D Days of Week 0.91 2.54 NO 

Route 1 Days of Week 0.27 2.54 NO 
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Table 4.10 Region Flows (07:00-10:00) - Analysis of variance (ANOVA) results 

Site Source of F-calculated F-tabulated Significantly 

Variation Different 

Region A Days of Week 0.39 2.53 NO 

Region B Days of Week 0.64 2.53 NO 

Region C Days of Week 0.79 2.53 NO 

Region E Days of Week 0.24 2.53 NO 

Region L Days of Week 1.16 2.53 NO 

Region P Days of Week 0.60 2.53 NO 

Region R Days of Week 1.01 2.54 NO 

Region S Days of Week 1.56 2.54 NO 

Region T Days of Week 0.08 2.54 NO 

Region U Days of Week 1.46 2.53 NO 

Table 4.11 Link Journey Times (07:00-10:00) - Analysis of variance (ANOVA) results 

Site Source of F-calculated F-tabulated Significantly 

Variation Different 

N020A Days of Week 0.84 2.55 NO 

N019D Days of Week 0.53 2.55 NO 

N018E Days of Week 0.49 2.55 NO 

N017C Days of Week 1.44 2.54 NO 

N016D Days of Week 0.99 2.54 NO 

N073A Days of Week 0.54 2.54 NO 

N071A Days of Week 1.38 2.54 NO 

N072C Days of Week 0.27 2.54 NO 

NOlOE Days of Week 0.06 2.55 NO 

N071D Days of Week 0.71 2.54 NO 

Routel Days of Week 0.75 2.54 NO 
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Table 4.12 Region Delays (07:00-10:00) - Analysis of variance (ANOVA) results) 

Site Source of 

Variation 

F-calculated F-tabulated Significantly 

Different 

Region A Days of Week 1.22 2.53 NO 

Region B Days of Week 0.20 2.53 NO 

Region C Days of Week 0.38 2.53 NO 

Region E Days of Week 0.87 2.53 NO 

Region L Days of Week 1.65 2.53 NO 

Region P Days of Week 1.27 2.53 NO 

Region R Days of Week 0.27 2.54 NO 

Region S Days of Week 0.35 2.54 NO 

Region T Days of Week 1.34 2.54 NO 

Region U Days of Week 0.75 2.53 NO 

The results showed that between-day differences in mean flows, journey time and 

delays were never significant. These results are clearly site dependent and affected 

by the sampled data available, thus if between-day variability is significant, separate 

measurements and predictions may be required for each day of week. However, from 

the results shown in tables above, it is clear that for this particular data set, data 

would be grouped together for all working days of the week and there is no need of 

profiles for separate day of the week, this also has the advantage that journey time 

profiles from which the predictions may be made, have less uncertainty (i.e tighter 

confidence limits) with increasing sample size. 

4.2.4 Variability By Month 

This 'seasonal' variability may be related to environmental changes, changes in work 

practices (e.g. vacation periods) and so on. Individual monthly profiles from Jan-July 

in the following table. 
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Table 4.13 Variability by Month 

Site Month SS 

Flow Journey Time 

Site Month SS 
Mean SD CV Mean SD CV 

Jan 7 993.92 28.06 2.8 39.64 6.49 16.4 

Feb 14 976.23 56.05 5.7 35.93 8.29 23.1 

N018E Mar 4 1008.02 33.18 3.3 31.33 0.66 2.1 

Apr 6 998.89 24.67 2.5 39.83 9.65 24.2 

May 11 993.08 58.92 5.9 48.47 14.40 29.7 

Jun 12 933.43 23.73 2.5 54.28 4.52 8.3 

Jul 3 971.68 27.90 2.9 44.85 12.67 28.3 

Jan 9 1120.44 69.82 6.2 31.49 1.41 4.5 

Feb 14 1043.77 102.44 9.8 32.74 1.98 6.0 

Mar 4 1111.73 58.21 5.2 32.62 0.39 1.2 

N019D Apr 6 1098.71 27.90 2.5 32.44 2.14 6.6 

May 11 1056.82 111.03 10.5 36.08 4.26 11.8 

Jun 11 1054.59 48.38 4.6 31.10 1.43 4.6 

Jul 3 1048.52 14.06 1.3 33.16 2.05 6.2 

Jan 9 6622.37 212.98 3.2 234.25 9.56 4.08 

Feb 16 6521.26 341.87 5.2 228.25 11.66 5.11 

Route 1 Mar 4 6742.50 196.13 2.9 221.54 3.70 1.67 

Apr 6 6849.08 173.16 2.5 230.25 21.28 9.24 

May 11 6823.96 538.21 7.9 253.21 22.16 8.75 

Jun 12 6596.08 147.45 2.2 251.20 9.41 3.74 

Jul 3 6636.92 100.95 1.5 242.12 15.52 6.41 

Monthly variability was assessed by applying the ANOVA (One-Way Classification, 

described in section 4.3.1) to flows and journey time between 07:00-10:00. 

71 



Table 4.14 Link N018E - Average daily flows (07:00-10:00) by month 

Jan Feb Mar Apr May Jun Jul 

970.00 976.81 1049.56 1041.81 1035.56 932.56 944.42 

984.28 904.06 1008.36 980.08 1028.36 929.28 1000.19 

1016.00 980.25 1005.78 994.97 1046.89 923.83 970.44 

1032.67 912.31 968.36 1012.33 1016.09 986.53 

975.31 1001.61 975.56 1015.00 916.86 

1018.64 1028.44 988.56 1071.97 891.89 

960.56 908.97 898.67 926.11 

1032.50 954.94 915.47 

979.44 984.53 953.93 

867.11 983.69 930.61 

1035.33 888.14 940.31 

1017.61 953.75 

1032.39 

990.39 

Table 4.15 Link N018E Monthly Flows - Analysis of variance (ANOVA) 

Source of Degrees of Sum of Squares Mean Squares F-ratio 

Variation freedom 

Between Months 6 34444.90 5740.82 3.04 

Error 50 94390.95 1887.82 

Total 56 128835.85 

Analysis of variance test applied on the above table at 5 % level of significance show 

that the difference in mean level of flows at link N018E between different months 

is significant. 

72 



Table 4.16 Link N018E - Average daily Journey Time (07:00-10:00) by month 

Jan Feb Mar Apr May Jun Jul 

38.52 32.11 32.24 33.47 66.08 55.45 55.95 

42.34 34.20 30.70 30.70 32.70 55.67 31.04 

46.46 31.13 31.30 43.15 68.65 49.57 47.56 

41.76 40.22 31.07 54.53 47.35 64.39 

31.04 37.64 31.12 63.24 55.17 

31.03 31.10 46.04 34.04 49.09 

46.34 30.72 32.21 49.84 

31.88 50.15 53.77 

31.25 60.34 60.12 

33.16 32.08 52.03 

32.30 46.39 51.17 

36.51 55.06 

62.72 

38.13 

Table 4.17 Link N018E Monthly Journey Times- Analysis of Variance (ANOVA) 

Source of Degrees of Sum of Squares Mean Squares F-ratio 

Variation freedom 

Between Months 6 3246.41 541.07 6.39 

Error 50 4234.49 84.69 

Total 56 7480.90 

Analysis of variance test applied on the above table at 5% level of significance 

showed that the mean level of journey time at link N018E between different months 

was significantly different. The same test procedure was applied to flows and journey 

time at other sites to assess the variability between different months. The results are 

summarised in the following table. 
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4.3 Discussion 

Among the parameters measured by SCOOT were traffic flow (veh/hr) and delay 

(veh hrs/hr). From flow (veh/hr) and delay (veh hr/hr); journey time (sec/veh) were 

calculated. The data set includes links with different characteristics and different 

patterns of variability of flow, delay and journey time. 

Analysis of the data suggests that the variability in traffic parameters caused by 

traffic signal cycles will not be possible to account for. The aggregation periods for 

forecasting should include several complete cycles (for example five minutes). 

Analysis also show that there is significant difference in mean level of parameters 

between morning and evening peak. So data from both peaks should be grouped 

separately. 

To determine whether the day of the week made any difference to the traffic flow 

and journey time, analysis of variance test applied to the data of all sites. In the 

majority of the cases, it was found that when any two of the five days were 

compared, the difference was not significant. In such cases the data for different days 

of the week are grouped together to form a single time series. 

Monthly variability is site dependent. Where it is significant, it should be reflected 

in the journey time patterns from which predictions are to be made. This will require 

updating of the forecasting model's parameters, however if decrease/increase in the 

journey time between different months is gradual then there may not be the need of 

separate monthly profiles as the change will be covered by updating the historical 

profiles. 
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CHAPTER 5 

DEVELOPMENT AND APPLICATION OF JOURNEY 

TIME FORECASTING MODELS - (Normal Conditions) 

The objective of this chapter is the development and application of journey time 

forecasting models on link-by-link basis. A number of forecasting methods were 

discussed in chapter 2. Some of these methods particularly Holt-Winter and Kalman 

Filtering have been applied earlier by different organisations (University of 

Southampton (1987), Richards A (1991), Whittaker J (1991), Drive Project 

deliverable 10; 1990) for the prediction of traffic parameters. In this chapter, two 

time-series methods were used to develop journey time forecasting models. The 

developed models were tested on two links (N018E, N019D) and a route (Route 1) 

in Southampton network. Links NOISE and N019D, both are signalised links with 

relatively more congestion than other links in the network. Route 1 consists of 9 links 

with the traffic flow towards the city centre and usually a busy route particularly 

during the peak period. 

5.1 Selection of Forecasting Methods 

The journey time data in this study is available as a series of observations collected 

at regular time intervals (5-minutes). A suitable approach for analysis of this type of 

data is the use of time series methods. These methods rely upon an underlying 

period-to-period relationship in the data. Thus the observation at the current time 

period is related to a previous observation. Another advantage of time-series methods 

is their ability to forecast the parameter of interest directly. Journey Time data 

analyzed in chapter 4, revealed periodic behaviour in it, during the three hour period 
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(0700-1000). Journey Times steadily increase to a peak and then steadily decrease 

back to normal. This periodic behaviour in the data suggests the use of seasonal 

forecasting methods. With these findings as a background, two standard time series 

forecasting methods, Box-Jenkins ARIMA modelling (Box and Jenkins, 1976) and 

Horizontal-Seasonal modelling (Thomopoulos, 1980) were selected to develop 

journey time forecasting models on link-by-link basis. 

5.2 Box-Jenkins ARIMA Modelling 

5.2.1 Basic assumptions and model 

In this section, journey time forecasting models are developed using the Box-Jenkins 

technique, with the following basic assumptions. 

• Journey times on links in an urban network have similar profiles in following 

days of the same class (week days, Saturdays ...). 

Daily historical journey time are assumed available for previous days for each 

of the 5-minute time period. 

Box and Jenkins (Box G et al, 1976) proposed a family of Algebraic models called 

ARIMA models (Auto Regressive Integrated Moving Average) from which one is 

selected that seems appropriate for forecasting a given data series. 

The term AutoRegressive means that JT„ the current value of the journey time, is 

"regressed" or expressed as a function of JT,.,, JT,.2, , JT,.p ,which are the 

previous values of the journey times, and to an unknown noise a, ,in a linear manner 

by the relation; 
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- 0iJT,., + <̂ 2JT,.2 + 1- <̂ pJT,.p + at (5.1) 

The term Moving Average means that the current value of the journey time can be 

expressed as a finite linear aggregate of previous a,'s (random shocks) by the 

relation: 

JTt = a, - 0ja,., - 0231-2 q̂̂ t-q (5.2) 

The parameters of Autoregressive Integrated Moving Average models are: 

ARIMA (p,d,q) (P,D,Q). (5.3) 

where 

p = Order of Non-Seasonal Autoregressive operator 

d = Order of Non-Seasonal Differencing 

q = Order of Non-Seasonal Moving-Average operator 

P = Order of Seasonal Autoregressive operator 

D = Order of Seasonal Differencing 

Q = Order of Seasonal Moving-Average operator 

s = Length of Seasonality 

The values of d and D in ARIMA (p,d,q)(P,D,Q)s determines the degree of non-

seasonal and seasonal differencing. Differencing is required when a series is non-

stationary, i,e: a series which has a mean changing over time. The values of p,q and 

P,Q in ARIMA (p,d,q) (P,Q,D)^ determines that how far into the past is necessary 

to go to establish a relation between different values of the time series. 

Season here refers to a period after which the pattern of the series repeats itself, e.g. 

journey time is expected to be higher during peak hours on every day, where day 
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here is one season and on different days the patterns of journey time are more or less 

the same. 

Consider an example where journey time on different days at different time periods 

are denoted by : 

Day, Dayz Days Day4 

JT„ JTn JT,3 JT,4 

h JT21 JT% JT23 JT24 

3̂ JT31 JT32 JT33 JT34 

tn JTg2 JT„3 JT^ 

Here, JT34 is a function of JT24, JT^ and JT33, JT32, JT3, 

The Box-Jenkins technique uses the previous days journey time for the estimates of 

the model's parameters. The starting point is the following stochastic dynamic model. 

<Ap(B) $p(B') V vD JT = e , ( B ) GqCBO a, (5.4) 

where 

</)p(B) = (1-</>iB-</>2B̂ - <̂ pBP) 

is the Non-Seasonal Autoregressive operator of order p. 

f»p(BO = #»p,B^ 

is the Seasonal Autoregressive operator of order P. 

0q(B) = (l-O.B-OzB" ^qB") 
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is the Non-Seasonal Moving Average operator of order q. 

— (1-856^-82:8^^- -6QS* 

is the Seasonal Moving Average operator of order Q, 

V = ( l -B / 

is the non-seasonal differencing operator of order d 

V D 

is the seasonal differencing operator of order D 

s = Length of Seasonality. 

B = Backshift operator so that B ĴT^ = JT,.„ 

at = the random error 

ARIMA models are fitted to a particular data set by a three stage iterative procedure; 

Identification, Estimation and Diagnostic checking. The schematic representation of 

these three stages is shown in figure 5.1. 

The model's building starts with the analysis of the historical data. Suppose journey 

time data for every 5-minute time interval between 0700-1000 for six days is 

available. The first step is to plot the data, if the data is non-stationary (i.e. the mean 

changing over time) then the non-stationarity of the data is removed by taking 

seasonal and/or non-seasonal differences, the order of non-seasonal difference is 

denoted b y ' d ' and of seasonal difference is denoted by 'D'. Once the stationarity is 

achieved by taking differences, the next step is identify a parsimonious (with the 

smallest number of estimated parameters needed to fit adequately the patterns in the 

available data). This can be done by looking at two graphs derived from the available 

data. These graphs are called an estimated autocorrelation function (ACF) and an 

estimated partial autocorrelation function (PACF). 
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Figure 5.0 Flow chart of ARIMA modelling process 

Is the model 
satisfactory NO 

YES 

End 

Forecasts 

Stage 3 : Diagnostic Checking 

Statistical tests for 
model adequacy 

Selection of one or more ARIMA 
models that suit the given data 

Stage 1 ; Identification 

Estimation of parameters for the 
model(s) selected at step 1 

Stage 2 ; Estimation 
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An estimated autocorrelation function (ACF) shows the correlation between ordered 

pairs (JT,, separated by various time spans (k = 1,2,3, )• Each estimated 

autocorrelation coefficient r̂  is an estimate of the corresponding parameter p^. An 

estimated partial autocorrelation function (pacf) shows the correlation between 

ordered pairs (JT„ separated by various time spans (k = 1,2,3, — ) with the 

effects of intervening observations (JTt+i , JT,+2, , JT,+k.i) accounted for. The 

ordered pairs are drawn from a single time series. We choose a model whose 

associated theoretical ACF and PACF look like the estimated ACF and PACF 

calculated from the data. 

At the estimation stage, estimates of the parameters for the ARIMA model tentatively 

chosen at the identification stage. This is usually done by using a computer program, 

for this study, STATGRAPHICS software package was used to obtain the estimates 

of the model's parameters. The estimates of the model parameters should satisfy the 

stationarity and invertibility conditions. The stationarity condition for autoregressive 

models is checked by ensuring; 

10,1 < 1 (for first order autoregressive AR(1) models) 

and for second order autoregressive AR(2) models it should be: 

< 1, |<̂ 2 + <̂ ll < 1 , |</»2 - < l̂| < 1 

Similarly the invertibility condition for moving average models requires that 

|0, I < 1 (for first order moving average MA(1) models) 

and for second order moving average models it should be: 

|02 I < 1 , |02 + 0, I < 1 , I < 1 

At diagnostic-checking stage, tests are performed to see if the estimated model is 

statistically adequate. If it is not satisfactory we return to the identification stage to 

tentatively select another model. In particular, we test the random shocks (forecasting 

residuals, that can not be predicted within the ARIMA model). Analysis of 

autocorrelations of the estimated residuals is an appropriate means of doing this. 
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Recognizable patterns in the ACF of the a,'s could point to appropriate modifications 

in the model. 

Box-Jenkins also describe a lack of fit test which examines a group of 

autocorrelations (say the first 20) as a whole, as opposed to considering the 

individual autocorrelations. If the fitted model is appropriate, then the first k 

autocorrelations, yielding a value Q is approximately distributed as x̂ (k.p.q), where Q 

is computed as: 

Q = (n-d)Sr^i 

n is number of observations in the original series 

d is the degree of differencing 

rj is the sample autocorrelation of residuals separated by lag t 

If the value of Q is large relative to then the model is inappropriate. If this 

assumption is not satisfied there is an autocorrelation pattern in the original series 

that has not been explained by the ARIMA model. Our goal however is to build a 

model that fully explains any autocorrelation in the original series. 

Once an appropriate ARIMA model is selected, point forecasts can be calculated by 

writing the model in algebraic equation form. 

5.2.2 Examples of Algebraic Forms of ARIMA Models 

Two examples are given, how to develop the algebraic form of the ARIMA (p,q,d) 

(P,Q,D) models. 

5.2.2.1 ARIMA (0,1,1)(0,1,1) 

The general form of the model is 
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«Ap(B) $p(B3 v JT = e,(B) GQCBO a, 

Substituting p=0, d = l , q = l and P=0, D = l , Q=1 in the above equation, we get 

v' v / JT = 6,(B) e,(B») a, 

(1-B) (1-BO JT, = (1-0B) (l-e,B3 a. 

(JT. - JT,,) (1-BO = (a, - 0a,,) ( l - G f ) 

IT, - JT,., - JT,., + JT,.̂ , = a, - fla,., - 8 * . + 

JT, = JT,., + JT,.. - JT,.,., - Sa,., - Ga-. + «e.a,-i (5.5) 

where 

JT, = Predicted journey time for time interval t. 

JT,, = Observed (or predicted) journey time at time interval t-1. 

JT,s = Observed journey time at time interval t on previous day. 

and so on. 

5.2.2.2 ARIMA (1,0,0)(2,1,0) 

The general form of the model is 

«,(B) $p(B') V V ° JT, = e,(B) eq(B') a. 

Substituting p = l , d=0, q=0 and P=2, D = l , Q=0 in the above equation, we get 

B) (1-B') JT, = a, 
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(1-B3 (JT, - = a. 

(JT, - B»JT, - 0,JT,., + «^.B'JT..,) = a, 

(JT. - JT,, - <^,JT,, + ^,JT,^,) = a. 

JT, - $ f ' J T , -$2sB''JT, - JT,, + $.B»JT„ + #>2,B''JT„ - <^,JT„ + ^ , $ f ' J T „ 

+ ,^,$2sB''JT„ + </..JT„., - ^.$,B»JT,.., - (^,#.2,B'»JT„., = a, 

j t . = $ / r , . + + JT„ - $;T,2, - $2jr ,3, + <^,JT„ - <^,^>JT,,, -

^1^2SJT,2S., - ^iJT„.j + </>î 'sJT,2S.I + </»Î 2JT,3S., 

J t , = ^,JT„ + (1+ $JJT, . + ($2. - $JJT,^ - $2jr ,3, - (A,($, + 1)JT„., -

<Al(̂ 2s -^s)JT,2S.I + <A,#2S JT,3s., 

(5.6) 

where 

JTt = Predicted journey time for time interval t. 

JT„ = Observed (or predicted) journey time at time interval t-1. 

JT,; = Observed journey time at time interval t on previous day. 

and so on. 

5.2.3 Implementation on Computer For Real Time Application 

The Box-Jenkins modelling procedure starts by analysing the historical data. This 

analysis is carried out off-line in order to find a suitable model. Several statistical 

software packages are available which provides procedures for Box-Jenkins 

modelling process. For this study, the STATGRAPHICS (Statistical Graphics 

Corporation, 1991) software package was used which provides functions for model 

identification and estimation of the model's parameters (this uses a basic Marquardt 
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nonlinear least squares algorithm). Once a model was selected and its parameters 

estimated, forecasts were generated by using the algebraic form of the selected model 

(examples of algebraic forms of models are given in section 5.2.2). Box-Jenkins 

modelling does not provide any procedure which automatically update the estimates 

of the model parameters, however for forecasts of more than one-period ahead, one 

can use the last available observation instead of its forecast. For example in equation 

(5.4) JT,., is not available when making several steps ahead forecasts, but on a 

current day at any time interval t, the value of observed journey time at time (t-1) 

would be available, this observed value can be substituted in place of forecasted 

value to update the forecasts. To achieve this purpose a FORTRAN program 

(Appendix C.l) was written which updates the forecasts as soon as new journey time 

value is observed. The program also analyze forecast-errors by calculating forecast-

error statistics (i,e ME, MAE, MAPE as described in section 5.4.3). 
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5.3 Horizontal-Seasonal Modelling 

Most of the traffic parameters (flow, journey time etc) show periodic behaviour 

within a day, i,e there are higher flows and journey time during the peak period, this 

periodic behaviour of the parameters can be explained by so called seasonal models, 

here season refers to the period after which the pattern of the data repeats itself. 

In these models smoothing of the past demand entries is used and higher weights are 

assigned to the more current entries. The feature allows the forecasts to react quicker 

to more current shifts in the level or seasonal influences of the demands. The model 

applies when the expected journey time at time t is 

JT, = np̂  (5.7) 

where 

represents the average journey time per day and 

Pt represents the seasonal ratio at time t. 

The seasonal ratio for time period t is found from the relation between JT, and fi. 

The seasonal ratios are always greater or equal to zero and over a day their average 

value is 1. When p,= l , the expected journey time at time period t is the same as the 

average daily journey time; when pt < 1, then JT, is less than fi and when p, > 1, 

then JT, is greater than fji. 

Two phases are necessary in order to implement the model. The first is concerned 

with initializing the system and the second is with updating the forecasts. 

In the initializing phase the past journey time entries (JTj, JTj, , JT^) are used 

to find estimates of fx and p,. The estimate of fi as of time T is Sj and estimates of 

the seasonal ratios Pt+j are r^+i for i = 1,2,3, . 
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With these estimates available, the initializing phase is complete. From this time 

period on, the estimates above are updated as each new journey time entry becomes 

available, the forecast for ith future time period made at time T is 

JT(i) 

For journey time forecasts, the initializing phase of the modelling process is carried 

out by the following steps. 

1: Find the average daily journey time for each of the m days data 

JT(i) = (JTji+JTijH f-JTjJ/n 

JT(2) = (JTji+JTjzH hJTjJ/n 

- (JT„,+JT^H hJT^J/n 

Where 

m = Number of days. 

n = Number of time periods per day. 

2: Calculate the seasonal ratios for each day on time period t by the relation 

JT,/JT(,) for t = 11,12, , ln 

JT(/JT(2) for t = 21,22, — -,2n 

ft = 

JT,/JT(3) for t = ml,m2, ,mn 
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where 

m = 1 . . . Number of days. 

n = 1 . . . Number of time periods. 

3: Calculate the average seasonal ratio for each of the n time periods 

= ( fn+f2 ,+ - - - +f„,)/m 

= (fl2+f22+ - - - + W / m 

= (fio + f 2 n + - - - + f „ J /m 

4: Let â  = 

Now, starting with t = l and estimating until t=mn, apply the following recursive 

relations. 

a, = a(JT,/fJ + (l-Qt)aj.i (5.8) 

î+n = 7(JT,/^+(1-7)^ (5.9) 

Here at time t, the ratio (JT/rJ represents the current seasonally adjusted journey 

time. This is smoothed with the corresponding prior average â ., to yield an updated 

average â . The ratio (JT/aJ gives the seasonal ratio for time period t. This is 

smoothed with to generate the new seasonal ratio f,+„. The jump of n time periods 

is necessary because there are n time periods per day. For example when t 

corresponds to a 1st time period of day one, t+n is associated with the 1st time 

period of following day. 

a and y are smoothing constants, their values should be between 0 and 1, higher 

values of a and y gives more weight to the current data. 
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5: The most current n seasonal ratios 

T̂+l» T̂+2» > T̂+n 

are normalized so that their average is 1. This is performed by first finding the 

average 

r = (̂ T+l + ^T+2 + ?T+n)/n 

and then adjusting the ratios by 

r̂ +i = T̂+i / r fo r i = 1,2, ,n 

Having carried out these five steps, the initialization phase is complete. At this time 

the first set of forecasts can be generated. The forecast for the ith future time period 

is 

jf^Ci) = Mr+i (5.10) 

5.3.1 Updating 

As each new demand entry becomes available, an updating scheme is carried forward 

to obtain the current estimates of the mean journey time level and the seasonal ratios. 

Calling the current time period T, the new observation is JT^ and the updating 

relations are the following: 

% = a(JTT/rT) + (l-Q;)aT.i 

rj+n = TCJVM + CI-T)!*! 

As before,the seasonal ratios are normalized so that their average is 1. Three steps 

are required for this purpose. 
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1: r = (rT+,+rT+2+ - - -+rT+J/n 

2; r-p+i — / r for i= l , 2 , ,n 

3: fT+i = fT+i for i= l , 2 , . . .,n 

With updating of the estimates completed, the forecasts for the ith future time period 

is generated by 

JTT(i) = SyrT+i 

5.3.2 Implementation on the Computer for Real Time Application 

Horizontal-Seasonal model (described above) is implemented on a computer by 

writing a FORTRAN program (Appendix C.2). The input for this program are: 

1 Number of days historical data. 

2 Number of time periods per day. 

3 File which contains historical data. 

The program calculates all the steps of Horizontal-Seasonal model (as described in 

section 5.3), forecasts are generated by using equation (5.10) and then updated by 

using the current day's observations. The program also analyze forecast-errors by 

calculating forecast-error statistics (i,e ME, MAE, MAPE as described in section 

5.4.3). 

