
The original publication is available at
http://doi.org/10.1007/978-3-319-99933-3_9

In SETTA 2018: The 4th Internation Symposium on Dependable Software
Engineering. Theories, Tools, and Applications c© Springer 2018

Developing A New Language to Construct
Algebraic Hierarchies for Event-B

James Snook, Michael Butler, and Thai Son Hoang

ECS, University of Southampton, Southampton, U.K.
{jhs1m15,mjb,t.s.hoang}@ecs.soton.ac.uk

Abstract. This paper proposes a new extension to the Event-B mod-
elling method to facilitate the building of hierarchical mathematical li-
braries to ease the formal modelling of many systems. The challenges
are to facilitate building mathematical theories, be compatible with the
current method and tools, and to be extensible by users within the Rodin
Platform supporting Event-B.
Our contribution is a new language, called B], which includes the addi-
tional features of type classes and sub-typing. The B] language compiles
to the current language used by the Rodin’s Theory Plug-in, which en-
sures consistency, and also gives compatibility with the current Rodin
tools. We demonstrate the advantages of the new language by compara-
tive examples with the existing Theory Plug-in language.

Keywords: Formal methods; Event-B; Theorem Prover; Mathematical Exten-
sions

1 Introduction

The Event-B method [1] and its supporting Rodin Platform (Rodin) [2] are de-
signed specifically for system modelling. Event-B incorporates mechanisms such
as refinement and decomposition to cope with the system complexity. Rodin
includes facilities such as animation, model checking, and theorem proving for
validating and verifying the Event-B models. Often, during system development,
in order to ensure system dependability, developers need to model the system’s
operating environment. Having extensive mathematical libraries makes this mod-
elling task faster and easier. Building these libraries of mathematical definitions
and theorems is made considerably easier with the right tools and language
features.

The challenges addressed in this paper are designing a language with the
required features to enable the development of consistent mathematical theo-
ries, in such a way that minimises repeated proofs. Moreover, the mathematical
theories can be used within the Event-B models.

Our contribution therefore is the design of a new language, called B], with
features to aid the construction of mathematical libraries. The new features are
designed to reason about abstract and concrete mathematical types. The B]

1

http://doi.org/10.1007/978-3-319-99933-3_9


2 J. Snook et al.

language is mapped to the current Event-B syntax as supported by Rodin and
its Theory Plug-in. The mapping phase will generate necessary theorems that
required to be discharged by the developers. Other proof rules will be generated
which would (normally) have required a manual proof in Event-B, however, the
new language will generate the proof itself.

Structure. The rest of this paper is structured as follows. Section 2 examines
the mathematics that we want to model, and the relationships between mathe-
matical types. We also summarise the modelling task in Event-B and its Theory
extension. Section 3 shows the problems with the current tools by describing a
case study, and presents elements of the B] language to facilitate the construc-
tion of mathematical definitions and theorems. Section 4 discusses the related
work and gives some conclusion of our work.

2 Background

2.1 Mathematical Data Structures

Within mathematics, the study of abstract algebra deals with abstract struc-
tures. Rather than dealing with specific functions and sets, they generalise to
deal with all sets and functions that have given properties. For instance, the
abstract structure of a monoid is a set S and a binary function f and an identity
element e, such that:

∀x, y, z ∈ S · f(x, f(y, z)) = f(f(x, y), z) , and (1)

∀x ∈ S · f(x, e) = x ∧ f(e, x) = x . (2)

Property (1) declares that the function f is associative. Property (2) defines e
as an identity element.

Many concrete structures are examples of this abstract type such as, addi-
tion and zero on the real numbers, or matrix multiplication with the identity
matrix. Theorems and functions on the abstract type apply to all of the concrete
examples, so the proof only has to be done on the abstract type.

Axioms can be added to abstract types to form new types e.g., a group is a
monoid where all elements have an inverse. A group can utilise all the results
from a monoid (as the group has all of the monoid’s axioms), and can have new
theorems provable with the new axioms.

