An Application- and Platform-agnostic Control and
Monitoring Framework for Multicore Systems

Graeme M. Bragg®, Charles Leech*, Domenico Balsamo*, James J. Davis',
Eduardo Wachter*, Geoff V. Merrett*, George A. Constantinides’ and Bashir M. Al-Hashimi*
*School of Electronics and Computer Science, University of Southampton, SO17 1BJ, UK. Email: gmb@ecs.soton.ac.uk
JrDepartment of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ, UK

Abstract—Heterogeneous multiprocessor systems have in-
creased in complexity to provide both high performance and
energy efficiency for a diverse range of applications. This
motivates the need for a standard framework that enables the
management, at runtime, of software applications executing on
these processors. This paper proposes the first fully application-
and platform-agnostic framework for runtime management ap-
proaches that control and optimise software applications and
hardware resources. This is achieved by separating the system
into three distinct layers connected by an API and cross-layer
constructs called knobs and monitors. The proposed framework
also supports the management of applications that are execut-
ing concurrently on heterogeneous platforms. The operation of
the proposed framework is experimentally validated using a
basic runtime controller and two heterogeneous platforms, to
show how it is application- and platform-agnostic and easy to
use. Furthermore, the management of concurrently executing
applications through the framework is demonstrated. Finally,
two recently reported runtime management approaches are
implemented to demonstrate how the framework enables their
operation and comparison. The energy and latency overheads
introduced by the framework have been quantified and an open-
source implementation has been released'.

Keywords—Heterogeneous systems, runtime management, soft-
ware framework.

I. INTRODUCTION

The management and control of hardware settings at run-
time has become a non-trivial task for multiprocessor embed-
ded systems. In addition, applications have become increas-
ingly dynamic to exploit the capabilities of these systems, with
adjustable parameters that must be tuned to optimise their be-
haviour. As a result, the proactive optimisation of application
performance and system energy efficiency is a key research
challenge. Runtime management is a solution to this challenge
that enables optimisation of, and tradeoff between, quality,
application throughput and energy with varying requirements.

One way in which this can be achieved is by the exposure
and adaptation of tunable parameters from the application and
platform through a consistent framework interface. However,
the majority of current frameworks only provide a mechanism
to monitor the application’s performance, and do not allow
for the simultaneous monitoring and control of hardware

This work was supported by the PRIME programme grant EP/K034448/1
(http://www.prime-project.org) and EPSRC grant EP/L000563/1.

Data supporting the results presented in this paper is available at ???DOI???.

I Available at: https://github.com/PRiME-project/PRiME-Framework

components and applications at runtime. Moreover, most ex-
isting frameworks do not support heterogeneous platforms,
which contain processors with differing capabilities, or the
management of concurrent applications.

In this paper, the first framework for fully application- and
platform-agnostic runtime management that enables simulta-
neous control and optimisation of software applications and
hardware resources is presented. This is achieved by separating
a system into three distinct layers of application, runtime
management and device. These layers are connected through
a novel API and cross-layer constructs called knobs and
monitors, which enable the flow of information between the
layers and the control and monitoring of runtime-tunable and
-observable parameters. This reduces the design complexity by
enabling the runtime management layer to provide a specific
service to the applications, e.g., to meet a performance require-
ment, whilst meeting optimisation targets by controlling the
hardware resources. The novel contributions of the proposed
framework are:

« the ability to control and monitor applications and hard-
ware simultaneously using a novel cross-layered ap-
proach;

o a novel API that provides a consistent way in which
knobs and monitors are specified and monitored across
applications and platforms;

« a mechanism to enable the management of concurrently
executing applications and heterogeneous platforms.

Additionally, the framework enables the direct comparison
of different runtime management approaches and algorithms,
which has not previously been possible, and simplifies runtime
manager (RTM) development.

The framework is experimentally validated with a range
of applications and two different types of heterogeneous
platform to demonstrate its application- and platform-agnostic
properties and to illustrate its ease of use. The management of
two concurrently-executing applications is then demonstrated.
In addition, two recently reported runtime management ap-
proaches, one based on control using performance counters
and one that uses reinforcement learning, are implemented
with the framework to demonstrate how the framework enables
their operation and comparison. An open-source C++ imple-
mentation of the framework and API has also been released.!

TABLE I
PROPERTIES OF STATE-OF-THE-ART FRAMEWORKS FOR RUNTIME MANAGEMENT OF APPLICATIONS ON MULTIPROCESSOR SYSTEMS.