93 



5.4 Journey Time Forecasting 

Journey Time parameter was selected as it is a suitable descriptor of congestion on 

a link basis and is relatively easily inteipreted. Also it is a key parameter (or 

component) in control systems such as traffic signals and dynamic route guidance 

(DRG). The development of journey time forecasting models required some pre-

modelling decisions, e.g. forecast aggregation level, forecast horizon, these 

requirements are discussed here and are incorporated in the modelling process. 

5.4.1 Aggregation Level of Forecast 

Different application of journey time forecasts would need different aggregation 

level. For signal control settings, the forecast aggregation level can be any fraction 

of a second to the signal cycle length. For route guidance and traffic information 

broadcasting, the forecast aggregation level could be from 1-minute to 15-minute. 

In reality for any application there can be many level of aggregation. For this study 

5-minute aggregation level is used. 

5.4.2 Forecast Horizon 

This is the length of time into future for which forecasts are required and depends 

upon the purpose for which the forecast is needed, e.g. for route guidance systems, 

the forecast horizon would be length of journey time between the points of advice 

to the destination. For traffic information broadcasting system the forecasts may be 

required for the whole of the peak period which may last fi-om 0700-1000. For this 

study, the forecast horizon was as much as three hours ahead at 5-min aggregation 

level. 
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5.4.3 Forecasts Accuracy 

The accuracy of forecasts is determined through forecast errors. The forecast error 

for lead time k at time t is defined as: 

e. = JT. - J t , ( k ) (5.11) 

where 

JT, is the observed journey time at time t 

jf;.;(k) is the k-period ahead forecast generated at time t-1. 

Various checks based on these errors are then performed. These comparison are 

based on the following statistics. 

1 : Mean Error 

ME = Ee,/n (t= 1 ..n) (5.12) 

2: Mean Percent Error 

MPE = (100/n)*2:(e/JTJ (t = 1 .. n) (5.13) 

3: Mean Square Error 

MSE = Ee,Vn (t = 1 .. n) (5.14) 

4: Mean Absolute Error 

MAE = EjeJ /n (t = 1 .. n) (5.15) 

5: Mean Absolute percent Error 

MAPE = (100/n)*E|e./JT,| (t = 1 .. n) (5.16) 

The first two statistics measure forecast bias and should be close to zero. The other 

three measure forecast accuracy; methods that has small values for these statistics 

consider to be better than other. 
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5.4.4 Journey Time Data 

The journey time data used in this study is derived from the output of SCOOT (Hunt 

et al, 1981), a fully-adaptive urban traffic control system. In the course of its signal 

optimisation SCOOT measures detector presence through time, which can be 

converted into traffic flow and calculates delay, from which link journey time can 

be calculated. Carden et al (1989) in their report "SCOOT model accuracy" have 

shown that journey time estimates from SCOOT are accurate. Mean journey time for 

a vehicle, during a five minute period was estimated as follows: 

Mean Delay per vehicle (sec) = Mean Total Delay (Ipu) * 3600/Mean Flow(lpu/hour) 

Journey Time (sec) = Cruise Time (sec) + Mean Delay per vehicle (sec) 

It should be noted that in the above formula for Mean Delay per vehicle, the units 

of Ipu's cancel out to give Delay in seconds. The cruise time (i.e. undelayed journey 

time) used for each link were the constant values within the SCOOT model which 

were obtained by observations when the system was calibrated. 

For each day during morning peak, the data was collected between 07:(X) - 10:(X) at 

5-min aggregation level. To determine whether the day of the week made any 

difference to the links journey time. Analysis of Variance (ANOVA) test applied on 

the data of all the sites (section 4), it was found that links journey time do not differ 

significantiy on different days of the week (Mon-Fri). So the data was grouped 

together (Mon-Fri). Journey time forecasting models are developed for three sites 

(Link N019D, Link N018E and Routel). 
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Figure 5.1 Flow-Chart of the Forecasting Process 
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5.5 Application of Box-Jenkins Modelling 

5.5.1 Application of Box-Jenkins Modelling to Link N019D 

Link N019D is a signalised link in Southampton SCOOT network (Appendix 0.1) 

with cruise time of 21 sees. The analysis of journey time data (section 4.3) showed 

that the mean level of journey time between days of week is not significantly 

different on this link, so a single model for all working days was used to predict 

journey times on the link. 

In the example given here, eight days of historical data between 07:00-10:00 at 5-

min aggregation level was used to generate journey time forecasts for 9th day. The 

eight days observed journey times are plotted in figure 5.2. 

The first step in ARIMA modelling is to check whether the data is stationary or not. 

From figure 5.2, it is clear that the data is non-stationary (i.e. the mean is not 

constant over time). To make the data stationary, first order non-seasonal (d = 1) and 

first order seasonal differences (D = 1) were obtained. The differenced data is plotted 

in figure 5.3, which shows the data is stationary after differencing. 

The second step is to find the appropriate values of p,q and P,Q of ARIMA 

(p,d,q)(P,D,Q). For this, autocorrelation structure is used. The autocorrelations of 

differenced data is plotted in figure 5.4. The strong autocorrelation values at lag 1 

and 2 suggest the inclusion of non-seasonal moving average operators of order 1 and 

2 (q=2). Similarly the strong autocorrelation at lag 36 suggests the inclusion of 

seasonal moving average operator of order 1 (Q=1). The selected model is ARIMA 

(0,1,2)(0,1,1), the algebraic form of the model is: 

j f t = JT,., + JT,.s - JTi.s., + a» - - ©ŝ t-s + 

(5.17) 
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The estimates of the parameters 0,, 62 and 6 , were obtained from eight days of 

historical data using STATGRAPHICS software package. These estimates of the 

parameters with their estimated standard error and x^-test on the first 36 residual 

autocorrelations are given in table 5.1. An adequate model satisfies the assumption 

that random shocks are independent. This can be checked by analysing the residual 

autocorrelations. The residual autocorrelation shown in figure 5.5, exhibit no 

systematic pattern and are quite small, which shows that the selected model is 

adequate. The adequacy of the model is also confirmed by the x^-test which has 

value 24.46, which is less than the table value of at 5% level of significance. 

The forecasting equation can be written by substituting the estimates of the 

parameters in equation (5.17), which is: 

J t = JT,., + JT.., - JT,.,., + a, - 0.6391 a,., - 0.3069 a,.; - 0.6849 a.., 

+0.4377 a..,., + 0.2102 a..,.̂  (5.18) 

where 

JTt = Predicted journey time for time interval t. 

JT,., = Observed (or predicted)journey time at time interval t-1. 

JT,.s = Observed journey time at time interval t on previous day. 

and so on. 

Using equation (5.18), forecasts at link N019D were generated for all 5-minute time 

intervals between 07:00-10:00 on 9th day (20-2-91). The observed and forecasted 

journey times are plotted in figure 5.6. These forecasts are generated at 7:(X) for all 

the 5-minute time periods until 10:00 and are referred to as 36-steps ahead (not-

updated) forecasts. However, for real time application, on-street information may 

well be available for every 5-minute time interval, this latest information could be 

used to update the forecasts. 

Box-Jenkins modelling does not provide any procedure which automatically updates 
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the estimates of the model parameters. However for forecasts of more than one-

period ahead, one can use the last available observation instead of its forecast. For 

example in equation (5.18) JT,.j was not available when making 36-steps ahead 

forecasts, but on a current day at any time interval t, the value of observed journey 

time at time (t-1) would be available and this (^served value can be substituted in 

place of forecast value to update the forecasts. 

To update the forecasts for every 5-minute time interval a FORTRAN program 

(Appendix C.l) was written which updates the forecasts as soon as a new journey 

time value is observed. One step ahead updated forecasts at link N019D which are 

obtained by using this program are plotted in figure 5.7. 

Models were also developed based on 6, 7, 9, and 10 days of historical data. The 

estimates of parameters are given in table 5.1 with their estimated white noise 

standard deviation and x^-test values on the first 36 residuals. The adequacy of 

models is confirmed by the x^-test on first 36 residual autocorrelations, which is less 

than the table values for all the models. 

Forecasting accuracy was evaluated through analysis of forecast-errors. For 9th day 

not-updated forecasts the mean absolute percentage error is 8.97, this is reduced to 

8.89 for updated forecasts. Table 5.2 shows forecast-errors for all days when 

forecasts were generated. It can be seen from this table that in most cases updated 

forecasts are better than 36-step ahead forecasts. 
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Figure 5.2 Link N019D : Eight days observed journey times (7:0(^10:00) 
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Figure 5.4 Link N019D : Estimated autocorrelations of differenced data 
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Figure 5.5 Link N019D : Estimated residual autocorrelations 
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Figure 5.6 Link N019D : 36-steps ahead forecasts 
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Figure 5.7 Link N019D : 1-step ahead updated forecasts 
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Table 5.1 Link N019D : ARIMA (0,1,2)(0,1,1) parameters estimates 

No. 
of 
day's 
Histo 
rical 
data 

Date of 
Fore-
-casts 

Parameter's Estimates 

e, e, e . 

Estimate 
d white 
noise SD 

X^-test 
on 1st 
36 
residual 

6 18-2-91 0.63878 0.30502 0.62787 10.98 26.46 

7 19-2-91 0.64005 0.30016 0.67881 10.32 31.09 

8 20-2-91 0.63909 0.30687 0.68488 9.72 35.52 

9 21-2-91 0.64117 0.30931 0.68593 9.19 39.31 

10 28-2-91 0.65329 0.29221 0.69010 8.92 40.63 

Table 5.2 Link N019D : Box-Jenkins Forecast-Errors statistics 

No. of 
day's 
Histori 
-cal 
data 

Date of 
Fore-
-casts 

Forecasts Forecast-Error Statistics 

MAE MSE MAPE 

6 18-2-91 Not-Updated 
Updated 

5.0 48.8 15.5 
4.7 44.1 14.7 

7 19-2-91 Not-Updated 
Updated 

4.2 28.8 13.1 
3.8 26.0 12.1 

8 20-2-91 Not-Updated 
Updated 

2.8 15.3 9.0 
2.8 14.8 8.9 

9 21-2-91 Not-Updated 
Updated 

3.6 40.3 9.3 
3.9 44.9 10.6 

10 28-2-91 Not-Updated 
Updated 

3.2 16.2 10.0 
3.2 16.5 10.2 
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5.5.2 Application of Box-Jenkins Modelling to Link N018E 

Link N018E is also a signalised link with cruise time of 24 sees. The analysis of 

journey time data (section 4.3) showed that the mean level of journey time between 

days of week is not significantly different on this link, so a single model for all 

working days can be used to predict journey times on the link. 

In the example given here. Journey time data for six consecutive days between 

07:00-10:00 at 5-min aggregation level is plotted in figure 5.8. This figure shows 

that journey times are within a day have peaks and troughs; the peak is usually 

during the middle, with the pattern of journey times more or less same between days. 

The modelling procedure started with finding the appropriate values of p,d,q and 

P J D J Q in ARIMA (p,d,q)(P,D,Q). From figure 5.8, it is clear that data is non 

stationary and has strong seasonality. To remove this seasonality and to make the 

data stationary, first order non-seasonal (d=l ) and first order seasonal differences 

(D = 1) were obtained. The differenced data is plotted in figure 5.9, which shows that 

the data is stationary after differencing. 

The autocorrelation of differenced data is plotted in figure 5.10. The strong 

autocorrelation values at lag 1 and 2 suggest the inclusion of non-seasonal moving 

average operators of order 1 and 2. Similarly the strong autocorrelations at lags 36 

suggests the inclusion of seasonal moving average operator of order 1. The selected 

model is ARIMA (0,1,2)(0,1,1), the algebraic form of the model is: 

JTt — JT,.i 4- JTi.j - JT,.s., + â  - 0ia,.i - 2̂&t 2 " ©ŝ t-s + + ^2 ŝKs-2 

(5.19) 

The estimates of the parameters $2 and 6 , were obtained from six days historical 

data using STATGRAPHICS software package. These estimates with their estimated 

standard error and x^-test on first 36 residual autocorrelations are given in table 5.3. 
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By substituting the estimates of these parameters in equation (5.19), the prediction 

equation can be written as: 

J t = JT.., + JT,., - JT,.,., + â  - 0.5934 a,., - 0.3868 a,.̂  - 0.5110 a,., + 

0.3032 a..,., + 0.1976 

(5.20) 

where 

JT, = Predicted journey time for time interval t. 

JT,.i = Observed (or predicted)joumey time at time interval t-1. 

JT,.s = Observed journey time at time interval t on previous day. 

and so on. 

Using equation (5.20) forecasts at link NOISE were generated for all 5-minute time 

intervals between 07:00-10:(X) on 7th day (14-6-91). The observed and forecasted 

journey times are plotted in figure 5.12. These forecasts were generated at 7:00 for 

all time intervals and are referred to as not-updated forecasts. Forecasts were updated 

(as at link N019D) using UPDATE program. One step ahead updated forecasts are 

plotted in figure 5.13. From the plots of observed vs predicted journey times that 

forecasts follow the pattern of present day data. Forecasts accuracy is evaluated by 

making analysis of forecast-errors. For 7th day not-updated forecasts the mean 

absolute percentage error is 12.66, this is reduced to 12.16 for updated forecasts. 

Models were also developed based on 7, 8, 9 and 10 days of historical data, the 

estimates of parameters are given in table 5.3. Forecast-errors for these days are 

shown in table 5.4 which shows that on this link forecasts are quite good and further 

improvement in forecasts are achieved in all cases by updating the forecasts. 
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Figure 5.8 Link N018E : Six days observed journey times (7:00-10:00) 
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Figure 5.9 Link NOISE : Differenced data 
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Figure 5.10 Link N018E : Estimated Autocorrelations of differenced data 
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Figure 5.11 Link N018E : Estimated Residual Autocorrelations 
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Table 5.3 Link N018E : ARIMA (0,1,2)(0,1,1) parameters estimates 

No. 
of 
day's 
Histo 
rical 
data 

Date of 
Fore-
-casts 

Parameter's Estimates 

01 $2 Qg 

Estimated 
white 
noise SD 

X^-test 
on 1st 
36 
residual 

6 14-6-91 0.59336 0.38679 0.51096 10.93 14.64 

7 17-6-91 0.60167 0.38914 0.58169 10.47 18.35 

8 18-6-91 0.57447 0.40411 0.59952 10.49 17.01 

9 21-6-91 0.55087 0.39011 0.56479 11.22 25.10 

10 24-6-91 0.49637 0.36205 0.57830 11.13 29.83 

Table 5.4 Link N018E : Box-Jenkins Forecast-Errors statistics 

No. of 
day's 
Historic 
al data 

Date of 
Fore-
-casts 

Forecasts Forecast-Error Statistics 

MAE MSE MAPE 

6 14-6-91 Not-Updated 
Updated 

6.3 
6.2 

72.0 
68.3 

12.7 
12.2 

7 17-6-91 Not-Updated 
Updated 

8.1 
7.8 

146.6 
123.3 

12.4 
12.6 

8 18-6-91 Not-Updated 
Updated 

12.2 
12.7 

384.8 
376.2 

15.7 
17.1 

9 21-6-91 Not-Updated 
Updated 

12.9 
12.1 

268.2 
236.2 

28.1 
26.1 

10 24-6-91 Not-Updated 
Updated 

9.9 
9.0 

278.5 
208.5 

17.2 
16.6 
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Figure 5.12 Link N018E : BJ 36-step ahead forecasts 
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5.5.3 Application of Box-Jenkins Modelling to Routel 

Route 1 consist of 9 links (Appendix 0.1) with the total cruise time of 136 sees, 

journey time on these links are summed to obtain the journey time for whole route. 

The analysis of journey time data at Routel (section 4.3) showed that the mean level 

of journey time between days of week is not significant, so a single model for all 

working days can be used to predict journey times on Routel. 

Journey time data for six consecutive days between 07:00-10:00 at 5-min aggregation 

level is plotted in figure 5.14, which shows that data has strong seasonality. To 

remove this seasonality and to make the data stationary, first order seasonal 

differences (D = 1) and first order non-seasonal differences (d=1) were obtained. The 

autocorrelation of differenced data is plotted in figure 5.16. The strong 

autocorrelation values at lag 1 and at lag 2 suggest the inclusion of non-seasonal 

moving average operator of order 1 and 2 (q=2), also the strong autocorrelation at 

lags 36 suggest the inclusion of seasonal moving average operator of order 1 (Q=1). 

The selected model is ARIMA (0,1,2)(0,1,1), the algebraic form of the model is: 

JT, = JTn 4- JT,.s - JT,.s.i + at - 0,at., - 62̂ .̂2 -

(5.21) 

The estimates of the parameters 0,, $2 and 8 , were obtained from 6 days historical 

data. By substituting the estimates of these parameters in equation (5.21), the 

prediction equation can be written as: 

J t , = JT,., + JT, , - JT,.,., -f a, - 0.4451 a,., - 0.2499 a,.2 - 0.5340 a,., + 

0.2380 a,.,., + 0.1335 a,.,2 

(5.22) 
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where 

JTt = Predicted journey time for time interval t. 

JT,.i = Observed (or predicted)joumey time at time interval t-1. 

JTj.s = Observed journey time at time interval t on previous day. 

and so on. 

Using equation (5.22) forecasts at Route 1 were generated for all 5-minute time 

intervals between 07:(X)-10:(X) on 7th day (14-6-91), the observed and forecasted 

journey times are plotted in figure 5.18. Forecasts were also updated using UPDATE 

program. One step ahead updated forecasts are plotted in figure 5.19. Forecasts 

successfully follow the pattern of current days data. Forecasts accuracy were 

evaluated by making analysis of forecast-errors. For 7th day not-updated forecasts 

the mean absolute percentage error is 7.48, this is reduced to 5.89 for updated 

forecasts. 

Models were also developed based on 7, 8, 9 and 10 days of historical data. The 

estimates of parameters are given in table 5.5. Forecast-errors for these days are 

shown in table 6.6. In all cases forecasts are improved when updated. 
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Figure 5.14 Routel : Six days observed journey times (7:00-10:00) 
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Figure 5.15 Routel : Differenced data 
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Figure 5.16 Route 1 : Estimated autocorrelations of differenced data 
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Figure 5.17 Route 1 : Estimated Residual Autocorrelations 
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Table 5.5 Routel : ARIMA (0,1,2)(0,1,1) parameters estimates 

No. of 
day's 
Histori 
cal 
data 

Date of 
Fore-
-casts 

Parameter's Estimates 

$l 02 Gg 

Estimated 
white 
noise SD 

(T. 

X^-test 
on 1st 
36 
residual 

6 14-6-91 0.44510 0.24995 0.53403 24.93 29.99 

7 17-6-91 0.42941 0.26533 0.57771 23.86 33.27 

8 18-6-91 0.44365 0.27666 0.58649 22.96 37.62 

9 21-6-91 0.43858 0.27431 0.60691 22.97 37.08 

10 24-6-91 0.43007 0.28181 0.62076 22.64 35.09 

Table 5.6 Routel : Box-Jenkins Forecast-Errors statistics 

No. of 
day's 
Historic-
al data 

Date of 
Fore-
-casts 

Forecasts Forecast-Error Statistics 

MAE MSE MAPE 

6 14-6-91 Not-Updated 
Updated 

18.3 
14.6 

544.7 
339.7 

7.5 
5.9 

7 17-6-91 Not-Updated 
Update 

13.8 
13.9 

309.9 
282.7 

5.9 
5.8 

8 18-6-91 Not-Updated 
Updated 

21.7 
18.8 

1015.9 
714.9 

7.3 
6.4 

9 21-6-91 Not-Updated 
Updated 

17.2 
14.3 

540.4 
423.0 

7.1 
5.9 

10 24-6-91 Not-Updated 
Updated 

19.1 
17.0 

659.1 
564.5 

7.4 
6.6 
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Figure 5.18 Route 1 : 36-steps ahead forecasts 
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Figure 5.19 Routel : 1-step ahead updated forecasts 
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5.6 Application of Horizontal-Seasonal Modelling 

Horizontal-Seasonal model (discussed in section 5.2) is applied in this section to 

generate journey time forecasts on link N019D, N018E and on Route 1. A 

FORTRAN program (Appendix C.2) is written to implement the model. The 

smoothing constants a=0 .3 and 7=0.2 were used. The prediction equation is: 

JTy(i) = ajr-r+j (5.23) 

where 

Sj is estimate of (mean journey time per day) 

rj+i estimates of seasonal ratios, which are estimated from the historical data 

of the link or Route concerned. 

5.6.1 Application of Horizontal-Seasonal Modelling to Link N019D 

The initial estimate of /i which is calculated from eight days of historical data 

(plotted in figure 5.2) is 32.91. The seasonal ratios from eight days historical data 

are given in Appendix A.l . Substituting the estimate of fi and seasonal ratios in 

equation (5.23), forecasts were generated for all 5-minute time periods between 

07:00-10:00. Forecasts were updated for all time periods as new values of journey 

time were observed. These forecasts are given in Appendix B.l and are plotted in 

figure 5.20 and figure 5.21. 

Figures 5.20 and 5.21 show that the current days journey time are not consistent and 

changing from one time period to another. However, forecasts still close enough to 

the observed values apart from few time periods when forecasts are high as 

compared to observed journey times, overall forecasts accuracy is quite good and 

mean absolute percentage error is 9.95%. 
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Forecasts were also generated for four other days based on previous 7 , 8 , 9 and 10 

days historical data. The forecast errors given in table 5.7 show that overall forecasts 

accuracy is quite good. 

Table 5.7 Link N019D : Horizontal-Seasonal Forecast-Errors statistics 

No. Date of Forecasts Forecast-Error Statistics 
of Fore-
day's -casts 
Histo 
rical 
data MAE MSE MAPE 

6 18-2-91 Not-Updated 4.8 40.0 14.4 
Updated 4.3 32.8 13.4 

7 19-2-91 Not-Updated 4.1 27.5 12.8 
Updated 3.7 24.1 11.6 

8 20-2-91 Not-Updated 3.2 19.2 10.3 
Updated 3.2 17.6 10.0 

9 21-2-91 Not-Updated 3.4 33.6 9.5 
Updated 4.0 42.2 11.4 

10 28-2-91 Not-Updated 3.0 13.7 9.8 
Updated 2.8 11.5 9.2 
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Figure 5.20 Link N019D : 36-steps ahead forecasts HS-Model 
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Figure 5.21 Link N019D : 1-step ahead updated forecasts HS-Model 
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5.6.2 Application of Horizontal-Seasonal Modelling to Link N018E 

The initial estimate of fi which is calculated from six days of historical data (plotted 

in figure 5.8) is 50.64. The seasonal ratios from 6 days historical data are given in 

Appendix A.2. Substituting the estimate of fi and seasonal ratios in equation (5.23), 

forecasts were generated for all 5-minute time periods between 07:00-10:00. 

Forecasts were updated for all time periods as new values of journey time were 

observed. These forecasts are given in Appendix B,2 and plotted in figure 5.22 and 

figure 5.23. It can be seen from these figures that forecasts are quite good and follow 

the pattern of observed data. Forecasts were also generated 8th, 9th, 10th and 11th 

days based on previous days historical data. Table 5.8 shows forecast errors for all 

the days for which forecasts were generated. 

Table 5.8 Link N018E : HS Model Forecast-Errors statistics 

No. of 
day's 
Histori 
cal 
data 

Date of 
Fore-
-casts 

Forecasts Forecast-Error Statistics 

MAE MSE MAPE 

6 14-6-91 Not-Updated 
UpdatW 

4.9 35.8 10.0 
4.9 46.3 9.7 

7 17-6-91 Not-Updated 
Updated 

7.9 122.2 12.4 
8.1 133.3 13.2 

8 18-6-91 Not-Updated 
Updated 

14.0 506.1 17.5 
13.1 324.1 20.5 

9 21-6-91 Not-Updated 
Updated 

9.5 183.4 17.0 
8.8 138.4 17.0 

10 24-6-91 Not-Updated 
Updated 

8.0 192.0 12.1 
8.7 158.4 14.2 
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Figure 5.22 Link N018E : 36-steps ahead forecasts HS-Model 
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Figure 5.23 Link N018E : 1-step ahead updated forecasts HS-Model 
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5.6.3 Application of Horizontal-Seasonal Modelling to Routel 

The initial estimate of which is calculated from 6 days of historical data (plotted 

in figure 5.14) is 254.14. The seasonal ratios from 6 days historical data are given 

in Appendix A.3. Substituting the estimate of fi and seasonal ratios in equation 

(5.23), forecasts were generated for all 5-minute time periods between 07:00-10:00. 

Forecasts are updated for all time periods as new values of journey time were 

observed, these forecasts are given in Appendix B.3 and plotted in figure 5.24 and 

figure 5.25. It can be seen from these figures that forecasts are quite good and follow 

the pattern of observed data. Forecasts were also generated 8th, 9th, 10th and 11th 

days based on previous days historical data. Table 5.9 shows forecast errors for all 

the days for which forecasts were generated. 

Table 5.9 Routel : HS Model Forecast-Errors statistics 

No. of 
day's 
Histori 
cal 
data 

Date of 
Fore-
-casts 

Forecasts Forecast-Error Statistics 

MAE MSE MAPE 

6 14-6-91 Not-Updated 
Updated 

14.6 
11.9 

307.5 
247.4 

6.0 
4.8 

7 17-6-91 Not-Updated 
Updated 

16.1 
13.9 

422.7 
290.5 

6.9 
5.8 

8 18-6-91 Not-Updated 
Updated 

21.3 
19.8 

921.0 
589.1 

7.3 
7.1 

9 21-6-91 Not-Updated 
Updated 

17.4 
16.3 

560.3 
467.4 

7.0 
6.4 

10 24-6-91 Not-Updated 
Updated 

16.1 
14.9 

439.6 
334.1 

6.2 
5.9 
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Figure 5.24 Route 1 : 36-steps ahead forecasts HS-Model 
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Figure 5.25 Route 1 : 1-step ahead updated forecasts HS-Model 
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5.7 Comparison of BJ and HS modelling results 

Two forecasting methods "Box-Jenkins" (BJ) and "Horizontal-Seasonal" (HS) were 

used to generate journey time forecasts on link-by-link basis. Both techniques proved 

appropriate for forecasting on an individual link basis in conditions of low/moderate 

congestion. 

