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Abstract—The Internet of Things (IoT) will support a massive
number of devices, which will be connected to the wireless
network. In the wireless IoT, the base station serves a wide variety
of devices in the same time-frequency resource, where it is expected
that the number of devices will be greater than the number of
base station antennas. This results in a rank-deficient system.
In this paper, we propose a minimum bit error ratio (MBER)
precoder for rank-deficient MIMO systems in the context of the
IoT, where the IoT devices are generally stationary. We invoke
the particle swarm optimization (PSO) algorithm for solving
the non-linearly constrained MBER problem and we show that
the PSO assisted MBER precoder outperforms the conventional
zero forcing and linear minimum mean squared error (LMMSE)
precoders, which produce an error floor in these challenging rank-
deficient scenarios.

I. INTRODUCTION

With the ever-growing advances in technology, a wide
variety of devices will be connected to the Internet of Things
(IoT) [1]. The IoT is expected to be supported by fifth gener-
ation (5G) mobile communications. Wireless communication
plays a pivotal role in the IoT networking of diverse devices,
which will be equipped with microcontrollers and transceivers
for communication [2]. However, the enabling wireless IoT
poses challenges both in terms of its energy consumption
and the paucity of spectral resources to accommodate a large
number of devices [1], [3]. The base station can employ
diverse multiple-access transmission techniques, such as time
division multiple access (TDMA), frequency division multiple
access (FDMA) and space division multiple access (SDMA)
to serve all the objects simultaneously. In SDMA, the base
station exploits the knowledge of the channel response about
to be encountered by the distant receivers and pre-processes
the signal using a digital transmit precoder (TPC) before
transmission to eliminate the interference at the transmitter, so
that low-complexity single-user detectors can be invoked by the
receivers. To serve a large number of devices within the limited
bandwidth, Ding et al. [4] proposed multi-input multi-output
non-orthogonal multiple access (MIMO-NOMA) for small-
packet transmissions in the IoT. In this design, the devices
having different channel conditions share the same spectral
resources, while invoking successive interference cancellation
to remove the interference caused by other devices. Further-
more, Tian et al. [5] introduced the concept of overlapping
user grouping for increasing the system capacity. In this work,
a greedy-search based algorithm is invoked for mitigating the
effects of overlap amongst the selected subgroups.

In SDMA systems, to serve a large number of devices, a base
station has to be equipped with a large number of antennas,
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which would result in a significant hardware complexity and
power consumption. Thus, to accommodate a large number of
devices, while mitigating the hardware complexity, a carefully
designed transmit precoder (TPC) can be employed before
transmission. In communication systems, the quality-of-service
can be defined in terms of the bit error ratio (BER). Hence,
designing the TPC based on minimizing the BER of the system
should be considered.

A powerful adaptive beamforming scheme was proposed
for minimizing the BER of binary phase shift keying (BPSK)
constellation in [6], [7], where the beamforming weights of
the receiver were designed using the direct minimum bit error
ratio (MBER) criterion. Chen et al. extended the MBER beam-
forming receiver also to SDMA-aided quadrature amplitude
modulation in rank-deficient systems in additive white Gaus-
sian noise (AWGN) channels [8]. More recently, the MBER
framework was also proposed for a non-regenerative multiple-
input multiple-output (MIMO) relay aided system by Dutta
et al. [9]. However, these designs determine the beamforming
weights at the receiver based on the MBER criterion. More
explicitly, these work focus on the design of combining matrix
at the receiver. In contrast to the above MBER receivers, Chen
et al. also studied MBER aided beamforming at the transmitter
[10] using particle-swarm optimization, where the system
considered is of full-rank, i.e. the number of data streams
is equal to the number of transmit antennas. Furthermore,
Pitakdumrongkija et al. designed an MBER based TPC for a
system employing maximum-likelihood (ML) detection [11].

Against this background, our contributions are summarized
as follows.

1) We accommodate a large number of IoT devices, while
mitigating the hardware complexity where the base sta-
tion serves all devices at a reduced individual data rate,
when the number of devices is increased. In contrast to
the aforementioned work, in our system, the base station
is capable of supporting more downlink signal streams
than the number of antennas, using a TPC. Hence, this
system is termed as a rank-deficient system [12]. The
careful design of the TPC is critical in rank-deficient sys-
tems for accommodating a large number of IoT devices.
Hence, in order to design the MBER TPC weights that
minimize the BER for rank-deficient systems, we invoke
the particle swarm optimization (PSO) algorithm [13].

2) We show using simulation results that the proposed
MBER TPC is capable of significantly outperforming
the LMMSE TPC, which produces an error floor in the
rank-deficient systems.