Application-RTM

RTM-device

Framework . Non-temporal ~ Multiple R é\gl?r?(iltizr Heterogeneous g)rl)ligf;

Knobs Monitors monitors monitors Knobs Monitors g platforms release
Heartbeats [1] X v X X X X X X v
PowerDial [2] v Heartbeats X X X X X X X
I;Zf;%iz?:?;]s X Heartbeats x x x v X CPU + FPGA v
ARGO [4] v v v v X X X X X
AS-RTM [5] v Heartbeats X v X X X X X
PTRADE [6] X Heartbeats X X v X X X X
DRM [7] X Heartbeats X X X X X X X
BEEPS [8] X Heartbeats X X v X X X X
Proposed v v v v v v v v v

A survey of existing frameworks is presented in Section II.
The proposed framework is explored in Section III and then
practically validated in Section IV. Finally, Section V con-
cludes the paper.

II. RELATED WORK

Various runtime management approaches exist in the lit-
erature for optimising system behaviour, whilst satisfying
application requirements. These include dynamic voltage and
frequency scaling (DVFES) [9], per-core power gating [10],
dynamic task mapping and thread migration [11]. While RTMs
are typically designed to address general challenges, such as
energy efficiency or thermal management, they are largely
implemented on specific platforms or with specific classes of
application, e.g. multimedia [12] or image processing [13].

In addition, benchmarks are typically used to assess rela-
tive performance and measure specific aspects of RTMs and
hardware platforms. However, they do not typically expose
application requirements (e.g. error or accuracy) in addition to
performance and this can limit the range of optimisation op-
portunities of runtime management approaches. Furthermore,
source code for RTMs is often not released, with limited detail
on implementation reported, making reproduction of results
a non-trivial task. This prevents the direct comparison of
approaches, with several works relying on indirect comparison
via Linux governors [11], [14].

Runtime management can be enhanced by the exposure of
dynamic knobs and monitors, which provide a mechanism to
communicate with the application and platform. Specifically,
knobs allow the tuning of hardware and application param-
eters by the RTM, while monitors enable the measurement
of hardware properties and the observation of application
behaviour, including the setting of performance targets by
the application [2]-[4], [15]. In addition, knobs and monitors
can been used to explore application-device tradeoffs, such
as throughput-power [6] and precision-throughput [16], and
locate optimal operating points for applications [17]. However,

runtime management lacks portability unless these knobs and
monitors are exposed through a consistent interface.

Several frameworks have been proposed in the literature to
address the challenge of providing a consistent interface for
runtime management. Table I summarises the features of these
frameworks, showing whether application and device knobs
and monitors are provided, as well as considering support for
heterogeneous platforms. The most relevant framework is the
Heartbeats API [1], which provides a standardised interface for
single or concurrent applications to communicate their current
and target performance to external observers, such as an
RTM. However, the Heartbeats API only allows applications
to communicate their throughput (i.e. the heart rate), therefore
it does not allow other types of parameters to be exposed,
such as accuracy and error (classed as non-temporal monitors
in column 4 of Table I), and prevents tradeoffs between them.
In addition, it does not extend this interface for monitoring or
control of device parameters. Most of the frameworks reported
in Table I are based on the Heartbeats concept and inherit its
features, e.g. application monitors (column 3).

In order to perform tradeoffs within a single application,
multiple monitors of different types must be exposed, e.g.
throughput and error. Column 5 of Table I shows that Heart-
beats, and most of the frameworks that rely on it, do not
support this functionality. In addition, for an application to
meet its requirements, a target can be specified with the
monitor. However, there is no indication as to whether the
target is a maximisation or minimisation objective, as listed
in column 8. As a result, these approaches do not allow fully
application-agnostic behaviour.