Table 5.10 gives overall comparison of both the forecasting methods. The 

comparison is based on Mean Square Error (MSE) and Mean Absolute Percentage 

Error (MAPE). MSE detects the presence of frequent large forecasting errors, while 

MAPE gives forecasting errors in terms of percentage. The method which has less 

MSE and MAPE values is considered to perform better. The comparison of MSE in 

Table 5.10 shows that on average HS method performed slightly better than BJ 

method. Forecasts accuracy by both the methods was further improved by updating 

the forecasts. This can be seen in Table 5.10 where updated forecasts have less MSE 

in all cases. For Box-Jenkins method the MAPE values ranged from 6.13% to 

17.22% and for HS method MAPE ranged from 6.01% to 14.93%. 

Table 5.10 Comparison ofBJ and HS forecasting-errors statistics 

Site No. of Model MSE (Average) MAPE (Average) 
Days Journey Time (sees) Journey Time 

Forecast (sees) 

Not Updated Not Updated 
Updated Updated 

N019D 6 BJ 29.9 29.3 11.4 11.3 
6 HS 26.8 25.6 11.4 11.1 

N018E 5 BJ 230.0 202.5 17.2 16.9 
5 HS 207.9 160.1 13.8 14.9 

Route 1 5 BJ 614.0 465.0 7.0 6.1 
5 HS 530.2 385.7 6.7 6.0 
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5.8 Discussion 

In this chapter two time-series methods were used to develop journey time 

forecasting models. The first method is Box-Jenkins ARIMA modelling. This 

dynamic modelling technique which accounts for interdependence of data is applied 

successfully to forecast journey times. An ARIMA (0,1,2)(0,1,1) model was found 

to represent journey time data from three different sites of varying congestion level. 

In ARIMA (0,1,2)(0,1,1) model, the first order non-seasonal differencing of the data 

was necessary to account for the trends and level shifts which occur within a day and 

first order seasonal differencing was required to account for level shifts which occur 

between days. The autocorrelation structure of the data sets of all sites showed that 

first order non-seasonal moving average term was always significant, so does the 

first order seasonal moving average term. The second order non-seasonal moving 

average term was also significant in most of the cases and therefore kept in the 

model for the sake of universality. The advantages of the ARIMA type of time series 

model include explicit structural relationships that can be clearly understood. Once 

a model is developed, it can be used on-line for journey time forecasting for real 

time applications. 

The second technique which was used for journey time forecasting is Horizontal-

Seasonal modelling. The HS method is simpler than Box-Jenkins technique and 

required less computing time. The method uses the historical journey time data to 

calculate seasonal ratios which are smoothed over time by using suitable smoothing 

parameters. For the application of HS model on three sites in this study, the 

smoothing constants a = 0 . 3 and 7=0 .2 were used. The application of the method 

produced good forecasting results. 

Overall it has been shown that both the methods leads to a feasible application for 

journey time forecasting. Moreover, the methods has been tested on real data sets 

for two links and a route in Southampton. Result of the application have been fairly 
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good. The forecasts by both methods for any site was never more than 17.22% in 

error (see Table 5.10), which shows that overall both the methods performed 

satisfactorily. The developed models can be used in real-time to provide short-term 

journey time forecasts and may be used in Dynamic Route Guidance systems and 

other information and control systems where link journey time forecasts would be 

required. 
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CHAPTER 6 

DEVELOPMENT AND APPLICATION OF JOURNEY 

TIME FORECASTING MODELS - (Incident Conditions) 

Time-Series forecasting models (developed in chapter 5), are appropriate for the 

situations where historical journey time patterns are reasonably recurrent. However, 

for high and variable congestion situations particularly those related to traffic 

incidents, historic patterns become unstable and time-series forecasting is more 

difficult. 

Also the time-series models (developed in chapter 5) apply to individual links and do 

not encompass link interactions, the build up/decay of congestion 'trees' or other 

network influences. The link-based analysis remains relevant as it reflects the 

operation of many systems such as traffic control and dynamic route guidance and 

a specific forecast can be made of the parameter of interest (e.g. journey time). 

However, in cases of traffic incidents, queues in urban networks spread to affect a 

number of upstream links. Journey time on adjacent links are then interrelated both 

in time and space, and 'isolated' link-based forecasting becomes less relevant. A 

network-based, rather than link-based interpretation is then required. 

The extent of the additional journey time caused by an incident is difficult to assess 

(Holmes and Leonard, 1993) as it needs to be separated from the existing 

background congestion and needs to take account of its effect over the network as 

a whole. The quantitative assessments for incident effects must therefore be inferred 

from modelling studies. A useful approach for studying the time varying network 

affects of an incident is through the dynamic assignment modelling. From this point, 

this study has concentrated on modelling a number of incident/network/traffic 
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scenarios and compiling a database from which to develop generalised statistical 

models for predicting the spread of congestion effects following an incident and the 

required journey time modifications on the incident and affected links. 

Four stages were involved in the modelling process. At stage one, a database was 

compiled for different incident, traffic and network scenarios. At stage two, 

statistical models were developed to predict the number of links affected by an 

incident. Stage three involved the development of an algorithm to find the location 

of links which would be affected by an incident. At stage four, statistical models 

were developed to predict the increase in journey times on the incident and affected 

links. The aim would be to use such models in real time systems as an aid to predict 

optimum routes for route guidance purposes, and in traffic control systems to 

implement better control strategies based on these predictions. 

6.1 Selection of Method to Compile Incident Database 

The uncertain and wide-range nature of traffic incidents requires a flexible and 

reliable method of study. The objective is to study the time varying congestion 

phenomenon in a variety of network, traffic and control scenarios to try and then 

develop short term forecasting models for networks. It may be possible, for example, 

to relate statistically the rate of increase of journey time with its key controlling 

parameters, such as the incident characteristics (severity, location, duration), the 

underlying level of flow and capacity and so on. 

To compile an incident database the method which is to be chosen among the two 

most obvious ones, namely: trials on streets and simulation. 
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6.1.1 Trials on Streets 

Trials on streets are laborious, sometimes require a long time to be carried out, and 

can be expensive. Moreover they are not practical with unpredictable incidents. For 

these reasons their scope is limited. 

6.1.2 Simulation 

Simulation is easier to realise than trials on streets and can be repeated with least 

extra-cost, also the same traffic conditions can be identically repeated, which is not 

always possible with trials on streets. Therefore given an appropriate simulation with 

realistic driver behaviour assumptions, the reliability of simulation can be compared 

to the one of on-street trials and at the same time it is less time consuming and less 

expensive. 

Therefore, simulation appears to be the method for the study of incident effects. 

6.2 Selection of a Simulation Model 

The task described above can be performed by simulation modelling incorporating 

dynamic traffic assignment. The simulation models are commonly grouped into three 

levels of aggregation, namely macroscopic, mesoscopic and microscopic, respectively 

from the least detailed representation of traffic to the most detailed one. 

Macroscopic models are flow-based and involve speed/flow relationships based on 

fluid analogy and 'continuously' divisible of flows of vehicles. Microscopic models 

are based on individual vehicles and the modelling implies fundamental rules such 

as the 'safe headway theory' and distribution laws (statistical distribution, gap 
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acceptance). Mesoscopic models lie between the two previous ones and involve an 

intermediate level of aggregation either in time (allowing within-cycle variations in 

flow, which is not possible with macroscopic models) or in space by considering the 

movement of small, discrete and indivisible groups of vehicles following the same 

route. 

At present the traffic assignment models which might be suited for incident 

simulation are SATURN (Van Vliet, 1980 and 1982), INTEGRATION (Van Aerde 

and Yagar, 1988) and CONTRAM (Leonard et al., 1978; Leonard et al., 1989; also 

in CONTRAMI: University of Southampton, 1992). 

6.2.1 SATURN 

SATURN (Simulation and Assignment of Traffic to Urban Road Networks) is a 

macroscopic model incorporating a simulation and an assignment sub-models. The 

assignment sub-model predicts route choices and the simulation sub-model moves 

traffic through the network and calculates the corresponding delays. The program 

performs an iterative loop between the assignment and simulation phases until a 

specified number of iterations has been achieved or until convergence has been 

reached. SATURN is largely based on a signalised intersection approach (using 

cyclic flow profiles, very much like TRANSYT). But the macroscopic and 

equilibrium nature of SATURN make it less than ideal for incident modelling. 

6.2.2 INTEGRATION 

INTEGRATION is a microscopic simulation model which considers the behaviour 

of individual vehicles having self-assignment capabilities. The program assigns 

vehicles to a loaded network applying the minimum-path theory at each node in the 
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network every 6 seconds. Although this program has been specifically developed to 

perform traffic assignment in typical integrated controlled/uncontrolled roads, it lacks 

application to a larger number of networks, particularly large ones. 

6.2.3 CONTRAM 

CONTRAM (Leonard et al., 1989) is a mesoscopic dynamic traffic assignment 

model which predicts vehicle routes, as well as flows and queues on road network 

links. The program uses an 'incremental' form of vehicle loading which assign 

packets of vehicles to their minimum journey time routes in the network through a 

number of iterations, for each time interval. It is a capacity restrained model taking 

account of the interactive effects of traffic between intersections and the variations 

in traffic conditions through time. Particularly, it models the build up and decay of 

congestion such as occurs during peak periods. As a result it appears that 

CONTRAM structure is overall more flexible than the one of SATURN and 

INTEGRATION. 

However, the simulation of incidents by dynamic traffic assignment involves different 

assignment procedures from the 'optimum' ones (here 'optimum' implies a cost 

minimising assignment). When visual effects of an incident occur, drivers may either 

change lane (and look for a gap in the traffic of a non-blocked lane) or modify their 

routes. In the latter case the 'diversion' is generally not a re-optimised route because 

drivers do not have sufficient knowledge of the current traffic conditions (unless they 

use a dynamic guidance/information system). Therefore, when selecting an incident 

simulation model the permitted driver responses will have to be considered. It 

appears that only CONTRAM offers a version which simulates incidents and includes 

driver behavioural options towards diversions.Indeed, CONTRAMI (Incident 

Module for CONTRAM, University of Southampton, 1992) has been developed on 

the basis of CONTRAM for taking account of the effects of traffic incidents in urban 
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networks, and particularly of their unpredictability. Unpredictable incidents create 

complex effects in terms of uncertain driver responses and of traffic interactions over 

the whole network. Although CONTRAM models traffic interactions over the 

network, it assumes that drivers are aware of the current traffic conditions and they 

choose their routes accordingly. This assumption is consistent with 'normal' traffic 

conditions, but becomes unrealistic with unpredictable incidents because drivers then 

do not know how traffic conditions are going to change all over the network. 

CONTRAMI has been developed to model drivers responses to changes in traffic 

conditions (flows, queues etc), i.e. decisions to remain on their usual routes (e.g. if 

not familiar with alternative routes) or to divert. CONTRAMI therefore allows 

incident modelling with various types of strategies and simultaneously benefits from 

CONTRAM basic attributes. 

Consequently it is CONTRAMI (version of CONTRAM for incidents) which has 

been selected to study the effects of trafflc incidents. 

The flow chart in figure 6.1 summarises the CONTRAMI modelling process which 

starts by a normal CONTRAM run to obtain the usual routes taken by vehicles. Only 

one normal run is required for a particular set of 'normal' network conditions. After 

the normal run, the assignment procedure has 3 distinct phases, (i) Loading the 

network, the 'usual' routes are read in from the file and used to load the network. 

A number of iterations are performed, keeping these routes fixed, to model the 

interaction of vehicles properly and to calculate the queues and delays in the 

network, (ii) Introduction of an incident, this assignment may be performed for one 

or more (user specified) iterations (it is considered that one iteration is sufficient), 

(iii) Fixed routeing, after the diversions has been made, a number of iterations are 

performed, keeping the new routes fixed in order to calculate the new queues and 

delays in the network. 
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Figure 6.1 Flow Chart of CONTRAMI Modelling Process 
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6.2.4 Information Required And Provided By CONTRAMI 

Because CONTRAMI consists of a module added to CONTRAM, a large amount of 

input data is the same for both packages. In particular, CONTRAMI input data 

comprise the three major input components which are: 

• The network and time data, which define the network geometry properties and 

the period to be simulated. 

• The demand data, which specify the flow rates for each Origin-Destination 

(0-D) movement for each time interval. 

• The control data, with two major functions. The first one describes the 

running of the program and defines the number of iterations to be carried out 

and the types of output required. The second function is to provide the 

additional data required for signalised intersections. 

In addition CONTRAMI requires supplementary information on the incident 

specification (in terms of location, severity and duration) to be added into the 

network data file (using the new card type 100), and on the methodology logic (the 

specification of the number of iterations for network loading, permitted diversions 

and fixed routing). A 'diversion logic' is also included in the control data file (using 

card types 101 and 93) respectively. The diversion logic information reflects the 

drivers strategy towards diversions and is input into the programme as: the maximum 

number of diversions allowed for a driver, the coefficient of diversion, the 

percentage of packets which will not divert and the percentage of occupancy which 

will trigger diversions. In summary, drivers who are eligible for diversion can divert 

at any junction along their route if they encounter an unexpected queue ahead, and 

if the journey time on the normal 'next best' route is acceptable (ie. within a 

specified multiple of that of the normal route, as controlled by the coefficient of 

diversion). 
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The output information provided by CONTRAMI is basically of the same type as the 

CONTRAM one. The information contained in the result file consists of link-by-link 

and overall data for each time interval such as: 

Journey time 

Overall distance travelled 

Average speed on the network 

Point-to-Point 0 -D speed 

Fuel consumption 

Queues 

Total link counts (flows) 

Congestion Index: ratio of the travel time to the cruise time on a link. 

A "route" file is also output from CONTRAM/CONTRAMI runs. It provides vehicle 

route data for further analysis of journey patterns over the network. Moreover 

CONTRAMI provides a "diversions" and an "occupancy" output files. The first one 

is a record of all diversions taken by packets of vehicles and the corresponding cruise 

times. The second file is a record of the percentage occupancy values for every link 

in the network and each time slice. 

6.2.5 Implications 

The incident version (CONTRAMI) of the CONTRAM traffic dynamic assignment 

model has been selected for study the effects of various unpredictable incidents, 

which equilibrium assignment models cannot achieve. These effects are characterised 

by increases in journey times, delays, decreases in mean speeds and new or longer 

queues, which can be calculated from CONTRAMI output data. 
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6.3 Modelling Scenarios 

6.3.1 The Study Networks 

The simulation of incidents was carried out on two urban road networks located in 

the U.K. Networks were developed and calibrated by the local authorities concerned. 

The networks are: 

Kingston (in London) 

Boscombe (in Bournemouth) 

This has allowed network dependence to be assessed as well as the other traffic and 

incident related parameters. 

6.3.1.1 Kingston Network 

The first road network where incidents have been simulated is located in Kingston 

(Appendix 0.1). The network data comprise 150 coded links and 55 junctions of all 

types (including 14 signal junctions) and 28 pairs of origins and destinations. Links 

are defined as a section of road between two intersections and are allocated a 

number. The study network is made of: 

43 signal-controlled links (28.7%); 

67 uncontrolled links (44.7%); 

40 give-way links (26.7%). 

The demand data was available for the morning peak period. The data is known for 

each 0-D movement and has been disaggregated into twelve five-minute time slices 

between 0800 and 0900 hours. This detailed data also allows queue growth and decay 

to be monitored in five-minute intervals. 
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6.3.1.2 Boscombe Network 

The second road network which has been used for incident simulations is located in 

Boscombe (Appendix 0.2). The network data comprise 190 coded links and 71 

junctions of all types (including 7 signal junctions) and a set of 28 origins and 29 

destinations. Moreover the study network is made of: 

22 signal-controlled links (11.5%); 

117 uncontrolled links (61.5%); 

51 give-way links (27%). 

This network is made of smaller and more numerous roads than Kingston network, 

and is characterised by a higher proportion of uncontrolled links and a much lower 

proportion of signalised links. The demand data was again in twelve five-minute 

intervals. 

6.3.2 The Incidents 

6.3.2.1 Incident Type 

As the effects of unpredictable incidents are the least well known, it has been decided 

to simulate unpredictable short-term incidents whose duration does not exceed 45 

minutes. This type of incident is most suited to CONTRAMI applications rather than 

predictable incidents (eg. longer term roadworks) where drivers would gradually re-

optimise their routes. 
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6.3.2.2 Incident Locations 

In each of the two networks three incident locations were chosen. In Kingston, links 

714, 725 and 730 were selected (Appendix 0.1); in Boscombe network, links 1163, 

1494 and 1692 (Appendix 0.2). Five of the six selected links are signalised only link 

1163 in Boscombe network is uncontrolled. The selected links are of average or 

major importance and their lengths vary between 65 and 410 metres. They have been 

chosen to the proximity of an exit to the network, and with a sufficient number of 

upstream links to show the evolution of the affected links over time. In order to give 

a representation of the relative importance of the links their characteristics are shown 

in table 6.1 below: 

Table 6.1 Links characteristics 

Link Length Cruise Time Saturation Flow 

(meters) (sees) (pcu/h) 

Kingston 714 120 10 2650 

Kingston 730 150 17 1960 

Kingston 725 170 17 1850 

Boscombe 1494 410 31 1950 

Boscombe 1692 65 5 1900 

Boscombe 1163 130 10 1825 

6.3.2.3 Severity and Duration of Incidents 

On each location 12 types of incidents have been created with different combinations 

of durations and severities: 

Three durations were simulated: 15 minutes, 30 minutes, 45 minutes. 
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Four levels of severity were simulated: 0.20, 0.50, 0.70, 0.99, which 

correspond to reductions in saturation flow to 80%, 50%, 30% and 1% 

respectively, (for programming reasons 0% is not achievable). 

All incidents have been simulated from the first time slice, which makes their 

duration last for 3, 6, 9 time slices. 

6.3.3 Permitted Diversions 

It was decided to simulate 'fixed route' strategy which allows no diversion to drivers 

who are then 'forced' into the incident link, whichever the incident severity. The 

results of such a scenario are expected to produce somewhat worse traffic conditions 

than might occur in practice, but considered reasonable for this study. As the main 

uncertainty with another approach concern the proportion of drivers who will divert 

and the diversion criteria adopted (knowledge on both of these issues is scarce). 

There are also likely to be other behavioural issues involved. Therefore at this stage 

'fixed route' strategy is considered to form a good basis for the development of 

predictive models and is suitable for further enhancements as more information on 

behavioural issues becomes available. 

6.3.4 Simulation Runs 

The process of CONTRAMI has been explained in section 6.2.3. CONTRAM is first 

run on each network in non-incident conditions, in order to: 

keep a record of the data in normal conditions for future calculations; 

initialise the following CONTRAMI runs in incident conditions. 

The details of the information relevant to the incident cases are given in (Appendix 

D). Basically the extra information needed by CONTRAMI deals with the location 
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and modified saturation flow of the incident link as well as the drivers 'diversion 

strategy'. 

6.4 Development of Predictive Models 

Four stages are involved for the development of predictive models for incident 

management procedure. At stage-A, an incident is detected, its location and severity 

is fed in; this information may come from the traffic operator in the traffic control 

centre which confirms the location of the incident through CCTV and can also 

estimate the severity of the incident from number of lanes closed. The model output 

is not used for incident detection, although the task of incident detection can also be 

achieved with the development of suitable software. 

At stage-B, the number of links which would be affected by an incident are 

predicted; the prediction of 'Number of links affected' is important here as this 

information is subsequently used as a threshold for the extent of backward route 

search required for predicting the location of incident affected links in the network 

(here we are not modelling queue build up explicitly with this procedure, if we were, 

we would not need to predict how many links are affected). 

Stage-C involves finding the location of affected links in the network. 

At stage-D, journey times on incident link and on affected links are predicted. Then 

as the new data becomes available, it is analyzed and if the data is normal (close to 

historic profiles) then the procedure ends otherwise stages B to D are repeated and 

the predictions are updated using the new data. 

The flow chart of the modelling procedure is shown in figure 6.2. 

140 



Figure 6.2 Flow chart of the modelling procedure 
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6.4.1 IdentiHcation of the Key Parameters 

The effects (increase in journey time, number of links affected) of an incident is 

attributed to many parameters, it can be seen from the simulation results that the 

incident characteristics which are defined as duration and severity are two of the 

many key parameters. Moreover the effect of an incident from one link to another 

is different, this can be attributed to link characteristics (geometric, traffic 

characteristics) as well as of each network. The geometric properties are assumed not 

to vary strongly from one link to another according to the available information 

provided by the original data-files. However the importance of a link in a network 

and its 'traffic performance' seem to have an important role to play in the effects that 

an incident could have on other links. A range of parameters can reflect these 

situations, for example Congestion Index (link journey time/link cruise time). Degree 

of saturation (number of arrivals/link capacity), or Delay (link journey time - cruise 

time). However, it was decided that the variables which will be used in modelling 

are restricted to those which would be available in a DRG system. This therefore 

excluded traffic flow and flow-related parameters, such as degree of saturation, even 

though these parameters may have produced a superior model. Furthermore, because 

the key goal of the study is to build predictive models, the independent parameters 

in the models will have to refer to non-incident conditions. More precisely, in a 

future application the parameters should be practically available for all links of any 

network, which is only possible for 'normal' traffic conditions (although subject to 

updating with real time incident data as it becomes available). Some appropriate 

parameters would be Congestion Index, Delay (secs/veh). 

6.4.2 Prediction of Number of Links Affected 

For DRG systems, the important quantification is the identification of those links 

whose journey times are affected by the incident. However CONTRAMI output files 
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do not provide the numbers of affected links directly. For this purpose a FORTRAN 

program was written (Appendix J) which compares the journey times in non-incident 

and in incident conditions for all links and all time slices. The criterion for a link 

to be named 'affected' during at least one time slice is to have a total journey time 

in incident conditions exceeding by at least 20% the total journey time in non-

incident conditions and then if for any time slice the journey time for incident case 

is 20% higher than the journey time for non-incident case, then the link is considered 

as affected during that time slice. By using this criteria the number of affected links 

were evaluated for different incident scenarios (severity, duration, location), the 

results are shown in Appendix E.l - E.4. An example of number of links affected 

by an incident is shown in figure 6.3 below: 

Figure 6.3 Example of Number of Links Affected (simulation) 
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A quantification of the number of links affected was then related to the key incident 

characteristics for the full database. As expected, incident severity proved to be a 
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dominant parameter. Plots such as those in figure 6.3, were used to develop a 

method for predicting the number of links affected by the incident. Methods tested 

initially for predicting the curve forms included the use of (i) curve fitting and (ii) 

probability distribution fitting to the data. However, these methods proved relatively 

complex and a simpler approach was finally calibrated which also gave a better 

statistical fit. This preferred approach consisted of producing a linear two stage 

profile, with stage 1 describing congestion build-up during the incident and stage 2 

describing post-incident "recovery". This is illustrated in figure 6.4 below: 

Figure 6.4 Envisaged Model for Number of Links Affected 
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The requirement here is to predict the two slopes of the profile termed Ml and M2 

here. Analysis centred on predicting Ml fi-om key incident, network and traffic 

characteristics and M2, based on similar parameters excluding those describing the 

incident. Predictions of these slopes and incident duration would then provide 

predictions of the numbers of links affected at any time following the onset of the 

incident. Constant slopes are illustrated here for simplicity, although in practice, 

slopes would be recalculated (and may vary) for every time interval (e.g. 5 minutes). 

6.4.2.1 Database for Slope Ml 

The slope Ml represents the increase in number of links affected from the beginning 
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until the actual end of the incident, this situation is clearly defined by a 'build up' 

slope. 

From the simulated results (Appendix E), the rate of increase in number of links 

affected per minute were calculated by the relation : 

Ml = (No. of links affected at time t - No. of links affected at time t-1) / 5 

(6.1) 

In this way a database (see Appendix G.l) for slopes Ml was created for different 

incident scenarios. 

6.4.2.2 Model for Ml 

From the database of slopes Ml (Appendix G.l), it can be seen that a greater 

severity produce a steeper slope, moreover if the incident link is particularly likely 

to get congested rapidly (this is represented by Congestion Index in the database), 

then the number of affected links in the network will grow faster, several models 

were produced from this database and are given in (Appendix H.l) with their 

statistics. A simple and robust model produced fi-om incident database (which will 

be used for all future application) is of the form: 

Ml, = 0.37 * Sev, * LCI, (R^ = 0.51) (6.2) 

where 

Ml, = rate of increase of number of links affected with time 

(number/minute) 

Sev, = incident severity at time interval t (range 0 to 1 (blocked link)) 

LCI, = link congestion index for the incident link during the time 

interval t, from the historic profile. 
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In this model, the congestion index reflects the normal state of congestion on the 

incident affected link during the analyzed time interval. The higher the CI, the 

greater the incident effects, as expected. Similarly, the higher the incident severity, 

the greater are the incident affects. This product model proved to have equally as 

good a fit as other additive and power function models tested and hence selected for 

future applications. 

Time interval specific forecasts of Ml, would then allow predictions to be made of 

the number of links affected, for any forecast horizon. For example, slopes Ml,, 

M l j and MI3 may apply to consecutive 5 minute time intervals tj, t̂  and tg. The 

prediction of the number of links affected by the incident after 15 minutes would 

then be: 

Number of links affected = 5 * (Ml, + M l j + MI3) (6.3) 

6.4.2.3 Database for Slope M2 

Slope M2 represents the function to calculate the number of links affected for 'post 

incident' case. M2 values were calculated from the numbers of links affected during 

the time slices following the incident ends, by the relation : 

M2 = (No. of links affected at time t - No. of links affected at time t-1) / 5 

( 6 . 4 ) 

The database for slope M2 is given in (Appendix G.2). 
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6.4.2.4 Model for M2 

For "post incident" slope, it seems that the decay of the number of affected links 

sometimes starts only after a transition period has been achieved. This transition 

period would reflect a situation where the network was still partly congested at the 

time of the incident end, and where drivers would be re-optimising their routes 

according to the latest traffic conditions; for this reason the number of affected links 

would either rise or remain almost constant for a short time. Hence the link 'traffic 

performance' parameter is expected to be involved in the number of affected links 

of the 'after incident' situation. Several regression models were developed (Appendix 

H.2) by using 'post-incident' database (Appendix G.2), but because of negative and 

positive values of M2 slopes, few models are suitable for a good fit. A preferred 

model which is developed from post-incident database is: 

M2, = 0.44 - 1.75/LCI, (R" = 0.20) (6.5) 

where 

M2, = rate of decrease of number of links affected with time 

(number/minute) 

LCIt = congestion index for the incident link during the time interval t, 

from the historic profile. 