The rest of the paper is organized as follows. Sec. II describes



the system model considered, while Sec. III presents the
MBER problem formulation. Sec. III and Sec. IV discuss
the PSO algorithm and our simulation results, while our
conclusions are presented in Sec. V.

Notations:We use A for matrices and a for vectors, while we
use CN, and i.i.d. to denote complex-valued normal distribu-
tion, and independent and identical distribution, respectively.

II. SYSTEM MODEL

Consider a downlink (DL) scenario, where a base station is
equipped with NN, transmit antennas and communicates with
K 10T devices in different angular directions. We presume
that all IoT devices are stationary and are equipped with a
single antenna, which are mounted on lamp posts, or buildings,
etc., so that the channel between the base station (BS) and
the IoT device may exhibit line-of-sight (LOS) dominance.
Furthermore, in mmWave communications, the channel is
predominantly of LOS nature [14], [15]. Hence, we consider a
Rician distributed channel between the BS and the IoT devices,
which is more practical in the considered scenario. Moreover,
when K < N, the system is said to be of full-rank, or rank- K
system, since the number of IoT devices served is less than the
number of transmit antennas at the BS. In this case, the BS can
transmit K symbols using /N; antennas, since the dimension
of the symbol vector is less than or equal to /N;. On the other
hand, when K > N; the system becomes rank-deficient, since
the BS is serving more IoT devices than the number of transmit
antennas. In other words, the dimension of the symbol vector
is greater than NN;. Let us consider a DL scenario, where the
BS transmits x = [z1...2x]" to K IoT devices in the same
time-frequency radio resource. Before transmission, the signals
are precoded using the TPC matrix P of size N; x K. Then,
the signal vector y received in the downlink is given by

y = HPx + n, D

where H has Rician distributed elements, representing both the
line-of-sight (LOS) and non-line-of-sight (NLOS) components,
which is given by [16]

\/L+1HL05+\/L+1HNLOS, ()
[h:

where we have Hios = .hx] and
h, = [lexp(jZrdcosby)...exp(j3F (Nt — l)dcosﬁk]
[15], whlle 0k is the angle of departure at the BS to the k™
user, d is the distance between the transmit antennas, A is the
wavelength of the signal and L is the Rician fading factor,
which represents the channel power ratio between the LOS
and NLOS components. Additionally, the entries in Hnios
are complex Gaussian variables with distribution ~ CN(0, 1)
and uniformly distributed phase. It is instructive to note that
the channel matrix H is uncorrelated in time and it is of size
K x Ny. Furthermore, n = [n1 ...nk]7 is the noise vector of
size K x 1 whose entries are i.i.d. with distribution CA/(0, 0%)
of mean 0 and of variance ¢, while y = [y; ...yx]|" is the
received vector of size K x 1 and the variance of the channel
E[|H||]> = KN, and x = [z1...2x]|" is the signal vector
of size K x 1, where x; denotes the symbol of the IoT
device k& drawn from the M-ary QAM set. We note that any
complex number can be represented by its real part (R{.})
plus imaginary part (Z{.}), i.e. R{.}+Z{.}. Bearing this in
mind, we find the probability of error for our system.
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Fig. 1: Base station transmitting in the DL using N; antennas
to K IoT devices that are separated in the angular domain.

The proposed TPC relies on the idealized simplifying as-
sumption of having perfect channel state information (CSI)
knowledge at the transmitter. However, in practice the CSI
can only be obtained over a feedback channel in frequency-
division duplex (FDD) systems, or by exploiting the reciprocity
in time-division duplex (TDD) systems [17].

In the next section, we present the MBER problem formu-
lation of designing the TPC matrix P. We employ our MBER
solution to rank-deficient systems, where the number of IoT
devices is greater than the number of antennas at the BS.
We note that the individual device rate may be reduced to
serve more devices and vice-versa. However, the sum-rate is
constant, since the total rate of the system depends on the
number of dimensions available, which is min{N,, K'} [18].

III. PARTICLE SWARM OPTIMIZATION AIDED MBER
PRECODING

Here we only present the probability of error expression of
a 4-QAM constellation, while that of higher-order constella-
tions can be derived by following the approach of [8]. The
probability of error for 4-QAM or QPSK modulation can be
split into real and imaginary parts, where each part behaves as
a BPSK constellation. Thus, the average BER expression for
the in-phase (real part) component of the QPSK modulation is
given by [19]

Pon(P) = e S5 3)

sgn(R[z\"))R[hiPx@)]
Q( iz, ),

where M is the size of the constellation and K is the number
of IoT devices. Here we assume that all the devices receive
symbols selected from the same constellation. To elaborate fur-
ther, x(?) is the ¢ transmit signal vector out of M Posmble
transmit symbol vectors, where 1 < ¢ < M*, while T 9 is the
k" element of x, and o, /+/2 is the noise standard deviation
per dimension. Similarly, the average BER expression for the
quadrature-phase (imaginary part) component of the QPSK
modulation is given by [19]
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Thus, the total average BER of the QPSK constellation is given
by

PeR(P) + PeI (P)
— 5

We have to design the TPC P which minimizes P.. Hence,
the optimization problem can be formulated as

Pe(P) = 5

PMBER =min Pe (P) (6)
s.t. |Px|f < P,

where P; is the total transmit power.