Columns 6 and 7 show that current frameworks only provide
partial abstraction of RTM to device communication, and do
not include both knobs and monitors to control hardware
components at runtime. Moreover, most existing works do not
operate on heterogeneous platforms (column 9), which provide
both high performance and energy efficiency by combining
conventional CPUs with other accelerators. These platforms

Application layer

-

LAt]|

App km App to RTM

e.g. Image filter

App monitors [~~"3

eg.
i eg. AP frame rate !
; filter precision [a,) '
.- |(single/double)|- <= - e cccmomeail N A :
[Runtime management layer
7 ~~"| Device knobs [=~7""7mmmmmmmmm ooy
' e.g.frequency| o\l e Device ;
H selection AP monitors, e.g. !
{0,1,....9} temperature, '
eeiii DN A . power oo
Device layer
(oovi) (_escPu)

Fig. 1. Cross-layer framework and API enabling communication between the
application, runtime management and device layers using knobs and monitors.
Examples are given for an image filter application on a CPU.

typically increase the scalability of parallel applications and
systems, and therefore they need to be managed by a frame-
work that supports device-agnostic control. The only approach
that is based on a heterogeneous platform introduces a hard-
ware dependency in the process [3]. This restricts the cross-
platform capabilities of current frameworks, meaning that they
do not allow current RTM approaches to be portable across
multiple platforms.

III. PROPOSED FRAMEWORK

To address the limitations of existing frameworks discussed
in Section II, a framework for application- and platform-
agnostic runtime management of heterogeneous systems is
presented. Fig. 1 shows the proposed framework and how
the three layers are connected by novel APIs (App to RTM
APTI and RTM to device API). This provides consistent
interfaces from an RTM to both hardware platforms and
applications, which enables the design and implementation
of application- and platform-agnostic runtime management
approaches. As discussed in Section II, application knobs
expose tunable application parameters, e.g. filter precision,
while monitors convey information about the behaviour of the
applications, e.g. frame rate. Similarly, device knobs expose
tunable device parameters while monitors convey information
about the status of devices. Exposing knobs and monitors at
both the application and device layer enable tradeoffs, e.g.
performance-energy or accuracy-temperature, to be explored
and exploited by the runtime management layer.

In addition, the proposed framework facilitates the com-
parison of existing RTMs as well as the management of
concurrently-executing applications and heterogeneous plat-
forms. The remainder of this section provides an overview of
the technical concepts of the proposed framework and details
of the novel APL

A. Framework Concepts

Structure: The separation of the system into three distinct
layers, application, runtime management and device, as il-
lustrated in Fig. 1, reduces design complexity and provides
flexibility during operation. Specifically, the application layer
comprises any number of software processes, while the device
layer includes the hardware and its software drivers. The run-
time management layer comprises an RTM responsible for the
control and monitoring of the other two layers. This separation
ensures portability and cross-compatibility; applications and
device drivers only need to be written once to be used with
any implemented RTM.

Communication: Knobs and monitors, shown in the dashed
regions of Fig. 1, facilitate communication between the layers.
Bounds are attached to both knobs and monitors, in the form
of minima and maxima, which allow applications and devices
to inform the runtime management process of targets and
constraints. Knob bounds represent a range of allowed values
while monitor bounds represent a range of desired values
rather than a single target value. An RTM’s primary objective
is to ensure that the monitor values of all applications and
the device remain within their specified bounds. Minimal
modification is required to applications to expose knobs and
monitors through the framework.

For example, the image filter application shown in Fig. 1
provides the option of selecting float or double precision
for its numeric operations at runtime. Under the proposed
framework, this choice would be controlled by the RTM
using an application knob with options {0,1}. If the same
application requires a minimum throughput, e.g., expressed
as a frame rate «, an application monitor with this minimum
bound can be provided to the RTM. In this case, the application
periodically updates the current frame rate so that the RTM
can keep it within the range [o, 00). On the hardware side,
the example of a CPU is considered within the device layer
(Fig. 1). DVES of the CPU is achieved via a device knob with
options {0,1,---,9}, enabling the RTM to switch between
ten distinct voltage-frequency pairs. Finally, to enable thermal
management by the RTM, a temperature sensor is considered
as an illustrative device monitor.

Weights: Individual applications may feature multiple per-
formance objectives with differing priorities. For example, an
application aware of both its throughput and accuracy may
wish to prioritise the optimisation of one over the other.
In the proposed framework, this priority is expressed with
a numeric weight attached to each monitor. These weights
instruct the RTM to expend proportional effort in optimising
each monitor’s value. In a similar manner, application priority
is indicated through an attached weight such that a higher level
of consistency can be ensured by foreground processes in a
multi-tasking scenario.

Concurrency: Real-world systems commonly execute more
than one application concurrently that compete for hardware
resources. Due to this, the runtime manager is required to
carefully manage system resources so that each application

TABLE II
APPLICATION-TO-RTM AND RTM-TO-DEVICE API FUNCTIONS FOR THE PROPOSED FRAMEWORK.