With this model M2 value is positive when the ratio (1.75/LCI) is less than 0.44, it 

will be negative if the ratio (1.75/LCI) is greater than 0.44 and for the ratio 

(1.75/LCI) is 0.44 the value of M2 is zero. 
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6.4.3 Prediction of Location of Affected Links 

Given a time-dependent prediction of the number of links affected, it is then 

necessary to locate these links in the network. It is usual that the first affected links 

are the nearest upstream links to the incident link, and that the propagation will 

continue in the direction of the nearest upstream links connected to affected links 

until the maximum number of affected links has been reached. Then, after the 

incident has ended, the number of affected links will decrease following the reverse 

process. To find out the location of affected links in the network, a reverse route 

search has to be made from the upstream node of incident link, in this way a 

backward tree is constructed considering (i) all feasible upstream links, (ii) upstream 

links prioritised according to the proportion of traffic on the link which also 

(normally) proceeds through the incident affected link. (It is expected that the spread 

of congestion will predominate on routes/trees which contribute most traffic to the 

incident affected link.). 

For example, if a network connection is constructed as; 

Link No. Upstream Links 

730 518 603 604 

518 517 

603 515 108 

604 523 

517 703 117 

and if there is an incident on link 730 then link 518 is expected to be affected before 

links 603 and 604, link 603 is expected to be affected after link 518 but before link 

604 and so on. 
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6.4.4 Prediction of Journey Time on Incident Link 

Journey time prediction on incident links was analyzed using techniques compatible 

with those described in (Section 6.4.2), looking initially at the incident link itself. 

The incident modelling using CONTRAMI produced a number of journey time 

profiles (see Appendix F), one example being given in Figure 6.5 below: 

Figure 6.5 Example of increased journey time (simulation) 
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This example illustrates the increase in journey time following the onset of an 

incident, and how the journey time stabilises to a relatively constant value if/when 

the link becomes full. It also illustrates how the maximum journey time on the link 

(when it is full) varies according to the incident severity, as would be expected, as 

severity is directly related to reduction in capacity. A three stage model is therefore 

suggested for the incident-affected link. This is illustrated in figure 6.6 below: 
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Figure 6.6 Envisaged model for increased journey time 
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With this model, SI represents the rate of increase of journey time with time, 

following the onset of the incident, (again a linear slope is illustrated here for 

simplicity). At time T1 the link becomes full (and queues extend upstream) so that 

a maximum journey time (JT max) is maintained for a period (T2-T1). Some time 

after the end of the incident, the link journey time will start to decline at a rate S2. 

Analysis was concentrated to develop predictive models for SI, MaxJT and S2. 

6.4.4.1 Database for Slope SI 

The slope SI represents the increase in Journey Time on incident link from the 

beginning of the incident until the journey times reach its maximum, this situation 

is defined by an 'upward' slope. From the simulated journey times (Appendix F), the 

rate of increase in journey time per minute for different incident scenarios were 

calculated by the relation : 

SI. = (JTVJTI,.,)/5 (6.6) 

where 

SI, = rate of increase of journey time on incident link with time, 

(secs/minute). 

JTI, = Journey time at time t, following the onset of an incident 
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JTI,., = Journey time at time t-1, following the onset of an incident 

In this way a database for slopes SI was created for different incident scenarios. This 

database is given in (Appendix G.3). 

6.4.4.2 Model for SI 

From the simulation results, it can be seen that the incident characteristics which are 

defined as duration and severity, are the key parameters of increase in journey time, 

moreover the effect of an incident from one link to another is different, this can be 

attributed to link characteristics (geometric, traffic characteristics). Two parameters 

(Congestion Index and Delay) were selected to represent link characteristics. 

Regression techniques were then used to develop several forms of additive and 

multiplicative models (Appendix H.3), the preferred model for SI is: 

SI, = 1.25 * Sev, * Delay, (R^ = 0.69) (6.7) 

where 

SI, = rate of increase of journey time on incident link with time, 

(secs/minute). 

Sev, = incident severity at time t (range 0 to 1). 

Delay, = Delay (secs/veh) on the incident link during the time interval t, 

(for non-incident case). 

Time interval specific forecasts of SI, would then allow predictions to be made of 

increased journey time on incident link, for any forecast horizon. The forecasting 

equation would be: 

JTI, = JTI,., + 5*S1, (6.8) 
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where 

JTIt = Increased Journey time on the link at time interval t. 

JTI,.i = Increased Journey time on the link at time interval t-1. 

SI, = Rate of increase of journey time (as calculated by equation 6.7) 

on incident link. 

6.4.4.3 Maximum Journey Time on Incident Link 

With the model given in equation (6.8), the journey time after an incident will keep 

increasing with the time, however in reality there is an upper limit of journey time 

faced by vehicles on a link, this upper limit is defined here as MaxJt and is a 

function of incident severity and link characteristics. 

6.4.4.4 Database for MaxJt 

MaxJt represents the maximum journey time faced by vehicles on a link after an 

incident. From the simulation results a database (Appendix G.4) of maximum 

journey time was compiled. In this database MaxJtNon is the maximum journey time 

on the link at any time slice during normal traffic conditions and MaxJt is the 

maximum journey time on the link at any time slice for a given incident scenario. 

6.4.4.5 Model for MaxJt 

Regression analysis were carried out on the MaxJT database (Appendix G.4) to 

develop the models for maximum journey time on a link; the developed models are 

given in Appendix H.5, the selected model for MaxJt is: 
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MaxJt = MaxJtNon + (27.34 * Sev * CT) (R^ = 0.73) (6.9) 

where 

MaxJt = Maximum journey time (sees) on the link after an 

incident. 

MaxJtNon = Maximum journey time (sees) on the link in non-

incident case at any time interval. 

Sev = Severity of the incident (range 0 to 1). 

CT = Cruise time (sees) on the link. 

With this model when severity equal to zero, the maximum journey time after an 

incident would be the same as the maximum journey time in non-incident conditions 

and as severity is higher so does the MaxJt. MaxJt is also related to the cruise time 

on link which represents the link characteristics. For longer links the increase in 

MaxJt would be higher for a given incident scenario. 

6.4.4.6 Database for Slope S2 

Slope S2 represents the function to calculate rate of decrease in journey time for 

'post incident' case. The database for slope S2 compiled from simulated results is 

given in Appendix G.5. In the database, S2 values were calculated by the following 

relationship: 

S2, = (JTI,-JTI,.,)/5 (6.10) 

The negative values of S2 shows the rate of decrease in journey time for post 

incident time periods; whereas positive values of S2 shows that for some cases 

journey times may not start decreasing soon after the end of an incident. 
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6.4.4.7 Model for S2 

For "post incident" slope, it seems that the decrease in journey time starts only after 

a transition period has been achieved. This transition period would reflect a situation 

where the network was still partly congested at the time of the incident end; for this 

reason the journey times would remain almost constant (at MaxJt) for a short time. 

Regression models were developed by using 'post-incident' database (Appendix G.5), 

but because of negative and positive values of S2 slopes, few models are suitable for 

a good fit. The developed models for S2 are given in Appendix H.4; the preferred 

model for S2 is : 

S2, = -1.46 » (MaxJT/DelayJ 4- 2.25 (R^ = 0.52) (6.11) 

where 

S2( = rate of decrease of journey time on incident link with 

time, (secs/minute). 

MaxJt = Maximum journey time (sees) on the link after an 

incident. 

Delay, = Delay (secs/veh) on the incident link during the time 

interval t, (for non-incident case). 

With this model, slope S2 is inversely proportional to delay, lower the delay 

(representing link importance in the network) value, steeper the slope S2 and journey 

time quickly back to normal, whereas links with higher delay values take longer time 

to come back to normal. 

Time interval specific forecasts of slope 82, would allow predictions to be made of 

decrease in journey time on incident link, for any forecast horizon. The forecasting 

equation would be : 

JTI, = JTI,., -h 5*82, (6.12) 
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where 

JTI( = Increased Journey time on the link at time interval t. 

JTIn = Increased Journey time on the link at time interval t-1. 

S2t = Rate of decrease of journey time (as calculated by equation 

6.11) on incident link. 

6.4.5 Prediction of Journey Time on Affected Links 

Finally, it is necessary to predict journey times on all upstream links affected by the 

incident, as identified in (Section 6.4.3). Similar procedures are envisaged to those 

described above, with some factoring of SI and S2 slopes according to the 

remoteness of the link concerned from the incident link. In the figure 6.7 below: 

Figure 6.7 Envisaged model for increase in journey time on affected links 
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T1 is the start time of the incident, T2 is the time when a link is affected by the 

incident, this time is predicted from section 6.4.2 and 6.4.3. Once the link is 

affected, the increase in JT on affected link is predicted by slope SI, the JT on 

affected links keep increasing until it reaches to the maximum at time T3. The 

maximum JT on affected link can be predicted by the MaxJT model given in 

equation (6.9). T4 is the End time of the incident, however the JT on affected link 

stays at maximum until time T5, after which JT start decreasing. At time T6 the link 
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is no more affected (this time is predicted in section 6.4.3) and at time T6 the 

journey time back to normal profile. 

6.5 Application, Evaluation And Validation of the Models 

The predictive models which were developed in section 6.4 are based on simulated 

database for different incident scenarios. The goodness of fit of these models on this 

database is illustrated by comparing the results with that of CONTRAMI simulated 

results and by analysing forecasting errors statistically. Secondly, a type of validation 

of these predictive models is also achieved by applying them to an alternative larger 

network (London Network). It should be noted that the choice of a larger network 

such as London would be particularly relevant, considering the large number of links 

expected to be affected in the event of an incident. 

6.5.1 Application of Ml and M2 Models 

Models for Ml and M2 slopes can be used to predict the number of links affected 

after an incident occur. These models were applied to predict the 'number of links 

affected' with incident on links, K-714 (Kingston network), B-1494 (Boscombe 

network) and L-3232 (London network) for different incident scenarios by using the 

models given in equations (6.3) and (6.5), the detailed results of the application of 

these models are given in Appendix M. Examples of simulated and predicted 

'Number of links affected' are shown in figures 6.8, 6.10 and 6.12. The predicted 

results were compared with the simulated results of CONTRAMI, the accuracy of 

the forecasts can be seen in figures 6.9, 6.11 and 6.13 which shows the 

corresponding plots of simulated and predicted 'Number of links affected'. These 

figures show how the models perform following the onset of the incident. The 

forecasting errors statistics for 'Number of links affected' for different incident 

scenarios were calculated and are given in table 6.2. 
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Figure 6.8 Number of links affected with incident link 714 (Sim vs Pre) 
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Figure 6.10 Number of links affected with incident link 1494 (Sim vs Pre) 
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Figure 6.11 Simulated vs Predicted 'Number of links affected' incident link 1494 
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Figure 6.12 Number of links affected with incident link 3232 (Sim vs Pre) 
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The forecasting results show that the models are capable of predicting 'Number of 

links affected' in the network with reasonable quality, however further improvements 

in the models can be achieved by careful calibration of the model's parameters and 

with updating of forecasts. 

Table 6.2 Forecast-Errors statistics for 'Number of links affected' 

Site' Incident^ ME^ MAE MAPE 

Type 

13 0 1 31 

K-714 16 9 10 55 

19 7 8 37 

13 14 14 58 

L-3232 16 9 10 62 

19 3 6 71 

1 K-714 = Kingston link 714 L-3232 = London link 3232 

2 13 = Incident Severity = 20% 16 = Incident Severity = 50% 

19 = Incident Severity = 70% 

3 ME = Mean Error MAE = Mean Absolute Error 

MAPE = Mean Absolute Percentage Error 

6.5.2 Application of Procedure to Hnd Location of Affected Links 

The procedure for finding the location of affected links in the network is 

implemented on computer for real time applications by writing two FORTRAN 
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programs (see Appendix L). The first program (NETTREE), when supplied with 

number of links affected by an incident, finds the location of affected links by using 

the network connection files and the second program (GRAPH) plots them 

graphically on the computer screen. 

Network Connection File 

In this file all the links in the network are defined with their upstream links, 

upstream links are prioritised according to the proportion of traffic on the link which 

also (normally) proceeds through the incident link. The proportion of traffic was 

determined by using card 54 during CONTRAMI run. Network connection files for 

Kingston and Boscombe networks are given in (Appendix K). 

NETTREE Program 

Input : Network Connections File 

Number of links affected 

Output : Location of affected links in the network 

GRAPH Program 

Input : Nodes file 

Links file 

Location of affected links (obtained from NETTREE program) 

Output Shows the affected links graphically 

Nodes file was obtained by digitising the network and Links file contains the link 

numbers of two joining nodes. 

The application of this procedure has produced promising results, as illustrated in 

figures 6.14 and 6.15. These figures show (in thicker lines) those links predicted to 

be affected after an incident at different times, using this route search process, and 

can be compared with simulated results for a quality of prediction. 
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Figure 6.14 Location of affected links (Kingston Network) 
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After 45-min (Simulated) 
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Figure 6.15 Location of affected links (Boscombe Network) 
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After 45-min (Simulated) 
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6.5.3 Application of SI, Maxjt and S2 Models 

Models Si, MaxJt and S2 can be used to predict increase in journey time on incident 

link. Increase in journey time on incident link is predicted for different incident 

scenarios by using the SI model given in equation (6.7), MaxJt model given in 

equation (6.9) was used as a cut off for maximum journey time on incident link and 

S2 model given in equation (6.11) was used to obtain the post incident slopes, 

examples of simulated and predicted journey time on three links (Kingston-714, 

Boscombe-1494, London-3232) are given in figures 6.16, 6.18 and 6.20, and figures 

6.17, 6.19 and 6.21 show the corresponding comparison of predicted vs simulated 

journey times. 
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Figure 6.16 Increased Journey Time on incident link 714 (Simulated vs Predicted) 
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Figure 6.18 Increased Journey Time on incident link 1494 (Simulated vs Predicted) 
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Figure 6.20 Increased Journey Time on incident link 3232 (Simulated vs Predicted) 
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Forecasting quality of SI, MaxJt and S2 models were checked analysing forecasting 

errors statistically. Summary statistics of forecasting errors based on ME, MAE and 

MAPE is given in table 6.3. The MAPE error range from 27% to 74%, which are 

rather high. However, given the big variations in networks and traffic characteristics, 

the forecasting results are considered encouraging. Further improvements in forecasts 

can be achieved by updating the forecast using latest on-street information and by 

careful calibration of the models for the particular network. 

Table 6.3 Forecast-Errors statistics for 'Journey Times' 

Site' Incident^ 

Type 

ME^ MAE MAPE 

13 -22 28 47 

K-714 16 -51 59 74 

19 -38 63 68 

13 23 71 27 

B-1494 16 19 116 34 

19 54 272 48 

13 -60 60 60 

L-3232 16 -71 78 46 

19 33 153 30 

1 K-714 = Kingston link 714 B-1494 = Boscombe link 1494 

L-3232 = London link 3232 

2 13 = Incident Severity = 20% 16 = Incident Severity = 50% 

19 = Incident Severity = 70% 

3 ME = Mean Error MAE = Mean Absolute Error 

MAPE = Mean Absolute Percentage Error 
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6.5.4 Application of Models to Predict Journey Times on Affected Links 

Models developed in section 6.4.2 can be used to predict the number of links that 

will be affected at a given time after an incident and then the location of affected 

links in the network can be found by using the procedure developed in section 6.4.3. 

These models also predict the time when a link is affected, once a link is affected it 

is treated as incident link for the increase in journey time, models for SI, MaxJt and 

S2 are used to predict the journey time on the affected links (for simplicity, no 

factoring of SI, MaxJt and S2 was considered here, however for more accurate 

forecasts, factoring may be required). Table 6.4 shows the results of application of 

the above procedure. In this table, following the on-set of an incident, 'Number of 

links affected' were predicted for each time slice using Ml model, then the location 

of affected links were predicted using the procedure developed in section 6.4.3. 

Journey times on affected links were predicted using SI, MaxJt and S2 models 

developed in section 6.4.4. The predicted results are compared with simulated 

results, it can seen from table 6.4 that the prediction of 'Number of links affected' 

and the prediction of 'Location of affected links' is quite good. Also, prediction of 

'Journey times' on incident affected links is reasonably good, apart from the incident 

link itself, where in most cases, the model is over predicting journey times. Again 

it is expected that updating of forecasts (say every 5-minutes) will help in reduction 

of forecasting errors. 
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Table 6.4 Increase in Journey Time on affected links (Simulated vs Predicted) 

Incident Link = 714 Severity=20% Duration=30-min 

Time Number of Number of Location ' Location of Journey Journey 
links links of affected affected Time Time 
affected affected links links 

(Simulated) (Predicted) (Simulated) (Predicted) (Simulated) (Predicted) 

8:05 0 0 - -

8:10 1 1 714 714 17 24 

8:15 1 2 714 714 31 37 
535 9 

8:20 2 3 714 714 59 61 
535 535 10 9 

711 24 

8:25 5 5 714 714 76 107 
535 535 22 13 
711 711 35 30 
708 710 46 19 
724 712 25 28 

8:30 8 7 714 714 78 122 
535 535 41 19 
711 711 80 39 
710 710 31 25 
712 712 30 32 
708 708 52 77 
707 724 59 48 
520 27 

1 See map on page 270 for location of affected links in the network. 
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6.6 Implementation of the Models in Real Time 

The models which are developed above, predict the effects of an incident at the start 

of incident for the rest of the time periods. However for real time applications, on-

street information would be available at regular time intervals (e.g. 5-minutes). 

Forecasts can then be compared with this information and be updated accordingly. 

Consider an example where the 'Number of links affected' were predicted by using 

Ml (equation 6.2) and M2 (equation 6.5) slopes. 

Number of links affected = 5 * ( Ml, + M l j + MI3 H + M2,.i + M2,) 

(6.13) 

Here at any time interval the predicted 'Number of links affected' is the sum of 

previous predicted slopes plus the current slope, to update the forecasts, sum of 

predicted slopes can be replaced by the observed 'number of links affected' at time 

t-1. So the forecasts can be updated by using the following equation: 

Number of links affected (t) = 5 * ( observed number of links affected (t-1) + MIJ 

(6.14) 

The above equation was used to obtain updated forecasts for ' Number of links 

affected', these forecasts are given in Appendix N. Results were compared with not-

updated forecasts; an example of updated forecasts is shown in figure 6.22 below 

with the forecasts error-statistics given in Table 6.5. 

Once the forecast for 'Number of links affected' is updated, then the prediction of 

'location of affected links' can also be updated by re-running the NETTREE and 

GRAPH programs (section 6.5.2) which predict the location of affected links in the 

network. 
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Figure 6.22 Updated forecasts for 'number of links affected': Incident link K-714 
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Table 6.5 Comparison of not-updated and updated forecasts for 'Number of links 

affected' with incident link K-714 

Site Incident 

Type 

Forecasts Error-Statistics 

ME MAE MAPE 

K-714 15 

Not-Updated 

Updated 

4 6 54 

-0.2 3 35 

It can be seen from the above table that updated forecasts are more close to the 

observed values and therefore has smaller forecast errors. The MAPE is reduced to 

35% for updated forecasts as compared to 54% for not-updated forecasts. 
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Similarly, journey time forecasts which were obtained by using the equation (6.8) as: 

JTI, = JTI,., + 5*S1, 

where 

JTI, = Predicted Journey time on the link at time interval t. 

JTIn = Predicted Journey time on the link at time interval t-1. 

SI, = Rate of increase of journey time (as calculated by equation 6.7) 

on incident link. 

can be updated by replacing predicted journey times at time t-1 with observed 

journey time t-1, the prediction equation would then be : 

JTI, = JTO,., + 5*S1, (6.15) 

where 

JTI, = Predicted Increased Journey time on the link at time interval t. 

JTO,., = Observed Journey time on the link at time interval t-1. 

SI, = Rate of increase of journey time (as calculated by equation 6.7) 

on incident link. 

The above equation was used to obtain updated forecasts for ' Journey times' and 

compared with not-updated forecasts, these forecasts are given in Appendix N. An 

example of updated forecasts is shown in Figure 6.23 below with the forecasts error-

statistics are given in Table 6.6. 
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Figure 6.23 Updated forecasts for 'Journey Time' with incident link B-1494 16 
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Table 6.6 Comparison of not-updated and updated forecasts for 'Journey times' 

with incident link B1494 

Site Incident 

Type 

Forecasts Error-Statistics 

ME MAE MAPE 

B-1494 16 

Not-Updated 

Updated 

-19 116 35 

-31 73 23 

Again forecasts have been improved by updating and MAPE reduced from 35 % to 

23%. 
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6.7 Discussion 

This chapter has been based on simulation modelling of a variety of traffic/network 

incident scenarios, producing a database from which generalised statistical models 

have been developed for predicting the spread of congestion effects following an 

incident and the required journey time modifications on incident link and on affected 

links. The 'goodness' of fit of the models were evaluated by comparing the results 

of developed models with that of CONTRAMI (simulation) results. A type of 

validation was also achieved by applying the developed models on a larger network 

(London network). 

These models have demonstrated a reasonable predictive quality, given the highly 

variable effects of unexpected incidents and could readily be implemented on-line. 

However, before these models can be used, some improvements are envisaged. The 

incident simulations were based on 'no diversion' strategy for drivers, therefore, 

although the results were considered reasonable for this study, they are expected to 

produce somewhat worse traffic conditions than those which could occur in practice. 

As a consequence the predicted values of 'Ml ' and 'SI ' slopes are expected to be 

slightly greater than practical ones. There is evidence (Sparmann, 1991) from on-

street observations that a certain number of drivers do divert from their original route 

when an incident happens although no quantification of this effect has been achieved. 

This could be simulated by CONTRAMI by describing the maximum number of 

diversions allowed per driver, the coefficient of diversion and the percentage of 

vehicles diverting. Several strategies could therefore be experienced by CONTRAMI 

simulation, and it can be imagined that the strategies could be adjusted to each 

network and type of road users. 

The developed procedure is therefore recommended as a valuable real-time tool to 

help journey time prediction within DRG incident management strategies and for 

other traffic control and information systems. 
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CHAPTER 7 

CONCLUSIONS 

This study was involved in the development and testing of short-term journey time 

forecasting models for normal traffic conditions and for incident conditions. The 

developed models have demonstrated the potential as a real time tool for link-based 

journey time forecasting in low/moderate congestion and for network-based DRG 

(Dynamic Route Guidance) incident management strategies particularly in low 

penetration level. The general conclusions which are drawn from the research are 

outlined below. 

7.1 General Conclusions 

Among the parameters measured by SCOOT UTC system in Southampton 

were traffic Flow (veh/hr) and Delay (veh hrs/hr). From Flow (veh/hr) and 

Delay (veh hr/hr); average journey time (sec/veh) can be calculated. Such 

estimates of journey time accurately reflect on-street journey times over a 

wide range of conditions. 

Analysis of the SCOOT data suggested that journey time variability between 

morning and evening peak can be significant. Moreover variability between 

days of week (Mon-Fri) may also be sufficient to warrant separate 

measurements and predictions for each day of the week. However, for sites 

where between day variability is not significant, data should be grouped 

together for all working days of the week to form a single time series. This 

has the advantage that journey time profiles from which the predictions are 
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made will have tighter confidence interval due to increased sample size. 

Monthly variability may also be significant, however if decrease/increase in 

journey time between different months is gradual then there may not be the 

need of separate monthly profiles as the change will be covered by updating 

of historical profiles (e.g. by using only last six days data as historical 

database). 

Another source of journey time variability which can be significant is caused 

by traffic signal cycles. Accounting for cyclic patterns may be necessary in 

very short term journey time forecasting such as for signal control application. 

However, it becomes less relevant for longer forecast horizons typically 

required for traffic information systems etc. Therefore this very short term 

variability is usually not of interest in journey time forecasting, except for 

particular signal control applications. 

Time-Series methods can be effectively used to develop journey time 

forecasting models. These methods had the merits of being relatively simple 

and of 'direct' forecasting of the parameter(s) of interest. These methods are 

appropriate for link-based forecasting in conditions of low/moderate 

congestion. 

Two time-series methods (Box-Jenkins ARIMA and Horizontal-Seasonal) were 

used to develop journey time forecasting models on a link-by-link and a route 

basis, models were tested on a variety of data sets. 

These forecasts are based on the historical data of previous days and at first 

forecasts were generated at the start of current day for all the 5-min time 

periods between 07:(X)-10;00 and then as soon as the new journey time value 

is observed, forecasts for all the next time periods can be updated by using the 
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latest journey time information. 

Application of Box-Jenkins ARIMA and Horizontal-Seasonal forecasting 

methods on a variety of data sets show that overall both methods have 

performed satisfactorily with neither method proving consistently superior. 

The most important factor which influences the quality of forecasts is the 

variability in the historic data and how close is the current day's data to the 

historic data. Forecasts on a link, which has less variability in the historic 

data, are much better than the forecasts at a link where day to day variability 

was much higher. 

Improvement in forecasts was achieved when forecasts were updated for every 

5-min interval and this is due to the fact that both the models used to generate 

forecasts are quite flexible and quickly adapt themselves to the current 

situations; e.g. if on the current day the level of journey time is higher than 

the historical journey time data, models react quickly and updated forecasts 

follow the pattern of the current day data. 

Forecasting errors decreased with increasing time aggregation. However, such 

aggregation could compromise the speed/usefulness of forecasting for traffic 

information and control. 