The problem in (6) is a non-linear optimization problem and
it is typically solved using an iterative gradient based approach,
such as sequential quadratic programming (SQP) [20] or by
invoking PSO algorithms, as in [10], [21]. However, SQP im-
poses a high complexity in terms of number of computations as
shown in [10]. Therefore, we resort to the PSO algorithm, since
it strikes a compelling performance vs complexity compromise.
Hence, to solve the optimization problem of (6), we invoke the
PSO algorithm. First, we convert the constrained problem in
(6) to an unconstrained problem with a penalty function, which
is formulated as:

F(P) = P.(P) + G(P), @)
where G(P) is the penalty function given by

E[||Px|*] — P, <0
E[|Px||?) - P, >0

k]

07
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while A is the penalty factor chosen appropriately.
Thus, the objective problem in (6) is now reduced to
PMBER = min F(P) (9)

PcSNXK

The basic idea of PSO is that there is a swarm of particles,
where each particle searches for an optimum position value
in a search space [13]. Furthermore, each particle remembers
the best location where it has been throughout the search
and updates its position using the appropriate velocity as the
particle’s position evolves. The optimum solution is given by
the specific particle, which has the best position amongst all
other particles.

In our problem, the particle P; evolves in the search space
SV*K where S € (—1,1) +j(—1, 1), which forms a square
area in the complex plane. In other words, the entries in the
TPC matrix associated with the particle P; are constructed
from the search space S. The top-level view of the algorithm
is described below and it is also shown in Fig. 2. A more
detailed step by step PSO algorithm is presented in [10], [13],
[21].

In PSO, the matrix Py of the first particle in the swarm is
initialized to the LMMSE solution, while rest of the particles
are initialized randomly in the search space S.

Then, the cost function is computed using (9) plus the
individual particles’ best location Pb, which represents their
best local position that minimizes (9), is updated [21]. Fur-
thermore, the group’s best location Gb, which represents the
best position observed for all the particles that minimizes
(9), is also updated according to [10], [21]. Given the new
locations, now the particles’ velocities are updated, which
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Fig. 2: Flow chart representing the PSO algorithm.

TABLE I: System parameters.

Parameters Values
Number of Particles 40
Modulation QPSK/BPSK
N 3,4
K 4,5,17
L [10, 20, 30] dB
Code rate 12
Constraint length 7
Generator polynomials (in octal) 171, 133
0 Variable

are modified if the velocities approach zero [13]. Given the
updated velocities, the particles’ positions are then updated.
This process is repeated until it reaches the maximum number
of iterations or convergence of (9). In the next section we
demonstrate using our simulation results that for rank-deficient
systems the MBER assisted TPC outperforms the LMMSE
based system.

IV. SIMULATION RESULTS

In this section, we present simulation results for both a rank-
K system, where K < N, and for a rank-deficient system,
where we have K > N;. In these simulations, the total number
of particles used is 40. To reduce the simulation time, we
have considered Ny = 3,4 and K = 4,5, 7 users. However,
the proposed algorithm can be readily applied to larger N
and K values. The system parameters used in this paper are
summarized in Table I.

Rank-K system: Fig. 3 shows the uncoded BER performance
of both the LMMSE aided TPC and the MBER assisted TPC
for the rank 4 system, when N; = 4 and K = 4.In this
configuration, a total of 4 QPSK symbols are transmitted to
K = 4 angularly separated IoT devices using N; = 4 transmit
antennas. In other words, the normalized system load (NSL),
which is the ratio of the number of transmitted symbols to
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Fig. 3: BER performance when N; = 4 and K = 4, (i.e.
NSL=1) (a) The beam directions are 0° = {0, 30, —10, —25}.
(b) The beam directions are ° = {0,10,—10,—25}. The
simulation parameters are listed in Table I.