Layer Construct Space Identifier Input(s) Output(s) Description
min knob, min - Update application knob’s minimum allowed value
knob max knob, max - Update application knob’s maximum allowed value
get knob value Pull application knob’s current value
app min mon, min - Update application monitor’s minimum desired value
mon max mon, max - Update application monitor’s maximum desired value
weight mon, weight - Update application monitor’s relative importance
dl/SC set mon, value - Push application monitor’s current value
cont min knob min Pull device knob’s minimum allowed value
max knob max Pull device knob’s maximum allowed value
knob init knob init Pull device knob’s initial (default) value
dev type knob type Pull device knob’s type
set knob, value - Push device knob’s current value
mon type mon type Pull device monitor’s type
get mon value Pull device monitor’s current value and bounds

meets its performance targets. When considering concurrently-
executing applications, the framework provides a mechanism
to identify and manage them simultaneously using a unique ID
number. In this way, the knobs and monitors can be grouped
and traded-off between applications by the RTM.

Types: Knobs and monitors each have a type selectable
from a discrete set of options, e.g., TEMP for a temperature
monitor or FREQ for a frequency knob. This represents a com-
promise between complete agnosticism and the full provision
of information. Providing “hints” to the RTM simplifies the
process of determining the function of knobs and the properties
represented by monitors, e.g., “lower power is better”.

Spaces: All knobs and monitors are expressed in stan-
dardised, unit-less formats to maintain application and device
agnosticism. The proposed framework allows discrete- and
continuous-valued versions of each knob and monitor, so that
the appropriate optimisation and control process can be used
by the RTM. For example, a boolean choice (i.e. {0,1}) does
not require iterative convergence. These spaces enable the
translation of application-specific information into agnostic
sets, as shown in Fig. 1 for the ranges of the knobs and
monitors. Discrete versions use signed integer values while
their continuous counterparts operate using floating-point data.

Adaptability: In order to provide maximal flexibility, all
bounds and weights are adjustable at runtime, and no re-
strictions are placed on when update to these can occur.
Most commonly, applications create their knobs and monitors
before being executed, however no limitation is imposed on
such events occurring partway through application execution.
Applications are allowed to be attached to and detached from
the framework at any point during runtime. This capability is
in contrast to existing frameworks, most of which assume a
constant application set, contrary to the typical use of many
commercial embedded systems.

B. Framework API Specification

The proposed framework is realised through novel
application-to-RTM and RTM-to-device APIs, which connect

the system layers of Fig. 1 and enable the exposure of knobs
and monitors between the three layers in a consistent manner
across different applications and hardware platforms. Table II
illustrates how the API functions are split into application
(app) and device (dev) categories, with subcategories for
knob (knob) and monitor (mon) interaction. Discrete- (disc)
and continuous-valued (cont) versions exist across the API
to indicate the typology of the knob or monitor being used.
The RTM must be made aware of the allowable and
desired values for knobs and monitors, respectively, in order
to ensure that its optimisation targets are regulated and have
positive effects. For knobs, functions app_knob_ (disc|
cont)_ (min|max) () facilitate this, letting the applica-
tion indicate the range in which values can be chosen.
Conversely, monitor functions app_mon_ (disc|cont)
_(min|max|weight) () allow the setting of RTM ob-
jectives, with »_min () and *«_max () functions indicating
desired lower and upper bounds. Where an application requires
only a maximum or minimum bound, the other end of the
range can be left unbounded using (DISC|CONT)_MIN
or (DISC|CONT)_MAX. Intra-application weighting values
between 0.0 and CONT_MAX can be used to indicate rel-
ative monitor importance to the RTM using _weight ()
functions, guiding its optimisations. All of these settings can
be updated during application execution if required. Func-
tions app_knob_ (disc|cont)_get () and app_mon_
(disc|cont)_set () are used by the application to get
the current value of a knob from the RTM and set an updated
value for a particular monitor to the RTM, respectively.
Device-layer knobs and monitors are exposed and up-
dated via the RTM-to-device API functions, as shown in the
lower half of Table II. Functions dev_knob_ (disc|cont)
_(min|max) () are equivalent to their application-layer
counterparts, setting the range of valid values. Additional func-
tions dev_knob_ (disc|cont)_ (type|init) () return
the type of the knob or its initial value (i.e. the default
value). Type-related functions return values from defined sets
and are called by the RTM using dev_mon_ (disc|cont)

_type (). The RTM uses functions dev_knob_ (disc|
cont)_set () and dev_mon_ (disc|cont)_get () for
setting device knob values and accessing monitor values and
bounds from the device at runtime.