For Box-Jenkins ARIMA models, prediction is only a part of the method; it 

also includes the analysis of time series. It is therefore more general than the 

other method, where the user has to decide about the model's parameters. A 

family of (ARIMA) models is proposed and the analysis of historical data 

leads to the selection of an appropriate model. 

For real time application of the Box-Jenkins ARIMA method, the analysis of 
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historical data, for the selection of an appropriate model, can be carried out 

off-line and once an appropriate model is selected the forecasts can be 

generated on-line in real time. The same selected model is used day after day 

unless the forecasting errors are out of specified limits, in this case analysis 

of historical data would be repeated off-line to select a new model and then 

forecasts would be generated by the new model. 

For the Horizontal-Seasonal method, the prediction equation contains a base 

value and a seasonal factor. The base value represents the mean value of the 

time series over one season and for every time period t of the season a 

seasonal factor is defined as the ratio between the travel time in period t and 

the base value. Base value and seasonal factors are being updated in every 

period using exponential smoothing with individual weighting parameters. 

The Horizontal-Seasonal method can be implemented on a computer for real-

time application by writing a computer program in any high level language. 

The method is simple and forecasts can be generated on-line. 

Time-series forecasting methods were successfully used in 'normal' traffic 

conditions, where day-to-day pattern of journey time is not changed 

dramatically. This study has developed suitable models for such forecasting 

on a link-by-link basis and where congestion is reasonably recurrent. These 

models could be further refined and tested on-line by adopting methods for 

automatic validation within systems where such forecasts are used (e.g. for 

route guidance). An expert system approach could also be adopted in which 

the performance of a range of forecasting methods is automatically monitored 

and the method is chosen appropriate to the traffic situation. 

For high and variable congestion situations, including those related to traffic 

incidents, historic patterns become unstable and the performance of time-series 
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forecasting methods deteriorates. Additional strategies are then necessary to 

handle such situations. Also a network-based, rather than link-based 

interpretation is then required. 

Traffic incidents occur in a variety of forms and contribute to increase 

congestion and hence journey time by reducing the capacity of road networks 

for various periods of time and at various levels of severity. 

A commonly adopted definition (Collings J F, 1983) of a traffic incident is 'an 

unusual occurrence which reduces the capacity of the road on which it 

occurs'. Incidents can be classified into two main categories (i) Predictable 

Incidents (such as roadworks etc) and (ii) Unpredictable Incidents (such as 

traffic accidents). 

For both the categories of incident defined, the net effect is a reduction in 

road capacity, which lasts for varying lengths of time. The result is an excess 

of traffic demand over reduced capacity which leads to higher than normal 

journey time, not only on the link of incident but also on the approaching 

links and other links in the network. 

Following an incident and its detection by a suitable method, there is a need 

to predict the incident effects in the network and to bring some incident 

management strategies which provides the appropriate response to minimize 

the adverse effects of the incident. 

One way of predicting incident effects is by running an assignment model on 

line, however there are two problems involved in this, firstly road traffic 

assignment and simulation models are very demanding in computing 

(processing) time particularly with very large networks. Secondly even when 

sufficiently powerful computers will be available in the future to run an 
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assignment model on-line, it will require detailed representations of the 

network before an on-line simulation can be run, which can be very costly and 

will not be available for most of the networks. 

For such reasons there is a need for simple statistical models which can be 

used on-line to predict the aifects of an incident in a network. 

In incident conditions under a variety of network traffic scenarios, models are 

required, to predict (i) Number of links that will be affected by an incident, 

(ii) Location of affected links in the network, (iii) Increase in Journey Time 

on incident link, (iv) Increase in Journey Time on incident affected links. 

The extent of the additional journey time caused by an incident is difficult to 

assess as it needs to be separated from the existing background congestion and 

needs to take account of its effect over the network as a whole. The 

quantitative assessments for incident effects must therefore be inferred from 

modelling studies. 

Two methods, (i) trial on street and (ii) simulation, were considered to 

compile a database for different incident/traffic/network scenario. However 

trials on streets are laborious and can be expensive, also they are not practical 

with unpredictable incidents, whereas simulation is easier to realise and can 

be identically repeated with less extra cost. Therefore simulation was 

considered to be the most appropriate method for the compilation of an 

incident data-base on which to build predictive models. 

CONTRAMI is a suitable simulation tool to study the affects of incidents, as 

it allows incident modelling with various type of strategies and simultaneously 

benefits from CONTRAM's fundamental attributes. 
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The affects of unpredictable incidents are less well known. It was therefore, 

more need to simulate unpredictable short-term incidents. 

The simulation of incidents carried out on two urban road networks, allowed 

network dependence to be assessed as well as the other traffic and incident 

related parameters. These are real networks and the simulation results can be 

related to what would be effects of incidents on-street. 

The effects of an incident can be attributed to many parameters, it was seen 

from the simulation results that the incident characteristics which were defined 

as duration and severity are two of the many key parameters. Moreover the 

effect of an incident from one link to another was different, this can be 

attributed to link characteristics (geometric, traffic characteristics) as well as 

of each network. The geometric properties are assumed not to vary strongly 

from one link to another according to the available information provided by 

the original data-files. However the importance of a link in a network and its 

'traffic performance' played an important role in the effects that an incident 

had on other links. A range of parameters can reflect these situations, for 

example Congestion Index (link journey time/link cruise time), Degree of 

saturation (number of arrivals/link capacity), or Delay (link journey time -

cruise time). 

However, only those variables may be used in modelling which would be 

available in a DRG system. This therefore excluded traffic flow and flow-

related parameters, such as degree of saturation, even though these parameters 

may have produced a superior model. Furthermore, because the key goal is 

to build predictive models, the independent parameters in the models referred 

to non-incident conditions so that they are practically available for all links of 

any network, which is only possible for 'normal' traffic conditions. 
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For number of links that were affected by an incident, incident severity 

proved to be a dominant parameter. A linear two stage model can be used, 

with stage 1 describing congestion build-up during the incident and stage 2 

describing post-incident recovery. For stage 1 slope, it was seen that a greater 

severity produce a steeper slope, moreover if the incident link was particularly 

likely to get congested rapidly, then the number of affected links in the 

network grew faster. For "post incident" slope, it was seen that the decay of 

the number of affected links sometimes started only after a transition period 

has been achieved. This transition period reflected a situation where the 

network was still partly congested at the time of the incident end, and where 

drivers would be re-optimising their routes according to the latest traffic 

conditions; for this reason the number of affected links would either rise or 

remain almost constant for a short time. Hence the link 'traffic performance' 

parameter was involved in the number of affected links of the 'after incident' 

situation. 

Following a time-dependent prediction of the number of links affected, it is 

then necessary to locate these links in the network. It is usual that the first 

affected links are the nearest upstream links to the incident link, and that the 

propagation will continue in the direction of the nearest upstream links 

connected to affected links until the maximum number of affected links has 

been reached. Then, after the incident has ended, the number of affected links 

decrease following the reverse process. To find out the location of affected 

links in the network, a reverse route search can be made from the upstream 

node of incident link, upstream links prioritised according to the proportion 

of traffic on the link which also (normally) proceeds through the incident 

affected link. Computer programs written to implement the above procedures 

produced promising results. 

Journey time prediction on incident link can be analyzed using techniques 
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compatible with those as for the prediction of 'number of links affected'. The 

incident modelling using CONTRAMI produced a number of journey time 

profiles. These profiles showed that journey time gradually increase following 

the onset of the incident, and then stabilises to a relatively constant value 

if/when the link becomes full. It also illustrated that the maximum journey 

time on the link (when it is full) varies according to the incident severity, as 

would be expected, as severity is directly related to reduction in capacity. A 

three stage model was therefore developed for the prediction of journey time 

on incident link. As before (for the prediction of number of links affected), 

the incident characteristics which are defined as duration and severity, were 

the key parameters of increase in journey time, moreover the effect of an 

incident from one link to another is different, this can be attributed to link 

characteristics (geometric, traffic characteristics). Two parameters (Congestion 

Index and Delay) were selected to represent link characteristics. 

The developed models were applied to three different networks to predict the 

effects of an incident. The 'goodness' of fit of the models were evaluated by 

comparing the results of developed models with that of CONTRAMI 

(simulation) results and analysing the forecasting-errors. The models showed 

a reasonable predictive quality. 

The developed models have shown the potential for real-time applications. 
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7.2 Further Work 

The time-series methods which were applied in normal-traffic conditions to generate 

journey time forecasts are univariate stochastic models, i.e. forecasts are based on 

historical journey time information on the particular link and updated to reflect the 

current conditions. These models have proved quite successful in forecasting day to 

day patterns of journey time. 

Journey Time, however is a complex variable which is influenced by many other 

factors (e.g. flows, green-time), perhaps the accuracy of forecasts can be improved 

by extending the current models where genuine systematic effects which can be 

explained physically should be taken into account by the inclusion of a suitable 

deterministic component in the model. For example, if it is known that flow is being 

added to a network, then it would be better to explain the resulting increase in 

journey time by means of a suitable deterministic function, in addition to the 

stochastic component. This will require to construct deterministic models (multiple 

regression models and/or multiple time series models). Constructing a deterministic 

model that is likely to provide more accurate forecasts of a given time series requires 

both specifying an appropriate set of independent variables (say flow, queue length, 

green-time etc) and determining the functional form of the regression relationship 

between the dependent variable and a given set of independent variables. 

Also, so far in normal-traffic conditions, the forecasting methods were applied to 

individual links and do not encompass link interactions, the build up/decay of queues 

or other network influences. In urban networks the traffic parameters journey 

time/congestion are often associated with one or more "pinchpoints" from which 

queues spread to affect a number of upstream links. Queues on adjacent links are 

then interrelated both in time and space, and the forecasting on an independent link-

by-link basis becomes less relevant. A useful method for forecasting journey time in 

urban networks is the use of so called transfer function models. These models are the 
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extension of univariate ARIMA models where journey time at a link can be related 

with its key controlling parameters, such as flow on upstream links. The methods 

could be further tested and refined on-line by adopting methods for automatic 

validation within systems where such forecasts are used (e.g. for route guidance). An 

expert system approach could also be adopted in which the performance of a range 

of forecasting methods is automatically monitored and the method chosen appropriate 

to the traffic situation. 

For journey time forecasting in incident conditions, this study has been based on 

simulation modelling of a variety of traffic/network incident scenarios, producing a 

database from which generalised statistical models have been developed for 

predicting the spread of congestion effects following an incident and the required 

journey time modifications on incident link and on affected links. These models have 

demonstrated the potential in real time systems (such as in DRG). However, before 

these models can be used, some improvements are envisaged. The incident 

simulations were based on 'no diversion' strategy for drivers, therefore, although the 

results were considered reasonable for this study, they are expected to produce 

somewhat worse traffic conditions than those which could occur in practice. As a 

consequence the predicted values of 'Ml ' and 'SI ' slopes are expected to be slightly 

greater than practical ones. There is evidence fi-om on-street observations that a 

certain number of drivers do divert from their original route when an incident 

happens although no quantification of this effect has been achieved. This could be 

simulated by CONTRAMI by describing the maximum number of diversions allowed 

per driver, the coefficient of diversion and the percentage of vehicles diverting. 

Several strategies could therefore be experienced by CONTRAMI simulation, and 

it can be imagined that the strategies could be adjusted to each network and type of 

road users. Incident databases can then be compiled according to the individual 

network requirements and the developed models can then be re-calibrated by using 

the compiled database. 

188 



7.3 Concluding Comments 

Journey time forecasting in urban areas is likely to become an increasingly important 

element in traffic information and control systems. This study has revealed suitable 

time-series methods for such forecasting on link-by-link basis and also illustrated the 

usefulness of a comprehensive historic database, such as can be obtained from 

SCOOT Urban Traffic Control system, in providing the basis for such short-term 

forecasting using time-series techniques. A key requirement is appropriate 

disaggregation of the database to represent all sources of "predictable" time 

variability. An appropriate forecasting update interval is also required to provide a 

dynamic forecast but one which is not dominated by "noise". A 5-minute interval 

has been used successfully in this study. Time series forecasting has the merits of 

relative simplicity and of "direct" forecasting of the parameter(s) of interest. It is 

appropriate for link-based forecasting in conditions of low/moderate congestion. 

These methods have been successfully used in this study to develop journey time 

forecasting models for real data sets where traffic was reasonably recurrent. 

For incident conditions, historic patterns become unstable and time-series forecasting 

is more difficult. A different modelling strategy is then required. This study has 

demonstrated the usefulness of simulation tool such as CONTRAMI to compile an 

incident database for different incident/traffic/network scenarios to study the effects 

of an incident. From such simulated incident database, generalised statistical models 

can be developed for predicting the effects of an incident and required journey time 

forecasting on incident link and on affected links. Such models have been developed 

and applied for various incident scenarios in this study. Despite some limitations and 

required improvements mentioned earlier, it is considered that the developed models, 

would be very valuable for application within real time traffic control and 

information systems, such as in Dynamic Route Guidance Systems and in Drivers 

Information Systems. 
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Appendix A 

Estimates of Seasonal-Ratios For HS-Model 
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Table A.l Seasonal Ratios for Link N019D on 20-2-91 

Time S-Ratio ' Time S-Ratio Time S-Ratio 

07:05 0.92 08:05 1.33 09:05 0.91 
07:10 0.93 08:10 1.06 09:10 0.87 
07:15 0.92 08:15 1.01 09:15 0.92 
07:20 0.97 08:20 0.99 09:20 0.94 
07:25 0.96 08:25 0.98 09:25 0.98 
07:30 1.07 08:30 1.02 09:30 0.93 
07:35 0.95 08:35 0.98 09:35 0.96 
07:40 0.94 08:40 1.05 09:40 0.93 
07:45 1.11 08:45 1.01 09:45 0.88 
07:50 1.17 08:50 1.06 09:50 0.94 
07:55 1.13 08:55 0.97 09:55 1.01 
08:00 1.24 09:00 0.96 10:00 1.02 

Table A.2 Seasonal Ratios for Link N018E on 14-6-91 

Time S-Ratio Time S-Ratio Time S-Ratio 

07:05 0.63 08:05 1.00 09:05 0.73 
07:10 0.68 08:10 1.23 09:10 0.69 
07:15 0.71 08:15 1.48 09:15 0.72 
07:20 0.69 08:20 1.84 09:20 0.70 
07:25 0.67 08:25 1.91 09:25 0.72 
07:30 0.71 08:30 1.94 09:30 0.70 
07:35 0.75 08:35 1.65 09:35 0.67 
07:40 0.80 08:40 1.79 09:40 0.63 
07:45 0.86 08:45 1.90 09:45 0.61 
07:50 1.16 08:50 1.34 09:50 0.65 
07:55 1.35 08:55 0.97 09:55 0.60 
08:00 1.11 09:00 0.78 10:00 0.63 

1 Seasonal ratio : calculated by the relation JT,/JT(,) 

where 

JT, is journey time at time period t 

JT(q is average journey time on day i 
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Table A. 3 Seasonal Ratios for Route 1 on 14-6-91 

Time S-Ratio Time S-Ratio Time S-Ratio 

07:05 0.81 08:05 0.97 09:05 0.96 
07:10 0.84 08:10 1.07 09:10 0.93 
07:15 0.89 08:15 1.16 09:15 0.89 
07:20 0.88 08:20 1.27 09:20 0.88 
07:25 0.87 08:25 1.30 09:25 0.88 
07:30 0.87 08:30 1.29 09:30 0.88 
07:35 0.90 08:35 1.28 09:35 0.87 
07:40 0.94 08:40 1.24 09:40 0.85 
07:45 1.04 08:45 1.29 09:45 0.83 
07:50 1.10 08:50 1.26 09:50 0.86 
07:55 1.10 08:55 1.13 09:55 0.82 
08:00 1.00 09:00 1.02 10:00 0.81 
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Table B.l Link N019D - Journey Time Forecasts on 20-2-91 

Time Observed BJ-Model * HS-Model 2 Time Observed 

Forecasts ' Updated * Forecasts Updated 

07:05 27.75 26.95 26.95 30.27 30.27 
07:10 31.10 28.79 28.79 30.46 29.70 
07:15 30.59 29.08 29.66 30.28 29.94 
07:20 27.75 30.42 30.26 31.80 31.65 
07:25 29.69 30.10 28.67 31.51 30.20 
07:30 33.91 33.95 34.62 35.05 33.43 
07:35 27.84 31.09 31.20 31.40 30.07 
07:40 30.41 29.80 28.64 31.04 29.07 
07:45 46.90 34.80 36.02 36.44 34.59 
07:50 32.31 37.23 41.41 38.58 40.53 
07:55 29.64 35.08 29.59 37.20 36.71 
08:00 28.32 36.01 35.57 40.65 37.80 
08:05 33.15 41.53 40.42 43.66 37.55 
08:10 33.10 32.86 32.20 35.05 29.08 
08:15 36.14 30.93 33.59 33.30 28.77 
08:20 30.78 30.11 31.92 32.72 30.44 
08:25 33.67 29.78 28.42 32.38 30.23 
08:30 29.58 30.74 31.94 33.41 32.25 
08:35 28.81 29.74 28.12 32.16 30.28 
08:40 34.61 33.10 33.12 34.45 31.96 
08:45 31.08 32.20 33.03 33.14 31.51 
08:50 27.19 34.78 33.92 34.88 33.03 
08:55 32.15 31.34 28.94 31.93 28.63 
09:00 32.91 30.37 32.99 31.65 29.43 
09:05 25.92 28.90 29.57 29.81 28.70 
09:10 29.59 27.76 25.90 28.58 26.72 
09:15 30.18 29.03 30.61 30.36 29.30 
09:20 28.50 29.71 29.56 30.89 30.08 
09:25 27.60 31.64 30.85 32.32 30.98 
09:30 30.24 31.19 30.10 30.56 28.33 
09:35 29.03 33.23 34.13 31.68 29.96 
09:40 28.39 29.64 28.41 30.49 28.57 
09:45 31.04 29.02 29.85 28.86 26.99 
09:50 28.91 30.47 31.58 30.88 30.18 
09:55 30.74 31.03 29.85 33.27 32.11 
10:00 35.28 30.40 30.77 33.68 32.08 

1 BJ-Model is Box-Jenkins modelling : ARIMA (0,1,2)(0,1,1) 
2 HS-Model is Horizontal-Seasonal modelling : a=0.3 and 7=0.2 
3 Forecasts are 36-steps ahead not-updated forecasts. 
4 Updated are 1-step ahead updated forecasts. 
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Table B.2 Link N018E - Journey Time Forecasts on 14-6-91 

Time Observed BJ-Model HS-Model Time Observed 

Forecasts Updated Forecasts Updated 

07:05 35.29 32.52 32.52 31.78 31.78 
07:10 32.34 36.96 36.96 34.49 35.63 
07:15 36.82 36.48 33.53 35.81 35.97 
07:20 39.41 35.87 37.79 34.78 35.19 
07:25 36.00 33.92 35.23 34.18 35.83 
07:30 33.05 35.26 34.74 36.08 37.87 
07:35 34.34 38.10 36.40 38.20 38.56 
07:40 49.64 42.17 41.50 40.59 39.63 
07:45 45.62 40.14 44.64 43.49 45.68 
07:50 48.41 48.52 47.85 58.95 61.90 
07:55 65.34 71.94 69.77 68.21 66.94 
08:00 50.42 71.32 68.68 56.39 54.94 
08:05 40.06 59.25 53.30 50.48 47.97 
08:10 54.49 74.07 74.35 62.45 56.41 
08:15 91.65 76.70 76.16 74.99 67.04 
08:20 99.01 92.98 106.63 93.25 92.54 
08:25 99.38 99.02 95.69 96.78 98.06 
08:30 88.78 106.60 104.41 98.40 100.10 
08:35 91.07 80.99 73.60 83.70 82.26 
08:40 92.26 88.92 99.91 90.47 91.76 
08:45 88.87 96.02 93.48 96.00 97.53 
08:50 64.18 71.30 67.10 67.90 67.14 
08:55 44.30 55.59 55.46 49.32 48.13 
09:00 44.31 41.09 39.25 39.53 37.65 
09:05 46.25 36.20 41.88 37.12 37.24 
09:10 34.50 35.55 38.39 34.87 37.52 
09:15 42.02 36.67 32.35 36.49 38.32 
09:20 39.39 33.60 36.18 35.21 38.04 
09:25 33.19 35.89 36.17 36.41 39.76 
09:30 39.61 34.81 31.47 35.38 36.71 
09:35 30.14 35.49 38.48 33.72 35.82 
09:40 32.56 35.31 31.28 31.88 32.26 
09:45 32.57 32.25 33.20 30.92 31.37 
09:50 34.87 34.23 35.43 32.85 33.72 
09:55 35.72 30.10 30.23 30.18 31.29 
10:00 36.11 32.12 34.16 32.01 34.59 
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Table B.3 Routel - Journey Time Forecasts on 14-6-91 

Time Observed BJ-Model HS-Model Time Observed 

Forecasts Updated Forecasts Updated 

07:05 202.12 200.91 200.91 204.91 204.91 
07:10 197.30 215.22 215.22 213.29 212.42 
07:15 205.49 231.31 221.06 226.63 220.89 
07:20 208.90 226.21 216.37 224.41 214.15 
07:25 213.86 224.26 221.11 222.05 210.34 
07:30 227.11 229.91 228.47 221.74 211.10 
07:35 222.32 229.67 230.71 228.60 222.58 
07:40 268.17 241.41 238.04 239.74 233.34 
07:45 248.98 251.32 268.01 265.33 269.82 
07:50 256.00 264.25 256.26 279.72 277.86 
07:55 263.72 283.41 279.41 280.25 271.81 
08:00 236.44 269.29 260.43 255.10 245.21 
08:05 216.33 249.22 235.91 245.35 233.30 
08:10 253.99 276.18 266.14 272.60 253.56 
08:15 309.74 285.21 281.12 295.54 275.04 
08:20 312.78 315.82 334.98 322.68 311.67 
08:25 327.15 332.43 324.61 330.83 319.88 
08:30 311.04 334.78 332.61 328.23 319.53 
08:35 315.42 327.29 315.44 324.70 313.57 
08:40 303.11 315.25 314.60 316.06 305.77 
08:45 303.41 332.81 329.04 326.87 315.40 
08:50 280.17 345.25 331.96 320.27 305.51 
08:55 246.77 312.04 283.27 285.95 265.98 
09:00 253.68 278.33 258.38 258.29 235.05 
09:05 235.56 254.55 257.18 243.48 226.83 
09:10 226.25 246.22 241.85 235.49 221.93 
09:15 237.92 232.67 226.34 227.25 215.41 
09:20 240.67 225.49 233.39 223.07 218.07 
09:25 226.16 224.74 231.85 224.44 226.23 
09:30 212.06 226.69 223.68 224.27 226.05 
09:35 218.46 227.43 218.96 221.38 218.99 
09:40 208.50 226.22 224.90 216.32 213.82 
09:45 198.81 220.12 212.52 211.35 207.35 
09:50 213.27 223.74 216.35 218.21 211.43 
09:55 238.77 213.98 213.49 208.39 202.45 
10:00 214.07 206.64 223.02 206.29 211.20 
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C.l BJ-Model Updating Program 

PROGRAM UPDATE_BJ 
INCLUDE 'JVAR.FOR' 

This program reads Journey Time forecasts generated by BOX-JENKINS 
procedures of STATGRAPHICS package and update the forecasts for 
every time period by reading the current day observations. Program also 
calculates forecast-error statistics. 