Reasoning like this reduces the proof burden as proofs done on the abstract
type do not need to be repeated by either concrete instances, or abstract types
that extend the current type. The proofs are inherited by the new types.

2.2 Event-B and the Theory Plug-in

The Event-B modelling method [1] allows the modelling of discrete event sys-
tems. The Event-B modelling language is supported by the Rodin Platform [2],



Developing A New Language to Construct Algebraic Hierarchies for Event-B 3

an open and extensible toolset for constructing formal models. To increase the
ability of Event-B to model systems the Theory Plug-in [5] was added to Rodin
allowing the extension of the Event-B mathematical language with user-defined
operators and proof rules. The Theory Plug-in can be used as a theorem prover to
create domain-specific mathematical theories. In [4] a 3-D Euclidean space was
modelled, and used to formally verify the safety of a set of paths of Unmanned
Aerial Vehicles (UAVs). The Euclidean space model would be useful to any other
system requiring a safe distance is maintained. Other mathematical structures
that model environment are also widely reusable e.g., two’s complement arith-
metic would be useful to many software system models. The aim of creating the
new language B] is to improve the tools for building these mathematical models
for Event-B.

3 A Language for Mathematical Libraries in Event-B

3.1 A Case Study Using Theory Plug-in

This section summarises the result of a case study evaluating the ability of the
current Theory Plug-in to build and use algebraic hierarchies. The case study
used the Theory Plug-in to construct abstract and concrete mathematical classes,
and then see how they can be related.

On the one hand, our case study shows that abstract mathematical types
were representable within in the Event-B syntax. It also found that abstract
types could be extended to make new abstract types, and that concrete types
could be related to the abstract types. On the other hand, the following issues
with the representation were identified:

1. Event-B operators are not first class members of the language, resulting in
the need to encapsulate them within total functions to relate concrete types
to abstract types, e.g., showing addition and zero form a monoid required a
theorem such as: zero 7→ (λx, y|x add y) ∈ Monoid(pNat) (the operator is
encapsulated within a lambda construct).

2. Demonstrating that a concrete object forms an algebraic type does not make
it inherit the theorems/proof rules of the algebraic type. These have to be re-
written and proved (although the proof can be constructed by instantiating
the theorems/proof rules of the algebraic type).

3. When making theorems about an abstract type the type required construc-
tion from its constituent parts, resulting in verbose theorem definitions. Al-
ternatively the abstract types can be passed in and deconstructed with the
Event-B projection operators making the theorem difficult to read/under-
stand (this can be helped by the user making operators to deconstruct the
abstract types).

4. The Event-B language is not able to reason about subsets as types, this
resulted in the user having to manually do many well-definedness proofs.

5. Predicates in Event-B are not expressions. This makes it difficult to reason
about relations (instead the BOOL type was used and turned back into a
predicate where necessary using equality).



4 J. Snook et al.

6. Abstract types definitions and declarations rapidly increased in complexity.

3.2 The B] Language

This section gives a brief introduction to the B] language, in particular focusing
on the Class declaration, allowing the user to create new type classes, and new
subtypes, fully supported by the language. A type class allows the definition of
a subtype of some existing type structure such that the subtype has additional
properties and operators. A type class also allows us to constrain polymorphism.
For example, the following declaration defines the ReflexRel class:

Class ReflexRel〈T 〉 : T × T → Pred

where ∀x : T, rel : ReflexRel〈T 〉 · rel(x, x){}
(3)

This class declaration creates a type class ReflexRel a subtype of T×T → Pred,
any relation in ReflexRel must have the additional property that all elements
are related to themselves.

Some differences to the Event-B syntax can be seen immediately. The poly-
morphic type T can be a subtype i.e., a type created using the subtyping mech-
anism above. In Event-B this is the equivalent of allowing entities created with
the subset syntax to be treated as types. The B] language does extra work to
reason about subtypes and reduce well-definedness proofs. In Event-B predicates
are a different syntactic category to boolean expressions and are not first class.
In B], predicates are first class of type Pred.. It allows the language to create
functions that return predicates without having to use the BOOL type as an
intermediate.