An open-source C++ implementation of the framework and
API has been released'

IV. EVALUATION

In order to demonstrate the capabilities of the framework
and validate its operation, a series of experiments have been
carried out. [llustrative example runtime controllers were used
where appropriate to demonstrate specific concepts. The exper-
imental setup is discussed in Section IV-A. The basic operation
of the framework and its ease-of-use are demonstrated in Sec-
tion IV-B with an illustrative runtime controller. Application
agnosticism is shown throughout this section while platform
agnosticism is demonstrated in Section IV-C with the same
application and RTM executing on two different heterogeneous
platforms. Support for concurrent applications is validated in
Section IV-D, with two different applications executing on
one platform. Additionally, the ability of the framework to
enable direct comparison of RTMs is shown in Section IV-E
with two recently reported runtime management approaches.
Finally, overheads are analysed in Section IV-F.

A. Experimental Setup

Two heterogeneous embedded platforms were used to
demonstrate the proposed framework. The Odroid-XU3 devel-
opment board, containing an ARM big.LITTLE design with
two quad-core CPU clusters and a GPU, was used to demon-
strate the ease-of-use of the framework, the direct comparison
of RTMs and to assess overheads. The platform contains five
temperature sensors to monitor the CPU and GPU, and four
power sensors to monitor each CPU cluster, the GPU and
memory. Each of these is exposed to the framework as a device
monitor. Three device knobs are exposed to provide DVFS for
each CPU cluster and the GPU. Table III summarises the knobs
and monitors of the Odroid-XU3.

A second platform, the Cyclone V SoC Development Kit,
was used to demonstrate platform-agnostic operation of the
framework. This platform includes a heterogeneous CPU-
FPGA system-on-chip containing two ARM CPUs and FPGA
fabric. Using OpenCL, applications can execute on either the
CPUs or the FPGA as synthesised hardware.

Four different applications from the numerical and multime-
dia domains were used to demonstrate the application-agnostic
properties of the framework.

B. Agnostic Runtime Management

A basic runtime controller was implemented for the RTM
layer to illustrate the use of knobs and monitors for maintain-
ing an application performance target while optimising a given
device monitor. Listing 1 shows the code for the controller,
which ensures that the value of the application performance
monitor remains within its bounds. This is achieved by adjust-
ing the device frequency knob in order to avoid violations of

TABLE III
DEVICE-LEVEL KNOBS AND MONITORS FOR THE ODROID-XU3.

Const. Space Type For No.
disc FREQ LITTLE cluster 1

knob disc FREQ big cluster 1
disc FREQ GPU 1
cont POW Clusters, RAM, GPU, SoC 5
cont TEMP big cores 4

mon cont TEMP GPU 1
disc PMC LITTLE cores 16
disc PMC big cores 24

Listing 1

RTM CODE FOR AGNOSTIC CONTROL AND MONITORING OF APPLICATION
AND DEVICE KNOBS AND MONITORS.

1| void rtm::control_loop () {

2| while(1){

3 temp_mon = dev_api.mon_cont_get (temp_mons([2]);

4 if (apps.size()){

5 app_perf = app_mons_cont[0];

6 if (app_perf.val < app_perf.min) {

7 if (freq_knob.val < freqg_knob.max) {

8 freg_knob.val++;

9 dev_api.knob_disc_set (freq_knob, freqg_knob.val);
10 }}
11 else if (temp_mon.val > temp_mon.max) {
12 freq_knob.val-—;
13 dev_api.knob_disc_set (freq_knob, freq _knob.val);
141 1131}

the monitor bounds app_perf.min and app_perf.max
(lines 6 — 9). The optimisation of device temperature is the
secondary objective of the controller (by monitoring the cur-
rent value temp_mon.val) and is achieved by decrementing
the frequency knob (line 12), trading-off excess application
performance (lines 12 — 13). The else 1if statement on line
11 ensures that the performance monitor is prioritised over the
device temperature.