WRITE(*,») 
* 

CALL READ_FCAST 
CALL READ_NDATA 

* 

WRITE(*,*) 'Enter the model number = ' 
READ(»,*) NO 

* 

IF(NO.EQ.35) THEN 
CALL MODEL_35 

ELSE 
WRITE(*,*) ' This model can not be updated.' 
GOTO 99 

ENDIF 
* 

CALL WRITE_FCAST 
CALL ERROR_STAT 

* 

99 END 

COMMON/PAR/NO,SERR,SAERR,SSERR,SPERR, 

1 SAPERR.SEl ,SE2,ME1 ,ME2,SAE1 ,SAE2,SSE1 ,SSE2,MAD1 ,MAD2,MSE1 ,MSE2, 
2CHISUMl,CHISUM2,CHISQl,CfflSQ2,PSUMl,PSUM2,MAPEl,MAPE2 

* 

COMMON/DIMl/0BSER,ERR1 ,ERR2,ME,MAE,MSE,MPE,MAPE 
* 

COMMON/DIMl/ FCAST,UPDATE 
* 

COMMON/CHAR/ TIME 
* 

* 

INTEGER NO 
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REAL OBSER(36),ERRl(36),ERR2(36) 
REAL FCAST(36),UPDATE(36) 
REAL SERR,SAERR,SSERR,SPERR,SAPERR 
REAL ME(36),MAE(36),MSE(36),MPE(36),MAPE(36) 
REAL SEl ,ME1 ,SAE1 ,SSE1 ,MAD1 ,MSE1 ,CHISUM1 ,CfflSQl ,PSUM1 ,MAPE1 
REAL SE2,ME2,SAE2,SSE2,MAD2,MSE2,CfflSUM2,CfflSQ2,PSUM2,MAPE2 
CHARACTER*5 TIME(36) 

SUBROUTINE READ_FCAST 
INCLUDE 'JVAR.FOR' 
INTEGER I 
CHARACTER»15 FFILE 
WRITE(»,*) 'Enter the FORECASTS file name : ' 
READ(*,16) FFILE 

16 FORMAT(AIO) 
OPEN (UNIT= 1 ,FILE=FFILE,STATUS = 'OLD') 
DO 101=1,36 

READ(1,11,END=100) FCAST(I) 
11 FORMAT(F10.5) 
10 CONTINUE 
100 END 

SUBROUTINE READ_NDATA 
INCLUDE 'JVAR.FOR' 
INTEGER K,CT 
REAL DELAY(36),FLOW(36) 
CHARACTER* 15 NDFILE 
WRITE(*,*) 'Enter the NEW DATA filename : ' 
READ(*,25) NDFILE 

25 F0RMAT(A15) 
OPEN (UNIT=2, FILE=NDFILE,STATUS = 'OLD') 
WRITE(*,*) 'Enter the CRUISE TIME = ' 
READ(*,*) CT 
DO 21 K=l,36 
READ(2,22,END=200) TIME(K),DELAY(K),FLOW(K) 

22 FORMAT(A5,F5.0,F6.0) 
OBSER(K)=((DELAY(K)/FLOW(K))»360.0)+FLOAT(CT) 

21 CONTINUE 
200 END 

SUBROUTINE MODEL_35 
= = = = = = ARIMA (0,1,2)(0,1,1) 

INCLUDE 'JVAR.FOR' 

200 



INTEGER I,J 
REAL THETA1 ,THETA2 

* 

WRITE(»,») 'Enter the value of THETAl = ' 
READ(*,») THETAl 

* 

WRITE(»,») 'Enter the value of THETA2 = ' 
READ(*,*) THETA2 

* 

UPDATE(1)=FCAST(1) 
UPDATE(2)=FCAST(2) 

* 

DO 341 1=3,36 
UPDATE(I)=FCAST(I)-FCAST(I-1)+0BSER(I-1)-

1 THETAl*(OBSER(I-l)-FCAST(I-l))-
2 THETA2*(0BSER(I-2)-FCAST(I-2)) 

342 CONTINUE 
341 CONTINUE 

END 
• 

* 

SUBROUTINE WRITE_FCAST 
INCLUDE 'JVAR.FOR' 
INTEGER I 
CHARACTER*15 UPFILE 
WRITE(*,») ' Enter the UPDATED FORECASTS file name : ' 
READ(*,56) UPFILE 

56 FORMAT(AIO) 
OPEN (UNIT=9,FILE=UPFILE,STATUS = 'NEW') 
DO 51 1 = 1,36 
WRITE(9,52) I,FCAST(I),OBSER(I),UPDATE(I) 

52 F0RMAT(1X,I2,2X,3(1X,F8.2)) 
51 CONTINUE 
500 END * 

* 

SUBROUTINE ERROR_STAT 
INCLUDE 'JVAR.FOR' 
CHARACTER*15 ESFILE 
WRITE(*,») ' Enter ERROR STATISTICS file name : ' 
READ(»,70) ESFILE 

70 FORMAT(AIO) 
OPEN (UNIT=8,FILE=ESFILE,STATUS = 'NEW') 
SE1=0.0 
SAE1=0.0 
SSE1=0.0 
CHISUM1=0.0 
PSUM1=0.0 
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DO 71 1=1,36 
ERR 1 (I)=OBSER(I)-FCAST(I) 
SE1=SE1+ERR1(I) 
SAEl =SAE1 + ABS(ERR1(I)) 
SSEl =SSE1 +ERR1(I)**2 
CfflSUMl =CHISUMH-(ERR1(I)/0BSER(I)) 
PSUMl =PSUM1 + ABS(ERR1(I)/0BSER(I)) 

71 CONTINUE 
MEl=SEl/36.0 
MADl=SAEl/36.0 
MSEl =SSEl/36.0 
CHISQl =(100.0/36.0)»CfflSUMl 
MAPEl =(100.0/36.0)»PSUM1 
SE2=0.0 
SAE2=0.0 
SSE2=0.0 
CHISUM2=0.0 
PSUM2=0.0 
DO 72 J=1,36 
ERR2(J)=OBSER(J)-UPD ATE(J) 
SE2=SE2+ERR2(J) 
SAE2=SAE2+ABS(ERR2(J)) 
SSE2=SSE2+ERR2(J)*»2 
CHISUM2=CHISUM2+(ERR2(J)/0BSER(J)) 
PSUM2 =PSUM2+ABS(ERR2(J)/0BSER(J)) 

72 CONTINUE 
ME2=SE2/36.0 
MAD2=SAE2/36.0 
MSE2=SSE2/36.0 
CHISQ2=(100.0/36.0)*CHISUM2 
MAPE2=(100.0/36.0)*PSUM2 
WRITE(8,73) MEl, ME2, MADl, MAD2, MSEl, MSE2, CHISQl, CHISQ2, 
MAPEl, MAPE2 

73 F0RMAT(8X///,8X,'F0RECAST',38X,'UPDATE',1X////, 
17X,'ME = ',F12.2,28X,'ME = ',F12.2////, 
26X,'MAE = ' ,F12.2,28X,'MAE = ',F12.2////, 
37X,'MSE = ',F12.2,26X,'MSE = ',F12.2////, 
47X,'MPE = ',F12.2,26X,'MPE = ',F12.2////, 
57X,'MAPE = ',F12.2,26X,'MAPE = \F12.2) 
WRITER,*) 'THIS IS END OF THE PROGRAM' 
END 
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C.2 Program to Implement HS-Model 

PROGRAM MODEL 
INCLUDE 'HSVARS.FOR' 
CHARACTER* 10 FRFILE 

* 

* 
* 

* 

* 

* 

* 

* 

* 

* 
* 
* 

This program implement HORIZONTAL SEASONAL MODEL. 

» INPUT: * 

Number of days. 
Number of time periods in each day. 
Data file containing specified number of days data. 
Data file containing current day data for updating. 
Values of smoothing parameters. 

* OUTPUT: 
* 

* 36-steps ahead not-updated forecasts. 
* 1-step ahead updated forecasts. 
* Forecast-Error statistics. 

WRITE(*,*) 
WRITE(*,*) 'Enter ' 
WRITE(*,») 
WRITE(*/) 'DAYS = ' 
READ*,DAYS 
WRITE(*,») 'TIME PERIODS = 
READ*,PERIODS 
WRITE(*,*) 'ALPHA = ' 
READ(*,*) ALPHA 
WRITE(*,*) 'GAMMA = ' 
READ(*,*) GAMMA 
WRITE(*,*) 'Cruise Time = ' 
READ(*,») CT 
WRITE(*,*) 
CALL STEPl 
CALL STEP2 
CALL STEP3 
CALL STEP4 
CALL STEPS 
CALL STEP6 
CALL FC 
CALL NDATA 
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PRINT* 
CALL UPDATE 

PRINT* 
WRITE(*,») ' Enter the FORECAST RESULTS file name 
READ(*,106) FRFILE 

106 FORMAT(AIO) 
OPEN (UNIT=13,FILE=FRFILE,STATUS = 'NEW') 
DO 96 1=1,PERIODS 
WRITE(13,93) I,FORECAST(I),NEWDATA(I),UPCAST(I) 

93 FORMAT(lX,I2,2X,3(lX,F8.2)) 
96 CONTINUE 

PRINT* 
CALL ANALYSIS 
PRINT* 
CALL WP 
PRINT* 
END 

COMMON/DIM2/ DATA,RTILD,AHAT,RHAT 
COMMON/DIM 1/ MEAN,RFINAL,FORECAST,NEWDATA,UPCAST 
COMMON/PAR/DAYS,PERIODS,ALPHA,GAMMA,CT 
COMMON/CHAR/TIME 

REAL DATA(11,36),RTILD(11,36),AHAT(11,0:36),RHAT(11,0:36) 
REAL MEAN(36),RFINAL(36),FORECAST(36),NEWDATA(36),UPCAST(36) 
INTEGER DAYS,PERIODS 
REAL ALPHA,GAMMA,CT 
CHARACTER*5 TIME(36) 

SUBROUTINE STEPl 
* 

* 

INCLUDE 'HSVARS.FOR' 
REAL DELAY(10,36),FLOW(10,36) 
CHARACTER»10 DFILE 

WRITE(*,*) ' Enter the DATA file name :' 
READ(*,16) DFILE 

16 FORMAT(AIO) 
OPEN (UNIT=11 ,FILE=DFILE,STATUS = 'OLD') 
DO 10 1=1,DAYS 
DO 11 J=1,PERIODS 

READ(11,12,END=100) DELAY(I,J),FLOW(I,J) 
12 FORMAT(5X,F4.0,F5.0) 

DATA(I,J)=((DELAY(I,J)/FLOW(I,J))*360.0)4-CT 
11 CONTINUE 
10 CONTINUE 
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100 RETURN 
END 

SUBROUTINE STEP2 

REAL SUM(36) 
INCLUDE 'HSVARS.FOR' 
DO 20 1=1,DAYS 
SUM(I)=0 

DO 21 J=1,PERIODS 
SUMO)=SUM(I)+DATA(I, J) 

21 CONTINUE 
MEAN(I)=SUM(I)/FLOAT(PERIODS) 

20 CONTINUE 
RETURN 
END 

SUBROUTINE STEP3 

INCLUDE 'HSVARS.FOR' 
DO 30 1=1,DAYS 
DO 31 J =1,PERIODS 

RTILD(I, J)=DATA(I, J)/MEAN(I) 
31 CONTINUE 
30 CONTINUE 

RETURN 
END 

SUBROUTINE STEP4 

REAL SRTILD(36) 
INCLUDE 'HSVARS.FOR' 
DO 40 J=1,PERIODS 
SRTILD(J)=0 

DO 41 1 = 1,DAYS 
SRTILD(J)=SRTILD(J)+RTILD(I,J) 

41 CONTINUE 
RHAT(1 ,J)=SRTILD(J)/FLOAT(DAYS) 

40 CONTINUE 
RETURN 
END 

SUBROUTINE STEPS 
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INCLUDE 'HSVARS.FOR' 
DO 50 1 = 1,DAYS 
IFa.EQ.l)THEN 

AHATa,0)=MEAN(I) 
ELSE 

AHAT(I,0)=AHAT(I-1,PERIODS) 
ENDIF 

DO 51 J =1,PERIODS 
IF(J.EQ.1)THEN 
RHAT(I+1,0) =RHAT(I,PERIODS) 

ENDIF 
AHAT(I,J)=ALPHA*(DATA(I,J)/RHATa,J))+(1.0-ALPHA)*AHAT(I,M) 
RHAT(I+1 ,J)=GAMMA*(DATA(I,J)/AHAT(I,J))+(1.0-GAMMA)*RHAT(I,J) 

51 CONTINUE 
50 CONTINUE 

RETURN 
END 

SUBROUTINE STEP6 
» 

REAL RSUM,RMEAN 
INCLUDE 'HSVARS.FOR' 
RSUM=0.0 
DO 61 1=1,PERIODS 
RSUM=RSUM+RHAT(DAYS+1,1) 

61 CONTINUE 
RMEAN=RSUM/FLOAT(PERIODS) 

DO 62 J=1,PERIODS 
RFINAL(J)=RHAT(DAYS +1 ,J)/RMEAN 

62 CONTINUE 
RETURN 
END 

* 

* 

SUBROUTINE FC 
• 

INCLUDE 'HSVARS.FOR' 
DO 71 1=1,PERIODS 
FORECAST(I)=AHAT(DAYS,PERIODS)*RFINAL(I) 

71 CONTINUE 
RETURN 

END 
* 

• 

SUBROUTINE NDATA 
* 

INCLUDE 'HSVARS.FOR' 
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REAL NDELAY(36),NFLOW(36) 
CHARACTER* 10 NDFILE 
WRITE(»,*) ' Enter the NEW DATA file name 
READ(*,79) NDFILE 

79 FORMAT(AIO) 
OPEN (UNIT= 12,FILE=NDFILE,STATUS = 'OLD') 
DO 75 1=1,PERIODS 
READ(12,76,END=200)TIME(I),NDELAY(I),NFLOW(I) 

76 FORMAT(A5,F4.0,F5.0) 
NEWDATA(I)=((NDELA Y(I)/NFLOW(I))*360.0)+CT 

75 CONTINUE 
200 RETURN 

END 

SUBROUTINE UPDATE 
* 

REAL AHATNEW(0:36),RNEW(36) 
INCLUDE 'HSVARS.FOR' 
AHATNEW(O) = AHAT(DA YS .PERIODS) 
DO 81 1=1,PERIODS 

AHATNEW(I)=ALPHA*(NEWDATA(I)/RFINAL(I))+(1.0-ALPHA)*AHATNEW(I-1) 
RNEW(I)=GAMMA»(NEWDATA(I)/AHATNEW(I))+GAMMA*RFINAL(I) 

81 CONTINUE 
DO 82 J=2,PERIODS 
UPC AST(J)=AHATNEW(J-1 )*RFINAL(J) 

82 CONTINUE 
UPCAST(1)=F0RECAST(1) 

RETURN 
END 

SUBROUTINE ANALYSIS 

INCLUDE 'HSVARS.FOR' 
REAL ERR1(36),ERR2(36) 
REAL SEl ,SAE1 ,SSE1 ,ME1 ,MAD1 ,MSE1 .CHISUMl ,CHISQ1 ,PSUM1 ,MAPE1 
REAL SE2,SAE2,SSE2,ME2,MAD2,MSE2,CHISUM2,CHISQ2,PSUM2,MAPE2 
CHARACTER*10 FEFILE 
SEl =0.0 
SAE1=0.0 
SSE1=0.0 
CHISUM1=0.0 
PSUM1=0.0 
DO 101 1=1,PERIODS 
ERR 1 (I)=NEWDATA(I)-FORECAST(I) 
SE1=SE1+ERR1(I) 
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SAEl =SAE1 + ABS(ERR1(I)) 
SSEl =SSE1 +ERR1(I)»*2 
CHISUMl =CfflSUMl +(ERRia)/NEWDATA(I)) 
PSUMl =PSUM1 + ABS(ERR1(I)/NEWDATA(I)) 

101 CONTINUE 
MEl =SE1/FL0AT(PERI0DS) 
MADl =SAE1/FL0AT(PERI0DS) 
MSEl =(SSEl/FLOAT(PERIODS)) 
CfflSQl =(100.0/36.0)»CfflSUMl 
MAPEl =(1(X).0/36.0)*PSUM1 
SE2=0.0 
SAE2=0.0 
SSE2=0.0 
CHISUM2=0.0 
PSUM2=0.0 

DO 103 J=1,PERIODS 
ERR2(J)=NEWDATA(J)-UPCAST(J) 
SE2=SE2+ERR2(J) 
S AE2=S AE2+ABS(ERR2(J)) 
SSE2=SSE2+ERR2(J)*»2 
CHISUM2=CHISUM2+(ERR2(J)/NEWD ATA(J)) 
PSUM2=PSUM2+ABS(ERR2(J)/NEWDATA(J)) 

103 CONTINUE 
ME2=SE2/FL0AT(PERI0DS) 
MAD2=S AE2/FL0AT(PERI0DS) 
MSE2=(SSE2/FL0AT(PERI0DS)) 
CHISQ2=(100.0/36.0)*CHISUM2 
MAPE2=(100.0/36.0)*PSUM2 

* 

WRITE(*,*) ' Enter the FORECAST ERROR file name 
READ(*,107) FEFILE 

107 FORMAT(AIO) 
OPEN (UNIT= 18,FILE=FEFILE,STATUS = 'NEW') 
WRITE(18,102) 

MEl,ME2,MADl ,MAD2,MSEl ,MSE2,CfflSQl ,CfflSQ2,MAPEl, 
1MAPE2 

102 FORMAT(8X///,8X,'FORECAST' ,38X, 'UPDATE', IX////, 
18X,'ME = ',F8.2,34X,'ME = ',F8.2////, 
27X,'MAE = ',F8.2,33X,'MAE = ',F8.2///, 
37X,'MSE = ',F8.2,30X,'MSE = ',F8.2///, 
47X,'MPE = ',F8.2,33X,'MPE = ',F8.2///, 
57X,'MAPE = ',F8.2,33X,'MAPE = ',F8.2) 
RETURN 
END 

* 

• 

SUBROUTINE WP 
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INCLUDE 'HSVARS.FOR' 
CHARACTER»10 RFILE 
WRITE(*,») ' Enter the WP-RESULTS file name 
READ(*,119) RFILE 

119 FORMAT(AIO) 
OPEN (UNIT=15,FILE=RFILE,STATUS = 'NEW') 
WRITE(15,*) 'AHAT(6,36) = AHAT(DAYS,PERIODS) 
WRITE(15,») 
DO 109 1=1,DAYS 
WRITE(15,112) I,MEAN(I) 

112 FORMAT(2X,I2,2X,F5.2) 
109 CONTINUE 

WRITE(15,») 
DO 1101=1,12 
WRITE(15,111) TIME(I),RFINAL(I),TIME(I+ 12),RFINAL(I+ 12),TIME(I+24) 
l,RFINAL(I+24) 

111 FORMAT(3(3X,A5,2X,F8.2)) 
110 CONTINUE 

RETURN 
END 
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Appendix D 

Traffic Characteristics of the links studied. 
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Table D.l Congestion Index values for Non-Incident case (Simulated) 

Time * K-714 K-730 B-1494 B-1692 L-3232 

8:05 1.29 1.00 1.85 2.80 1.75 
8:10 1.57 1.51 2.45 2.98 1.75 
8:15 2.06 1.96 2.92 2.97 1.93 
8:20 2.84 1.93 3.19 3.18 2.25 
8:25 4.44 2.21 3.92 3.19 2.42 
8:30 6.50 2.78 5.20 3.17 3.24 
8:35 6.07 2.94 5.62 2.95 3.28 
8:40 6.22 3.06 5.10 3.00 3.03 
8:45 6.63 2.78 4.22 2.97 3.49 
8:50 5.91 2.69 4.12 3.18 3.21 
8:55 2.65 2.05 4.49 3.20 2.52 
9:00 1.81 2.17 5.11 3.17 2.89 

Table D.l Degree of Saturation values for Non-Incident case (Simulated) 

Time K-714 K-730 B-1494 B-1692 

8:05 0.06 0.00 0.35 0.13 
8:10 0.51 0.24 0.95 0.23 
8:15 0.77 0.17 0.95 0.33 
8:20 0.95 0.51 0.98 0.36 
8:25 1.13 0.53 1.16 0.33 
8:30 0.94 0.86 1.05 0.34 
8:35 1.01 0.78 0.98 0.23 
8:40 1.02 0.89 0.85 0.24 
8:45 0.98 0.78 0.93 0.33 
8:50 0.87 0.75 0.97 0.36 
8:55 0.76 0.50 1.09 0.34 
9:00 0.71 0.57 0.97 0.37 

K-714 Kingston Network Link 714 
K-730 Kingston Network Link 730 
B-1494 Boscombe Network Link 1494 
B-1692 Boscombe Network Link 1692 
L-3232 London Network Link 3232 
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Table D.3 Delay (sec/veh) values for Non-Incident case (simulated) 

Time K-714 K-730 B-1494 B-1692 L-3232 

8:05 4 0 27 9 21 
8:10 6 11 45 10 21 
8:15 11 20 60 10 26 
8:20 19 17 69 11 35 
8:25 37 22 95 11 40 
8:30 57 31 135 11 40 
8:35 49 34 144 10 63 
8:40 53 36 121 10 62 
8:45 57 31 99 10 56 
8:50 47 29 97 11 72 
8:55 15 18 111 11 60 
9:00 8 20 129 11 41 
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Simulated Number of Links Affected 
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Table E.l Number of links affected with incident on link K-714 (Simulated) 

Time * 11 12 13 14 15 16 

8:05 0 0 0 1 1 1 
8:10 0 1 1 1 1 1 
8:15 0 1 1 2 2 2 
8:20 0 2 2 3 4 5 
8:25 0 5 4 3 9 9 
8:30 0 8 8 2 26 27 
8:35 0 9 11 4 33 38 
8:40 0 9 15 4 33 46 
8:45 0 8 17 4 31 51 
8:50 0 9 15 3 26 53 
8:55 0 6 12 3 23 54 
9:00 0 3 10 1 18 51 

Time 17 18 19 no 111 112 

8:05 1 1 1 1 1 1 
8:10 2 2 2 3 3 3 
8:15 4 4 4 9 9 9 
8:20 4 10 10 10 20 20 
8:25 9 23 23 12 34 34 
8:30 7 37 38 12 51 51 
8:35 8 46 52 18 56 55 
8:40 8 51 54 19 55 57 
8:45 8 49 58 17 56 57 
8:50 9 48 58 18 56 57 
8:55 7 43 59 14 58 60 
9:00 2 20 59 11 57 60 

Incident categories II .. 112 are defined as: 

Severity Duration Severity 

15-min 30-min 45-min 

20% 11 12 13 
50% 14 15 16 
70% 17 18 19 
99% no 111 112 
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Table E.2 Number of links affected with incident on link K-730 (Simulated) 

Time 11 12 13 14 15 16 

8:05 0 0 0 0 0 0 
8:10 0 0 0 0 1 1 
8:15 0 0 0 0 1 1 
8:20 0 0 1 0 1 1 
8:25 0 0 1 0 1 1 
8:30 0 0 1 0 1 3 
8:35 0 0 1 0 1 3 
8:40 0 0 1 0 1 5 
8:45 0 0 1 0 1 5 
8:50 0 0 1 0 1 5 
8:55 0 0 0 0 0 4 
9:00 0 0 0 0 0 3 

Time 17 18 19 no 111 112 

8:05 0 0 0 0 0 0 
8:10 0 1 1 1 1 1 
8:15 0 1 1 1 1 1 
8:20 0 1 1 1 3 3 
8:25 0 3 3 0 5 5 
8:30 0 5 6 0 6 7 
8:35 0 4 5 0 5 11 
8:40 0 3 6 1 6 14 
8:45 0 3 12 1 7 19 
8:50 0 3 11 1 6 22 
8:55 0 1 10 1 5 22 
9:00 0 0 9 0 6 23 
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Table E.3 Number of links affected with incident on link B-1692 (Simulated) 

Time 11 12 13 14 15 16 

8:05 0 0 0 0 0 0 
8:10 0 0 0 0 1 1 
8:15 0 0 0 0 1 1 
8:20 0 0 0 0 1 1 
8:25 0 0 0 0 1 1 
8:30 0 0 0 0 1 1 
8:35 0 0 0 0 0 1 
8:40 0 0 0 0 0 1 
8:45 0 0 0 0 0 1 
8:50 0 0 0 0 0 0 
8:55 0 0 0 0 0 0 
9:00 0 0 0 0 0 0 

Time 17 18 19 110 111 112 

8:05 1 1 1 1 1 1 
8:10 1 1 1 2 2 2 
8:15 2 1 2 2 2 
8:20 0 1 1 3 4 4 
8:25 0 1 1 1 6 6 
8:30 0 1 1 2 6 6 
8:35 0 1 1 1 9 7 
8:40 0 0 1 1 5 7 
8:45 0 0 1 0 3 10 
8:50 0 0 1 0 1 13 
8:55 0 0 0 0 1 13 
9:00 0 0 0 0 1 10 
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Table E,4 Number of links affected with incident on link B-1494 (Simulated) 

Time 11 12 13 14 15 16 

8:05 0 0 0 1 1 1 
8:10 1 1 1 1 1 1 
8:15 1 1 1 1 1 1 
8:20 1 1 1 1 3 3 
8:25 1 1 1 1 8 8 
8:30 1 1 2 1 13 13 
8:35 1 1 3 1 16 20 
8:40 1 1 3 1 12 21 
8:45 1 1 4 1 12 24 
8:50 1 1 4 1 12 27 
8:55 1 1 5 1 13 26 
9:00 0 1 5 1 13 26 

Time 17 18 19 110 111 112 

8:05 1 1 1 1 1 1 
8:10 1 1 1 3 3 3 
8:15 3 3 3 9 9 9 
8:20 5 9 9 9 17 17 
8:25 5 17 17 11 27 26 
8:30 5 22 22 11 33 33 
8:35 6 25 28 15 38 38 
8:40 5 24 30 11 36 39 
8:45 5 23 35 10 37 42 
8:50 4 22 33 10 34 48 
8:55 4 22 35 11 34 49 
9:00 5 22 36 11 35 52 
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Table E.5 Number of links affected with incident on link L-3232 (Simulated) 

Time 13 16 19 

8:05 0 1 1 
8:10 0 1 1 
8:15 2 3 3 
8:20 6 6 7 
8:25 5 6 7 
8:30 8 10 11 
8:35 16 21 21 
8:40 26 31 30 
8:45 39 43 42 
8:50 40 45 43 
8:55 38 41 38 
9:00 17 46 41 
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Table F.l Simulated Journey Times for Link K-714 

Time Non ' 11 12 13 14 15 16 

8:05 14 14 14 14 15 15 15 
8:10 16 17 17 17 33 33 33 
8:15 21 30 31 31 68 87 87 
8:20 29 32 59 59 68 123 123 
8:25 47 49 76 76 63 118 118 
8:30 67 60 78 79 62 116 116 
8:35 59 59 68 80 62 61 105 
8:40 63 64 64 78 64 60 109 
8:45 67 69 58 73 68 61 106 
8:50 57 57 59 63 66 67 61 
8:55 25 25 61 57 48 59 58 
9:00 18 18 50 57 22 53 60 

Time 17 18 19 n o 111 112 

8:05 15 15 15 626 1204 1204 
8:10 90 90 90 587 1422 1798 
8:15 184 185 185 327 1216 2108 
8:20 63 180 180 82 934 1825 
8:25 56 189 189 58 646 1538 
8:30 62 195 195 64 371 1262 
8:35 60 65 174 63 94 960 
8:40 58 67 203 67 63 663 
8:45 63 57 166 63 63 399 
8:50 62 57 64 59 64 126 
8:55 58 60 60 62 72 74 
9:00 50 56 56 64 60 59 

Non Non-incident case. 
II .. 112 Incident categories as defined on page 213. 
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Table F.2 Simulated Journey Times for Link K-730 

Time Non 11 12 13 14 15 16 

8:05 17 17 17 17 17 17 17 
8:10 28 28 28 28 32 32 32 
8:15 37 37 37 37 41 41 41 
8:20 34 34 37 37 34 55 55 
8:25 39 39 43 43 39 103 103 
8:30 48 48 68 71 48 162 206 
8:35 51 51 59 91 51 149 320 
8:40 53 54 55 115 54 112 367 
8:45 48 51 51 129 51 79 271 
8:50 46 48 49 91 48 48 179 
8:55 35 36 36 35 36 35 174 
9:00 37 37 37 37 37 37 148 

Time 17 18 19 110 111 112 

8:05 17 17 17 17 17 17 
8:10 43 43 43 583 981 1096 
8:15 61 61 61 294 1186 2075 
8:20 35 97 97 109 991 1880 
8:25 39 359 390 39 692 1578 
8:30 48 329 489 48 510 1395 
8:35 51 177 557 51 272 1072 
8:40 54 171 593 54 190 771 
8:45 51 156 311 51 165 609 
8:50 48 154 178 48 170 331 
8:55 36 84 178 36 172 192 
9:00 37 37 179 37 159 165 
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Table F.3 Simulated Journey Times for Link B-1494 