This class declaration maps to the following underlying Event-B statement:

ReflexRel(t : P(T ))=̂{rel|rel ∈ P(t× t)
∧ ∀x · x ∈ t⇒ x 7→ x ∈ rel}

(4)

To allow the ReflexRel operator to work on subtypes the Event-B power set
operator P is used to give the type of t. Pred is replaced by contricting the set of
rel. When using rel within an expression the mapping to Event-B will become
x 7→ x ∈ rel when the Event-B language requires a predicate value (e.g., as in
the quantifier in (4)).

The class declaration can also be used to create type classes where the type
class is required to have certain elements, e.g., a monoid:

Class Monoid : Setoid(ident : Monoid, op : AssocOp〈Monoid〉)
where ∀x : Monoid · op(x, ident) Monoid.equ x

∧ op(ident, x) Monoid.equ x{}
(5)

Type classes create templates for new classes. For a class to become part of the
monoid type class it needs to have an identity and an associative operator that



Developing A New Language to Construct Algebraic Hierarchies for Event-B 5

follows the rules in the where clauses. Monoid : Setoid means that Monoid is a
subtype of the Setoid type class, which is a type which has an equivalence relation
(this is created using a class declaration similar to the one above). Definition (5)
maps to the following Event-B:

Monoid(t : P(T )) =̂ {setoid 7→ ident 7→ op |
setoid ∈ Setoid(t) ∧ ident ∈ t ∧
op ∈ AssocOp(t, setoid) ∧
∀x · x ∈ t⇒
op(x 7→ ident) 7→ x ∈ Setoid equ(setoid) ∧
op(ident 7→ x) 7→ x ∈ Setoid equ(setoid)}

(6)

Monoid Setoid(m : Monoid(P(T ))) =̂ prj1(m) (7)

Monoid ident(m : Monoid(P(T ))) =̂ prj1(prj2(m)) (8)

Monoid op(m : Monoid(P(T ))) =̂ prj2(prj2(m)) (9)

Given a instance a = b1 7→ b2 · · · 7→ bn prj1(a) will give b1 and prj2(a) will give
b2 7→ . . . bn. From (6) it can be seen that the B] syntax is much more concise.
It is useful to see how a type becomes a member of the Monoid type class:

Instance Monoid(zero, add); (10)

This will make the pNat type (inferred from the zero and add arguments) an
instance of a Monoid. A proof obligation to demonstrate that addition and zero
form a monoid will be generated. Proof rules, theorems and functions from the
Monoid are re-written to rules about zero and addition and added to the pNat
type. As these have been proved in the Monoid type class they do not need to
be reproved.

Polymorphic types can be restricted to a given type class, e.g.:

Class AssocOp < T : Setoid > T × T → T

where ∀x, y, z : T ·AssocOp(AssocOp(x, y), z) T.eq AssocOp(x,AssocOp(y, z))

(11)

The polymorphic type T has to be a member of the Setoid type class (it has to
have an equivalence relation). This will map to the following Event-B:

AssocOp(t : P(T), setoid : Setoid(t))=̂{op|op ∈ t× t→ t

∧ ∀x, y, z · x ∈ t ∧ y ∈ t ∧ z ∈ t
⇒ op(op(x 7→ y) 7→ z) 7→ op(x 7→ op(y 7→ z)) ∈ Setoid Eq(setoid)

(12)

The polymorphic context in (11) (< T : Setoid >) becomes the the arguments
to the Event-B operator in (12). Setoid Eq is an Event-B deconstructor created



6 J. Snook et al.

from the Setoid type class mapping, in the Event-B mapping this is mapped
from the B] T.eq statement.

The syntax for a Class statement is:

Class γ〈τ1 : γ1, . . . , τn : γn〉 : S1 . . . Sm (s1 : T1, . . . , sp : Tp) where e1; . . . ; el; {}
(13)

This declaration has the following meanings:

1. γ is the name chosen for the new class, e.g., ReflexRel in Example (3), this
maps to the Event-B operator name.

2. 〈τ1 : γ1, . . . , τn : γn〉 is the polymorphic context. γi are optional, and restrict
τi to a given type class. These map to the arguments of the Event-B operator.