The behaviour of this controller is shown in Fig. 2 while
running a numerical benchmarking application (Whetstone).
This benchmark performs numerical functions using integer
and floating-point arithmetic. Its performance is measured
in thousands of Whetstone instructions per second (KIPS),
which is exposed as a continuous monitor with bounds of
[2.30, 00). Initially, the controller set the device frequency
to maximum and observed the device temperature. As the
temperature increased above the the maximum threshold spec-
ified by temp_mon.max (80°C), the controller reduced the
frequency until the temperature was below the threshold whilst
ensuring that the application performance was higher than
app_perf.min. After 50 seconds, the platform reduced
the temperature threshold to 60°C and the RTM reduced the
frequency in response until the updated monitor bound was
met while exceding the application throughput requirement.

This experiment demonstrates the basic operation of the
framework and illustrates the dynamic nature of knobs and
monitors. The controller is application- and platform-agnostic
as it could operate, without modification, with any application
that exposes a performance monitor and with any platform that
exposes a frequency knob and temperature monitor.

Performance (KIPS)
no - n w £ (4] (=]

0.5

Frequency (GHz)

100

90
80 f

temp_mon.max

70
60

50

Temperature (°C)

40

0 10 20 30 40

50 60 70 80

Time (s)

Fig. 2. Device temperature optimisation under application performance constraints using the controller RTM, including dynamic adjustment of the temperature

threshold from 80 to 60°C.

C. Platform Agnosticism

The portability of RTMs and applications implemented
within the framework is demonstrated in Fig. 3, which shows
the design-space exploration (DSE) of the same application
across two heterogeneous platforms using the same RTM code.
A Jacobi iterative solver benchmark was used as a case-study
application. It can operate a tradeoff between the speed of
calculation (solves per second) and the accuracy of the result
(mean squared error) by adjusting the number of iterations
performed and the precision of the data type. Throughput and
accuracy are exposed as monitors while iterations and the
precision are exposed as knobs. The DSE extended to ap-
plication execution on the heterogeneous components of both
platforms, including the GPU on the Odroid and the FPGA
on the Cyclone V, in addition to the CPUs. Points in Fig. 3
show the resultant throughput and error for each combination
of knob values with blue crosses for the Odroid and green
triangles for the Cyclone V. This experiment demonstrates
that the same application and RTM code can be used on any
platform supported within the proposed framework.

D. Concurrent Application Management

This subsection demonstrates how the framework supports
the management of concurrently executing applications. A
runtime control algorithm was implemented with a target of
keeping the throughput monitor of each application within
its bounds, app_perf.min and app_perf.max, while
minimising device frequency. The behaviour of this controller
is shown in Fig. 4, where the execution of two applications is
indicated by their throughput over time. The top plot shows
a video filtering application and the middle plot shows the
Jacobi iterative solver.

Initially, the video filter application was the only application
executing. As a result, the runtime controller adjusted the

X Odroid-XU3 A CycloneV

-
N

—
15}
XX

Application throughput
(solves per second)
o

4
" 3
2
0 A g A A A
1020 1071 10712 1078 1074 10° 104 108

Application error (Norm. sq. error)

Fig. 3. Design-space exploration of the Jacobi application across the Odroid-
XU3 and Cyclone V devices.

CPU frequency to meet the application throughput bounds at
the lowest frequency possible. The Jacobi application began
its execution at 21 seconds and reported that its throughput
was below the minimum bound to the RTM. In addition, the
throughput of the video filter decreased due to competition for
device resources. To compensate, the controller increases the
CPU frequency such that the throughput of both applications
was within their bounds.

E. Comparison of RTM approaches

To demonstrate the framework’s optimisation and compar-
ative capabilities, two state-of-the-art approaches were imple-
mented within the proposed framework. The first approach,
RTM-A [11], aims to optimise power consumption by monitor-
ing hardware performance counters to adjust CPU frequency.
The second approach, RTM-B [18], employs reinforcement
learning to predict the frequency that should be selected to
meet an application performance target. RTM-A was origi-
nally evaluated on the Odroid-XU3 platform, using standard
benchmarks, reporting a mean energy saving of 25% when

Video filter throughput
(Frames per second)

400

300

200

100

Jacobi throughput
(Solves per second)

Frequency
(GHz)

app._perf.max — ==
— T]
app._perf.min ‘ N
10 15 20 25 30 35 40
app_perf.max 1 —
app_perf.min ‘\—'—\ ’7“—% ﬁJ {
4,_1 | S— \—‘
10 15 20 25 30 35 40
’—‘ — |-
’—‘ 1 1 1 —
S S |
10 15 20 25 30 35 40
Time (s)

Fig. 4. Runtime management of the throughput of two concurrently-executing applications through the framework. The Jacobi application begins execution

at 21 seconds and the device frequency is adjusted to compensate.

compared to the Linux Ondemand governor. RTM-B was
evaluated on the BeagleBoard-xM platform, using a video
decoder application, reporting a mean reduction in energy
consumption of 30% when compared to Ondemand.