Time Non 11 12 13 14 15 16 

8:05 58 60 60 60 72 72 72 
8:10 76 102 102 102 208 208 208 
8:15 91 159 166 166 331 477 477 
8:20 100 170 231 231 339 665 668 
8:25 126 193 327 328 353 652 753 
8:30 166 227 381 429 375 503 755 
8:35 175 238 386 469 384 399 747 
8:40 152 216 376 478 373 389 647 
8:45 130 194 354 432 349 391 501 
8:50 128 188 341 391 336 392 406 
8:55 142 199 345 391 340 394 391 
9:00 160 168 209 251 209 251 251 

Time 17 18 19 110 111 112 

8:05 136 136 136 767 1658 2548 
8:10 377 464 464 703 1593 2484 
8:15 440 941 962 648 1538 2428 
8:20 403 962 1243 411 1242 2131 
8:25 390 750 1239 392 873 1763 
8:30 392 535 1164 394 680 1569 
8:35 394 407 969 391 429 1279 
8:40 391 392 744 390 394 985 
8:45 390 393 525 392 399 703 
8:50 391 391 416 393 402 445 
8:55 392 390 398 391 404 398 
9:00 244 253 239 250 242 227 
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Table F.4 Simulated Journey Times for Link B-1692 

Time Non 11 12 13 14 15 16 

8:05 14 14 14 14 16 16 16 
8:10 15 15 15 15 19 19 19 
8:15 15 17 17 17 24 24 24 
8:20 16 16 17 17 16 27 27 
8:25 16 16 17 17 16 27 27 
8:30 16 16 17 17 16 27 27 
8:35 15 15 15 15 15 15 20 
8:40 15 15 15 16 15 15 20 
8:45 15 15 15 17 15 15 24 
8:50 16 16 16 16 16 16 16 
8:55 16 16 16 16 16 16 16 
9:00 16 16 16 16 16 16 16 

Time 17 18 19 n o 111 112 

8:05 21 21 21 694 1585 2363 
8:10 35 35 35 578 1469 2360 
8:15 57 68 68 337 1228 2119 
8:20 19 125 125 53 933 1824 
8:25 16 158 158 17 535 1426 
8:30 16 137 159 16 287 1178 
8:35 15 25 159 15 75 791 
8:40 15 15 159 15 56 605 
8:45 15 15 134 15 23 385 
8:50 16 16 22 16 16 98 
8:55 16 16 16 16 16 58 
9:00 16 16 16 16 16 53 
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Table F.5 Simulated Journey Times for link L-3232 

Time Non 13 16 19 

8:05 49 52 67 137 
8:10 49 52 69 189 
8:15 54 62 119 379 
8:20 63 93 269 606 
8:25 68 100 379 769 
8:30 68 125 446 1051 
8:35 91 184 506 970 
8:40 90 233 501 736 
8:45 84 237 422 537 
8:50 100 228 361 357 
8:55 88 160 307 357 
9:00 69 113 201 221 
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Table G.l Database for slope Ml 

Duration Severity LCI Ml Link 

15 0.20 1.64 0.00 714 
15 0.50 1.64 0.20 714 
15 0.70 1.64 0.40 714 
15 0.99 1.64 1.20 714 
30 0.20 3.12 0.28 714 
30 0.50 3.12 1.14 714 
30 0.70 3.12 1.72 714 
30 0.99 3.12 2.38 714 
45 0.20 4.18 0.42 714 
45 0.50 4.18 1.60 714 
45 0.70 4.18 1.86 714 
45 0.99 4.18 1.77 714 
15 0.20 2.40 0.00 1494 
15 0.50 2.40 0.00 1494 
15 0.70 2.40 0.40 1494 
15 0.99 2.40 1.20 1494 
30 0.20 3.26 0.00 1494 
30 0.50 3.26 0.62 1494 
30 0.70 3.26 1.12 1494 
30 0.99 3.26 1.56 1494 
45 0.20 3.83 0.09 1494 
45 0.50 3.83 0.76 1494 
45 0.70 3.83 1.04 1494 
45 0.99 3.83 1.17 1494 
30 0.50 1.73 0.06 730 
30 0.70 1.73 0.18 730 
30 0.99 1.73 0.28 730 
45 0.20 2.13 0.04 730 
45 0.50 2.13 0.13 730 
45 0.70 2.13 0.25 730 
45 0.99 2.13 0.48 730 

Duration Duration of the incident in minutes 
Severity Severity of the incident (between 0 to 1) 
LCI Link congestion index 
Ml slope calculated by using equation 6.1 
Link Link number 
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Table G.2 Database for Slope M2 

Time * Duration Severity M2 LCI Link 

8:20 15 0.5 0.2 2.84 714 
8:30 15 0.5 -0.2 6.50 714 
8:35 15 0.5 0.4 6.07 714 
8:50 15 0.5 -0.2 5.91 714 
9:00 15 0.5 -0.4 1.81 714 
8:25 15 0.7 1.0 4.44 714 
8:30 15 0.7 -0.4 6.50 714 
8:35 15 0.7 0.2 6.07 714 
8:50 15 0.7 0.2 5.91 714 
8:55 15 0.7 -0.4 2.65 714 
9:00 15 0.7 -1.0 1.81 714 
8:35 30 0.2 0.2 6.07 714 
8:45 30 0.2 -0.2 6.63 714 
8:50 30 0.2 0.2 5.91 714 
8:55 30 0.2 -0.6 2.65 714 
9:00 30 0.2 -0.6 1.81 714 
8:35 30 0.5 1.4 6.07 714 
8:45 30 0.5 -0.4 6.63 714 
8:50 30 0.5 -1.0 5.91 714 
8:55 30 0.5 -0.6 2.65 714 
9:00 30 0.5 -1.0 1.81 714 
8:35 30 0.7 1.8 6.07 714 
8:40 30 0.7 1.0 6.22 714 
8:45 30 0.7 -0.4 6.63 714 
8:50 30 0.7 -0.2 5.91 714 
8:55 30 0.7 -1.0 2.65 714 
8:50 45 0.2 -0.4 5.91 714 
8:55 45 0.2 -0.6 2.65 714 
9:00 45 0.2 -0.4 1.81 714 
8:50 45 0.5 0.4 5.91 714 
8:55 45 0.5 0.2 2.65 714 
9:00 45 0.5 -0.6 1.81 714 
8:55 45 0.7 0.2 2.65 714 
8:55 30 0.5 -0.2 2.05 730 
8:35 30 0.7 -0.2 2.94 730 
8:40 30 0.7 -0.2 3.06 730 
8:55 30 0.7 -0.4 2.05 730 
9:00 30 0.7 -0.2 2.17 730 
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Table G.2 (Contd) Database for Slope M2 

Time Duration Severity M2 LCI Link 

8:55 45 0.2 -0.2 2.05 730 
8:55 45 0.5 -0.2 2.05 730 
9:00 45 0.5 -0.2 2.17 730 
8:50 45 0.7 -0.2 2.69 730 
8:55 45 0.7 -0.2 2.05 730 
9:00 45 0.7 -0.2 2.17 730 
9:00 15 0.2 -0.2 5.11 1494 
8:20 15 0.7 0.4 3.19 1494 
8:35 15 0.7 0.2 5.62 1494 
8:40 15 0.7 -0.2 5.10 1494 
8:50 15 0.7 -0.2 4.12 1494 
9:00 15 0.7 0.2 5.11 1494 
8:35 30 0.5 0.6 5.62 1494 
8:40 30 0.5 -0.8 5.10 1494 
8:55 30 0.5 0.2 4.49 1494 
8:35 30 0.7 0.6 5.62 1494 
8:40 30 0.7 -0.2 5.10 1494 
8:45 30 0.7 -0.2 4.22 1494 
8:50 30 0.7 -0.2 4.12 1494 
8:55 45 0.2 0.2 4.49 1494 
8:50 45 0.5 0.6 4.12 1494 
8:55 45 0.5 -0.2 4.49 1494 
8:50 45 0.7 -0.4 4.12 1494 
8:55 45 0.7 0.4 4.49 1494 
9:00 45 0.7 0.2 5.11 1494 

Duration Duration of the incident in minutes 
Severity Severity of the incident (between 0 to 1) 
LCI Link congestion index 
M2 slope calculated by using equation 6.4 
Link Link number 
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Table G.3 Database for Slope SI 

Severity LCI SI DSat CT Delay Link 

0.2 1.57 0.6 0.51 10 6 714 
0.5 1.57 3.6 0.51 10 6 714 
0.7 1.57 15.0 0.51 10 6 714 
0.2 1.57 0.6 0.51 10 6 714 
0.5 1.57 3.6 0.51 10 6 714 
0.7 1.57 15.0 0.51 10 6 714 
0.2 1.57 0.6 0.51 10 6 714 
0.5 1.57 3.6 0.51 10 6 714 
0.7 1.57 15.0 0.51 10 6 714 
0.2 1.51 2.2 0.24 17 11 730 
0.5 1.51 3.0 0.24 17 11 730 
0.7 1.51 5.2 0.24 17 11 730 
0.2 1.51 2.2 0.24 17 11 730 
0.5 1.51 3.0 0.24 17 11 730 
0.7 1.51 5.2 0.24 17 11 730 
0.2 1.51 2.2 0.24 17 11 730 
0.5 1.51 3.0 0.24 17 11 730 
0.7 1.51 5.2 0.24 17 11 730 
0.2 2.45 8.4 0.95 31 45 1494 
0.5 2.45 27.2 0.95 31 45 1494 
0.7 2.45 48.2 0.95 31 45 1494 
0.2 2.45 8.4 0.95 31 45 1494 
0.5 2.45 27.2 0.95 31 45 1494 
0.7 2.45 65.6 0.95 31 45 1494 
0.2 2.45 8.4 0.95 31 45 1494 
0.5 2.45 27.2 0.95 31 45 1494 
0.7 2.45 65.6 0.95 31 45 1494 
0.2 2.98 0.2 0.23 5 10 1692 
0.5 2.98 0.6 0.23 5 10 1692 
0.7 2.98 2.8 0.23 5 10 1692 
0.2 2.98 0.2 0.23 5 10 1692 
0.5 2.98 0.6 0.23 5 10 1692 
0.7 2.98 2.8 0.23 5 10 1692 
0.2 2.98 0.2 0.23 5 10 1692 
0.5 2.98 0.6 0.23 5 10 1692 
0.7 2.98 2.8 0.23 5 10 1692 
0.2 2.06 2.6 0.77 10 11 714 
0.5 2.06 7.0 0.77 10 11 714 
0.2 2.06 2.8 0.77 10 11 714 
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Table G.3 (Contd) Database for Slope SI 

Severity LCI SI DSat CT Delay Link 

0.5 2.06 10.8 0.77 10 11 714 
0.2 2.06 2.8 0.77 10 11 714 
0.5 2.06 10.8 0.77 10 11 714 
0.2 1.96 1.8 0.17 17 20 730 
0.5 1.96 1.8 0.17 17 20 730 
0.7 1.96 3.6 0.17 17 20 730 
0.2 1.96 1.8 0.17 17 20 730 
0.5 1.96 1.8 0.17 17 20 730 
0.7 1.96 3.6 0.17 17 20 730 
0.2 2.92 11.4 0.95 31 60 1494 
0.5 2.92 24.6 0.95 31 60 1494 
0.2 2.92 12.8 0.95 31 60 1494 
0.5 2.92 53.8 0.95 31 60 1494 
0.2 2.92 12.8 0.95 31 60 1494 
0.5 2.92 53.8 0.95 31 60 1494 
0.2 2.97 0.4 0.33 5 10 1692 
0.5 2.97 1.0 0.33 5 10 1692 
0.7 2.97 6.6 0.33 5 10 1692 
0.2 2.97 0.4 0.33 5 10 1692 
0.5 2.97 1.0 0.33 5 10 1692 
0.7 2.97 6.6 0.33 5 10 1692 
0.2 2.84 5.6 0.95 10 19 714 
0.2 2.84 5.6 0.95 10 19 714 
0.5 1.93 2.8 0.51 17 17 730 
0.7 1.93 7.2 0.51 17 17 730 
0.2 1.93 0.0 0.51 17 17 730 
0.5 1.93 2.8 0.51 17 17 730 
0.7 1.93 7.2 0.51 17 17 730 
0.2 1.93 0.0 0.51 17 17 730 
0.2 3.19 13.0 0.98 31 69 1494 
0.2 3.19 13.0 0.98 31 69 1494 
0.5 3.19 38.2 0.98 31 69 1494 
0.7 3.18 11.4 0.35 5 11 1692 
0.7 3.18 11.4 0.35 5 11 1692 
0.2 2.21 1.2 0.53 17 22 730 
0.5 2.21 9.6 0.53 17 22 730 
0.2 2.21 1.2 0.53 17 22 730 
0.5 2.21 9.6 0.53 17 22 730 
0.7 2.21 58.6 0.53 17 22 730 
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Table G.3 (Contd) Database for Slope SI 

Severity LCI SI DSat CT Delay Link 

0.2 3.92 19.2 1.16 31 95 1494 
0.2 3.92 19.4 1.16 31 95 1494 
0.2 2.78 5.6 0.86 17 31 730 
0.5 2.78 20.6 0.86 17 31 730 
0.7 2.78 19.8 0.86 17 31 730 
0.2 5.20 20.2 1.05 31 135 1494 
0.2 2.94 4.0 0.78 17 34 730 
0.5 2.94 22.8 0.78 17 34 730 
0.7 2.94 13.6 0.78 17 34 730 
0.2 3.06 4.8 0.89 17 34 730 

Severity Severity of the incident (between 0 to 1) 
LCI Link congestion index 
SI slope calculated by using equation 6.6 
DSat Degree of saturation 
CT Cruise Time on the link in sees 
Delay Delay in secs/veh 
Link Link number 
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Table G.4 Database for MaxJt 

Duration Severity MaxJt CT MaxJtNon Link 

15 0.2 69 10 67 714 
15 0.5 68 10 67 714 
15 0.7 184 10 67 714 
30 0.2 78 10 67 714 
30 0.5 123 10 67 714 
30 0.7 195 10 67 714 
45 0.2 80 10 67 714 
45 0.5 118 10 67 714 
45 0.7 203 10 67 714 
15 0.2 54 17 53 730 
15 0.5 54 17 53 730 
15 0.7 61 17 53 730 
30 0.2 68 17 53 730 
30 0.5 162 17 53 730 
30 0.7 359 17 53 730 
45 0.2 129 17 53 730 
45 0.5 367 17 53 730 
45 0.7 593 17 53 730 
15 0.2 238 31 175 1494 
15 0.5 384 31 175 1494 
15 0.7 440 31 175 1494 
30 0.2 386 31 175 1494 
30 0.5 665 31 175 1494 
30 0.7 962 31 175 1494 
45 0.2 478 31 175 1494 
45 0.5 755 31 175 1494 
45 0.7 1243 31 175 1494 
15 0.2 17 5 16 1692 
15 0.5 24 5 16 1692 
15 0.7 57 5 16 1692 
30 0.2 17 5 16 1692 
30 0.5 27 5 16 1692 
30 0.7 158 5 16 1692 
45 0.2 17 5 16 1692 
45 0.5 27 5 16 1692 
45 0.7 159 5 16 1692 

MaxJT Maximum journey time on the link after an incident in sees 
CT Cruise time on the link in sees 
MaxJtNon Maximum journey time on the link during non-incident 

conditions in sees 
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Table G.5 Database for slope S2 

Duration Severity CT LCI Delay MaxJt S2 Link 

15 0.7 10 2.84 19 184 -24.2 714 
30 0.2 10 6.07 49 78 -2.0 714 
30 0.5 10 6.07 49 123 -11.0 714 
30 0.7 10 6.07 49 195 -26.0 714 
45 0.2 10 5.91 47 80 -2.0 714 
45 0.5 10 5.91 47 118 -9.0 714 
45 0.7 10 5.91 47 203 -20.5 714 
15 0.2 17 1.93 17 54 -0.6 730 
15 0.5 17 1.93 17 54 -1.4 730 
15 0.7 17 1.93 17 61 -5.2 730 
30 0.2 17 2.94 34 68 -1.8 730 
30 0.5 17 2.94 34 162 -2.6 730 
30 0.7 17 2.94 34 359 -30.4 730 
45 0.2 17 2.69 29 129 -7.6 730 
45 0.5 17 2.69 29 367 -18.4 730 
45 0.7 17 2.69 29 593 -26.6 730 
15 0.7 31 3.19 69 440 -7.4 1494 
30 0.5 31 5.62 144 665 -20.8 1494 
30 0.7 31 5.62 144 962 -25.6 1494 
45 0.2 31 4.12 97 478 -8.2 1494 
45 0.5 31 4.12 97 755 -19.0 1494 
45 0.7 31 4.12 97 1243 -21.8 1494 
15 0.5 5 3.18 11 24 -1.6 1692 
15 0.7 5 3.18 11 57 -7.6 1692 
30 0.5 5 2.95 10 27 -2.4 1692 
30 0.7 5 2.95 10 158 -22.4 1692 
45 0.5 5 3.18 11 27 -1.6 1692 
45 0.7 5 3.18 11 159 -22.4 1692 

Duration Duration of the incident in minutes 
Severity Severity of the incident (0 to 1) 
CT Cruise time on the link in sees 
LCI Link congestion index 
Delay Delay in secs/veh 
MaxJT Maximum journey time on the link after an incident in sees 
CT Cruise time on the link in sees 
S2 slope calculated by using equation 6.10 
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Table G.6 Database for MaxJt on affected links 

Incident Severity Affected CT Distance MaxJt MaxJt 
Link Links Non 

714 0.2 519 15 74 15 116 
0.2 520 15 59 15 157 
0.2 535 9 9 20 47 
0.2 707 25 59 36 318 
0.2 708 23 57 50 280 
0.2 710 10 34 15 82 
0.2 711 15 24 25 127 
0.2 712 21 45 27 186 
0.2 731 25 99 48 119 
0.2 732 25 99 45 77 
0.5 520 15 59 15 353 
0.5 535 9 9 20 116 
0.5 707 25 59 36 650 
0.5 708 23 57 50 676 
0.5 710 10 34 15 169 
0.5 711 15 24 25 266 
0.5 712 21 45 27 614 
0.5 724 10 44 32 181 
0.7 520 15 59 15 636 
0.7 535 9 9 20 304 
0.7 707 25 59 36 1122 
0.7 708 23 57 50 1191 
0.7 710 10 34 15 349 
0.7 711 15 24 25 468 
0.7 712 21 45 27 1169 
0.7 724 10 44 32 281 

1494 0.2 2014 3 3 10 36 
0.2 1474 10 13 10 71 
0.5 1424 16 49 16 307 
0.5 1434 4 33 4 71 
0.5 1444 6 29 6 149 
0.5 1454 4 23 4 108 
0.5 1464 6 19 6 151 
0.5 1474 10 13 10 277 
0.5 2014 3 3 11 88 
0.7 1424 16 49 16 525 
0.7 1434 4 33 4 121 
0.7 1444 6 29 6 238 
0.7 1454 4 23 4 171 
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Table G.6 (Contd) Database for MaxJt on affected links 

Incident Severity Affected CT Distance MaxJt MaxJt 
Link Links Non 

1494 0.7 1464 6 19 6 259 
0.7 1474 10 13 10 457 
0.7 2014 3 3 11 188 

730 0.5 518 15 15 17 296 
0.5 603 41 41 52 333 
0.7 517 4 19 5 291 
0.7 518 15 15 17 734 
0.7 603 41 41 52 661 
0.7 703 19 38 28 444 
0.7 706 15 53 24 131 

Affected links 

CT 
Distance 
MaxJT 
MaxJtNon 

Links which are affected by the incident (20% 
increase in journey time 

Cruise time on the link in sees 
Distance of affected link from incident link in meters 
Maximum journey time on the link after an incident in sees 
Maximum journey time on the link during non-incident 
conditions in sees 
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Appendix H 

Predictive Models 
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Table H. 1 Predictive Models for Slope Ml 

Equation R2 SE(r) 

Ml = 0.37 * Sev » LCI 0.51 0.47 
Ml = 0.24 * Sev » LCI » NCI 0.51 0.47 
Ml = 0.70 * Sev * LCI -1.19*NCI 0.63 0.42 
Ml = 0.14 » Sev * LCI » NCI + 1.15 0.51 0.47 
Ml = 0.08 * Sev * (LCI)2 0.61 0.43 

Table H. 2 Predictive Models for Slope M2 

Equation R2 SE(r) 

M2 = 0.44 - 1.75»(1/LCI) 0.20 0.48 
M2 = -0.9*(NCI/LCI) - 0.44 0.22 0.47 
M2 = -0.62 + 0.13»LCI 0.17 0.49 

Table H.3 Predictive Models for Slope SI 

Equation R2 SE(r) 

Additive Models 
SI = -24.7 4- 8.5 CI -H 38.7 Sev 0.21 17.4 
SI = 1.6 CI -1- 23.5 Sev 0.40 18.2 
SI = -31.7 + 40.6 DSat 4- 47.5 Sev 0.51 13.6 
SI = 17.8 DSat -H 12.1 Sev 0.50 16.6 

Multiplicative Models 
SI = 1.8 * CT * Sev 0.58 9.6 
SI = 0.8 * (ZT * Sev * CI 0.69 8.1 
SI = 0.05 » Sev * CT * Delay 0.70 8.2 
SI = 0.41 * Sev * CI * Delay 0.56 9.9 
SI = 1.25 * Sev * Delay 0.69 8.2 

Power Function Models 
SI = (1.45 » CI) * (15.96)"" 0.22 17.3 
SI = (4.51 * DSat) » (36.23)"" 0.62 11.8 
SI = 10.29 » C r * Sev' " 0.22 17.2 
SI = 146.4 * DSat'" * Sev' '̂  0.76 9.4 
SI = (0.08 * CT * CI) * (21)"~ 0.70 8.0 
SI = (0.50* CT * CI * Sev) » (2.28)"^ 0.71 8.0 
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Table H.4 Predictive Models for Slope S2 

Equation R2 SE(r) 

S2 = -1.46*(MaxJT/Delay) + 2.25 0.52 6.9 
S2 = -1.78*(MaxJT/Delay) 0.47 7.1 
S2 = -0.79*(MaxJT/CT) 0.75 5.0 
S2 = -0.09»Delay + 96.5 0.11 9.4 

Table H.5 Predictive Models for MaxJT 

Equation R2 SE(r) 

MaxJT = MaxJtNon + (27.34 * Sev * CT) 0.73 147 
MaxJT = MaxJtNon + (2.24 *Sev * LL) 0.75 143 
MaxJT = 2.87 * MaxJtNon + 128.06 * Sev 0.75 189 
MaxJT = 12.94 » CI » CT * Sev 0.87 101 
MaxJT = 50.12 » DSat * CT * Sev 0.84 114 
MaxJT = -584.2 + 98.3 CI + 21.5 CT + 483 Sev 0.74 145 
MaxJT = -23.8 CI 4- 17.1 CT 4- 162 Sev 0.73 197 
MaxJT = -395 + 304.5 DSat -f-16.4 CT 4- 483 Sev 0.71 154 
MaxJT = 67 DSat 4- 14.3 CT 4- 59.5 Sev 0.73 199 
MaxJT = 4.08 * CI'-^ * CT'-2̂  * Sev° " 0.89 92 
MaxJT = 55.2 * DSat®"® * CT** * Sev°" 0.85 112 
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Appendix 1 

Detailed information used for the simulation of incidents 
in CONTRAMI programme. 
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Card type 100 (added into the network file) 

Card type 100 is used to introduce an incident on a specific link. e.g. on Kingston link 
714, for an incident lasting for 30 minutes with a severity of 50%; card 100 in Network 
file is inserted as: 

100 714 4 1325 1325 1325 1325 1325 1325 2650 2650 2650 2650 2650 2650 

where 

parameter 1 is the card type number; 
parameter 2 is the number of the incident link; 
parameter 3 is the iteration number when the incident is to be introduced; 
The following parameters are the new saturation flows for each time slice. In this 
example, the initial link saturation flow was 2650. During the incident (which 
lasts here for 30 min = 6 time slices) the saturation flow is reduced to 50% of 
the initial saturation flow: 

50% X 2650 = 1325 (pcu/h) 
After the end of the incident the new capacity of the link is 1325 pcu/h (from 
time slice 7). 

Card type 93 (added in Control file) 

This card is used to define the diversion strategy. As fixed route strategy is used in this 
study, card 93 has same parameters for all the incidents simulated in this study, i.e. 

93 0 20 100 100 

where 

parameter 1 is the card type number; 
parameter 2 is the maximum number of diversions allowed; 
parameter 3 is the coefficient of diversion (10 * the maximum acceptable ratio of 
new over usual cruise time); 
parameter 4 is the percentage of packets which will not divert; 
parameter 5 is the percentage of occupancy which will trigger diversions. 
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Card 101 (added in Control file) 

This card is used to define iterations, for all the incidents simulated in this study, the 
card has fixed parameters as : 

101 3 1 3 

where 

parameter 1 is the card type number; 
parameter 2 is the number of iterations to load the network; 
parameter 3 is the number of iterations allowing diversions; 
parameter 4 is the number of iterations keeping the routes fixed. 
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Appendix J 

Description of the ANALYSE Program. 
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The ANALYSE program compares Journey times on links before and after an incident. 
The input for this program are the result file from CONTRAMI standard run (non-
incident), and CONTRAMI result file of incident run. 

It then compares the two files and ou^ut a file which contains all the links that have 
been affected as a result of the incident, the JTM (journey time multiplier) for each link 
and the number of links affected per 5 minute time intervals. 

Links affected by incident are selected by comparing their TJT (total journey time) 
during the incident that without the incident. Varying degrees of affected links could be 
selected by choosing only those links which have been affected by a specified percentage 
(for this study it is 20%) of their TJT without incident. 

PROGRAM ANALYSE 

This program reads CONTRAM result files and compare the journey 
time on every link before and after the incident and output those 
links where journey time has changed for more than 20% for the 
current time interval. 