3. S1 . . . Sm are super types and (s1 : T1, . . . , sp : Tp) define addition struc-
ture. In the Event-B syntax they are mapped to a statement such as {γ 7→
s1 7→ · · · 7→ sp|γ ∈ S1 ∧ dots ∧ γ ∈ Sm ∧ s1 ∈ T ′

1 · · · ∧ sp ∈ T ′
p| . . . }. With

multiple inheritance any shared supertypes remain shared, the mapping for
these is more complex than shown above (it requires the supertypes to be
deconstructed to their last shared ancestor). This is omitted for brevity.

4. Properties e1; . . . ; el are predicate expressions. These create the subtype from
the supertypes. Each ei is translated to the Event-B syntax and they con-
strain the set returned.

Due to the space limit, we omit other features of B] , such as B] functions,
and their mapping to Event-B, or the generation of proof rules from the B] class
statements (to make proving easier).

4 Related Work and Conclusion

There are many examples of similar constructs in other languages. Of particu-
lar interest is Coq [3] for which there has been an extensive library of abstract
algebraic structures developed [6]. The language feature which makes building
this library possible is called type classes [11] originally created for Haskell. Type
classes set out a structure, which types can adopt, and inherit functions from the
type class. Isabelle [10] also has a similar feature allowing abstract specifications
called locales [9]. Algebraic Specification [8] languages give a formal specification
to datatypes rather than describing the structure of the datatype. This abstrac-
tion means that many concrete datatypes could comply with the specification,
giving a similar concept to the ones described above. For example, OBJ3 [7] has
a similar concepts with parameterised modules and theories. Theories define a
structure for an module, parameterised types can then be restricted to models
with this structure.

The novelty in the B] language is not the invention of new language features
but of tailoring and applying these to the Rodin toolset, mapping the extended
B] features to the Event-B syntax for consistency and proof purposes. The work
above demonstrates a method by which this can be achieved. These new features
will allow for the development of hierarchies of generic theories and the ability
to develop domain-specific specialisations of these, while avoiding the need to
redo proofs over similar structures for each specialisation.



Developing A New Language to Construct Algebraic Hierarchies for Event-B 7

References

1. Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

2. Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: An open toolset for modelling and
reasoning in event-b. STTT, 12(6):447–466, 2010.

3. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-
opment - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2004.

4. Chris Bogdiukiewicz, Michael J. Butler, Thai Son Hoang, Martin Paxton, James
Snook, Xanthippe Waldron, and Toby Wilkinson. Formal development of policing
functions for intelligent systems. In 28th IEEE International Symposium on Soft-
ware Reliability Engineering, ISSRE 2017, Toulouse, France, October 23-26, 2017,
pages 194–204. IEEE Computer Society, 2017.

5. Michael J. Butler and Issam Maamria. Practical theory extension in Event-B.
In Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors, Theories of Program-
ming and Formal Methods - Essays Dedicated to Jifeng He on the Occasion of His
70th Birthday, volume 8051 of Lecture Notes in Computer Science, pages 67–81.
Springer, 2013.

6. Lúıs Cruz-Filipe, Herman Geuvers, and Freek Wiedijk. C-corn, the constructive
Coq repository at nijmegen. In MKM, volume 3119 of Lecture Notes in Computer
Science, pages 88–103. Springer, 2004.

7. Joseph A Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-
Pierre Jouannaud. Introducing OBJ. In Software Engineering with OBJ, pages
3–167. Springer, 2000.

8. J. V. Guttag and J. J. Horning. The algebraic specification of abstract data types.
Acta Informatica, 10(1):27–52, Mar 1978.

9. Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. Locales a sec-
tioning concept for Isabelle. In Yves Bertot, Gilles Dowek, Laurent Théry, André
Hirschowitz, and Christine Paulin, editors, Theorem Proving in Higher Order Log-
ics, pages 149–165, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

10. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002.

11. Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc.
In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 60–76. ACM, 1989.


	Developing A New Language to Construct Algebraic Hierarchies for Event-B