These two approaches lack portability and direct compar-
isons cannot be made, due to the different platforms used for
experimental validation. Implementation within the proposed
framework allows them to be directly compared, saving devel-
opment time and improving the accuracy of the comparison.
To demonstrate how this comparison can be made, the RTMs
were evaluated using a OpenCV video decoding application on
the Odroid-XU3 platform. The application exposes a continu-
ous monitor for the frame rate, with a minimum bound of 25
frames per second. The RTMs are directly compared in Fig. 5,
between bars 2 and 4, showing that the application consumed
a mean total energy of 381 J and 376 J under the control of
RTM-A and RTM-B, respectively. Comparison with the Linux
Ondemand governor (bar 5) shows energy savings of 17.2%
and 18.2%, respectively. This demonstrates that while RTM-B
achieves a greater energy saving, it is less than reported in
literature for this application and platform pair.

F. Overheads

As with any abstraction, the framework introduces an energy
overhead due to the additional computation required. This
overhead can be estimated by comparing stand-alone versions
of RTM-A and RTM-B against their implementations within
the framework. Results of these experiments can be seen in
Fig. 5 for RTM-A (bars 1 and 2) and for RTM-B (bars 3 and
4). RTM-A required 19.6 J (5.48%) more energy, while RTM-
B required only 15.2 J (4.23%) more energy, in the minimum
case. The minimum case was used to minimise the impact of
other running processes on the result. When compared to the

460

K

440

Energy (J)
IS
N
o

N
o
o

380 T T
l =
I

RTM-A RTM-A RTM-B RTM-B
without FW with FW without FW with FW

360

OnDemand
Governor

Fig. 5. Mean total energy consumed by the Odroid-XU3 running the video
decoder application under the control of each RTM, both with and without
the framework (FW). The experiment was repeated 50 times for each RTM.

Ondemand governor, the two RTMs still achieved significant
savings despite these overheads.

The framework also introduces latency overheads that limit
the response rate of the RTM. Fig. 6 visualises the steps
involved in reading a device monitor inside the framework,
identifying seven internal latency sources. tasm, tx and tgiss are
the times to assemble, transmit and disassemble the message,
tnet 18 the message-passing interface latency and tgeyen is the
time to search for and read a monitor. The latency related to
each API call was measured and found to be 80-200 us, with
40% attributed to cross-layer communication. For an RTM
reading one device monitor and setting one device knob per
update, this limits the update rate to 1.67 kHz in the worst
case.

V. CONCLUSIONS

This paper has presented a framework that enables
application- and platform-agnostic runtime management of

RTM layer Device layer
Assemble (tasm)
Transmit (ty)
et Disassemble (tyiss)
Read monitor (fsearch) Time
Assemble(tygm)
i Transmit (&)
< Etnet
Disassemble (tiss) D

Fig. 6. Breakdown of the sources of latency introduced by the framework
for communication between the RTM and device layers.

concurrently executing applications on heterogeneous multi-
core systems. This is achieved by visualising a system as
three distinct layers that are connected by dynamic knobs
and monitors that allow a range of tunable parameters and
observable metrics to be exposed. The framework enables the
direct comparison of different RTM approaches, which has not
been previously possible, and simplifies RTM development.
The framework introduced very modest energy and latency
overheads that have limited impact on the operation and
performance of RTMs. Operation with concurrent applications
was demonstrated and an open-source implementation of the
framework has been released.! Research is ongoing to provide
further validation of the framework and to integrate additional
applications, devices and RTMs.

REFERENCES

[1] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. L.
I. I. I. Agarwal, “Application Heartbeats: A Generic Interface for
Specifying Program Performance and Goals in Autonomous Computing
Environments,” in Int’l Conf. on Autonomic Comput., 2010.

[2] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal et al.,
“Dynamic Knobs for Responsive Power-aware Computing,” in Int” Conf.
on Arch. Supp. for Prog. Lang. and OS, 2011.