* INPUT : Non-Incident Result File. 
* Incident Result File. 
* OutPut file name. 
* 

» 

* 

* 

OUTPUT ; Number of links which are affected by an incident. 

INTEGER LNO,TS,NAL 
INTEGER NOLA(13),TJT(1700),TJTI(1700) 
INTEGER JT(1700,13),JTI(1700,13) 
REAL CL 
REAL JTM(1700,15) 
CHARACTER»7 LINK(1700) 
CHARACTER»7 ALINK(1700,13) 
CHARACTER*15 DATAFILEl ,DATAFILE2,RESFILE 
CHARACTER*90 LINE,TLINE 

* 
* 

TLINE='l LINK-BY-LINK ALL-TIME-SLICES -MEAN 
ITRAVEL TIMES PER VEHICLE (SEC)' 

* 

101 WRITE(*,*) ' Enter the name of first data file : ' 
READ(*,'(A)',ERR=101) DATAFILEl 
0PEN(UNIT=8,FILE=DATAFILE1,STATUS = 'OLD') 

* 

64 READ(8,62) LINE 
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62 FORMAT(A90) 
IF(LINE.EQ.TLINE) THEN 
GO TO 63 
ELSE 
GO TO 64 
ENDIF 

* 

* 

* Reading data line by line from first file. 
* 

63 READ(8,59) 
59 FORMAT(12(/)) 

LN0=1 
21 READ(8,31,ERR=100) LINK(LNO),(JT(LNO,TS),TS = l,13) 
31 FORMAT(A7,3X, 13(18)) 

LNO=LNO+l 
GO TO 21 

100 LN0=LN0-1 * 

102 WRITE(*,*) ' Enter the name of second data file : ' 
READ(*,'(A)' ,ERR=102) DATAFILE2 
OPEN(UNIT=9,FILE=DATAFILE2,STATUS = 'OLD') 

* 

74 READ(9,72) LINE 
72 FORMAT(A90) 

IF(LINE.EQ.TLINE) THEN 
GO TO 73 
ELSE 
GO TO 74 
ENDIF 

* 

* Reading data line by line from second file. 
* 

73 READ(9,49) 
49 F0RMAT(12(/)) 

DO 22 K=l,LNO 
READ(9,41) (m(K,TS),TS = l,13) 

41 FORMAT(10X, 13(18)) 
22 CONTINUE 

• 

* Reading output file name. 
* 

103 WRITE(*,*) ' Enter the name of result file : ' 
READ(*,'(A)',ERR=103) RESFILE 
OPEN(UNIT=7,FILE=RESFILE,STATUS = 'NEW') * 

DO 23 I=1,LN0 
TJT(I)=0 
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TJTI(I)=0 
D0 24K=1,13 

TJT(I)=TJT(I)+JT(I,K) 
Tjn(i)=Tjn(i)+jn(i,K) 

24 CONTINUE 
IF(TJn(I).NE.O) THEN 

CL=(1.2)*(FL0AT(TJT(I))) 
IF(TJTI(I).GT.CL) THEN 
D0 27L=1,13 
IF (JT(I,L).NE.O) THEN 
JTM(I,L) =FLOAT(JTI(I,L))/FLOAT(JT(I,L)) 

ELSE 
JTM(I,L)=0.0 

ENDIF 
27 CONTINUE 

WRITE (7,39) LINK(I),(JTM(I,L),L=1,13) 
39 F0RMAT(A8,13(2X,F5.1)) 

ENDIF 
ENDIF 

23 CONTINUE 
DO 91 L=l,13 
NOLA(L)=0 
NAL=1 
DO 92 1=1,LNO 
IF (JTM(I,L).GE.1.2) THEN 

NOLA(L)=NOLA(L) +1 
ALINK(NAL,L) =LINK(I) 
NAL=NAL+1 

ENDIF 
92 CONTINUE 
91 CONTINUE 

WRITE(7,») 
WRITE(7,*)' 
1 ' 
WRITE(7,84) (N0LA(L),L=1,13) 

84 FORMAT(8X,13(2X,I5)) 
WRITE(7,») ' 

1 ' 

DO 86 1 = 1,LNO 
WRITE(7,85) (ALINK(I,TS),TS = 1,13) 

85 FORMAT(8X,13(A7)) 
86 CONTINUE 

WRITE(*,*) 'This is the end of the program.' 
END 
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Example of output file from ANALYSE program 

1454 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.3 3.5 1.3 
1464 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.7 3.3 3.3 3.3 1.2 
1474 1.0 1.0 1.0 1.0 1.0 1.0 3.5 5.1 7.1 5.9 6.5 6.8 1.5 
1494 1.0 1.3 1.8 2.3 2.6 2.6 2.7 3.1 3.3 3.1 2.8 1.6 1.0 
2014 1.0 1.0 1.0 1.0 1.0 1.4 2.9 2.7 3.6 2.1 2.4 2.6 1.0 

0 1 1 1 I 2 3 3 4 4 5 5 2 

1494 1494 1494 1494 1474 1474 1474 1464 1464 1454 1454 1454 
2014 1494 1494 1474 1474 1464 1464 1474 

2014 2014 1494 1494 1474 1474 
2014 2014 1494 1494 

2014 2014 
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Appendix K 

Network Connection Files 
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Table K. 1 Kingston Network Connections File 

Link 
No. 

Upstream Links Juncl June 2 

100 201 42 41 0 
101 42 43 0 
102 40 41 1 
103 19 3 0 
104 18 20 1 
105 21 4 1 
106 57 55 1 
107 203 53 55 0 
108 202 53 51 0 
109 50 6 1 
110 13 12 1 
111 23 24 0 
112 37 36 1 
113 31 29 0 
114 33 34 1 
115 48 45 0 
116 68 47 0 
117 16 5 1 
118 200 11 28 0 
119 11 9 0 
120 26 27 1 
200 310 541 9 11 0 
201 501 500 43 42 0 
202 510 601 55 53 0 
203 516 515 51 53 0 
300 69 49 0 
301 67 1 1 
302 405 404 403 56 1 0 
303 405 404 402 56 2 0 
304 405 403 402 56 55 0 
305 402 403 404 56 62 0 
306 63 62 0 
307 408 64 62 0 
308 66 65 0 
309 59 58 0 
310 413 10 9 0 
311 411 10 29 0 
312 412 30 29 0 
313 401 46 29 0 
314 412 414 30 47 1 
315 415 46 47 0 
400 714 718 49 69 0 
401 528 116 612 47 46 0 
402 700 1 56 0 
403 508 2 56 0 
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! K.l (Contd) 

404 55 56 0 
405 512 307 62 56 0 
406 512 305 62 63 0 
407 600 512 305 62 64 0 
408 727 308 65 64 1 
409 727 725 65 66 0 
410 715 728 58 59 0 
411 541 9 10 0 
412 541 9 30 1 
413 113 504 29 10 0 
414 504 29 30 0 
415 113 29 46 0 
500 717 49 43 1 
501 716 713 44 43 1 
502 501 500 43 41 1 
503 302 301 1 41 0 
504 543 28 29 0 
505 102 503 41 39 1 
506 301 1 2 0 
507 506 303 2 3 0 
508 509 103 3 2 0 
509 704 17 3 1 
510 705 702 4 55 1 
511 510 601 304 107 106 55 54 0 
512 723 719 61 62 0 
513 721 723 61 54 0 
514 513 540 54 52 1 
515 514 52 51 1 
516 519 604 518 7 51 0 
517 703 117 5 6 0 
518 517 6 7 0 
519 731 732 8 7 0 
520 519 7 6 0 
521 539 32 34 1 
522 519 603 7 12 0 
523 532 111 24 12 0 
524 709 14 24 1 
525 524 111 605 24 25 0 
526 525 25 35 0 
527 526 610 35 45 0 
528 527 45 47 0 
529 315 116 314 47 45 0 
530 529 115 45 35 0 
531 609 530 35 25 0 
532 531 25 24 0 
533 35 36 0 
534 38 36 1 
535 711 22 38 1 
536 722 720 61 60 0 
537 308 727 65 60 0 
538 312 311 313 29 28 0 
539 538 28 32 1 
540 304 107 106 55 54 0 
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K.l (Contd) 

541 730 729 8 9 
542 729 8 27 
543 542 543 27 28 
544 538 28 27 
600 510 106 107 55 62 
601 306 307 62 55 
602 309 728 715 58 60 
603 515 108 51 7 
604 523 12 7 
605 522 110 12 24 
606 5340 36 35 
607 531 525 25 27 
608 525 27 25 
609 521 34 35 
610 521 35 34 
611 116 528 315 314 47 32 
612 539 32 47 
700 502 102 41 1 
701 508 2 1 
702 507 103 3 4 
703 702 706 105 4 5 
704 734 20 17 
705 734 104 4 20 
706 734 104 20 4 
707 702 706 105 5 4 
708 514 52 5 
709 707 708 117 5 14 
710 708 724 707 5 15 
711 710 712 15 22 
712 532 111 605 24 15 
713 535 38 44 
714 535 38 49 
715 308 726 65 58 
716 300 49 44 
717 529 49 45 
718 529 45 49 
719 511 54 61 
720 511 54 61 
721 306 307 305 62 61 
722 306 305 307 62 61 
723 537 602 60 61 
724 520 6 5 
725 536 60 65 
726 536 65 60 
727 309 728 58 65 
728 732 730 8 58 
729 715 309 58 8 
730 518 603 604 7 8 
731 310 9 8 
732 544 27 8 
733 501 500 43 39 
734 733 505 39 20 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 

0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
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Table K.2 Boscombe Network Connections File 

Link Upstream Links 
No. 

Juncl Junc2 

1132 1142 1143 5 4 0 
1134 1172 1173 12 4 0 
1142 1153 1152 6 5 0 
1143 1903 14 5 0 
1144 1134 4 5 0 
1151 1144 1143 5 6 0 
1152 1163 7 6 0 
1153 1182 1183 9 6 0 
1163 1203 10 7 0 
1164 1151 1153 6 7 0 
1171 1132 4 12 0 
1172 1282 1284 32 12 0 
1173 1262 30 12 0 
1181 1151 1152 6 9 0 
1182 1201 1203 10 9 0 
1183 1303 15 9 0 
1201 1164 7 10 0 
1203 1343 1344 1342 17 10 0 
1261 1171 1172 12 30 0 
1262 1272 1273 31 30 0 
1272 1282 1281 32 31 0 
1273 1682 1681 74 31 0 
1274 1261 30 31 0 
1281 1171 1173 12 32 0 
1282 1292 1293 1291 33 32 0 
1284 1274 1273 31 32 0 
1291 2061 2062 23 33 0 
1292 2052 2051 34 33 0 
1293 1533 1532 57 33 0 
1294 1284 1281 32 33 0 
1301 1181 1182 9 15 0 
1303 1312 1313 24 15 0 
1311 1301 15 24 0 
1312 2542 25 24 0 
1313 1324 1322 35 24 0 
1321 1311 1312 24 35 0 
1322 1332 36 35 0 
1324 2054 2051 34 35 0 
1332 2002 37 36 0 
1334 1324 1321 35 36 0 
1341 1201 10 17 0 
1342 1353 18 17 0 
1343 1383 26 17 0 
1344 2554 16 17 0 
1353 1392 1394 1393 27 18 0 
1362 20 19 0 
1363 1403 28 19 0 
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Table K.2 (Contd) 

1364 1353 18 19 0 
1373 1462 1464 43 20 0 
1374 1364 19 20 0 
1381 1341 1344 1342 17 26 0 
1383 1413 1412 1414 38 26 0 
1391 18 27 0 
1392 1401 1403 28 27 0 
1393 1422 1424 39 27 0 
1394 1381 26 27 0 
1401 1362 19 28 0 
1403 42 28 0 
1411 1381 26 38 0 
1412 1422 1421 39 38 0 
1413 1572 1574 1573 51 38 0 
1414 2004 37 38 0 
1421 1392 1394 27 39 0 
1422 1432 1433 40 39 0 
1424 1414 1411 1413 38 39 0 
1432 1442 1443 41 40 0 
1433 52 40 0 
1434 1424 1421 39 40 0 
1442 1452 1451 42 41 0 
1443 2033 60 41 0 
1444 1434 1433 40 41 0 
1451 1401 28 42 0 
1452 1462 1461 43 42 0 
1454 1444 41 42 0 
1461 20 43 0 
1462 1472 1473 44 43 0 
1464 1454 42 43 0 
1472 2012 45 44 0 
1473 2023 62 44 0 
1474 1464 1461 43 44 0 
1492 5023 47 46 0 
1493 1613 54 46 0 
1494 2014 45 46 0 
1531 1291 1294 1292 33 57 0 
1532 1551 1553 58 57 0 
1533 1682 1684 1683 74 57 0 
1541 1332 36 49 0 
1542 2562 50 49 0 
1543 1554 1553 58 49 0 
1551 1542 1541 49 58 0 
1553 1563 1562 66 58 0 
1554 1531 1533 57 58 0 
1561 1551 1554 58 66 0 
1562 1582 1581 67 66 0 
1563 1693 75 66 0 
1571 1411 1412 1414 38 51 0 
1572 1593 1591 52 51 0 
1573 1582 67 51 0 
1574 2564 50 51 0 
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Table K.2 (Contd) 

1581 1571 1572 1574 51 67 0 
1582 1603 68 67 0 
1584 66 67 0 
1591 1432 1434 40 52 0 
1593 1603 68 52 0 
1594 1574 1571 1573 51 52 0 
1601 1591 1594 52 68 0 
1603 1722 78 68 0 
1604 67 68 0 
1611 1492 1494 46 54 0 
1613 1643 1644 64 54 0 
1641 1611 54 64 0 
1643 1773 69 64 0 
1644 1664 1661 1663 72 64 0 
1661 2021 62 72 0 
1662 1641 1643 64 72 0 
1663 1793 1791 73 72 0 
1664 1754 1752 81 72 0 
1681 1531 1532 57 74 0 
1682 1692 75 74 0 
1683 1833 1831 90 74 0 
1684 1274 1272 31 74 0 
1691 1561 1562 66 75 0 
1692 1702 76 75 0 
1693 1833 1834 90 75 0 
1694 1684 1681 1683 74 75 0 
1702 1712 1713 77 76 0 
1703 1922 1923 91 76 0 
1704 1694 75 76 0 
1712 1722 78 77 0 
1713 1852 92 77 0 
1714 1704 1703 76 77 0 
1721 1601 1604 68 78 0 
1722 1732 79 78 0 
1724 1714 1713 77 78 0 
1732 1742 1743 1741 80 79 0 
1734 1724 1721 78 79 0 
1741 2031 60 80 0 
1742 1752 1751 81 80 0 
1743 1872 1874 94 80 0 
1744 1734 79 80 0 
1751 1661 1662 1663 72 81 0 
1752 1762 82 81 0 
1754 1744 1743 1741 80 81 0 
1762 1801 83 82 0 
1764 1754 1751 81 82 0 
1771 1641 1644 64 69 0 
1773 1793 1794 73 69 0 
1791 1771 69 73 0 
1793 1804 83 73 0 
1794 1661 1664 1662 72 73 0 
1801 1794 1791 73 83 0 
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Table K.2 (Contd) 

1804 1764 82 83 0 
1831 1691 75 90 0 
1833 1912 97 90 0 
1834 1684 1681 1682 74 90 0 
1851 1714 1712 77 92 0 
1852 1862 93 92 0 
1854 1923 1921 91 92 0 
1862 1872 94 93 0 
1864 1851 1854 92 93 0 
1871 1742 1741 1744 80 94 0 
1872 5029 95 94 0 
1874 1864 93 94 0 
1884 1874 1871 94 95 0 
1901 1142 1144 5 14 0 
1903 2064 2062 23 14 0 
1911 1834 1831 90 97 0 
1912 1921 1922 91 97 0 
1921 1702 76 91 0 
1922 1852 1851 92 91 0 
1923 1911 97 91 0 
2002 1412 1411 1413 38 37 0 
2004 1334 36 37 0 
2012 1492 1493 46 45 0 
2014 1474 44 45 0 
2021 1474 1472 44 62 0 
2023 1662 1663 1664 72 62 0 
2031 1444 1442 41 60 0 
2033 1743 1742 1744 80 60 0 
2044 1494 1493 46 47 0 
2051 2061 2064 23 34 0 
2052 1322 1321 35 34 0 
2054 1294 33 34 0 
2061 1901 14 23 0 
2062 2052 2054 34 23 0 
2064 1294 1293 33 23 0 
2542 1383 1381 26 25 0 
2554 1301 1303 15 16 0 
2562 1572 1571 1573 51 50 0 
2564 1543 1541 49 50 0 
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Appendix L 

Network Plotting Programs 
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L.l Description of NETTREE program 

PROGRAM TREE 

INTEGER LINK1,LINK2,LINK3,LINK4,LINKS 
INTEGER SEV,UPSTREAM,INCLNK,TAL 
INTEGER*! FLAG(1132:2565) 
INTEGER LINK(1132:2565,0:4),ALINK(0:190) 
CHARACTER OUTFILE»15,TAIL*20 
PARAMETER(TOTAL= 190,UPSTREAM=4) 
OPEN(UNIT=2,FILE='B0S2.LST',STATUS = 'OLD') 

* 

33 FORMAT(I6) 
51 F0RMAT(2X,I6,1X,4(1X,I5)) 
52 F0RMAT(5(I8)) 

* 

CALL GETCOM(TAIL) 
READ(TAIL,71) INCLNK,SEV 

71 F0RMAT(1X,I4,1X,I2) 
OUTFILE=TAIL(10:18) 

* 

OPEN(UNIT=3,FILE=OUTFILE,STATUS = 'NEW') 
* 

101 READ(2,51,END = 102) LINK1,LINK2,LINK3,LINK4,LINK5 
LINK(LINK1,0)=LINK1 
LINK(LINK1,1)=LINK2 
LINK(LINK 1,2) =LINK3 
LINK(LINK1,3)=LINK4 
LINK(LINK1,4)=LINK5 
FLAG(LINK1)=0 
FLAG(LINK2)=0 
FLAG(LINK3)=0 
FLAG(LINK4)=0 
FLAG(LINK5)=0 
GO TO 101 

* 

102 CONTINUE * 

TAL=0 
DO 21 1 = 1,SEV 

IF(I.EQ.1)THEN 
ALINK(O)=LINK(INCLNK,0) 
WRITE(3,33) ALINK(O) 

ELSE 
41 DO 22 J=l ,4 

TAL=TAL+1 
ALINK(TAL) =LINK(ALINK(I-2),J) 

256 



IF((ALINK(TAL).EQ.O).OR.(FLAG(ALINK(TAL)).EQ. 1)) THEN 
TAL=TAL-1 
GO TO 22 

ENDIF 
WRITE(3,33) ALINK(TAL) 
FLAG(ALINK(TAL)) = 1 

22 CONTINUE 
ENDIF 

21 CONTINUE 
WRITE(*,*) ' TAL = ',TAL 
WRITE(*,*) ' This is END of the program.' 
END 
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L.2 Description of Graph Program 

This program plots the given network on the screen with incident link and affected links 
shown in different colours (darker on black & white screen). 

Input 1. Incident link number 
2. NODES.LST - File with junction co-ordinates file 
3. LINKS.LST - File with link numbers and start/end nodes 
4. File which contain affected link numbers (from output of ANALYSE 

program) 

Output Graph to screen, printer or file 

Facilities 1. One line per road 
2, Zoom in/out, move graph etc 
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Table M.l Number of links affected with incident link K-714 (Sim vs Pre ') 

Time 2 13 16 19 Time 

Sim Pre Sim Pre Sim Pre 

8:05 0 0 1 1 1 2 
8:10 1 1 1 3 2 4 
8:15 1 2 2 5 4 6 
8:20 2 3 5 7 10 10 
8:25 4 5 9 11 23 16 
8:30 8 7 27 17 38 24 
8:35 11 9 38 23 52 32 
8:40 15 11 46 29 54 40 
8:45 17 14 51 35 58 49 

8:50 15 15 53 36 58 50 
8:55 12 14 54 35 59 49 
9:00 10 11 51 32 59 46 

^ ME 0 9 7 

MAE 1 10 8 

MAPE 31 55 37 

Sim Simulated 
Pre Predicted 

13 Incident with Duration 
16 Incident with Duration 
19 Incident with Duration 

45 min Severity = 20% 
45 min Severity = 50% 
45 min Severity = 70% 

ME Mean Error 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
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Table M. 2 Number of links affected with incident link B-1494 (Sim vs Pre) 

Time 13 16 19 Time 

Sim Pre Sim Pre Sim Pre 

8:05 0 0 1 2 1 2 
8:10 1 1 1 4 1 5 
8:15 1 3 1 7 3 9 
8:20 1 4 3 10 9 13 
8:25 1 5 8 13 17 18 
8:30 2 7 13 18 22 25 
8:35 3 9 20 23 28 32 
8:40 3 11 21 28 30 39 
8:45 4 12 24 32 35 44 

8:50 4 12 27 32 33 44 
8:55 5 12 26 32 35 44 
9:00 5 13 26 33 36 45 

ME - 5 5 - 6 

MAE 5 5 6 

MAPE 201 123 76 
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Table M.3 Number of links affected with incident link L-3232 (Sim vs Pre) 

Time 13 16 19 Time 

Sim Pre Sim Pre Sim Pre 

8:05 0 1 1 2 1 2 
8:10 0 1 1 3 1 4 
8:15 2 2 3 5 3 7 
8:20 6 3 6 7 7 10 
8:25 5 4 6 9 7 13 
8:30 8 5 10 12 11 17 
8:35 16 6 21 15 21 21 
8:40 26 7 30 18 30 25 
8:45 39 8 42 21 42 30 

8:50 40 7 45 20 43 29 
8:55 38 6 41 19 38 28 
9:00 42 5 46 18 41 27 

ME 14 9 3 

MAE 14 10 6 

MAPE 58 62 71 
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Table M.4 Comparison of Predicted V5 Simulated JT at Link K-714 

Time 13 16 19 Time 

Sim Pre Sim Pre Sim Pre 

8:05 14 19 15 26 15 31 
8:10 17 26 33 45 90 58 
8:15 31 40 87 79 185 106 
8:20 59 64 123 139 180 189 
8:25 76 110 118 204 189 258 
8:30 79 122 116 204 195 258 
8:35 80 122 105 204 174 258 
8:40 78 122 109 204 203 258 
8:45 73 122 106 204 166 258 

8:50 63 114 61 183 64 229 
8:55 57 66 58 95 60 115 
9:00 57 18 60 18 56 18 

ME -22 -51 -38 

MAE 28 59 63 

MAPE 47 74 68 
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Table M.5 Comparison of Predicted vs Simulated JT at Link B-1494 

Time 13 16 19 Time 

Sim Pre Sim Pre Sim Pre 

8:05 60 92 72 142 136 176 
8:10 102 148 208 283 464 373 
8:15 166 223 477 470 962 635 
8:20 231 309 668 599 1243 768 
8:25 328 344 753 599 1239 768 
8:30 429 344 755 599 1164 768 
8:35 469 344 747 599 969 768 
8:40 478 344 647 599 744 768 
8:45 432 344 501 599 525 768 
8:50 391 330 406 565 416 722 
8:55 391 319 391 537 398 682 
9:00 251 310 251 514 239 650 

ME 23 -19 54 

MAE 71 116 272 

MAPE 27 34 48 

Table M.6 Comparison of Predicted vs Simulated JT at Link L-3232 

Time 13 16 19 Time 

Sim Pre Sim Pre Sim Pre 

8:05 52 75 67 114 137 140 
8:10 52 101 69 179 189 232 
8:15 62 133 119 260 379 346 
8:20 93 176 269 369 606 499 
8:25 100 226 379 483 769 636 
8:30 125 253 446 483 1051 636 
8:35 184 253 506 483 970 636 
8:40 233 253 501 483 736 636 
8:45 237 253 422 483 537 636 
8:50 228 238 361 445 357 583 
8:55 160 218 307 397 357 517 
9:00 113 184 201 322 221 415 

ME -60 -71 33 

MAE 60 78 153 

MAPE 60 46 30 
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Table N.l Updated forecasts for 'Number of links affected' with incident link K-714 

Time LCI 5*M1 
5*M2 

Forecasts Observed Update 

8:05 1.29 1.2 1 1 1 
8:10 1.57 1.5 3 1 3 
8:15 2.06 1.9 5 2 3 
8:20 2.84 2.5 7 4 5 
8:25 4.44 4.1 11 9 8 
8:30 6.50 6.0 17 26 15 
8:35 6.07 0.7 18 33 27 
8:40 6.22 0.8 19 33 34 
8:45 6.63 0.9 20 31 34 
8:50 5.91 0.7 21 26 32 
8:55 2.65 -1.1 20 26 25 
9:00 1.81 -2.6 17 18 23 

ME 4 - 0.25 

MAE 6 3 

MAPE 54 35 
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Table N.2 Updated forecasts of Journey Time (16) on Link B-1494 

Time Delay 5*S1 Forecasts Observed Update 
5*S2 

8:05 27 84 142 72 142 
8:10 45 141 282 208 213 
8:15 60 187 470 477 395 
8:20 69 216 599 668 599 
8:25 95 297 599 753 668 
8:30 135 422 599 755 753 
8:35 144 450 599 747 755 
8:40 121 378 599 647 755 
8:45 99 309 599 501 755 
8:50 97 -34 565 406 467 
8:55 111 -28 537 391 378 
9:00 129 -23 514 251 368 

ME - 19 - 31 

MAE 116 73 

MSE 17772 9788 

MAPE 34 23 
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Table N.3 Updated forecasts of increased Journey Time (19) on Link 1494 

Time Delay 5*S1 Forecasts Observed Update 
5*S2 

Update 

8:05 27 118 176 136 176 
8:10 45 197 373 464 333 
8:15 60 262 635 962 726 
8:20 69 302 768 1243 962 
8:25 95 416 768 1239 1243 
8:30 135 591 768 1164 1243 
8:35 144 630 768 969 1243 
8:40 121 529 768 744 1243 
8:45 99 433 768 525 1177 
8:50 97 -47 721 416 478 
8:55 111 -39 682 398 377 
9:00 129 -32 650 239 366 

ME 54 - 89 

MAE 272 200 

MAPE 48 34 
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0.2 Boscombe Network Map 
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