the number of transmit antennas, is NSL = 1. It is shown
in Fig. 3 (a) that when the devices are widely separated
in the angular domain, ie. ° = {0,30,—10,—25}, the
performance of the LMMSE and MBER solutions is similar.
This is expected, because in the rank-K systems when devices
are widely separated, the LMMSE aided TPC succeeds in
efficiently mitigating the inter-device-interference (IDI). How-
ever, when the angular spread amongst the devices is low,
ie. 8° ={0,10,—-10,—25}, the LMMSE aided TPC fails to
remove the IDI. In contrast to LMMSE, the MBER criterion
provides a better BER performance, as shown in Fig. 3 (b).
Rank-deficient system: Fig. 4 shows the uncoded BER per-
formance of both the LMMSE aided TPC and the MBER
assisted TPC for the rank-deficient system having N; = 4
and K = 7'. In this configuration, a total of 7 BPSK symbols
are transmitted to K = 7 IoT devices using N; = 4 transmit
antennas at the BS. We have set L to be high (L — o00),
because the channel is LOS dominant. It is a rank-deficient
system, since the number of symbols transmitted is greater than
the number of transmit antennas with NSL =1.75. However,
the rate of each user is reduced. In this setting, when the
devices are widely separated in the angular domain, i.e. we
have 6° = {0, 10, —10, —25, 50, —40, 90}, the MBER aided
TPC outperforms the LMMSE assisted system by a significant
margin. Thus, the MBER assisted system efficiently mitigates
the IDI, while the LMMSE assisted system results in an error

I'We have considered Ny = 4 and K = 7 for brevity, however, the
proposed algorithm can be readily applied to larger N; and K values.
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Fig. 4 BER performance when Ny = 4 and K =
7 (ie. NSL =1.75) (a)The beam directions are 0° =
{0, 10, —-10, —25, 50, —40,90}. (b) The beam directions are
0° = {0,10,—10, —25,50, —40, 60}. The simulation param-
eters are listed in Table I.

floor, as shown in Fig. 4 (a). It is instructive to note that
although this is a rank-deficient system, the devices are widely
separated in the angular domain. However, when the angular
spread between two of the seven devices is too low, i.e. when
0° = {0,10,-10,—25,50, —40, 60}, the MBER aided TPC
yields only a limited gain over LMMSE TPC as shown in
Fig. 4 (b).

To better understand the behavior of the MBER TPC pre-
coder and also to avoid the error floor observed in Fig. 4
(b), we employ coding to study the performance of both the
MBER TPC and the LMMSE aided TPC. Fig. 5 shows the
BER of both the convolutional coded and uncoded system for
different L values. In this configuration, a total of 5 BPSK
symbols are transmitted using N; = 3 transmit antennas
to K = 5 IoT devices with NSL = 1.66, hence this is a
rank-deficient system. The beam directions of the devices are
0° = {0,-20,20,40, —40}. It is seen in Fig. 5 that for an
uncoded system and large L (L — o0), i.e. when the channel
is LOS dominant, the LMMSE TPC yields an error floor,
while the MBER aided TPC provides a better BER. However,
when the factor L = 30 dB, the MBER TPC provides only a
marginal gain for uncoded systems. Moreover, when L is 10
dB, the MBER-assisted system results in an error floor.

On the other hand, for our convolutional coded system using
a half-rate code with a constraint length of seven and octally
represented generator polynomials of 171 and 133, particularly
when the channel is LOS dominant, the BER of the MBER
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Fig. 5: Coded and uncoded BER of the rank-deficient system
with Ny = 3 and K =5 (i.e. NSL=1.66). The beam directions
are 8° = {0,—20, 20,40, —40}. The simulation parameters
are listed in Table I

based TPC is promising, while the LMMSE based precoder
provides only a marginal gain. Furthermore, the BER of the
coded MBER system at L = 20 dB and 30 dB is similar to
that of the system having a perfect LOS.
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Fig. 6: Convergence performance of PSO aided TPC for the
system employing Ny = 3 transmit antennas to support K =5
BPSK users with NSL=1.66. The beam directions are 0° =
{0, 90, —50, —25, 30}.

Fig. 6 shows the convergence performance of PSO aided
TPC for the system employing N; = 3 transmit antennas
to support K = 5 BPSK users with NSL=1.66. It is worth
observing from Fig. 6 that at SNR of 5 dB the PSO algo-
rithm converged after 8 iterations, while at SNR of 15 dB it
converged after 5 iterations. The convergence results obtained
beyond SNR of 15 dB are observed to be similar.

V. CONCLUSIONS

In this paper, an MBER assisted TPC was proposed for rank-
deficient MIMO systems in the context of the IoT. The PSO
algorithm was invoked to optimize the non-linearly constrained
MBER problem and we demonstrated by our simulation results
that the PSO assisted MBER TPC achieves a better BER
performance in rank-deficient systems than conventional TPC

designs, such as zero forcing and LMMSE aided TPCs, which
produce an error floor.
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