[3] S. T. Fleming and D. B. Thomas, “Heterogeneous Heartbeats: A
Framework for Dynamic Management of Autonomous SoCs,” in Int’l
Conf. on Field Prog. Logic and Appl., 2014.

[4] D. Gadioli, G. Palermo, and C. Silvano, “Application Autotuning to
Support Runtime Adaptivity in Multicore Architectures,” in Int’l Conf.
on Embedded Comput. Syst.: Architectures, Modeling, and Simulation,
2015.

[5] E. Paone, D. Gadioli, G. Palermo, V. Zaccaria, and C. Silvano, “Eval-
uating Orthogonality between Application Auto-tuning and Run-time
Resource Management for Adaptive OpenCL Applications,” in IEEE
Int’l Conf. on Appl.-specific Syst., Arch. and Proc., 2014.

[6] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agar-
wal, “A Generalized Software Framework for Accurate and Efficient
Management of Performance Goals,” in Int’l Conf. on Embedded Soft-
ware, 2013.

[7] A. Baldassari, C. Bolchini, and A. Miele, “A Dynamic Reliability Man-
agement Framework for Heterogeneous Multicore Systems,” in [EEE
Int’l Symp. on Defect and Fault Tolerance in VLSI and Nanotechnology
Syst., 2017.

[8] F. Gaspar, L. Tanica, P. Tomds, A. Ilic, and L. Sousa, “A Framework
for Application-guided Task Management on Heterogeneous Embedded
Systems,” ACM Trans. on Arch. and Code Optim., vol. 12, no. 4, 2015.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

A. Das, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Kumar
et al., “Reinforcement Learning-based Inter- and Intra-application Ther-
mal Optimization for Lifetime Improvement of Multicore Systems,” in
ACM/EDAC/IEEE Design Automation Conf., 2014.

A. M. Rahmani, M. H. Haghbayan, A. Miele, P. Liljeberg, A. Jantsch
et al., “Reliability-aware runtime power management for many-core
systems in the dark silicon era,” IEEE Trans. on VLSI Syst., vol. 25,
no. 2, 2017.

B. K. Reddy, A. K. Singh, D. Biswas, G. V. Merrett, and B. M. Al-
Hashimi, “Inter-cluster Thread-to-core Mapping and DVFS on Heteroge-
neous Multi-cores,” IEEE Trans. on Multi-Scale Comput. Syst., vol. PP,
no. 99, pp. 1-1, 2017.

Y. G. Kim, M. Kim, and S. W. Chung, “Enhancing Energy Efficiency
of Multimedia Applications in Heterogeneous Mobile Multi-core Pro-
cessors,” IEEE Transactions on Computers, vol. 66, no. 11, 2017.

S. Yang, R. A. Shafik, G. V. Merrett, E. Stott, J. M. Levine et al.,
“Adaptive Energy Minimization of Embedded Heterogeneous Systems
using Regression-based Learning,” in Int’l Workshop on Power and
Timing Modeling, Optim. and Sim., 2015.

G. Singla, G. Kaur, A. K. Unver, and U. Y. Ogras, “Predictive dynamic
thermal and power management for heterogeneous mobile platforms,”
in 2015 Design, Automation Test in Europe Conf. Exhibition (DATE),
2015.

C. Leech, C. Kumar, A. Acharyya, S. Yang, G. V. Merrett et al.,
“Runtime performance and power optimization of parallel disparity
estimation on many-core platforms,” ACM Trans. on Embedded Comput.
Syst. (TECS), vol. 17, no. 2, p. 41, 2018.

X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali, “Proactive Control
of Approximate Programs,” in Int’l Conf. on Arch. Support for Prog.
Lang. and Operating Syst., 2016.

V. Vassiliadis, C. Chalios, K. Parasyris, C. D. Antonopoulos, S. Lalis
et al., “Exploiting Significance of Computations for Energy-constrained
Approximate Computing,” Int’l J. of Parallel Prog.., vol. 44, no. 5, 2016.
L. A. Maeda-Nunez, A. K. Das, R. A. Shafik, G. V. Merrett, and
B. Al-Hashimi, “PoGo: An Application-specific Adaptive Energy Min-
imisation Approach for Embedded Systems ,” in HiPEAC Workshop on
Energy Efficiency with Heterogenous Comput., 2015.

